

Contents
News – Updates & meetings
Spike2 – Principal Component Analysis on a subset of spikes
Signal – Magstim control using multiple states
Spike2 Script – ECG detection tone
Signal Script – Digital input state branching
Did you know…? – List of virtual channel expressions
Recent questions – Create audio files from data files

News

Spike2 and Signal Training Days
This years U.K. Spike2 and Signal training courses are fast approaching and will take
place on Thursday 30th April and Friday 1st of May in Cambridge. The Spike2 thread for
both days is now fully booked, but there are still limited places available on the Signal
and Workshop threads. If you or any of your colleagues would like to attend, please
follow the links to view the training day program and complete the registration form.
Please give a short description of the type of research that you do and analysis that you
are interested in. This will allow us to tailor sessions for specific requirements.

Opening and saving embedded files
The scripts, sequence files and sampling configurations included in the email newsletter
are embedded files, which can be opened or saved to disk by right-clicking on the
following style of icons which are positioned next to the section title:

Embedded script icon showing right-click context menu

Please let us know if you have any problems opening or saving these embedded files.

Meetings and events
Experimental Biology 2009
Ernest N. Morial Convention Center
New Orleans, LA, USA
April 18th – 22nd 2009

British Neuroscience Association 20th National Meeting
Adelphi Hotel
Liverpool, UK
April 19th – 22nd 2009

International Workshop and Conference on Human
Reflexes: Wiring and Firing of Motorneurons
Ege University
Izmir, Turkey
May 11th – 15th 2009

#43 ~ April 2009

Back to top

http://www.ced.co.uk/training
http://www.ced.co.uk/tdapplu.htm
http://www.eb2009.org/
http://www.bna.org.uk/bna2009/bna2009.htm
http://www.genderreflex.org/workshop_conference.htm

3rd Annual Canadian Neuroscience Meeting
Westin Bayshore
Vancouver, Canada
May 24th – 27th 2009

The 6th Congress of the International Society for Autonomic
Neuroscience
ISAN09 is a joint meeting to be held with the European
Federation of Autonomic Societies (EFAS) in Sydney, from
September 1st-4th, 2009. Approx. 400 international and national
delegates are expected, having clinical and/or basic scientific
research interests in autonomic neuroscience.

Plenary speakers: Darwin Berg (UCSD), Hugo Critchley (University of Sussex), Max Hilz
(University of Erlangen-Nuremberg) and Elspeth McLachlan (POWRI)

Further details of the meeting can be found at http://www.iceaustralia.com/isan2009/

Proudly supported by Cambridge Electronic Design and the Foundation for High Blood
Pressure Research, Australia.

Latest versions of Spike2 and Signal
Updates for Spike2 and Signal are available from the CED downloads page, or by
clicking on the links in the table below. Demonstration versions of the latest software are
also available.

 Spike2 downloads Signal downloads
Spike2 version 6.11 Signal version 4.05

Spike2 version 5.21 Signal version 3.11

Spike2 demo Signal demo

Spike2
Q. I am currently using PCA clustering to sort spikes off-line. One very common

result of this is that I quickly find clusters of spikes that are well separated and
assign them a code. I then use the Apply changes function from the cluster
window to classify these spikes in the data file. I am then left with another cluster
in which I can see different units that are not as easily separated. What I would
like to do is re-run the PCA only on this second cluster, without the spikes that I
have already sorted contributing to the analysis. Is there an easy way to do this?

A. The marker filter function in the Spike2 analysis menu can be used to show or
hide classified and non-classified spike shapes in the data file. Any analysis
functions performed on a WaveMark channel will then only use the visible spikes.
In this example, after applying the changes back to the data file, simply use the
marker filter to hide the easily separated spikes in the data file. You can then use
the Reanalyse function from the File menu in the cluster window to re-run the
PCA analysis using only the visible spikes from your original WaveMark channel.

Back to top

http://www.can-acn2009.org/
http://www.iceaustralia.com/isan2009/
http://www.iceaustralia.com/isan2009/
http://www.ced.co.uk/uplsu.shtml
http://www.ced.co.uk/s2wu6u.shtml
http://www.ced.co.uk/s2wu5u.shtml
http://www.ced.co.uk/s2demu.shtml
http://www.ced.co.uk/sigw4u.shtml
http://www.ced.co.uk/sigw3u.shtml
http://www.ced.co.uk/sigdemu.shtml

Reanalyse function in the cluster dialog

Q. How do I use multiple states to control Magstim settings?

A. Multiple states control of supported Magstim devices is achieved using the
auxiliary states mode in Signal. The option of including auxiliary states device
support is given during the Signal installation.

 When the Multiple states checkbox is enabled in the General tab of the sampling
configuration and Dynamic outputs mode is selected, the Magstim button in the
States tab allows the user to configure settings for Magstim 200, BiStim or Rapid
devices. Depending on the type of Magstim selected, each enabled state
includes settings for Power %, no. of pulses and frequency of stimulation (Hz).
During sampling, these settings are applied to the Magstim device for the current
state. Signal can switch between states in numeric or random order during an
experiment, or run multiple user-defined protocols for state sequencing.

Configuration settings for a Magstim Rapid device

 Further information on Magstim control using multiple states can be found in the
on-line help.

Back to top

CED
You can copy clustering data as text from the Edit menu of the cluster window

CED
Magstim settings are saved as frame variables in the data file. You can access frame variable values using the script language

Scripts: Spike2
Q. I am using Spike2 to record ECG and would like to know if there is any way to

output a tone when an ECG complex occurs, much like a standard ECG monitor?

A. The attached script, ECGTone.s2s, plays a tone pip from DAC 0 of the 1401
when the R-wave of an ECG complex is detected during sampling. Sampling is
controlled via the script toolbar and the user is asked to set the waveform
channel to monitor and a hysteresis value for peak detection. A horizontal cursor
is then used to set a threshold for the detection of the R-wave. Each time the
threshold is crossed Spike2 monitors the level of the incoming data and, when a
peak is found, waits for the data to fall by at least the level set as the hysteresis
value before playing the tone which flags the R wave detection.

 This script requires Spike2 version 6 and writes a sequence file into a default
folder of C:\Spike6\Sequence.

Scripts: Signal
Q. I have two states set-up in my sampling configuration to output single or double

stimulation pulses during experiments. As I use peri-trigger sampling mode, it
would be very useful if I could control which state to trigger from the digital inputs
at the start of a sampling sweep. Is this possible with a script?

A. State branching in response to digital inputs can be achieved by using the output
sequencer in Signal. The attached sequence file and sampling configuration is an
example of controlling state branching and pulse outputs in response to digital
inputs at the beginning of a sampling sweep. The sequence file monitors the
digital inputs during sampling and outputs a single pulse in response to bit 0
being set high, or a double stimulation pulse in response to bit 1 being set high.
The sequence also sets the relevant frame state (1 for single stimulation and 2
for double).

 To run the sequence, save the attached sequence file (DigBranch.pls) and
sampling configuration (DigBranch.SGC). Load the sampling configuration
from the File menu in Signal and browse to the saved sequence file from the
Outputs tab. The sequence could easily be expanded to control additional states
and outputs if required.

Sampling configuration with linked sequence file

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

'ECGTone.s2s
'This is a script to output a tone upon detection of a peak or trough
'on a waveform input channel.
'
'Note this script is UNDER DEVELOPMENT BY CED and is included for
'illustration only. We make no warranties as to its suitability
'or otherwise. It has not been thoroughly tested.
'You should use it 'as is'

''CED 18/04/09

'The script uses the current sampling configuration so a suitable waveform channel must be set up.

'NOTE: This script writes an output sequence into a default folder of c:\Spike6\sequence into which
'variables are passed. If this folder does not exist the script will not work. The script requires Spike2 version 6 to run.

var data%;								'Handle of new data file
var sTime;								'The last time we looked at the idle routine
var curtrigLev;						'Current trigger level as checked by idle routine		
var oldTrigLev;						'Previous trigger level
var trigChan%;							'Memory channel used for testing purposes
var inputChan%;						'Waveform channel monitored for threshold crossings
var setHyst;							'Delay time in ms
var hystVar;
var delayTicks%;						'Delay in sequencer steps to pass as variable
var trigVar;							'Level of threshold in ADC units
var threshType%;
var ToneOut%;
var output%;
var Length:=1;

ToolbarVisible(1);					'Make toolbar visible always
New%();									'Set up new sampling window
DoToolbar();							'Do the toolbar

func New%()								'New sampling window
var ok%;
View(LogHandle());						'Make log view the current view
EditSelectAll();						'Select all text in log view
EditClear();							'Delete it
Window(0,80,100,100);					'Display it at the bottom of the screen
WindowVisible(1);						'Make it visbible

if data%>0 then							'If there is already a data view open then
 if ViewKind(data%)>-1 then
 	 View(data%);							'Close it
 	 FileClose();
 endif;
endif;

DlgCreate("Output parameters");				'Dialog to set channel and delay
DlgInteger(1,"Input channel",1,32);
DlgReal(2,"Hysteresis",0,1000);
DlgList(3,"Threshold","Peak|Trough");
ok% := DlgShow(inputChan%,setHyst,threshType%);
if not ok% then
	Message("Pressed cancel - Script closing");
	Halt;
endif;

output%:=FileNew(7,1,1,1,Length,32); ''''New file holding output data
Window(25,0,75,50);

ToneOut%:= VirtualChan(0, "WEnv(0.1, 0.2, 0.1, 0)*WSin(1000, 0)", 0,0.0001,0); 'Edit virtual channel
ChanShow(ToneOut%);
PlayWaveAdd("T", "Tone",0,0.0, MaxTime(),ToneOut%,1); 'Add the channel from the output file to on-line output
FileClose(0,-1);

WriteSequence(threshType%);									'Write output sequence to use

data%:=FileNew(0,2);					'Open a new data file for sampling
HCursorDelete(-1);
WindowVisible(1);
if data%<0 then Message("Unable to open new data file");Halt() endif;
'DrawMode(-1,2);							'Set event draw mode to lines
Window(0,0,100,100);						'Make data window in top bit of screen
'XRange(0,10);
HCursorNew(inputChan%,oldTrigLev);				'Set cursor on appropriate channel	
Interact("Position cursor at initial threshold level",1023);
oldTrigLev:=HCursor(1);					'Get threshold level
trigVar:=(HCursor(1)-ChanOffset(inputChan%))/(5*ChanScale(inputChan%))*32768;		'Convert to ADC units
SampleSeqVar(1,trigVar);				'Set output sequencer variable
hystVar := (setHyst/ChanScale(inputChan%)) * (65536/10);
SampleSeqVar(2,hystVar);
hystVar := setHyst/ChanScale(inputChan%);
trigChan%:=MemChan(3);	
'FrontView(LogHandle());					'Bring the Log view to the front
FrontView(data%);						'Bring the data view to the front
ToolbarEnable(3,0);						'Disable "Sample stop" button
ToolbarEnable(2,1);						'Disable "Sample stop" button
ToolbarText("Press SAMPLE START to commence sampling");
return 1;
end;

proc DoToolbar()
ToolbarSet(1,"Quit",Quit%);				'Set up toolbar buttons
ToolbarSet(2,"Sample start", Start%);
ToolbarSet(3,"Sample stop", Stop%);
ToolbarSet(4,"New file", New%);
'ToolbarSet(6,"Change delay",ChangeDelay%);
ToolbarEnable(3,0);						'Disable "Sample stop" button
ToolbarEnable(6,0);
View(data%);
Toolbar("Press SAMPLE START to commence sampling", 1023);					'Wait here until quit is pressed
end;

func Quit%()							'If "Quit" is pressed
SampleStop();							'Stop sampling
return 0;								'leave toolbar
end;

func Start%()							'If "Start" is pressed
ToolbarSet(0,"",Idle%);					'Call Idle%() whenever there is free time
SampleStart();							'Start sampling
ToolbarEnable(4,0);						'Disable "New file" button
ToolbarEnable(3,1);						'Enable "Sample stop" button
ToolbarEnable(2,0);						'Disable "Sample start" button
ToolbarEnable(1,0);						'Disable "Quit" button
ToolbarEnable(6,1);
ToolbarText("Press SAMPLE STOP to stop sampling");
return 1;								'Stay with toolbar
end;

func Stop%()							'If "Stop" is pressed
ToolbarClear(0);
SampleStop();							'Stop sampling
ToolbarEnable(4,1);						'Enable "New file" button
ToolbarEnable(3,0);						'Disable "Sample stop" button
ToolbarEnable(1,1);						'Enable "Quit" button
ToolbarEnable(6,0);
ToolbarText("Press FILE NEW to capture more data");
return 1;								'Stay in toolbar
end;

'Func ChangeDelay%()													'Function to change delay time
'setDelay:=Input("Delay time (ms)",setDelay,0.1,1000);
'delayTicks%:=(setDelay*100-4);
'SampleSeqVar(4,delayTicks%);
'return 1;
'end;

func Idle%()							'The Idle routine is called when PC has time
var eTime;
View(data%);
eTime:=Maxtime();

'PLACE CODE IN HERE TO ANALYSE THE DATA FILE BETWEEN sTime and eTime
curTrigLev:=HCursor(1);								'Check if threshold level has changed
if curTrigLev <> oldTrigLev then					'If so, Get new level in ADC units
	trigVar:=(curTrigLev-ChanOffset(inputChan%))/(5*ChanScale(inputChan%))*32768;
	SampleSeqVar(1,trigVar);						'Update sequencer variables		
	oldTrigLev:=curTrigLev;							'Reset previous cursor level to current level
endif;
MemImport(trigChan%,1,sTime,eTime,1,0,0.3);					'For testing purposes

sTime:=eTime;
return 1;								'Stay in toolbar
end;

'This function writes an output sequnce for use with the script.
'This is done as there is no other way to set the waveform channel to monitor directly
Func WriteSequence(type%)
var seq%;
var seqSet%;
seq%:=FileOpen("c:\\Spike6\\Sequence\\ECGTone.pls",8,1);
'Message(seq%);
View(seq%);
if type% = 0 then

Print("SET 0.0100 1 0\n");
Print("VAR V1,thresh=VDAC16(0.75) ;Threshold level\n");
Print("VAR V2,hyst			;Hysteresis amplitude\n");
Print("VAR V3,counter=1000 ;Counter to set timeout\n");
Print("VAR V4,current=0 ;Variable for current level on channel\n");
Print("VAR V5,max=0 ;Max level achieved\n");
Print("VAR V6,level\n");
Print("VAR V7,ch\n\n");
Print("; The initial setup waits for us to be below the threshold\n");
Print("OVER: CHAN current,1 ;Get current level on channel\n");
Print(" BGT current,thresh,over ;If above, keep looking\n");
Print("; Then we wait for us to be above the threshold\n");
Print("UNDER: CHAN current,1 ;Get current level\n");
Print(" BLT current,thresh,under ;If under, keep looking\n");
Print(";Resets max and level variable to track when waveform is rising\n");
Print("SETMAX: MOV max,current ;Set max to current level\n");
Print(" MOV level,max ;Set level to max - hysteresis\n");
Print(" SUB level,hyst\n");
Print(" LDCNT1 counter ;Load counter to loop through for set time\n");
Print("; The core loop. If below trigger level do the pulse, if above max then reset\n");
Print("; the max value and trigger level, otherwise count down the timeout\n");
Print("RISE: CHAN current,1 ;Get current level\n");
Print(" BLT current,level,tone ;If lower than required level (max - hyst) output tone\n");
Print(" BGT current,max,setmax ;If new maximum, reset the levels\n");
Print(" DBNZ1 rise\n");
Print(" JUMP over\n");
Print("TONE: WAVEGO T\n");
'Print(" DELAY 1999\n");
'Print(" DIGOUT [00000000]\n");
Print(" Report\n");
Print(" JUMP over\n");

else

Print("SET 0.0100 1 0\n");
Print("VAR V1,thresh=VDAC16(0.75) ;Threshold level\n");
Print("VAR V2,hyst			;Hysteresis amplitude\n");
Print("VAR V3,counter=1000 ;Counter to set timeout\n");
Print("VAR V4,current=0 ;Variable for current level on channel\n");
Print("VAR V5,max=0 ;Max level achieved\n");
Print("VAR V6,level\n");
Print("VAR V7,ch\n\n");
Print("; The initial setup waits for us to be below the threshold\n");
Print("OVER: CHAN current,1 ;Get current level on channel\n");
Print(" BLT current,thresh,over ;If below, keep looking\n");
Print("; Then we wait for us to be above the threshold\n");
Print("UNDER: CHAN current,1 ;Get current level\n");
Print(" BGT current,thresh,under ;If over, keep looking\n");
Print(";Resets max and level variable to track when waveform is rising\n");
Print("SETMAX: MOV max,current ;Set max to current level\n");
Print(" MOV level,max ;Set level to max + hysteresis\n");
Print(" ADD level,hyst\n");
Print(" LDCNT1 counter ;Load counter to loop through for set time\n");
Print("; The core loop. If below trigger level do the pulse, if above max then reset\n");
Print("; the max value and trigger level, otherwise count down the timeout\n");
Print("RISE: CHAN current,1 ;Get current level\n");
Print(" BGT current,level,tone ;If greater than required level (max - hyst) output tone\n");
Print(" BLT current,max,setmax ;If new minimum, reset the levels\n");
Print(" DBNZ1 rise\n");
Print(" JUMP over\n");
 Print("TONE: WAVEGO T\n");
' Print(" DELAY 1999\n");
'Print(" DIGOUT [00000000]\n");
Print(" JUMP over\n");

endif;
'FileSaveAs("c:\\Spike4\\Sequence\\Pulse.pls");
FileSave();
FileClose();
seqSet%:=SampleSequencer("c:\\Spike6\\Sequence\\ECGTone.pls");
'Message(seqSet%);
return 1;
end;

CED
ECGTone.s2s

CED
DigBranch.pls

david
DigBranch.SGC

Did you know…?
The virtual channels dialog in Spike2 holds a list of previously used expressions.

Virtual channel dialog menu

Recent questions
Q. Is there any way to convert a Spike2 data file to an audio format for presentation

purposes?

A. The attached script, SMRtoWav.s2s, will take data from a Spike2 data file and
save it to WAV audio file format.

User group
Try the new CED Forums bulletin board for software and hardware support

If you have any comments about the newsletter format and content, or wish to un-
subscribe from the mailing list for this newsletter, please notify sales@ced.co.uk.

Back to top

Back to top

Back to top

'===
'CAMBRIDGE ELECTRONIC DESIGN LIMITED, THE SCIENCE PARK, MILTON RD., CAMBRIDGE CB0 0FE, UK
'===

'SmrToWav1.smr
'Copyright © Cambridge Electronic Design, Mar 2003.

'Overview.
'
'This script converts waveform channels in .smr files created by CED Spike2 software to .wav format.
'It requires Spike 2 version 3 or higher.
'The script is a 'work in progress' and is offered without guarantees.
'You must test it to see whether it is suitable for your application.

'User Guide.

'Use the Run or Load and Run commands on the Spike 2 Script menu to start the script.
'The main script toolbar has 8 buttons that can be clicked with the mouse or operated by a hotkey (underlined).

'Use the |Select View| button to choose a file to analyse from a list of already open .smr files
' or press |New File| to load a data file from disk.
'Display the time range of interest using the usual Spike 2 controls, e.g. by scrolling, double-clicking the X-axis
'or clicking on the buttons in the bottom left hand corner of the time view.
'When the area of interest is displayed, bracket the time range to convert with the cursors labelled 'start' and 'end'.
'If the cursors are not visible you can bring them into view with the |Fetch Cursors| button.
'Alternatively, press the |Whole File| button to convert the entire file.

'Select the channels to be included in the .wav file by clicking on the channel numbers. Hold down Cntrl to select multiple channels.
'Finally, press the |Export as .wav| button. A dialog appears with a drop-down menu to select 8-bit or 16-bit integer
'format. Checkboxes indicate the currently selected waveform channels. Ensure that the required channels are selected
'(maximum 4), then press OK. Note that only channels with identical sampling rates can be converted.
'Press OK when ready. Error messages are shown if too many channels were selected, or if selected channels have different sampling rates.
'If all is well,a File Save dialog appears for entering the name and path of the output file. You must explicitly give the file
'a '.wav' filetype. Press Save to generate the output file.

'You can repeat this sequence with different time ranges and/or files as often as required, creating a new .wav file each time
'Press |Quit| to close the script.

'The script has a limited .wav file playback facility.
'You can play back the most recently saved .wav file via the computer's sound system provided that the file is relatively small (<1.5MB)
'and has one or two channels. To do this, click the PlayBack button. An error message is displayed if the .wav file is not suitable.
'Larger files can be replayed with a media player.
'The |StopPlay| button interrupts playback of a wav file.

'**

	const BSZ% := 8000; 'limit array to the size that can be written quickly
 const swquit%:=1, swselvw%:=4, swnewf%:=5;'button numbers
 const swfetch%:=7,swall%:=8,swstore%:=10;
 const swplay%:=12,swpstop%:=13,on%:=1,off%:=0;

	var fh%, bh%;
	var st, fin;
	var gFloat%[20]; 		'global for floating window states
	var views%[100];
	var outfname$;								'name of most recent .wav file
 var playflg%:=0; 'flag that wav file can be played back with Sound()
 var nbufs%:=0; 'number of 8K buffers

'**

	ToolbarClear();
	View(App(3)).WindowVisible(2);							'iconise the script
	HideAll();
 if ViewKind(View(0)) = 0 then 'if the current view is a cfs file use it as default
 fh%:=View(0);
 WindowVisible(1);
 FetchCursors%();
 else 'else find another open time view if available
 var list%[2],nc%;
 nc%:=ViewList(list%[],1);
 if nc% > 0 then
 fh%:=list%[1];
 View(fh%);
 WindowVisible(1);
 endif;
 endif;
 ToolbarSet(0, "Idle", Idle%);
 ToolbarSet(swquit%, "&Quit", Quit%);
 ToolbarSet(swselvw%, "Select &View ", Selview%);
 ToolbarSet(swnewf%, "&New File", OpenFile%);
 ToolbarSet(swfetch%, "&Fetch Cursors", FetchCursors%);
 ToolbarSet(swall%, "&Whole File", WholeFile%);
 ToolbarSet(swstore%, "&Export as .Wav ", Storewav%);
	ToolbarSet(swplay%, "&PlayLast ", PlayWav%);
	ToolbarSet(swpstop%, "&StopPlay ", StopPlay%);
 ToolbarEnable(swplay%,off%); 'disable the playback buttons
 ToolbarEnable(swpstop%,off%);
 Toolbar(" Drag cursors to select time range to export", 191);
	halt;

'**

 func Idle%()
 var VL%,enable% := 0;
 var x%[2],n%;							 	'temporary array to get size of chans%[]
	n%:=ChanList(x%[], 1+512);
 var chans%[n%+1];											'list of waveform/realwave channels
 VL%:= Viewlist(views%[], 1);

 if VL% < 2 then 'disable view select button if only one available
 ToolbarEnable(swselvw%,off%);
 else
 ToolbarEnable(swselvw%,on%);
 endif;

 if vl% > 0 then 'enable most buttons if at least one .cfs document open
 enable% := 1;
 else
 ToolbarText(""); 'clear toolbartext if no file
 endif;
 ToolbarEnable(swfetch%, enable%);
 ToolbarEnable(swall%, enable%);

 if ((ViewKind(View(0)) = 0) AND (View(0).ChanList(chans%[], 1+512) = 0)) then 'no waveform/realwave channels
 enable% := 0;
 endif;
 ToolbarEnable(swstore%, enable%);

 if ViewKind(View(0)) = 0 then 'Renumber and relabel cursors if they are 'crossed'
 if Cursor(1) > Cursor(2) then '
 CursorRenumber();
 DoCursors%();
 endif;
 endif;
 return 1;
 end;

'**

func PlayWav%();
 if nbufs% < 200 then 'if the file is relatively small
	 Sound(outfname$,1); ' play the wav file
 else
 Message("Sorry. Spike2 couldn't replay "+ outfname$ +"\n"+
 "Try using your media player.");
 endif;
 ToolbarEnable(swpstop%,on%);
	return 1;
	end;

'**

 func StopPlay%();
	Sound("S!",1);'stop previous sound output and play system exclamation sound.
 ToolbarEnable(swpstop%,off%);
	return 1;
	end;

'**

 func FetchCursors%()									'Places cursors to be in middle of view
 var vh%;
 View(fh%);
 CursorSet(2);
 DoCursors%();
 return 1;
 end;

'**

	func WholeFile%()									 'Places cursors to be in the start and end of the view
	View(fh%).CursorSet(2, 0, View(fh%).MaxTime());
	return 1;
	end;

'**

 func SetView%() 'Set this view current
 view(fh%);
	Window(0,0,100,100);
 	Draw(0, MaxTime());
 CursorSet(2);
 DoCursors%();
 ToolbarText(" Drag cursors to select time range to export");
	FrontView(fh%);
	return 1;
 end;

'**
 func DoCursors%();										'label 2 cursors
 var vh%;
 vh%:=View();
 view(fh%);
 CursorLabel(4,1,"start(%5.2ps)");
 CursorLabel(4,2,"end(%5.2ps)");
 CursorLabelPos(1,1);
 CursorLabelPos(2,3);
 View(vh%);
 return 1;
 end;
'**

	func SelView%()
	var i%, ok%, n%;
	
	for i% := 0 to 99 do
		views%[i%] := 0;
	next;
	if (Viewlist(views%[], 1) > 0) then 	'Store viewhandles of all available time views
		var list$[views%[0]];
		for i%:=1 to views%[0] do
			view(views%[i%]);
			list$[i%-1] := windowtitle$(); 	'Set list of titles
		next;
		dlgcreate("Select view"); 	'Define Menu ...
		dlglist(1,"Select view: ",list$[]);
		if (dlgshow(n%) = 0) then
			return 1;
		endif;
		fh%:=(views%[n%+1]);
		if (fh% > 0) then
			return SetView%(); 	'Activate view
		endif;
	else
		return OpenFile%(); 	'Open new file
	endif;
	return 1;
	end;

'**

	func OpenFile%()
	var vh%;
		vh% := FileOpen("",0,0,"Select a .smr file for conversion");
	if (vh% < 0) then
	 Sound("S*",1);
	 return 1;
	else
	 fh% := vh%;
	 return SetView%();
	endif;
	end;

'**

	func Storewav%();
	var ok%, bytes%, fmt% := 1;
	var x%[1];							 ' temporary array to get size of chans%[]
	var sampInt;
	
	View(fh%);
	CursorRenumber();
	st := Cursor(1);
	fin := Cursor(2);
	var chans%[ChanList(x%[],1+512)+1];						'array large enough to hold all waveform/realwave channels
	
	ChanList(chans%[], 1+512);								'store list of wavefor/realwave ch
	ok% := DoConfig%(chans%[], fmt%); ' Put up the configuration dialog
	if ok% <> 0 then 'dump if user selects a channel
		bh% := FileOpen("", 9, 1, "Filename: Remember to include the extension '.wav'");
		outfname$:=Filename$();
		if bh% > 0 then
			ToolbarText("Saving .wav file");
			view(fh%);
			sampInt := BinSize(chans%[1]);
			docase
				case fmt% = 0 then bytes% := 1;
				case fmt% = 1 then bytes% := 2;
			endcase;
			SetupAndWriteHeader(bh%, sampInt, (fin-st)/sampInt, bytes%, chans%[0]); 'setup file header
			Dumpwave(bh%, fh%, st, fin, chans%[0], bytes%, chans%[]); '8/16-bit Integer
			Sound("S!",1);
			View(bh%);
			FileClose(); 				'close the binary file
 if playflg% > 0 then
 ToolbarEnable(swplay%,on%); 			'enable the playback buttons
 endif;
 ToolbarText(" Drag cursors to select time range to export");		'change prompt
		else
			Sound("S*",1);
		endif ;
	endif;
	return 1;
	end

'**
	func DoConfig%(chans%[], &fmt%)
	var numchans%;
		numchans% := chans%[0];				 				' store number of channels
	var chansel%[numchans%];
	var ch%;
	var curchn% := 1;								 ' how many channels are selected?
	var ret%,									 ' return value from DlgShow to be returned
		nocurs% := 1,								 	' should we not use cursors to find st and fin
		sep;										 ' which separator will we be using?
	var fmt$[4];
	var side% := 0, y%;
	var z; z := (numchans%+10.2)/2.0;
	 ' z is the y position (in DBUs) of the next line after the channel list.
	 ' z := (numchans%+2*row+1)/2.0; where row is the row the items to follow would be
	 ' on if we had no channel list.
	
	 				' Start new dialog, specifying w + h
	fmt$[0] := "8-bit Integer"; fmt$[1] := "16-bit Integer"; fmt$[2] := "32-bit IEEE real"; fmt$[3] := "64-bit IEEE real";
	
	DlgCreate ("Export in .Wav format",0,0,57,((numchans%+1)/2)+8);
	DlgLabel (1,"Output Format",2,1.3);
	DlgList (2,13,fmt$[],2,18,1.3);							 ' create listbox
	DlgLabel (3,"Choose the channels to export",2,3);
	
	' We now loop through all the channels and create a checkbox for each. We arrange
	' them into two columns to decrease the height of the dialog box.
	
	for y% := 1 to numchans% do
		ch% := chans%[y%];
	 chansel%[y%-1]:=ChanSelect(ch%); 'check the box if channel was selected
		DlgCheck(y%+3,Print$("%3d %s %.2f KHz",ch%,ChanTitle$(ch%), 1.0/BinSize(ch%)/1000.0),25*side%+6,(y%+1)/2+3);
		side% := not side%;
	next;
	 if ArrSum(chansel%[]) =0 then 'if no channels selected set 1st by default
	 chansel%[0]:=1;
	 endif;
	var txt$:= "This script is not able to export files which contain gaps on one\n"
	 "data channel only. It can, however, process files with gaps on\n"
		 "all channels simultaneously correctly. All selected channels must\n"
	 "have the same sample rate";
	
	DlgLabel(numchans%+4, txt$, 3, z);
	ret% := DlgShow(z,fmt%,z, chansel%[], z); 		' ret% is 0 if user cancels
	if (ret% > 0) then
		for y% := 1 to numchans% do					 		' count them and eliminate those
			if chansel%[y%-1] then						 ' which aren't
				chans%[curchn%] := chans%[y%];
				curchn% += 1;
			endif;
		next;
		chans%[0] := curchn%-1;							 ' save number of selected channels
	 if chans%[0] <=2 then
	 playflg%:=1; 'flag that this file can be played back by the script
	 else
	 playflg%:=0;
	 endif;
		if chans%[0] > 4 then
			Message("Error|Can't export more than 4 channels.\n"+
			"Please go back and select 1 to 4 channels,");
			return 0;
		endif;
	
		if chans%[0] = 0 then							 ' validate data; must have
			Message("Error|You must select a waveform channel to export!");
			return 0;									 ' at least one selected chan
		endif;
		if (chans%[0] > 1) then							 ' validate data; must have the same sampling rate
			for y% := 1 to chans%[0]-1 do					 ' count them and eliminate those
				if (View(fh%).BinSize(chans%[y%]) <> View(fh%).BinSize(chans%[y%+1])) then
		 			Message("Error|You must select channels with the same sampling rate!");
		 			return 0;									 ' at least one selected chan
				endif;
			next;
		endif;
		if st = fin then								 ' must have a nonzero period
			Message("Error|You must select a time region to export!");
			return 0;									 ' of time to dump
		endif;
	endif;
	return ret%;									 ' return appropriate value
	end;

'**

	Proc SetupAndWriteHeader(bh%, sampInt, arrSiz%, bytes%, chans%); ' Standard components of wav file header in integer format
	var MyHead%[11]; 'array to store WAV format file header
	 Myhead%[0] := 0x46464952; ' RIFF
	 MyHead%[1] := 44 + (arrSiz%*bytes%*chans%);
	 Myhead%[2] := 0x45564157; ' WAVE
	 Myhead%[3] := 0x20746D66; ' fmt<sp>
	 Myhead%[4] := 0x10; ' formatsize=16,
	 Myhead%[5] := 0x10000 * chans% + 0x01; ' upper 16 == chans, lower 16 == format tag == 1
	 MyHead%[6] := 1.0 / sampInt; ' Fill in the gaps in the header array
	 MyHead%[7] := MyHead%[6] * bytes% * chans%; ' average bytes/second
	 Myhead%[8] := (0x80000 * bytes%) + (bytes%* chans%); ' upper 16 == bits/sample, lowest 16 == block allignment
	 Myhead%[9] := 0x61746164; ' DATA
	 MyHead%[10] := arrSiz% * bytes% * chans%;
	
	 View(bh%).Bwrite(MyHead%[]); 'write the header
	end;

'**

	proc DumpWave(bh%, fh%, sTime, eTime, nch%, bytes%, list%[])
	
	var myArray%[BSZ%];
	var dat%[nch%][BSZ%]; 'generate channels array
	var n%, ich%, pts%;
	
	repeat
		for iCh% := 0 to nCh%-1 do
			n% := ChanData(list%[ich%+1], myArray%[], sTime, eTime, stime);
			if n% > 0 then 'if we got data
				pts% := n%;
				if (bytes% = 1) then
					ArrDiv(myarray%[:n%], 256);
					ArrAdd(myarray%[:n%], 128); 'using array arithmetic
				endif;
				ArrConst(dat%[ich%][:n%], myArray%[:n%]); 'shift data
			endif;
		next;
		View(bh%).BWriteSize(bytes%, dat%[][:pts%]); 'Output it
		stime := stime + pts% * BinSize(list%[ich%]); 'time of next point
	until n% <= 0; 	'until no points left
	end;

'**

	func Quit%() 'Quit button pressed
	View();
	RestoreAll();
	return 0;
	end;

'**

	proc HideAll()
	var i%;
	
	gFloat%[0] := App(-2); 'number of windows
	for i% := 1 to gFloat%[0] do 'hide all windows and save state
		gFloat%[i%] := View(App(i%)).WindowVisible(0);
	next;
	end

'**

	proc RestoreAll()
	var i%;
	for i% := 1 to gFloat%[0] do 'restore hidden windows
		View(App(i%)).WindowVisible(gFloat%[i%]);
	next;
	end;

'**

CED
SMRTOWAV.S2S

http://www.ced.co.uk/phpBB3/index.php
mailto:sales@ced.co.uk

