@E@ #1 ~ May 2003

The eNewsletter from Cambridge Electronic Design Established 1970

Contents

News — General

Spike2 — Rate displays always start at zero

Signal — Fast triggers and fast fixed interval sweep modes
Spike2 Script — Pulse from threshold crossing

Signal Script — Convert CFS data files to V#WAV format
Recent questions — Forming averages

News

O.K. the first newsletter. ANY comments about format or whether on some emailers the images are not
visible would be very helpful. I'm feeling my way with this!

| would like to also put in a ‘did you know’ section to mention things like the Burst analysis script W_Burst
for Spike2 that is shipped with Spike2 and can be found in the Spike2\scripts folder. For Signal (and
actually for Spike2 too) ToolMake which builds a skeleton script for you. A good aid to getting started.
These can also be found in the scripts folders.

Version 5 of Spike2 is now released. A demonstration version of the software is available from
http://www.ced.co.uk/pru.shtml

Version 4.15 of Spike2 is freely downloadable for registered v4 users.
Version 2.13 of Signal is also freely downloadable for registered v2 users.

Version 5

One of the main sections that Greg and his team have been working on in this new release is the
clustering of spike data. This allows you to ‘cluster cut’ using ellipses and write back the information to
form templates to be used on or off-line. They have also been working on spreadsheet format output. This
resamples the data to allow channels possibly at different original sample rates to be placed in columns
for import directly into spreadsheets.

User group. See end of newsletter.

UK training days in Cambridge on Monday June 16th and Tuesday 17th. There will also be the usual
USN training days later in the year.

SPIKE2
Q. Rate displays always start at zero. How can | change that?
A. There is already a rate display option in Spike2 (view - channel draw mode). This may not be

quite what we need though as the first bin of the rate always starts at zero time. By using the
active cursor (0) and the XY view from the cursor pull down we can get a plot of time against sum

http://www.ced.co.uk/s2wu5u.shtml
http://www.ced.co.uk/s2demu.shtml
http://www.ced.co.uk/nw9u.htm
http://www.ced.co.uk/nw9y.htm

of the events in a given range and also to start the plot at virtually any time in the file.

Use Analysis - measurements -XY view to plot on the X 'Time at point' where the time
is = cursor(0) on the Y 'Sum' where the start is cursor(0) and the end is Cursor(0)+5 indicating a
5 second time window. When you press New this will produce an empty window and a process
dialog where you can specify the start and end times to be calculated. The result is a channel of
rate data that can now be copied as text.

This method could also be used to down sample a channel if Y 'sum' was replaced with 'value at
point' If we were only interested in a view of the rate then we could also use Analysis - Channel
process and add Time shift in a positive or negative direction. Handy for aligning bursts of activity
with stimulus ramps.

This is a v4 or v5 function.

Settings for XYPlotZ2{Drug) X EI
— Cursar 0 ztepping
Method | E xpreszion LI
E xpreszion IEursu:-r[El] +5 ll
lgnore cursar O step if I [T User check positions
Plat Channel |Ehannel 1 j Add Channel | [Helete Channel |
— & measurements T measuraments
Tvpe ITime at poirt j Tvpe ISum ;I
Channel |25 Memary [Event+] j
Start time | Cursar(0] ~|
Time IEursu:ur[El] LI End time IEursu:ur[El] +H j
[T &l channels use same % Points |EI Help | Cancel | [e I

Spike templates

Q.

I know that it is the same spike but over time the amplitude has changed and | get another
template formed even though | have set the parameters to ‘track’.

The spike program may not detect the perhaps sudden change in the amplitude of a spike shape.
We can track gradual changes but on occasion it is better to use multiple templates per spike. In
the New or Edit Wavemark dialog. Double clicking on the template ‘number’ can change it's code.
If as in the case below the code is changed to match the first template then both spikes will be
stored in the file as 01 and coloured accordingly. The other benefit of doing this is that you do not
create a much wider amplitude template that may allow other unwanted spikes to match. You may
find this particularly helpful if you have a short burst of 4 or 5 spikes that rapidly change their
amplitude. An example of this may look like.....

I

This is available in all Spike2 versions.

W WaveMark from Drug]

File Edit View Templates Contral Analyse

[Editing marker code 0

z|s|2] Bl ol

=10 x]

Spikes

Y

|'m'|. _.ﬂ,ul_l] | |

200
100

0
-100
-200

ms:.0 35 30 -25 20

.0 05 00 05

1.5 20

e s Tt

" by thape

I 1 Spikes J—I

(X300 oooo]

Best match: 00

H| 1|II| P|H|
|Fast VI

W Circular replay

ake templates

01] 356,356 23 m| J

245;245I=;|:¢I1- @

03]

4040w @)

04] 22/221=3 ¥ @]

=
\

7

Double click the highlighted number

SIGNAL

Fast triggers and fast fixed interval sweep modes

During sampling with Signal, as well as the data being transferred from the 1401 interface to the host
computer there is generally also a great deal of other information flowing in both directions, including
details such as the state to be used for the next sweep and any changes to pulse outputs. This causes a
delay between the end of one sweep and Signal being ‘armed’ to wait for the next trigger resulting in a
lower possible sweep rate than you may think is possible. For many complex recording protocols this is
absolutely necessary, however if a simple protocol requiring high repetition rates is needed it can cause
problems.

Using ‘Fast triggers’ sweep mode, significantly shorter intervals are possible, resulting in Signal being
ready for the next trigger virtually instantaneously. This is done by limiting the amount of features available
thereby stopping the need to communicate with the host computer other than for data transfer. The
limitations of using this are that multiple states and incremental pulse outputs are disabled.

For applications requiring a very fast repetition rate but which are required to be timed from within Signal
itself ‘Fast fixed interval’ sweep mode is available. This gives the same limitations as ‘Fast triggers’ but
enables the user to set the sweep length and inter sweep interval within Signal rather than relying on an
external trigger.

Scri pts. Spike2 m Right mouse click the script icon and save file to disk.
We've been asked recently to produce a script and sequencer which will output a digital TTL pulse when a

waveform threshold is reached. Can be useful for pulsing when a burst of activity is detected or marking
ECG R waves. More information can be found on our Spike Online Script page.

Scri pts Signal IlIIRight mouse click the script icon and save file to disk.

Output Signal data files .CFS as Windows .WAYV format. This allows you to import the channel or channels
into Matlab amongst other software. More information can be found on our Signal Display Script page.

Recent questions
Something simple to start | think.

Q. When forming averages | would like to know how many sweeps of data have been added to the
mean display.

A. From the view pull down select info and this will give you the sweep count. It is possible to reset
this using the script and indeed reset the average at n sweeps if you want.

User group
It will take a short time to set up an archive message board on our web site. As soon as this is done | will

use this newsletter to announce that it is available. This seems to be the most sensible route to go rather
than direct emailing both for security and for minimising spam.

'ThreshPulse.s2s

'Written by Steven Clifford - CED - 21/01/03

'This is a script to detect a threshold crossing on a waveform input channel

'and mark this by outputting a TTL pulse or setting a marker in a memory channel

'which can be, for example, used to display heart rate.

'It uses the current sampling configuration which must include at least one waveform channel.

'

'Note this script is UNDER DEVELOPMENT BY CED and is included for

'illustration only. We make no warranties as to its suitability

'or otherwise. It has not been thoroughly tested.

'You should use it 'as is'

'When run, the user is asked to select a waveform input channel, the direction

'of the required threshold crossing and how to mark the crossing. A data file is then started and a

'horizontal cursor set on the input waveform channel which the user should position

'at a reasonable starting level for the threshold.

'The user then presses OK and 'Sample Start' to commence sampling.

'NOTE: This script writes an output sequence into a default folder of c:\Spike4\sequence into which

'variables are passed. If this folder does not exist the script will not work. Useers of Spike 2 version 3

'will need to edit this directory.

var seqFile$;															'Name and path for sequencer file

var data%;																'Handle of new data file

var sTime;																'The last time we looked at the idle routine

var curtrigLev;														'Current trigger level as checked by idle routine		

var oldTrigLev;														'Previous trigger level

var trigChan%;															'Memory channel used for testing purposes

var inputChan%;														'Waveform channel monitored for threshold crossings

var setDelay%;															'Delay time in ms

var delayTicks%;														'Delay in sequencer steps to pass as variable

var trigVar;															'Level of threshold in ADC units

var threshType%;														'Pulse direction

var pulseFlag% := 1;													'Flag if TTL pulse required

var memFlag% := 1;													'Flag if memory channel marker required

var numMem%;															'Number of items imported into memory channel

seqFile$:= FilePath$(2) + "Sequence\\pulse.pls";		

ToolbarVisible(1);													'Make toolbar visible always

New%();																	'Set up new sampling window

DoToolbar();															'Do the toolbar

func New%()																'New sampling window

var ok%;

var test%;

var waveChans%[32];													'List of available waveform channels	

View(LogHandle());													'Make log view the current view

EditSelectAll();														'Select all text in log view

EditClear();															'Delete it

Window(0,80,100,100);												'Display it at the bottom of the screen

WindowVisible(1);														'Make it visbible

	if data%>0 then													'If there is already a data view open then

 if ViewKind(data%)>-1 then

 	 View(data%);														'Close it

 	 FileClose();

 endif;

endif;

test% := FileNew(0,0);

if test% <= 0 then

	Message(" Unable to sample data\nPlease check 1401 and re-run script");

	Halt;

endif;

View(test%);

ChanList(waveChans%[],1);

if waveChans%[0] = 0 then

	Message("Your sampling configuration contains no waveform channels\n Please set up suitable channel and re-run script");

	View(test%);

	FileClose(0,-1);

	Halt;

endif;

DlgCreate("Settings");									'Dialog to set channel and delay

DlgChan(1,"Input channel",1,20,1);

'DlgInteger(2,"Delay (ms)",2,1000);

DlgList(2,"Threshold","Positive|Negative",8,20,2);

DlgText("Action",2,3);

DlgCheck(3,"TTL pulse",19,3);

DlgCheck(4,"Memory channel marker",19,4);

'ok% := DlgShow(inputChan%,setDelay%,threshType%);

ok% := DlgShow(inputChan%,threshType%,pulseFlag%,memFlag%);

View(test%);

FileClose(0,-1);

if not ok% then

	Message("Pressed cancel - Script closing");

	Halt;

endif;

delayTicks%:=(setDelay%*10-4);									'Calculate number of sequencer steps to pass as variable

SampleSequencer("");													'Clear any current output sequences

if pulseFlag% then	

	WriteSequence(threshType%);									'Write output sequence to use if TTL pulse required

endif;

data%:=FileNew(0,2);													'Open a new data file for sampling

sTime := 0;

HCursorDelete(-1);					

WindowVisible(1);

if data%<0 then Message("Unable to open new data file");Halt() endif;

'DrawMode(-1,2);														'Set event draw mode to lines

Window(0,0,100,100);													'Make data window in top bit of screen

'XRange(0,10);

HCursorNew(inputChan%,oldTrigLev);								'Set cursor on appropriate channel	

Interact("Position cursor at initial threshold level",1023);

oldTrigLev:=HCursor(1);												'Get threshold level

trigVar:=(HCursor(1)-ChanOffset(inputChan%))/(5*ChanScale(inputChan%))*32768;		'Convert to ADC units

SampleSeqVar(3,trigVar);											'Set output sequencer variable

if memFlag% then

	trigChan%:=MemChan(3);	

	DrawMode(trigChan%,2);

	ChanShow(trigChan%);

endif;

'FrontView(LogHandle());											'Bring the Log view to the front

FrontView(data%);														'Bring the data view to the front

ToolbarEnable(3,0);													'Disable "Sample stop" button

ToolbarEnable(2,1);													'Disable "Sample stop" button

ToolbarText("Press SAMPLE START to commence sampling");

return 1;

end;

proc DoToolbar()

ToolbarSet(1,"Quit",Quit%);										'Set up toolbar buttons

ToolbarSet(2,"Sample start", Start%);

ToolbarSet(3,"Sample stop", Stop%);

ToolbarSet(4,"New file", New%);

'ToolbarSet(6,"Change delay",ChangeDelay%);

ToolbarEnable(3,0);													'Disable "Sample stop" button

'ToolbarEnable(6,0);

View(data%);

Toolbar("Press SAMPLE START to commence sampling", 1023);					'Wait here until quit is pressed

end;

func Quit%()															'If "Quit" is pressed

SampleStop();															'Stop sampling

return 0;																'leave toolbar

end;

func Start%()															'If "Start" is pressed

ToolbarSet(0,"",Idle%);												'Call Idle%() whenever there is free time

SampleStart();															'Start sampling

ToolbarEnable(4,0);													'Disable "New file" button

ToolbarEnable(3,1);													'Enable "Sample stop" button

ToolbarEnable(2,0);													'Disable "Sample start" button

ToolbarEnable(1,0);													'Disable "Quit" button

'ToolbarEnable(6,1);

ToolbarText("Press SAMPLE STOP to stop sampling");

return 1;																'Stay with toolbar

end;

func Stop%()															'If "Stop" is pressed

ToolbarClear(0);

SampleStop();															'Stop sampling

ToolbarEnable(4,1);													'Enable "New file" button

ToolbarEnable(3,0);													'Disable "Sample stop" button

ToolbarEnable(1,1);													'Enable "Quit" button

'ToolbarEnable(6,0);

ToolbarText("Press FILE NEW to capture more data");

return 1;																'Stay in toolbar

end;

Func ChangeDelay%()													'Function to change delay time

setDelay%:=Input("Delay time (ms)",setDelay%,2,1000);

delayTicks%:=(setDelay%*10-4);

SampleSeqVar(4,delayTicks%);

return 1;

end;

func Idle%()															'The Idle routine is called when PC has time

var eTime;

View(data%);

eTime:=Maxtime();

'PLACE CODE IN HERE TO ANALYSE THE DATA FILE BETWEEN sTime and eTime

curTrigLev:=HCursor(1);												'Check if threshold level has changed

if curTrigLev <> oldTrigLev then									'If so, Get new level in ADC units

	trigVar:=(curTrigLev-ChanOffset(inputChan%))/(5*ChanScale(inputChan%))*32768;

	SampleSeqVar(3,trigVar);										'Update sequencer variables		

	oldTrigLev:=curTrigLev;											'Reset previous cursor level to current level

endif;

if memFlag% then														'If memory channel markers required

	if threshType% = 0 then

		numMem% := MemImport(trigChan%,inputChan%,sTime,eTime,2,0,oldTrigLev);	'import crossing times into memory channel

	else

		numMem% := MemImport(trigChan%,inputChan%,sTime,eTime,3,0,oldTrigLev);					

	endif;

	if numMem% then

		sTime:=eTime;

	endif;

endif;

return 1;																'Stay in toolbar

end;

'This function writes an output sequnce for use with the script.

Func WriteSequence(type%)

var seq%;

var seqSet%;

seq%:=FileOpen(seqFile$,8,1);

'Message(seq%);

View(seq%);

if type% = 0 then

	Print(" SET 0.10 1 0\n");

	Print(" VAR V1,num=0\n");

	Print(" VAR V2,prev=0\n");

	Print(" VAR V3,lev\n");

	Print(" VAR V4,del=%d\n\n",delayTicks%);

	Print("UNDER: CHAN num,%d\n",inputChan%);

	Print(" BGT num,lev,pulse\n");

	Print(" JUMP under\n\n");

	Print("OVER: CHAN num,%d\n",inputChan%);

	Print(" BLT num,lev,under\n");

	Print(" JUMP over\n\n");

	Print("PULSE: DIGOUT [00000001]\n");

	Print(" DELAY 8\n");

	Print(" DIGOUT [00000000]\n");

	Print(" JUMP over");

else

		Print(" SET 0.10 1 0\n");

	Print(" VAR V1,num=0\n");

	Print(" VAR V2,prev=0\n");

	Print(" VAR V3,lev\n");

	Print(" VAR V4,del=%d\n\n",delayTicks%);

	Print("OVER: CHAN num,%d\n",inputChan%);

	Print(" BLT num,lev,pulse\n");

	Print(" JUMP over\n\n");

	Print("UNDER: CHAN num,%d\n",inputChan%);

	Print(" BGT num,lev,over\n");

	Print(" JUMP under\n\n");

	Print("PULSE: DIGOUT [00000001]\n");

	Print(" DELAY 8\n");

	Print(" DIGOUT [00000000]\n");

	Print(" JUMP under");

endif;

'FileSaveAs("c:\\Spike4\\Sequence\\Pulse.pls");

FileSave();

FileClose();

seqSet%:=SampleSequencer(seqFile$);

'Message(seqSet%);

return 1;

end;

CED Ltd
threspul.s2s
Spike2 Pulse from threshold crossing script

'===

'CAMBRIDGE ELECTRONIC DESIGN LIMITED, THE SCIENCE PARK, MILTON RD., CAMBRIDGE CB0 0FE, UK

'===

'CfsToWav1.sgs

'Copyright © Cambridge Electronic Design, Mar 2003.

'Overview.

'

'This script converts .cfs files created for example by CED Signal software to .wav format.

'It requires Signal version 2 or higher.

'The script works on one frame of data at a time and can convert up to 4 channels of data

'The script is a 'work in progress' and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'User Guide.

'Use the Run or Load and Run commands on the Signal Script menu to start the script.

'The main script toolbar has 8 buttons that can be clicked with the mouse or operated by a hotkey (underlined).

'Use the |Select View| button to choose a file to analyse from a list of already open .cfs files

' or press |New File| to load a data file from disk.

'Use the Go to Frame command on the View menu to navigate to the frame of interest or use the arrow keys at the

'bottom left hand corner of the frame.

'When the frame of interest is displayed, select the time range to convert by dragging the cursors.

'If the cursors are not visible you can bring them into view with the |Fetch Cursors| button.

'Alternatively, press the |Whole Frame| button to convert the entire frame.

'Select the channels to be included in the .wav file by clicking on the channel numbers. (Hold down Cntrl to select multiple channels).

'Then press the |Export as .wav| button. A dialog appears with a drop-down menu to select 8-bit or 16-bit integer

'format. Checkboxes indicate the currently selected waveform channels. Ensure that the required channels are selected

'(maximum 4), then press OK. A File Save dialog then appears for entering the name and path of the output file.

'You must explicitly give the file a '.wav' filetype. Press Save to generate the output file.

'You can repeat this sequence with different frames and/or files as often as required creating a new .wav file each time.

'Press |Quit| when you have finished to close the script.

'The script has a simple .wav file playback facility.

'You can play back the most recently saved .wav file via the computer's sound system provided that the file is relatively small (<1.5MB)

'and has no more than two channels. To do this, click the PlayBack button. An error message is displayed if the .wav file is not suitable.

'Larger files can be replayed with a media player.

'The |StopPlay| button interrupts playback of a wav file.

'**

 const BSZ% := 8000; 'limit array to the size that can be written quickly

 const swquit%:=1, swselvw%:=4, swnewf%:=5;'button numbers

 const swfetch%:=7,swall%:=8,swstore%:=10;

 const swplay%:=12,swpstop%:=13,on%:=1,off%:=0;

 var fh%, bh%;

 var st, fin;

 var gFloat%[20]; 'global for floating window states

 var views%[100];

	var outfname$;							'name of most recent .wav file

 var playflg%:=0; 'flag that wav file can be played back with Sound()

 var nbufs%:=0; 'number of 8K buffers

 var list%[2],n%;

'**

 ToolbarClear();

 View(App(3)).WindowVisible(2); 'iconise the script

 HideAll();

 if ViewKind(View(0)) = 0 then 'if the current view is a cfs file use it as default

 fh%:=View(0);

 WindowVisible(1);

 else 'else find another open time view if available

 n%:=ViewList(list%[],1);

 if n% > 0 then

 fh%:=list%[1];

 View(fh%);

 WindowVisible(1);

 endif;

 endif;

 ToolbarSet(0, "Idle", Idle%);

 ToolbarSet(swquit%, "&Quit", Quit%);

 ToolbarSet(swselvw%, "Select &View ", Selview%);

 ToolbarSet(swnewf%, "&New File", OpenFile%);

 ToolbarSet(swfetch%, "&Fetch Cursors", FetchCursors%);

 ToolbarSet(swall%, "&Whole Frame", WholeFile%);

 ToolbarSet(swstore%, "&Export as .Wav ", Storewav%);

	ToolbarSet(swplay%, "&PlayLast ", PlayWav%);

	ToolbarSet(swpstop%, "&StopPlay ", StopPlay%);

 ToolbarEnable(swplay%,off%); 'disable the playback buttons

 ToolbarEnable(swpstop%,off%);

 Toolbar(" Drag cursors to select time range to export", 191);

 halt;

'**

 func Idle%()

 var VL%,enable% := 0;

 var x%[2],nc%;							 'temporary array to get size of chans%[]

 nc%:=ChanList(x%[], 1);

 var chans%[nc%+1];

 VL%:= Viewlist(views%[], 1);

 if VL% < 2 then 'disable view select button if only one available

 ToolbarEnable(swselvw%,off%);

 else

 ToolbarEnable(swselvw%,on%);

 endif;

 if vl% > 0 then 'enable most buttons if at least one .cfs document open

 enable% := 1;

 else

 ToolbarText(""); 'clear toolbartext if no file

 endif;

 ToolbarEnable(swfetch%, enable%);

 ToolbarEnable(swall%, enable%);

 if ((ViewKind(View(0)) = 0) AND (View(0).ChanList(chans%[], 1) = 0)) then 'no waveform channels

 enable% := 0;

 endif;

 ToolbarEnable(swstore%, enable%);

 if ViewKind(View(0)) = 0 then 'Renumber and relabel cursors if they are 'crossed'

 if Cursor(1) > Cursor(2) then '

 CursorRenumber();

 DoCursors%();

 endif;

 endif;

 return 1;

 end;

'**

 func PlayWav%();

 if nbufs% < 200 then 'if the file is relatively small

	 Sound(outfname$,1); ' play the wav file

 else

 Message("Sorry. Signal couldn't replay "+ outfname$ +"\n"+

 "Try using your media player.");

 endif;

 ToolbarEnable(swpstop%,on%);

	return 1;

	end;

'**

 func StopPlay%();

	Sound("S!",1); 'stop previous sound output and play system exclamation sound.

 ToolbarEnable(swpstop%,off%);

	return 1;

	end;

'**

 func FetchCursors%()									'Places cursors to be in middle of view

 var vh%;

 View(fh%);

 CursorSet(2);

 DoCursors%();

 return 1;

 end;

'**

 func WholeFile%()									 'Places cursors to be in the start and end of the view

 View(fh%).CursorSet(2, 0, View(fh%).MaxTime());

 return 1;

 end;

'**

 func SetView%() 'Set this view current

 view(fh%);

	Window(0,0,100,100);

 	Draw(0, MaxTime());

 CursorSet(2);

 DoCursors%();

 ToolbarText(" Drag cursors to select time range to export");

	FrontView(fh%);

 return 1;

 end;

'**

 func DoCursors%();

 var vh%;

 vh%:=View();

 view(fh%);

 CursorLabel(4,1,"start(%5.2ps)");

 CursorLabel(4,2,"end(%5.2ps)");

 CursorLabelPos(1,1);

 CursorLabelPos(2,3);

 View(vh%);

 return 1;

 end;

'**

 func SelView%()

 var i%, ok%, n%;

 for i% := 0 to 99 do

 views%[i%] := 0;

 next;

 if (Viewlist(views%[], 1) > 0) then 'Store viewhandles of all available time views

 var list$[views%[0]];

 for i%:=1 to views%[0] do

 view(views%[i%]);

 list$[i%-1] := windowtitle$(); 'Set list of titles

 next;

 dlgcreate("Select view"); 'Define Menu ...

 dlglist(1,"Select view: ",list$[]);

 if (dlgshow(n%) = 0) then

 return 1;

 endif;

 fh%:=(views%[n%+1]);

 if (fh% > 0) then

 return SetView%(); 'Activate view

 endif;

 else

 return OpenFile%(); 'Open new file

 endif;

 return 1;

 end;

'**

 func OpenFile%()

 var vh%;

 vh% := FileOpen("",0,0,"Select a .cfs file to convert");

 if (vh% < 0) then

 Sound("S*",1);

 return 1;

 else

 fh% := vh%;

 return SetView%();

 endif;

 end;

'**

 func Storewav%()

 var ok%, bytes%, fmt% := 1;

 var x%[1];							 ' temporary array to get size of chans%[]

 var sampInt;

 View(fh%);

 CursorRenumber();

 st := Cursor(1);

 fin := Cursor(2);

 var chans%[ChanList(x%[],1)+1];

 ChanList(chans%[], 1);

 ok% := DoConfig%(chans%[], fmt%); ' Put up the configuration dialog

 if ok% <> 0 then 'dump if user selects a channel

 bh% := FileOpen("", 9, 1, "Filename for .wav file");

 outfname$:=Filename$();

 if bh% > 0 then

 ToolbarText("Saving .wav file");

 view(fh%);

 sampInt := BinSize(chans%[1]);

 docase

 case fmt% = 0 then bytes% := 1;

 case fmt% = 1 then bytes% := 2;

 endcase;

 SetupAndWriteHeader(bh%, sampInt, (fin-st)/sampInt, bytes%, chans%[0]); 'setup file header

 Dumpwave(bh%, fh%, st, fin, chans%[0], bytes%, chans%[]); '8/16-bit Integer

 Sound("S!",1);

 View(bh%);

 FileClose(); 'close the binary file

 if playflg% > 0 then

 ToolbarEnable(swplay%,on%); 'enable the playback buttons

 endif;

 ToolbarText(" Drag cursors to select time range to export");'change prompt

 else

 Sound("S*",1);

 endif ;

 endif;

 return 1;

 end

'**

 func DoConfig%(chans%[], &fmt%)

 var numchans%; numchans% := chans%[0];				 ' store number of channels

 var chansel%[numchans%];

 var ch%;

 var curchn% := 1;								 ' how many channels are selected?

 var ret%,									 ' return value from DlgShow to be returned

 nocurs% := 1,								 ' should we not use cursors to find st and fin

 	sep;										 ' which separator will we be using?

 var fmt$[4];

 var side% := 0, y%;

 var z; z := (numchans%+10.2)/2.0;

 ' z is the y position (in DBUs) of the next line after the channel list.

 ' z := (numchans%+2*row+1)/2.0; where row is the row the items to follow would be

 ' on if we had no channel list.

 ' Start new dialog, specifying w + h

 fmt$[0] := "8-bit Integer"; fmt$[1] := "16-bit Integer"; fmt$[2] := "32-bit IEEE real"; fmt$[3] := "64-bit IEEE real";

 DlgCreate ("Export in .Wav format",0,0,57,((numchans%+1)/2)+5);

 DlgLabel (1,"Output Format",2,1.3);

 DlgList (2,13,fmt$[],2,18,1.3);							 ' create listbox

 DlgLabel (3,"Choose the channels to export",2,3);

	' We now loop through all the channels and create a checkbox for each. We arrange

	' them into two columns to decrease the height of the dialog box.

	for y% := 1 to numchans% do

		ch% := chans%[y%];

 chansel%[y%-1]:=ChanSelect(ch%); 'check the box if channel was selected

		DlgCheck(y%+3,Print$("%3d %s %.2f KHz",ch%,ChanTitle$(ch%), 1.0/BinSize(ch%)/1000.0),25*side%+6,(y%+1)/2+3);

		side% := not side%;

	next;

 if ArrSum(chansel%[]) =0 then 'if no channels selected set 1st by default

 chansel%[0]:=1;

 endif;

	ret% := DlgShow(z,fmt%,z, chansel%[]);', z); ' ret% is 0 if user cancels

 if (ret% > 0) then

 	for y% := 1 to numchans% do					 ' count them and eliminate those

 	 if chansel%[y%-1] then						 ' which aren't

 		 chans%[curchn%] := chans%[y%];

 			 curchn% += 1;

 		 endif;

 next;

 	chans%[0] := curchn%-1;							 ' save number of selected channels

 if chans%[0] <=2 then

 playflg%:=1; 'flag that this file can be played back by the script

 else

 playflg%:=0;

 endif; 'because it is a single channel

 if chans%[0] > 4 then

 Message("Error|Can't export more than 4 channels.\n"+

 "Please go back and select 1 to 4 channels,");

 return 0;

 endif;

 if chans%[0] = 0 then							 ' validate data; must have

 Message("Error|You must select a channel to export!");

 return 0;									 ' at least one selected chan

 endif;

 if (chans%[0] > 1) then							 ' validate data; must have the same sampling rate

 for y% := 1 to chans%[0]-1 do					 ' count them and eliminate those

 if (View(fh%).BinSize(chans%[y%]) <> View(fh%).BinSize(chans%[y%+1])) then

 Message("Error|You must select channels with the same sampling rate!");

 return 0;									 ' at least one selected chan

 endif;

 next;

 endif;

 if st = fin then								 ' must have a nonzero period

 Message("Error|You must select a time region to export!");

 return 0;									 ' of time to dump

 endif;

 endif;

 return ret%;									 ' return appropriate value

 end;

'**

 Proc SetupAndWriteHeader(bh%, sampInt, arrSiz%, bytes%, chans%); ' Standard components of wav file header in integer format

 var MyHead%[11]; 'array to store WAV format file header

 Myhead%[0] := 0x46464952; ' RIFF

 MyHead%[1] := 44 + (arrSiz%*bytes%*chans%);

 Myhead%[2] := 0x45564157; ' WAVE

 Myhead%[3] := 0x20746D66; ' fmt<sp>

 Myhead%[4] := 0x10; ' formatsize=16,

 Myhead%[5] := 0x10000 * chans% + 0x01; ' upper 16 == chans, lower 16 == format tag == 1

 MyHead%[6] := 1.0 / sampInt; ' Fill in the gaps in the header array

 MyHead%[7] := MyHead%[6] * bytes% * chans%; ' average bytes/second

 Myhead%[8] := (0x80000 * bytes%) + (bytes%* chans%); ' upper 16 == bits/sample, lowest 16 == block allignment

 Myhead%[9] := 0x61746164; ' DATA

 MyHead%[10] := arrSiz% * bytes% * chans%;

 View(bh%).Bwrite(MyHead%[]); 'write the header

 end;

'**

 proc DumpWave(bh%, fh%, sTime, eTime, nch%, bytes%, list%[]); '===modified from Spike 2 version GH 21/03/2003

 var myArray%[BSZ%];

 var myArray[BSZ%]; 														'===real version of results array

 var scalefactor[4],lo,hi; 												'===yrange of channel

 var dat%[nch%][BSZ%]; 'generate channels array

 var n%, ich%, pts%;

 var startbin%; 															'===starting point of data

 View(fh%);

 for iCh% := 0 to nCh%-1 do

 	MinMax(list%[ich%+1],stime,etime,lo,hi);

 	lo:=Abs(lo);

 	hi:=Abs(hi);

 scalefactor[ich%] := 1.0E-3;

 if (Max(lo,hi) <> 0.0) then

 	 scalefactor[ich%] := 32767.0/Max(lo,hi); 					 '===calculate suitable scale factors for each channel

 endif; 								 '===calculate suitable scale factors for each channel

 next;

 nbufs%:=0; 'initialise buffers counter

 repeat

 for iCh% := 0 to nCh%-1 do

 View(fh%);

 	 	n%:=ChanItems(list%[ich%+1],stime,etime);				 '===number of data points left to do

 		if n% > BSZ% then												 '===if > buffersize do one buffer's woth

 n%:=BSZ%

 		endif;

 		if n% > 0 then 'if we got data

 startbin%:=XtoBin(list%[ich%+1],stime);

 ArrConst(MyArray[],View(fh%,list%[ich%+1]).[startbin%:n%]); 	'===copy real data to buffer

 ArrMul(MyArray[],scalefactor[ich%]); 						 '===scale it

 ArrConst(MyArray%[],MyArray[]); 								'===convert to integer

 pts% := n%;

 if (bytes% = 1) then

 ArrDiv(myarray%[:n%], 256);

 ArrAdd(myarray%[:n%], 128); 'using array arithmetic

 endif;

 ArrConst(dat%[ich%][:n%], myArray%[:n%]); 'shift data

 endif;

 nbufs%+=1;

 next;

 View(bh%).BWriteSize(bytes%, dat%[][:pts%]); 'Output it

 stime := stime + pts% * BinSize(list%[ich%]); 'time of next point

 until ((n% <= 0) or (stime >= etime)); 'until no points left

 end;

'**

 func Quit%() 'Quit button pressed

 View();

 RestoreAll();

 return 0;

 end;

'**

 proc HideAll()

 var i%;

 gFloat%[0] := App(-2); 'number of windows

 for i% := 1 to gFloat%[0] do 'hide all windows and save state

 gFloat%[i%] := View(App(i%)).WindowVisible(0);

 next;

 end

'**

 proc RestoreAll()

 var i%;

 for i% := 1 to gFloat%[0] do 'restore hidden windows

 View(App(i%)).WindowVisible(gFloat%[i%]);

 next;

 end;

'**

CED Ltd
CFSTOWAV.SGS
Signal Convert CFS data files to WAV script

http://www.ced.co.uk/spkonlnu.shtml
Dawn Clampin
Line

Dawn Clampin
Line

http://www.ced.co.uk/sigdispu.shtml

