

Contents

 News – General

Spike2 – On-line Heart Rate display
Signal – User requests
Spike2 Script – Linear ramp of pulse frequency
Signal Script – View area between cursors
Did you know…? – Appending frames in Signal
Recent questions – Off-line stereotrode analysis

News

Version 5.05 of Spike2 is now available from www.ced.co.uk/upu.shtml for registered v5 users. This
revision includes interactive curve fitting to time, result and XY views and creation of new data
channels based on active cursor measurements. You can read the full list of new features on our web
site.

A demonstration version of the current software is also available from www.ced.co.uk/pru.shtml

Version 4.18 of Spike2 is downloadable for registered v4 users.
Version 2.14 of Signal is also downloadable for registered v2 users.

Our U.K training days will take place on the 25th – 26th of March 2004 in Cambridge. Details of the
training day sessions and a registration form are available from: www.ced.co.uk/nw9u.htm.

We will also be holding additional US training days on the 15th – 16th April 2004, prior to the
Experimental Biology meeting in Washington DC. Details of the training day sessions and a
registration form are available from: www.ced.co.uk/nw9y.htm.

The Spike2 and Signal scripts for this edition of the newsletter have been included as embedded
attachments in the document. To load the scripts, simply double-click on the appropriate icon beside
the script file name. If you have Spike2 or Signal running on your PC, the appropriate script will load in
a normal script file window. Alternatively, you can right click on the icon and save the embedded file to
disk.

If you have any problems accessing the embedded files, please let us know via the return email
address at the bottom of the newsletter.

SPIKE2

Q. I am recording Blood Pressure data and would like an on-line display of heart rate from this

trace.

A. There is a new Analysis menu measurements command in Spike2 version 5.05 that creates a

new data channel based on active cursor measurements. This function can be used on-line to
generate a heart rate display from an ECG or blood pressure channel in real time during
sampling. Previously a script was required to display on-line heart rate in this way.

#6 ~ 2nd February 2004

http://www.ced.co.uk/s2wu5u.shtml
http://www.ced.co.uk/s2demu.shtml
http://www.ced.co.uk/nw9u.htm
http://www.ced.co.uk/nw9y.htm

 Open a Spike2 data file ready for sampling. From the Analysis menu, select Measurements
and then Data channel to open the dialog. The dialog has a number of fields, some of which
are common to those in the Measurements to XY views dialog.

Select the new channel to create from the Target data channel field. This can be a new
memory channel or one of the unused disk channels. The Channel type field holds a list of
channel types that can be created; Event, Marker or RealMark. If you select RealMark, the
target channel has one real value (e.g. Amplitude) attached to each marker; this value is set
by the Y measurements field. As we only want to mark peaks in this case, with no associated
Y data value, we can select an Event channel to mark the peak times.

 The fields in the Cursor 0 stepping dialog are identical to those in the Measurements to XY
view dialog. This section is used to set the search method for measurements. Set the method
to peak find, and set the amplitude to find the peaks in the blood pressure trace. Spike2
detects peaks by monitoring the waveform level to ensure that the signal falls by at least the
amplitude set here. For a BP channel calibrated in mmHg, 25 would be a suitable estimate for
our example.

To avoid marking any dicrotic notch present in the BP data, we can also set a minimum step
for the cursor.

 The X measurements section sets the time of each event or marker that is added into the new

data channel. This would normally be an expression related to cursor positions, in this case,
the time of each peak as found by Cursor(0).

 The Y measurements section is only available when the type of the target channel is

RealMark. The value measured here sets the RealMark data value.

 Pressing New then opens the on-line processing dialog.

From the process dialog we can select the update mode for the measurements. For this
example, we can use Automatic, Update window every 1 second and click OK. Now if you
start sampling you should see on-line marking of the BP peaks as events. If you find that no
peaks are being marked, adjust the Peak Find amplitude settings in the Measure to channel
dialog. The process settings for the measurements can be changed at any time by right-
clicking on the channel and selecting Process settings from the menu.

Finally, select Channel Draw mode from the view menu and choose instantaneous frequency
from the drop-down list. Check the Per minute box to display as beats per minute.

SIGNAL

 We had a number of requests at the recent US Neuroscience meeting for new analysis and

display features to be implemented in Signal. We welcome any suggestions from current
Signal users on features that they feel may improve the software. Please let us know if you
have a specific request that you would like to see included in a future release of Signal.

Scripts. Spike2 (Right mouse click icons and save embedded script file[s] to disk)

Q. I would like to use Spike2 to output pulses that ramp linearly from 1Hz to 30Hz and then back

to 1Hz, over pre-defined time durations during sampling. Spike2 should take into account the
reduced time delay between each output pulse over the specified time range to ensure a
linear ramp of output pulses, rather than an exponential curve.

A. The attached LinRampFreq.s2s script and associated LinRampFreq.pls

sequence creates ramps of increasing or decreasing pulse frequency on-line. The script
allows the user to enter settings for ramp time, as well as start, turning point and end
frequencies for the pulse output. The user can also select whether to produce a single
increasing or decreasing ramp. Before running the script, you must ensure that the

'LinRampFreq.s2s|Script to create increasing or decreasing pulse frequency ramp

'User can specify start, turning point and end frequencies as well as ramp time

'Hides all unwanted windows and restores them.

'Manages the data files (keeps one file at a time).

'

'Note this script is UNDER DEVELOPMENT BY CED and is included for

'illustration only. We make no warranties as to its suitability

'or otherwise. It has not been thoroughly tested.

'You should use it 'as is'

'

var data%;								'Handle of new data file (Spike2 sets it to 0)

var sTime;								'The last time we looked at the idle routine

var startFreq := 1;					'Frequency at start of up ramp

var maxFreq := 30;					'Maximum frequency

var endFreq := 1;						'Frequency at end of down ramp

var doUpFlag% := 1;					'Flag to do upward ramp

var doDownFlag% := 1;				' " " downward

var upRTime := 10;					'Time of up ramp

var downRTime := 10;					' " down

var numEvents%;						'Number of events in ramp sequence

var rampFlag% := 0;					'Flag if ramp in progress

var stimChan% := 1;					'Event channel recording stimuli

var prevStims%;

var numStims%;							'Number of events in channel

var int%;								'Array element of current interval	

var freq[10000];						'Array of frequencies

var int[10000];						'Array of intervals

var tInt[10000];						'Temporary array of intervals

var stimTime;							'Time of stimulus relative to start of ramp

var ticks%;

var evFlag%;

HideAll(); 'Hide all unwanted bars

ToolbarVisible(1);					'Make toolbar visible always

New%();									'Set up new sampling window

DoToolbar();							'Do the toolbar

RestoreAll(); 'Restore all bars

Halt;

func New%()								'New sampling window

View(LogHandle());					'Make log view the current view

EditSelectAll();						'Select all text in log view

EditClear();							'Delete it

Window(0,80,100,100);				'Display it at the bottom of the screen

WindowVisible(1);						'Make it visbible

if data%>0 then						'If there is already a data view open...

 View(data%);							'...close it

 FileClose(); 'No point setting data% to 0...

endif;

data%:=FileNew(0,3);					'Open a new data file for sampling

if data%<0 then Message("Unable to open new data file");Halt() endif;

Window(0,0,100,80);					'Make data window in top bit of screen

XRange(0,10);

FrontView(LogHandle());				'Bring the Log view to the front

FrontView(data%);						'Bring the data view to the front

ToolbarEnable(3,0);					'Disable "Sample stop" button

ToolbarEnable(2,1);					'Disable "Sample stop" button

ToolbarText("Press SAMPLE START to commence sampling");

return 1;

end;

proc DoToolbar()

ToolbarSet(1,"&Quit",Quit%);		'Set up toolbar buttons

ToolbarSet(2,"&Sample start", Start%);

ToolbarSet(3,"&Sample stop", Stop%);

ToolbarSet(4,"&New file", New%);

ToolbarSet(6, "Set pulses", SetPulses%);

ToolbarSet(8, "Pulses", DoPulses%);

ToolbarEnable(3,0);					'Disable "Sample stop" button

ToolbarEnable(5,0);

Toolbar("Press SAMPLE START to commence sampling", 1023);'Wait here until quit

end;

func Quit%()							'If "Quit" is pressed

SampleStop();							'Stop sampling

return 0;								'leave toolbar

end;

func Start%()							'If "Start" is pressed

SampleStart();							'Start sampling

prevStims% := 0;						'Set number of stimuli to zero

ToolbarEnable(4,0);					'Disable "New file" button

ToolbarEnable(3,1);					'Enable "Sample stop" button

ToolbarEnable(2,0);					'Disable "Sample start" button

ToolbarEnable(1,0);					'Disable "Quit" button

ToolbarEnable(5,1);

ToolbarText("Press SAMPLE STOP to stop sampling");

return 1;								'Stay with toolbar

end;

func Stop%()							'If "Stop" is pressed

SampleStop();							'Stop sampling

if (data%>0) and 'if no data in file, stop will close it

 (ViewKind(data%) <> 0) then data% := 0 endif;

ToolbarEnable(4,1);					'Enable "New file" button

ToolbarEnable(3,0);					'Disable "Sample stop" button

ToolbarEnable(1,1);					'Enable "Quit" button

ToolbarText("Press FILE NEW to capture more data");

return 1;								'Stay in toolbar

end;

Func SetPulses%()

var sectionEvents% := 0;

numEvents% := 0;

ArrConst(int[],0);

DlgCreate("Frequency ramp setup");

DlgText("Ramp 1",23,1);

DlgText("Ramp 2",37,1);

DlgText("Frequencies",2,2);

DlgText("Initial",17,2);

DlgText("Turning Point",28,2);

DlgText("End",45,2);

DlgReal(1,4,0.1,1000,18,3);

DlgReal(2,4,0.1,1000,32,3);

DlgReal(3,4,0.1,1000,46,3);

DlgText("Times",2,4);

DlgReal(4,4,1,1000,25,4);

DlgReal(5,4,1,1000,39,4);

DlgCheck(6,"",25,2);

DlgCheck(7,"",40,2);

DlgShow(startFreq,maxFreq,endFreq,upRTime,downRTime,doUpFlag%,doDownFlag%);

if doUpFlag% then

	sectionEvents% := GetIntArray(startFreq,maxFreq,upRTime);

	ArrConst(int[:sectionEvents%],tInt[:sectionEvents%]);

	numEvents% += sectionEvents%;

endif;

if doDownFlag% then

	sectionEvents% := GetIntArray(maxFreq,endFreq,downRTime);

	ArrConst(int[numEvents%:sectionEvents%],tInt[:sectionEvents%]);

	numEvents% += sectionEvents%;

endif;

return 1;

end;

Func DoPulses%()

View(data%);

Seconds(0);

int% := 0;

ticks% := Trunc((int[int%])*10000)-2;

SampleSeqVar(1,ticks%);

SampleKey("g");

ToolbarSet(0,"",Idle%);				'Call Idle%() whenever there is free time

return 1;

end;

func Idle%()							'Idle routine runs when system has time

var eTime;

if ViewKind(data%)=0 then

 View(data%);

 eTime:=Maxtime();

	if int% <= numEvents% then

		if Count(stimChan%,0,eTime) > prevStims% then

			int% += 1;

			ticks% := Trunc((int[int%])*10000)-2;

			SampleSeqVar(1,ticks%);

			prevStims% += 1;

		endif;

	endif;

endif;

return 1;								'Stay in toolbar

end;

'You can find this code in the App() on-line help.

var gFloat%[20]; 'global for floating window states

proc HideAll()

var i%;

gFloat%[0] := App(-2); 'number of windows

for i% := 1 to gFloat%[0] do 'hide all windows and save state

 gFloat%[i%] := View(App(i%)).WindowVisible(0);

 next;

end

proc RestoreAll()

var i%;

for i% := 1 to gFloat%[0] do 'restore hidden windows

 View(App(i%)).WindowVisible(gFloat%[i%]);

 next;

end

Func GetIntArray(f0,f1,T);

var k,fn;

var i%;

var sqr;

var stimTime;

k := (f1-f0)/(T-(1/f0));

freq[0] := f0;

tInt[0] := 1/freq[0];

repeat

 	fn := freq[i%]/2;

	sqr := fn*fn + k;

	if sqr >0 then

	 	i% += 1;

		freq[i%] := fn + Sqrt(fn*fn + k);

		tInt[i%] := 1/freq[i%];

		stimTime := ArrSum(tInt[:i%+1]);

	else

		stimTime := T;

	endif;

until stimTime >= T;

return i% + 1;

end;

CED Ltd
LinRampFreq.s2s
LinRampFreq.s2s

CED Ltd
LinRampFreq.pls
LinRampFreq.pls

LinRampFreq.pls output sequence is loaded and made the current sequence. The script
sets up a new data file for recording based on the current sampling configuration. Set channel
1 in the sampling configuration to be an Event channel in which pulses can be recorded to
help visualize the results. The script requires this data to be recorded, as it keeps a count of
the number of pulses produced. The pulses are currently set to be 10 microseconds long, and
are output from digital output 0 on the 1401.

This script has been tested and is known to work in Spike2 v4 and v5.

Scripts. Signal

Q. I would like to be able to quickly view areas of interest in individual frames; perhaps by

showing sections of data between cursors in a duplicate window in Signal.

A. The attached CursorView.sgs script creates a duplicate window of an open time

view, and continuously updates the view in the duplicate to show data between cursors.

 This script is for Signal v2. (Right mouse click icon and save embedded script file to disk)

Did you know…?

You can copy individual frames from one data file to another in Signal. Use the Edit menu Copy
command to copy a single frame of data from a data file to the clipboard. If you then open another
data file and select the Append frame function from the Analysis menu, you can paste the frame data
from the clipboard into this new frame.

Recent questions

Q. I am using Spike2 to template synchronised spikes from two waveform channels off-line into

two separate WaveMark channels. There are occasions when there is a spike on one channel,
but not on the other. I would like to record this non-spiking data to disk to prove that this
synchronisation is not absolute, but cannot see a way to do this using the WaveMark method,
as events are only detected by threshold crossings.

A. Using the n-trode analysis feature in Spike2 version 5, we can generate a stereotrode trace

from the two existing waveform channels. This will save the spike data from both channels into
a single WaveMark channel. Simply select the two channels by holding Ctrl and clicking on the
channel numbers, and select New n-trode from the Analysis pull-down menu. When using the
spike template functions, spikes are detected by the signal crossing a trigger level. This
causes the data around the trigger point to be stored as a WaveMark. With multiple traces, the
template window is split horizontally to show an oscilloscope view of the data from each
selected channel. The horizontal trigger levels in these windows are independent and can be
set to different levels depending on the input data. Each trace is tracked separately and the
first trace to trigger saves the corresponding data for all traces. If a spike on any one channel
crosses the trigger level, it will also save the corresponding time range from all other selected
channels.

User group

We are in the process of setting up an archive message board on our web site. As soon as this is
done we will use this newsletter to announce that it is available. This seems to be the most sensible
route to go rather than direct emailing both for security and for minimising spam.

If you wish to un-subscribe from the mailing list for this newsletter, please notify sales@ced.co.uk.

mailto:sales@ced.co.uk

'$CursorView|Script to set time displayed in a duplicate window based on cursor positions in the original data view

var file%;							'Data file handle

var dup%;							'Duplicate window handle

var sTime,eTime;					'Start and end of display section

var presTime,preeTime;				'Current start and end time of duplicate display	

var frame%,frameDup%;				'Frame numbers of data and duplicate windows

ToolbarSet(0, "Cursor view",MoveView%);		'Link to idle routine to track changes

ToolbarSet(1, "Quit");						'Toolbar buttons

ToolbarSet(3, "Open File",Open%);

Toolbar("Window to show area between cursors",1023);

Func Open%()						'Function to open a data file

file%:=FileOpen("",0,0);			'Open data file	

Window(0,0,50,100);					'Position window in left half of screen

CursorSet(2);						'Set 2 cursors

CursorLabel(4,1,"Start");			'Label cursors

CursorLabel(4,2,"End");

FrontView(file%);

dup%:=WindowDuplicate();			'Duplicate window

View(dup%).Window(50,0,100,100);	'Position duplicate in right half of screen

CursorDelete();						'Delete cursors in duplicate view		

CursorDelete();

FrontView(dup%);

Return 1;

End;

Func MoveView%()					'Idle routine

if dup%>0 then						'Do nothing unless duplicate window is open

	View(file%);					'Ensure data window is current view

	sTime:=Cursor(1);				'Get times of cursors

	eTime:=Cursor(2);

	if eTime<sTime then				'Ensure cursors are in correct order

		CursorRenumber();

		CursorLabel(4,1,"Start");			'Label cursors

		CursorLabel(4,2,"End");

	endif;

	frame%:=Frame();				'Get frame number of data window

	frameDup%:=View(dup%).Frame();	'Get frame number of duplicate window

	if frameDup% <> frame% then		'If frames are different	

		View(dup%).Frame(frame%);	'Change duplicate window to match data window

	endif;

	docase									

	case sTime<>presTime then				'If start time has changed

		View(dup%).XRange(sTime,eTime);		'Adjust start time in duplicate

	case eTime<>preeTime then				'Same with end times

		View(dup%).XRange(sTime,eTime);

	endcase;

	presTime:=sTime;						

	preeTime:=eTime;

endif;

Return 1;

End;

CED Ltd
CursorView.sgs
Cursorview.sgs

