

1401 family programming
manual

October 2019

ii

Copyright  Cambridge Electronic Design Limited 1994-2012, 2015-16, 2018-19

Neither the whole nor any part of the information contained in, or the product described

in, this guide may be adapted or reproduced in any material form except with the prior

written approval of Cambridge Electronic Design Limited.

First version September 1995

Revised January 1999

Revised July 1999

Revised July 2001

Revised December 2004

Revised June 2007

Revised September 2007

Revised January 2009

Revised October 2010

Revised August 2012

Revised September 2012, removed 1401 Standard and plus

Revised June 2015, GAIN,V and DGAIN,T documented

Revised January 2018, added Micro4 array arithmetic timings

Revised September 2018, Micro4 updates

Revised October 2019, Micro4 updates (INFO,W,…)

Published by:

Cambridge Electronic Design Limited

Technical Centre,

139 Cambridge Road,

Milton,

Cambridge CB24 6AZ

ENGLAND.

Telephone: Cambridge (01223) 420186

Email: info@ced.co.uk

Web: http://www.ced.co.uk

Trademarks and Trade names used in this guide are acknowledged to be the Trademarks

and Trade names of their respective Companies and Corporations.

 Table of Contents

iii

About this manual .. 1
Audience ...1
Examples ...1
Timing information ...1
Older hardware ..1
What is not in this manual ...1

Introduction ... 2
The 1401 family of interfaces ...2
The standard 1401 ...2
The 1401plus ...2
The micro1401 ..3
The Power1401 ...3
The Micro1401 mk II ..3
The Power1401 mk II ...3
The Micro1401-3 ..3
The Power1401-3 ..3
The Micro1401-4 ..4
Software compatibility ..4
Nomenclature ..4
Using the 1401 ..4
Multi-tasking ...4
Signal conditioning; ..5
Memory ...5

The INTERACT program ... 6
The interactive programming tool ...6
INTERACT as a learning tool ...7

Writing programs for the 1401 ... 8
Fundamentals of 1401 use ...8
1401 text buffers ...8
Synchronisation between the host and the 1401 ...9
Types of commands ..9
Sequential commands ...9
Multi-tasking commands ... 10
Completion routines .. 10
Use of 1401 memory ... 10
Format of 1401 commands.. 11
Conventions used in this manual ... 11
Character fields ... 12
Numeric fields ... 12
Data transfer formats ... 13
Basic commands ... 13
CLIST - list commands ... 14
CLOAD - Load a new command .. 14
KILL - Unload commands .. 15
CLEAR - Initialise all commands ... 15
RESET - Resetting the 1401 as at power up ... 15
INFO - System information .. 15
ERR - Check 1401 for errors .. 19
RDADR - Read a 1401 data location .. 20
WRADR - Write to a 1401 data location .. 20
TO1401 and TOHOST - Block transfers of data .. 21
MEMTOP - Memory information and control .. 22
ROM - Control of additional ROM space ... 23

 Table of Contents

iv

Voltages and Waveforms ... 25
Resolution ... 25
Impedances and voltages .. 25
Selection of command .. 26
Data rates .. 27
Clocks ... 27
Standard arguments .. 29
ADC - Read a list of analogue voltages .. 30
GAIN - Control ADC gain.. 30
DAC - Set analogue output voltages ... 31
DGAIN - Control DAC gain ... 31
ADCMEM - Equally spaced waveform input ... 33
Repeated trigger .. 34
MADCM - Multi-rate waveform input ... 36
ADCBST - Burst mode waveform sampling .. 38
PERI32 - 32 channel peri-event triggered waveform sampling .. 41
MEMDAC - waveform output .. 43
Repeated trigger .. 44

Switching, counting and timing .. 45
The digital port ... 45
DIG - simple control of the digital port .. 46
CLKEVT - Timing events with clock 0 .. 47
TIMER2 - The general purpose 48 bit clock .. 48
XFREQ Frequency synthesiser ... 51
DIGTIM - Sequenced digital outputs ... 52
EVENT - The 1401 internal events .. 56

Array arithmetic .. 59
Introduction to array arithmetic .. 59
Important micro and Power1401 restriction ... 59
SS1 and SS2 - Single array commands ... 60
SD1 and SD2 - Double precision array commands .. 62
SM2 and SM1 - Multiple array manipulation ... 64
SN1 and SN2 - Extract, interleave and separate ... 65

FFT and related commands ... 68
FFT - The Fast Fourier Transform .. 68
GAINPH - Log amplitude and Phase .. 71
ADDPWR - Spectral averaging .. 72
DLOGPWR - Log gain from ADDPWR .. 73

Event time processing ... 74
Standardised argument names .. 75
PSTH - Post stimulus time histogram ... 76
PSTHM - multi-channel post stimulus time histogram ... 78
INTH - Single channel interval histogram .. 79
INTHM - multi-channel interval histograms .. 80
AUDAT - Absolute event time capture .. 81
AUDATM - multi-channel event time capture ... 83
AUCR and AUINTH commands .. 84

Running command sequences in 1401 .. 86
RUNCMD - Run from an internal list of commands .. 86
VAR - Manipulating local variables ... 89

 1401 family programmer reference

v

Configuring the 1401 .. 90
CONFIG EEPROM and Synch ... 90
System EEPROM .. 90
Top box EEPROMs .. 92
Synchronization of 1401s .. 93

Appendix A: 1401 family differences .. 94
Standard 1401 and 1401plus ... 94
micro1401 differences from 1401plus .. 95
Power1401 differences from micro1401 ... 95
Micro1401 mk II differences from micro1401.. 95
Micro1401-3 differences from Micro1401 mk II .. 96
Power1401 mk II/-3 differences from Power1401 .. 96
Micro1401-4 differences from Micro1401-3 .. 96
Using new features .. 96

Index .. 97

 Table of commands

vi

ADC Immediate reading of ADC inputs .. 26

ADCBST Burst mode waveform sampling .. 33

ADCMEM Equally spaced waveform input .. 28

ADDPWR Accumulate power from FFT .. 66

AUCR Off-line histograms from AUDAT data ... 78

AUDAT Capture absolute times of events ... 75

AUDATM Multi-channel version of AUDAT .. 77

AUINTH Off-line interval histogram from AUDAT data ... 78

CLEAR Initialise commands and reset hardware ... 15

CLIST List all commands in 1401 ... 14

CLKEVT Timing event 1 to event 0 intervals ... 42

CLOAD Load a new command into 1401 .. 14

CONFIG Set and read the micro1401 EEPROM .. 84

DAC Setting analogue output voltages .. 27

DGAIN Control DAC gain .. 27

DIGTIM Sequenced digital outputs and internal events ... 47

DLOGPWR Log gain from ADDPWR data ... 67

ERR Read and clear 1401 error state .. 16

EVENT Internal event control ... 51

FFT Fast Fourier Transform ... 62

GAIN Control ADC gain .. 26

GAINPH Log gain and phase from FFT result ... 65

INFO Get system information, trim ADC .. 15

INTH Real-time interval histogram .. 73

INTHM Multi-channel version of INTH ... 74

KILL Remove one or more loaded commands .. 15

MADCM Multi-rate multi-channel waveform input .. 31

MEMDAC Multi-channel waveform output .. 38

MEMTOP Get and set memory parameters .. 18

PERI32 32 channel peri-event waveform capture ... 36

PSTH Real-time Post Stimulus Time Histogram .. 70

PSTHM Multi-channel version of PSTH ... 72

RDADR Read value held in 1401 memory .. 16

RESET Cause 1401 power-up sequence ... 15

RUNCMD Running a sequence of commands within 1401 .. 80

SD1 & SD2 Double precision array commands (8 bit and 16 bit).................................... 56

SM1 & SM2 Multiple array commands (8 bit and 16 bit) ... 58

SN1 & SN2 Interleave and separate arrays (8 bit and 16 bit) ... 59

SS1 & SS2 Single array commands (8 bit and 16 bit) ... 54

TIMER2 General purpose timer and clock output .. 43

TO1401 Block transfer of binary data to 1401 .. 17

TOHOST Block transfer of binary data from 1401 .. 17

VAR Local variable manipulation ... 83

WRADR Set value in 1401 memory ... 17

 Introduction

1

This manual is intended for a programmer who has to write software to drive the

micro1401, Micro1401 mk II, Micro1401-3, Micro1401-4, Power1401, Power1401 mk

II, Power1401-3 or Power1401-3A. There is an older version of this manual that also

covers the standard 1401 and the 1401plus. If you use a 1401 through a turnkey software

package (for example CED Signal or Spike2) and do not intend to control it yourself, it is

unlikely that you will want to do more than flick through this manual, admiring the

thickness, and giving thanks that others have done battle with it on your behalf.

Details of language support for your chosen operating system and language can be found

in the CED 1401 Family Language Support Manual. This also provides more detailed

information on communicating with the 1401 under your operating system. Spike2 and

Signal users can program the 1401 directly with the U1401Xxx() script commands.

Programmers who intend to write their own commands for the 1401 will need the 1401

Command Developer Pack for their 1401. These packs contain the necessary tools to

build 1401 commands for all members of the 1401 family. For the micro1401,

Micro1401 mk II and the Power1401 you will also require an ARM developer toolkit

from ARM limited. To develop for the Micro3 or 4 or the Power2 or 3 or 3A you need

the CrossWorks development kit from Rowley. CED also offers a command writing

service; ask us for details.

The boxed programming examples in this manual show what is transmitted to the 1401

and when. They do not refer to any specific programming language or operating system.

Working versions of the examples, numbered to correspond with this manual, are

supplied on disk with the Language Support libraries.

Throughout this manual we give timing information to help you to plan your application

and determine what is possible to achieve and what is not. These timings were taken with

real equipment in real programs and are our best effort to give a realistic measure of

performance. However, unless you reproduce exactly the circumstances of our tests you

will not get precisely the same results. Thus you should take the figures in this manual as

a guide only. Further, they assume that the available processing power of the 1401 is not

diluted by other activities (for example interrupts). Similarly, maximum ADC sample

rates or DAC output rates assume that there are no competing tasks.

This manual is written for the latest releases of hardware and software; users of older

units will find it interesting, but should be aware of the section at the end, covering

differences they might find.

You will not find detailed hardware descriptions, troubleshooting guides and day-to-day

maintenance issues within these pages. This book is thick enough already! The

determined insomniac can find light relief in the companion tomes: The micro1401

Owners handbook, The Power1401 Owners handbook, The 1401 Technical reference

manual, The micro1401 technical manual, The Power1401 technical manual, The

Micro1401 mk II technical manual, Writing commands for the micro1401 and Writing

commands for the Power1401 and Micro1401. There are also circuit diagrams available

for those who need them and are prepared to sign non-disclosure agreements. This

documentation is available from CED.

Audience

Examples

Timing information

Older hardware

What is not in this
manual

 About this manual

2

The 1401 family of interfaces are intelligent peripherals that generate and receive

waveform, digital and timing signals. Using their own processors, clocks and memory,

under the control of the host computer, they make complex real world jobs easy to

control. There are ten family members: standard 1401, 1401plus, micro1401, Micro1401

mk II, Micro1401-3, Power1401, Power1401 625, Power1401 mk II, Power1401-3,

Power1401-3a. We place a lot of emphasis on software compatibility; it is easy to write

programs that can drive all the family members.

The standard 1401 and 1401plus are obsolete and are not covered in this manual, other

than to note differences. There are older versions of this manual available from CED with

programming details for these units – a few still survive more than 30 years after issue.

The standard 1401 had a 4 MHz processor, a 12 µs ADC (Analogue to Digital Converter)

for sampling 16 channels of waveform data with a separate processor (the Z8 channel

sequencer) for automatic channel changing and burst generation, 4 DACs (Digital to

Analogue Converters) for waveform output, five clocks, event inputs, digital input and

output with clock links and a memory space of around 60 kB for data and commands.

In addition, there were several option cards that included:

 MassRAM card for 2 or 8 MB of extra data storage memory and faster sampling

 Expansion of the 16 ADC channels to 32 channels

 Programmable 8 channel event detector

 Programmable gain and filter card options

 Fixed gain and filter cards

The 1401plus used a 20 MHz 32-bit processor for 20-40 times more processing power

and increased the data space from 59 kB of the standard 1401 to more than 900 kB (16

MB with expanded memory). It was hardware compatible with the standard 1401.

The 1401plus supported the same options as the standard 1401 except for the MassRAM,

which was emulated by a 1401plus with expanded memory. It used the same analogue

card as the standard 1401 with the Z8 channel sequencer. However from 1993 it was

fitted with a more advanced analogue card ‘Issue-M’ with a fast 3 µs ADC complete with

ADC-silo and high-performance hardware sequencer. There were also analogue card

options with 2.5 and 10 µs 16-bit ADC and 4 16-bit DACs for higher accuracy.

plus

DAC (Digital to Analogue Converter)

outputs for waveform and voltage

levels.The Bri output is used as a

bright up pulse when DACs 0 and 1

drive a 'scope (see the D command)

ADC (Analogue to Digital Converter)

inputs for reading waveform and

voltage inputs. Channels 0-7 have

BNC inputs. Channels 8-15 are on

the Cannon connector. Ext is the

ADC External convert input.

The 5 clocks in 1401 can either

run from the internal crystal source

or from an external signal on the

appropriate F input. Out is the

output from clock 2.

The 5 clocks can be controlled

by external signals on the E

inputs. Some applications use

these as timing inputs ,others

to start the clocks.

The Test lamp indicates

errors during system

self-test and during use.

The Digital input and

output ports provide 24 bits

of digital control with clocked

output options and the ability

to time input changes.

The 1401 family of
interfaces

The standard 1401
first available in 1984

now obsolete

Front panel of 1401 and
1401plus

The 1401plus
first available in 1991

now obsolete

 1401 family programmer reference

3

The micro1401 has the speed and almost all the features of a 1401plus with the issue-M

analogue card, packed into a much smaller space. Some sacrifices were made in the basic

unit; there are only 4 ADC channels and 2 DAC channels as standard. However, there are

benefits too: it is small and easily portable, all inputs have LED indicators to show when

inputs or outputs are in use, interrupt driven commands generally run faster than

1401plus, trigger inputs (as seen by the user) are easier to understand and the unit can be

expanded with more channels. It also has the option of a USB interface.

The Power1401 takes the best features of the 1401plus and the micro1401 and adds a

more powerful processor (up to 30 times faster than the micro1401 or the plus), a 16-bit

analogue section and up to 256 MB of memory. Like the plus, it has 4 DAC channels and

16 ADC channels as standard, like the micro it has a small chassis and LED indicators. It

also supports both the standard 1401 interface and USB 1. The software and hardware

configuration is held in flash memory and can be updated without opening the unit. The

Power1401 625 was a revision in 2004 with USB 2 and faster multi-channel sampling.

The Micro1401 mk II looks like the original micro1401 from the front, but it takes much

of the internal structure from the Power1401. The processor is more than three times

faster than the micro1401, it has a 16-bit 500 kHz ADC, a memory size of 1 or 2 MB and

has firmware stored in flash memory for easy update without opening the box. It supports

both the standard CED interface and USB.

This unit is similar to the Power1401, but with a processor some 3 times faster, up to 1

GB of memory and a faster multi-channel sample rate. It has a USB 2 interface.

The Micro1401-3 is very similar in appearance to the mk II, but has a faster processor, 4

MB of base memory and 16-bit DACs in place of the 12-bit DACs of the mk II. It has a

USB 2 interface.

This unit is similar to the Power1401 mk II, but with a faster processor, up to 2 GB of

memory and a USB interface that has about twice the throughput. The Power1401-3a was

The micro1401
first available in 1996

now obsolete

micro1401
front and rear panels

The Power1401
first available in 2000

Power1401
front and rear panels

The Micro1401 mk II
first available in 2001

Micro1401 mk II
frear panel

The Power1401 mk II
first available in 2007

The Micro1401-3
first available in 2009

The Power1401-3
first available in 2012

 Introduction

4

available from 2016 and has the same processor with a faster ADC block and FPGA and

provision for more DACs. It uses the same loadable commands as the Power1401-3.

This unit is similar in appearance to the Micro1401-3, but uses a different and much

faster processor (typically 3 to 8 times faster) and 32 MB of memory.

All members of the 1401 family use the same software interface. It is easy to write

applications that will run with any 1401. The language support libraries are written to

conceal differences between family members; however, applications that wish to take

advantage of 1401-specific features are also supported. See the appendices at the end of

this manual for differences you should be aware of.

In this manual ‘1401’ refers to all 1401 family types. To be specific we use ‘micro1401’,

‘Micro1401 mk II’, ‘Micro1401-3’, ‘Power1401’, ‘Power1401 625’, ‘Power1401 mk II’

and Power1401-3. As shorthand, we also use ‘micro1’, ‘Micro2’, ‘Micro3’, ‘Micro4’,

‘Power1’, ‘Power 625’, ‘Power2’, ‘Power3’ and ‘Power3a’. Micro1401 means mk II, -3

and -4, micro1401 (lower case) is the original.

You control the 1401 by writing text strings to it, in the same way that you would write a

string to a printer or to a file. For example, to read the values of ADC inputs 0 and 2:

ADC,0 2; This is the text string you send

96,-16 The 1401 sends back the result as text

This form of communication is fine when you wish to read an occasional value, or are

setting up the 1401 to fill its internal memory with data. It would be rather slow for

transferring 50 kB of data to host memory to write to disk.

The 1401 also supports a fast block transfer mode to move areas of memory directly

between the 1401 and the host. The USB 2 interface transfers data at up to 48 MB/sec

(depending on the type of 1401). The PCI interface card with a micro1401 transfers data

at around 1 MB per second, and the Micro1401 and Power1401 transfer at around 1.6

MB per second.

The actual block transfer rate may be limited by the host computer and interface card. For

example, plugging a USB 2 1401 into a USB 1 port limits the rate to 1.1 MB/second. The

highest performance interface is currently USB 2.

Writing programs to drive the 1401 is straightforward if you are familiar with almost any

sort of programming. The remainder of this book describes the details.

A 1401 can be used simply, for example to capture 50,000 bytes of waveform data,

sampled every 20 microseconds. It can also do several operations at once. By using

multi-tasking commands (interrupt driven), the 1401 can simultaneously:

 Play a stimulus waveform on an analogue output

 Record a response waveform

 Record event times and reduce them to a time histogram

 Return data to the host for graphical display

The Micro1401-4
first available in 2019

Software compatibility

Nomenclature

Using the 1401

Multi-tasking

 1401 family programmer reference

5

Before considering application software at all, users will have thought about connecting

transducers to the 1401. The most common signals are waveforms, for digitisation. If the

frequency content of these waveforms is of interest, they must be low pass filtered to

remove potential aliasing effects. See the chapter on FFT-related commands for a fuller

description of this topic. CED has a range of suitable filters, and there are other sources.

The standard full scale input range of the waveform inputs is ±5 Volts with a resolution

of around 0.16 mV (10 Volts / 65536). Input signals should be amplified so that the

expected maximum amplitude, if possible, is between half and full scale, or potential

resolution is lost. Again, CED or other amplifiers are suitable.

Some users, who are interested only in timing information from their signals, need to

convert the waveforms to TTL-compatible pulses, for the event or digital input ports.

This can be done with external discriminators; it is also possible to discriminate

waveforms in software, for example by the PERI32 command.

The table has the RAM memory in the 1401 family

devices plus the expansion options. The operating system

uses some of the space, but the majority of it can be used

for data storage (for example, the micro uses about

100,000 bytes for the operating system, leaving 900,000

or so for data At the other extreme, the Power3 and 3a

reserve 3 MB for system use, leaving the rest for data.

The Micro4 uses a different memory for the operating

system; all 32 MB are available for data (see below).

The Micro1401 mk II has space on the motherboard for two sets of SRAM. Each set is 1

MB, allowing for 1 or 2 MB of fitted memory. The units have 1 MB as standard.

The Power1401 and 625 can be fitted with 16, 32, 64, 128 or 256 MB of memory. The

Power1401 mk II can have 256 MB, 512 MB or 1 GB of memory. The Power1401-3 and

3a have 1 or 2 GB.

The Micro1401-3 has space on the motherboard for two sets of SRAM. Each set is 1/2

MB, allowing for 1-4 MB of fitted memory. The units have 4 MB as standard.

The Micro4 has 1 MB of fast internal SRAM used for the monitor and loaded commands

and 2 MB of fast internal flash memory, plus 16 MB of slow QSPI flash and 32 MB of

relatively slow SDRAM that provides the user memory space.

Signal conditioning

Memory 1401 type Base

micro 1 MB

Micro2 1 or 2 MB

Micro3 4 MB

Micro4 32 MB

Power1/625 32-256 MB

Power2 256 MB-1GB

Power3/3a 1 or 2 GB

Memory expansion for
Micro1401 mk II

Power1401 memory sizes

Memory expansion for
Micro1401-3

Micro4

 The INTERACT program

6

The INTERACT program is an interactive tool to help with the development of 1401

applications and commands. It replaces the host side of the dialogue with you, typing on

the keyboard. The Windows version is called Interw32.exe. We suggest that you make

use of this program while you learn to program your 1401. INTERACT allows you to

load and try out the commands described in this manual.

The full features include:

 Loading of command code to 1401 from disk.

 Display of revision levels of loaded commands and of the Monitor ROM. The

Monitor level shows as the revision of the RESET command.

 Interactive running of commands from the host keyboard

 Building, saving and running of command sequences

 Graphical display of 1401 memory either in static form or with continuous updates

for use with ‘multi-tasking’ or ‘interrupt-driven’ commands

The best way to learn the program is simply to try it. There are four windows that you

can display:

This allows you to display a range of 1401 user memory as 8-bit, 16-bit or 32-bit values

and as signed or unsigned values.

This is the same as the Graphical display except the values are displayed as number,

either as decimal or hexadecimal.

You can type commands in this window and see the 1401 responses. You can copy

commands from this window to the String Store.

This window holds a list of 1401 commands that you can run by double-clicking.

The menu system holds commands for configuring the windows and to copy data

between the interaction window and the string store. There is also a toolbar with short-

cuts to the most commonly used commands.

The interactive
programming tool

INTERACT

Graphical Display

Numeric Display

1401 Interaction

String Store

 1401 family programmer reference

7

Many users find INTERACT very useful as a learning aid when they begin programming

the 1401; we also use INTERACT to try out command sequences before we build them

into a program and as a test-bed for new 1401 commands.

Any command may be typed, but unwelcome effects may result from use of a small

group. These are RESET, and the commands that exchange data blocks with the host

computer: TO1401, TOHOST and some specialised advanced data capture commands.

The RESET command clears the 1401 as at power up, and for some 1401 devices will

separate it from the host communication. The 1401 can be reconnected by pressing the

function key for Reset.

INTERACT as a
learning tool

Commands to avoid!

 Writing programs for the 1401

8

This chapter introduces you to programming with the 1401. It does not aspire to teach

you to write programs on your host computer; if you are new to programming, you must

get that instruction somewhere else! It gives an overview of 1401 use and a description of

the general low level communication commands. The rest of the book covers the more

specialised commands.

The 1401 is driven by sending text strings; in principle, any language that can drive a

printer is suitable. We have prepared libraries to simplify the use of 1401 from several

popular languages, see The Language Support Manual for more details.

Programs running on the host computer send the 1401 instructions as text strings. The

first few characters of the string contain the 1401 command name, the rest of the string

contains additional parameters needed to specify the command. The 1401 Monitor

software interprets this string and invokes the appropriate command. If the requested

command is not present in the 1401 or a command parameter is incorrect or there is a

problem during the command operation the 1401 monitor turns on the Test light and

records an error. Errors can be read and cleared by the ERR command.

Results can be sent back to the host as text strings. Each string is a list of decimal

numbers separated by commas and terminated by a carriage return character. However,

most high-level language users retrieve values from the 1401 using a library function to

read the values and convert them from text to numbers; you are referred to the

documentation for your specific language for more details.

Some commands are ‘built-in’ in the 1401 Monitor ROM/flash memory, but most are

loaded by the user from disk at the start of the session. All commands should be assumed

to need loading unless the description says that they are built-in. The Language Support

libraries provide easy-to-use routines for loading commands from disk.

The command operation might result in the storage of some data in the 1401 memory,

initiation of an interrupt driven process that will continue after the command operation,

processing of some data in 1401 memory or the return of information to the host

computer. Once the command operation has finished, the 1401 is ready to interpret and

execute the next command.

When a text string is sent to the 1401 it is saved in an input buffer if the 1401 is not ready

to deal with it immediately. This buffer will accept data, even while the 1401 is busy

running another command. Up to 255 characters can be stored in the input buffer (enough

space for 5 to 10 typical commands). Similarly, when the 1401 outputs text strings to the

host they can also be stored in a 255 character output buffer if the host is not ready to

accept the data.

These buffers help to increase system performance; neither the host computer nor the

1401 need ever wait for the other to be ready (unless a buffer becomes completely full).

The buffers are completely transparent to the programmer in normal operation, however,

users can take advantage of them by writing a series of text commands to the 1401 and

leaving the 1401 to process them while the host gets on with other tasks.

Fundamentals of 1401
use

1401 text buffers

 1401 family programmer reference

9

The 1401 usually starts executing a command some time (of order a millisecond) after the

command string has been sent. If another command was in progress at the time, the delay

could stretch into seconds. However, the 1401 executes commands in the order that they

were sent, and never starts a new command until the previous one has been finished.

Interrupt driven processes and completion routines can continue to run in the background

while commands are processed.

Because of this there is rarely any need to worry about synchronisation. If the 1401

command returns results to the host, the host program can wait to read the results, and

know that at that point the command, and any sent previously, have been processed.

There are two basic types of 1401 command: sequential and multi-tasking. When the

1401 receives a text string that activates a sequential command, the 1401 will complete

all operations associated with the command before it can process another text string. In

contrast, when a text string requesting a multi-tasking command is received, the 1401

starts the requested operation, then continues to process text strings from the host while

the multi-tasking command continues to run.

Multi-tasking is achieved using hardware interrupts in the 1401. When a device in the

1401 needs attention, for example when the ADC used to read waveform data values has

a new value ready, it requests an interrupt. The 1401 stops what it is doing, saves the

current state of the system, then branches to a special routine (the interrupt service

routine) within the multi-tasking command. The interrupt service routine attends to the

hardware, (for the ADC it reads the pending data and saves it in memory) then restores

the state of the system so it can continue with the interrupted task.

More than one interrupt driven process can be used at a time, the only restriction being

that each must be driven by a separate interrupt source. Simultaneous interrupts are

prioritised by hardware built into the 1401. If the interrupt rate is too high, some

interrupts may be missed. However, the 1401 has special hardware to detect that

interrupts have been lost so there is no danger of this happening without warning.

A typical interrupt service routine takes around 3 µs in a micro

and a microsecond or so in a Power1/2 or Micro2/3/4. The

Power3 and Micro4 are capable of dealing with more than one

interrupt per microsecond. The table shows suggested maximum

total interrupt rates that you can achieve with each 1401. At high

data rates the 1401 code transfers multiple values per interrupt,

but is carefully tuned to balance the need for rapid access to data

with processor load.

Typical of these are the array arithmetic commands. The sequence of actions when a

sequential command is used would be:

1. Host sends command string to 1401.

2. Monitor interprets command and checks parameters.

3. Command is executed, and does whatever it must.

4. Command sends back results as text, if required.

5. Monitor moves on to the next command.

Sequential commands can run in the background while an interrupt driven command also

runs. Because of this, you must be aware of possible contention for resources. For

example, if the ADC is in use for a multi-tasking command (for example ADCMEM) it

cannot be used by the sequential ADC command.

Synchronisation
between the host and

the 1401

Types of commands

1401 kHz

micro1 250

Micro2 >400

Micro3 >500

Micro4 >1000

Power1/2 >500

Power3 >1000

Sequential commands

 Writing programs for the 1401

10

Multi-tasking commands have a sub-command that initiates an interrupt driven process

and then quits, leaving the interrupts to continue. Other sub-commands will allow the

state of the interrupt driven process to be monitored or will stop the interrupts. The

interrupt driven process can also stop further interrupts if necessary. The sequence of

actions for this type of command is usually:

1. Host sends command string to 1401.

2. Monitor interprets command and checks parameters.

3. Command is executed, and initiates the interrupts.

4. Command returns control to Monitor leaving interrupt process running.

5. The normal sequence of command transmission and execution continues for an

indefinite period. Normal commands can be used and other interrupt driven

processes may be started. Throughout all this, the interrupt driven process continues.

6. Either by means of a sub-command, or by the interrupt driven process itself, the

interrupts are stopped and this process terminates.

Commands of this type, which are all loadable, include interrupt driven waveform

capture (ADCMEM), waveform output (MEMDAC), pulse time logging (AUDAT) and digital

sequencing (DIGTIM).

This is the term used to describe a limited extra form of multi-tasking. Completion

routines get the opportunity to run once for each command the 1401 executes and

whenever the 1401 is waiting for a command to be sent and thus has nothing else to do.

This is what the 1401 spends the bulk of its time doing, so a completion routine, once set

up, executes more or less continuously, with gaps whenever a command is executed.

For example, the code that maintains the LEDs on the front of the micro and Power1401s

is a completion routine that asks each 1401 command the resources that it is using and

turns LEDs on and off as required.

Completion routines are commonly used by advanced interrupt driven data capture

routines to transfer blocks of data between the 1401 and host computer. Spike2 makes

extensive use of completion routines. More information is available in the command

writing kits for each 1401.

Many 1401 commands need an area of 1401 memory in which to work. The ADCMEM

command, for instance, fills an area of memory with ADC data; the MEMDAC command

outputs the data in an area of memory to the DACs and the FFT command transforms the

data stored in an area of memory in place.

We specify the memory in bytes. Each byte of information has 8 bits and can take up to

256 values. Most 1401 commands make use of 16-bit (2 byte) data but both 1 byte and 4

byte data are also used. The ranges of all the types are:

bytes bits unsigned range signed range

1 8 0...255 -128...127

2 16 0...65535 -32768...32767

4 32 0...4,294,967,295 -2,147,483,648...2,147,483,647

Where more than one byte is used to represent a value, the bytes of lower value are stored

at the lower addresses (little-endian). This matches the storage protocol used by almost

all modern PCs. This only matters when direct block transfers of memory between the

1401 and host are required. Where data is transferred as text there is no difference.

Multi-tasking
commands

Completion routines

Use of 1401 memory

 1401 family programmer reference

11

All commands that make use of 1401 memory specify it as a start address and a size.

Both the start and the size are specified in bytes. The start address of a memory block

should be at a multiple of the underlying size of the data (1, 2 or 4 bytes per item).

Which area of memory to use is entirely up to the programmer; there are no areas of user

memory that must be used for a given purpose. The 1401 software checks the area of

memory specified to see if any of it lies outside the user area, and generates an error if it

does. The MEMTOP command reports the available memory in a 1401.

We recommend that at least a 32-bit integer type (LONGINT, INTEGER4, INTEGER*4,

int32_t) is used to store 1401 addresses. At the time of writing, no user space exceeds 2

GB, so there is no problem with 32-bit integers wrapping around and becoming negative.

The 1401 doesn’t check for areas of memory used by different commands overlapping. It

is the responsibility of the user or applications programmer to ensure that this does not

happen in such a way as to cause corruption of data. It is perfectly reasonable, and very

common, for two commands to use the same memory in turn, for instance first to collect

ADC data and then to process the data. The problem that needs to be watched for is a

command overwriting data that is being stored for later use.

An instruction is sent to 1401 as a text string: a list of ASCII characters terminated by a

semicolon or Carriage Return (ASCII code 13). The instruction is split into fields by

commas. There are two types of field: numeric fields hold a number or a list of numbers

separated by spaces, character fields hold one or more characters. The number of fields

and their content depends upon the command. Some typical 1401 instructions are:

ERR;DAC,0,1024;ADC,0 1 2 3,2;

The first instruction has one character field: the text string ERR. The second has three

fields: a character field DAC and two numeric fields 0 and 1024. The third also has three:

a character field ADC, a numeric field with a list of four numbers 0 1 2 3 and a numeric

field holding the number 2.

The first field of an instruction holds the command name (up to 7 characters). If this is

incorrect or no command in the 1401 matches the name then the result is always an error

code of 255 and the Test indicator is turned on (turns red in modern 1401s). The

remaining fields in the instruction string are command parameters; information

specifying the exact action wanted from the command. The arrangement of parameters

often follows common conventions, but this is not mandatory.

The second field (the first parameter), is often a character field indicating the action

required from the command; ? to query the state of the command for instance, or K to kill

a multi-tasking command. The number of fields required and their meaning will vary

according to this second field, often called the sub-command character or specifier.

Throughout this book, wherever command syntax is shown, fields in [square] brackets

are optional, and items at the end of a command example, after a semicolon, represent

values returned by the command to the host. For example:

ADC,chan[,byte];values

In this case the field named byte can be omitted and the command returns data. Field

names used in the text, such as chan and byte, are shown in a different font.

Specifying memory

Format of 1401
commands

Conventions used in
this manual

 Writing programs for the 1401

12

The most common example of a character field is the first field of a command, which is

the command name. Character fields have a minimum and maximum number of

characters that will be accepted and all characters (including spaces) are significant.

The 1401 normally converts lower case characters to upper case. You can force lower

case to be preserved in all 1401s except the standard by surrounding character fields in

double quote marks. We show 1401 commands in upper case in our manuals.

Numeric fields may hold one or more integer numeric expressions separated by spaces.

Numeric expressions are composed of decimal numbers, hexadecimal numbers, local

variables and operators. All numbers are read as 32 bit quantities. The maximum range of

numbers is from -2,147,483,648 to 4,294,967,295. Whether a number is treated as signed

or unsigned depends on the command and the field in the command.

Commands define the range of acceptable numbers for all their fields and if a field is a

signed or unsigned number. The numeric range for a field is usually smaller than the

maximum range possible. The most common error users make with numeric fields is to

send the name of a variable in their program to the 1401 when they meant to send the

value of the variable! The second most common error is to send a decimal point. 1401s

only deal in integral values; a decimal point will always cause an error.

A decimal number is composed of the characters 0 to 9. The command sets the acceptable

range of the number. Negative numbers have a leading minus sign.

A hexadecimal number is composed of the $ (dollar) character followed by the characters

0 to 9 and A to F or a to f. The number is treated as a bit pattern and its use as signed or

unsigned is determined by the command.

There are 26 local variables defined in 1401 named A to Z in upper or lower case. These

variables can be used anywhere a numeric expression is expected. The variables held 16

bit integers in the standard 1401 and 32 bit integers in the rest. See VAR and RUNCMD for

details of saving values in the local variables. The Micro4 makes no provision for storing

floating point local variables (yet).

The 1401 allows brackets in numeric expressions and accepts a range of numeric

operators. Operators are given a priority to allow expressions to be evaluated in a natural

way. Unary operators have the highest priority and bind to their right. The following

unary operators are allowed:

Operator Use

- negate the expression to the right
~ bitwise NOT of the expression to the right (integer only)
@ Contents of the byte at user address to the right
! 16 bit integer at user address to the right
32 bit integer at user address to the right

The remaining operators are evaluated in order of priority, higher priorities before lower

priorities. Operators at the same level evaluate from left to right. Logical values are 0 for

false and not-zero for true. Logical results of comparisons are 1 for true. Missing

priorities are for possible expansion. The operators and priorities are based on the C

language; higher priorities take precedence over lower priorities.

Character fields

Numeric fields

Common errors with
 numeric fields

Decimal numbers

Hexadecimal numbers

Local variables

1401 numeric operators

Unary operators

 1401 family programmer reference

13

Operators Priority Use

* / % 13 Multiply, divide and modulo
+ - 12 Add and subtract

> >= <= < 10 Comparisons (signed)
== != 9 Equal and not equal
& 8 Bitwise AND (integer only)
^ 7 Bitwise exclusive OR (integer only)
| 6 Bitwise OR (integer only)
&& 5 Logical AND
|| 4 Logical OR

Expressions evaluate as 32-bit signed values and ignore overflow. The following are

acceptable expressions that all evaluate to 100 (local variable X is assumed to hold 50):

 100 (100*1) 1+2+3+47*2 (4>2)*100 4>2*100+100

 X+X X*2 (X-1)/49+99 100+1000%X 97+(3&15)

The Micro4 supports floating point fields holding one or more real expressions separated

by spaces. Real expressions hold floating point numbers, 32-bit hexadecimal numbers

and local variable and operators. The result is a 64-bit real value. The acceptable format

of a floating point number is: an optional sign character (+ or -) followed by a sequence

of digits (0…9) optionally containing a decimal point (.), optionally followed by the

exponent (an e or E followed by an optional sign followed by digits).

The allowed operators are the same as for integer numeric fields except that none of the

bitwise operators are allowed.

Data is transferred between the host and the 1401 in two ways: as text or as block

transfers of memory directly from one system to the other.

Examples of this type of data transfer are the numerical items in a command string sent

from the host and the response from the 1401 to a command. When a command returns

numbers, these are formatted as a list of decimal numbers separated by commas with no

embedded spaces, and terminated by the carriage return character. The host interface

software for certain languages (Pascal, for example) may translate the commas into

spaces to make the numbers easier to interpret. The possible range of returned numbers

is -2,147,483,648 to 4,294,967,295. The Micro4 does not return real values (yet).

Binary data transfers are more difficult to use, but they are invaluable when large

amounts of data are to be transferred quickly. The process amounts to copying one area

of memory to another but it can give problems due to number storage formats and

synchronisation. The CED language support libraries provide block transfers routines.

The remainder of this chapter describes the basic commands that you almost always need

in a program. Some of these, such as CLOAD, TOHOST and TO1401 you may never use

directly, but are used for you by the 1401 interface library for your chosen high-level

language. Others, such as ERR, are part of the daily life of the 1401 programmer.

Boxed examples refer to example code provided on the 1401 language support disk.

Binary operators

Floating point
numbers

Data transfer formats

Textual transfers

Block transfers

Basic commands

 Writing programs for the 1401

14

The built-in CLIST command reads and reports the names and revision levels of all

commands in the 1401. Built-in commands are listed with loaded commands, with no

distinction. Each name is terminated by a comma, followed by the revision level as x.y

where x is the system level (20 for micro1, 30 for the Power1, 40 for the Micro2, 50 for

the Power2, 60 for the Micro3, 70 for the Power3 and 80 for the Micro4) and y is the

level of the command revision, in the range 0 to 255. The revision level is terminated by

a Return character (ASCII code 13), and the list of names ends with a line holding just a

comma and Return. To use, just send the string CLIST and read the response:

Set up communication with the 1401

Send this string:
 CLIST

Set up a loop to read the response from the 1401, until empty, and print:

 command + revision level, on the screen.

A simpler direct way of checking whether a specific command is loaded in the 1401 is

simply to send the command name and check the error state. There will be one of two

errors: 255 or 254.

255 the named command is not recognised, so it is not already loaded.

254 the command is loaded; the name was matched but the number of argument

fields was wrong, as no loaded command can be used without arguments.

A few of the 1401 commands are built-in; they are in the Monitor ROM and can be used

immediately, but most of the commands have to be loaded from disk. The advantage of

this system is that we do not have to waste space on commands that we do not need and it

allows the capability of the 1401 to be extended. Commands are loaded using the CLOAD

command and can be removed using KILL. Both these commands are built-in.

The language support libraries provide routines to automate command loading for you;

you should never need to use CLOAD directly. We describe it here for completeness.

The first step is to determine if the command is already loaded in 1401. Techniques for

this are described in the CLIST description above. If a required command is not present

in 1401 the second step is to load the command into host memory from disk. You will

find detailed code for this in the source code of the language support library. If you are

writing your own support for a new language you will need the 1401 Technical Support

manual for details of the disk formats used. Finally, the CLOAD command is used to

transfer the command image from host memory to the 1401 and to link it into the

available commands. The general form for the CLOAD command is:

CLOAD,hoOff,size

hoOff is a number, which indicates the address in the host memory where the

command to be loaded into 1401 starts, see TOHOST on page 21.

size is also a number, the size of the command in bytes.

Error codes are 253,0 if the data passed is not a command and 253,1 if there is not

enough command space memory.

CLIST
List commands

Example 1:
 List available commands

CLOAD
Load a new command

 1401 family programmer reference

15

If memory space in the 1401 is at a premium, unwanted commands can be removed, one

by one, or in a complete clear. The built-in command KILL removes one or more loaded

commands from 1401 memory. The command has two forms:

KILL Remove all loaded commands

KILL,n Remove the last n (n < 256) loaded commands

The KILL command also performs an implicit CLEAR, cancelling all current operations

before commands are deleted.

The built-in CLEAR command cancels all 1401 operations and resets the system without

deleting loaded commands. The set up phase of most commands will reset the relevant

sections of the 1401 but it is good practice to run CLEAR or KILL when starting a new

program. The CLOAD command does an implicit CLEAR both before and after loading a

new command, so an explicit CLEAR is not needed if new commands are loaded.

Characters in the buffer between 1401 and the host are not removed by CLEAR. The

command has no arguments so it is used as:

CLEAR

The built-in RESET command makes the 1401 perform the same internal operations as it

would on power up, which can take a long time if you have a lot of memory and the unit

is set to do a full memory test. All loaded commands are removed. You should not

usually need to use this command, except when you suspect that something terrible has

happened to software running inside the 1401! The command has no arguments:

RESET

If the RESET command is used, the software interface will need setting up again; any

characters after the R E S E T and before initialising and re-directing the output are

lost. The setting up can be done by the Reset1401 language support library routine.

In the case of the Micro4, the action of RESET is less draconian and the USB port is not

shut down. The Micro4 implements another version of RESET that does reset everything:

RESET,I{,n{,ms}}

n The image to run (1-15) after resetting the CPU, or 0 or omitted to run the image

set by the rotary switch.

ms The delay (in milliseconds) after receiving this command before resetting the

CPU (which disconnects the host port). If you omit this value or set less than 1

ms, we use 100 milliseconds. The maximum value used is 1000 ms. This delay

gives time for the host PC to close the connection before the reset. If you do not

close the connection before the reset, you may find that that you lose the ability

to open the 1401 again.

The built-in INFO command returns system information and adjusts the ADC trim

(independently of EEPROM settings) and charge dumping. It has two forms:

INFO,S,n;value Return system information for item n

INFO,T,gain,offset{,v10} Set ADC trimming values for Micro1/4 only

INFO,A,gain,offset,chan,v10 Set ADC trimming values for Power1301-3A only

KILL
Unload commands

CLEAR
Initialise commands

RESET
Resetting the 1401 as

at power up

Micro4

INFO
System information

 Writing programs for the 1401

16

INFO,C,cdump Special builds only, set specific charge dumping

INFO,W{,switch} Override the internal switch pack (Micro4 only)

n The system item to report; see the list of values, below.

gain Gain trim. For the Micro1/4, this is in the range 0-255. For the Power3A, this is

an 18-bit signed value with 0x08000 equivalent to unity. Scales of -4.0000 to

+3.9999 are possible. Other 1401s use manual trim pots.

offset For the Micro1/4, this is the offset trim in the range 0-255. For the Power3A,

this is an 18-bit signed offset added to the ADC output.

chan The Power3A channel to trim.

v10 0=trim 5 V, 1=10 V range. Not Micro1. Omit or -1 in T option for current range.

cdump The charge dump value to set.

switch If ≥ 0, the switch pack override, <0 or omitted, no override.

Not all values are supported by all 1401s. Unsupported values return 0. Values marked *

are either only of internal or historic interest and may not be meaningful in modern 1401s

and should not be used as they may be retired/repurposed.

Value Information returned

0* Same as 13, below. In 1401plus this could differ from 13.

1* Same as 14, below. In 1401plus this could differ from 13.

2 Command load area start in standard and 1401plus. 0 in modern 1401s.

Micro4: remaining loadable command code (.text) space.

3 The size of the command load area (heap size in modern 1401s).

Micro4: remaining loadable command data (.data, .rodata, .bss) space.

4 The physical address of the start of the heap.

5 The size of the system heap.

6 Start of the main system stack area. Before the Micro4, there are additional, small

stacks used for interrupts and exceptions. The Micro44 has a unified stack.

7 The size of the main system stack area.

8* Obsolete = 0. Extended RAM start (Mass RAM emulation in the 1401plus).

9* Obsolete = 0. Extended RAM size.

10* Obsolete = 0. Was 1 for extended Memory mode.

11* Physical address of the start of the RAM memory. 0 in all current 1401s.

12* Size of the RAM memory in bytes. Micro4: size of scattered SRAM.

13 Physical address at which the 1401 memory visible to users begins (the user area).

This is where the 0 address of a st,sz type command is located.

14 Size of the user area, in bytes.

15* This was intended to be the digital card revision, but its usage is unclear. It was 0-2

for the 1401plus. It has had the value 8 in all ARM-based systems. It is the digital

card revision in the Micro4.

16* Obsolete=0xfa. Was standard and plus analogue card revision.

INFO,S values

 1401 family programmer reference

17

17 ADC FIFO size. Usually 256, 512 or more; depends on the 1401. Micro4: has no

FIFO but we emulate 256 points and report this value.

18 The ADC Hardware channel sequencer maximum burst mode channels. At least

256, but could increase in future hardware.

19 The ADC channel sequencer type. 0=12 MHz Z8, 1=16 MHz Z8, 2=Original

Hardware sequencer (micro1), 3=20 MHz hardware sequencer. Codes 0, 1 are

obsolete (standard 1401 and 1401plus).

20 ADC type. 0=80kHz, 1=150kHz, 2=330kHz, 3=100kHz 16bit, 4=400kHz16Bit,

5=500KHz16bit(Micro2), 6=625kHz16bit, 7=2MHz16bit, 8=5MHz18bit,

9=1MHz16bit(Micro4)

21 The number of ADC channel available in this device. Micro and Power only.

22 The number of DAC channels available in this device. Micro and Power only.

23 The number of sets of ADC hardware. Currently always 1.

24 The maximum number of channels that the hardware sequencer can store in non-

burst mode (this is usually double the burst size).

25 The physical main 1401 board revision level in the range 0-15. 0=A, 1=B etc. This

is the value read from the copper (if supported).

26 The main board revision stored in the EEPROM or emulation of it.

27 The main board serial number, read from the EEPROM or emulation of it.

28 The Monitor revision (the minor revision number of the RESET command).

29 The self-test code revision. In some 1401s this is a separate code module.

30 The bootstrap code revision. In some 1401s this is a separate code module.

31 Read temperature sensor (where supported) in degrees centigrade.

32 Get System flags (logical OR of values): 1=Transfers to host support scatter-gather,

2=DAC silo supported.

33 Count of interrupts that had no source when we serviced them. Reading clears the

count. IRQ in bits 0-15, FIQ in 16-31, Micro4 uses all bits for the count.

34 FPGA die temperature, where supported, in degrees Centigrade. The Micro4

returns the CPU die temperature.

35 The FPGA size (this is stored byte reversed in the first 4 bytes of the FPGA image)

or 0 if not supported.

36 The device code for the 1401 flash header plus 1 or 0 if not supported. Values are:

1=Power1, 2=Micro2, 3=Power2, 4=Micro3, 5=Power3, 6=Power3A, 7=Micro4.

The flash header value is 1 less than this. First implemented for the Power3A. May

be retrofitted to updated monitors of older 1401 types.

37 The FPGA build time or 0 if not supported. Times are formatted using bit fields:

31-27 Day of the month (1-31), 26-23 Month of the year (1-12)

22-17 Year (0-63 for 2000-2063), 16-12 Hour of the day (0-23)

11-06 Minute of the hour (0-59) , 05-00 Second of the minute (0-59)

38 FPGA Build revision or 0 if not supported. Formatted by bits:

31-24 Major revision

23-16 Minor revision

15-08 Sub build

07-00 Copy of the FREV register in the FPGA

39 FPGA Compilation date and time formatted as value 37.

 Writing programs for the 1401

18

40 Read switches. Bits 0-7 are the switch pack, 8-11 the rotary switch. Bit 15 is set if

this is implemented, all other bits are reserved and set to 0. All Micro4 support this.

Retrofitted to new versions of monitor for previous devices.

41 The number of motherboard DACs, or 0 if not implemented. Power3A onwards.

42,43,

44,45

Up to 128 bits of embedded silicon serial number or 0 if none. The Power3A has a

6 bytes embedded unique serial number. The Micro4 has 96 bits. Undefined bytes

are 0.

46 The speed of the S clock in MHz for Power3A and Micro4 or 0 if none or Power3A

monitor is too old to report this. Currently returns 200.

Available in special Monitor builds with CDUMP_SET defined. Set cdump -1 for standard

charge dump or 0-255 to set the hardware dump control register. Resetting the system or

the CLEAR command restores -1. This is used internally by CED to test and optimise

charge dumping; it is documented here for completeness.

This is implemented for the Micro4 only. If switch is present and greater than 0, the

lower 8-bits of the value override the internal switch pack until power is removed from

the unit (so this survives a reset). If switch is omitted or negative, any override is

removed. This setting allows you to change the settings (for example for extra serial line

output) without opening the unit.

INFO,C,cdump

INFO,W{,switch}

 1401 family programmer reference

19

Requests for performance that the 1401 cannot achieve and faults in command syntax, are

errors. These are stored in the 1401 error register and this should be checked, particularly

during program development. Some commands will detect such errors themselves and

report it as a natural part of the command use. An example of this is the fault of

attempting to convert too quickly with the ADC in interrupt commands when the error is

shown in the command status (see ADCMEM). If a detected error is not reported by the

command, each error over-writes the preceding contents of the error register and turns on

the red Test LED on the 1401 front panel. The built-in ERR command reads the state of

the error register and clears it back to 0:

ERR;code,qualifier

The ERR command returns an error code followed by a qualifier, shown as x in the table.

If no explanation is given for x in the table, the value of x is undefined.

Error Meaning of the error code

255,x The command name given is unknown to the 1401.
254,x There is an error in the argument list. The value of x is usually the field

number in which the error was detected times 16.
253,x A run time error occurred. x depends on the command. If the error was in

the value of a field then x is often the field number times 16. Some

commands define x; see the command documentation.
252,x The expression evaluator detected an error in a numeric field.
251,x Division by zero attempted during the evaluation of an expression.
250,x An unknown symbol was found in an expression.
249,x A command passed to the 1401 was too long.
248,x End of line (CR character) in a string field introduced by ".
247,x A memory reference was outside the user memory area.
31,x Clock or ADC interrupt overrun (command error or running too fast).

30-1,x Unexpected interrupt (see below)

Error code 31,x is used to report an interrupt overrun or ADC error. If the x value is non-

zero it holds bits set to indicate the offending device:

Bit 7 6 5 4 3 2 1 0

Device TopBox DAC ADC Clock4 Clock3 Clock2 Clock1 Clock0

Error codes 1-30 are reserved for reporting interrupt-related errors. These are either due

to careless programming in a command or a hardware problem or reporting an overrun.

There are two error regimes: the first is for all 1401s prior to the Micro4:

Error FIQ Source Error IRQ Source

1,x Host port/Top box reset 17,x ADC
2,x ADC 18,x Clock2
3,x Clock 0 19,x Digital output 15-8
4,x Clock 2 20,x Digital input 7-0
5,x Clock 3 21,x Digital output 7-0
6,x Clock 4 23,x DAC FIFO end of block
7,x Digital input bits 15-8 24,x DAC FIFO level/empty
8,x Event 0 30,x Host port
9,x Event 1

Other errors in this range are caused by hardware problems (for example a misread of the

interrupt vector). The x value is a diagnostic for CED engineers (often a CSR value).

ERR
Check 1401 for errors

Codes 1-31

Before Micro4

 Writing programs for the 1401

20

Error Source Error Source

1,x Digital input bits 15-8 9,x Digital output 7-0
2,x Event 0 12,x Clock3
3,x Event 1 13,x Clock3 trigger
4,x DAC FIFO end of block 14,x Clock0
5,x DAC FIFO level/empty 21,x Overrun (mapped to 31)
7,x Digital output 15-8 22,x Clock4
8,x Digital input 7-0 23,x Clock2

Other errors in this range should not occur. The x value is currently always 0, but may be

used to hold diagnostic information.

In the Micro4 with internal switch pole 2 set, command line errors generate serial line

output to identify the failing command and the resultant error code.

Set up communication with the 1401

Send this string and read the two responses:
 ERR;E1,E2

Print the results on the host screen as:
"Error flag 1 = (E1) and flag 2 = (E2)"

The built-in RDADR command reads small amounts of data from the 1401 to variables in

the host. The data is transferred as text. The general form of the command is:

RDADR,byte,st;value

byte is a character that sets whether byte, word or long data is read. Character 1 sets

bytes (range 0 to 255, unsigned) and 2 sets (signed) 16-bit words. 4 sets signed

32-bit numbers (not for standard 1401).

st is a number, the user area address in 1401 of the start of the data to be read.

RDADR,1,0;123 read location 0, holds 123

RDADR,2,1024;-23452 read locations 1024-1025, holds -23452

RDADR,4,100;123456 read locations 100-103, holds 123456 (not standard 1401)

The built-in WRADR command is the logical complement of RDADR and sets values in the

user data space of the 1401. The general form is:

WRADR,byte,st,value

byte This is a single character which is 1, 2 or 4 (not standard 1401) to indicate that

the data to be written is 1 byte, 2 bytes or 4 bytes in size.

st The start address in the user data space of the data to be changed.

value The value to be written to the user data space.

WRADR,1,0,123; set location 0 in user memory to 123

WRADR,2,1024,-23452; set locations 1024,1025 in user memory to -23452

WRADR,4,100,1234567; set locations 100-103 (not standard 1401)

These two commands are intended for transferring a few bytes of data; the built-in

TO1401 and TOHOST commands are faster for large transfers, but need the absolute

addresses of the arrays in the host machine.

Micro4

Serial line output

Example 2:
Checking 1401 for errors

RDADR
Read a 1401 data

location

WRADR
Write to a 1401 data

location

 1401 family programmer reference

21

The TO1401 and TOHOST commands transfer a block of memory between the host and

the 1401 user data space at high speed.

The 1401 Language Support library provides routines that simplify the use of these two

commands. You must consult the documentation of this library for more information on

the use of block transfers on your computer type and operating system. In most cases,

you will not need to program block transfers yourself.

These commands introduce the concept of an offset into the area of memory to be used in

the host. For some hosts, this offset is the physical address of the host memory. However,

for most hosts it is an offset from a particular position in the host memory map. Some

hosts allow several areas to be defined simultaneously for transfers. Some advanced

commands allow you to specify the target area for a transfer; this is described in the

documentation for these commands. All commands in this manual use area 0.

TO1401,st,sz,hoOff[,R]

TOHOST,st,sz,hoOff[,R]

st is the start address of the block in the user data area of the 1401.

sz is the number of bytes to be transferred.

hoOff is the offset in the host (within area 0) to the memory for the data.

R This is an optional character that causes each pair of bytes transferred to be

swapped and is to support computers that use a big-endian byte order.

An example using TOHOST appears in the Voltages and Waveforms chapter, in the

ADCMEM section, and is included with the language support.

When using a USB interface, this data transfer uses DMA (Direct Memory Access) and

will not slow down the host computer appreciably. The Power3, 3a and Micro4 transfer

data at rates that are limited by the USB 2 maximum transfer rate of around 48 MB per

second. Older 1401s transfer data via USB more slowly (5-20 MB per second depending

on the 1401 type). Beware of plugging a 1401 into a USB 1 port on an old computer;

USB 1 ports are limited to a transfer rate of around 1 MB per second. Users of the now

obsolete PCI and older ISA interfaces were limited to around 1 MB per second.

TO1401 and TOHOST
Block transfers of data

Command variants

Transfer speed

 Writing programs for the 1401

22

The built-in MEMTOP command gets details of the memory space in the 1401 (and in

obsolete 1401s allowed control over the memory arrangement). The memory

configuration of modern 1401 is set to a fixed state on power-up.

The MEMTOP command variants return the sizes of memory areas. Commands marked

Obsolete may not exist in modern 1401s and are described for completeness.

MEMTOP,?;usrsz get user space

MEMTOP,B;cmdsz,hsz,stksz,usz get base memory data

MEMTOP;top,base Obsolete. Standard 1401 compatible version

MEMTOP,C,a,b,c{,d} Obsolete. Set compatibility memory mode for 1401plus

MEMTOP,D;mode,size,extsz Obsolete. Get 1401plus extended mode information

MEMTOP,E Obsolete. Set extended mode for 1401plus

MEMTOP,?;usrsz returns the size of the user data area. The number returned can be very

large so read it into a 32-bit (unsigned) integer type or a real number. This is the

command variant we expect modern software to use.

MEMTOP,B;cmdsz,hsz,stksz,usz gets 1401 memory organisation information. The

returned values are sizes in bytes.

cmdsz The size of the area allocated for loadable commands. In the Micro4 this returns

the remaing .code space for loaded commands. See INFO,S,2 and 3.

hsz The size of the heap. Modern before the Micro4 1401s use the heap for loaded

commands.

stksz The size of the stack area used for temporary variables and argument passing.

usz This is the size of the user data area.

These command variants were preserved solely to allow ancient applications to have a

chance of running. You should never use these variants and remove them from all code.

Some of these have already been removed from modern 1401s.

MEMTOP;top,base was the only MEMTOP command available on the standard 1401. The

difference of these two numbers was the size of the standard 1401 user data space. This is

here to allow ancient software to work; do not use. The values returned by modern 1401s

are lies; they all software that expects to talk to a standard 1401 to function.

MEMTOP,D;mode,size,extsz Used with the 1401plus to get extended memory size

and the memory mode. The mode is always 0 in modern 1401s, the size is the available

user memory space and extsz is always 0.

MEMTOP,C,a,b,c{,d} This variant was used to set the 1401plus into compatibility

mode. To support ancient code, some 1401s still clear things up to match the arguments,

but we never swap into extended mode as it does not exist.

MEMTOP,E This variant always generates an error. It swapped a 1401plus with extended

memory into extended mode

MEMTOP
Memory information

and control

MEMTOP variants

Get user area size

Get base memory information

Compatibility variants
obsolete

 1401 family programmer reference

23

The micro1401-1 (micro1) has two ROM (Read Only Memory) sockets. Socket 0 holds

the monitor ROM, and 1 is normally empty. The monitor ROM holds the self-test code

and the built-in commands. It is possible to fit an extra ROM, and to utilise unused space

in the monitor ROM. The ROM command obtains information about the contents of these

extra ROM areas and loads commands from these additional ROM areas.

The Power1401 (all versions) and Micro1401 (Micro2 onwards) have FLASH memory

with multiple areas that can be programmed separately. This memory holds the operating

software and programming information for the configurable parts of the hardware. The

major benefit of this flash memory is that it can be updated by software without any need

to disassemble the 1401.

There are special commands for the Power and Micro1401. You can use the micro1

variants, however the response will indicate that no ROM was found. We may choose to

emulate some of the micro1 features in the future.

ROM,?n;format,revfmt,revdat,rflags Get ROM type

ROM,Cn;text Return text describing ROM

ROM,Nn;name,itype,iflags List contents of a ROM

ROM,L,name Load command from ROM

n The ROM number; ROM 0 is the monitor ROM, 1 is the spare ROM position.

format The format of the ROM. -1 = ROM not found, 0 = ROM holding commands.

revfmt The revision level of the ROM format (currently 0), or -1 if no ROM found.

revdat The revision level of the data in the ROM in the range 0 to 99, or -1 if no ROM

found. Values 0 to 9 should be interpreted as 00 to 09.

rflags -1 if no ROM is fitted , otherwise 8 flag bits of which only bit 0 is currently

defined. Bit 0 is set if the ROM contains data to be loaded on powers up.

text A text string of up to 80 characters that describes the ROM.

name A text string with no embedded spaces to identify a command in the ROM.

itype The type of a data item held in the ROM. Type 0 is a 1401 command.

iflags Bit 0 of this value is set if this item is to be loaded into the 1401 on power-up.

The ROM,?n command returns 4 numbers that are all -1 if the ROM space does not exist,

or that return information on the ROM type. The main use of this command is to

determine if a ROM is present. The ROM,Cn command returns a text string, terminated by

end of line, which describes the ROM. This string can be up to 80 characters long.

Each ROM can hold several data items identified by names. These names are up to 15

characters in length and can hold any printing characters in upper or lower case. By

convention, only alphanumeric characters are used and names are upper case. A name

need not be unique, but it is only possible to load the first data item that matches a name.

The ROM,Nn command is used to list the contents of ROM n. The command lists each

item on a line, and terminates the list with a blank line. The command lists the type and

the flags for each item in addition to the name. These three fields are separated by

commas. For example, a ROM holding the SS2, ADCMEM and MEMDAC commands, with

SS2 and ADCMEM marked to be loaded on power-up might return:

SS2,0,1<end of line>

ADCMEM,0,1<end of line>

MEMDAC,0,0<end of line>

<end of line>

ROM
Control of additional

ROM space

Command variants for micro1

Report ROM type

List ROM contents

 Writing programs for the 1401

24

Commands can be loaded from the ROM using the ROM,L,name command variant. This

searches ROM 1 first, then ROM 0, looking for a data item of type 0 (a command) which

matches name. If the name used to identify the command in the ROM contains lower case

characters you must use lower case in name and enclose it in double quotes, otherwise the

lower case is converted to upper case and will not match. Error 253,0 is returned if a

command of the correct name is not found in the ROM. Error 253,1 is returned if there is

not enough room in the loadable command area.

We advise extreme caution be exercised before you write code to modify the contents of

the flash memory. CED provides tools that can safely modify flash areas (for example in

the Try1401 Windows program). None of these commands exist for the micro1.

ROM,F,R,image,st;sz Read flash contents into memory

ROM,F,P,st,sz;result Program flash contents from block in memory

ROM,F,I,image;sz,name Return information about a flash image

ROM,F,C,image;result Clear alternate flash slot (will not touch factory images)

ROM,F,V;cpld,fpga,cpldA,flgaA Return CPLD and FPGA firmware revisions

image The flash image to use in the range 0 to maximum that depends on the 1401

type. Some image numbers are special (depending on 1401 type) and may not be

visible to the ROM command. Consult the Technical Reference manual for each

1401 type for more information on image numbers.

st The start of a region in user memory space aligned to a 4 byte boundary.

sz The number of bytes in a flash image. A return value of 0 means that the flash

image did not hold a recognised image. All released images will be recognised,

but CED internal development images may not be.

result A code to indicate how the program operation fared. A value of 0 means the

operation was a success. -1 means that the image header was incorrect, -2 means

that the image was corrupt (checksum failure).

name This is a returned text string that is either 16 characters long (padded on the end

with spaces) or empty if the flash image is not valid.

You can copy a flash image into 1401 user memory space with the ROM,F,R,image,st

command as long as the image has a valid header and the image checksum is correct. The

command returns the number of bytes in the image or 0 if the image does not appear to

contain a correctly formatted image (or image 0 is requested).

The ROM,F,P,st,sz command copies a correctly formatted and checksummed image

defined by st,sz to the flash. The image number is held within the image. Any flash

block can be programmed (including factory-set blocks). The programming operation can

take many seconds (30-40 with large areas in the Power1401-3a), so programs must wait

for a response. A faulty flash memory could cause this operation to hang the 1401.

The ROM,F,I,image command returns information about a flash memory image. The

returned values are a number followed by a comma, then either 16 characters or if the

number was 0, then no characters. The number is the size of the flash image in bytes, and

the characters are an identifying message built into the image. If there is no image in the

flash area, the size is returned as 0. Image 0 may not return any information.

The ROM,F,V command returns the firmware revisions of the Digital CPLD, Digital

FPGA, Analogue CPLD and Analogue FPGA. All devices have a Digital FPGA; 0 is

returned for items that do not exist. See the relevant Technical Reference manuals.

The ROM,F,C,image command clears a flash image. Factory images are not cleared.

Load from ROM

Command variants for
Micro1401 and Power1401

Read flash contents

Program flash contents

Return flash information

Return hardware revisions

Clear flash image

 Voltages and Waveforms

25

Capture and play-back of analogue signals is vital to many laboratory applications. The

standard commands described in this chapter cover a wide range of tasks and should

satisfy most users. We have developed many more commands, for higher performance

but more specialised use; we can also write commands to user specification. Contact us if

this is of interest.

Modern 1401s handle voltages with at least 16 bit resolution, that is, 1 part in 65536. The

original 1401 supported 12-bit signals, 1 part in 4096, stored in 16-bit variables with the

bottom 4 bits as 0. To speed performance and save memory space with obsolete 1401s we

allowed the use of 8-bit data, a resolution of 1 in 256. ADC readings cannot resolve to

better than half a bit, so conversion of a steady noiseless signal may fluctuate by the least

significant recorded bit; in reality, there will be one or more bits of noise. The Power1401

has 16-bit ADC and DACs and has gain options. The Micro2 has a 16-bit ADC and 12-

bit DACs. The Micro3 and 4 have 16-bit ADC and DACs.

Number Numeric range of data Voltage range of data
of bits low high Step low high Step

16 -32768 32767 1 -5.000 V 4.9998 V 0.153 mV

12 -32768 32752 16 -5.000 V 4.9976 V 2.4 mV

8 -128 127 1 -5.000 V 4.961 V 39 mV

Although we still allow the use of 8-bit data for some ADC and DAC commands, we

strongly recommend the use of 16-bit data. We make no effort to make 8-bit use efficient

and it is (in some cases) much slower than using 16-bit data.

You should consult the Owners handbook that came with your 1401 to get the full details

of the inputs, pin numbers and electrical characteristics of your interface. The figures

given here are for general guidance only.

The input impedance of the ADC inputs is typically not less than 1 MOhm and the

standard full scale voltage range is ±5 Volts. The Micro1401 and Power1401 can be

adjusted to ±10 Volts (see the Owners handbook).

A range of optional internal amplifiers is available for the Power1401, offering fixed or

programmable gain, with or without filtering, to customise the 1401 to your particular

voltage requirements. These do not affect the commands in this chapter in any way.

The full scale output voltage ranges are similarly ±5, or ±10 Volts and the amplifiers can

drive 600 Ohms to 5 Volts, so they can drive headphones or 600 Ohm attenuators. They

are not meant to be power drivers, however, and the settling time suffers with load

impedances lower than 2 kOhms. The outputs are short circuit proof. Prior to the

Power3A and Micro4, the input and output devices were in sockets, for easy replacement.

The Power3A and Micro4 are protected against out-of-range inputs, but determined abuse

(mains voltages, for example) will destroy them. See the Owners handbook for limits.

The Micro1401 analogue inputs 0-3 are fed by front panel BNC connections. Expansion

units are available to extend the number of inputs. The Power1401 has 8 analogue inputs

and 2 DAC outputs on the front and 8 more inputs and 2 more outputs on the rear.

Channel 8 9 10 11 12 13 14 15 DAC2 DAC3 Ground

Pin number 28 29 30 31 32 33 34 35 36 37 1-19

Resolution

Impedances and
voltages

Power1401 ADC channels 8-
15, DACs 2-3

 Voltages and Waveforms

26

There are many 1401 commands that measure voltages and waveforms. To take a single

measurement of the voltages on one or more channels, see the Simple voltages section. If

you need to take a sequence of values on each channel, see the Waveforms section.

To measure a single set of up to 32 voltage channels, the easiest way is to use the ADC

command. Sending this command, which is built-in and does not need to be loaded from

disk, makes the 1401 measure the voltage on each of your list of channels, putting the

results in the 1401 output buffer for the host to read when it has time.

You can set output voltages in a similarly way with the built-in DAC command.

The ADC command is not suitable for sampling a waveform because the time between

readings is not constant and it may be too slow, being limited by the rate at which the

host can send the strings that fire it off, and the time it takes to read back the results.

There is a range of commands to read waveforms, each designed for a different pattern of

use. They are all multi-tasking. Some can simulate sequential use, but this is discouraged.

ADCMEM is the most commonly used command for waveform input. It takes a sequence of

readings from a channel list, evenly spaced in time, and puts the results in 1401 memory.

It is a multi-tasking command though it can simulate sequential behaviour.

This graph shows measured maximum multi-tasking rates using ADCMEM (ADC input)

and MEMDAC (DAC output) commands for combinations of single channel, 16-bit data, for

members of the 1401 family. The graph shows practical measurements and should be

typical but it does not show guaranteed rates. The Power3 rate is limited by the ADC

sample rate (3 MHz), the Power3a graph is similar with an ADC rate limit of 4.7 MHz.

Notes: The Power3, 3a and Micro4 DAC rates are shown limited to 1MHz, though the

hardware can run faster. The maximum Micro4 ADC rate is shown as

measured; the guaranteed single-channel rate is 1 MHz.

If you have more than one signal to measure, you must choose between even spacing of

the channel samples in time, or reading them in a burst. Even spacing (as used by

ADCMEM) gives the least cross-talk for a given sampling rate, but if you need to know as

closely as possible what value all the signals were when the clock ticked, you can choose

the ADCBST, PERI32 or MADCM commands. PERI32 samples pre-trigger points, MADCM

can sample different channels at different rates.

Note that as soon as a multi-tasking set up command is issued for the ADC (or DAC),

that device is booked for use and any other call to use it will give an error.

Selection of command

Simple voltages

Waveforms

1401 family maximum ADC
versus DAC rates

ADCDAC.png

 1401 family programmer reference

27

Rates in this table are for single channels (except ADCMEM), 2 byte data and are in kHz.

The maximum rates may be diluted by other interrupt activities. ADC rates are aggregate

rates for multiple channels unless otherwise stated. See the individual commands for

detailed rates

 Micro1401 Power1401
 mk I mk II -3 -4 625 II,-3 -3 Comments Page

ADC ~0.01 ~0.01 ~0.01 ~0.01 ~0.01 ~0.01 ~0.01 Built-in command 30

ADCMEM 333 500 500 1000

1000

625

800

1000

2000

1000

3000

Multi-channel 33

Single channel

MADCM 125 500 500 1000 384 1000 1000 Multi-channel multi-rate 36

ADCBST 333 500 500 1000 625 1000 1000 Bursts of conversions 38

PERI32 222 500 500 1000 625 1000 1000 Data-triggered bursts 41

DAC(Hz) ~0.01 ~0.01 ~0.01 ~0.01 ~0.01 ~0.01 ~0.01 Built-in command 31

MEMDAC 250 423 476 1000 384 555 1000 Standard command 43

The Power1401-3a has a faster maximum single channel rate in ADCMEM of 4.7 MHz and

can run faster than the Power1401-3 in multi-channel mode.

The 1401 does not check the rates you request, but speed failures are noted in hardware

and shown by the automatic setting of a status flag, or error 253 or 31.

Some users need to capture more data than the 1401 can hold in its memory and will wish

to transfer data to the host. The rates of transfer to the host depend on the interface type,

the speed of the 1401 and the speed of the host.

There is a strong family resemblance between these commands; the analogue output

commands mirror the corresponding input commands. There is one important difference.

In the input command ADCMEM, one waveform sample is taken at each tick of the clock,

but in MEMDAC, all the specified DAC outputs are updated simultaneously at each tick.

Note that multi-channel MEMDAC output is not be an exact replay of ADCMEM capture as

the input readings were taken sequentially, not simultaneously. In the diagram we show 2

cycles round input channels 0, 2, 5, 7 and 1 during ADCMEM sampling.

The ADCBST and PERI32 commands read in bursts, with two channels taken exactly at

the same time with the optional second sample and hold (not available in recent 1401s).

The waveform input commands can be set to be driven directly by the ADC External

Convert input, but usually a clock source will be chosen, with a divide down factor, and

an optional triggered start. The setting of the clock is done within the analogue I/O

command. Clock 3 is used for the output (DAC) commands, clock 4 for the ADC.

The clock source may be derived from the internal crystal, or an external clock signal of

up to 10 MHz on the rear panel F input. The conversions occur at a rate set by this

source, divided by the programmable scale factor.

The start of waveform input may be delayed, for synchronisation with a low going pulse

on the rear panel E3 or E4 input. You can also route the front panel Trigger input to these

0 2 5 7 1 0 2 5 7 1 0

clock

channel

sample interval sample interval
channel 0 ADC

Data rates

Channel cycling during
ADCMEM sampling

Clocks

 Voltages and Waveforms

28

inputs, see the EVENT command. After the first such pulse, the clock is no longer affected

by this input. We call this a Triggered start.

For both the F (frequency) and E (event) inputs, the signal should be TTL. If the use of

low going pulses on the E input is inconvenient, the active direction of the pulse can be

inverted using switches, as described in the Switch settings chapter of the Owners

handbook, or by the built-in EVENT command.

 1401 family programmer reference

29

The standard arguments in the various waveform input and output commands are

described below. In the sections on the commands, only differences from these

descriptions, and special arguments, are given.

kind Selects the mode: I for interrupt-driven, F for sequential*. If a sequential

command is run in triggered mode, and a trigger is never given, the 1401 will

hang up until a hardware reset! Sampling is always interrupt-driven, even in

sequential mode, so the rates are the same. We also allow IN and FN for kind in

ADCMEM and ADCBST to force a single sample to be taken per interrupt (useful in

external convert modes when slow rates are expected).

byte Set either to 1 for 8-bit data (deprecated), or 2 for 16-bit data. The 8-bit data

mode is only present for backwards compatibility with obsolete 1401s. It works,

but is less efficient than 16-bit mode as no effort is made to optimise it.

st The start point for the data array in user space in the 1401. This is the byte

address of the start and must be a multiple of the byte argument (1 or 2).

sz The number of bytes in the array. For 8 bit data, this is the number of data

points. For 16 bit data this is twice the number of data points. For interrupt-

driven commands the array is split into two halves internally so the number of

data points must be even, i.e. sz must be 2*n*byte where n is an integer.

 For multi-channel use, sz must be divisible by (number of channels) * byte. If

sz is not a sensible size, error 253 is given and the command will not run.

chan The list of channels in multi-channel commands. The maximum number of

channels allowed depends on the command and the 1401 type. The channel

numbers are separated by spaces. Channel -1 can be used for the DACs to skip

over unwanted channels in arrays. All DACs are updated simultaneously,

contrast the ADC inputs. We also allow a list holding a single channel in the

range -121 to -128 to read special test channels.

 Commands that support multiple ADC channels allow -N (N = 1 to 31) to mean

a list of channels from 0 to N inclusive.

rpt The number of times to cycle round the array, range 1 to 4,294,967,295 or 0 for

the maximum number of repeats (4,294,967,296).

clock The clock source is selected by a single letter:

 S the internal 200 MHz source (S = Superfast), Power3a, Micro4 only

 T the internal 10 MHz source (T = Ten), (Micro2-4 and Power only)

 H the internal 4 MHz source (H = High speed)

 C the internal 1 MHz source (C = Clock)

 F whatever TTL compatible signal is on the F rear panel input for DAC or

ADC (F=Frequency). The Micro F ADC clock input is ADC Ext, not F.

 X replace the clock with the ADC Ext input or F rear panel input.

 Add T (e.g. CT, HT, TT or FT) to suspend operation until the relevant E3 (DAC)

or E4 (ADC) input is pulsed low. See command descriptions for the use of XT.

 Some commands allow R (repeated trigger) in place of T, for example ADCMEM.

Some commands allow G (gated) in place of T to enable/disable the clock.

pre pre*cnt sets the clock divide down from the selected source. The range of

values for both is 2 to 65535 works for all 1401 types. Power1 allows a pre

value of 1 and Micro2/3 and Power2/3 allow both pre and cnt to be 1. Other

values cause error 253. Example: to make the clock tick at 100 Hz using the 1

MHz source a divide down of 10,000 is required. This could be achieved with a

pre of 2 and a count of 5,000.

cnt See the pre description.

* The standard 1401 had two modes, Interrupt and Fast. Fast mode captured data in a

dedicated loop as fast as possible, preventing multi-tasking. Later 1401s do all

sampling in multi-tasking mode and emulate F by waiting for sampling to end. Fast

mode should not be used; it is present for backward compatibility of ancient code.

Standard arguments

 Voltages and Waveforms

30

The built-in ADC command reads one or more ADC channels and sends the results to the

host. The channel list can contain up to 32 channels, however the result of converting

channels that do not exist is undefined. The general form is:

ADC,chan[,byte];values

If byte is omitted, it defaults to 2. To read ADC channels 0 and 2 into two variables:

Open communication with 1401

Send this string:
 ADC,0 2

Read back two numbers into variables

Close communication with 1401

Power1401 and Micro1401 users can control the ADC gain (if the gain option is fitted)

with the GAIN command. The command does not exist in other 1401 types.

GAIN,N,chan;num Number of gain settings for chan

GAIN,W,chan,gIndex set new gain index, ignored for channels with no gain

GAIN,R,chan;gIndex read back gain index of a particular channel

GAIN,S,chan,gain Set channel gains as near as possible to gain as % (100=unity)

GAIN,G,chan;gain read back gain of a particular channel as % (100=unity)

GAIN,L,chan;g0,g1,g2... read gain list for chan as % (100=unity)

GAIN,B,n;nGain,chSt,chEnd,g0,g1,g2... read back gain block n information

GAIN,M,chan;mV return the maximum ADC input for full scale at a gain of 1

GAIN,V,val; Set ADC and DAC range (Power3, Micro3/4 only)

GAIN,W,chan,gIndex sets the gain for channels in the channel list set by chan. The

gains are set by an index; 0 is the lowest index, which usually corresponds to a gain of 1.

You can get a list of available gains with the L or G options. GAIN,S,chan,gain sets

the gain as near to gain as possible. A gain of 1 is 100, 3 is 300 and so on.

GAIN,R,chan;gIndex returns the gain index for a particular channel. The lowest index

is 0. If a channel has no gain option, 0 is always returned. GAIN,G,chan;gain returns

the channel gain as a percentage (100 = 1.0, 150 = 1.5 and so on).

GAIN,N,chan;num returns the number of valid gain settings for a particular channel. It

returns 0 if no gain option is fitted for this channel.

GAIN,L,chan;g0,g1,g2... returns the list of gains available for a particular channel.

The gains are returned as a percentage: 100 is a gain of 1, 50 is a gain of 0.5 and 50000 is

a gain of 500. You can get the number of gains from the N option. If no gain option is

fitted, the return value is 100.

GAIN,B,n;0|{nGain,chSt,chEnd,g0,g1,g2…} returns gain information for block n

(zero-based) of consecutive channels with the same gain options. The return value is 0 if

block n does not exist, otherwise nGain is the count of gains, chSt and chEnd are the

first and last channels and g0… are gains in the block as percentages (as for the L option).

GAIN,M,chan;mV returns the ADC range for the channel in mV (with the channel gain

set to 1). Most units are set to ±5 Volt inputs, so the result is 5000. In a 10 Volt unit, the

result is 10000. Normally, both ADC and DAC are set to the same range.

GAIN,V,val; sets the 5/10V range for the ADC and DACs in the Power3 and Micro3/4.

Bit 0 of val sets the ADC range, bit 1 sets the DAC. Set val to 0 for ±5V DAC and

ADC and 3 for ±10V. Most code assumes the range set for the DAC matches the ADC. If

the DAC range differs it may not work as you intend. Use GAIN,M to read the range.

ADC
Read a list of voltages

Example 3:
Immediate reading of ADC

GAIN
Control ADC gain

Set channel gain (index)

Read channel gain (index)

Read number of gains

Get gain list

Read gain information

Get ADC range

Set ADC and DAC range

 1401 family programmer reference

31

The built-in DAC command updates up to 4 output voltages. Setting channels 2 and 3 in a

Micro1-3 has no effect but is not an error. If one channel is written to several times in the

same command, pulses of 2.5 µs or shorter can be achieved. The general form is:

DAC,chan,values[,byte]

If byte is omitted, it defaults to 2. The following example sends the same voltage ramp

(variable x) to all DACs 0 - 3. Micro1401 users will see output changes on DACs 0 & 1.

Open communication with 1401

FOR x = -128 TO 127 start a loop

 DAC,0 1 2 3,x x x x Value of x sent, see below

End of the loop

Close communication with 1401

Where a symbol (such as x) is used in an example and is shown as part of a string sent to

the 1401, it is understood to stand for the value of the symbol as a number, the symbol

itself is not sent. The first two strings sent to the 1401 in Example 4 are:

DAC,0 1 2 3,-128 -128 -128 -128

DAC,0 1 2 3,-127 -127 -127 -127

Power1401 and Micro1401 users can control the DAC gain (if the gain option is fitted)

with the DGAIN command. The command does not exist in other 1401 types.

DGAIN,N,chan;num Number of gain settings for chan

DGAIN,W,chans,gIndex set new gain index, ignored for channels with no gain

DGAIN,R,chan;gIndex read back gain index of a particular channel

DGAIN,S,chan,gain Set channel gains as near as possible to gain as % (100=unity)

DGAIN,G,chan;gain read back gain of a particular channel as % (100=unity)

DGAIN,L,chan;g0,g1,g2... read gain list for chan as % (100=unity)

DGAIN,M,chan;mV return the full scale DAC output at a gain of 1

DGAIN,T,num,val; Set DAC trim value (Micro3/4, Power3)

DGAIN,W,chan,gIndex sets the gain for channels in the channel list set by chan. The

gains are set by an index; 0 is the lowest index, which usually corresponds to a gain of 1.

You can get a list of available gains with the L or G options. DGAIN,S,chan,gain sets

the gain as near to gain (in percent) as possible. A gain of 1 is 100, 3 is 300 and so on.

DGAIN,R,chan;gIndex returns the gain index for a particular channel or 0 if there is no

gain option for the channel. The lowest index is 0. DGAIN,G,chan;gain returns the

channel gain as a percentage (100 = 1.0, 150 = 1.5 and so on).

DGAIN,N,chan;num returns the number of valid gain settings for a particular channel. It

returns 0 if no gain option is fitted for the channel.

DGAIN,L,chan;g0,g1,g2... returns the list of gains available for a particular

channel. The gains are returned as a percentage: 100 is a gain of 1, 50 is a gain of 0.5 and

50000 is a gain of 500. The result is 100 if no gain is fitted.

DGAIN,M,chan;mV returns the DAC range for the channel in mV (with the channel gain

set to 1). Most units are set to ±5 Volt inputs, so the result is 5000. In a 10 Volt unit, the

result is 10000. Normally, both ADC and DAC are set to the same range.

DGAIN,T,num,val; sets a DAC trimming value for the Micro3/4 and the Power3. You

can set separate values for the gain and offset trim for both 5V and 10 V ranges. Trim

values set by this command persist until the unit is powered down. To make the DAC

DAC
Set analogue output

voltages

Example 4:
Set voltage output levels

DGAIN
Control DAC gain

Set channel gain (index)

Read channel gain (index)

Read number of gains

Get gain list

Get DAC range

Set DAC trim value

 Voltages and Waveforms

32

trim values permanent you must set EEPROM values using TAG_DTRM for the Micro3,

TAG_DTR4 for the Micro4 and TAG_DTR8 for the Power3

The num value codes for the DAC and which value to trim, val is a 16-bit unsigned

value (in the range 0-65535) that determines the trim value. Increases in val (gain or

offset) cause a positive DAC output to increase. The command differs between 1401s in

respect of how the 5V or 10V range is treated:

The trims for gain and offset for the 2 DACs are set using an AD5625 on the I
2
C bus.

This holds 4 12-bit unipolar DACs that adjust the range and offset of the reference

applied to the 1401 DAC outputs. num is in the range 0-3. num & 1 selects the DAC.

Add 2 to the DAC number to set the offset DAC, otherwise the gain DAC is set.

val is written to the selected AD5625 DAC (bits 0-3 have no effect on the trim).

Changing the trim values saves the changed value locally for the current DAC range (5V

or 10V); the latest values are applied when the range changes. These local values are lost

when the unit is powered down.

AD5282 Dual Epot I
2
C bus devices set the gain and offset of the motherboard DACs.

(num & 0x0f) is the physical DAC channel (0-3, 12-15). Add 32 to trim the DAC offset

rather than the gain. Add 64 to trim the 10V range rather than 5V.

The top 8 bits of val (bits 0-7 are ignored) set programmable potentiometer values in the

AD5285 device assigned to the DAC channel. If you trim the 5V range and the unit is

currently set to 10V, there will be no effect until you switch the unit to 5V when the

values will be applied.

The remaining commands in this chapter are not built-in. Unless they are loaded

automatically on start up, you must make sure that you have loaded them yourself.

Micro3

Power3/Micro4

Loaded commands

 1401 family programmer reference

33

ADCMEM samples a list of analogue channels in 16-bit (or 8-bit) format to 1401 memory.

The table shows the maximum multi-channel and single-channel rates in kHz with no

other activity. It runs under interrupt control as a multi-tasking command and can emulate

sequential mode (not recommended).

 micro Micro Micro Power
 1 2-3 4 Mk I 625 Mk II -3 -3a

Multi-channel 333 500 1000 400 625 1000 1000 1000

Single channel 333 500 1000 2500 800 2000 3000 4761

The maximum multi-tasking rate may drop as other activities are increased; the graph on

page 26 shows the maximum measured rates for concurrent single channel 2 byte (16-bit)

analogue input and output.

ADCMEM samples one channel each clock tick. With n channels, the command cycles

round the channel list taking n times the clock period to sample all the channels. For

more synchronous sampling you should consider ADCBST, described on page 38. The

diagram below shows the sequence when channels 0, 2, 5, 7 and 1 are selected.

When multiple channels are sampled, data is stored interleaved in memory in the same

sequence as the channels were sampled. See the SN1 and SN2 commands on page 65 for

quick ways of extracting single channels. You are allowed to repeat a channel in a list, for

example the channel list 0 1 0 2 0 3 could be used to sample channel 0 at three times the

rate of channels 1, 2 and 3.

ADCMEM,kind,byte,st,sz,chan,rpt,clock,pre,cnt Clock set up

ADCMEM,kind,byte,st,sz,chan,rpt,X[T] External convert set up

ADCMEM,K Kill interrupt-driven sampling

ADCMEM,S Stop interrupt-driven sampling at buffer end

ADCMEM,?;status Report state of interrupt-driven sampling

ADCMEM,P;offs Report next position to be updated

ADCMEM,Z;device,fnclvl,nch,adc Report channel sequencer configuration

kind is either of I for multi-tasking mode or F for sequential mode. The rpt argument

must be present in both ADCMEM,I and ADCMEM,F forms but is ignored in the latter. We

also allow IN and FN, meaning only read one ADC value per interrupt. This gives a finer

granularity to the reported positions at the cost of a lower maximum sample rate.

A command of this form resets the ADCMEM command, and starts sampling immediately,

if clock is set to S, T, H, C or F, or wait for a low going TTL pulse on the clock 4 event

input (E4) if ST, TT, HT, CT or FT are used.

The X clock causes an ADC sample to be taken for each low going pulse on the 1401

ADC external convert input. With the optional T, in the dedicated F version, data

collection waits for an E4 start pulse. Care should be taken with the T option in dedicated

mode; if no trigger pulse is received, the machine will freeze. This can be cleared by a

hardware reset using the Reset1401 Language Support routine.

ADCMEM,K stops interrupt-driven sampling immediately, resets the ADC, and releases it

for use by other commands. The sequential form cannot be stopped before sz bytes are

taken because once ADCMEM,F is started, no other command, including ADCMEM,K can be

run. To escape this impasse use the Language support function Reset1401.

0 2 5 7 1 0 2 5 7 1 0

clock

channel

sample interval sample interval
channel 0 ADC

ADCMEM
Equally spaced
waveform input

Maximum ADCMEM rates
kHz

Sampling times of inputs 0, 2,
5, 7 and 1.

Command variants

Clock set up

External convert set up

Stop sampling

 Voltages and Waveforms

34

ADCMEM,S stops the command when the buffer currently being processed is finished.

ADCMEM,? causes the sampling buffer status to be returned (for interrupt mode only) as:

-128 Sampling has not yet filled a half buffer

-1 Sampling finished, but some samples were missed (sampling was too fast)

0 Sampling has completed the set number of repeats correctly

1 Second half of buffer is filling, first half is free

2 First half of buffer is filling, second half is free

ADCMEM,P returns the byte address (relative to st) of the next byte to be updated, either

during logging, or after the command stops.

ADCMEM,Z;device,fnclvl,nch,adc is used to return information about the channel

sequencer, for programs for general distribution that have to optimise performance. See

the ADCBST description on page 38 for full details.

Code Reason

253,1 Bad number of samples per channel; not divisible by 2

253,2 Bad number of samples; sz/(chan*byte) is not an integer

253,3 Sampling is being driven too fast in dedicated mode

Sample four channels of data in dedicated mode, using 1 byte per point, into an array at

20 kHz (5.0 kHz per channel). Input is triggered by the E4 input. When complete, the

data is returned to the host.

Put a message up on the screen to say we are starting, set up communication with the

1401 and load the ADCMEM command, if needed.

Clear any previous activity and set up triggered sampling of 1 byte data to an array from

address 0, on channels 0 2 7 and 1 in that order, at 1 MHz divided by 5 * 10 by sending:
 CLEAR

 ADCMEM,F,1,0,2048,0 2 7 1,1,CT,5,10

Set a data transfer to xxxx in host memory when ADCMEM is complete by sending:
 TOHOST,0,2048,xxxx

Check for completion by asking to read a variable (the error status) by sending the string:
 ERR

 Print a message to show we have finished.

ADCMEM repeated trigger mode collects multiple sweeps of data with the minimum time

delay between the sweeps. There is no sampling speed penalty for the use of this mode.

ADCMEM,kind,byte,st,sz,chan,rpt,clockR,pre,cnt[,swpsz] Clocked

ADCMEM,kind,byte,st,sz,chan,rpt,XR[,swpsz] External convert

These calls are identical to the standard setup calls, except that the clock control contains

R (think Repeated trigger) in the trigger field and there is an optional additional field:

swpsz The byte size of each sweep of data to be captured. If omitted it takes the value

sz/2. It may not be larger than sz, but it does not have to divide exactly into sz.

The data area defined by st and sz is divided into sub-buffers, each of size swpsz bytes.

If sz does not divide exactly by swpsz, sz is rounded down to an exact multiple. Each

sub-buffer is sampled in triggered mode (using the E4 trigger input to start sampling).

Query status

Report update position

Return channel sequencer
information

Error reports

Example of triggered data
capture

Example 5:
Dedicated data capture

Repeated trigger

Command variants

 1401 family programmer reference

35

The sample rates for multiple channel use are less than those for a single channel. The

ADC has to switch between multiple channels and the analogue front end needs time to

recover from this. If you sample too fast, traces of a previous channel can appear in the

data, a feature known as cross-talk. The maximum multi-channel rates we give are

chosen so that cross-talk is not an issue. You can sample faster than this, but if you do, a

full range signal on one channel may have a noticeable effect on a small signal on the

next channel. Always test this before exceeding the multi-channel rates.

In ADCMEM,I... mode, the rpt field sets the sub-buffers to capture; sampling cycles

round the entire buffer as often as necessary to complete the number of sub-buffers

requested. The largest number of sweeps possible is collected by setting rpt to 0. This

gives 2
32

 sweeps. If each sweep lasted only 1 millisecond, it would take nearly 50 days to

complete the sampling task, so you can think of rpt = 0 as running for ever.

The ADCMEM,P command variant operates unchanged, returning the next position to be

written to. The ADCMEM,? command returns the number of completed sub-buffers. It does

not return 0 when sampling is over. The ADCMEM,S command will stop the sampling after

the next sub-buffer has been captured. ADCMEM,K kills sampling immediately.

You would run in this mode when it is necessary to monitor the progress of the

command, or when you need to sample more data than can fit into the 1401 memory. You

can transfer data from the 1401 back to the host while the command is sampling, using

the ADCMEM,? and ADCMEM,P commands to monitor the command progress.

In sequential sampling (ADCMEM,F...), the rpt field is ignored, and the buffer is filled

with sz/swpsz sub-buffers. In this mode the only way to get control back from the 1401

before all the sub-buffers have been sampled is to send a hardware reset to the 1401 (see

the Reset1401() routine in the appropriate Language Support Manual). In this case,

the ADCMEM,? command will return the number of completed buffers before the reset.

The ADC in the original Power1401 produces new data values at a constant rate of either

2.5 or 10 MHz. This is differs from other 1401s (including the Power1401 625) that

produce new values on demand up to a maximum rate. The important differences are in

externally clocked mode, and when sampling single channels at rates above 400 kHz;

otherwise the ADC behaves just the same as in all other 1401s.

In multiple channel mode or single channel mode up to 400 kHz, we use the 10 MHz rate

and digitally filter the data in the ADC hardware to reduce high frequency (in the MHz

range) noise. In triggered start mode, there is up to 0.1 microseconds delay between the

trigger and the first point. All subsequent points are at the requested clock spacing. In an

externally clocked mode, you get the first available sample after the external clock tick,

that is, all samples occur at the next 0.1 microsecond interval, equivalent to a ±50 ns jitter

on each sample. There is no jitter when internally clocked.

For single channels at rates above 400 kHz the ADC is run in a different mode that

produces outputs every 0.4 microseconds. In triggered start mode, there will be up to 0.4

microseconds delay between the trigger and the first point. If you request a clock rate that

is a multiple of 0.4 microseconds (0.4, 0.8, 1.2, 1.6, 2.0 or 2.4 microseconds), you will

get output sampled at precisely the requested rate. If you request output at any other rate

between 0.4 and 2.5 microseconds, each point will take the next available ADC sample.

The ADC has very low noise at total sample rates up to 200 kHz. In the multi-channel

case, the noise increases as the sampling rate approaches 400 kHz as channel switching

times and the sample rate limits the amount of high frequency digital filtering that can be

done. The noise is the same for all single channel sampling rates above 400 kHz.

Multi-channel sampling and
cross-talk

Multi-tasking mode notes

Sequential sampling notes

Power1401 prior to
Power1401 625

 Voltages and Waveforms

36

The multi-tasking MADCM command samples up to 32 ADC channels into separate buffers

in 1401 memory at rates that can be different but that are all sub-multiples of a base rate.

You can start and stop channels at will, and monitor individual channel status.

The sample times of all channels is normally clock controlled by the channel sequencer

and in all 1401s except the standard, you will get faster maximum rates with the

sequencer (unless you only sample a small fraction of the total channels). If you do not,

use the sequencer you will get un-clocked sampling with some sample time jitter.

Channels 0 and 3 for the micro1 are sampled simultaneously when they are both called in

a burst, if the dual sample/hold option is fitted, and if the channel list starts with 0 3. If

the clock is set too fast for the channel list, error 31 occurs after the command runs. The

maximum rates in kHz for 2 byte data, with all channels at the same rate, are:

Channels
clocked / no clock

1 2 4 8 16

micro1401 125 / 64.5 90.9 / 50 58.8 / 29.4

Micro1401 mk II 500 / 238 250 / 136 125 / 75

Micro1401-3 500 / 256 250 / 151 125 / 83

Micro1401-4

Power1401 384 / 250 200 / 143 100 / 78 50 / 40 25 / 20

Power1401 mk II 1667 / 300 500 / 232 250 / 139 125 / 76 62.5 / 40

Power1401-3 2000 500 250 125 62.5

Power1401-3a 2500 714 357 180 90

MADCM,Z[,chan] Initialise the command

MADCM,clock,pre,cnt Clock set up

MADCM,Q Clock stop

MADCM,An,ch,st,sz,dvd,rpt Channel set up

MADCM,S,ch,rpt Change channel repeats

MADCM,?,ch;status Read channel status

MADCM,Z[,chan] should be used first. If chan is present, it sets the list of channels to

use. If omitted, un-clocked mode is set. The clock is stopped if running. Using a channel

list is strongly recommended; the Power3 and 3a and Micro4 always use clocked mode

and create the channel list (if not supplied) during the clock set up call.

MADCM,clock,pre,count will reset the channel list memory, and either start the

sampling immediately, if clock is set to T, H, C or F, or wait for a low going TTL pulse on

the clock 4 event input (E4) if TT, HT, CT or FT are used. This is the basic clock rate for

the command; individual channels will be set at sub-multiples, see below. Once started,

the clock will run forever unless stopped!

MADCM,Q stops the clock from running, and thus causes sampling to stop. The ADC will

be released for use by the ADC command and for cursors in the D command. This has

immediate effect.

MADCM,An,ch,st,sz,dvd,rpt links an individual channel into the MADCM sampling

table and should be used before the clock setup command. If MADCM,Z has been used to

set a list, to get crystal controlled sampling, the channel must only be taken from that list.

With no list, any channel may be used.

MADCM
Multi-rate waveform

input

Maximum MADCM rates in
kHz

Command variants:

Initialise

Clock set up

Clock stop

Channel set up

 1401 family programmer reference

37

Channels may be sampled as one byte or two byte data; setting A1 as the second field

establishes 1 byte mode, A2 sets 2 byte mode. The third field sets the channel number to

be used, in the range 0 - 15.

The next two fields set the start address in the 1401 user area and the size of this area in

bytes. The sixth field sets the divide down from the basic clock rate to be used by this

channel. This divide down may be in the range 1 to 256. To set a divide down of 256, use

0; any value greater than 255 will cause an error to be flagged.

The final field is the number of times to fill the buffer defined by st and sz; this will

usually be set to 1! If other values are used you must be prepared to copy filled buffers

elsewhere in 1401 or to the host if you wish to preserve old data.

MADCM,S,ch,rpt allows the number of channel repeats to be dynamically changed, as

long as the channel is active. If the channel is inactive, or has finished sampling, then no

effect will be observed.

MADCM,?,ch causes the channel status to be returned as:

-128 Channel has not yet filled a half buffer

0 Channel has completed the set number of repeats

1 Second half of buffer is filling, first half is free

2 First half of buffer is filling, second half is free

This example sets up ADC channels 0, 2, 4 and 5 to be sampled at 100 Hz, 50 Hz, 33.3

Hz and 25 Hz. The channel 0 result is 1024 bytes long, channel 2 is 512 bytes long,

channel 4 is 340 bytes and channel 5 is 256 bytes long. The sampling sequence is:

All the channels are one byte data. The basic clock rate is set to be 100 Hz, by setting a

divide down of 10 * 1000 from the 1 MHz system clock, and the sampling is to start by a

trigger on E4. The list of channels is not given, so sampling within a burst will not be

strictly synchronous. With this choice of sampling rates and array lengths, sampling will

stop on all channels at the same time, though this is not necessary in general use.

Print a start message on the host screen, and set up communication with the 1401. Clear

1401, ignore the channel sequencer, stop the clock and set up channels 0 2 4 and 5 by

sending these strings (note the staggered start addresses):
 CLEAR
 MADCM,Z
 MADCM,Q
 MADCM,A1,0,0,1024,1,1
 MADCM,A1,2,1024,512,2,1
 MADCM,A1,4,1536,340,3,1

 MADCM,A1,5,1876,256,4,1

Now set the clock rate and start it by sending:
 MADCM,CT,1000,10

Check for completion by sending this string and reading the value of the status of channel

0, until it becomes zero:
 MADCM,?,0

Return communication to the screen, if needed, and print a message to show it is all over.

0
2

clock

4
5

Change channel repeat count

Read channel status

Example of use of MADCM

Example 7:
Multi-rate input

 Voltages and Waveforms

38

The ADCBST command samples ADC data in burst mode. In this mode all of the ADC

channels in the list are sampled in a clocked burst, in contrast with the ADCMEM

commands, in which samples are evenly spaced in time.

The optional second sample and hold allows bursts of samples to be simultaneously

sampled on channels 0 and 3 in the micro and Micro2, if they are first and second in the

channel list. Operation reverts to normal if any other ADC sampling command is used.

This diagram shows the sampling times for channels 0, 3, 2, 1 and 5 (with the optional

second sample and hold if you use a micro1401 or Micro1401 mk II).

The burst of conversions is triggered by a clock 4 tick or an external signal. The

command can be used in interrupt driven mode to allow concurrent use of other 1401

commands or in dedicated mode for maximum speed.

The ADCBST command is included in the ADCMEM command, and has all the features of

ADCMEM, including repeated triggers. If your application uses both ADCMEM and ADCBST,

load ADCMEM first. If it uses only ADCBST, you must load ADCMEM.

ADCBST,kind,byte,st,sz,chan,rpt,clock,pre,cnt Clocked start

ADCBST,kind,byte,st,sz,chan,rpt,X External triggered start

ADCBST,T,delay1[,delay2] Set burst timing

ADCBST,?;status Read the command state

ADCBST,P;offs Read buffer pointer

ADCBST,S Stop sampling smoothly

ADCBST,K Kill all sampling

ADCBST,Z;device,fnclvl,nch,adc Report channel sequencer configuration

Arguments are used as described above in ‘Standard arguments’, except that chan has

been extended:

chan List of channels to be sampled, in order. If the number of channels does not

divide into the buffer size, error 253,127 is reported. Channels numbers up to the

maximum fitted can be used. A negative number (-N) as the only entry means

use channels 0 to N, where N can be up to the maximum channel number.

ADCBST,kind,byte,st,sz,chan,rpt,clock,pre,cnt This command initiates the

sampling at a rate set by the clock, pre and count parameters. Every pre * cnt clock

source periods a burst of ADC samples will be taken, one for each channel in the channel

list. The ADC data is stored in interleaved form in the memory array. Sampling will

continue until rpt cycles round the array have been completed or until the command is

stopped. Both the ADCBST,I and ,F forms use interrupt driven sampling. The ,F form

waits for sampling to end before returning.

This table shows typical maximum rates per channel for 2 byte data, with no other

commands running. These speeds assume that the best values of delay1 and delay2

have been selected.

ADCBST
Burst mode waveform

sampling

Command variants

Set up and start sampling

clock
0 0 3 3 2 2 1 1 5 5

delay1 delay2

0 and 3 are simultaneous if
dual sample and hold fitted

 1401 family programmer reference

39

 channels 1 2 4 8 16 32

 micro1401 333 167 83

 Micro2/3 500 250 125

 Micro4 1000 500 250

 Power1401 mk I 2500 200 100 50 25 12.5

 Power1401 625 800 313 156 78 39 19.5

 Power1401 II 2000 500 250 125 62.5 31.25

 Power1401-3 3000 500 250 125 62.5 31.25

ADCBST,kind,byte,st,sz,chan,rpt,X samples on the ADC external convert input.

Every pulse on the input initiates a burst of samples. In all other ways this form of the

command is identical to the clocked conversion form.

ADCBST,T,delay1[,delay2] sets the burst timing

in channel sequencer clock periods. The hardware

sequencer in the micro1 runs at 0.25 µs per tick. All

modern 1401s run at 0.05 µs (or emulate it). The

table shows the minimum (and default) delay1 and

the default value for delay2. Most users never need

to change them. The values are reset to these defaults

when the 1401 is reset or commands are loaded or

the CLEAR command is used. Otherwise, the last set values are used.

delay1 sets the delay between clock 4 ticks or external pulse and the first conversion in

the range 0-255. The table above has the minimum values for this parameter, but

setting values less that the minimum will set the minimum, so we recommend

that you set this parameter to 0 unless you need a longer delay.

delay2 sets the interval between successive conversions in the burst. Any value up to

255 can be used. Do not set this less than your ADC conversion time.

Power1401 mk 1 only: delay2 values less than 56 cause problems on channel

n+1 if channel n exceeds the 1401 input range.

If delay2 is omitted, only delay1 is set. If delay2 values less than those in the table

are used the channel cross-talk will increase and clocking may become less reliable. The

Power3a can run faster than the table suggests (at the cost of increased cross-talk), and

will automatically reduce the timings if the number of channels times the rate exceeds 1

MHz (the suggested limit).

ADCBST,Z;device,fnclvl,nch,adc returns channel sequencer information, for use

in programs that have to optimise performance.

device This returns a code for the channel sequencer

fitted. A micro1401 has code 2 and the

Power1401 and Micro1401 have code 3.

fnclvl This is the functionality of the sequencer firmware (a minimum of 2).

nch The number of channels that the sequencer can accept. This is a minimum of 32.

Selecting channels above those fitted to your 1401 results in a command error.

adc A code for the ADC type.

The table lists accuracy and

speed in kHz for single and

multi-channel use for the

current ADC devices.

Maximum ADCBST sample
rates

Set up externally converted
sampling

Set the timing parameters 1401 delay1 delay2

micro 5 12

Micro2/3 3 40

Power1 5 50

Power2/3 3 20

Power3a 1 20

Micro4 1 20

Return channel sequencer
information

code type µs

2 Hardware 0.25

3 Hardware 0.05

adc single multi bits Used in 1401s

4 2500 400 16 Power1401 mk I

5 500 500 16 Micro1401

6 800 625 16 Power1401 625

7 3000 1000 16 Power1401 mk II/-3

8 1000 1000 16 Micro1401-4

 Voltages and Waveforms

40

ADCBST,?;status is used to return information in a similar format to the other high

performance waveform input commands:

-128 The first half buffer is not yet filled

-1 Sampling finished, but some samples were missed

0 The set number of repeats are completed correctly

1 The second half buffer is filling, the first is free

2 The first half buffer is filling, the second is free

ADCBST,P;offs returns offs as the current value of the buffer pointer, as in

ADCMEM,I. The value is the byte offset from the start of the specified data area to the

next location to be written to.

ADCBST,S stops the sampling smoothly the next time the end of the buffer is reached.

ADCBST,K terminates all sampling immediately.

Find the status of the
sampling

Where is the data currently
going?

Stop sampling

 1401 family programmer reference

41

PERI32 captures up to 32 waveform channels. Data is sampled under interrupt into a

buffer until a trigger condition is detected. A set number of additional post-trigger data

points are captured and sampling stops. Data is retrieved by a PERI32 command variant

that calculates the position of data in the circular buffer area.

PERI32 samples data in burst mode, with simultaneous sampling of channels 0 and 3

with micro1401 and Micro2 if these are the first in the list and the simultaneous sampling

option is fitted.

Channels 1 2 3 4 n

micro1401 222 166 111 82 330/n

Micro1401 500 250 167 125 500/n

Power1401 769 200 133 100 400/n

Power1401 625 1000 313 208 156 625/n

Power1401 mk II 1666/909 500 333 250 1000/n

Power1401-3 2000 500 333 250 1000/n

Micro1401-4 1000 500 333 250 1000/n

The trigger for sampling can be a pulse on the event 0 input, an ADC signal passing a

threshold, or a TTL level on a digital input. Where 2 rates are given, the slower rate is

with a digital trigger on bits 0-7; all other triggers can achieve the higher rate.

PERI32,byte,st,sz,chan,posn,clock,pre,cnt Set up sampling

PERI32,E Set event trigger

PERI32,A+,level or PERI32,A-,level Set analogue trigger

PERI32,D0,bit or PERI32,D1,bit Set digital trigger

PERI32,G Start sampling

PERI32,P;amount Return bytes available

PERI32,H Hang until finished

PERI32,?;state Query sampling state

PERI32,K Kill sampling

PERI32,F,hoOff,st,sz Fetch sampled data

PERI32,T,delay1[,delay2] Set sequencer timing

PERI32,Z;device,fnclvl,nch,adc Get sequencer information

posn The position in the result array of the ADC data collected at the trigger point. It

may range from any negative value to a positive value less than sz. It is a byte

address and must be an exact multiple of the number of channels times byte.

The diagram shows the effect of varying posn for sz = 150.

level The trigger voltage level, set as a 2 byte ADC value from -32768 to 32767.

bit A value specifying a digital input bit, from 0 to 15.

posn = 150

0 100 trigger 200 300 400

posn = 50

posn = -100

posn = 0

PERI32
 peri-event triggered
waveform sampling

Maximum PERI32 data rates
in kHz (no other activities)

Command variants

Non-standard arguments

 Voltages and Waveforms

42

PERI32,byte,st,sz,chan,posn,clock,pre,cnt stops any ADC use and sets the

sampling parameters, the memory area, the trigger position and the clock source.

The trigger mode must be selected before sampling starts. Trigger options are:

PERI32,E the trigger will be the event 0 input. This is normally a low-going transition

but the 1401 can be set up to respond to high-going transitions instead, see EVENT.

PERI32,A+,level the trigger is a low-to-high threshold crossing of the last waveform

channel in the chan parameter list in the PERI32 setup. The level parameter sets the

threshold, in ADC units from -32768 to 32767, for both 8 and 16 bit data acquisition.

PERI32,A-,level is the same as PERI32,A+,level with a high-to-low transition.

PERI32,D0,bit the trigger is a digital input bit reading as zero. bit defines the bit to be

used, from 0 to 15. The digital trigger must be in the valid state for longer than the time

between bursts, set by pre and count.

PERI32,D1,bit is the same as PERI32,D0,bit except that the bit must read as 1.

PERI32,G starts sampling, using the parameters defined in the two setup commands. It

may be used more than once with one set of input parameters, avoiding the need for

multiple set up calls. Once started, sampling continues until halted by a trigger or by:

PERI32,K stops sampling, and resets the ADC and the ADC clock. The data stored in

memory is not usable after this command. It does not alter setup parameters stored in

memory, so it is possible to run PERI32,G after PERI32,K.

PERI32,H hangs all activity in 1401 until the PERI32,G sweep is done, like ADCMEM,F.

PERI32,?;status returns a value to indicate the current status of the command:

2 Sampling primed and waiting for trigger

1 Trigger detected, sampling in progress, waiting for sweep end

0 Sweep finished, or not started yet

-128 Sampling not started yet, waiting for an event 4 pulse

Attempts to drive the sampling too fast give error 31.

PERI32,P;amount returns the number of bytes of ADC data available for transfer to the

host with the F sub-command. If amount is less than sz, data transferred with the F sub-

command is interim data only, and may be different if you ask for the same data again.

Once the command has triggered, any data you fetch with the F sub-command will

remain unchanged, even after the command has finished sampling.

PERI32,F,hoOff,st,sz transfers data to the host. The st parameter is the offset into

the data to start transferring from, and sz is the number of bytes to transfer. st is not a

memory address but an offset relative to the first data point available. The value of st +

sz should not exceed the amount value returned by the P sub-command or the sz

parameter used in the setup. For example, if the command is sampling into an area 4096

bytes in size, an F command with st and sz of 0 and 1024 will transfer the first quarter

of the data. The data is transferred to the host memory area identified by hoOff (see page

21 for more discussion of hoOff). Requesting too much data causes error 253,64.

PERI32,T,delay1[,delay2] and PERI32,Z;device,fnclvl,nch,adc control the

ADC channel sequencer. These commands are identical to the T and Z subcommands of

ADCBST to which you should refer for a full description.

Setting up data handling

Setting the trigger mode

Run time control

Report sampled bytes

Collect sampled data

Channel sequencer control

 1401 family programmer reference

43

The MEMDAC command plays 1401 memory to any combination of the DAC channels, at

a user-defined rate. If more than one channel is required, the data must be interleaved in

memory to appear on the correct output. All the channels are output on each clock tick,

and are updated together. MEMDAC uses clock 3.

Channels 1 2 3 4 8

micro1401 250 250

Micro1401 mk II 500 455

Micro1401-3 500 476

Micro4 2000 2000 2000 2000

Power1401 384 357 344 344

Power1401 mk II 555 500 455 416 313

Power1401-3 2000 2000 2000 2000 1000

The interrupt rates assume no competing interrupts. MEMDAC does not limit the rate you

ask for, but over-ambitious rates cause error 31.

MEMDAC,kind,byte,st,sz,chan,rpts,clock,pre,cnt Clock set up

MEMDAC,kind,byte,st,sz,chan,rpts,X[T] External [triggered] set up

MEMDAC,S Stop after current sweep

MEMDAC,K Kill current play

MEMDAC,?;status Query command state

MEMDAC,P;offs Report next byte to be played

Once the clock setup command has been issued, the 1401 will either begin to play the

area of memory immediately, or if the triggered option has been selected, it will wait for

a low going pulse on the E3 input. The mode is set by kind.

Dummy channels can be put in the chan list, with channel numbers of -1. This enables

replaying channels from a record of a larger number of channels.

This is identical with the variant above, except that the DACs are updated directly on

pulses received on the rear panel F input.

MEMDAC,S stops output after the next sweep. This will not cause any additional output if

the play has already terminated. MEMDAC,K kills any active play, and resets the command

software and hardware.

MEMDAC,? causes the command status (multi-tasking mode only) to be returned as:

-128 Command has not yet output the first half buffer

0 Command has completed the set number of repeats correctly

1 Second half of buffer is playing, first half is free

2 First half of buffer is playing, second half is free

MEMDAC,P returns the position of the next byte for output. The DACs are used in double-

buffered mode; the pointer shows the next byte to be taken from memory, not be the next

value to be converted. Double-buffered means that values written to the DAC outputs do

not cause the outputs to change until the next clock tick or external pulse. This allows us

to update all the DACs together (synchronously) even though we have to write values to

them at different times. When using the DAC Silo with recent 1401s, the position can be

many samples ahead of the current values on the DAC outputs.

MEMDAC
waveform output

MEMDAC maximum rates
kHz

Command variants

Clock set up

External triggered set up

Stop playing

Query status

Report position

 Voltages and Waveforms

44

This example will play 1000 sweeps of the contents of the first 1024 bytes of memory,

treated as 2 byte data at 10 kHz, being 1 MHz divided by 10 * 10.

Print a message on the host screen to say we are starting

Open1401 Open communication with the 1401

Load MEMDAC command, if not already loaded

 CLEAR Stop any 1401 activity

 MEMDAC,I,2,0,1024,0,1000,C,10,10 Start output

 MEMDAC,? Request status, wait for 0 meaning done

Close1401 Close communication with the 1401

MEMDAC repeated trigger mode plays multiple sweeps of data with the minimum time

delay between the sweeps. There is no sampling speed penalty for the use of this mode.

MEMDAC,kind,byte,st,sz,chan,rpt,clock,cnt[,swpsz] Clocked

MEMDAC,kind,byte,st,sz,chan,rpt,XR[,swpsz] External convert

These calls are identical to the standard setup calls, except that the clock control contains

R (think Repeated trigger) in the trigger field and there is an optional additional field:

swpsz The byte size of each sweep of data to output. If omitted it takes the value sz/2.

It may not be larger than sz, but it does not have to divide exactly into sz.

The data area defined by st and sz is divided into sub-buffers, each of size swpsz bytes.

If sz does not divide exactly by swpsz, sz is rounded down to an exact multiple. Each

sub-buffer is output in triggered mode (using the E3 trigger input to start output).

In this mode, the rpt field defines the number of sub-buffers to output; it cycles round

the entire buffer several times if this is necessary to complete the number of sub-buffers

requested. To collect the largest number of sweeps possible, set rpt to 0. This gives 2
32

sweeps. If each sweep lasted only 1 millisecond, it would take nearly 50 days to complete

the sampling task, so you can think of rpt = 0 as running for ever.

The MEMDAC,P command variant (interrupt mode only) operates unchanged, returning

the next position to write to the DACs. The MEMDAC,? command returns the number of

sub-buffers output. It does not return 0 when output ends. The MEMDAC,S command stops

the output after the next sub-buffer. MEMDAC,K kills output immediately.

You would run in this mode when it is necessary to monitor the progress of the

command, or when you need to play more data than can fit into the 1401 memory. You

can transfer data to the 1401 from the host while the command runs, using the MEMDAC,?

and MEMDAC,P commands to monitor the command progress.

In this mode (MEMDAC,F...), the only way to get control back from the 1401 before all

the sub-buffers have been sampled is to send a hardware reset to the 1401 (see the

Reset1401() routine in the appropriate Language Support Manual). In this case, the

MEMDAC,? command returns the number of completed buffers before the reset.

Example of use

Example 8:
MEMDAC output in interrupt

mode

Repeated trigger

Command variants

Multi-tasking mode notes

Sequential mode notes

 Switching, counting and timing

45

This chapter describes the digital input and output lines and their control, clocks 0, 1 and

2 and the event inputs.

Command Function page

DIG Read, write and configure the digital port 46
CLKEVT Absolute and interval timing of events 47
TIMER2 General purpose use of clock 2 48
DIGTIM Sequence control in 1401 using clock 2 52
EVENT Protocol control for the event inputs 56

There are 32 digital I/O bits; 16 permanent outputs and 16 permanent inputs. The

connectors are located on the rear panel.

Pin Function (output socket) Pin Function (input plug)

1 Output 15 1 Input 15

14 Output 14 14 Input 14

2 Output 13 2 Input 13

15 Output 12 15 Input 12

3 Output 11 3 Input 11

16 Output 10 16 Input 10

4 Output 9 4 Input 9

17 Output 8 17 Input 8

18 Output 6 18 Input 7

5 Output 7 5 Input 6

6 Output 5 6 Input 5

19 Output 4 19 Input 4

7 Output 3 7 Input 3

20 Output 2 20 Input 2

8 Output 1 8 Input 1

21 Output 0 21 Input 0

9 Data received input DR 9 Data transmitted o/p (8-15) DT

22 User input (buffered, reserved) 22 - not connected -

10 User output (buffered, reserved) 10 - not connected -

23 New Data Ready (0-7) NDRL 23 Data Available i/p (0-7) DAL

11 Output enable bits 8-15 11 - not connected -

24 Data received i/p (0-7) DRL 24 Data transmitted o/p (0-7) DTL

12 New Data Ready (8-15) NDR 12 Data Available i/p (8-15) DA

25 +5V (250 mA maximum) 25 +5V (250 mA maximum)

13 GND 13 GND

Electrical specifications of the inputs and outputs for each member of the 1401 family

can be found in the Owners handbook for each model.

The digital port

Digital i/o connectors

 Switching, counting and timing

46

The built-in DIG command controls the digital port. It is intended for occasional changes;

if you need to send out a regular time varying pattern on the digital outputs, the DIGTIM

command, described later in this chapter is much better.

DIG,I[,bit];value Read the input

DIG,O,value[,bit] Set the output

DIG,Pxy,prot Power3/Micro4, set the output handshake protocol for a port xy

DIG,Pxy;prot Power3/Micro4, read the handshake protocol for port xy

value is a value to write or the value read.

bit (if present) is the number of the bit in the 16 bit word (0-15).

DIG,I[,bit];value will read the digital input word and report either the state of an

individual bit, or the entire word. Any bits in the low byte that are being used as output

will read as 0. To read one bit, include the optional [,bit]. The entire word is read if the

bit number is omitted. Thus:

DIG,I;value reads the entire 16-bit input word, result in the range 0 to 65535

DIG,I,0;value reads the state of bit 0 only

DIG,O,value[,bit] operates in word or bit mode according to the number of

arguments sent. In word mode, it transfers the upper byte of value to outputs 8 to 15 and

the lower byte to any of the bits 0 to 7 set to be outputs. In bit mode, it transfers the state

of bit 0 of value to the bit number specified by bit. For example:

DIG,O,$FF34 sends the hex value FF34 to the output

DIG,O,1,15 sets bit 15 of the output word

DIG,Pxy,prot You can set and read the port

handshake (h/s) protocol for each of the 4 ports

set by xy. Each port has an input and an output

handshake line that can be operated as active

low (default) or active high and the port can be

set to a simple pulse protocol (the default) or to

a more complex interlocked handshake protocol.

The prot value is the sum of the values in the table to

the right. The default value is 0, which selects active

low, 1 microsecond, simple pulsed mode. This is the

recommended mode for normal use. The protocol

commands apply to the Power3, 3A and Micro4 only.

This program will ‘ramp’ the digital outputs (send a steadily rising binary number) and

stop if bit 15 of the digital input is set:

Open1401 Open communication with the 1401

DIG,S,255 Set low 8 bits to outputs

x=0 Initialise the loop

repeat Start of the loop

 DIG,O,x Write next value of x

 DIG,I,15 Read input bit 15 to j

 x=x+1 Increment the counter

until j=1 Until input bit set

Close1401 Stop communicating with 1401

DIG
simple digital i/o

Command variants

Reading the digital inputs

Setting the digital outputs

Setting the port protocol
Power3/Micro4

xy Port Bits In h/s Out h/s
IH Input 15-8 DA DT

IL Input 7-0 DAL DTL

OH Output 15-8 DR NDR

OL Output 7-0 DRL NDRL

Value Effect

1 Input h/s active high

2 Output h/s active high

8 Interlocked h/s

16 0.1 us pulses

Example

Example 9:
Control of the digital port

 1401 family programmer reference

47

This clock is suited to timing intervals between pulses on event inputs E1 and E0, and

absolute timing of pulses on the event 0 (E0) input. Gathering and analysing arrays of

times is better done by commands described in the Event time processing chapter later in

this manual. See also the EVENT command on page 56 for a description of the properties

of the event inputs, and for setting the active polarities of the event inputs.

Clock 0 has a 16-bit prescaler that divides a selected frequency source, followed by a 16-

bit latchable counter, and a 1-bit clock flag. The input to the prescaler is either from the 1

MHz system clock (C) or from the F0 input (F – not Micro4) which may run at any rate

to 4 MHz. The clock may be started by a pulse on the E1 input (T) or by program. The

clock is latched (the counter value is copied and held until read) by a low going E0 pulse.

The clock is controlled and read by the built-in CLKEVT command. This is a sequential

command, but the times are latched in hardware so data will not be lost if another

command is running at the time of the event.

CLKEVT,clock[T],prescl Set up clock 0 and events

CLKEVT,R;event1,event0,flag,count Read the clock counter and events

clock is a character, C to select the internal 1 MHz crystal source or F to select the

external frequency supplied on the F0 input (at not more than 4 MHz). With all

except the micro1401, H for 4 MHz and T for 10 MHz are also allowed.

prescl is a number, from 2 to 65535, that divides down the selected source frequency.

CLKEVT,clock[T],prescl sets up the clock prescaler, zeros the counter, and starts the

clock running immediately, if the T (trigger) is omitted, or sets the clock to start on

receipt of a low going pulse on the Event 1 input if T is included. The counter will count

upward from zero at a rate given by the input rate divided by the prescaler value.

CLKEVT,R returns the state of both event flags, the clock overflow flag and the counter

value. If no event has been seen, or the clock has not overflowed, the respective

arguments will be zero, otherwise one. The returned format is:

event1,event0,flag,count for example:
1,0,0,1286

This indicates an event 1, but no event 0 or clock overflow, and a clock counter value of

1286 out of a possible 65535. The act of reading the clock will clear the clock flag and

the two event flags, but the clock continues to run so further events can be seen.

1 MHz

F

C

Clock 0

flag

Clock F0

LatchStart

Event 1

Event 0

T

R command reads counter and

flags, and clears flags

C and F commands set prescaler

and clear counter and flags

Prescaler
CounterSelect

CLKEVT
Timing events with

clock 0

Schematic of clock 0 as seen
by CLKEVT

Command variants

Set up the clock

Read the clock

 Switching, counting and timing

48

This built-in command controls general purpose use of clock 2. Clock 2 has four parts:

1. Clock source, either the 1 MHz clock (C) or the user input (F) of up to 4 MHz.

2. Clock Gate; a selectable hardware clock gate (G) whose function depends on the

clock mode (see below). The gate is controlled by the E2 input.

3. Counter chain; 3 programmable dividers called prescaler 1, prescaler 2 and counter.

4. Out; a signal level that can control external equipment. This level also sets the clock

flag which may be read by the TIMER2,R... command. Once the flag is set it

remains set until the next TIMER2,F... or TIMER2,C... command.

TIMER2,clock[G],mode,pre1,pre2,count Set up the clock

TIMER2,R,which;flag[,count[,pre2[,pre1]]] Read the clock

TIMER2,S; Stop (requires not-yet released monitor…)

clock C for the internal 1 MHz clock, or F for an external TTL signal on the rear F

input. All units except micro1 allow H for 4 MHz and T for 10 MHz

mode range 2 to 3 (0-1, 4-5 obsolete) sets the clock operation mode, see below.

pre1 the first prescaler, the first divide down of the source, range 2-65535.

pre2 the second divide down, range 2-65535. The Power1 allows pre1=pre2=1.

count sets the third stage of divide down, range 2-65535.

which specifies which of the three 16 bit counters to read.

The Micro2 and Power2 onwards allow 1-65536 clock ranges and support mode 2 and 3

only. Modes 0, 1, 4 and 5 are for micro1401 and Power1 only.

TIMER2,source... set the clock to run from the internal clock source or from the F

input. The hardware gate input (E2) is enabled by adding G. Clock modes are:

The clock flag is cleared, the output goes high and the clock counts down from the values

loaded into the prescalers and counter. When the count reaches zero, the flag is set, clock

output goes low but the clock continues counting down. If the G code is used to enable

the hardware gate, the count is suspended whenever G goes high. The counters and

prescalers are not loaded until the gate goes low.

Clock F2

1 MHz

Event 2 (Gate)

C and F commands load up prescalers and counter

F

C

Prescaler

1

Prescaler

2

Counter Clock

flag

R command reads prescalers, counters and flag

G

Select

Select

TIMER2
The general purpose

48 bit clock

Block diagram of clock 2

Command variants

Set up the clock

mode 0: Suspendable time
out (obsolete)

Mode 0 timing

 1401 family programmer reference

49

The clock flag is cleared and output goes high and the clock will count down to zero,

when output will go low and the clock continues to count. If the hardware gate is enabled,

the clock will wait for a high to low transition on the gate before starting the sequence.

The counters will be reset, and the sequence restarted for every high to low transition of

gate (E2), even if the count is not yet exhausted.

In mode 2 the clock output will pulse high for 1 clock of the counter, and be low for n-1

clocks, where n is the count loaded into the counter. If the internal crystal source is used

(C), the output frequency is 1000000/(pre1 * pre2 * count).

If the hardware gate is enabled (G), the output will be held low when the E2 input is

asserted (held high). When the gate (E2) goes low, the counter and prescaler are reloaded

and the sequence continues.

Mode 3 resembles mode 2, except that the output is low for half the count, and high for

half the count if n is even (where n is the counter preset value). If n is odd, the output is

low for one extra count.

The Micro2/3/4 and Power2/3 support modes 2 and 3 only. In these modes, removing the

gate signal suspends the count. Restoring it continues the count. The counter does not

reload. The Power3 and Micro4 allow T in place of G for a triggered start.

mode 1: retriggerable one
shot (obsolete)

Mode 1 timing

mode 2: Rate generator

Mode 2 timing

mode 3: square wave
generator

Mode 3 timing

 Switching, counting and timing

50

Mode 4 causes the clock to produce a high going pulse of one counter clock period

duration after a delay (if using 1 MHz clock) of:

pre1 * pre2 * count microseconds

This pulse will occur after the counter has counted from the preset value to zero. If the

hardware gate is enabled, its effect is to suspend the counting when asserted (allowed to

go high) and restart when pulled low.

In mode 5, if the gate (G) is not enabled, the effect is the same as in mode 4. If the

hardware gate is enabled, a high going pulse will be produced after the set delay

whenever the gate input makes a high to low transition.

The TIMER2,R command reads the state of the clock flag, and up to three counters:

Command Values returned

TIMER2,R,0 clock flag

TIMER2,R,1 clock flag, counter

TIMER2,R,2 clock flag, counter, prescaler2

TIMER2,R,3 clock flag, counter, prescaler2, prescaler1

TIMER2,R,4 clock flag, 32-bit counter (Micro4 only)

This command latches the state of all three stages simultaneously. Values read from the

prescalers and the counter count down to zero.

When used as a timer, prescaler 2 holds the least significant count, prescaler 1 the

next most significant, and counter the most significant. The counter clock period is the

time to decrement the counter by one, which is:

counter period = pre1 * pre2 clock periods

mode 4: software triggered
strobe (obsolete)

Mode 4 timing

mode 5: hardware triggered
strobe (obsolete)

Mode 5 timing

Reading the clock

 1401 family programmer reference

51

The XFREQ command is supported by the Power1401 mk II and -3 only, and allows you

to synthesise a range of frequencies that are not limited to subdivisions of 10 or 4 MHz.

The frequency output can be routed to the ADC Ext input, the clock F input and to the

front panel Clock Out signal (replacing clock 2 output).

The output frequency in MHz is given by ((20 / Q) * P) / T where Q, P and T are

integers. The range of Q is 2 to 80, P is 16 to 1023 and T is 2-127. The synthesiser works

as in the diagram below.

Q
2-80

*P
16-1023

T
2-127

100-400 MHz 20MHz Output

The output from the multiply by P stage must lie in the frequency range 100 to 400 MHz.

If the output is routed to the clock F or ADC Ext inputs, it must be no more than 10 MHz.

The lowest output frequency is 100/127 MHz (0.7074016 MHz).

XREFQ,G,qDiv,PMult,tDiv Start frequency synthesis

XFREQ,S Stop frequency synthesis

XFREQ,R,output Route the output of the synthesiser

qDiv The initial divider for the 20 MHz signal in the range 2-80.

pMult Frequency multiplier in the range 16-1023. P/Q must have a value between 5

and 20 so that the output for the frequency multiplier lies in the range 100 to 400

MHz. This is the factor that allows us to generate frequencies that are not

available from the other 1401 clocks.

tDiv The final divider, in the range 2-127.

output This is the sum of 1=route to ADC Ext input, 2=route to the Clock F input and 4

to route to the Clock Out BNC on the front panel, replacing any clock 2 output.

If the output is used as the Clock F input, it is resynchronised to 20 MHz, which

will generate a timing jitter of up to 50 nanoseconds on the derived clock output.

The default state, and after loading a command or the CLEAR command is equivalent to

the command sequence: XFREQ,S;XFREQ,R,0;

Let us suppose that we want to sample 9 channels of ADC data (non-burst mode) at 1024

Hz. We need a frequency of 9*1024 Hz. Without using the synthesiser we can get close,

but we cannot manage this exactly. We want to generate a clock F frequency so that:

9*1024 = 2*10
7
 * P/(QTn) where n is the clock divider, which is the same as:

QTn * 9 * 1024 = 2*10
7
 * P

The trick is to set P to take out as much of the factor on the left as we can. We can get

lots of factors of 2 and 5 on the right from the 20 MHz value, so concentrate on other

factors, in this case the 9, so set P to 9*64 = 576. We then have:

16* QTn = 2*10
7
, or QTn = 125*10

4

Now P/Q must lie in the range 5 to 20, so the smallest allowed value of Q is 576/20,

which is 28.8, which rounded up is 29 (28 gives P/Q > 20). Possible useful values of Q

are 40, 50 or 80 (as they divide into 125*10
4
). Lets try 50. This gives:

Tn = 25000

Now the output frequency must be less than 10 MHz. The *P output is 20*P/Q MHz,

which is 230.4 MHz, so T must be at least 24. Setting T to 25 means that the clock

divider n must be 1000. So a solution (not the only one) is Q=50, P=576, T=25 to

generate a frequency of 9216000 Hz, and we set the ADC clock to use the F input and

divide by 1000.

XFREQ
 Frequency
synthesiser

Command variants

A worked example

 Switching, counting and timing

52

The DIGTIM command produces a sequence of precisely timed changes of bits 8 to 15 of

the digital outputs and the 1401 internal events. The internal events are equivalent to the

E0, E1, E2, E3, E4 and ADC external convert inputs of the 1401, but are available under

software control. You can choose to control either the digital outputs, the internal events,

or both the digital outputs and internal events in parallel. See the EVENT command on

page 56 for more details.

DIGTIM is multi-tasking, so can be run at the same time as other commands, and is

commonly used to generate trigger signals for commands like ADCMEM, MEMDAC, PSTH

and INTH as well as to control external equipment. The maximum rate of other interrupt

driven commands is reduced when DIGTIM runs. You cannot use DIGTIM with the

TIMER2 command, which uses the same internal hardware (clock 2) as DIGTIM.

The sequence of output changes is defined in terms of time slices. Each slice has a length

that is a multiple of a basic clock period. Changes in the outputs occur at the end of the

appropriate slice. We suggest that slices should not be set shorter than 10 microseconds

with the micro1401 or 5 microseconds with the Micro2/3 or Power2. The Power3 will

tolerate 2-3 microseconds. If other interrupt-driven commands are active, this minimum

inter-slice interval must be increased. A slice length of a few times the absolute minimum

is suggested. An error will be flagged when the command runs if a slice is too short.

The DIGTIM command is compatible with the DIG command, but any changes made to

output bits 8 to 15 by DIG will not occur until the end of the current DIGTIM time slice.

DIGTIM,Ox Select mode of control

DIGTIM,S[I],st,sz Set work table

DIGTIM,A,mask,state,count[,jmp[,rpt]] Set next slice

DIGTIM,C[G|T],preset1,preset2[,repeat] Set internal clock rate

DIGTIM,F[G|T],preset1,preset2[,repeat] Set external clock divide

DIGTIM,?;state,rptsdone,slice Get command state

DIGTIM,S;rptsdone,slice Stop: returns command state

DIGTIM,K Kill the command

DIGTIM,Ox determines if the output sequence is to be sent to the internal events, the

digital output, or both the internal events and the digital output. Parameter x is one of D, I

or B. D uses the digital outputs only, I uses the internal events only and B uses both the

digital output and the internal events. If the internal events are used, the corresponding

external events should be disabled with the EVENT,D command. If the DIGTIM,Ox

command is not given, only the digital outputs will be used. The DIGTIM,Ox command

must be issued before the DIGTIM clock command starts the output sequence.

DIGTIM,S[I],st,sz allocates an area of memory from st as a private work space for

the command. Each slice uses 16 bytes of memory so if your sequence is 5 slices long,

you will need at least 5*16 = 80 bytes, so sz must be at least this. The optional I

initialises the st,sz region to zeros. If I is omitted, the contents of the area are not

changed.

DIGTIM
Sequenced digital

outputs

Command variants

Internal or external events

Booking memory

 1401 family programmer reference

53

DIGTIM,A,mask,state,count[,jmp[,rpt]] adds a new slice to the end of the list

held in the work space defined by the DIGTIM,S command. A 253 error will be flagged

if the workspace is exceeded.

Event E0 E1 E2 E3 E4 Ext - -

Digital bit 08 09 10 11 12 13 14 15

Value in mask 1 2 4 8 16 32 64 128

mask determines which output bits are to be set at the end of the slice. The value to

use is calculated by adding together the values from the table. For example, to

select digital bit 8 or E0 set mask to 1. To select bit 12 or E4 set mask to 16. To

select both, set mask to 17. state sets the values of the bits selected by mask. If

mask were set to 17 and we wanted to set bit 8 high (E0) high and bit 12 (E4)

low we would set state to 1. To set bit 12 high and bit 8 low we would set

state to 16. Outputs not selected by mask are not changed.

count sets the length of the slice in the time units set by DIGTIM,C... or

DIGTIM,F... and must be in the range 2 to 65535. The optional jmp (default

1) and rpt (default 1) arguments allow slices and groups of slices to be

repeated. jmp sets the offset to the number of the next slice to be executed and

may be positive, negative, or zero to repeat the current slice. If jmp is not 1, it

creates a group of slices. rpt sets the number of times the group will be

executed, and must be in the range 1 to 255 for the standard 1401 and 1 to 65535

for the others. A 253 error flags attempts to branch outside the st,sz region.

The slice sequence is: 122222222223122222222223...

DIGTIM,C and DIGTIM,F commands set the basic clock period for the command and

start the sequence. C selects the 1 MHz internal timer source, F selects the rear panel F

input. For all 1401s except the micro1401, the C can be replaced by H for a 4 MHz clock

or T for a 10 MHz clock. The G clock qualifier can be replaced by T to select an edge-

trigger on E2 rather than the standard gated behaviour. With the G option, the clock will

only run when the E2 input is held low (e.g. by shorting it to ground).

The clock source is divided down by preset1 * preset2 to give the basic clock

period. All 1401s support preset values in the range 2 to 65535. In addition, the Power1

allows both to be 1. Micro2/3 and Power2/3 also allow either or both to be 1.

The repeat argument (default value 1) sets the number of times the entire sequence is to

be executed in the range 1 to 65535.

DIGTIM,?;state,rptsdone,slice returns state as 0 if the command is finished

and 1 otherwise. rptsdone is the number of times the entire sequence has been executed

and slice is the currently active slice number within the sequence.

DIGTIM,S stops the command at the end of the current slice and returns the number of

repeats completed and the current slice number. DIGTIM,K kills the command.

Slice M
jmp = N

rpt = R

Slice 1
jmp = 1

rpt = 1 Slice 2
jmp =0

rpt = 10 Slice 3
jmp = -2

rpt = 2

9 times

once

R
th
 time

To slice M+N

R-1 times

Build the next slice

Mask values

How DIGTIM branches are
used

Setting up the clock

Checking for completion

Stopping the command

 Switching, counting and timing

54

This diagram shows how the DIGTIM command might be used in a simple case where an

experimenter wishes to control a stimulus lamp, trigger an ADCMEM,I sampling sweep

and start a PSTH command at defined times. Bits 8, 9 and 10 of the digital outputs are

selected for the task. Bit 9 is connected to the E4 input to trigger the ADCMEM command,

bit 10 is connected to E1 to start the PSTH command and bit 8 controls the lamp.

The example also shows you can perform background tasks, such as set DAC outputs and

read the state of the digital inputs while the DIGTIM command is controlling the digital

outputs to trigger ADCMEM and PSTH.

DIG,O,1792 outputs 8, 9 and 10 high, now

ADCMEM,I,2,0,1024,0,1,CT,10,100 Set up triggered 1 kHz ADCMEM

PSTH,G,1024,1024,1,M,1 Set up PSTH single sweep

DIGTIM,SI,2048,96 Book space for the 6 slices

DIGTIM,A,1,0,2 Slice 1: 2 units, bit 8 low

DIGTIM,A,3,1,20 Slice 2: 20 units, bit 9 low, 8 high

DIGTIM,A,2,2,2 Slice 3: 2 units, bit 9 high

DIGTIM,A,4,0,18 Slice 4: 18 units, bit 10 low

DIGTIM,A,4,4,2 Slice 5: 2 units, bit 10 high

DIGTIM,A,0,0,38 Slice 6: 38 units, no output changes

DIGTIM,OD Output sent to digital bits only

DIGTIM,C,100,1000 10 Hz rate, no repeats, go

DAC,0,-32768,2 Set analogue output 0 to - full scale

DIG,I,3 Read the state of digital input bit 3

DIGTIM,? Wait for DIGTIM done state

DAC,0,32767,2 Set analogue output 0 to + full scale

ADCMEM,? Repeat until zero is returned

PSTH,? Repeat until ‘status’ = 0

TOHOST,0,2048,data Transfer ADC and PSTH data to host

This diagram shows the sequence of messages and data transfers between the 1401 and

the host computer during the example.

Note that this example requires external wiring between digital output bit 9 and the E4

front panel input (to trigger ADCMEM) and digital output bit 10 and the E1 input (to trigger

0 1 2 3 4 5 6 7 8

2 3 4 5 61 Slice

bit10

bit9

bit8

seconds

Lamp on
Start ADC sampling

and turn lamp off
Start PSTH

DIGTIM example

A typical DIGTIM sequence

Example 10:
Sequenced digital outputs

 1401 family programmer reference

55

PSTH). The sequence could be made to drive the two triggers using the internal events by

making the following changes:

1. Use DIGTIM,OB in place of DIGTIM,OD

2. Use bit 14 or 15 for the lamp to avoid bit 8 (E0) interfering with the PSTH command.

3. Use bit 12 (E4) in place of bit 9 to trigger ADCMEM directly.

4. Use bit 9 (E1) in place of bit 10 to trigger PSTH.

A version of the example 10 with these modifications is provided on the language support

disk as example 10a.

CLOAD

MEMTOP

DAC

DIG

No

Yes

DAC

TOHOST

Command sent to the 1401

Command and response

Block data transfer

1401

Key

finished

trigger

armed
armed

finished

finished

Set DAC value

Run background program

Read digital inputs

Check required commands

are loaded and load any

missing commands

Find space available

HOST

Start interrupt driven

commands

Run background program

Is DIGTIM finished?

Is DIGTIM finished?

Set DAC value

Wait for ADCMEM and PSTH

to finish

Transfer data to host

Save on disc

running

DIGTIM PSTH
ADCMEM

Activities in the 1401 and
host for this example

 Switching, counting and timing

56

The external event inputs E0, E1, E2, E3, E4 and ADC external convert are often used to

start commands on a pulse. It is also useful for DIGTIM to be able to control these inputs,

without external wiring to link digital outputs to the event inputs, so they are mimicked

by a set of ‘internal events’ that can be set by software with the EVENT command.

You can use internal and external events together or disable external events for internal

use only. The command also sets the active polarities of the external event inputs and

routes the Trigger, Event 0 and 1 inputs. Any changes made by EVENT are undone by

CLEAR, RESET (hardware or software), power up and on loading any command.

EVENT,P,select Set external event polarity

EVENT,D,select Disable external events

EVENT,I,select Set internal event state

EVENT,M,mode Set internal event mode

EVENT,T,select Link selected inputs to front panel Trigger (micro/Power)

EVENT,E,select Connect selected signals to front panel Event 0 and 1 (micro/Power)

EVENT,R,select Connect selected inputs to the rear panel inputs (micro/Power)

EVENT,X,outsel Power2/3 only: select signal on the rear panel event pin 8

EVENT,L,select Power3, Micro4 only: connect front panel E1-0 to digital inputs 1-0

EVENT,A Micro4 only: arm tests for E4-E0

EVENT,C Micro4 only: clear test for events 4-0

EVENT,?;flags Micro4 only: flags bits 4-0 are set if events 4-0 are set after arm

select Sets which events the command affects. Each event has a value, given in the

table below, and select is the sum of the values of the selected events. Digital

input bits 8 and 9 values are for the EVENT,E and EVENT,R commands.

Event E0 E1 E2 E3 E4 ADC Ext (Dig 8 & 9)

value 1 2 4 8 16 32 (192)

mode A value used to set the internal event mode. This is the sum of two values:

 Clocked mode causes any change of value

written to the internal event to be suppressed

until the next time the clock 2 flag sets. The

clock 2 flag must be cleared before it can be used to clock the internal events

again (for example by using the TIMER2 command to restart clock 2).

 Pulsed mode causes a pulse on internal events selected by EVENT,I,select. If

pulsed mode is not selected, the value written to the event sets the state.

outsel Set 1 for 4 MHz on the rear panel event connector pin 8, 0 for no output. Other

values of outsel are reserved. By default, nothing is connected to the output.

EVENT,P,select controls the active state of the inputs. The normal event input polarity

is set by a switch pack (see the Owners handbook). The CED recommended state is with

the inputs active low. The inputs will go high with nothing connected, so if the inputs are

set for positive/high as the active state unconnected inputs will appear active.

The event polarity set by the switch is overridden with this command. Selecting an event

gives it negative/low active state (recommended) otherwise they have positive/high active

states. To set event 2 to have a high active state and the rest to be active low:

EVENT,P,59

59 = 1 + 2 + 8 + 16 + 32 selecting events 0, 1, 3, 4 and external convert. Set the event

polarity before other operations as changes cause edges to be seen by the event inputs.

EVENT
The 1401 internal

events

Command variants

mode clocked pulsed
value 64 128

Set the active event polarities

 1401 family programmer reference

57

EVENT,D,select disables selected external events allowing the internal event register to

control a process without interference from external pulses.

EVENT,I,select sets internal events according to select. Selecting an event will set

the corresponding internal event to active (in level mode) or cause a pulse (in pulse

mode) if the corresponding external event is disabled, or can be guaranteed to be

permanently in the non-active state. Unselected events are set to the non-active state in

level mode and are not changed in pulse mode. Selecting an event that is connected to the

external events can mask further changes and should be avoided.

EVENT,M,mode sets the internal event mode, defined in the table above.

EVENT,T,select connects the Trigger front panel input to the selected inputs. Any or

all of E0, E1, E2, E3, E4 and ADC Ext convert inputs can be connected.

EVENT,E,select selects the source of the E0 and E1 inputs and digital input bits 8 and

9 as the front panel Event 0 and Event 1 inputs. The value of select is the sum of:

Value Connection

1 Connect E0 input to front panel Event 0

2 Connect E1 input to front panel Event 1

192 Connect digital input 8 to front panel Event 0 and digital input 9 to front

panel Event 1. You cannot connect only one digital bit.

EVENT,R,select connects the selected inputs to the rear panel signal sources. There are

separate inputs for the E0, E1, E2, E3, E4 and ADC Ext convert inputs on the rear panel

Event connector, and for the digital input bits 8 and 9 on the digital input connector. See

the Owners manual for details.

EVENT,X,enable is available with the Power2 and 3 to enable (1) or disable (0) a 4

MHz output from the rear panel event connector, pin 8. As this signal has the potential to

cause electrical interference, it requires a board jumper (normally not fitted) to enable it.

EVENT,L,select is available with the Power3 to connect the E0 and/or the E1 front

panel inputs to digital inputs 0 and/or 1. This is for use in Spike2 to provide digital inputs

on BNC connections.

The following commands are supported by the Micro4 to simplify testing the 1401 and

likely have no other purpose. They use the events 0 and 1 and clocks 2, 3 and 4 hardware.

EVENT,A Arm the 1401 hardware to detect events by clearing the E0 and E1 flags and

setting clocks 2, 3 and 4 to start running at 62.5 kHz on the E2, E3 and E4 inputs.

EVENT,?;flags Report if any of the event inputs E4-E0 have seen an active edge since

the last use of EVENT,A. The flags value has bits 4-0 set for the corresponding event.

EVENT,C Stop and reset clocks 2, 3 and 4 and clear the event 0 and 1 hardware.

Consider the following situation. An experimenter wishes to play out an analogue

waveform as a stimulus, and start logging an analogue waveform and also capture digital

events, with the start of all three activities synchronised. The following commands could

be sent to the 1401 (we assume the ADCMEM, MEMDAC and PSTH commands are loaded):

Disable the events

Set the internal event state

Set the internal event mode

Link to Trigger input

Link to Event inputs

Link to rear inputs

Event out

Digital inputs bit 0 and 1
source

Test commands

Example of use

 Switching, counting and timing

58

EVENT,D,26; external events 1, 3 and 4 disabled

EVENT,M,128; set pulsed internal event mode

MEMDAC,I,2,0,200,0,1,CT,100,10; play data at 1 kHz

ADCMEM,I,2,200,200,0,1,CT,100,10; record data at 1 kHz

PSTH,G,400,200,1,M,1; start PSTH data capture

All the commands are now waiting for triggers. PSTH is waiting for event 1, ADCMEM for

event 4 and MEMDAC for event 3. We can now start all the commands together:

EVENT,I,26; cause all events to pulse

This command exists in the Micro4 and is used by test code. It has limited general use as

clocks 3 and 4 are normally driven as part of waveform output and input commands. The

command has the following variants:

CLOCK,n,clock,cnt{,pre} Set clock running

CLOCK,n,?;flags,count,cntMax Report the clock state

CLOCK,n,S Stop the clock

n The clock to use, one of 3 or 4.

clock The standard clock argument, setting the clock source and optional second

character to set a triggered or gated start.

cnt The number of ticks that the clock is to run for before setting the clock flag and

restarting from 0 is set by cnt*pre.

pre Optional argument that is set to 1 if omitted.

flags Returned with bit 0 set (1) if the clock is running and bit 7 set (128) if the clock

flag is set. Normally, the clock flag sets as soon as the clock starts to run.

count Returned as the value of the clock counter.

cntMax Returned as the value to counter counts up to.

This command sets the nominated clock running (or waiting for a trigger to start). The

clock period is the period of the clock source * pre * cnt. If this fails, it returns error

253,e where e is:

1 Unknown clock source 4 cnt*pre exceeds hardware capability

2 Unknown clock trigger 5 cnt*pre is too small

3 pre out of range 1-65536

This command can be used after setting the clock running. The flags value reports the

state of the clock flag (bit 7) and the clock running flag (bit 0); possible values are 0, 1,

128 and 129. Reading the state clears the clock flag (if set). The clock is organised so that

the clock flag sets on the first clock source tick after the clock is enabled (either by

software, or by a trigger or gate).

The returned count is the value in the 16-bit hardware counter. This starts at 0 and

counts upwards until it reaches cntMax. The next input tick causes the counter to return

to 0 and sets the clock flag. Do not assume cntMax is cnt-1.

This command stops the clock and tidies up the clock hardware.

Example 11:
The EVENT command

CLOCK
Independent use of

clocks 3 and 4

Set clock running

Report clock state

Stop the clock

 Array arithmetic

59

The array arithmetic description is split into two chapters: this one, on simple array

arithmetic operations, and the following chapter on the more complex FFT-based

operations. If any of these commands fit the task in hand, they are probably well worth

using because a) the 1401can be faster than typical high level languages in the host, and

b) it is often possible to reduce the volume of data to be sent back to the host, freeing it

for other system jobs.

The commands run as background tasks in the 1401 and can be overlapped with data

acquisition. The timing figures given in this chapter and the next one must be seen as

approximate; some depend significantly on the data. The rates will be slower if other

commands are running, diluting the processor effort.

There are 8 array arithmetic commands, divided into two related groups of four. Each of

the four command families is available in the XX2 form, for handling 16 bit data, and the

XX1 form for 8 bit work. The XX1 family is rarely used and is not optimised for speed in

the same way as the XX2 commands. The four families are:

Command Function page

SS1,SS2 Single array manipulation, e.g. find the biggest element 60

SD1,SD2 Double precision arithmetic, and double/single conversion 62

SM1,SM2 Multiple array manipulation e.g. array multiplication 64

SN1,SN2 Separation and interleaving of channels 65

All the array arithmetic code assumes that arrays are aligned in memory to boundaries

that are multiples of the size of the item in the array. This means that arrays of single

precision (16-bit) data must start at an even address (2*n) and arrays of double precision

data (32-bit) must start at an address that divides by 4 with no remainder (4*n). There is

no restriction for 8-bit data.

This is rarely a problem for 16-bit data, even with code written for older versions of the

1401. However, you will occasionally find legacy code that starts a double precision

array at an address that is 4*n + 2. This will give an argument error.

This restriction is due to the way that the ARM
TM

 and StrongARM
TM

 processor accesses

memory. Although we could arrange to read 16 and 32-bit data at any alignment, it would

be very much slower.

This restriction also applies to data capture routines that store data into arrays.

Introduction to array
arithmetic

Important restriction

 Array arithmetic

60

The single array commands carry out fast array manipulation on single arrays in the user

data space of 1401.

The arrays are referred to by a start address in bytes, and by a byte size, which is the

number of bytes in the data area to be used. 1401 will automatically check that the area

requested does not run over the top of available memory. The SS1 commands take less

space, but the data range is +127 to -128, not +32767 to -32768.

There are thirteen different sub-commands available in both the SS2 and SS1 commands.

These are listed below, with a brief description, and the execution time in microseconds

per element for SS2. SS1 times are similar.

Command Operation micro Micro2 Micro3 Micro4 Pwr1 Pwr2 Pwr3

SSx,N,st,sz Negate array 1.40 0.20 0.19 0.037 0.059 .0138 .0120

SSx,M,st,sz Modulus of array 1.10 0.20 0.17 0.037 0.058 .0150 .0121

SSx,C,st,sz,arg Set array to Constant arg 0.10 .034 .022 0.020 0.020 .0038 .0013

SSx,+,st,sz,arg Array = array + arg 0.54 0.13 0.12 0.037 0.041 .0150 .0085

SSx,S,st,sz,shift Scale array by 2
shift

 1.44 0.20 0.19 0.037 0.059 .0137 .0122

SSx,B,st,sz;size,pos Find Biggest in array 0.74 0.17 0.14 0.018 0.054 .0122 .0102

SSx,L,st,sz;size,pos Find Least in array 0.74 0.17 0.14 0.018 0.054 .0121 .0101

SSx,D,st,sz Differentiate array 1.33 0.18 0.18 0.037 0.055 .0128 .0103

SSx,I,st,sz[,shift] Integrate array 1.48 0.21 0.20 0.037 0.063 .0138 .0112

SSx,F,st,sz Butterworth Filter array 1.68 0.28 0.24 0.048 0.084 .0205 .0150

SSx,R,st,sz Time Reversed filter 1.68 0.28 0.24 0.048 0.084 .0205 .0150

SSx,*,st,sz,arg,shift Array *= arg / 2
shift

 1.87 0.23 0.20 0.037 0.065 0144 .0104

SSx,A,st,sz;value Average array value 0.74 0.17 0.14 0.012 0.053 .0114 .0090

In the individual descriptions, st and sz refer to the array start and array size as a byte

address, and a byte size. SS2 commands operate on word (2 byte) elements so an SS2

array with 100 word elements would have sz = 200.

SSx,N,st,sz The array is replaced with its negated values. In the standard 1401 a

value of full scale negative ($8000 or -32768) was unchanged (+32768 is not a valid 2’s

complement number). In all other 1401s, -32768 becomes +32767.

SSx,M,st,sz The array is replaced with its modulus. Beware that full scale negative

will remain as full scale negative in the standard 1401.

SSx,C,st,sz,arg All elements of the array are set to the value of arg.

SSx,+,st,sz,arg The array has the value of arg added to it. No warning is given in

the case of an overflow. The argument may be positive or negative.

SSx,S,st,sz,shift The array is multiplied by 2shift, where shift is in the range -15

to +15. For the standard 1401 only, the time taken depends strongly on the number of

shifts. The result of this operation is only defined for shift in the specified range. No

warning is given if the result of an operation exceeds 16 bits. No rounding is done, only

pure shifts, so the result of shifting a negative number to make it smaller will never be 0,

but tends to -1.

SSx,B,st,sz;size,pos This command will search the array for the maximum value

and return the value of the maximum, and its word offset into the array. An offset of zero

corresponds to the first two byte word. pos is a byte offset for SS1.

SS1 and SS2
Single array
commands

Individual commands

Negate array

Replace by modulus

Set to constant

Add constant value

Shift the array

Find biggest and smallest
element

 1401 family programmer reference

61

SSx,L,st,sz;size,pos This command returns the most negative value found in the

array, and its position.

SSx,D,st,sz The array is replaced by the simple differences between each element.

No warning is given of overflows. The first element is always replaced by 0.

SSx,I,st,sz[,shift] The array is replaced by its integral, optionally divided by

2shift, where shift is in the range 0 to 15. Integration is very prone to overflow unless it is

scaled. Each element is replaced by the sum of all the elements up to itself. SSx,I is the

inverse of SSx,D above. shift defaults to 0 if omitted.

SSx,F,st,sz The array is filtered by a second order Butterworth filter with a cut-off at

about 10 times the point spacing. The filter processes the data in ascending order of

addresses. You should be aware that the filter will shift any peak in the data to the right.

SSx,R,st,sz The same filter as above but run backwards in time. This can be useful

where multiple filter passes are needed and the time delays introduced by filtering need to

be minimised.

SSx,*,st,sz,arg,shift Each array element is multiplied by variable arg to 32 bit

precision, then the result is divided by 2shift. No warning is given of overflow.

SSx,A,st,sz;value The average value of the array is returned as an integer; the array

is not changed.

The descriptions above are given for SS2, with 16 bits. For the SS1 type, shift ranges of 0

to 15, or -15 to +15 become 0 to 7, and -7 to +7 and -32768 becomes -128. Word offsets

in SSx,B and L are replaced by byte offsets.

Differentiate array

Integrate array

Forwards and reverse time
filter

Multiply array

Average value

Use with 8 bit data

 Array arithmetic

62

These commands offer double precision arithmetic, and the conversion between double

precision and single precision arrays. In this context, for SD2, double precision means 32

bit signed arithmetic and single precision is 16 bit signed arithmetic. SD1 similarly

processes 16 and 8 bit arrays.

The command has the general form:

SDx,fn,dp,sp or dp,sz[,arg]

dp start of a double precision array

sp start of a single precision array

sz size in bytes of the double precision array. If there are to be n data items in the

double precision array, then sz must be set to 4 * n (SD2) or 2 * n (SD1).

arg an extra value required by some functions

fn Two characters which define the function required.

Timings for the double precision arithmetic commands in microseconds per element for

SD2. Timings for SD1 are similar.

Command Operation micro micro2 Micro3 Micro4 Pwr1 Pwr2 Pwr3

SD2,S+,dp,sp,sz Add single to double 1.29 0.292 0.252 0.082 0.106 0.035 0.020

SD2,D+,dp1,dp2,sz Add double to double 1.29 0.288 0.283 0.091 0.124 0.044 0.022

SD2,D/,dp,sp,sz,arg single = double/arg 8.23 1.60 1.32 0.062 0.452 0.128 0.084

SD2,DS,dp,sp,sz;scl scales dp to sp array 2.12 0.436 0.424 0.064 0.143 0.060 0.033

SD2,S+,dp,sp,sz Adds the single precision 16 bit array of size sz/2 bytes to the

double precision array of size sz bytes. Each array is sz/4 data elements long.

SDx,D+,dp1,dp2,sz Adds the double precision array 2 to double precision array 1,

both of size sz bytes. The number of data elements in each array is sz/4.

SDx,D/,dp,sp,sz,arg Divides the double precision array Divide double precision

array by constant; by the integer arg and puts the result in the single precision array. The

number of data elements in each array is sz/4.

SDx,DS,dp,sp,sz;scl The single precision array is set to the best representation of

the double precision array such that:

sp array * 2scl =: dp array

Where =: means is as nearly equal as the word size allows. The scale factor needed is

returned to the host as scl, which is always positive so if an array already lies within the

signed integer range, no scaling will be done and scale will be returned as 0.

SD1 and SD2
Double precision array

commands

Add single precision array to
double

Add double precision array to
double

Divide double by constant

Scale double to single

 1401 family programmer reference

63

ADC channel 0 is sampled in response to a trigger at 10 kHz using the ADCMEM

command. The incoming signal is accumulated to double precision and the double

precision total is divided by the number of sweeps, both using the SD2 command, to give

a constant amplitude average.

Load the SS2, SD2 and ADCMEM commands, if necessary.

Put up a message to show the demonstration has started.

Ask the user to enter values for the number of data points (between 10 and 1024),

and sampling rate (15 Hz to 10 kHz).

Calculate 1401 sampling array size = data points * 2

Calculate clock count = 500000/rate, assuming preset = 2

Ask the user for the number of sweeps (must be positive!)

Open communications with 1401

SS2,C,0,4*size,0 Clear data arrays in 1401

Start a loop, repeated for the chosen number of sweeps

ADCMEM,I,2,0,size,0,1,CT,2,count Sample data

ADCMEM,? Request sampling status, wait for done

SD2,S+,size,0,dsize Add raw data to accumulator

SD2,D/,size,3*size,dsize,i Form average

End of data capture loop

When the specified number of sweeps is done, say ‘Finished’

Example: Double precision
average

Example 12:
Double precision average

 Array arithmetic

64

There are the usual two versions of these commands; SM2 for 16 bit and SM1 for 8 bit

operations. This command is used to manipulate a pair of arrays of data. The general

form is:

SMn,x,dest,srce,size[,arg]

dest is the start address (as a byte offset from the start of the user data area) of the

result array.

srce is the start address of the source array.

sz is the size in bytes of both arrays. Remember that the SM2 command deals in 16

bit words, so the size must be twice the number of words in each array, for SM1

sz is plain bytes.

arg is an additional argument required by some commands.

x is a character defining the operation required.

This table shows typical timings for the SM2 commands in microseconds per element.

The SM1 timings are similar to the SM2 timings.

Command Operation micro Micro2 Micro3 Micro4 Power Pwr2 Pwr3

SM2,C,dest,srce,sz Copy source to dest 0.20 0.070 0.063 0.032 0.037 0.020 0.006

SM2,+,dest,srce,sz Dest = dest + source 1.58 0.218 0.203 0.049 0.075 0.025 0.015

SM2,-,dest,srce,sz Dest = dest - source 1.73 0.288 0.203 0.049 0.075 0.025 0.014

SM2,*,dest,srce,sz,sh Dest = dest * source/2
sh

 2.45 0.288 0.250 0.054 0.091 0.025 0.020

SM2,/,dest,srce,sz,sh Dest = dest * 2
sh

/source 7.85 1.53 1.32 0.060 0.475 0.161 0.113

SM2,X,dest,srce,sz eXchange source, dest 2.17 0.218 0.321 0.073 0.071 0.027 0.017

SM2,C,dest,srce,sz Copy the source array to the destination array. Arrays may

overlap; the 1401 deals with this correctly.

SM2,+,dest,srce,sz Add the source array to the destination array. If the arrays

overlap, a meaningful result will only be obtained if the source array starts higher in

memory than the destination array.

SM2,-,dest,srce,sz Subtract the source array from the destination array. If the two

arrays overlap, the result will only be meaningful if the source array starts higher in

memory than the destination array.

SM2,X,dest,srce,sz Exchange the two arrays; they may NOT overlap.

SM2,*,dest,srce,sz,sh The destination is multiplied by the source, and the result

divided by 2sh. The shift count must be positive.

SM2,/,dest,srce,sz,sh The destination is multiplied by 2sh, and the result is

divided by the source. The shift count must be positive.

SM2 and SM1
Multiple array
manipulation

Copy an array

Add two arrays

Subtract an array

Exchange two arrays

Multiply two arrays

Divide one array by another

 1401 family programmer reference

65

These commands are provided to interleave and un-interleave data for the waveform

input and output commands MEMDAC, ADCMEM, PERI32 and ADCBST. SN2 is for 16 bit

arrays, SN1 is for 8 bits. When these commands transfer multi-channel data, it is

interleaved to give the fastest possible transfer rates. For example, consider writing to

DAC channels 0, 2 and 3. To get the required output, the data in 1401 memory must be:

Channel 0 2 3 0 2 3 0 2 3 0 2 3 ...

Data 4 99 20 4 98 21 4 97 22 4 96 23 ...

and will be output as:

Channel Data

0 4 4 4 4 ...

2 99 98 97 96 ...

3 20 21 22 23 ...

Further consider the case where ADC channels 0, 1, 2, 3, 4 and 5 are sampled using the

ADCMEM command. The data will appear in memory as:

Channel 0 1 2 3 4 5 0 1 2 3 4 5 ...

Data 0 20 98 -1 50 30 1 21 96 -3 52 33 ...

Although this is an efficient way for the computer to store the data, humans find this hard

to work with. There are three sub-commands to help with this situation. The times below

are shown in microseconds per array element for SN2.

Command Operation micro Micro2 Micro3 Micro4 Power Pwr2 Pwr3

SN2,X,dest,srce,sz,int eXtract one channel 1.33 0.171 0.171 0.056 0.071 0.040 0.016

SN2,S,dest,srce,sz,int Separate interleaved 1.40 0.171 0.164 0.022 0.075 0.029 0.016

SN2,I,dest,srce,sz,int Interleave separated 1.28 0.171 0.141 0.081 0.056 0.022 0.013

dest The start of the destination (or result) array.

srce The start of the source array, the data to be worked on. The destination and

source arrays must not be the same, or the data arrays will be scrambled.

sz The size in bytes of the destination array. The convention in 1401 commands is

that sizes are in bytes, and are always of the areas to be written to.

int The number of channels to be interleaved, separated, or extracted from. This

number must be in the range 1 - 255, though 1 is not going to do anything very

useful, as it will just copy the source to the destination in all cases!

In the descriptions which follow, we assume that int is set to 3 and we represent the data

for each channel by a, b or c. Thus a set of data for channel a will be represented as:

a a a a a a a a a a

being 10 points for channel a. We further assume that each channel is 10 data values

long. Thus we are always dealing with either three contiguous arrays:

a a a a a a a a a a b b b b b b b b b b c c c c c c c c c c

or one interleaved array:

a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

Of course, this doesn’t mean you are restricted to this set of numbers; the arrays may be

any size that will fit in 1401 memory.

SN1 and SN2
Extract, interleave and

separate

 Array arithmetic

66

SN2,X,dest,srce,size,int Take the data for one channel from source, which is sz

* int bytes long, and transfer it to the dest array which is sz bytes long. This is

expressed as:

source a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

dest a a a a a a a a a a

To extract the b channel, you must add 2 bytes per data item (SN2) to the source address

(1 byte for SN1) so the source array looks like:

source b c a b c a b c a b c a b c a b c a b c a b c a b c a b c x

and so on (x stands for data beyond the original array).

SN2,S,dest,srce,sz,int This command operates on a source array of interleaved

data such as that gathered by ADCMEM, or data prepared for MEMDAC. The data is changed

from sz points of interleaved data to a series of contiguous arrays, one for each channel:

source a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

dest a a a a a a a a a a b b b b b b b b b b c c c c c c c c c c

The sz parameter must be a multiple of int words long, or error 253 will be flagged

(error in command execution), and no separating will be done.

SN2,I,dest,srce,sz,int; This is the logical inverse of the separate command. It

takes a series of contiguous arrays, and interleaves them to give an array which is suitable

for use by MEMDAC. The same restrictions apply as for the SN2,S,... command.

source a a a a a a a a a a b b b b b b b b b b c c c c c c c c c c

dest a b c a b c a b c a b c a b c a b c a b c a b c a b c a b c

Extract one channel

Separate interleaved
channels

Interleave channels

 FFT and related commands

67

This section is intended for those who wish to use the FFT-based family of commands to

perform spectral analysis on data arrays, or who wish to produce waveforms with a given

spectral content. It is intended to help you to get useful results out of the software with

the correct scale factors but does not pretend to teach you the theory of the Fast Fourier

Transform (FFT).

The family contains four commands:

FFT This command will perform either a forward or a reverse FFT on an array of

16 bit data stored in the 1401 memory. The command returns a scale factor to

the host computer that indicates the number of times the result has been

divided by 2 to avoid overflow. Note also that the forward transform is

returned too large by a factor of the number of data points entered. This FFT

assumes a purely real time domain array.

GAINPH The command takes the result of a forward FFT which must be flipped (see

below in full descriptions for meaning of flipped) and converts the first half of

the array into numbers proportional to the log power of the spectrum, and the

second half to numbers proportional to the relative phase of the spectrum.

ADDPWR This command takes the result of the forward FFT and produces a double

precision array proportional to the power and adds this array into a double

precision buffer. This command is used for spectral averaging.

DLOGPWR This takes the result of a series of calls to ADDPWR and makes a single

precision array proportional to the (average) log power of the data.

In the standard 1401 these commands must be loaded separately; for all other 1401s the

FFT command includes the other three. If you use the language support Ld function to

load these commands, specify FFT first to ensure compatibility.

size micro Micro2 Micro3 Micro4 Pwr1 Pwr2 Pwr3

32 0.5 0.075 0.057 0.007 0.017 0.005 0.004

64 1.1 0.169 0.125 0.016 0.038 0.010 0.009

128 2.5 0.376 0.272 0.036 0.083 0.021 0.020

256 5.4 0.829 0.591 0.081 0.182 0.047 0.043

512 11.8 1.81 1.28 0.179 0.398 0.101 0.095

1024 25.8 3.94 2.74 0.373 0.860 0.219 0.207

2048 55.9 8.57 5.92 0.857 1.854 0.472 0.447

4096 120 19.4 13.5 1.834 3.984 1.000 0.960

The FFT command can be used for arrays that are from 8 up to 4096 points; the sizes

must all be a power of two. The times are given in milliseconds. Times are not linearly

related to array size but are proportional to n*Log2(n) where n is the transform size.

 micro Micro2 Micro3 Micro4 Pwr1 Pwr2 Pwr3

GAINPH 6.4 1.14 0.887 0.049 0.298 0.079 0.074

ADDPWR 1.63 0.197 0.149 0.005 0.043 0.011 0.011

DLOGPWR 3.14 0.584 0.446 0.033 0.147 0.021 0.019

This table gives the time required, in milliseconds, for the FFT related functions to

process the result of a 1024 point FFT. The time taken scales linearly with FFT size, so to

process the result of a 2048 point FFT takes double the time.

Timings for the commands

Related command timings

 FFT and related commands

68

The two basic functions offered by the FFT command are the forward transform

FFT,F... and FFT,I..., the inverse transform. The forward transform converts a

series of data points, for example a waveform, into a representation based on the

frequency content of the waveform. The inverse FFT carries out the reverse, converting a

frequency representation into a time series. There are two variations of these commands

in which the second half of the data is naturally ordered or ‘flipped’.

The inverse transform works on data that represents the amplitudes of sine and cosine

waves which are to be added together to produce the resultant waveform. The length of

the data array must be a power of 2 because of the algorithm used to transform the data

quickly. The lowest number of points allowed is 8. The transform is of 16-bit data, so the

sz parameter above must be twice the number of data points. The data array can be

thought of as being in two halves, the first half representing the amplitudes of the cosine

waves to be accumulated, and the second half the amplitudes of the sine waves. The

transformation is ‘in place’; the result occupies the same space as the data.

FFT,I,st,sz;scale Inverse FFT

FFT,IF,st,sz;scale Inverse pre-flipped FFT

The first point represents the amplitude of a cosine wave of zero frequency, i.e. a constant

value to be added to the result. This value is twice the average value of the resultant

waveform. To set your result to the constant value 10, you must set this to 20.

The second point holds the amplitude of a cosine wave of frequency ‘one’. If there are

1024 data points then setting the second point in the array to 1000 will cause a cosine

wave of amplitude 1000 to be added into the result, and this cosine wave will take 1024

points to complete one cycle.

The third point holds the amplitude of a cosine wave of frequency ‘two’; there are two

cycles in the data points. The nth. point holds the amplitude of a cosine wave of

frequency ‘n-1’. It will take n-1 cycles to fill the data space.

The second half of the data array holds the ‘sine’ components of the data. This is a little

more complicated because the FFT,I,st,sz command expects the data in a strange

order. We will consider the FFT,IF,st,sz command to start with because the data

order is simpler, and come back to the non-flipped command. Within the second half of

the data, the contents are very much as for the first half, but where we considered cosine

waves above, we now consider sine waves. There is another difference. The first point in

the second half does not correspond to the sine wave component of the zero frequency

(which would be identically zero), but instead refers to the cosine wave component of the

Nyquist frequency, half the sampling rate. As with the DC component, you must set the

Nyquist value to twice the amplitude of the required output cosine wave.

We see that if we have M data points as input to the inverse FFT (FFT,IF,st,sz) the

first M/2 + 1 points are the cosine components and the second M/2 - 1 points are the

sine components. These are sometimes referred to as the real and imaginary parts. The

FFT itself uses the data in a different order; the second half of the data, except for the

first point in the second half, is backwards. The addition of the extra F in the command

tells the FFT command that the data is in the ‘human understandable’ format and must be

‘flipped’.

The inverse transform returns a scale factor. This is the number of times that the result

was reduced by a factor of 2 during the transform. The true result is given by:

true result = actual result * 2
scale

The forward transform does the opposite of the inverse transform; it extracts the spectral

content of a sampled waveform. However caution must be used when interpreting the

FFT
The Fast Fourier

Transform

The inverse transform

Input data
first half

Input data
second half

The forward transform

 1401 family programmer reference

69

results. There are problems associated with the forward FFT, some of which are intrinsic

to the transform itself, and others that are caused by the manner in which it is used.

FFT,F,st,sz;scale Forward FFT

FFT,FF,st,sz;scale Forward FFT with flipped result

Consider the most common use of the FFT, which is to obtain the spectrum of a sampled

analogue waveform. The first problem is to select the waveform sampling frequency. The

FFT will give a transform which gives frequencies from zero to half the sampling

frequency. This result will be of no practical use at all unless there are no components in

the original data at or above half the sampling frequency. This critical sampling rate is

called the Nyquist frequency. If there is energy at frequencies above the Nyquist rate, it

will be impossible to distinguish it from lower frequency signals. Once the signal is

sampled it is TOO LATE; the signals must be band limited before they are sampled.

The second problem is that the FFT mathematics assumes that the data for transformation

is repeated indefinitely in time. If the start and end of the data do not join smoothly the

transform ‘sees’ this discontinuity as part of the signal. This discontinuity has energy at

unexpected frequencies.

The usual solution to this problem is to multiply the data sample by a ‘window’ - another

array which is small at the ends and 1 in the middle. This makes the discontinuities

become less important. Use of a window will obviously throw away some of the

information near the ends of the sample but the result is so much better than not

windowing that it is usually preferred. ‘No windowing’ really implies use of a rectangular

window, unity during the sample and zero before/after. Many windows have been

proposed, optimised for varying features; the raised cosine is a good choice for general

purpose work. The example program generates and uses such a window. For a more

detailed treatment see e.g. Rabiner & Gold, Theory and Application of Digital Signal

Processing, (Prentice-Hall).

The third problem is that the FFT of a sampled waveform is only an approximation to the

Fourier transform of a continuous signal. It is more closely akin to the Fourier series

expansion of a function between some limits. Consider the result of the FFT; it has only

values defined at discrete frequencies corresponding to the fact that the data was sampled

at discrete times. Suppose these frequencies are 10 Hz apart. What happens to a

frequency component at say 105 Hz?

There is no exact point in the transform to correspond with this data. The answer is that

this signal appears at a reduced level at 100 Hz and at 110 Hz (the amplitude is reduced

by about 0.64). This problem is not as severe as it sounds because the smearing produced

by any practical window will generally smooth out irregularities caused by this effect.

So we have some important rules to apply to the use of the forward FFT:

 The sampled data must have been filtered to remove components at the Nyquist

frequency (half the sampling rate) and higher. It is usually good practice to sample at

least 4 times faster than the highest frequency.

 The sampled data must be windowed to reduce the effect of spectral smearing.

 Remember that the result of a FFT is a spectral estimate and generally is not the

same as the output of a perfect spectrum analyser. The FFT operation will introduce

some numerical noise to any processed signal, such that a 1024 point transform on

perfect 12 bit data can degrade in the worst case by 1 to 2 bits.

FFT,FF,st,sz;scale This command performs a forward transform on the 16 bit data

starting at st and of length sz bytes. The number of points (sz/2) must be a power of 2

between 8 and 4096. The command returns a scale factor, being the number of times the

Use of the forward transform

 FFT and related commands

70

result has been divided by two during the transform. The result is returned too large by a

factor of the number of points in the transform. This is done to preserve accuracy during

the transform as all data is stored as 16 bit integers. Thus the true result of the transform

is given by:

true result = actual result * 2
(scale + param)

/ points transformed

where param is 0 for the DC and Nyquist points, and 1 elsewhere.

Consider a simple example of the forward FFT in which we want to capture immediately,

at a 50 kHz sampling rate, one sweep of 1024 samples of a waveform, window the sweep

with a previously computed window waveform, compute the logarithmic power content

over the (0 - 25 kHz) frequency range, and display the result on the host screen. The

incoming signal should have been low pass filtered to reject frequencies above 25 kHz.

The following command sequence would be sent to the 1401:

SS2,C,2048,2048,0 Zero the window area

WRADR,2,2050,-16383 Set amplitude for 1st harmonic

FFT,I,2048,2048;scale Produces a cosine wave, read scale

SS2,S,2048,2048,scale Shift data to correct size

RDADR,2,2048;upBy Find amplitude of first point

SS2,+,2048,2048,-upBy raise so window starts at 0

 We now have a window at 2048

ADCMEM,F,2,0,2048,0,1,C,4,5 1024 samples of two byte data from channel 0

SM2,*,0,2048,2048,15 Multiply by the pre-stored window function

FFT,FF,0,2048 Real, followed by imaginary components

GAINPH,G Converted in place to log power and phase

SS2,B,0,1024;peak,where Find size and position of peak

 Display peak amplitude and position on screen

TOHOST,0,1024,buffer transfer gain part of data

Note that the array space of the ADC samples is re-used in turn for the result of the

windowing multiplication, the FFT command and the GAINPH transformation. The only

extra memory needed is for the window function.

The window has 1024 points (2048 bytes) with maximum value 32767. The scale factor

of 2
15

 in SM2 normalises this to be nearly unity. There is no need to generate this window

in the host and transmit it; the inverse FFT command can do the job for us in 1401 much

faster.

Example of use of the
forward transform

Example 13:
Use of the forward transform

 1401 family programmer reference

71

The GAIN and PHase command converts the result of a FFT,FF,st,sz command into a

more usable form for display. The data is changed from the sine and cosine amplitude

form of the FFT output, to log amplitude and phase. The GAINPH command operates on

the results of the last FFT command used. The general form is simply:

GAINPH,G

Consider the result of an 8 point FFT:

Point 0 1 2 3 4 5 6 7

Before GAINPH R1 R2 R3 R4 RNy I2 I3 I4

After GAINPH Log1 Log2 Log3 Log4 Ph1 Ph2 Ph3 Ph4

Where Rn represents the n
th

 real value, In the n
th

 imaginary value, RNy is the real

amplitude of the Nyquist frequency, LogN is a value that is proportional to the logarithm

of the power and PhN a number proportional to the phase of the n
th

 component.

If scale is the scale factor returned by the FFT command, then LogN is given by:

LogN = (1024/log10(2)) * log10((Rn
2
+In

2
) * 2

2*(scale + param)
)

where param is 0 for DC and Nyquist, 1 elsewhere.

PhN = 32767 * ATan(In/Rn) / Pi

where ATan(x) returns a result between -Pi and +Pi. It can be seen that a 3dB change in a

signal level is given by a change of 1024 in the LogN values. The range of data values

returnable for the LogN is from 0 to 32762, a range of 96 dB. The range of data values for

the phase is from -32767 to plus 32767, representing -180 to +180 degrees (-Pi to +Pi).

0 corresponds to a sine wave of amplitude 1 bit. Thus:

result in dB = value(n) * 3.010/1024 with 0 dB = 1 bit

The GAINPH command has one argument field which must hold a G (for Go!). The

argument is there to allow programs which perform automatic loading of commands to

check for their presence by issuing just the command name which produces an error 254

if the command is there and 255 if not. All the information needed for the command is

left in the 1401 by the FFT command. This means that the GAINPH command must

follow a FFT command and the result array will overwrite the FFT result array.

If the GAINPH is executed without a previous FFT,FF,st,sz command, the result is

undefined.

GAINPH
Log amplitude and

Phase

 FFT and related commands

72

This command is used together with FFT and DLOGPWR to perform spectral averaging.

The command format is:

ADDPWR,dest,reduce

Where dest is the start of a double precision (32 bit per item) buffer used to accumulate

the power derived from the last FFT,FF command. This buffer is of the same size as the

FFT,FF data array, for if the FFT used a 512 byte array (being 128 real values and 128

imaginary, each of two byte significance) the dest array will be 128 4 byte double

precision values.

The power is calculated in this command by summing the squares of the real and

imaginary parts of the data from the FFT and multiplying this by:

2
2*(scale factor returned by the FFT)-reduce

The result of this calculation is added into the appropriate position in the destination

buffer. ADDPWR compensates internally for the differences in scaling between the DC and

Nyquist components, and the rest of the spectrum.

The power is added to the array, to allow averaging, but in general the array may well not

be zeroed when first used. To zero this double precision array, use SS2,C,st,sz,0

remembering that the number of 16 bit elements in the array will be twice the number of

32 bit elements!

To ensure that the summing buffer will not overflow in use, the reduce parameter must be

set such that:

2
reduce

 >= number of sweeps to be averaged

The reduce factor should be in the range 0 to 15.

If you start with a cosine wave of amplitude x, take its FFT and use ADDPWR, the

increment to the corresponding bin in the destination array will be:

x
2
 * 2

-reduce

ADDPWR
Spectral averaging

 1401 family programmer reference

73

This command takes the result of a series of ADDPWR calls, and produces the average log

power of the data. The command parameters are:

DLOGPWR,dest,source,sz,reduce,nsw

dest The result array starts at dest, and is of length sz/2 bytes. The format of the

result array is the same as for the first half of the GAINPH result array. Thus the

result data is 16 bits per data point.

source The double precision buffer used by the ADDPWR command, sz bytes long

holding sz/4 double precision powers.

sz The length of the source array in bytes, and twice the length of the dest array.

reduce The same number as was passed to the ADDPWR command. This will be used to

allow for the shift down applied by ADDPWR. DLOGPWR increases the result by

1024 * reduce. (1024 is 3 dB here)

nsw The number of sweeps of data actually accumulated by ADDPWR.

The final result is given by:

dest(n) = (1024/log10(2)) * log10(source(n)/nsw) + 1024 * reduce

To save you calculating it: 1024/log10(2) = 3401.65

Alternatively, to get the result in dB relative to 1 bit:

Result = dest(n) * 3.010/1024 dB

A 1 Volt peak sine wave (0.7 Volt r.m.s.) on this scale is 76.3 dB.

A typical use of these commands to produce an averaged spectrum is shown symbolically

below. Lines in square brackets are transmitted to the 1401. Data is logged into locations

0 to 511 and is then multiplied by a data window that has been sent from the host to 1401,

using the SM2 command. An FFT is taken and the result is accumulated with the ADDPWR

command. This is repeated for the required number of sweeps. Finally the DLOGPWR

command is used to produce the result from the summed data.

 Start by building a windows as for example 13

nsweeps = 10 Set number of sweeps to average

SS2,C,1024,1024,0 zero the summing buffer

TO1401,4096,512,host address send the window to 1401
for i = 1 to nsweeps
 begin

 ADCMEM,F,2,0,512,0,1,C,10,10 get 512 bytes of data

 SM2,*,0,4096,512,15 use window assumed at 4096

 FFT,FF,0,512 take FFT of the data

 ADDPWR,1024,4 sum into 1024 to 2047
 end

DLOGPWR,512,1024,512,4,nsweeps take log of result

 Find and display peak as in example 13

DLOGPWR
Log gain from

ADDPWR

Typical use of commands to
average spectra

Example 14:
Averaged spectra

 Event time processing

74

This group of commands is useful for acquiring and analysing data in the form of times

of events, normally in response to a stimulus. Common users of this form of data are:

psychologists, monitoring the responses of one or more subjects by means of push

buttons, to stimuli which may be visual or auditory, and physiologists studying nerve

firing patterns on one or more channels. Nerve signals must be amplified and brought to

TTL levels by the internal 1401-18 optional 8 channel event conditioner, or by equipment

external to the 1401.

The signal acquisition commands described below are all interrupt driven which means

that the 1401 (and the host) are free to do other things at the same time, perhaps

providing the stimulus pattern - such as controlling lights, to a programme which may be

preset, or may be a function of the results. Note that it is not possible to run more than

one of these event time collection commands at once.

The commands can handle quite fast data rates, of order 150 kHz for micro1401, 200 kHz

for the Micro1401 and more than 250 kHz for the Power1401.

Single channel commands use event inputs 0 and 1; the digital inputs, bits 8 to 15 are

used for the multi-channel commands. The user may choose to measure times on either

the rising or the falling edges of the digital input signals. These inputs are selected as

channels 0 to 7 with 0 corresponding to digital input 8 and 7 to digital input 15.

Trigger signals, if used, should be connected to event 1 and will be active on the falling

edge unless this is altered by the EVENT command. The data capture commands are:

Command page Function

PSTH 76 Single channel Post Stimulus Time Histogram using event 1

as the stimulus and event 0 for the response.

PSTHM 78 Multi channel Post Stimulus Time Histogram using event 1 as

stimulus and selected digital inputs as the responses.

INTH 79 Single channel Interval Histogram with event 0 as input and

event 1 as an optional enable.

INTHM 80 Multi channel Interval Histogram: event 1 as (optional) enable

and selected digital inputs for data.

AUDAT 81 Reads the absolute times of inputs on events 0 and 1 into two

separate arrays. This data is then suitable for use as input to

AUCR and AUINTH.

AUDATM 83 As AUDAT but uses the digital inputs in place of events 0 and

1. Up to 8 channels with optional enable on event 1.

AUCR 84 Routine to process the output from AUDAT and AUDATM. This

will produce either a PSTH or cross correlation with each bin

being a power of two clock ticks wide.

AUINTH 84 Processes an array of absolute times of events, giving an

interval analysis. Time is compressible by powers of 2.

At the end of one of these commands, the data is stored in arrays in the 1401 memory.

Data captured by the interrupt-driven commands can be transferred to the host for display

during data capture.

Before running any of the data collection commands, users will make an estimate of the

time of interest after each stimulus. This will be the sweep time of the analysis. The

number of bins in the sweep, and the timing resolution must be considered at this stage.

The number of clock ticks per bin can only be varied by factors of two so if fine

adjustment is needed, it is done with the number of time units per clock tick.

 1401 family programmer reference

75

In the following descriptions of the various commands, many similar arguments occur.

These have been given standardised names, as below, the details of which are not

repeated in the specific descriptions.

st The start of an array in the user storage space in the 1401. The array must be at

an even address.

sz The size of an array in bytes in the 1401. Event time data is stored as 16 bit

unsigned integers, so sz must always be even! Odd values of sz cause an error

253. For the histogram commands, sz/2 is the number of bins.

n A channel number in the range 0 to 7. Channel 0 refers to digital input bit 8,

channel 1 to bit 9, channel 2 to bit 10 and so on up to channel 7 and bit 15.

[x] Single items in square brackets are optional.

unit Where a time unit is indicated, the commands expect ‘M’ for milliseconds or ‘U’

for microseconds. The Micro4 also allows H, T and S for test purposes, with the

usual meanings. The Power3 and Micro4 allow N for Nanoseconds in some

cases.

time The number of time units per bin or per clock tick.

edge If present, defines the active edge of the signal into the digital inputs. ‘-’ sets

falling edge, ‘+’ sets rising edge and if absent, the default is falling edge.

[T] Optional enable on event 1 (E1) front panel input. If included, no data will be

taken nor will the clock start until there is a falling edge into event 1.

status A value returned by a command, currently from this range:

 0 Command never started or terminated

 1 Awaiting the trigger on event 1

 2 Command logging data

done Number of sweeps or events when the query command is received.

ovflws A value returned by a command; a count of the number of times any of the bins

in a PSTH or INTH has overflowed. To overflow, the bin has to hold 65535 and

have an extra count added. The bin then appears to hold 0, but should hold

65536. Parameter ovflws increments each time any overflow occurs. The

counter is an 8-bit number for standard 1401.

pwof2 Used in the processing commands to fit a power of two counts into a bin rather

than just 1. This is useful if your data was sampled at a resolution of 1 ms but

you want to display a histogram of a second in width with only 128 bins. You

set pwof2 to 3, i.e. divide original time by 23(=8) so that 128 bins will last 1024

milliseconds, each bin 8 ms wide. Single channel post stimulus time histograms

(PSTH)

Standardised
argument names

 Event time processing

76

The PSTH command allows the simple collection of Post Stimulus Time Histogram data

based on TTL compatible data pulses on the 1401 E0 and E1 front panel inputs. The

event 1 input is the ‘stimulus’ and the event 0 input the ‘responses’. A multi-channel

version, PSTHM, is described below.

This is the basic principle of the post stimulus time histogram. A raw data signal, if not

already TTL or switch closure, is discriminated by hardware to produce a series of

‘event’ pulses. A ‘stimulus’ or ‘trigger’ signal is also discriminated to produce a pulse.

This ‘stimulus’ pulse starts a clock that records the times after the stimulus at which the

event pulses occur. Each event causes a histogram bin to be incremented, the selected bin

corresponding to the time of the event after the stimulus.

This process can be repeated many times, the final histogram being a representation of

the probability of an event occurring at a given time after the stimulus. The variants of

the command are:

PSTH,G,st,sz,time,unit,sweeps Set up and go

PSTH,?;status,done,ovflws Report state of command

PSTH,P;offs Report offset into sweep

PSTH,S Stop after next sweep

PSTH,K Kill PSTH command

PSTH,G,st,sz,time,unit,sweeps clears any PSTH command in progress and arms a

new one, leaving the 1401 waiting for a stimulus on event 1.

PSTH,?;status,done,ovflws reports on the current state of the PSTH command,

returning three numbers. If the PSTH has finished or has never been started, status is

returned 0 and done is returned as the number of complete sweeps recorded when the

PSTH,? command was received, and ovflws is the number of times a bin has

overflowed, i.e. the number of times more than 65535 events have been stored in any bin.

PSTH,P returns 0 if a sweep is not in progress, otherwise it returns the current byte offset

in the sweep. This allows monitoring of the sweep state for slow sweeps.

PSTH,S stops the data recording at the next end of sweep. It does not cause another

sweep to be recorded if the previous PSTH,G... command has already finished.

PSTH,K kills the PSTH command immediately, even if currently running.

PSTH
Post stimulus time

histogram

Raw and discriminated
signals and PSTH

Set up and go

Report state

Report offset

Stop the command

 1401 family programmer reference

77

The width of each data bin can be set in either milliseconds, or in microseconds. The

minimum time per bin is 2 microseconds, each bin can be no more than 65.535 seconds

wide. There is a relationship between the time per bin and the maximum number of bins

which is:

number of bins * time per bin <= 71.5 minutes

Any bin width below 66 milliseconds will be set exactly. A bin width request of more

than 66 milliseconds is subject to an error of less than 1 part in 32767. These errors will

always make the bins too short. This is because the period is a number in the range 2 to

65535 times a power of two (in microseconds). Any period that can be exactly

represented in this way will be; 1000 ms is represented exactly, but 1001 ms is

represented as 1000.992 milliseconds.

We do not want sweeps to continue forever! A sweep is terminated by: another stimulus,

or when the time exceeds unit*time*sz/2 the sweep terminates at the first of: another

event, or the automatic time-out. The time-out periods are set by:

Possible time-outs(microseconds) = 65536 * n (n is 2 to 65536)

The minimum time-out is thus 131 milliseconds, and the increments in the time-out are in

65.5 millisecond steps. This implies a limit to the spacing of stimulus pulses to the PSTH

command.

This example allows the user to set up a PSTH and to kill it by pressing the K key on the

terminal or to stop it after one more sweep by pressing any other key. A report of the

number of sweeps done is maintained. The example could easily be extended to display

the PSTH as it builds up using the D command.

Set up communication with the 1401 and load the command PSTH

Ask the user to supply binwidth and sweep number information at the keyboard.

Clear the 1401 state and zero a data array by sending:
 CLEAR;SS2,C,0,size,0

Set up and start the PSTH acquisition by sending:
 PSTH,G,0,size,binwidth,U,number

Read the state of the acquisition by reading in the data returned by the 1401 in response

to sending:
 PSTH,?

Display the number of sweeps done on the host screen, checking if the user has requested

termination, or else that the full number of sweeps is done anyway. If termination is

requested, kill the command by sending:
 PSTH,K

Limitations on bin widths

Accuracy of bin widths

Sweep time-out

Example of use of the PSTH
command

Example 15:
Use of the PSTH command

 Event time processing

78

The PSTHM command provides interrupt-driven collection and sorting into histogram bins

of up to 8 trains of TTL compatible data pulses, received on the digital input connector,

with stimulus pulses entered on the event 1 (E1) input.

PSTHM,An,st,sz Set up call for channel n (0-7)

PSTHM,G,rpts,time,unit[,edge] The Go call to start the PSTH

PSTHM,?;status,done,ovflws Report state and overflows

PSTHM,S Stop after the next sweep

PSTHM,K Kills the command

PSTHM,An,st,sz must be used first, to set up for each input to be used, the data array

start st and number of bins sz/2. Inputs may be set up in any order, and any

combination of the 8 may be used. Low order inputs are processed first so slightly faster

performance is available if, when only a few channels are needed, low numbered

channels only are used.

 Event channel number 0 1 2 3 4 5 6 7 Gnd

 Digital input pin 17 4 16 3 15 2 14 1 13

You can use the front panel event inputs for channels 0 and 1 and can route the stimulus

pulse via the Trigger input using:

EVENT,T,2;EVENT,E,192;

The restrictions on the bin widths and the number of bins are explained in the description

of the PSTH command. The same restrictions apply to PSTHM. A sweep is over when:

 A response or a stimulus occurs outside the range of the histogram.

 The sweep is timed out. The time out is in units of 65.536 ms, with a minimum time-

out of two units (131.072 ms).

PSTHM,G,rpts,time,unit[,edge] starts the logging, with rpts as the number of

sweeps, with time and unit setting the bin width. edge sets the active edge of the

inputs.

PSTHM,?;status,done,ovflws returns three numbers to the host computer which

describe the current state of the command (see page 75 for a full description).

PSTHM,S stops data capture at the next end of sweep. This provides a method of

terminating the command early, before rpts sweeps have been completed. The

PSTHM,G... command may be used to restart sampling after the stop call without the

need for the PSTHM,A... command to be re-used.

PSTHM
multi-channel PSTH

Command variants

Set up call for each channel

Input connections for multi-
channel timing

Go, start logging

Report the state of the
command

Stop the command

 1401 family programmer reference

79

The INTH command generates real time interval histograms of pre-discriminated signals

fed as TTL pulses into the E0/Event 0 input. Data capture waits for the first pulse on

E1/Event 1 if the optional T is used. The command is entirely interrupt driven and while

running may be interrogated to determine the current state of the sampling. There is a

multi-channel command INTHM, described below.

The INTH command is very similar in operation to the PSTH command, but the intervals

between pulses on the E0/Event 0 input determine the bin to be incremented rather than

the interval between the sweep start and the pulse.

INTH,G[T],st,sz,time,unit,count Set up and go

INTH,?;status,done,ovflws Query state of command

INTH,S Set one more interval

INTH,K Kill the command

The arguments are standard, as described on page 75, except for count which is the

number of intervals to be logged. Intervals which fall outside the histogram are included

in the count.

INTH,G[T],st,sz,time,unit,count sets up the 1401 either to log event intervals

immediately (without the T) or to wait for an event on the E1 front panel input if T is used

(as in PSTH above) before starting to log intervals. The first event logged on E0 does not

cause an entry in the histogram as no interval between events is defined. If 1000 intervals

are requested, 1001 events are needed.

INTH,?;status,done,ovflws returns the usual meanings of status and ovflws;

done in this case is the total number of events, whether they contributed a point to the

histogram or not.

INTH,S stops the command after the next interval, while INTH,K kills it immediately, as

usual.

This example lets the user set up an INTH and to kill it by pressing the K key on the

terminal, or to stop it after one more interval by pressing any other key. A report is kept

of the number of intervals logged. The example could easily be extended to display the

INTH as it builds up using the D command.

Establish communication with the 1401

Load the INTH command from disk, if necessary

Ask for parameters from the keyboard

 CLEAR;SS2,C,0,size,0 Clear 1401 and zero the array

 INTH,G,0,size,binwidth,U,count Start INTH running

 INTH,? Check state of sampling by reading responses

Check the first number to see if all sweeps are done; if not, check the host keyboard for

stop requests. Send, as appropriate:

 INTH,S if any key but K was pressed, or

 INTH,K for an immediate Kill

INTH
Single channel interval

histogram

Command variants

Set up and go

Report state of the command

Stop the command

Example of use of the INTH
command

Example 16:
Use of the INTH command

 Event time processing

80

The INTHM command provides interrupt-driven collection and sorting into histogram bins

of the intervals between events on up to 8 trains of TTL compatible data pulses, received

on the digital input connector, with an optional start pulse expected on the front panel

Event 1 or rear E1 input, see the EVENT command.

INTHM,An,st,sz Array set up command

INTHM,G[T],tmo,time,unit[,edge] Go command, as in PSTHM

INTHM,?;status,tmo,ovflws State/overflow query

INTHM,S;tmo Stop/progress command

INTHM,K Kill the command

The arguments are all as standard (described on page 75) except for tmo (described

below) and the input connector configuration is as shown for PSTHM on page 78.

General use of the INTHM command starts with a call to INTHM,K to ensure that nothing

is left from the previous use of the command. This is followed by calls to the

INTHM,An... command to set the bins in the histogram for each channel. Remember

that the sz must be set to twice the number of bins as sz is a byte parameter and the bins

are two bytes long each. Once a channel is set, it remains set until INTHM,K is run.

INTHM,G[T],tmo,time,unit[,edge] starts data capture and also sets the time

increment and mode of starting. If the start of the data capture must coincide with an

external event, triggered starting is selected by using the optional T; data will otherwise

be captured from the moment the INTHM,G... command is issued. Data acquisition will

stop after tmo units of 65.536 milliseconds each, in the range 2 to 65536, that is from 131

milliseconds to over an hour. The active edge of the input signals is set by edge.

INTHM,?;status,tmo,ovflws returns the standard status and ovflws information

about the INTHM command as it runs, but tmo is also returned as a number between 0 and

65535 representing the proportion of the time out elapsed. So if it were returned as

32767, half of the time out would have elapsed. ovflws is 0 if no overflow happened and

is non-zero if there were overflows.

INTHM,S;tmo stops data acquisition, and returns tmo as the proportion of the elapsed

time out as in INTHM,?... above. Once stopped, the INTHM,G... command may be

used to restart the data acquisition.

INTHM,K completely kills the INTHM command. This is the only way to make the

command ‘forget’ about previously selected inputs.

Note that the first event on each channel is used to generate the period to the second

event, the first does not cause any data to be recorded.

INTHM
multi-channel interval

histograms

Command variants

Set up and go

Report state of the command

Stop the command

 1401 family programmer reference

81

Some forms of event time analysis, such as correlations, need the times of all the events.

The AUDAT family of commands is provided for these situations. The family has four

sections: acquisition and processing, for single/dual and multi-channel use.

The dual channel data acquisition command is AUDAT, which has a speed advantage over

the AUDATM command below. The maximum rates per channel (sampling 5,000 points,

both channels at the same rate) are:

If you exceed

these limits, data

points may be

lost or timings

may become inaccurate. The command stops when the data arrays are full, or when the

time implied by cycles, or the rpts number of sweeps is reached, or when the Stop or

Kill commands are used.

For very large (or unpredictable) amounts of data, AUDAT can be used in a circular mode

with half buffer flags (like ADCMEM,I) so that completed half buffers can be written to a

disk file.

The data gathered by AUDAT or AUDATM is usually processed by the AUCR and AUINTH

commands below. Data from AUDAT in circular mode is generally copied to the host disk

for processing by more specialised code.

AUDAT,G[T],e0st,e0sz,e1st,e1sz,time,unit[,cycles] Normal setup

AUDAT,C[T],e0st,e0sz,e1st,e1sz,time,unit[,rpts] Circular setup

AUDAT,?;status,e0byt,e1byt Query normal mode status

AUDAT,?;status,e0byt,e1byt,e0hbufs,e1hbufs Query circular status

AUDAT,S;e0byt,e1byt Stop normal mode command

AUDAT,S;e0byt,e1byt,e0hbufs,e1hbufs Stop circular mode command

AUDAT,K Kill the command

AUDAT,G... is used to set up and start the capture of absolute event times from E0 and

E1 front panel inputs in non-circular mode. e0st and e0sz define the start and size of

the area for storage of the event 0 times, and the event 1 area is defined by e1st and

e1sz. The command may be run on event 0 only by specifying zero start and size of the

event 1 array. It is not possible to use just event 1.

The event times are stored as 16 bit (2 byte) numbers. To allow us to save the times of

events past 65535 clock ticks we insert an extra marker of value 32768 into the data array

each time the clock reaches 32768 and restart the clock from 0. These extra values never

denote an event. If an event happens to fall on a multiple of 32768 clock ticks it is given

the time 0.

This is made clearer by an example. To save data whose event times are 1234, 28387,

32768, 33000, 59873, 68281, 254000 we would save the values 1234, 28387, 32768, 0,

232, 27105, 32768, 2745, 32768, 32768, 32768, 32768, 32768, 24624.

The analysis commands AUCR and AUINTH sort out these extra 32768s, so most users

need never be aware of them. Only users who transfer the arrays of times to the host will

need to be aware of these overflow markers.

If the optional T is used, the command will wait for the first falling edge on the event 1

input before starting the clocks.

AUDAT
Absolute event time

capture

AUDAT maximum rates in
kHz

Channels micro1 Micro2-3 Micro4 Power1-3

1 150 kHz 200 kHz >1 MHz >250 kHz

2 95 kHz 127 kHz >250 kHz

Command variants

Normal mode set up and go

 Event time processing

82

The clock tick period is (time * unit) and must be in the range 2 microseconds to

65535 microseconds (1 to 65535 with the Micro2/3 and Power2/3). The unit is specified

as M for milliseconds, U for microseconds, or N for nanoseconds (not micro1401). If unit

is milliseconds, the maximum value of time is 65. If the units are nanoseconds, the value

must be an exact multiple of 100.

cycles is an optional argument in the AUDAT and AUDATM commands, defaulting to 1. It

sets the maximum time that the command runs for, which is given by:

cycles * unit * time * 32768

so with millisecond units, time = 1, cycles = 10, the maximum time would be 327.68

seconds (10 * ms * 1 * 32768).

AUDAT,C... is used to setup the capture of event times in circular mode and is identical

to AUDAT,G... except that:

 the sz argument must be divisible by 4, as the array will be split into two equal parts,

both to be filled with 2 byte data, and

 the final rpts argument which replaces cycles sets not the maximum time for the

command but the number of complete buffers at which to stop each channel.

AUDAT,?;... returns the current state of the AUDAT command as usual, and the number

of bytes of the event 0 and event 1 arrays that have been filled. Remember that there are

two bytes per data point! If it is called after a circular mode AUDAT,C... command, the

two extra arguments e0hbufs and e1hbufs show the number of complete half buffers

that have been filled on each channel.

AUDAT,S;e0byt,e1byt,(e0hbufs,e1hbufs) stops the sampling and returns the

number of bytes of event 0 (e0byt) and event 1(e1byt) data gathered so far. In circular

mode only, the number of half buffers filled is also returned (e0hbufs and e1hbufs).

AUDAT,K kills the command, as usual.

Circular mode set up and go

Report the state of the
command

Stopping the command

 1401 family programmer reference

83

For more than two channels, the AUDATM command is used to get the times for

subsequent processing. Digital inputs 8 to 15 are used in place of the events 0 and 1, the

input connector configuration is as shown for PSTHM on page 78. The sub-commands are

very similar to those in AUDAT, with extensions to handle the increased numbers of

channels. AUDATM does not have a circular mode.

The table shows the maximum rates

for a number (#) of channels fed the

same equally spaced event data. The

test sampled 2,500 events per

channel. Faster rates can drop points

with no warning.

AUDATM,An,st,sz Set up for channel n (0-7)

AUDATM,G[T],0,time,unit,edge[,cycles] Go and start clock

AUDATM,?n;status,chstat,done Query channel n status

AUDATM,?;status Query command status

AUDATM,Sn;done Stop channel n only

AUDATM,S Stop all channels

AUDATM,K Kill the command

AUDATM,An,st,sz sets up the data area for each channel to be used. The absolute times

of the events on each channel will be stored from st with space for sz/2 events and

clock overflow markers. No check is made whether the data area of each channel is free

of the others. cycles is optional, as in AUDAT above.

AUDATM,G... starts up the command and sets the clock rate. The active edge of the input

signals may be selected with the value of edge. T, if used, causes the command to wait

for a falling edge on the event 1 (E1) input before starting. The command is somewhat

unusual as the 0 is a dummy field that is to allow for future expansion.

The same restrictions as in the AUDAT command apply to the time and unit fields.

AUDATM,?n;status,chstat,done returns the overall command status and the

status of channel n as chstat which is 0 if the buffer has filled (or sampling has not

started) and 2 while the buffer is filling. done is the number of bytes recorded for

channel n.

AUDATM,?;status returns the overall command status, which is faster to transmit than

the fuller information above.

AUDATM,Sn;done stops channel n and returns the number of event times and overflow

markers collected on that channel as done. The Standard 1401 is different and returns

twice this number (i.e. the number of collected bytes).

AUDATM,S stops all channels and as usual, AUDATM,K kills the command. The command

stops when either all the arrays are full, or when the Stop or Kill commands are used.

AUDATM
multi-channel event

time capture

AUDATM maximum rates in
kHz

micro1 Micro2-3 Micro4 Power1-3

1 87 kHz 200 kHz >1MHz >200 kHz

2 71 kHz 200 kHz >200 kHz

4 52 kHz 200 kHz >200 kHz

8 34 kHz 164 kHz >200 kHz

Command variants

Set up a channel

Go, start the command

Report channel n status

Overall command status

Stop one channel

Stop all channels

 Event time processing

84

These commands process the completed results from AUDAT or AUDATM and produce two

types of PSTH or a Cross correlation, and AUINTH generates an interval histogram. The

response time region can be offset backwards or forwards from the stimulus time to

produce peri-event histograms.

AUCR,P,sst,ssz,rst,rsz,dst,dsz,pwof2[,offs];nswps,ovflws Standard

AUCR,C,sst,ssz,rst,rsz,dst,dsz,pwof2[,offs];nswps,ovflws Curtailed

AUCR,X,sst,ssz,rst,rsz,dst,dsz,pwof2[,offs];nswps,ovflws Cross

AUINTH,G,st,sz,dst,dsz,pwof2;ovflws Interval histogram

AUCR processes two data arrays typically from AUDAT and AUDATM to produce a third data

array. sst and ssz define the start and size of the ‘stimulus’ time arrays. rst and rsz

define the ‘response’ time arrays and dst, dsz define the result array. pwof2 sets the

clock ticks per result bin. nsweeps is the sweeps of data processed. The array lengths are

in bytes, so the number of times (for the stimulus and response arrays) and the number of

bins (for the result array) are half the byte size of each array.

The optional offs (range ±32767, default 0) offsets the histogram start time in clock

ticks relative to the stimulus. Do not make the offset more than the inter-stimulus time or

no events will be recorded! Commands terminate when an attempt is made to access a

data element beyond the end of either data input array. This avoids the apparent drop at

the end of the result histogram due to the last sweeps having less data to work with.

In the diagrammatic examples, the stimulus array is 4 data points long, the response array

is 8 data points long, and the result array is 3 bins long.

AUCR,P,sst,ssz,rst,rsz,dst,dsz,pwof2[,offs];nswps,ovflws is intended to

produce the same result as if the original data had been fed into the PSTH command. In

the example the first stimulus starts a sweep of collection. The second stimulus is

ignored, because the first sweep of 3 time units has not been completed. The fourth

response is ignored because the second sweep has not yet been started by the third

stimulus. nsweeps is 2.

AUCR,C,sst,ssz,rst,rsz,dst,dsz,pwof2[,offs];nswps,ovflws makes a post

stimulus time histogram from the data, but sweeps are terminated either by being timed

out as in AUCR,P or by the next stimulus, thus producing a different result with the same

data. This would be the type chosen if activity died away rapidly and one response would

Stimulus

Response

Sweep1

Sweep2

Result

2

0
1

1 1 1

3

1
2

AUCR and AUINTH
commands

Command variants

Make a standard PSTH

How the PSTH is built

Make a curtailed PSTH

 1401 family programmer reference

85

not be expected to last into the next stimulus. Care should be taken with the value of

offs, if used. If the inter-stimulus time is less than the offset, no points will be returned.

In this example, the first 3 sweeps are curtailed by new stimuli, so there is nothing in the

third bins until the fourth and last sweep, which is not curtailed. nsweeps = 4.

AUCR,X,sst,ssz,rst,rsz,dst,dsz,pwof2[,offs];nswps,ovflws returns a

result showing the probability distribution of the responses occurring after each stimulus,

relative to the stimulus. It is similar to the AUCR,P... command except that more than

one sweep may be in operation at any one time.

Each stimulus is used as the start of a sweep, so if two stimuli occur within one sweep

time of each other, the second stimulus will generate a new sweep. Compare this with the

AUCR,P... command where the second stimulus would be ignored. nsweeps = 4.

The AUINTH,G,st,sz,dst,dsz,pwof2;ovflws command creates an interval

histogram array from a data array of increasing times such as those produced by the

AUDAT or AUDATM commands. The parameters have the same meanings as in AUCR.

How the curtailed PSTH is
built

Cross correlation

How the cross correlation is
built

Make an interval histogram

Stimulus

Response

Sweep1

Sweep2

2
0 0

0

0

1

1

1

1

1

1

0

Sweep3

Sweep4

Result

5

3

0

Stimulus

Response

Sweep1

Sweep2

2
0

1

1

1

1

1 1

1

1 1

0

Sweep3

Sweep4

Result

5

3 3

 Running command sequences in 1401

86

There are situations when the host computer for 1401 can only give slow responses,

especially if a slow interface, for example serial line control, is used. There are also

applications where users wish to run 1401 without an active connection to a host

computer. RUNCMD and VAR address these situations.

RUNCMD is a loadable command that programs the 1401 to run a sequence of commands,

with simple branching control, and with no involvement by the host computer. This is

useful where the 1401 is run on a slow link to the host, such as a serial line. This facility

can also get more work from the host. Instead of the host waiting for operations in the

1401, the 1401 can be handed the sequence of activities and left to get on with it.

The commands RUNCMD and VAR can also form the basis of a stand alone 1401 running

completely free of a host. With standard 1401, command sequences and initial values of

variables are stored in ROM and copied into RAM during power up. The 1401 can then

perform set tasks under the control of data read by itself, such as digital or event inputs.

When the 1401 runs an internal sequence, output that would normally be sent to the host

is intercepted and goes to local variables within the 1401. The variables are available for

arithmetic or logical operations and to control the flow of execution of the commands.

The first number on each output line from the 1401 to the host is placed in local variable

A, the second in local variable B and so on. Local variables which are required to hold

permanent data should thus be allocated away from the start of the alphabet! Character

strings which cannot be interpreted as integers are ignored. CLIST is the only standard

command that produces output which would be ignored.

You can send output to named local variables by ending a command with a colon and a

local variable. The following reads ADC channels 0 and 1 into local variables S and T:

ADC,0 1:S

You can also force output back to the host, even when a sequence is running by using a

question mark in place of the local variable. The following command sends the output of

the same ADC command back to the host, and not to the local variables A and B:

ADC,0 1:?

You can use these output redirection facilities at any time; they are described here

because they are most useful with RUNCMD.

The first group of RUNCMD variants is:

RUNCMD,L Store the following sequence of commands

END Terminates the command sequence (MUST be upper case)

RUNCMD,G Take input/output from internal buffers (run sequence)

RUNCMD,D Take input/output from host (end sequence)

RUNCMD,R Run the sequence after a hardware reset (standard 1401 only)

RUNCMD,BR,com Branch unconditionally to command number com

RUNCMD,BP,com,arg1,arg2 Branch if arg2>=arg1 (signed)

RUNCMD,BM,com,arg1,arg2 Branch if arg2<arg1 (signed)

RUNCMD,BG,com,arg1,arg2 Branch if arg2>=arg1 (unsigned)

RUNCMD,BL,com,arg1,arg2 Branch if arg2<arg1 (unsigned)

RUNCMD,BE,com,arg1,arg2 Branch if arg2=arg1

RUNCMD,BN,com,arg1,arg2 Branch if arg2<>arg1

RUNCMD
Run from an internal

list of commands

Redirection of output

RUNCMD variants

Branching variants

 1401 family programmer reference

87

Space for the sequence is reserved when the command is loaded. The maximum sequence

size is 2000 characters (4000 for Power1401). A sequence is loaded by:

RUNCMD,L Flag the start of a sequence

COMMAND1 A command to be part of the sequence

... More commands

END Marks the end of the sequence (must be upper case)

The following lines sent to the 1401 would load a sequence that reads in the DC value of

an array and removes it:

RUNCMD,L Flag following text is sequence

SS2,A,0,2000 Get mean value of area into local variable A

SS2,+,0,2000,-A Add minus the mean level to the data

END End of the sequence (must be upper case)

To run the sequence, use the RUNCMD,G command. Individual commands in a sequence

need not be on separate lines as long as they are separated by a semicolon.

The RUNCMD,G command starts the sequence running. The sequence stops when it

reaches the end, or a RUNCMD,D.

Any characters sent to the 1401 while it is running a sequence are stored in the 1401

communications buffers and will be processed when the sequence stops. If the

communications buffer becomes full, the host must wait until communication is restored

by END or RUNCMD,D. When the 1401 reset line is pulsed, all the 1401 hardware is reset,

but any sequence loaded by the RUNCMD,L command is preserved in memory.

These commands are valid when running from the internal buffer. It is an error to use

them at any other time. In all these commands the second argument is the number of a

command in the internal buffer to which control should be passed if the condition set in

the branch is met. Commands are numbered 1 to N where there are N commands in the

buffer. If a command number is given that is not in the buffer the sequence terminates.

The BR command jumps to the specified command in the buffer by number. The

remaining commands (BP, BM, BG, BL, BE, BN) branch to the specified command if the

last two arguments meet the appropriate condition. These arguments may be numbers or

single letters corresponding to local variables. If the condition is not met the branch is not

taken and the next command is executed.

This example shows a more ambitious application of RUNCMD in which a larger sequence

is sent as text. The program in the host should load the sequence into the 1401, and when

the sequence is initiated, by sending RUNCMD,G the link to the host may be disconnected.

The 1401 is told to respond to digital inputs 0 to 3 thus:

Digital input 0 set- Sample and display 1024 points at 1 kHz

Digital input 1 set- Window the display

Digital input 2 set- Perform an FFT

Digital input 3 set- Produce a power spectrum

This sequence would be loaded into the 1401 by sending the following commands

(neither the command number in the sequence nor the comment is sent):

RUNCMD,L set up to load

SS2,C,4096,2048,0 send first command of the sequence

 ... the rest of the commands ...

Loading the input buffer; the
L command

Running and stopping a
sequence

The Branch commands

Example sequence

 Running command sequences in 1401

88

RUNCMD,BR,6 the last command in the sequence

END terminate the sequence

Once the whole text has been sent, the sequence is started by sending the RUNCMD,G

command. There is no way out of this sequence!

No. Command sent to 1401 Comment (not sent!)

1 SS2,C,4096,2048,0 zero an array for the spectrum

2 WRADR,2,4098,-16383 set a solitary cosine component

3 FFT,I,4096,2048 Generate a cosine array

4 SS2,S,4096,2048,1 Scale to make the window

5 SS2,+,4096,2048,16384 DC shift the window

6 DIG,I,0 Main loop; read digital input 0

7 RUNCMD,BN,11,1,A go on if bit 0 not set

8 D,0 kill display

9 ADCMEM,F,2,0,2048,0,1,C,10,100 Sample

10 D,Y2,64,0,2048 and display

11 DIG,I,1 read digital input 1

12 RUNCMD,BN,16,1,A go on if not set

13 D,0 kill display

14 SM2,*,0,4096,2048,15 window the data

15 D,Y2,64,0,2048 display

16 DIG,I,2 read digital input 2

17 RUNCMD,BN,22,1,A go on if not set

18 D,0 kill display

19 SM2,C,2048,0,2048 make a copy of data

20 FFT,FF,2048,2048 do FFT

21 D,Y2,64,2048,2048 display

22 DIG,I,3 sample bit 3

23 RUNCMD,BN,29,1,A go on if not set

24 D,0 kill display

25 SM2,C,2048,0,2048 make a copy

26 FFT,FF,2048,2048 do FFT

27 GAINPH,G and gain phase

28 D,Y2,128,2048,1024 display power

29 RUNCMD,BR,6 branch back to 6

Sequences of commands usually run faster when loaded with RUNCMD rather than

controlled via the host because the overhead time between commands is reduced. The

following loop, which writes a descending ramp to the digital output port took 1 seconds

on a micro1401, 0.08 seconds in a Micro1401 and about 0.03 seconds on a Power1401,

but the equivalent loop, run from the host (an IBM PC), took 8.6 seconds:

DIG,S,255 set the bi-directional bits to output

VAR,S,X,1000 set variable X to 1000 (VAR is described overleaf)

DIG,O,X write X to the output

VAR,D,X decrement X

RUNCMD,BN,3,0,X branch back if X<>0

If the sequence involves reading data back, then the time gains are larger. The sequence

below reads ADC channel 0 one thousand times.

VAR,S,X,1000 set variable X to 1000

ADC,0 read ADC 0 into variable A

VAR,D,X decrement X

RUNCMD,BN,2,0,X branch back if X not 0

RUNCMD speed

 1401 family programmer reference

89

With a micro1401 it took 1 second, on a Micro1401 it took 0.13 seconds and about 0.04

seconds on a Power1401, compared with 12.8 seconds when run from the host. The real

speed gains occur where the host/1401 interface is slow (e.g. RS232), or where the host

can usefully be doing other work. For example, the user wants to capture 10 voltage

signals, each triggered by E4. These triggers will be widely separated in time and the user

doesn’t want to tie up the host waiting for each trigger:

RUNCMD,L load the following sequence

VAR,S,X,10 set 10 sweeps

VAR,S,S,0 set start memory position to 0 (S=0)

VAR,S,Z,1000 set size of data to 1000 bytes (Z=1000)

ADCMEM,F,2,S,Z,0,1,CT,10,3 capture ADC data to area starting at S

VAR,+,S,Z move start on by the size

VAR,D,X decrement X

RUNCMD,BN,4,0,X round again if X<>0

END flag the end of the sequence

The 1401 VAR command is used to set, increment and decrement local variables. The VAR

command has these variants:

VAR,S,lvar,arg Set a local variable (lvar) to arg

VAR,+,lvar,arg Add arg to the lvar

VAR,I,lvar Add 1 to the lvar

VAR,D,lvar Subtract 1 from the lvar

VAR,?,lvar;value Return current lvar value

lvar The local variable to use (A-Z)

arg A numeric value, or another local variable!

value The current value of lvar

The following are examples of the use of the VAR command:

VAR,S,A,1 Set variable A to 1 (A=1)

VAR,S,P,-2000 Set P to -2000 (P=-2000)

VAR,S,Q,$1000 Set Q to hexadecimal 1000 (Q=4096)

VAR,S,D,-E Set D to minus the value in E (D=-E)

VAR,+,X,-Y subtract Y from X (X=X-Y)

VAR,I,F Increment the value in F (F=F+1)

VAR,D,G Decrement the value in G (G=G-1)

VAR,?,A Return the value of A to the host

VAR
Manipulating local

variables

 Configuring the 1401

90

The CONFIG command controls four functions: system EEPROM, top-box EEPROM,

top-box FPGA FLASH and external 1401 synchronization control. EEPROMs (and the

flash memory used to emulate them) has a limited life in terms of erase/write cycles (as

few as 10,000 writes in some cases); EEPROMs are for rarely changed information.

The Micro1 and Power1 store system information in an EEPROM (Electrically Erasable

Programmable Read Only Memory). We usually fit one with 128 or 256 bytes of storage,

but larger sizes (512 or 1024) are possible. Later Micro and Power devices emulate the

system EEPROM with 512 bytes of flash memory. The following CONFIG variants access

the system EEPROM:

CONFIG,RC,hoOff,max,code Read public area code

CONFIG,RN,hoOff,max,n Read public area packet n

CONFIG,WB,hoOff Write public area

CONFIG,RH,hoOff,max Read private header

CONFIG,WH,hoOff Write private header

Micro1401 and Power1401 top boxes (device codes 1-6) use an EEPROM to identify the

top box and store calibration and other information. If a 1401 has electronic calibration of

the motherboard ADC and DACs, it may also store information for the motherboard

using device code 0. The devices that store motherboard information emulate an

EEPROM and actually store the information in flash memory. Commands are:

CONFIG,T,dev;type,rev,serial,tags,cpld Read top box information

CONFIG,TV,dev,offs;val Read top box EEPROM data byte

CONFIG,RT,hoOff,dev,offs,n Transfer top box EEPROM data to the host

CONFIG,WT,hoOff,dev,offs,n Write top box EEPROM data from the host

The latest generation Micro1401 top boxes (ADC12, SPIKE2 and ADC64), support field

updates, currently implemented for the Micro4 only.

CONFIG,TR,dev,st,sz;bytes Read top box FPGA image

CONFIG,TP,dev,st;result Update top box FPGA image

Modern 1401s can be synchronized so that the sampling clocks in separate units run at

identical rates. These CONFIG command variants let you control this feature:

CONFIG,S?;sync Get synchronization information

CONFIG,SS,mode Set synchronization mode

The system EEPROM is divided into a private area holding the 1401 serial number and

permissions to run specially licenced code and a public area that is available for user code

to store small amounts of rarely-changed information.

The public data area stores information packets. This area holds data such as the size of

the expanded memory and settings for programmable signal conditioners. Packets to

write to the EEPROM are built in the host memory and transferred by the CONFIG

command using a mechanism similar to the TO1401 command.

Byte Contents

0 The packet size, including this byte. 0 marks the end of the list.

1 The packet type code. CED reserves codes 0-127. User codes are 128-255.

2... The data for this packet starts here.

CONFIG
EEPROM and Synch

System EEPROM

Top box EEPROMs

Top box FPGA FLASH

1401 Synchronization

System EEPROM

Public data area

Public data packet structure

 1401 family programmer reference

91

Unused in modern 1401s. This 10 byte area recorded the start address and size of any

expanded memory in the 1401plus. If this code is absent, expanded memory is not used.

If you really need more information about this see archived versions of this manual.

This 4 byte area holds the number of ADC channels in byte 2 and bit 0 of byte 3 is set if

there is a second sample and hold fitted.

This 4 byte area holds ADC trimming information for the micro1401. Byte 2 holds the

gain value and byte 3 holds the offset.

No longer used. Was ADC information for the Power1401.

CONFIG,RC,hoOff,max,code is used to read back a public packet with a known code

into host memory. If the block requested doesn’t exist error 253,3 is returned.

hoOff The offset into the host transfer block. See TOHOST and TO1401 on page 21.

max The maximum number of bytes to return (less may be returned).

code The code of the block to be read, returned in the data as the byte at offset 1.

CONFIG,RN,hoOff,max,n reads the n
th

 public data packet to host memory. The hoOff

and max fields are as above.

n The public data area to read in the range 1 to the number of public data areas. If

a number outside this range is given, the command returns error 253,3.

CONFIG,WB,hoOff writes a block of host memory to the public area. If a packet exists

with the same code, it is deleted before the new packet is written. Error 253,3 is returned

if there is not enough room in the EEPROM to hold the new packet.

hoOff This is the offset into the host transfer block as described above.

The private header can be expanded without affecting the operation of the software. The

standard header is 11 bytes long and has the following structure:

Bytes Contents

0 Bits 0-2 hold the EEPROM size in bytes as 0=128, 1=256, 2=512, 3=1024,

4=2048, 5=4096, 6=8192 and 7=16384. Bits 3-7 are unused and set to 0.

1 The offset to the public area in the EEPROM (also the private header size).

Do not assume the value 11; check the size to guarantee compatibility.

2 The functional level for software operations of 1401. The first release boards

have this field set to 0.

3 The motherboard revision level. Revision A=0, B=1 and so on.

4-5 The motherboard serial number, least significant byte first.

6-9 These bytes are normally 0. When used, they hold ‘permissions’ to run

software packages. Up to 4 permissions can be held without extending the

private header. If more space is required this area is expanded. Code 255

flags a demonstration machine which may run any software package

10 This is a checksum for the private header. The sum of the private header

bytes treated as unsigned numbers (including the checksum) is a multiple of

256. This is the last byte of the private header.

CONFIG,RH,hoOff,max reads the private header from the EEPROM to the host

memory. See page 21 for block transfer details.

hoOff The offset into the host transfer area 0 at which to transfer the private header.

Public area code 0

Public area code 1

Public area code 2

Public area code 3

Read data for a known code

Read the nth data packet

Write public area packet

Private data header

Reading the private header

 Configuring the 1401

92

max The maximum number of bytes to transfer.

CONFIG,WH,hoOff writes the private header. As the EEPROM operation depends on the

integrity of this header, and the header holds information that can be used in software

protection schemes, blocks offered as headers must meet certain specifications before the

1401 accepts them. These specifications are private to CED and are not published.

Modern 1401s are extendable with top boxes. These are described separately from this

manual. Every top box has an EEPROM that identifies the top box type and holds top-

box specific information, such as LED and CPLD register addresses and calibration

settings. The EEPROMs connect to the motherboard via an I2C bus; each EEPROM is

identified by the top box device number (usually 1-3). Top box numbers 0-6 are possible:

the first top box is 1, second 2, and so on. Some 1401s require calibration information for

the motherboard, and these allow an EEPROM device address of 0.

CONFIG,T,dev;type,rev,serial,tags,cpld returns information about top box

number dev (use 0 for motherboard information). The returned information is:

type The top box type code.

rev The top box revision. 0=revision A, 1=B and so on.

serial The top box serial number.

tags The count of stored EEPROM tags.

cpld The CPLD (firmware) revision.

CONFIG,TV,dev,offs;val reads a single byte from top box number dev at offset

offs in the range 0 to 252 into the EEPROM. The result is in the range 0 to 255.

CONFIG,RT,hoOff,dev,offs,n and CONFIG,WT,hoOff,dev,offs,n read and write

the contents of a top box or motherboard EPROM. Data transfer is by a TOHOST/TO1401

like block transfer mechanism using area 0. The command fields are:

hoOff The offset from the start of transfer area 0 in the host.

dev The top box number as 1 to 6 or 0 for the motherboard.

offs The start offset into the 256 byte EEPROM area.

n The number of bytes to read or write; offs+n must be <= 256.

The Micro1401 ADC12 issue D, ADC64 issue B and Spike2 issue D top boxes use field

programmable Lattice MachXO2 devices. There are three command variants, added to

the Micro4 in Monitor revision 5, March 2021, to support this.

CONFIG,TR,dev,st,sz;bytes reads the entire FPGA flash image into user memory

and reports the copied image size. This command takes a couple of seconds to read the

current FPGA images (21488 bytes in length). There is no command response until read-

back is complete. The command fields are:

dev The top box number (1-6, but only 1-3 allowed in Micro).

st The offset into user memory at which to start the copy.

sz The maximum number of bytes to copy to user memory.

bytes Returns the number of bytes copied or -1 for read fail, -2 for wrong/no FPGA.

Writing the private header

Top box EEPROMs

Read general top box
information

Read one byte of top box
EEPROM

Transfer top box EEPROM
data

Top box FPGA Image

Read top box FPGA image

 1401 family programmer reference

93

CONFIG,TP,dev,st;result Writes a top box image that starts with a flash header (the

contents of a suitable .fli file) from user memory into the top box FPGA flash memory.

The erase operation takes up to 2 seconds, programming takes a time proportional to the

number of bytes in the image and could be a further 2 seconds. The command fields are:

dev The top box number (1-6, but only 1-3 allowed in Micro).

st The offset into user memory of the flash header that immediately precedes the

image. The header contains the size of the image, a checksum and the type of the

top box the image is built for.

result 0 for success or a negative error code.

The following errors are possible when using the CONFIG command for EEPROMs:

Code Meaning of the ERR command report

253,1 EEPROM reading or writing timed out, probably due to a hardware problem.

253,2 The public area of the EEPROM was inconsistent during power-up self-test.

If this is seen after the WB command variant, the public area will only hold the

new block. If the error occurs after the RC or RN commands then no data has

been transferred and the error will recur until a WB command is used.

253,3 A requested public data area does not exist or there is not enough room to

write a public data area.

253,4 The private header of the EEPROM is corrupt. The only sub-commands

which will work in this state are the RH and WH variants.

If your 1401 has a synchronization option (or the possibility of fitting one), there are two

extra commands available. The synchronization option allows multiple 1401 to run at

exactly the same speed, eliminating the possibility of time drift between multiple units

due to the internal clocks running at slightly different rates.

CONFIG,S?;sync returns the synchronization mode as -1 if the synchronization

hardware is not fitted, 0 if it is fitted but the unit is not synchronized and as 1 if the unit is

currently in synchronized mode.

CONFIG,SS,mode sets the mode of operation. You can set mode to:

0 Automatic. This is the default mode. If an external synchronisation signal is

detected, the unit will derive the clock from the external signal.

1 Force slave mode. The clock will only be derived from an external signal. If there is

no external signal, there is no clock. Not recommended; used for testing purposes.

This will be the same as automatic mode in the Micro4.

2 Force independent operation. Ignore any external synchronization signal.

Update top box FPGA image

Error codes

Synchronization of
1401s

Get synchronization mode

Set synchronization mode

 Appendix A: 1401 family differences

94

This section gives you the information you need to convert a standard 1401 program for

the 1401plus making the minimum changes to your application. Re-build your program

with the latest version of the 1401 family language support libraries. In most cases, you

will find that your 1401 programs will now work equally well for both 1401 and

1401plus (and micro1401). You may still notice the following differences:

1. If your program used a mechanism other than Ld to load commands, or set the file

extension for commands to ‘.CMD’ explicitly, use Ld and remove any file extensions.

2. If you use FFT, GAINPH, ADDPWR or DLOGPWR all these commands are held in FFT. So

for any or all of these commands, load the FFT command. To be compatible with the

standard 1401 use a Ld command with FFT first followed by the other commands you

need (Ld tests if a command is loaded before searching on disk).

3. MEMTOP always returns 65534,0 in the 1401plus unless the user data space is less than

65534 bytes. In the standard 1401, MEMTOP typically returns 50000,1536 with the

difference between the two figures being the user data space. Thus well-behaved

programs that ask the 1401 how much user space is available have more space in

1401plus. This may cause problems with programs that allocate memory in the host

based on the user space in the 1401 as the 1401plus will have more free space.

4. If you load a large number of commands (more than 24 kB of commands) you may

run out of command space. See page 22 for expanding command space.

5. When you load a new command, the user space does not decrease in the 1401plus (as

is the case with standard 1401). This should not be a problem!

6. The 1401plus has more error codes (you do check error codes don’t you?). Programs

which check for ERR returning 0 or non-zero will work without any problem.

7. The 1401plus normally has much more memory space (typically 900 kB or more) for

user data, even though MEMTOP reports 65534 bytes. All commands that use the user

memory support the use of much larger numbers for the start and size of a region.

This means that commands that would cause standard 1401 errors may not do so in

the 1401plus. The following would always cause a standard 1401 error (no standard

1401 has 60000 bytes of user space), but would run correctly in a 1401plus.

 ADCMEM,I,2,40000,20000,0,1,C,10,10

8. The 1401plus is much faster. This is especially true of arithmetic calculations where

the 1401plus can be 40 times faster than the 1401. If a program ran round a loop,

performing a background task until the 1401 had finished a task you may find that

with a 1401plus the background task never has a chance to be done!

9. The MassRAM can be emulated on a 1401plus with expanded memory (4 or 16 MB).

If your program asks for the size of MassRAM, it may be surprised if it did not allow

for 16 Mb. See the MEMTOP command for information on MassRAM emulation.

10. The standard 1401 returns numbers in the range -32768 to 65535. The 1401plus can

return numbers from 2
31

-1 to -2
31

.

11. Very old programs that used negative numbers to represent the number range 32768

to 65535 will fail with 1401plus. Use positive numbers.

We provide all the standard 1401 commands described in the (old) CED 1401 Intelligent

Interface Programmers’ handbook (except YT which is no longer supported and AUDMR).

The obsolete 1401 commands ADCMEMI and ADCMEMF and MEMDACI and MEMDACF have

been replaced by their modern equivalents (ADCMEM and MEMDAC) that incorporate all the

features of the old commands. Use ADCMEM,I,… to replace ADCMEMI and so on.

Standard 1401 and
1401plus

 1401 family programmer reference

95

This section describes the differences you will see between a 1401plus and a micro1401

as a programmer. The first thing to say is that there are not very many! Although the two

units look very different and use different processors, they behave in a very similar

manner (and share quite a lot of code internally).

1. micro1401 commands have the extension .ARM on PC systems and have a type of

1403 on Macintosh systems. As long as you link with a recent 1401 family interface

library you will see no difference.

2. The ADCBST command is included in ADCMEM, it is not a separate command on disk.

If your program only uses ADCBST you can always rename ADCMEM.ARM to

ADCBST.ARM on DOS systems. On a Macintosh you must change your code.

3. ADCPERI is no longer supported. PERI32 has been the preferred command for

several years and has all the features (and more) of ADCPERI.

4. There are no MassRAM commands. The micro1401 does not emulate or support the

MassRAM. Just about anything you could do with the MassRAM you can do in

normal memory. ADCDAC can be run as ADCMEM and MEMDAC simultaneously.

5. Commands that use 16-bit and 32-bit data require that the data arrays are aligned to a

2 byte and 4 byte boundary. You will get an argument error (at the st argument) on

any non-aligned memory use.

6. There are 2 DACs and 4 ADC channels on an unexpanded micro1401. Rather than

give an error, to be more compatible with 1401plus the micro1401 connects ADC

channels above 3 to an internal ground unless an expansion unit is present.

7. There is only one clock F input, on the rear connector, not one for each clock.

8. If you have a second sample and hold, it is on channel 3, not 7.

If your code works with a micro1401, you have very little to do to make it work with a

Power1401.

1. Power1401 commands have the extension .ARN on PC systems and have a type of

1404 on Macintosh systems. As long as you link with a recent 1401 family interface

library you will see no difference.

2. There are 4 DACs and 16 ADC channels, and the analogue system is 16-bit (rather

than 12-bit in the micro1401). There is no provision for a second sample and hold on

the main board. There is a gain option for the ADC.

3. It is very much faster, which may cause you problems.

If your code works with a micro1401, you have very little to do to make it work with the

Micro140 mk II.

1. Micro1401 mk II commands have the extension .ARO on PC systems and have a

type of 1405 on Macintosh systems. As long as you link with a recent 1401 family

interface library you will see no difference.

2. Clock 0 and 1 prescalers, and all stages of clocks 2, 3 and 4 can be set to divide by

any number in the range 1-65536. This does not require code changes unless you

want to take advantage of this.

3. The external clock input for clock 4 is ADC Ext, not the rear panel F input as is the

case for the micro1401 and Power1401.

4. There is provision for DAC expansion. Up to 6 extra DACs can be fitted.

5. There is provision for more memory (most units have 1 MB but 2 MB is possible).

micro1401 differences
from 1401plus

Power1401 differences
from micro1401

Micro1401 mk II
differences from

micro1401

 Appendix A: 1401 family differences

96

If your code works with a Micro1401 mk II, you have nothing to do to make it work with

the Micro1401-3 unless you check the 1401 type.

1. Micro1401-3 commands have the extension .ARQ on PC systems and have a type of

1406 on Macintosh systems. As long as you link with a recent 1401 family interface

library you will see no difference.

2. The processor is some 20% faster, but this should not be a problem.

3. The DAC outputs are 16-bit, but this should not affect your code.

4. You must use a USB interface.

5. There is provision for more memory (all units have 4 MB but 12 MB is possible).

If your application code works with a Power1401, it will work with later versions of the

Power. Changes are:

1. Power2 commands have the extension .arp, Power3 commands have .arr. As long

as you link with a recent 1401 family interface library you will see no difference.

2. There is only the USB interface, but this is much faster than the CED parallel

interface.

3. These units have more memory and are faster, but this will not normally cause any

problem in existing code.

If your application code works with a Micro1401-3, you have nothing to do to make it

work with a Micro1401-4 unless you check the 1401 type or made use of the F input for

clocks 0 and 1 (we are not aware of any use of this feature).

1. Micro1401-4 commands have the extension .ARS on PC systems. As long as you

link with a recent 1401 family interface library you will see no difference.

2. The processor is much faster (3 to 8 times in general), but this should not be a

problem.

3. The clocks are implemented very differently, but we hide this by emulating the

previous clock arrangement. Most clock-related commands allow S (for 200 MHz)

in addition to the C, H and T rate specifiers. There is no F input for clocks 0 and 1

(which are merged into a single clock).

4. There is more memory (all units have 32 MB of user memory).

If your program wants to take advantage of the features in a particular member of the

1401 family, you must first determine that you have one! The Get1401Info function

provided with the 1401 language support can be used to get information on the type of

1401 as well as the revision level of the 1401 device driver, the type of host computer and

the current state of the 1401. The main new features that impact applications are the

availability of a much larger user data space, and much greater speed of operation.

Micro1401-3
differences from
Micro1401 mk II

Power1401 mk II, -3
differences from

Power1401

Micro1401-4
differences from

Micro1401-3

Using new features

 Index

97

—1—
1401 family, 2

—A—
ADC command, 26

ADC gain, 26

ADC inputs

Adjust gain and offset, 15

External convert, 28

Input voltage range, 21

resolution, 21

Sampling routine speeds, 23

ADCBST command, 33

ADCMEM command, 28

ADCPERI, obsolete command, 88

Add constant to an array, 54

Add double precision to dp array, 56

Add single to double precision array, 56

Add two arrays, 58

ADDPWR command, 66

Array arithmetic, 56

Add a constant, 54

Add double precision to dp, 56

Add single to dp array, 56

Add two arrays, 58

Average value of array, 55

Convert dp array to single precision,

56

Copy an array, 58

Difference of two arrays, 58

Differentiate, 55

Divide arrays, 58

Exchange arrays, 58

Filter, 55

Find maximum and minimum, 54

Integrate, 55

Interleave and separate arrays, 59

Multiply arrays, 58

Multiply by a power of 2, 54

Multiply by constant, 55

Negate array, 54

Set to a constant value, 54

Spectrum of a waveform, 61

Take modulus of an array, 54

Array arithmetic commands, 53

AUCR command, 78

AUDAT command, 75

AUDATM command, 77

AUINTH command, 78

Auto-correlation of event times, 78

Average of array, 55

—B—
Block transfers of data, 17

Buffers between 1401 and host, 8

Built-in commands, 8

Butterworth filter, 55

—C—
Channel Dequencer, 31

Channel Sequencer, 2, 31

Get information, 34

Setting timings, 34

Character fields in commands, 12

CLEAR command, 15

CLIST command, 14

CLKEVT command, 42

CLOAD command, 14

Clock 0 schematic, 42

Clock source for DAC and ADC

commands, 25

Command types, 9

Commands

Built-in, 8

Character fields, 12

Format of 1401 commands, 11

Initialise, 15

listing loaded commands, 14

Loading a new command, 14

Numeric fields, 12

Removing loaded commands, 15

Reporting errors, 16

Running a sequence of commands

within 1401, 80

System information, 15

Testing if loaded, 14

Writing your own, 1

Completion routines, 10

CONFIG command, 84

Configuring the 1401 EEPROM, 84

Connections

for event timing commands, 68

Multi-channel event timing, 72

Out (the clock 2 output), 43

Convert dp array to single precision, 56

Copy an array, 58

Cross-correlation of event times, 78

—D—
DAC command, 27

DAC gain, 27

DAC outputs

resolution, 21

Differences between 1401 and 1401plus,

87

Differentiate an array, 55

Digital outputs

sequenced by DIGTIM, 47

DIGTIM command, 47

Divide dp array by constant, 56

Divide one array by another, 58

DLOGPWR command, 67

Double buffered DAC outputs, 38

Double precision array arithmetic, 56

—E—
E0 front panel input, 42, 70, 73, 75

E1 front panel input, 42, 69, 70, 72, 73,

75, 77

E2 front panel input, 43, 48

E3 and E4 front panel inputs, 25

E3 and E4 front panel inputs, 24

EEPROM (configuration), 84

ERR command, 8, 16

Errors

general codes, 16

Reading the error state, 16

EVENT command, 51

Event inputs

Setting internal event state, 52

Setting the active edge, 51

Event time capture (1-2 channel), 75

Event time capture (1-8 channels), 77

Event time processing, 68

Examples, 1

ADC, 26

ADCMEM, 29, 49, 52, 57, 67

ADCMEM, 64

ADDPWR, 67

CLEAR, 29

CLIST, 14

DAC, 27, 49

DIG, 41, 49

DIGTIM, 49

DLOGPWR, 67

ERR, 16

EVENT, 52

FFT, 64, 67

GAINPH, 64

INTH, 73

MADCM, 32

MEMDAC, 39, 52

PSTH, 49, 52, 71

RDADR, 64

RUNCMD, 82

SD2, 57

SM2, 64, 67

SS2, 57, 64, 67, 71, 73

TO1401, 67

TOHOST, 29, 49, 64

VAR, 82, 83

WRADR, 64

Exchange arrays, 58

Extended precision arithmetic, 56

External convert ADC input, 28

Specifying use of, 25

 Index: Spike2 for Windows version 3

98

—F—
F0 front panel input, 42

F2 front panel input, 43

F3 and F4 front panel inputs, 25

Fast Fourier Transform, 61

FFT command, 62

FFT data windows, 63

Filter an array, 55

Flash memory in Power1401, 19

Forward Fourier transform, 62

Frequency content of a waveform, 61

—G—
GAIN command, 26, 27

GAINPH command, 65

—H—
Hardware sequencer, 2

Hexadecimal numbers, 12

—I—
INFO command, 15

Integrate an array, 55

INTERACT program, 6

Interleave data, 59

Internal events, 51

controlled by DIGTIM, 47

Internal triggering, 51

Interrupt processing, 9

Interval histogram

from event times, 78

multi-channel on-line, 74

single channel on-line, 73

INTH command, 73

INTHM command, 74

Inverse Fourier Transform, 62

—K—
KILL command, 15

—L—
Loading a new command, 14

Local variables, 12, 83

Log gain from average spectrum, 67

Log gain from the FFT, 65

—M—
MADCM command, 31

Maximum and minimum of array, 54

Mean value of array, 55

MEMDAC command, 38

Memory

1, 2 and 4 byte data, 10

Specifying memory regions, 11

Memory size, 18

Memory transfer between host and 1401,

17

MEMTOP command, 11, 18

Modulus of a data array, 54

Multiple array manipulation, 58

Multiply array by constant, 55

Multiply arrays, 58

Multi-rate waveform sampling, 31

Multi-tasking, 4, 9

simultaneous ADCMEM/MEMDAC

rates, 22

—N—
Negate a data array, 54

Numeric fields, 12

Nyquist frequency, 63

—O—
Operators, numeric, 12

Out, front panel connection, 43

—P—
PERI32 command, 36

Peri-trigger waveform capture, 36

Permissions to run software, 85

Phase of FFT, 65

Post stimulus Time Histogram

from event times, 78

Post Stimulus Time Histogram

multi-channel on-line, 72

single channel, on-line, 70

Program Power1401 flash memory, 19

PSTH command, 70

PSTHM command, 72

—R—
Range of returned data from 1401, 13

RDADR command, 16

Repeated trigger in ADCMEM, 29

Repeated trigger in MEMDAC, 39

RESET command, 15

RUNCMD command, 80

—S—
SD1 and SD2 commands, 56

Separate interleaved data, 59

Sequenced digital outputs, 47

Shift array, 54

Simultaneous sampling of multiple

channels, 33

Simultaneous sampling of multiple

channels, 31

SM1 and SM2 commands, 58

SN1 and SN2 commands, 59

Spectral averaging, 66

Spectral transforms, 61

SS1 and SS2 commands, 54

Standard arguments

for clock control, 25

for event time commands, 69

for waveform sampling, 25

lists of channels, 25

Subtract one array from another, 58

Synchronization of 1401s, 86

—T—
Text buffers, 8

TIMER2 command, 43

Timing event 1 to event 0 interval, 42

TO1401 command, 17

TOHOST command, 17

Trigger signals

for waveform sampling commands,

25

Trigger signals

for ADC clock, 28

Trigger signals

Repeated, 29

Trigger signals

Repeated, 39

Trigger signals

Internal, 51

Trigger signals

for event timing commands, 68

—V—
VAR command, 83

Voltage input (simple), 26

Voltage input (waveform), 28

Voltage output (simple), 27

—W—
Waveform data resolution, 21

Waveform input, 28

Maximum rates, 23

Waveform output using MEMDAC, 38

Windows in FFTs, 63

WRADR command, 17

—X—
XFREQ, 46

