
Contents

News – Updates & Meetings
Scripts Spotlight – Debugging in the script editor
Spike2 – Changing output sequences during sampling
Spike2 Script – Spike count in time ranges
Signal – User-defined models for dynamic clamp
Signal Script – State ordering
Did you know...? – Control of sequencer jumps
Recent Questions – Background images

News

Power1401-3 now shipping

The new Power1401-3 is a significant upgrade on the previous Power mkII model,
with a new faster processor and more memory giving significant speed increases,
notably for dynamic clamp using multiple models. The Power1401-3 uses advanced
processor technology and expandable memory of up to 2GB to give you the power
and flexibility required for the most demanding applications, all at the same cost as the
Power1401 mkII.

1902 application guide
The 1902 application guide is now available for download and contains
comprehensive instructions for setting up and using CED1902 amplifiers with Spike2
and Signal, or as a standalone amplifier.

Future meetings and events
Society for Neuroscience 2012
Booth Number 441
Ernest N Morial Convention Center,
New Orleans, LA, USA
October 13th - 17th 2012

Biophysical Society 2013
Pennsylvania Convention Center,
Philadelphia, PA, USA
February 2nd - 6th 2013

Australian Neuroscience Society 2013
Melbourne Convention and Exhibition Centre,
Melbourne, Australia
February 3rd - 6th 2013

#72~ October 2012

Back to top

http://www.ced.co.uk/products/pow3in
http://www.ced.co.uk/img/1902guide.pdf
http://www.sfn.org/am2012/
http://www.biophysics.org/2013meeting/Main/tabid/3523/Default.aspx
http://www.sallyjayconferences.com.au/ans2013/

Local Training Sessions

In addition to our annual UK and US training days, we are also happy to offer on-site
local training sessions for Spike2 and Signal. These smaller training sessions can be
tailored towards particular requirements for research groups or departments. If you are
interested in organizing a local training seminar for your group or department, please
contact us.

Latest versions of Spike2 and Signal

Updates for Spike2 and Signal are available from the CED Downloads page, or by
clicking on the links in the table below. Demonstration versions of the latest software
are also available.

Spike2 downloads Released Signal downloads Released
Spike2 version 7.10c 09/12 Signal version 5.07a 09/12
Spike2 version 6.17 10/12 Signal version 4.10 10/12
Spike2 demo 07/12 Signal demo 06/12

Scripts Spotlight
Despite your best efforts when writing a script it is inevitable that, sooner or later
(usually sooner), the script will refuse to work exactly in the way you expected or
intended. Rather than admit to human error, we script writers attribute these small
failures to “bugs”. The act of diagnosing and removing these problems is therefore
known as “debugging”.

Luckily the script editor can access a Debug toolbar that has a number of built-in tools
to help track down these anomalies in your code. The script will enter debug mode by
the following routes:

• When it encounters a break point in the code. Break points are added
by left-clicking in the farthest left hand margin of the script editor
window.

• When it encounters the Debug() script command in the script itself.
• By pressing and holding the Esc key if your script is running or stuck in a loop

These first two methods are useful if you know whereabouts the bug is occurring (or
likely to occur) in your script. The third method lets you break out of long running
processes or stuck loops. You can also choose to automatically Enter the
debugger when a script has a runtime error using the checkbox option in
the Script tab of the Edit preferences dialog.

When your script enters the debugger, the debug toolbar will become enabled. This
contains a range of functions to aid the elimination of bugs.

Show me How!
Click here to view a
video tutorial on the
script editor

Back to top

http://www.ced.co.uk/uplsu.shtml
http://www.ced.co.uk/s2wu7u.shtml
http://www.ced.co.uk/sigw5u.shtml
http://www.ced.co.uk/s2wu6u.shtml
http://www.ced.co.uk/sigw4u.shtml
http://www.ced.co.uk/s2demu.shtml
http://www.ced.co.uk/sigdemu.shtml
http://www.ced.co.uk/tutorials/signalscripteditse

The first button in the toolbar will stop the script. The yellow arrow button displays the
current script line.

The next group of buttons are used to step through the script. If the current script line
statement includes a call to a function or procedure you can step into it or over it using
the associated buttons.

Step into (left) and step over (right)

You can also step out of a procedure or function to the return statement.

Step out of procedure or function

The next button will run the script from the current line up to the start of the line where
the text caret is placed.

Run to text caret

The final button in this section runs the script to the next break point or the end of the
script if no break points are found.

Run to next break point or end of script

The final group of buttons in the debug toolbar are used to view local and global
variable values and the ‘call stack’ list of user-defined functions that have been called
on the way to the current line. The Watch window button will only display selected
variables from the local and global variable windows, giving a convenient method of
tracking variables of interest.

From left: Local, global, call stack and Watch window buttons

You can edit variable values for debugging purposes in the local, global and watch
windows by double clicking on the variable.

Q. I have found the recent articles and video tutorials on the use of the output

sequencer very useful and am now setting up numerous stimulus protocols for
my experiments. What I would like to do in the next stage of my study is to be
able to change these output sequences during an experiment.

A. If a text or graphical sequence file was enabled in the sampling configuration

when sampling was started, it can be replaced with other text sequence files

Back to top

at any time during sampling. When sampling starts, Spike2 reserves space in
the 1401 memory for the current sequence and any table space that
sequence needs. If you intend to replace the current sequence with ones that
are larger or use more table data you first need to set Spike2 to reserve any
additional required space in the 1401 using the Minimum Instruction and Table
space fields in the Sequencer tab. For example, the settings below will
reserve enough 1401 memory for up to 1000 sequencer instructions and a
table with 20 elements.

Minimum Instruction and Table space requirements set in the sequence tab

To load a new sequence file during sampling, select the Change Output
Sequence command from the Sample menu, which will prompt you to open a
text sequence file to load into the configuration

Scripts: Spike2

Q. I am recording spike data based on a stimulus pulse and would like to get a
count of spikes within certain time ranges from the stimulus. So a count of the
spikes between 20-30ms, 30-90ms and 90-300ms after the stimulus pulse.

A. The script SpikeCountRanges.s2s lets you set up to four time ranges,

between 0 and 1000ms, from which to take spike counts based on a stimulus
trigger. These counts are then plotted to an XY view and displayed alongside
the data file.

Q. Can I add my own models to the dynamic clamp system?

A. The dynamic clamp system in Signal has been extended to accept user-

defined tables of values in place of numerical parameters for selected models,
allowing you to extend existing models and/or customise your own. The
models that currently support user-defined values are as follows:

 Hodgkin-Huxley Alpha/Beta
 This model simulates the membrane current generated by a population of ion

channels using a formulation based upon multiple rate equations. The User
Defined option can be selected from the drop down lists to replace the

Back to top

Back to top

Right-click the script
icon and save to disk

'$SpikeCountRanges.s2s|lets you set up to four time ranges, between 0 and 1000ms,
'from which to take spike counts based on a stimulus trigger.
'These counts are then plotted to an XY view and displayed alongside the data file.

'The script is a 'work in progress' and is offered without guarantees.
'You must test it to see whether it is suitable for your application.

'CED 13/10/12

Var data%;
var times[9];
var chk%[5];

times[0]:=4; '4 times to use
times[1]:=0.02; '20ms
times[2]:=0.03; '30ms
times[3]:=0.03; '30ms
times[4]:=0.09; '90ms
times[5]:=0.09; '90ms
times[6]:=0.3; '300ms
times[7]:=0.3; '300ms
times[8]:=0.8; '800ms

ArrConst(chk%[],1);

data% := FrontView(); 'Bring data file to the front
if ViewKind(data%)<>0 then 'If no data file
 Message("Open a data file for analysis"); 'prompt user
 data%:= FileOpen("",0,1);
 if data% < 0 then 'If unable to open file
 Message("Unable to open a data file!"); 'Warn user and quit script
 Halt;endif;
endif;
Doit%();

func Doit%();
var trig%;
var Chan%;
Var TMode%;
Var CMode%;
Var XY%;
Var i%, j%;
Var ct%;
var MinStep:=1.5;
Var Start:=0;
Var EndT;
Var ok%;
var moved;
var chk1%,chk2%,chk3%,chk4%;
var t%;

EndT:=MaxTime();

DlgCreate("Setup"); 'Start new dialog
DlgChan(1,"Channel to analyse",30);
DlgChan(2,"Stimulus channel",63);
DlgReal(3,"Start time",0.000000, EndT-1);
DlgReal(4,"End of analysis time",1.000000, EndT);
DlgText("Time 1",2,6);DlgCheck(13,"",10,6); DlgText("From:",14,6);DlgReal(5,"",0.0,1000,20,6); DlgText("To:",35,6); DlgReal(6,"",0.0,1000,40,6);
DlgText("Time 2",2,7);DlgCheck(14,"",10,7); DlgText("From:",14,7);DlgReal(7,"",0.0,1000,20,7); DlgText("To:",35,7); DlgReal(8,"",0.0,1000,40,7);
DlgText("Time 3",2,8);DlgCheck(15,"",10,8); DlgText("From:",14,8);DlgReal(9,"",0.0,1000,20,8); DlgText("To:",35,8); DlgReal(10,"",0.0,1000,40,8);
DlgText("Time 4",2,9);DlgCheck(16,"",10,9); DlgText("From:",14,9);DlgReal(11,"",0.0,1000,20,9); DlgText("To:",35,9); DlgReal(12,"",0.0,1000,40,9);
DlgAllow(1023,Change%);
DlgGroup("Time ranges to measure (s)",1,5,52,5);

DlgButton(0,"Cancel");
DlgButton(1,"OK");
ok% := DlgShow(chan%,trig%,Start,EndT,times[1],times[2],times[3],times[4],times[5],times[6],times[7],times[8],chk%[1],chk%[2],chk%[3],chk%[4]);

if ok%<=0 then
 Message("Script Cancelled");
 Halt;
endif

TMode%:=DrawMode(trig%);
If TMode%<>2 then
 DrawMode(trig%,2);
endif

CMode%:=DrawMode(Chan%);

If CMode%<>2 then
 DrawMode(Chan%,2);
endif

XY%:=FileNew(12);
XYJoin(1,1);
ChanTitle$(1,"Ab");
XYSetChan(0,0,0,1);
ChanTitle$(2,"Ad");
XYSetChan(0,0,0,1);
ChanTitle$(3,"C");
XYSetChan(0,0,0,1);
ChanTitle$(4,"Post");

ChanColourSet(1, 1,1,0,0); 'Set channel colour
ChanColourSet(2, 1,0,0,0.752941); 'Set channel colour
ChanColourSet(3, 1,0,0.501961,0); 'Set channel colour
ChanColourSet(4, 1,0,0.501961,0.501961); 'Set channel colour
XYKey(1,1);

View(Data%);
CursorSet(2);
CursorActive(0, 14, trig%, MinStep, "");

Cursor(0,Start);
CursorVisible(0,1);

repeat
moved:= CursorSearch(0);
 If moved > 0 then
 if Cursor(0)<=EndT then

 j%:=j%+1;
 'measure
 t%:=1;
 For i%:=1 to 4 do
 if chk%[i%] = 1 then
 Cursor(1,Cursor(0)+times[t%]);
 Cursor(2,Cursor(0)+times[t%+1]);
 ct%:=ChanMeasure(Chan%,4,Cursor(0)+times[t%],Cursor(0)+times[t%+1]);
 View(XY%).XYAddData(i%,j%,Ct%);
 endif;
 t%+=2;
 Next

endif
endif
until Cursor(0)>=EndT or moved < 0;

DrawMode(Trig%, TMode%);
DrawMode(Chan%, CMode%);

View(XY%);
Window(0,0,50,50);
WindowVisible(1);
FrontView(XY%);

return 1
end

Func Change%();

if DlgValue(13)=0 then
 DlgEnable(0,5,6);
else
 DlgEnable(1,5,6);
endif;
if DlgValue(14)=0 then
 DlgEnable(0,7,8);
else
 DlgEnable(1,7,8);
endif;
if DlgValue(15)=0 then
 DlgEnable(0,9,10);
else
 DlgEnable(1,9,10);
endif;
if DlgValue(16)=0 then
 DlgEnable(0,11,12);
else
 DlgEnable(1,11,12);
endif;

return 1;
end;

CED
Spike2 script
SpikeCountRanges.s2s

CED
Hint
You can save a graphical sequence as a text sequence using the Write as text sequence button in the Sequencer tab of the sampling configuration

standard functions that are used to calculate the internal rate variables for the
Activation and Inactivation stages of the model. Once User Defined is
selected you can enter a filename or browse for a text file of values to use. An
example script for creating tables of values, GenAB.sgs, is included in your
Signal5\scripts folder.

HH Alpha/Beta model using user defined rate functions for activation

 User defined synapse

Synapse models simulate a synapse between two cells. The user defined
synapse model uses a lookup table of values in a text file to define the
synapse current, allowing you to generate customised synapse current
profiles that follow any required behaviour.

 Leak

The Leak models provide a range of simpler behaviours where the simulated
conductance does not have a time-dependent aspect. Select User defined
from the Leak type drop-down menu to select a text file to use that defines the
leak behaviour.

Noise - Ornstein-Uhlenbeck (Scaled)
This noise model uses a text file of values to scale the standard Ornstein-
Uhlenbeck process according to the membrane potential. Select Scaled O-U
from the Noise type drop-down list in the dialog to open a text file of suitable
values.

Full details of the dynamic clamp features can be found in the on-line help.

CED
Hint
You can enable and disable models at any time during sampling using the model parameters dialog

Scripts: Signal

Q. I have a text file that contains a list of randomised state numbers generated
by an external program. What I would like to do is import these into Signal to
set the state order for an experiment.

A. The script, ReadStateOrder.sgs, will import a text file of numbers and use

these to set the state ordering for sampling. The script generates a toolbar
from which the user can select a text file to use before then clicking Sample to
open a new data file. Signal will then execute the states in the order specified
by the text file once sampling is started. This script requires Signal version 4
or later.

Did you know...?

When using an output sequence you can disable interactive control of sequence
jumps to prevent accidental changes caused by a user key press or mouse click in the
sequencer control toolbar. These control options can be set from the Sequencer
jumps controlled by drop-down list in the Sequencer tab of the sampling
configuration.

Recent Questions
Q. For an upcoming eye tracking experiment I’d like to display a background

bitmap image on the data file. Can I do this directly in Spike2?

A. You can set a bitmap file as a background image for any channel in a data

file, result file, memory view or XY plot in Spike2 and Signal from the View
menu Channel Image command. This can be used to generate images for
target tracking or activity studies.

The image can be set to fill the available channel background or a rectangle
defined in X and Y axis units. The opacity of the image can also be adjusted
using the slider in the dialog.

User group
Try the CED Forums bulletin board for software and hardware support

If you have any comments about the newsletter format and content, or wish to
unsubscribe from the mailing list for this newsletter, please notify sales@ced.co.uk.

Back to top

Right-click the script
icon and save to disk

Back to top

Back to top

http://www.ced.co.uk/phpBB3/index.php
mailto:sales@ced.co.uk

'$ReadStateOrder.sgs|Reads in a column of state numbers from a text file for sampling.
'then executes the states in order during sampling.

'The script is a 'work in progress' and is offered without guarantees.
'You must test it to see whether it is suitable for your application.

'CED 4/10/12

Var Arr%[2]; 'Array holding the states to deliver
Var State%:=1; 'State counter
Var data%; 'Data file handle

DoToolbar(); 'Give user choices
Halt;

Func DoToolbar() 'Set up toolbar
ToolbarClear(); 'Remove any old buttons
ToolbarSet(0, "", Idle%); 'Idle routine
ToolbarSet(1, "Quit"); 'This button causes the toolbar to stop
ToolbarSet(2, "Text file", ReadInTxtFile%); 'Function to read in states
ToolbarSet(3, "Sample", Sample%); 'Link to function
ToolbarEnable(3, 0); ' No sampling allowed yet
return Toolbar("States control from text file", 1023);
end;

Func Idle%() 'Idle routine
If Samplestatus()=3 then 'If paused at the sweep end
 State%:=State%+1; 'Onto the next state
 if State%=Arr%[0]+1 then 'If we have reached the list end
 SampleStop(); 'Stop
 Message("Finished"); 'Declare finished
 Else
 Samplestate(Arr%[state%]); 'Otherwise set up the state for the next sweep
 SampleSweep(); ' and kick the sweep off
 Endif
Endif
return 1; 'This leaves toolbar active
end;

Func Sample%()
If SampleStatus()=-1 then 'if sampling not in progress
 State%:=1;
 SampleStatesOrder(0); ' Tidy configuration - Numeric ordering
 SampleStatesOptions(0); ' No automatic cycling at the start
 SamplePause(1); ' and pause at the sweep end
 Data%:=FileNew(0, 1); ' Make a new file
 If Data%<0 then ' Check that it worked
 Message(Print$("%s. Halting", Error$(Data%)));
 halt
 endif
 SampleState(arr%[state%]); ' Set the first state
 SampleStart(); ' and start sampling off
Else
 Message("Sampling already in progress");
 DoToolbar();
Endif
return 1;
end;

Func ReadInTxtFile%(); 'Reads the states list from a text file
Var txt%; 'Text file handle
Var err%;
Var i%;
Var Num%;
Var max% := SampleStates(); ' Number of states in use

Arrconst(Arr%[],0); ' Tidy up the states array
If Len(Arr%[])>2 then
 Resize arr%[2];
Endif

txt%:=Fileopen("",8); 'Open a text file for reading
If Txt%<0 then 'If the file failed to open
 message(Print$("%s. Halting", Error$(txt%))); 'Give an error message
 Halt 'Halt the script
endif
view(txt%); ' text file is current view
i%:=0; ' No values read yet
repeat
 err%:=Read(Num%); 'Read a line of text
 if err%>0 then 'If the text is valid
 if (Num% > max%) then ' Check that state number is OK
 Message("Text file includes state %d, max in use is %d", num%, max%);
 return;
 endif;
 i%:=i%+1; 'Increment the counter
 If Len(Arr%[]) <i%+1 then 'If the array holding the states list is too small...
 Resize Arr%[i%*2]; 'Resize the array to accomodate
 endif
 Arr%[i%]:=Num%; 'Add the state to the array
 endif
Until Err%<=0;
Arr%[0] := i%; ' Save count of values

If Arr%[0]=0 then 'If the count of states is zero then we have failed
 message("Failed to read any states");
 return;
endif

View(Txt%);
FileClose(0); 'close the text file
message("Read states list, %d long", i%);
ToolbarEnable(3, 1); ' OK to sample now
Return 1
End

CED
Signal script
ReadStateOrder.sgs

	Contents
	News
	1902 application guide
	Local Training Sessions

