

Contents

News – Updates & general news
Spike2 – Running Spike2 for Windows on a Mac
Signal – Copying state outputs
Spike2 Script – Interactive feature detection
Signal Script – Retrieve MagStim parameters from a data file
Did you know…? – Sequencer control options
Recent questions – Sampling alarm clock

News
Meetings and events

8th Meeting of the French Neuroscience Society 2007
Corum-Esplanade Charles de Gaulle
Montpellier, France
May 22nd – 25th 2007

Life Sciences 2007
Scotland Exhibition and Convention Centre
Glasgow
July 8th – 12th 2007

IBRO World Congress of Neuroscience
Melbourne Exhibition and Convention Centre
Melbourne, Australia
July 12th – 16th 2007

IBRO Satellite Meeting: Motor Control at the Top End
Darwin, Australia
July 18th – 21st 2007

 Latest versions of Spike2 and Signal
Updates for Spike2 and Signal are available from the CED downloads page, or by
clicking on the links in the table below. Demonstration versions of the latest software are
also available.

 Spike2 downloads Signal downloads
Spike2 version 6.03 Signal version 3.09

 Spike2 version 5.17 Signal version 2.16

 Spike2 demo Signal demo

A full list of the new features and changes in the software versions is available from
the website.

Spike2

Q. I use Spike2 for acquisition and analysis on a PC but would also ideally like to
analyse files on my office computer, which is a new Intel-based Mac. I have
looked at using Apple’s Boot Camp to install Windows on my Mac so that I can
run Spike2. Do you have any recommendations at all?

A. Apple’s Boot Camp technology allows owners of Intel-based Mac systems to
install and run a copy of Windows XP or Vista in addition to an existing Mac OS
X installation. This creates a dual-boot system from which the user can select

#27 ~ May 2007

Back to top

Back to top

http://www.neurosciences.asso.fr/Activites/colloques/SN07/indexEN.html
http://www.lifesciences2007.org/
http://www.ibro2007.org/
http://www.sapmea.asn.au/conventions/motor2007/index.html
http://www.ced.co.uk/uplsu.shtml
http://www.ced.co.uk/s2wu6u.shtml
http://www.ced.co.uk/s2wu5u.shtml
http://www.ced.co.uk/s2demu.shtml
http://www.ced.co.uk/sigw3u.shtml
http://www.ced.co.uk/sigw2u.shtml
http://www.ced.co.uk/sigdemu.shtml

 between running OS X or Windows. We have used Boot Camp to install
Windows XP on a Mac mini running OS X with an Intel Core-Duo 1.66GHz
processor and 1GB of RAM. Spike2 was then installed with the standard 1401
drivers and data was sampled successfully.

The next major release of OS X will include Boot Camp as standard; users of the
current version of OS X can download Boot Camp 1.2 beta and an installation
guide from the Apple website.

Q. I use multiple states in dynamic outputs mode to set-up a series of stimulus
protocols with varying pulse lengths, intervals and amplitudes. It can be tedious
to set each individual state from scratch so I was wondering if there was any way
to copy pulse information between states?

A. The pulses configuration dialog now includes a Copy button that can be used to
duplicate outputs between states when using dynamic outputs mode. This makes
it easier to set up a number of similar pulse output protocols. You select which
output ‘tracks’ to use and copy the selected information to a range of states.

Pulse configuration dialog with Copy output options

Scripts: Spike2
Q. I regularly use memory channels to mark the times of peaks in my data but often

find that my initial settings for the amplitude field do not capture all peaks in the
file if the amplitude changes over time. This means I have to clear data from the
memory channel and re-process, often more than once. It would be helpful if
there was some way of interactively adjusting the amplitude level and updating
the display of the imported events before confirming that the amplitude level was
correct.

A. The attached script, FeatureDetect.s2s, allows the user to interactively
import peaks, troughs or threshold crossings based on an amplitude value
defined with a pair of horizontal cursors or a single horizontal cursor used as a
threshold crossing. The script contains an idle routine that automatically updates
the memory channel holding the event markers if the user adjusts the amplitude
or threshold level at any time.

Back to top

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

'$FeatureDetect|Interactive feature detect script. Updates imported events based

'on threshold or amplitude settings defined by Horizontal cursor positions.

var data%; 'Data file

var wChan%; 'Waveform channel

var pChan%; 'Memory channel for imported events

var sTime:= 0; 'Start time for import

var eTime; 'End time for import

var n%;

var o1Lev,o2Lev; 'HCursor levels

var num$; 'Count of events

var mode%; 'Import mode

var minInt; 'Min Interval

data% := FrontView(); 'Bring data file to the front

if ViewKind(data%)<>0 then 'If no data file

 Message("Open a data file for analysis"); 'prompt user

 data%:= FileOpen("",0,1);

 if data% < 0 then 'If unable to open file

 Message("Unable to open a data file!"); 'Warn user and quit script

 Halt;endif;

endif;

Window(0,0,100,100); 'Make the file full screen

ToolbarSet(1, "Import Features",GetFeats%); 'Set up toolbar

ToolbarSet(3, "Done", Done%);

ToolbarSet(5, "Change Min interval",ChangeInt%);

Toolbar("Interactive feature detection",1023);

Func GetFeats%();

var ok%;

DlgCreate("Channel selection");

DlgChan(1,"Waveform channel for feature extraction",513);

DlgList(2,"Import method","Peak|Trough|Rising threshold|Falling threshold");

DlgReal(3,"Minimum interval",0,10);

ok% := DlgShow(wChan%,mode%,minInt); 'Set channel to use and method of detection

if ok% = 0 then

 Halt; 'Halt script if user cancels

endif;

eTime := MaxTime(); 'Set end time as end of file

pChan% := MemChan(3); 'Create memory channel to hold events

ChanShow(pChan%); 'Show the memory channel

HCursorDelete(-1); 'Clear any existing horizontal cursors

if mode% < 2 then 'If import mode requires an amplitude setting

 HCursorNew(wChan%,YLow(wChan%) + ((YHigh(wChan%)-YLow(wChan%))*.67)); 'Set-up horizontal cursors evenly spaced

 HCursorNew(wChan%,YLow(wChan%) + ((YHigh(wChan%)-YLow(wChan%))*.33));

 n% := Import%(HCursor(1)-HCursor(2));

else

 HCursorNew(wChan%,(YHigh(wChan%)-YLow(wChan%))*0.5); 'else use a single cursor as a threshold

 n% := Import%(HCursor(1));

endif;

num$:= Print$("%d Features imported",n%);

ToolbarText(num$);

o1Lev := HCursor(1); 'Get positions of cursors

o2Lev := HCursor(2);

ToolbarSet(0,"Idle", Idle%); 'Start Idle routine

return 1;

end;

Func Idle%()

View(data%);

if mode%< 2 then 'If import mode requires an amplitude

 if HCursor(1) <> o1Lev or HCursor(2) <> o2Lev then 'Check if positions have changed

 n% := Import%(HCursor(1)-HCursor(2)); 'If so call import function with new positions

 num$:= Print$("%d Features imported",n%); 'Update count of events

 ToolbarText(num$); '..and display in toolbar

 o1Lev := HCursor(1); 'Get new positions

 o2Lev := HCursor(2);

 endif;

else

 if HCursor(1) <> o1Lev then 'Check for threshold movement

 n% := Import%(HCursor(1)); 'Call import function with a new threshold position

 num$:= Print$("%d Features imported",n%); 'Update count of events

 ToolbarText(num$); 'Display in toolbar

 o1Lev := HCursor(1); 'Get new position

 endif;

endif;

return 1;

end;

Func Done%()

ToolbarClear(0); 'Clear the toolbar

Halt;

return 1;

end;

Func Import%(lev)

var peaks%;

View(data%);

MemDeleteItem(pChan%,-1); 'Clear existing items from the event channel

peaks% := MemImport(pChan%,wChan%,sTime,eTime,mode%,minInt,lev); 'Import items based on current settings

return peaks%;

end;

Func ChangeInt%()

var ok%;

DlgCreate("Minimum interval between events");

DlgReal(1,"Minimum interval",0,10); 'Re-set the minimum interval between events

ok% := DlgShow(minInt);

if mode% < 2 then 'If import mode requires an amplitude

 n% := Import%(HCursor(1)-HCursor(2)); 'Use amplitude setting

 num$:= Print$("%d Features imported",n%);

 ToolbarText(num$); 'Update display count of events

else 'If mode requires a threshold

 n% := Import%(HCursor(1)); 'Use threshold setting

 num$:= Print$("%d Features imported",n%);

 ToolbarText(num$); 'Update display count of events

endif;

return 1;

end;

david
FeatureDetect.s2s

Scripts: Signal

Q. I am using the MagStim support in Signal to control the various pulse parameters
that I use during an experiment. I notice that the MagStim parameters used for
each frame are stored as frame variables and that these can be accessed via the
script language. Do you have an example script that can access and display
these values?

A. The attached script, FrameVariables.sgs, can read back MagStim or other
auxiliary device parameters that are stored as frame variables in the Signal data
file during sampling. This example prints a list of the variables for each frame to
the Log window but could easily be modified to print specific variable values to an
XY plot, for example.

Did you know…?
When using an output sequence you can disable interactive control of sequence jumps to
prevent accidental changes caused by a user key press or mouse click in the sequencer
control toolbar. These sequencer control options can be set from the drop-down list in the
Sequencer tab of the sampling configuration.

Sequencer jump control options

Recent questions
Q. I would like a way of setting an alarm clock facility in Spike2 to alert me when a

set amount of time has elapsed during sampling.

A. The attached script, Alarm.s2s, allows the user to set an alarm time based on
the system clock of the computer. This example simply emits a tone and displays
a message box once the alarm time is reached, but could easily be modified to
perform other functions in response to the alarm setting such as starting
sampling early in the morning before you arrive at work!

User group

If you have any comments about the newsletter format and content, or wish to un-
subscribe from the mailing list for this newsletter, please notify sales@ced.co.uk.

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

Back to top

Back to top

Back to top

mailto:sales@ced.co.uk

'$FrameVariables|Print frame variable values to the Log window from all frames in a data file

var dataFile%;		'Handle of data file

var numFrames%;		'Number of frames

var noVars%;		'No of variables for each frame

var vType%;			'Variable type

var varVal%;		'Variable values (integer, real or string)

var varVal;			

var varVal$;

var c%;				'Counter for frames

var v%;				'Counter for variables

var name$;			'Variable name

var units$;			'Units

dataFile% := FrontView();		'Show an open data file

if ViewKind(dataFile%) <> 0 then

	Message(" No Signal data file open\nPlease select a data file");

	dataFile%:= FileOpen("",0,1);	'if no data file found, prompt user to open one

	

	if dataFile% < 0 then				'If user cancels or error occurs

 		Message("	Unable to open a file! Re-run script to try again");		'Warn user 		

		Halt;		'and quit script	

	endif;

endif;

Window(0,0,100,100);	'Make the data full screen

numFrames%:= FrameCount();		'Get no. of frames

PrintLog("Frame\tVariable\tName\tValue\tUnits\n");	'Print headers to Log view

for c%:=1 to numFrames% do		'Cycle through frames

	Frame(c%);					'View current frame

	noVars%:= FrameVarCount();		'Get no. of frame variables

	for v%:=1 to noVars% do

		vType% := FrameVarInfo(v%,name$);	'Get name and info

		

		docase

			case vType% = 0 then		'If variable is an integer type

				varVal%:= FrameGetIntVar(name$,vType%,units$);		'Get values

				PrintLog("%d\t%d\t%s\t%d\t%s\n",c%,vType%,name$,varVal%,units$);	'Print to Log

			case vType% = 1 then		'If variable is a real type

				varVal:= FrameGetRealVar(name$,vType%,units$);		'Get values

				PrintLog("%d\t%d\t%s\t%f\t%s\n",c%,vType%,name$,varVal,units$);		'Print to Log

			case vType% = 2 then		'If variable is a String

				varVal$:= FrameGetStrVar$(name$,vType%,units$);		'Get values

				PrintLog("%d\t%d\t%s\t%s\t%s\n",c%,vType%,name$,varVal$,units$);	'Print to Log

		 endcase

	next;

PrintLog("\n");

next;

FrontView(LogHandle());		'Show Log view

david
FrameVariables.sgs

'$Alarm clock| Example script that allows the user to set a time relative to the system

'clock for an alarm signal.

var ok%,dummy%,Hr%,Min%,Sec%;

var tim$;

Var s%,m%,h%;

Var lastt;

Var field%;

var TDSec%,TdMin%,TDHr%;

Var Alarm%;

var ct%:=0;

var today%;

Var tomorrow%;

Alarmset%(); 'Main function

Func Alarmset%()

tim$:=Print$("Time is %s",Time$(1,1+2+4+8)); 'Get's current time

TimeDate(sec%, min%, Hr%);

Lastt:=sec%+(Min%*60)+(Hr%*3600);

Sec%:=0;

DlgCreate("Alarm setup"); 'Start new dialog

DlgAllow(511, update%);

field%:=DlgText(Tim$,0,4);

DlgInteger(1,"Hour",0,23,0,0,1);

DlgInteger(2,"Minute",0,59,0,0,1);

DlgInteger(3,"Second",0,59,0,0,1);

DlgButton(0,"Cancel");

DlgButton(1,"OK");

ok% := DlgShow(Hr%,min%,Sec%);

If ok%=0 then

 Message("Alarm not set"); 'If cancel is pressed

endif

TimeDate(TDSec%,TdMin%,TDHr%);

'Account for going over mignight

Today%:=(TDsec%+(TDMin%*60)+(TDHr%*3600));

Tomorrow%:=(sec%+(Min%*60)+(Hr%*3600));

Alarm%:=Tomorrow%-Today%;

If alarm%<0 then

 tomorrow%:=(86400-today%)+tomorrow%;

 Alarm%:=Tomorrow%;

endif

Seconds(0);

Return 1

end

DoToolbar(); 'Try it out

Halt;

Func DoToolbar() 'Set your own name...

ToolbarClear(); 'Remove any old buttons

ToolbarSet(0, "", AlarmIdle%); 'Idle routine

ToolbarSet(1, "&Quit"); 'This button returns its number

return Toolbar("Waiting", 1023);

end;

Func AlarmIdle%() 'Button 0 routine

if ct%=0 then

 If seconds()>= Alarm% then 'Once alarm time is reached

 Sound(60,2,1); 'Play a tone

 Message("Turn off Alarm!"); 'And flash message

 ct%:=1;

 Endif

endif

return 1; 'This leaves toolbar active

end;

Func update%();

TimeDate(sec%, min%, Hr%);

If sec%+(Min%*60)+(Hr%*3600)> lastT then

 tim$:=Print$("Time is %s",Time$(1,1+2+4+8));

 Dlgvalue$(field%,Tim$);

 Lastt:=sec%+(Min%*60)+(Hr%*3600);

endif

return 1

end

david
Alarm.s2s

