

Contents
News – Updates & meetings
Spike2 – Timing and controlling stimulators
Signal – MultiClamp 700 support
Spike2 Script – Randomise tone output
Signal Script – Auto-optimise frame data
Did you know…? – ADC64 top-box for Micro1401-3
Recent questions – Grand average of every nth frame

News

Meetings and events
ANS Sensorimotor Control Satellite Meeting
Prince Of Wales Medical Research Institute
Sydney, Australia
January 30th – 31st 2010

Australian Neuroscience Society/Australian Physiological Society Joint Meeting
Darling Harbour Convention Centre
Sydney, Australia
January 31st – February 3rd 2010

Latest versions of Spike2 and Signal
Updates for Spike2 and Signal are available from the CED downloads page, or by
clicking on the links in the table below. Demonstration versions of the latest software are
also available.

 Spike2 downloads Signal downloads
Spike2 version 7.02 Signal version 4.06

Spike2 version 6.13 Signal version 3.12

Spike2 demo Signal demo

Spike2

Q. How can I trigger stimulators from Spike2 during a recording?

A. Many stimulators can be triggered by a 5 volt TTL input and will generate a
constant current or constant voltage output in response. The parameters of the
stimulator output are usually defined using hardware controls on the stimulator.

The Spike2 output sequencer, via the graphical editor or a text sequence file, can
play precisely timed TTL pulses from the 1401 digital outputs during sampling
which can be used to trigger these stimulators. Some units that do not support 5
volt TTL compatability, such as the Grass S44 which requires a 6 volt input, can
be triggered using a combination of a 1401 digital output and a circuit that
produces a 9V trigger pulse (contact us for details).

 Other constant current stimulators, such as the DS4 and DS5 units available
from Digitimer, are controlled by an analog voltage waveform input which they
then convert into a constant current stimulus output of proportional value. The
1401 DAC outputs can be used to generate waveform outputs to drive these
types of voltage-following stimulus isolators.

#48 ~ December 2009

Back to top

Back to top

http://www.powmri.edu.au/ans2010motorcontrol/
http://www.sallyjayconferences.com.au/sydney2010/
http://www.ced.co.uk/uplsu.shtml
http://www.ced.co.uk/s2wu7u.shtml
http://www.ced.co.uk/s2wu6u.shtml
http://www.ced.co.uk/s2demu.shtml
http://www.ced.co.uk/sigw4u.shtml
http://www.ced.co.uk/sigw3u.shtml
http://www.ced.co.uk/sigdemu.shtml
CED
You can copy pulses between sections in the graphical editor to quickly set-up a series of similar stimulus protocols

david

Q. In the previous enewsletter (eNews 47) you mentioned that Signal can interface
with the Axon MultiClamp 700A which is controlled by its own software program.
Could you give me further details?

A. MultiClamp telegraph support can be chosen as an alternative to the standard
telegraph support during installation and allows Signal to read information such
as changes to the amplifier gain, low-pass filter settings, membrane capacitance
and series resistance direct from the MultiClamp command software. In addition,
the clamping support features in Signal are integrated to automatically select
between voltage clamp and current clamp, depending on the amplifier controls,
and set up the scaling and units of the DAC used for external amplifier control.

MultiClamp 700 configuration

 The MultiClamp configuration dialog is accessed from the Port Setup tab of the
sampling configuration. Clamp settings can be read from the amplifier software
using the associated button in the Clamp tab of the sampling configuration.

For more details on the telegraph configuration, see the MultiClamp section of
the on-line help.

Scripts: Spike2

Q. I would like to generate two tones to play as a stimulus and to randomize delivery
of these waveforms. In addition it would be very useful if I could create new tones
on-line to replace either of the existing outputs.

A. The attached script, RandomiseTones.s2s, is an example script that allows the
user to create a tone A and tone B output waveform and then play these in a
randomised order during sampling. From the script toolbar the user can generate
a new tone during sampling and replace the existing tone outputs if required.

Scripts: Signal
Q. When stepping through a data file in Signal, it would be very nice if the data was

automatically optimised for each frame. Is there a setting for this?

A. The attached script, AutoOptimise.sgs, is an example script that will
automatically optimise the Y-axis display for each frame off-line when stepping
through frames in a data file. We plan to add this feature in a future release.

Did you know…?
The Micro1401-3 can be expanded up to a maximum of 128 channels using the new
ADC64 top-box.

The HumRemove.s2s script, available from our website, can be used in conjunction with
a 50Hz mains synchronization generator to reduce 50Hz mains noise. Please contact us
for details.

Back to top

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

Back to top
Right-click the script icon
and save to disk.

If you have any problems
opening the embedded
scripts in this newsletter
please let us know.

Back to top

'$RandomiseTones.s2s|Example script that allows the user to specify tone waveforms for output and then

'plays them from DAC0 of the 1401 in random order for a specified no. of repeats. You can load in new

'tones to replace the existing ones during sampling (although they must be of the same size/frequency or smaller)

'TextMarks are added to the file to show the parameters of the current tones in use.

'The script is a 'work in progress' and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'CED 09/12/09

var data%; 'Handle of new data file (Spike2 sets it to 0)

var sTime; 'The last time we looked at the idle routine

var output%; 'File to hold generated waveforms

var noPointsA%,noPointsB%; 'no. of data points in waveforms

var LengthA; 'Default output length

var LengthB;

var maxLengthA,maxLengthB; 'Maximum allowed length for waveforms loaded during sampling

var freqA%:=1000; 'Default tone frequency

var freqB%:=1000;

var maxFreqA%,maxFreqB%; 'Max. allowed freq. for waveforms loaded during sampling

var RiseA:=0.1; 'Tone A parameters

var PlatA:=0.6;

var FallA:=0.1;

var RiseB:=0.1; 'Tone B parameters

var PlatB:=0.6;

var FallB:=0.1;

var stims$[100]; 'Array for stimulus types

var randoms[100]; 'Array for random numbers

var c%; 'counter for no. repeats

var tones$[2]; 'Array for tone names

var reps%; 'No. of repeats

var toneInfo$; 'String to hold tone parameters

var type1401%; 'Check type of 1401 for memory limits

var maxSpace,spaceA,spaceB; 'Space in 1401 memory and size of each output

var path$;

var vers%;

vers%:= App(-1);

if vers% < 600 then

 Message("This script requires Spike2 version 6 or version 7");Halt;endif;

type1401%:= U1401Open(); 'Check 1401 type

U1401Close();

if type1401% < 0 then

 Message("No 1401 detected! Check plugged in and powered");

 Halt;endif;

if vers% >= 600 and vers% < 700 then

 path$:= "C:\\Spike6\\data\\outputs.smr";

else

 path$:= "C:\\Spike7\\data\\outputs.smr";

endif;

HideAll(); 'Hide all unwanted bars

ToolbarVisible(1); 'Make toolbar visible always

CreateWave%();

New%(); 'Set up new sampling window

DoToolbar(); 'Do the toolbar

RestoreAll(); 'Restore all bars

Halt;

Func CreateWave%();

var toneA$,toneB$;

var chanA%,chanB%;

var ok%;

var EnvA$, EnvB$;

var ToneAOut%;

var ToneBOut%;

var noReps%;

DlgCreate("Tone settings"); 'Start new dialog for tone parameters

DlgText("Tone A parameters",14,1);

DlgInteger(1,"Sine freq.",50,40000,16,2);

DlgReal(2,"Rise time",0.000000,10.000000,16,3);

DlgReal(3,"Plateau",0.001,10.000000,16,4);

DlgReal(4,"Fall time",0.000000,10.000000,16,5);

DlgText("Tone B parameters",30,1);

DlgInteger(5,"Sine freq.",50,40000,32,2);

DlgReal(6,"Rise time",0.000000,10.000000,32,3);

DlgReal(7,"Plateau",0.001,10.000000,32,4);

DlgReal(8,"Fall time",0.000000,10.000000,32,5);

DlgInteger(9,"No. of repeats",1,100,22,8);

DlgButton(0,"Cancel");

DlgButton(1,"OK");

ok% := DlgShow(freqA%,RiseA,PlatA,FallA,freqB%,RiseB,PlatB,FallB,noReps%); 'Settings for tone characteristics

If ok%<1 then

	Message("Script cancelled");

 RestoreAll();

	Halt

endif

LengthA:= RiseA+PlatA+fallA;

LengthB:= RiseB+PlatB+fallB;

toneInfo$:= Print$("Tone A: %dHz,%0.1f Rise,%0.1f Plat.,%0.1f Fall,%0.1f length|Tone B: %dHz,%0.1f Rise,%0.1f Plat.,%0.1f Fall,%0.1f length",freqA%,riseA,platA,fallA,lengthA,freqB%,riseB,platB,fallB,lengthB);

maxLengthA:= LengthA; 'Get length and freq of original waveforms to check against online updates

maxLengthB:= LengthB;

maxFreqA%:= freqA%;

maxFreqB%:= freqB%;

reps%:= noReps%*2; 'no of repeats for each output

tones$[0]:= "a";

tones$[1]:= "b";

ArrConst(stims$[:noReps%],tones$[0]); 'Fill first n elements with type 1

ArrConst(stims$[noReps%:noReps%],tones$[1]); '..next n with type 2..

Rand(randoms[:reps%]);	 'Fill randoms with random numbers

ArrSort(randoms[:reps%],0,stims$[:reps%]); 'Sort arrays for random stimulus output

output%:=FileNew(7,0,1,1,LengthA,32);'New file holding output data

toneA$:=Print$("Wsin(%d,0)*5",FreqA%); 'Create a virtual channel and make a waveform

EnvA$:=Print$("WEnv(%f,%f,%f)*",RiseA,PlatA,FallA);

toneA$:=EnvA$+toneA$;

ToneAOut%:=VirtualChan(0,toneA$,0,0.0001,0);

chanA%:=ChanSave(ToneAOut%,1); 'Save to unused channel

ChanDelete(ToneAOut%);

ChanShow(chanA%);

FileSaveAs("C:\\Spike7\\data\\outputs.smr",-1,1); 'Save file so that we can load waveforms for output

FileClose(0,-1);

FileOpen("C:\\Spike7\\data\\outputs.smr",0);

noPointsA%:= 1/BinSize(chanA%)*LengthA; 'Get no. of data points in waveform

spaceA:=PlayWaveAdd("a","Tone A",0,0.0,LengthA,chanA%,1);

FileClose(0,-1);

output%:=FileNew(7,0,1,1,LengthB,32);'New file holding output data

toneB$:=Print$("Wsin(%d,0)*5",FreqB%); 'Create a virtual channel and make a waveform

EnvB$:=Print$("WEnv(%f,%f,%f)*",RiseB,PlatB,FallB);

toneB$:=EnvB$+toneB$;

ToneBOut%:=VirtualChan(0,toneB$,0,0.0001,0);

chanB%:=ChanSave(ToneBOut%,1); 'Save to unused channel

ChanDelete(ToneBOut%);

ChanShow(chanB%);

FileSaveAs(path$,-1,1); 'Save data file so that we can load waveforms for output

FileClose(0,-1);

FileOpen(path$,0);

noPointsB%:= 1/BinSize(chanB%)*LengthB;

spaceB:=PlayWaveAdd("b","Tone B",0,0.0,LengthB,chanB%,1);

FileClose(0,-1);

return 1

end;

func New%() 'New sampling window

if type1401% = 0 or 1 or 2 or 4 then 'If not a Power1401

 maxSpace:= 740000; 'Set limit for waveform size

if (spaceA+spaceB) > maxSpace then 'Check output size against available memory

 Message("Not enough memory in this 1401 for the selected waveform output");

 RestoreAll();

 Halt;endif;

endif;

View(LogHandle()); 'Make log view the current view

EditSelectAll(); 'Select all text in log view

EditClear(); 'Delete it

Window(0,80,100,100); 'Display it at the bottom of the screen

WindowVisible(1); 'Make it visible

if data%>0 then 'If there is already a data view open...

 View(data%); '...close it

 FileClose(); 'No point setting data% to 0...

endif;

SampleTextMark(200);

data%:=FileNew(0,1); 'Open a new data file for sampling

if data%<0 then Message("Unable to open new data file");Halt() endif;

DrawMode(-1,2); 'Set event draw mode to lines

Window(0,0,100,80); 'Make data window in top bit of screen

XRange(0,10);

FrontView(LogHandle()); 'Bring the Log view to the front

FrontView(data%); 'Bring the data view to the front

ToolbarEnable(3,0); 'Disable "Sample stop" button

ToolbarEnable(2,1); 'Disable "Sample stop" button

ToolbarText("Press SAMPLE START to commence sampling");

return 1;

end;

proc DoToolbar()

ToolbarSet(1,"&Quit",Quit%); 'Set up toolbar buttons

ToolbarSet(2,"&Sample start", Start%);

ToolbarSet(3,"&Sample stop", Stop%);

ToolbarSet(5, "&Play tones", Play%);

ToolbarSet(7, "New Tone", NewTone%);

ToolbarSet(9,"&New file", New%);

ToolbarEnable(3,0); 'Disable "Sample stop" button

Toolbar("Press SAMPLE START to commence sampling", 1023);'Wait here until quit

end;

Func NewTone%() 'Create a new tone to load on-line

var toneN$;

var chanN%;

var freqN%:=1000;

var RiseN:= 0.1;

var PlatN:= 0.6;

var FallN:= 0.1;

var ok%;

var EnvN$;

var LengthN;

var ToneNOut%;

var noPoints%;

var repKey$;

var repKey%;

var clearPoints%;

var lenFlag%;

var freqFlag%;

repeat

DlgCreate("New Tone Settings"); 'Tone parameters dialog

DlgInteger(1,"Sine freq.",50,40000);

DlgReal(2,"Rise time",0.000000,10.000000);

DlgReal(3,"Plateau",0.001,10.000000);

DlgReal(4,"Fall time",0.000000,10.000000);

DlgList(5,"Replace tone:",tones$[]);

DlgButton(0,"Cancel");

DlgButton(1,"OK");

ok% := DlgShow(freqN%,RiseN,PlatN,FallN,repKey%); 'Settings for tone characteristics

If ok%>0 then

 LengthN:= RiseN+PlatN+fallN;

 if repKey% =0 then

 if LengthN > maxLengthA then

 Message("Output length is larger than the play wave area\nmaximum output length allowed is %0.3f",maxLengthA); 'Check that the new tone doesn't exceed area size

 lenFlag%:= 0;

 else

 lenFlag%:= 1;

 endif;

 else

 if LengthN > maxLengthB then

 Message("Output length is larger than the play wave area\nmaximum output length allowed is %0.3f",maxLengthB);

 lenFlag%:= 0;

 else

 lenFlag%:= 1;

 endif;

	endif;

 if repKey% =0 then

 if FreqN% > maxFreqA% then

 Message("No. of data points is larger than the play wave area\nmaximum Sine freq. allowed is %d",maxFreqA%);

 freqFlag%:= 0;

 else

 freqFlag%:= 1;

 endif;

 else

 if FreqN% > maxFreqB% then

 Message("No. of data points is larger than the play wave area\nmaximum Sine freq. allowed is %d",maxFreqB%);

 freqFlag%:= 0;

 else

 freqFlag%:= 1;

 endif;

	endif;

else

 lenFlag%:=1;

 freqFlag%:=1;

 endif;

 Until lenFlag%=1 and freqFlag%=1;

if ok% > 0 then

 if repKey% =0 then

 repKey$:= "a";

 clearPoints%:= noPointsA%;

 freqA%:= freqN%;

 RiseA:= RiseN;

 PlatA:= PlatN ;

 FallA:= FallN;

 LengthA:= LengthN;

 else

 repKey$:= "b";

 clearPoints%:= noPointsB%;

 freqB%:= freqN%;

 RiseB:= RiseN;

 PlatB:= PlatN ;

 FallB:= FallN;

 LengthB:= LengthN;

 endif;

 toneInfo$:= Print$("Tone A: %dHz,%0.1f Rise,%0.1f Plat.,%0.1f Fall,%0.1f length|Tone B: %dHz,%0.1f Rise,%0.1f Plat.,%0.1f Fall,%0.1f length",freqA%,riseA,platA,fallA,lengthA,freqB%,riseB,platB,fallB,lengthB);

 var blank%[clearPoints%];

 PlayWaveCopy(repKey$,blank%[]);

 output%:=FileNew(7,0,1,1,LengthN,32);'New file holding output data

 Window(25,0,75,50);

 toneN$:=Print$("Wsin(%d,0)*5",FreqN%); 'Create a virtual channel and make a waveform

 EnvN$:=Print$("WEnv(%f,%f,%f)*",RiseN,PlatN,FallN);

 toneN$:=EnvN$+toneN$;

 ToneNOut%:=VirtualChan(0,toneN$,0,0.0001,0);

 chanN%:=ChanSave(ToneNOut%,1); 'Save to unused channel

 ChanDelete(ToneNOut%);

 ChanShow(chanN%);

 FileSaveAs(path$,-1,1); 'Save file so we can load as a waveform

 FileClose(0,-1);

 FileOpen(path$,0);

 noPoints%:= 1/BinSize(chanN%)*LengthN;

 var data[noPoints%];

 ChanData(1,data[],0.0,LengthN); 'Get waveform data as an array

 FileClose(0,-1);

 PlayWaveCopy(repKey$,data[]); 'Copy to the selected play wave area

 if repKey% = 0 then

 noPointsA%:= noPoints%;

 else

 noPointsB%:= noPoints%;

 endif;

endif;

return 1;

end;

Func Quit%() 'If "Quit" is pressed

SampleStop(); 'Stop sampling

RestoreAll();

return 0; 'leave toolbar

end;

Func Start%() 'If "Start" is pressed

sTime := 0; 'set start of anaylsis time

SampleStart(); 'Start sampling

ToolbarEnable(4,0); 'Disable "New file" button

ToolbarEnable(3,1); 'Enable "Sample stop" button

ToolbarEnable(2,0); 'Disable "Sample start" button

ToolbarEnable(1,0); 'Disable "Quit" button

ToolbarText("Press SAMPLE STOP to stop sampling");

return 1; 'Stay with toolbar

end;

Func Stop%() 'If "Stop" is pressed

SampleStop(); 'Stop sampling

if (data%>0) and 'if no data in file, stop will close it

 (ViewKind(data%) <> 0) then data% := 0 endif;

ToolbarEnable(4,1); 'Enable "New file" button

ToolbarEnable(3,0); 'Disable "Sample stop" button

ToolbarEnable(1,1); 'Enable "Quit" button

ToolbarText("Press FILE NEW to capture more data");

return 1; 'Stay in toolbar

end;

Func Play%()

c%:= 0;

ToolbarSet(0,"",Idle%); 'Call Idle%() whenever there is free time

ToolbarSet(5,"S&top tones",StopPlay%); 'Set a stop button

SampleText(toneInfo$); 'Set textmark holding tone information

return 1;

end;

Func StopPlay%();

ToolbarClear(0); 'Stop Idle routine

PlayWaveStop(1); 'Stop wave output

ToolbarSet(5,"&Play tones",Play%); 'Set play button

return 1;

end;

Func Idle%() 'Idle routine runs when system has time

var eTime;

if ViewKind(data%)=0 then 'This checks that the data view exists...

 View(data%); '...as this gives an error if it doesn't

 eTime:=Maxtime();

 if (eTime > sTime) and c% < reps% then 'Check for no. of repeats

 SampleKey(stims$[c%]); 'Start next waveform output

 if stims$[c%]= "a" then

 sTime:=eTime+lengthA; 'Wait for current output to finish

 else

 sTime:=eTime+lengthB;

 endif;

 c%+=1; 'Counter for repeats

 if c% = reps% then

 ToolbarSet(5,"&Play tones",Play%); 'if finished, set Play button to go again.

 endif;

 endif;

 endif;

return 1; 'Stay in toolbar

end;

'You can find this code in the App() on-line help.

var gFloat%[20]; 'global for floating window states

proc HideAll()

var i%;

gFloat%[0] := App(-2); 'number of windows

for i% := 1 to gFloat%[0] do 'hide all windows and save state

 gFloat%[i%] := View(App(i%)).WindowVisible(0);

 next;

end

proc RestoreAll()

var i%;

for i% := 1 to gFloat%[0] do 'restore hidden windows

 View(App(i%)).WindowVisible(gFloat%[i%]);

 next;

end

CED
RandomiseTones.s2s

'$AutoOptimise|Script that automatically optimises the Y-axis for each frame as you step through a data file.

'The script is a 'work in progress' and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'CED 09/12/09

var file%; 'View handle for file

var curr%; 'Current data frame

var last%; 'Last frame we looked at

file%:=ViewKind(); 'Get handle of data file

if file% = 0 or 4 then 'check for a memory or data view

Optimise(-1); 'Optimise current frame

 DoToolbar%();

else

 Message("File is not a file or memory view"); 'Not a suitable file

 Halt;endif;

Func DoToolbar%();

ToolbarSet(0,"",AutoOpt%);

ToolbarSet(1,"&Quit");

return Toolbar("Auto optimise script",1023); 'Script toolbar

end;

Func AutoOpt%()

 curr%:= View(file%).Frame(); 'Get the current frame

 if curr% <> last% then 'If it has changed since we last looked

 Optimise(-1); 'Optimise

 last%:= curr% 'Update last frame count

 endif;

return 1;

end;

CED
AutoOptimise.sgs

CED
You can change the assumed voltage settings for the 1401 from the Edit preferences dialog. Micro1401-3 and Power1401 mk II units can be switched between ±5 and ±10V range using the Try1401 software

Recent questions
Q. I would like to process every nth frame to an average in Signal to form a grand

average of every nth response. In this case, I am using a simple square pulse
stimulus, but I would like to only add every 5th response to my average window.

A. Using Signal multiple states it is possible to set-up an average that only
processes frames of a certain state. For this example we can create an additional
state to represent every 5th output pulse used, and only average the response of
that particular state.

 The multiple states checkbox in the General tab of the sampling configuration
enables the States tab. For our example above we can select Dynamic outputs
from the State variation list, set Number of extra states to 1, which will be used to
represent our 5th output, and Ordering to Protocols. Click the Protocols… button
to set a protocol that will run during sampling. As in the example below, simply
set Step 1 to State 0, Repeats to 4 and Next to 2. For Step 2 set State 1,
Repeats 1 and Next to go back to Step 1 in the protocol. Selecting the Run
protocol automatically at start option will start the protocol running as soon as
sampling begins.

States tab and Protocol setup dialog

In the Configure pulses dialog from the Outputs tab, simply copy the existing
pulse output from Basic 0 to State1 using the Copy button in the dialog.

When sampling with multiple states you can then select which frame states
should be included in the average in the Process dialog, shown below with state
1 selected. In this example, every 5th output is marked as state 1 and is added to
the average window.

Process settings dialog

Back to top

User group
Try the new CED Forums bulletin board for software and hardware support

If you have any comments about the newsletter format and content, or wish to un-
subscribe from the mailing list for this newsletter, please notify sales@ced.co.uk.
All Trademarks are acknowledged to be the Trademarks of the registered holders.

Back to top

http://www.ced.co.uk/phpBB3/index.php
mailto:sales@ced.co.uk

