

Contents

News – Updates & General news
Spike2 – S1-S2 heart pacing protocol
Signal – Clamp sampling: part 1
Spike2 Script – Rerun data with sound
Signal Script – Counting intracellular spikes
Did you know…? – 1902 amplifier
Recent questions – Stopping long drawing operations

News
Signal version 3.07 released

The latest version of Signal is now available to download from our website by following
the links below. This version now includes new support for voltage and patch clamp
experiments. See the Signal feature in this newsletter for part 1 of our series on clamp
sampling.

Local training sessions
In addition to our annual UK and US training days, we are also happy to offer local
training sessions for Spike2 and Signal at universities and institutions. These smaller
training sessions can be tailored towards particular requirements for research groups or
departments. If you are interested in organizing a local training seminar for your group or
department, please contact sales@ced.co.uk.

 Latest versions of Spike2 and Signal
The latest updates for Spike2 and Signal are available from the CED downloads page, or
by clicking on the links in the table below. Demonstration versions of the latest software
are also available.

 Spike2 downloads Signal downloads
Spike2 version 5.14 Signal version 3.07

 Spike2 version 4.24 Signal version 2.16

 Spike2 demo Signal demo

A full list of the new features and changes in the latest software versions is available from
the website.

See us at…
5th Polish Electrophysiology Forum
Lodz
Poland
June 7th - 9th

The Physiological Society AGM
University College London
July 5th - 7th

5th Forum of European Neuroscience (FENS)
Austria Centre
Vienna
July 8th - 12th

#18 ~ April 2006

Back to top

http://www.ced.co.uk/uplsu.shtml
http://www.ced.co.uk/s2wu5u.shtml
http://www.ced.co.uk/s2wu4u.shtml
http://www.ced.co.uk/s2demu.shtml
http://www.ced.co.uk/sigw3u.shtml
http://www.ced.co.uk/sigw2u.shtml
http://www.ced.co.uk/sigdemu.shtml
http://www.physoc.org/index.asp
http://fens2006.neurosciences.asso.fr/
mailto:sales@ced.co.uk

Spike2

S1-S2 heart pacing protocol
Q. I am hoping to start recording cardiac action potentials using the S1-S2 pacing

protocol as a stimulus and would like to use the 1401 to generate and control the
pulse train. Is this possible using the output sequencer in Spike2?

A. The Spike2 sequencer can be used to create a variety of stimulus protocols to
use when sampling. The S1-S2 protocol is widely used as a pacing stimulus for
recording cardiac action potentials, where the first stimulus (S1) is used to pace
the heart at a fixed cycle length. The S2 stimulus is then applied at an initial
interval after the S1 pulse. The time between the S1 and S2 stimulus is
progressively reduced until the stimulus either a) fails to illicit a response; or b)
generates a rapid atrial response. The object is usually to determine the shortest
effective refractory period that still results in the generation of the cardiac action
potential.

 Basic S1-S2 protocol. The S2 interval reduces by a fixed amount

for each stimulus cycle

The attached script S1S2protocol.s2s generates a script toolbar which
allows the user to open a new data file for sampling, set the parameters of the
stimulation and apply and stop the stimulus when sampling. The attached
sequence file S1S2protocol.pls must be loaded before running the script.
The stimulus properties set in the script toolbar are copied to the sequencer
when they are updated during sampling. Using a text sequence file gives greater
flexibility and allows sequencer variables to be updated and modified from the
script. For this example of implementing a basic S1-S2 protocol, the user can
change the S1 cycle length, the initial interval between the S1-S2 stimulus and
the reduction in S1-S2 time per cycle during the experiment. The sequencer
generates the S1 pulses from digital output 0 and the S2 pulses from digital
output 1 of the 1401.

Signal

Clamp sampling: part 1

Q. I am using Signal for voltage clamp experiments and would like to know how to
make best use of the new clamp support features.

A. The latest version of Signal includes extra sampling support for whole-cell and
single-channel clamping experiments. When Signal is run for the first time, it will
give the option of including clamp support. The Edit preferences dialog can be
used to enable or disable this option at any other time. The features enabled by
the clamp option are the new clamp sampling support and the existing leak
subtraction analysis and single-channel idealized trace functions. These features

Back to top

Back to top

S2 interval

S2 interval

Cycle 1

Cycle 2

'$S1S2protocol|Controls sampling from a toolbar and allows the user to specify cycle length, intervals

'and other parameters for an S1-S2 protocol. The sequencer file S1S2protocol.pls should be loaded prior

'to running the script.

Var count%:=8; 'Number of pulses

Var S1Int%:=125; 'Pulse interval

Var IntTDel%:=1000; 'S1-S2 delay

Var Reduc%:=10; 'Interval reduction

Var DelayT%:=10000; 'Delay between cycles

Var ok%;

Var lastN%, Num%;

Var go%;

Var data%;

var gFloat%[20]; 'global for floating window states

LastN%:=Num%;

New%();

HideAll();

DoToolbar(); 'Try it out

RestoreAll();

Halt;

Func DoToolbar() 'Set your own name...

ToolbarClear(); 'Remove any old buttons

ToolbarSet(0,"",Idle%);

ToolbarSet(1, "&Quit"); 'This button returns its number

ToolbarSet(2,"&Sample start", Start%);

ToolbarSet(3,"&Sample stop", Stop%);

ToolbarSet(4,"&New file", New%);

ToolbarSet(6, "Inter&vals", Intervals%); 'Link to function

ToolbarSet(7, "& Single", Single%); 'Link to function

ToolbarSet(8, "&Cycle", Cycle%); 'Link to function

ToolbarSet(9, "&Stop Pulses", StopPulses%); 'Link to function

If go%<1 then

 Toolbarenable(3,0);

 ToolbarEnable(7,0);

	 ToolbarEnable(8,0);

	 ToolbarEnable(9,0);

Endif;

return Toolbar("Waiting", 1023);

end;

func New%()								'New sampling window

View(LogHandle());					'Make log view the current view

EditSelectAll();						'Select all text in log view

EditClear();							'Delete it

Window(0,80,100,100);				'Display it at the bottom of the screen

WindowVisible(1);						'Make it visible

if data%>0 then						'If there is already a data view open...

 View(data%);							'...close it

 FileClose(); 'No point setting data% to 0...

endif;

data%:=FileNew(0,1);					'Open a new data file for sampling

if data%<0 then Message("Unable to open new data file");Halt() endif;

Window(0,0,100,100);					'Make data window in top bit of screen

XRange(0,10);

ToolbarEnable(3,0);					'Disable "Sample stop" button

ToolbarEnable(2,1);					'Disable "Sample stop" button

ToolbarText("Press SAMPLE START to commence sampling");

return 1;

end;

func Start%()							'If "Start" is pressed

SampleStart();							'Start sampling

ToolbarEnable(4,0);					'Disable "New file" button

ToolbarEnable(3,1);					'Enable "Sample stop" button

ToolbarEnable(2,0);					'Disable "Sample start" button

ToolbarEnable(1,0);					'Disable "Quit" button

ToolbarText("Press SAMPLE STOP to stop sampling");

return 1;								'Stay with toolbar

end;

func Stop%()							'If "Stop" is pressed

SampleStop();							'Stop sampling

if (data%>0) and 'if no data in file, stop will close it

 (ViewKind(data%) <> 0) then data% := 0 endif;

ToolbarEnable(4,1);					'Enable "New file" button

ToolbarEnable(3,0);					'Disable "Sample stop" button

ToolbarEnable(1,1);					'Enable "Quit" button

ToolbarText("Press FILE NEW to capture more data");

return 1;								'Stay in toolbar

end;

Func Idle%();

Var String$;

If SampleStatus()=2 then 'Check that sampling is in progress

 Num%:=SampleseqVar(4); 'Get next stimulus

 Num%:=num%+4;

 If num%<> lastN% then

 String$:=Print$("Current S2 interval = %d ms", Num%); 'Print the current S2 interval to the toolbar

 ToolbarText(String$);

 Sampletext(String$);

 LastN%:=num%

 Endif

endif

Return 1

End

Func Intervals%() 'Parameter settings

DlgCreate("Stimulus parameters"); 'Start new dialog

DlgInteger(1,"Number of pulses per train",1,100,0,0,1);

DlgInteger(2,"S1 interval (ms)",5,1000,0,0,5);

DlgInteger(3,"S2 Interval - Initial (ms)",5,1000,0,0,5);

DlgInteger(4,"S2 reduction (ms)",0,500,0,0,5);

DlgInteger(5,"Delay between trials (ms)",0,10000,0,0,100);

DlgButton(0,"Cancel");

DlgButton(1,"OK");

ok% := DlgShow(Count%,S1Int%,IntTDel%,Reduc%,DelayT%); 'ok is 0 if user cancels, variables updated if not

If ok%=1 then

 sampleseqvar(2,count%); 'Copy the values to the sequencer

 sampleseqvar(3,(S1Int%-4));

 sampleseqvar(4,(IntTDel%-4));

 sampleseqvar(5,Reduc%);

 SampleSeqVar(6,(DelayT%-14));

 Go%:=1;

else

 Message("Parameters not updated"); 'Or warn user if Cancel is pressed

endif;

Toolbarenable(7,1);

Toolbarenable(8,1);

return 1; 'This leaves toolbar active

end;

Func Single%() 'Single S1-S2 stimulus

Samplekey("P");

Toolbarenable(7,1);

Toolbarenable(8,0);

Go%:=1;

return 1; 'This leaves toolbar active

end;

Func Cycle%() 'Button 5 routine

Samplekey("G");

Toolbarenable(7,0);

Toolbarenable(8,0);

'Go%:=1;

return 1; 'This leaves toolbar active

end;

Func StopPulses%() 'Button 5 routine

Samplekey("S");

'Toolbarenable(4,1);

'Toolbarenable(5,1);

Go%:=0;

return 1; 'This leaves toolbar active

end;

proc HideAll()

var i%;

gFloat%[0] := App(-2); 'number of windows

for i% := 1 to gFloat%[0] do 'hide all windows and save state

 gFloat%[i%] := View(App(i%)).WindowVisible(0);

 next;

end

proc RestoreAll()

var i%;

for i% := 1 to gFloat%[0] do 'restore hidden windows

 View(App(i%)).WindowVisible(gFloat%[i%]);

 next;

end

david
S1S2protocol.s2s

david
S1S2protocol.pls

david
CLAMPEXAMPLE.SGC

have all been included in the clamp options so that non-clamping users can
disable them when they are not needed.

Clamp setup

 The following guidelines assume a basic sampling configuration that uses the
first two available ADC ports of the 1401, with a one second sweep length and a
sample rate of 10kHz. The attached configuration ClampExample.sgc is set up
with the examples detailed below and can be used as a starting point for carrying
out clamping experiments with the latest version of Signal.

With the clamping options selected, the sampling configuration has an additional
Clamp tab where you can define up to two simultaneous clamp setups. This
allows easy set-up of the channels recording the stimulus and response from the
cell or patch and the DAC output used to control the stimulus for the selected
experiment type. Once Signal has this information it can automatically scale the
data and perform further clamp specific analysis. The State for resistance
measurements can be used in Multiple states mode to nominate a particular
State (set of pulse outputs) to monitor the membrane resistance on-line. In this
simple example we are only going to specify a single set of outputs. We will set
the State field to 0, which defaults to the current set of outputs for on-line
measurements. How to use Multiple states for resistance measurements will be
covered in more detail in the next part of our clamp sampling series.

Example clamp setup

Channel setup and units

For voltage-clamp experiments the applied stimulus is voltage and the response
is current and vice versa for current-clamp setups. The channels used to record
the stimulus and response data must be set to use valid units in the Port setup
tab of the sampling configuration. The units for a voltage channel must include
the character ‘V’ (for example, mV) and the units for a current channel must
include the character ‘A’ (or example, pA), so that on-line measurements give
sensible values. The control DAC should also be set to match the units of the
stimulus channel for the selected experiment type (see Stimulus setup below).
Incorrect units for any aspect of the clamp setup will cause the text to be
displayed in red and Signal will generate an error message when ready to
sample.

Back to top

Back to top

david
CLAMPEXAMPLE.SGC

Port setup parameters for the stimulus channel

 Stimulus setup

The units for the control DAC are set in the Outputs tab of the sampling
configuration. The stimulus pulse is set using the graphical pulse configuration
editor, which is available from the Configure pulses button. You can also access
the pulse configuration during sampling to make adjustments and modifications
on-line. Supported outputs for clamp experiments are constant or varying
amplitude square pulses and square pulse trains. If more than one pulse is used
for a given state you can define the one to use for resistance measurements (RM)
by setting the pulse ID in the dialog, as below.

Outputs tab and pulse configuration with the second pulse specified for
measurements

Back to top

Ready to sample…

Following the setup above you should now be ready to sample. The sampling
configuration is checked for the correct settings for clamp experiments when a
new data file is opened. Signal will generate an error message to alert the user if
any incompatibilities are found.

In the next eNewsletter - Part 2: Running a clamp experiment with on-line control
and analysis.

Scripts: Spike2
Q. I have been making use of the Rerun feature in Spike2 for presentations, to show

the data occurring in ‘real-time’. It would be really useful if I could somehow get
sound output of a data channel as well during a rerun. Is there any way to do this?

A. The attached script Rerun with sound.s2s can be used to rerun a data file
and nominate a channel to be played out from the sound card during the replay.
The script generates a toolbar from which the user can open data files, set the
channel to play and run/stop the file.

Scripts: Signal
Q. I am recording from interneurones using Signal and would like get information

about the spiking data. Is there a way to get the number and timing of
intracellular spikes for each frame?

A. The attached script ThreshCount.sgs counts spikes in a Signal data file that
exceed a user-set threshold. The number of spikes per frame and the time at
which they occur within the frame is printed to the Log view

Did you know…?
We also manufacture amplifiers for life science research. The 1902 amplifier can be
specified for general purpose transducer use or with medical-specification isolation
suitable for EMG, ECG, EEG and evoked response measurements as well as many other
research applications. 1902’s are available as single, dual and quad-channel units, and
multiple units can be connected together up to a maximum of 32 channels. They are
controlled directly from Spike2, Signal or dedicated calibrate and control software via the
host computers RS232 serial port, giving access to the gain and filter settings for each
channel. The 1902 also has options for more specialised applications, including magnetic
stimulus artefact clamps, skin conductance modules and input buffer options for multi-
channel common-reference studies.

Recent questions
Q. I am analysing large files that take a long time to display when I open them in

Spike2. Is there a way to stop them drawing all of the data in the file?

A. You can break out of long drawing or calculation operations in Spike2 using the
Ctrl+Break keyboard shortcut. This is useful if you have inadvertently
displayed or analysed a very large section of data. There is also an option in the
General tab of the preferences dialog to ignore resource file X range settings to
give a fast initial display by only showing the first second of data when a large file
opens.

User Group

If you have any comments about the newsletter format and content, or wish to un-
subscribe from the mailing list for this newsletter, please notify sales@ced.co.uk.

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

Back to top

Back to top

mailto:sales@ced.co.uk

'$Rerun with sound.s2s|Spike2 script to open a data file and rerun with one channel

'output simultaneously through the computer sound card

var data%; 'handle for the data file

var tScale := 1; 'Output speed for the playing channel

var chan%; 'The channel to play

var ok%; 'Checks for OK

var setFlag% := 0; 'Flag to show channel selected for play

var rerunStatus%; 'Returns the file status

ToolbarSet(1, "Quit"); 'This quits the script

ToolbarSet(3, "Open file", Open%); 'Links to Open file functions

ToolbarSet(4, "Settings",GetSettings%); 'Links to Settings

ToolbarSet(5, "Run", DoRerun%); 'Links to rerun

ToolbarEnable(4,0); 'Disable Settings button

ToolbarEnable(5,0); 'Disable ReRun button

Toolbar("Data rerun",1023);

Func Open%()

if data% > 0 then 'If we already have a data file open

	View(data%); 'view it..

	FileClose(0,-1); '..and close it

endif;

data% := FileOpen("",0,3); 'Prompt user for data file to use

if data% then 'If data file opened successfully

	ToolbarEnable(4,1); 'Enable the Settings button

endif;

return 1;

end;

Func GetSettings%()

View(data%); 'Make sure data is the current view

DlgCreate("Rerun setup");

DlgChan(1,"Channel to output",1);

DlgReal(2, "output speed", 0.25,4); 'Settings for playing the channel

ok% := DlgShow(chan%,tScale);

if ok% then

	setFlag% := 1; 'If settings OK'd

	ToolbarEnable(5,1); '..Enable the Rerun button

endif;

return 1;

end;

Func DoRerun%()

View(data%);

Rerun(1,0,MaxTime(),tScale); 'Start file rerun at chosen speed

PlayOffline(chan%,-1,0,MaxTime(),1,tScale); 'Start playing the channel through the soundcard

ToolbarSet(5, "Stop", Stop%); 'Update toolbar

ToolbarSet(0, "Idle", RerunMonitor%); 'Set Idle routine

ToolbarEnable(3,0); 'Disable Open file button

ToolbarEnable(4,0); 'Disable Settings button

return 1;

end;

Func Stop%()

View(data%); 'Make sure data is current

Rerun(0); 'Stop rerun

PlayOffline(-1); 'Stop playing of channel

ToolbarEnable(3,1); 'Enable Open file button

ToolbarEnable(4,1); 'Enable Settings button

ToolbarSet(5, "Run", DoRerun%); 'Reset Run button

return 1;

end;

Func RerunMonitor%()

View(data%);

rerunStatus% := Rerun(); 'Check for running status

if rerunStatus% = 0 then ' if status is stopped

	ToolbarClear(0); 'Clear idle routine

	ToolbarEnable(3,1); 'Enable Open file button

	ToolbarEnable(4,1); 'Enable Settings button

	ToolbarSet(5, "Run", DoRerun%); 'Reset Run button

endif;

return 1;

end;

david
Rerun with sound.s2s

'$ThreshCount|Script to count intracellular spikes that exceed a threshold. Number and times of spikes

'for each frame are printed to the Log view and displayed

var count%;

var last;

var current;

var gotSpikeFlag% := 0;

var frameCounter%;

var data%;

var spikeTimes[1000];		'Array to hold actual times of spikes

var printCount%;

data% := FrontView();		'Get current view

if ViewKind(data%) <> 0 then		'If this is not a data file

	Message("Current view is not a time view\nPlease open a time view");

	data%:= FileOpen("",0,1);		'Prompt user to open a file

	endif;

if data% < 0 then		'If no luck

	Message("Unable to open a data file for analysis");		'Warn user

	halt;			'and stop script

endif;

View(LogHandle());		'Get the Log view

EditSelectAll();	'Select all text

EditClear();		'and clear

WindowVisible(0);

Window(20,20,80,80);

PrintLog("Frame\tSpikes\n");	'Print titles

View(data%);

HCursorDelete(-1);		'Delete existing horizontal cursors

HCursorNew(1);				'Set horizontal cursor on channel 1

Interact("Set horizontal cursor at threshold level and press OK",1023); 'Allow user to set level

for frameCounter% := 1 to FrameCount() do			'Loop through each frame

	count% := 0;											'Reset spike counter

	Frame(frameCounter%);								'Go to frame	

	current := MinTime();								'Set variable to beginning of frame

	CursorSet(1,MinTime());								'Position cursor at beginning of frame 	

	CursorMode(1,7);										'Set cursor to loook for rising threshold crossings	

	repeat													'Loop through each crossing	

		gotSpikeFlag% := 0;								'Set flag to zero	

		last := Current;									'Reset variable

		CursorActiveSet(1,1,current,MaxTime(),HCursor(1));		'Make cursor find next threshold crossing

		current := Cursor(1);							'Get cursor position			

		if current > last then							'If cursor has moved (spike detected)

			spikeTimes[count%] := Cursor(1);

			count% += 1;									'Add 1 to spike count

			last := current;								'Update variable

			gotSpikeFlag% := 1;							'Flag to say spike has been found

		endif;													

	until gotSpikeFlag% = 0;							'Stop when no spike found		

	if count% > 0 then

		ArrMul(spikeTimes[],1000);						'Convert times to ms	

		PrintLog("%d\t%d",frameCounter%,count%);	'Print frame number and spike count to log window

		for printCount% := 0 to count%-1 do

			PrintLog("\t%g",spikeTimes[printCount%]);

		next;

		PrintLog("\n");

	else

		PrintLog("%d\t%d\t\n",frameCounter%,count%);	'Print frame number and spike count to log window		

	endif;

next;

FrontView(LogHandle());		'Display Log view

david
Threshcount.sgs

Dawn
Rectangle

