

Sweep-based data acquisition & analysis system

Dynamic clamping

The Signal for Windows application from CED is well known for its extensive Patch and Voltage clamp recording and analysis capabilities. From Signal version 5 we implement extensive dynamic clamp support to augment this flexible program. Used in conjunction with the CED Power1401-3 or mk II and your existing current-clamp amplifier, no special hardware is required.

Signal includes a fully integrated, easily configurable, high-performance dynamic clamping system. This advanced feature makes the technique readily available to researchers who do not have access to complex customised hardware and software by providing a professionally designed, maintained and supported package that is usable by all at a low cost.

In the dynamic clamp technique¹, a typically nonlinear feedback system delivers current to a cell to represent the actions of virtual ion channels, allowing ion channels or synapses to be simulated, or the actions of existing channels to be cancelled².

- Execute up to 15 models to generate outputs on up to 8 DACs; multiple models driving one DAC are automatically summed
- Very fast update rates: over 300 kHz with one Hodgkin-Huxley model and 270 kHz with two models (see table below)
- Detection of overload in hardware gives confidence in your results
- Ergonomic dialogs to view and edit the model parameters
- Modify model parameters and apply your changes while sampling
- Switch automatically between multiple parameter sets during sampling
- Pulse and waveform outputs defined by the user can be summed with the outputs generated by dynamic clamping
- Output sequencer can enable and disable individual models dynamically during a single sampling sweep

Currently available models and speeds

Model class	Туре
Hodgkin-Huxley	Alpha/Beta *, Tau*
Synapse	Alpha, Central pattern generator, Destexhe, Electrical, Exponential, Exponential difference, User defined *
Leak	Linear, GHK, Boltzmann, User defined *
Noise	Ornstein-Uhlenbeck, Scaled Ornstein-Uhlenbeck *

H-H Models	x1	x2	x4	x8
Power1401-3	320 kHz	270 kHz	175 kHz	105 kHz
Power 1401 Mk II	100 kHz	85 kHz	60 kHz	45 kHz

* These models can be customised or extended by replacing numerical parameters with user generated tables of values

Est. 1970

Dynamic clamp simulating action potentials with model parameter access during sampling

todel type	Name	Chans	DACs	Hodgkin-Huxley (Alpha/Beta)
iodgkin-Huxley (A/B)	Na+	1	0	Hodgkin-Huxley (Tau)
iodgkin-Huxley (A/B)	К+	1	0	
GHK Leak	Leak	1	0	Alpha Synapse
Scaled O-U Noise	Noise	1	0	CPG Synapse
				Destexhe Synapse
				Electrical Synapse
				Exponential Synapse
				Exp. Dif. Synapse
Force model conduct				User Defined Synapse
1	Close		Help	Leak
				Noise

Adding and selecting models

Setting parameters for a Hodgkin-Huxley model

The Power1401-3, as used for dynamic clamping

Embedded hardware-based dynamic clamp systems offer feedback that is fast and precisely timed, but these systems are often expensive and sometimes inflexible. PC-based systems, on the other hand, allow more complex feedback, but real-time performance can be poor³.

The CED Signal dynamic clamp system gives you the best of both worlds. All real-time aspects of the system are executed by the Power1401's fast embedded processor using pre-calculated lookup tables and optimised floating-point arithmetic, with the feedback calculations triggered by the ADC sampling for maximum stability. This software-based design is fast yet still provides great flexibility. The non-real-time aspects of the system are handled by the controlling PC to allow simplicity and ease of use. The result: a dynamic clamp system integrated into the standard Signal data acquisition software that greatly outperforms generally-available dynamic clamp systems.

It has been shown³ by simulations and experiment that the performance of dynamic clamp systems is strongly affected by the update rate and latency of updates. The very high-speed methods used by CED provide the superior update rates with low latencies that allow you to undertake the most demanding experiments. The mechanism incorporates a hardware based overflow detector so that you can be sure that the required update rates have been achieved and that your data is trustworthy.

- ¹ Sharp AA, O'Neil MB, Abbott LF, Marder E (1993) Dynamic Clamp: Computer-Generated Conductances in Real Neurons. J Neurophysiol 69: 992-995 †
- 2 Prinz AA, Abbot LF and Marder E. The dynamic clamp comes of age. Trends Neurosci. 2004 Apr;27(4):218-24 \dagger
- ³ Bettencourt JC, Lillis KP, Stupin LR and White JA. Effects of Imperfect Dynamic Clamp: Computational and Experimental results. *J Neurosci Methods*. 2008 April 30; 169(2):282-289 †

Voltage and patch-clamp features

In addition to the integrated dynamic clamp features, Signal also provides support for standard clamping experiment methodologies:

Woltage and current clamp Generates all of the stimuli needed, including pre-recorded waveforms. Multiple sets of stimuli can be stored in one sampling configuration and selected manually or automatically sequenced. On-line measurement of seal and membrane resistance. Leak-subtraction and I/V plots online and offline. Curve fitting to waveform data and I/V plots.

Single channel patch clamp Produces idealised current traces from patch data showing detected transition events either by thresholding or SCAN analysis. The idealised trace is editable by dragging open/closed times and amplitudes, splitting and combining events. Amplitude histograms and dwell time histograms can be produced.

System requirements

Signal Dynamic clamping requires a CED Power1401-3 or mk II laboratory interface and a PC with Windows XP, Windows Vista, Windows 7, Windows 8 or Intel Macintosh running Windows. Both 64-bit and 32-bit OS versions are supported. We recommend the computer has a minimum of 2GB of RAM.

Setting parameters for exponential difference synapse model

Membrane test during sampling

Exponential difference synapse model with superimposed noise, triggered internally at randomised intervals

Cambridge Electronic Design Limited

Technical Centre, Cambridge Road, Milton, Cambridge CB24 6AZ, UK. Tel: (01223) 420186 Email: info@ced.co.uk Europe & International Tel: [44] (0)1223 420186 USA and Canada Toll free: 1-800-345-7794 Distributors in: Australia, Austria, China, France, Germany, Israel, Italy, Japan, Switzerland & Turkey

www.ced.co.uk