

The Spike2

script language

Version 5

ii

Copyright  Cambridge Electronic Design Limited 1988-2007

Neither the whole nor any part of the information contained in, or the product described
in, this guide may be adapted or reproduced in any material form except with the prior
written approval of Cambridge Electronic Design Limited.

Version 5.00 March 2003
Version 5.01 April 2003
Version 5.02 May 2003
Version 5.03 June 2003
Version 5.04 October 2003
Version 5.05 January 2004
Version 5.06 April 2004
Version 5.07 June 2004
Version 5.08 September 2004
Version 5.09 November 2004
Version 5.10 January 2005
Version 5.12 May 2005
Version 5.13 October 2005
Version 5.15 May 2006
Version 5.17 March 2007

Published by:

Cambridge Electronic Design Limited
Science Park
Milton Road
Cambridge
CB4 0FE
UK

Telephone: Cambridge (01223) 420186
 International +44 1223 420186
Fax: Cambridge (01223) 420488
 International +44 1223 420488
Email: info@ced.co.uk
Home page: www.ced.co.uk

Curve fitting functions are based on routines in Numerical Recipes: The Art of Scientific
Computing, published by Cambridge University Press and are used by permission.

Trademarks and Tradenames used in this guide are acknowledged to be the Trademarks
and Tradenames of their respective Companies and Corporations.

 Table of Contents

iii

Introduction..1-1
Hello world ... 1-1
Views and view handles.. 1-2
Writing scripts by example ... 1-2
Using recorded actions.. 1-3
Differences between systems .. 1-4
Notation conventions .. 1-4
Sources of script information .. 1-4

The script window and debugging...2-1
Syntax colouring ... 2-2
Editing features for scripts .. 2-2
Debug overview .. 2-2
Preparing to debug .. 2-2
Inspecting variables... 2-4
Call stack... 2-4

Script language syntax ...3-1
Keywords and names .. 3-1
Data types.. 3-1
Arrays.. 3-3
Result views as arrays ... 3-4
Statement types ... 3-4
Comments ... 3-4
Variable declarations... 3-4
Constant delarations.. 3-5
Expressions and operators... 3-5
Flow of control statements .. 3-7
Functions and procedures.. 3-10
Channel specifiers ... 3-12

Commands by function...4-1
Windows and views .. 4-1
Channel commands ... 4-2
Time views.. 4-3
Result views .. 4-3
XY view.. 4-4
Vertical cursors ... 4-4
Horizontal cursors ... 4-4
Editing operations ... 4-5
Text files ... 4-5
Binary files.. 4-5
File system .. 4-5
User interaction commands... 4-6
Analysis .. 4-7
Mathematical functions... 4-7
Array and matrix arithmetic .. 4-8
String functions... 4-8
Curve fitting .. 4-8
Digital filtering.. 4-9
Sampling configuration... 4-9
Runtime sampling ... 4-9
Arbitrary waveform output ... 4-10
Discriminator control .. 4-10
Signal conditioner control ... 4-10
Debugging operations ... 4-11

 Table of Contents

iv

Environment ..4-11
Spike shape window ..4-11
Spike Monitor ..4-12
Multimedia files...4-12
Serial line control...4-12
Multiple monitor support ...4-12

Alphabetical command reference .. 5-1

Translating DOS scripts.. 6-1
What will translate.. 6-1
What will not translate.. 6-1
General translation issues ... 6-2
After translating .. 6-4

XY views... 7-1
Creating an XY view .. 7-1
Overdrawing data.. 7-2

Curve fitting from a script... 8-1
Testing the fit.. 8-3
Fitting routines.. 8-4

 Introduction

1-1

For many users, the interactive nature of Spike2 may provide all the functionality
required. This is often the case where the basic problem to be addressed is to present the
data in a variety of formats for visual inspection with, perhaps, a few numbers to extract
by cursor analysis and a picture to cut and paste into another application. However, some
users need analysis of the form:

1. Find the peak after the second stimulus pulse from now.
2. Find the trough after that.
3. Compute the time difference between these two points and the slope of the line.
4. Print the results.
5. If not at the end, go back to step 1.

This could all be done manually, but it would be very tedious. A script can automate this
process, however it requires more effort initially to write it. A script is a list of
instructions (which can include loops, branches and calls to user-defined and built-in
functions) that control the Spike2 environment. You can create scripts by example, or
type them in by hand.

Traditionally, the first thing written in every computer language prints “Hello world” to
the output device. Here is our version that does it twice! To run this, use the File menu
New command to create a new, empty script window. Type the following:
Message("Hello world");
PrintLog("Hello world");

Click the Run button to check and run your first script. If you have made any typing
errors, Spike2 will tell you and you must correct them before the script will run. The first
line displays “Hello world” in a box and you must click on OK to close it. The second
line writes the text to the Log view. Open the Log view to see the result (if the Log
window is hidden you should use the Window menu Show command to make it visible).

So, how does this work? Spike2 recognises names followed by round brackets as a
request to perform an operation (called a function in computer-speak). Spike2 has around
400 built-in functions, and you can add more with the script language. You pass the
function extra information inside the round brackets. The additional information passed
to a function is called the function arguments.

Spike2 interprets the first line as a request to use the function Message() with the
argument "Hello world". The message is enclosed in double quotation marks to flag
that it is to be interpreted as text, and not as a function name or a variable name.

An argument containing text is called a string. A string is one of the three basic data
types in Spike2. The other two are integer numbers (like 2, -6 and 0) and real numbers
(like 3.14159, -27.6 and 3.0e+8). These data types can be stored in variables.

Spike2 runs your script in much the same way as you would read it. Operations are
performed in reading order (left to right, top to bottom). There are also special commands
you can insert in the script to make the it run round loops or do one operation rather than
another. These are described in the script language syntax chapter.

Spike2 can give you a lot of help when writing a script. Move the text caret to the middle
of the word Message and press the F1 key. Help for the Message() command appears,
and at the bottom of the help entry you will find a list of related commands that you
might also find useful.

1

What is a script?

Hello world

 Introduction

1-2

The most basic concept in a script is that of a view and the view handle that identifies it.
A view is a window in Spike2 that the script language can manipulate. The running script
is hidden from most commands, however you can obtain its handle using App(3) so you
can show and hide it.

There is always a current view. Even if you close all windows the Log view, used for text
output by the PrintLog() command, remains. Whenever you use a built-in function
that creates a new view, the function returns a view handle. The view handle is an integer
number that identifies the view. It is used with the View() and FrontView() functions
to specify the current view and the view that should be on top of all windows.

Whenever a script creates a new view, the view becomes the current view. However,
views are created invisibly so that they can be configured before appearing. You can use
WindowVisible(1) to display a new window.

To help you write scripts Spike2 can monitor your actions and write the equivalent script.
This is a great way to get going writing scripts, but it has limitations. Scripts generated
this way only repeat actions that you have already made. The good point of recording
your actions is that Spike2 shows you the correct function to use for each activity.

For example, let us suppose you use the Script menu Turn Recording On option, open
a data file, select interval histogram analysis mode of channel 3, process all data in the
file and end with the Script menu Stop recording command. Spike2 opens a new
window holding the equivalent script (we have tidied the output up a little and added
comments):
var v6%,v7%; 'declare two integer variables (% means integer)
v6% := FileOpen("demo.smr", 0, 3); 'Open file, save view handle
Window(10, 10, 80, 50); 'Set a window position
v7% := SetInth(3, 100, 0.01, 0); 'Create invisible INTH view
WindowVisible(1); 'make the INTH visible
Process(0, View(-1).Maxtime(), 0, 1); 'Add data to INTH view

Some of this is fairly straightforward. You can find the FileOpen(), SetInth(), and
Process() functions described in this manual and they seem to map onto the actions
that you performed. However, there is extra scaffolding holding up the structure.

In the first line, the var keyword creates two integer variables, v6% and v7%. These
variables hold view handles returned by FileOpen() and SetInth(). Spike2 generates
the names from the internal view numbers (so your script may not be exactly the same).
The result of the functions is copied to the variable with the := operator. In English, the
second line of the script could be read as: Copy the result of the FileOpen command on
file demo.smr to variable v6% .

The SetInth() command makes a new window to hold an interval histogram of the
data in channel 3 with 100 bins of 0.01 seconds width and with the first bin starting at an
interval of 0 seconds. The WindowVisible(1) command is present because the new
window created by SetInth() is hidden. Spike2 creates invisible windows so that you
can size and position them before display to prevent excessive screen repainting.

The View(-1). syntax accesses data belonging to a view other than the current view.
The current view when the Process() command is used is the result view and we want
to access the maximum time in the original time view. The negative argument tells the
script system that we want to change the current view to the time view associated with
this result view. The dot after the command means that the swap is temporary, only for
the duration of the Maxtime() function.

Views and view
handles

Writing scripts by
example

 The Spike2 script language

1-3

You can now run this script with the control buttons. The script runs and generates a new
result view, repeating your actions. Now suppose we want to run this for several files,
each one selected by the user. You must edit the script a bit more and add in some
looping control. The following script suggests a solution. Notice that we have now
changed the view handle variables to names that are a little easier to remember.
var fileH%, inthH%; 'view handle variables
fileH% := FileOpen("", 0, 1); 'blank for dialog, single window
while fileH% > 0 do 'FileOpen returns -ve if no file
 inthH% := SetInth(3, 100, .01, 0);WindowVisible(1);
 Process(0, View(-1).Maxtime(), 0, 1);
 Draw(); 'Update the INTH display
 fileH% := FileOpen("", 0, 1); 'ask for the next file
wend;

This time, Spike2 prompts you for the file to open. The file identifier is negative if
anything goes wrong opening the file, or if you press the Cancel button. We have also
included a Draw() statement to force Spike2 to draw the data after it calculates the
interval histogram. There is a problem with this script if you open a file that does not
contain a channel 3 that holds events or markers of some kind. We will deal with this a
little later.

However, you will find that the screen gets rather cluttered up with windows. We do not
want the original window once we have calculated the histogram, so the next step is to
delete it. We also have added a line to close down all the windows at the start, to reduce
the clutter when the script starts.
var fileH%, inthH%;
FileClose(-1); 'close all windows except script
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 inthH% := SetInth(3, 100, .01, 0);WindowVisible(1);
 Process(0, View(-1).Maxtime(), 0, 1);
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the INTH display
 fileH% := FileOpen("", 0, 1); 'ask for the next file
wend;

This seems somewhat better, but we still have the problem that there will be an error if
the file does not hold a channel 3, or it is of the wrong type. The solution to this is to ask
the user to choose a channel using a dialog. We will have a dialog with a single field that
asks us to select a suitable channel:
var fileH%, inthH%, chan%; 'Add a new variable for channel
FileClose(-1); 'close all windows to tidy up
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 DlgCreate("Channel selection"); 'Start a dialog
 DlgChan(1, "Choose channel for INTH", 126); 'all but waveform
 if (DlgShow(chan%) > 0) and 'User pressed OK and...
 (chan% > 0) then '...selected a channel?
 inthH% := SetInth(chan%, 100, .01, 0);WindowVisible(1);
 Process(0, View(-1).Maxtime(), 0, 1);
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the display
 endif
 fileH% := FileOpen("", 0, 1); 'ask for the next file
wend;

The DlgCreate() function has started the definition of a dialog with one field that the
user can control. The DlgChan() function sets a prompt for the field, and declares it to
be a channel list from which we must select a channel (or we can select the No channel
entry). The DlgShow() function opens the dialog and waits for you to select a channel
and press OK or Cancel. The if statement checks that all is well before making the
histogram.

Using recorded
actions

 Introduction

1-4

If you need to write code that can run on different systems, you should try to avoid
system dependent features, or if this is impossible, make use of the System() function
to find out where you are. The Macintosh versions of Spike2 stop at version 2, so if you
use any version 3, 4 or 5 features, your script will not run on a Macintosh.

Throughout this manual we use the font of this sentence to signify descriptive text.
Function declarations, variables and code examples print in a monospaced font, for
example a := View(0). We show optional keywords and arguments to functions in
curly braces:

Func Example(needed1, needed2 {,opt1 {,opt2}});

In this example, the first two arguments are always required; the last two are optional.
Any of the following would be acceptable uses of the function:

a := Example(1,2); 'Call omitting the optional arguments
a := Example(1,2,3); 'Call omitting one argument
a := Example(1,2,3,4); 'Call using all arguments

A vertical bar between arguments means that there is a choice of argument type:

Func Choice(i%|r|str$);

In this case, the function takes a single argument that could be an integer, a real or a
string. The function will detect the type that you have passed and may perform a different
action depending upon the type.

Three dots (...) stand for a list of further, similar items.

You will find that the rest of this manual is a reference to the script language and to the
built-in script functions. Once you are familiar with the scripting system it will be your
most useful documentation. There are example and utility script provided with Spike2.
These are copied to the scripts folder within the folder that contains Spike2.

There is a separate manual provided with Spike2 that has been used for our Spike2
training courses, held at CED and around the world. This manual contains many
annotated examples and tutorials. Some of the scripts in this manual are useful in their
own right; others provide skeletons upon which you can build your own applications.

Our web site at www.ced.co.uk has example scripts and script updates that you can
download.

Differences between
systems

Notation conventions

Sources of script
information

 The script window and debugging

2-1

You use the script window when you write and debug a script. Once you are satisfied that
your script runs correctly you would normally run a script from the script menu without
displaying the source code. You can have several scripts loaded at a time and select one
to run with the Script menu Run Script command.

The script window is a
text window with a
few extra controls
including a “splitter”
control so that you can
view two parts of the
script at the same time. To use the splitter control, drag it down the window. To cancel it,
drag it to the top or bottom of the window. There is no script language control of the
splitter.

To the left of the text area is a margin where you can set break points (one is shown
already set), bookmarks and where the current line of the script is indicated during
debugging. Above the text area is a message bar and several controls. The controls have
the following functions:

This control is a quick way to find any func or proc in your script. Click on this to
display a list, in alphabetical order, of the names of all user-defined routines. Select one,
and the window will scroll to it. To be located, the keywords func and proc must be at
the start of a line and the name of the routine must be on the same line.

The script compiler checks the syntax of the script and if no errors are found it creates the
compiled version, ready to run. If the script has not been changed since the last compile
and no other script has been compiled, the button is disabled as there is no need to
compile again. Spike2 can have one compiled script in memory at a time.

If the script has not been compiled it is compiled first. If no errors are found, Spike2 runs
the compiled version, starting from the beginning. Spike2 skips over proc ... end;
and func ... end; statements, so the initial code can come before, between or after
any user-defined procedures and functions. This button is disabled once the script has
started to run.

This button sets a break point on the line containing the text caret, or clears a break if one
is already set. A break point stops a running script when it reaches the start of the line
containing the break point. You can also set and clear break points by moving the mouse
pointer over the margin on the left of the script and double clicking.

Not all statements can have break points set on them. Some statements, such as var,
const, func and proc compile to entries in a symbol table; they generate no code. If
you set a break point on one of them the break point will appear at the next statement that
is “breakable”. If you set break points before you compile your script, you may find that
some break points move to the next breakable line when you compile.

This button is enabled if there are break points set in the script. Click this button to
remove all break points from the script. Break points can be set and cleared at any time,
even before your script has been compiled.

This button provides help on the script language. It takes you to an alphabetic list of all
the built-in script functions. If you scroll to the bottom of this list you can also find links
to the script language syntax and to the script language commands grouped by function.
Within a script, you can get help on keywords and built in commands by clicking on the
keyword or command and pressing the F1 key.

2

Script window

Function

Compile

Run

Set break point

Clear all break points

Help

Splitter controlMargin

 The script window and debugging

2-2

Spike2 supports syntax colouring for both the script language and also for the output
sequencer editor. You can customise the colouring (or disable it) from the Editor settings
section of the Edit menu Preferences. The language keywords have the standard colour
blue, quoted text strings have the standard colour red, and comments have the standard
colour green. You can also set the colour for normal text (standard colour black) and for
the text background (standard colour white).

The syntax colouring options are saved in the Windows registry. If several users share the
same computer, they can each have their own colouring preferences as long as they log
on as different users.

There are some extra editing features that can help you when writing scripts. If you like
to indent your text, you can indent and outdent selected blocks by selecting one or more
characters, then use the Tab key to indent and the Shift-Tab combination to outdent.
The text moves by one tab stop. Tab stop sizes are set in the Edit menu Preferences.

Despite all our efforts to make writing a script easy, and all your efforts to get things
right, sooner or later (usually sooner), a script will refuse to do what you expect. Rather
than admit to human error, programmers attribute such failures to “bugs”, hence the act
of removing such effects is “debugging”. The term dates back to times when an insect in
the high voltage supply to a thermionic valve really could cause hardware problems.

To make bug extermination a relatively simple task, Spike2 has a “debugger” built into
the script system. With the debugger you can:

• Step one statement at a time
• Step into or over procedures and functions
• Step out of a procedure or function
• Step to a particular line
• Enter the debugger on a script error to view variable values
• View local and global variables
• Edit variable values
• See how you reached a particular function or procedure
• Set and clear break points

With these tools at your disposal, most bugs are easy to track down.

A Spike2 script does not need any special preparation for debugging except that you must
set a break point or include the Debug() command at the point in your script where you
want to enter the debugger. Alternatively, you can enter the debugger “on demand” by
pressing the Esc key; you may need to hold it down for a second or two, depending on
what the script is doing. If the Toolbar() or Interact() commands are active, hold
down Esc and click on a button. This is a very useful if your script is running round in a
loop with no exit! You can disable this with the Debug(0) command, but we suggest that
this feature is added after the script has been tested! Once you have disabled debugging,
there is no way out of a loop.

You can also choose to enter debug on a script error by checking the Enter debug on
script error box in the General tab of the Edit menu Preferences option. Depending on
the error, this may let you check the values of variables to help you fix the problem.

Syntax colouring

Editing features for
scripts

Debug overview

Preparing to debug

 The Spike2 script language

2-3

When your script enters the debugger, the
debug toolbar opens if it was not visible. The
picture shows the toolbar as a floating window,
but you can dock it to any side of the Spike2 window by dragging over the window edge.

Stop running the script. There is no check that you really meant to do this, as we
assume that if you know enough to get into the debugger, you know what you are

doing! You can use the Debug() command to disable the debugger.

Display the current line in the script. If the script window is not visible, this will
make it visible, then bring it to the top and scroll the text to the current line.

If the current statement contains a call to a user-defined Proc or a Func, step into
it, otherwise just step. This does not work with the Toolbar() command which

is not user-defined, but which can cause user-defined routines to be called. To step into a
user-defined Func that is linked to a Toolbar() command, set a break point in the
Func.

Step over this statement to the next statement. If you have more than one
statement on a line you will have to click this button once for each statement, not

once per line.

If you are in a procedure or function, step until you return from it. This does not
work if you are in a function run from the Toolbar() command as there is

nowhere to return to. In this case, the button behaves as if you had pressed the run button.

Run until the script reaches the start of the line containing the text caret. This is
slightly quicker than setting a break point, running to it, then clearing it (which is

what this does).

Run the script. This disables the buttons on the debug toolbar and the script runs
until in reaches a break point or the end of the script.

Show the local variables for the current user-defined func or proc in a window.
If there is no current routine, the window is empty. You can edit a value by

double clicking on the variable. Elements of arrays are displayed for the width of the text
window. If an array is longer than the space in the window, the text display for the array
ends with … to show that there is more data.

Show the global variable values in a window. You can edit a global variable by
double clicking on it. The very first entry in this window lists the current view by

handle, type and window name.

Display the call stack (list of calls to user-defined functions with their arguments)
on the way to the current line in a window. If the Toolbar() function has been

used, the arguments for it appear, but the function name is blank.

The debug toolbar and the locals, globals and the call window close at the end of a script.
The buttons in the debug toolbar are disabled if they cannot be used. If you forget what a
particular button does, move the mouse pointer over the button. A “Tool tip” window will
open next to the button with a short description; if the Status bar is visible, a longer
description can be seen there.

There is an option in the Edit menu Preferences dialog General tab that allows you to
enter the debugger if an error occurs. After an error you can inspect the values of local
and global variables and the contents of the call stack, but you are not allowed to
continue running the script.

Enter debug on error

 The script window and debugging

2-4

The example above shows a script that prompts the user for a data file, opens it and prints
a summary of the data channels to the log window. The user set two break points, ran the
script then clicked on the Step button five times and clicked the Globals button.

If the locals or globals windows are open, they display a list of variables. If there are
more variables than can fit in the window you can scroll the list up and down to show
them all. Simple variables are followed by their values. If you double click on one a new
window opens in which you can edit the value of the variable.

If you double click on an array, a new window opens that lists the values of the elements
of the array. You must double click on an element to edit the value. There is a limit of
32000 to the number of array elements that can be displayed and edited. This should not
be a problem for most users. Function and procedure arguments show the name and
cannot be edited.

The call stack can sometimes be
useful to figure out how your script
arrived at a position in your code.
This is particularly true if your
script makes recursive use of
functions. A function is recursive
when it calls itself, either directly,
or indirectly through other
functions. This example calculates
factorials using recursion. We have
set a break point and then displayed
the call stack so you can see all the
calls, and the arguments for each
call. A common fault with scripts is to have mutually recursive user options. This leads to
users burrowing deeper and deeper into the call stack until they run out of memory. The
call stack can help to detect such problems.

Inspecting variables

Call stack

 Script language syntax

3-1

A script consists of lines of text. Each line can be up to 240 characters long, however we
suggest a maximum line length of 78 characters as experience shows that this makes
printing and transfer of scripts to other systems simple.

The script compiler treats consecutive white space as a single space except within a literal
string. White space characters are end of line, carriage return, space and tab. The
compiler treats comments as white space.

The maximum size of a script is limited by the number of instructions that it compiles
into. This number is displayed in the status bar of the script window when you compile.
The limit is currently 1,000,000 instructions, which is a very large script, probably
around 160,000 lines of typical script code.

All keywords, user-defined functions and variable names in the script language start with
one of the letters a to z followed by the characters a to z and 0 to 9. Keywords and
names are not case sensitive, however users are encouraged to be consistent in their use
of case as it makes scripts easier to read. Variables and user-defined functions use the
characters % and $ at the end of the name to indicate integer and string type.

User-defined names can extend up to a line in length. Most users will restrict themselves
to a maximum of 20 or so characters.

The following keywords are reserved and cannot be used for variables or function names:
and band bor bxor case
const diag do docase else
end endcase endif for func
halt if mod next not
or proc repeat resize return
step then to trans until
var view wend while xor

Further, names used by Spike2 built-in functions cannot be redefined as user functions or
global variables. They can be redefined as local variables (not recommended).

There are three basic data types in the script language: real, integer and string. The real
and integer types store numbers; the string type stores characters. Integer numbers have
no fractional part, and are useful for indexing arrays or for describing objects for which
fractions have no meaning. Integers have a limited (but large) range of allowed values.

Real numbers span a very large range of number and can have fractional parts. They are
often used to describe real-world quantities, for example the weight of an object.

Strings hold text and automatically grow and shrink in length to suit the number of text
characters stored within them.

This type is a double precision floating point number. Numbers are stored to an accuracy
of at least 16 decimal digits and can have a magnitude in the range 10-308 to 10308.
Variables of this type have no special character to identify them. Real constants have a
decimal point or the letter e or E to differentiate from integers. White space is not
allowed in a sequence of characters that define a real number. Real number constants
have one of the following formats where digit is a decimal digit in the range 0 to 9:
{-}{digit(s)}digit.{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}.digit{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}digitE|e{+|-}digit(s)

3
Script format

Keywords and names

Data types

Real data type

 Script language syntax

3-2

A number must fit on a line, but apart from this, there is no limit on the number of digits.
The following are legal real numbers:
1.2345 -3.14159 .1 1. 1e6 23e-6 -43e+03

E or e followed by a power of 10 introduces exponential format. The last three numbers
above are: 1000000 0.000023 -43000.0. The following are not real constants:

1 e6 White space is not allowed 1E3.5 Fractional powers are not allowed
2.0E Missing exponent digits 1e500 The number is too large

The integer type is identified by a % at the end of the variable name and stores 32-bit
signed integer (whole) numbers in the range -2,147,483,648 to 2,147,483,647. There is
no decimal point in an integer number. An integer number has the following formats
(where digit is a decimal digit 0 to 9, and hexadecimal-digit is 0 to 9 or a to f or A
to F, with a standing for decimal 10 to f standing for decimal 15):
{-}{digit(s)}digit
{-}0x|X{hexadecimal-digit(s)}hexadecimal-digit

You may assign real numbers to an integer, but it is an error to assign numbers beyond
the integer range. Non-integral real numbers are truncated (towards zero) to the next
integral number before assignment. Integer numbers are written as a list of decimal digits
with no intervening spaces or decimal points. They can optionally be preceded by a
minus sign. The following are examples of integers:
 1 -1 -2147483647 0 0x6789abcd 0X100 -0xced

Integers use less storage space than real numbers and are slightly faster to work with. If
you do not need fractional numbers or huge numeric ranges, use integers.

Strings are lists of characters. String variable names end in a $. String variables can hold
strings up to 65534 characters long. Literal strings in the body of a program are enclosed
in double quotation marks, for example:
 "This is a string"

A string literal may not extend over more than one line. Consecutive strings with only
white space between them are concatenated, so the following:
 "This string starts on one lin"
 "e and ends on another"

is interpreted as "This string starts on one line and ends on another".
Strings can hold special characters, introduced by the escape character backslash:

 \" The double quote character (this would normally terminate the string)
\\ The Backslash character itself (beware DOS paths)
\t The Tab character
\n The New Line character (or characters, depending on the system)
\r The Carriage Return character (ASCII code 13)

You can assign integer numbers to real variables and real numbers to integer variables
(unless the real number is out of the integer range when a run-time error will occur).
When a real number is converted to an integer, it is truncated. The Asc(), Chr$(),
Str$() and Val() functions convert between strings and numbers.

Integer data type

String data type

Conversion between data
types

 The Spike2 script language

3-3

The three basic types (integers, reals and strings) can be made into one-dimensional and
two-dimensional arrays. We call the one-dimensional array a vector, and the two-
dimensional array a matrix. Declare arrays with the var statement:
var v[20], M[10][1000];

This declares a vector with 10 elements and a matrix with 10 rows and 1000 columns. To
reference array elements, enclose the element number in square brackets (the first
element in each dimension is number 0):
v[6] := 1; x := M[8][997];

Use v[start:size] to pass a vector or a subset of a vector v to a function. start is
the index of the first element to pass, size is the number of elements. Both start and
size are optional. If you omit start, 0 is used. If you omit size, the sub-set extends to
the end of the vector. To pass the entire vector use v[0:], v[:], v[] or just v.

For example, consider the vector of real numbers declared as var data[15]. This has
15 elements numbered 0 to 14. To pass it to a function as a vector, you could specify:

data or data[] This is the entire vector. This is the same as data[:] or data[0:15].
data[3:9] This is a vector of length 9, being elements 3 to 11.
data[:8] This is a vector of length 8, being elements 0 to 7.

 var data[15]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data[3:9]

With a matrix you have more options. You can pass a single element, a vector sub-set, or
a matrix sub-set. Consider the matrix of real numbers defined as var sq[6][7]. You
can pass this as a vector or a matrix to a function as (a, b, c and d are integer numbers):
sq[a][b:c] a vector of length c
sq[a][] a vector of length 7
sq[a:b][c] a vector of length b
sq[][c] a vector of length 6
sq[a:b][c:d] a matrix of size [b][d]
sq or sq[][] a matrix of size [6][7]

This diagram shows how sub-sets are constructed.
sq[1:4][0] is a 4 element vector. This could be
passed to a function that expects a vector as an
argument. sq[5][1:6] is a vector with 6 elements.
sq[2:2][2:4] is a matrix, of size [2][4].

You can pass the transpose of a vector or matrix to a function with the trans() operator,
or by adding ` (back-quote) after the array or matrix name. The transpose of a matrix
swaps the rows and columns. To be consistent with normal matrix mathematics, a one-
dimensional array is treated as a column vector and is transposed into a matrix with 1
row. That is given var data[15], trans(data) is a matrix of size [1][15].
var M[5][3], v[5], W[5][5];
PrintLog(M, M`); 'Print M and its transpose
PrintLog(M[][], trans(M[][])); 'Exactly the same as last line
MatMul(W, M, M[][]`); 'set W to M times its transpose
MatMul(W, v, v`); 'set W to v times its transpose

You can pass the diagonal of a matrix to a function using the diag() operator. This
expects a matrix as an argument and produces a vector whose length is the smaller of the
dimensions of the matrix. Given a matrix M[10][10], diag(M) is a 10 element vector.

Arrays of data

Vector subsets

Matrix subsets

var sq[6][7];

0 1 2 3 4 5 6

0

1

2

3

4

5

sq[2:2][2:4]

sq[5][1:6]

s
q
[
1
:
4
]
[
0
]

Transpose of a vector or
matrix

Diagonal of a matrix

 Script language syntax

3-4

The script language treats a result view as vectors of real numbers, one vector per
channel. To access a vector element use View(v%,ch%).[index] where v% is the view,
ch% is the channel and index is the bin number, starting from 0. You can pass a channel
as an array to a function using View(v%, ch%).[], or View(v%, ch%).[a:b] to pass
a vector subset starting at element a of length b. You can omit ch%, in which case
channel 1 is used. You can also omit View(v%,ch%), in which case channel 1 in the
current view is used. See the View() command for more information.

If you change a visible result view, the modified area is marked as invalid and will update
at the next opportunity.

The script language is composed of statements. Statements are separated by a semicolon.
Semicolons are not required before else, endif, case, endcase, until, next, end
and wend, or after end, endif, endcase, next and wend. White space is allowed
between items in statements, and statements can be spread over several lines. Statements
may include comments. Statements are of one of the following types:
• A variable or constant declaration
• An assignment statement of the form:

 variable := expression; Set the variable to the value of the expression
 variable += expression; Add the expression value to the variable
 variable -= expression; Subtract the expression value from the variable
 variable *= expression; Multiply the variable by the expression value
 variable /= expression; Divide the variable by the expression value
The +=, -=, *= and /= assignments were added at version 3.02. += can also be used
with strings (a$+=b$ is the same as a$:=a$+b$, but is more efficient).

• A flow of control statement, described below
• A procedure call or a function with the result ignored, for example View(vh%);

A comment is introduced by a single quotation mark. All text after the quotation mark is
ignored up to the end of the line.
View(vh%); 'This is a comment, and extends to the end of the line

Variables are created by the var keyword. This is followed by a list of variable names.
You must declare all variable names before you can use them. Arrays are declared as
variables with the size of each dimension in square brackets. The first item in an array is
at index 0. If an array is declared as being of size n, the last element is indexed n-1.
var myInt%,myReal,myString$; 'an integer, a real and a string
var aInt%[20],arl[100],aStr$[3] 'integer, real and string vectors
var a2d[10][4]; '10 rows of 4 columns of reals
var square$[3][3]; '3 rows of 3 columns of strings

You can define variables define in the main program, or in user-defined functions. Those
defined in the main program are global and can be accessed from anywhere in the script
after their definition. Variables defined in user-defined functions exist from the point of
definition to the end of the function and are deleted when the function ends. If you have a
recursive function, each time you enter the function you get a fresh set of variables.

The dimensions of global arrays must be constant expressions. The dimensions of local
arrays can be set by variables or calculated expressions. Simple variables (not arrays) can
be initialised to constants when they are declared. The initialising expression may not

Result views as arrays

Statement types

Comments in a script

Variable declarations

 The Spike2 script language

3-5

include variables or function calls. Uninitialised numeric variables are set to 0,
uninitialised strings are empty.

var Sam%:=3+2, jim := 2.3214, sally$:= "My name is \"Sally\"";

Constants are created by the const keyword. A constant can be of any of the three basic
data types, and must be initialised as part of the constant declaration. Constants cannot be
arrays. The syntax and use of constants is the same as for variables, except that you
cannot assign to them or pass them to a function or procedure as a reference parameter.
const Sam%:=3+2, jim := 2.3214, sally$:= "My name is \"Sally\"";

Anywhere in the script where a numeric value can be used, so can a numeric expression.
Anywhere a string constant can be used, so can a string expression. Expressions are
formed from functions, variables, constants, brackets and operators. In numerical
expressions, the following operators are allowed, listed in order of precedence:

 Operators Names
Highest `, [], () Matrix transpose, subscript, round brackets
 -, not Unary minus, logical not
 *, /, mod Multiply, divide and modulus (remainder)
 +, - Add and subtract
 <, <=, >, >= Less, less or equal, greater, greater or equal
 =, <> Equal and not equal
 and, band Logical and, bitwise and
Lowest or, xor, bor, bxor Logical or, exclusive or and bitwise versions

The order of precedence determines the order in which operators are applied within an
expression. Without rules on the order of precedence, 4+2*3 could be interpreted as 18
or 10 depending on whether the add or the multiply was done first. Our rules say that
multiply has a higher precedence, so the result is 10. If in doubt, use round brackets, as in
4+(2*3) to make your meaning clear. Extra brackets do not slow down the script.

The divide operator returns an integer result if both the divisor and the dividend are
integers. If either is a real value, the result is a real. So 1/3 evaluates to 0, while 1.0/3,
1/3.0 and 1.0/3.0 all evaluate to 0.333333…

The minus sign occurs twice in the list because minus is used in two distinct ways: to
form the difference of two values (as in fred:=23-jim) and to negate a single value
(fred :=-jim). Operators that work with two values are called binary, operators that
work with a single value are called unary. There are four unary operators, [], (), - and
not, the remainder are binary.

There is no explicit TRUE or FALSE keyword in the language. The value zero is treated as
false, and any non-zero value is treated as true. Logical comparisons have the value 1 for
true. So not 0 has the value 1, and the not of any other value is 0. If you use a real
number for a logical test, remember that the only way to guarantee that a real number is
zero is by assigning zero to it. For example, the following loop may never end:
var add:=1.0;
repeat
 add := add - 1.0/3.0; ' beware, 1/3 would have the value 0!
until add = 0.0; ' beware, add may never be exactly 0

Constant declarations

Expressions and
operators

Numeric operators

 Script language syntax

3-6

Even changing the final test to add<=0.0 leads to a loop that could cycle 3 or 4 times
depending on the implementation of floating point numbers.

The result of the comparison operators is integer 0 if the comparison is false and integer 1
if the comparison is true. The result of the binary arithmetic operators is integer if both
operands are integers, otherwise the result is a real number. The result of the logical
operators is integer 0 or 1. The result of the exclusive or operator is true if one operand is
true and the other is false.

The bitwise operators band, bor and bxor treat their operands as integers, and produce
an integer result on a bit by bit basis. They are not allowed with real number operands.

 Operators Names
Highest + Concatenate
 <, <=, >, >= Less, less or equal, greater, greater or equal
Lowest =, <> Equal and not equal

The comparison operators can be applied to strings. Strings are compared character by
character, from left to right. The comparison is case sensitive. To be equal, two strings
must be identical. You can also use the + operator with strings to concatenate them (join
them together). The character order for comparisons (lowest to highest) is:
 space !"#$%&'()*+,-./0123456789:;<=>?@

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

Do not confuse assignment := with the equality comparison operator, =. They are entirely
different. The result of an assignment does not have a value, so you cannot write
statements like a:=b:=c; (which was allowed in the MS-DOS version of Spike2).

The following (meaningless) code gives examples of expressions.
var jim,fred,sam,sue%,pip%,alf$,jane$;
jim := Sin(0.25) + Cos(0.25);
fred := 2 + 3 * 4; 'Result is 14.0 as * has higher precedence
fred := (2 + 3)* 4; 'Result is 20.0
fred += 1; 'Add 1 to fred
sue% := 49.734; 'Result is 49
sue% := -49.734; 'Result is -49
pip% := 1 + fred > 9; 'Result is 1 as 21.0 is greater than 9
jane$:= "Jane";
alf$:= "alf";
sam := jane$ > alf$; 'Result is 0.0 (a is greater than J)
sam := UCase$(jane$)>UCase$(alf$); 'Result is 1.0 (A < J)
sam := "same" > "sam"; 'Result is 1.0
pip% := 23 mod 7; 'Result is 2
jim := 23 mod 6.5; 'Result is 3.5
jim := -32 mod 6; 'Result is -2.0
sue% := jim and not sam;'Result is 0 (jim = -2.0 and sam = 1.0)
pip% := 1 and 0 or 2>1; 'Result is 1
sue% := 9 band 8; 'Result is 8 (9=1001 in binary, 8=1000)
sue% := 9 bxor 8; 'Result is 1
sue% := 9 bor 8; 'Result is 9

We don't provide maths constants as built-in symbols, but the two most common ones, e
and π are easily generated within a script; e is Exp(1.0) and π is 4.0*ATan(1.0).

String operators

Examples of expressions

Mathematical constants

 The Spike2 script language

3-7

If scripts were simply a list of commands to be executed in order, their usefulness would
be severely limited. The flow of control statements let scripts loop and branch. It is
considered good practice to keep flow of control statements on separate lines, but the
script syntax does not require this. There are two branching statements, if...endif and
docase...endcase, and three looping statements, repeat...until, while...wend
and for...next. You can also use user-defined functions and procedures with the Func
and Proc statements.

The if statement can be used in two ways. When used without an else, a single section
of code can be executed conditionally. When used with an else, one of two sections of
code is executed. If you need more than two alternative branches, the docase statement
is usually more compact than nesting many if statements.

if expression then 'The simple form of an if
 zero or more statements;
endif;

if expression then 'Using an else
 zero or more statements;
else
 zero or more statements;
endif;

If the expression is non-zero, the statements after the then are executed. If the expression
is zero, only the statements after the else are executed. The following code adds 1 or 2
to a number, depending on it being odd or even:
if num% mod 2 then
 num%:=num%+2; 'note that the semicolons before...
else '...the else and endif are optional.
 num%:=num%+1;
endif;
 'The following is equivalent
if num% mod 2 then num%:=num%+2 else num%:=num%+1 endif;

These keywords enclose a list of case statements forming a multiway branch. Each case
is scanned until one is found with a non-zero expression, or the else is found. If the
else is omitted, control passes to the statement after the endcase if no case expression
is non-zero. Only the first non-zero case is executed (or the else if no case is non-zero).

docase
 case exp1 then
 statement list;
 case exp2 then
 statement list;
 ...
 else
 statement list;
endcase;

The following example sets a string value depending on the value of a number:
var base%:=8,msg$;
docase
 case base%=2 then msg$:= "Binary";
 case base%=8 then msg$:= "Octal";
 case base%=10 then msg$:= "Decimal";
 case base%=16 then msg$:= "Hexadecimal";
 else msg$:= "Pardon?";
endcase;

Flow of control
statements

if...endif

docase...endcase

 Script language syntax

3-8

The statements between repeat and until are repeated until the expression after the
until keyword evaluates to non-zero. The body of a repeat loop is always executed at
least once. If you need the possibility of zero executions, use a while loop. The syntax of
the statement is:

repeat
 zero or more statements;
until expression;

For example, the following code prints the times of all data items on channel 3 (plus an
extra -1 at the end):

var time := -1; 'start time of search
repeat
 time := NextTime(3, time); 'find next item time
 PrintLog("%f\n", time); 'display the time to the log
until time<0; 'until no data found

The statements between the keywords are repeated while an expression is not zero. If the
expression is zero the first time, the statements in between are not executed. The while
loop can be executed zero times, unlike the repeat loop, which is always executed at
least once.

while expression do
 zero or more statements;
wend;

The following code fragment, finds the first number that is a power of two that is greater
than or equal to some number:

var test%:=437, try%:=1;
while try%<test% do 'if try% is too small...
 try% := try% * 2; '...double it
wend;

A for loop executes a group of statements a number of times with a variable changed by
a fixed amount on each iteration. The loop can be executed zero times. The syntax is:

for v := exp1 to exp2 {step exp3} do
 zero or more statements;
next;

v This is the loop variable and may be a real number, or an integer. It must be a
simple variable, not an array element.

exp1 This expression sets the initial variable value before the looping begins.
exp2 This expression is evaluated once, before the loop starts, and is used to test for

the end of the loop. If step is positive or omitted (when it is 1), the loop stops
when the variable is greater than exp2. If step is negative, the loop stops when
the variable is less than exp2.

exp3 This expression is evaluated once, before the loop starts, and sets the increment
added to the variable when the next statement is reached. If there is no step
exp3 in the code, the increment is 1. The value of exp3 can be positive or
negative.

repeat...until

while...wend

for...next

 The Spike2 script language

3-9

The following example prints the squares of all the integers between 10 and 1:
var num%;
for num% := 10 to 1 step -1 do
 PrintLog("%d squared is %d\n", num%, num% * num%);
next;

If you want a for loop where the end value and/or the step size are evaluated each time
round the loop you should use a while…wend or repeat…until construction.

The Halt keyword terminates a script. A script also terminates if the path of execution
reaches the end of the script. When a script halts, any open external files associated with
the Read() or Print() functions are closed and any windows with invalid regions are
updated. Control then returns to the user.

Halt

 Script language syntax

3-10

A user-defined function is a named block of code. It can access global variables and
create its own local variables. Information is passed into user-defined functions through
arguments. Information can be returned by giving the function a value, by altering the
values of arguments passed by reference or by changing global variables.

User-defined functions that return a value are introduced by the func keyword, those that
do not are introduced by the proc keyword. The end keyword marks the end of a
function. The return keyword returns from a function. If return is omitted, the
function returns to the caller when it reaches the end statement. Arguments can be passed
to functions by enclosing them in brackets after the function. Functions that return a
value or a string have names that specify the type of the returned value. A function is
defined as:

func name({argument list}) or proc name({argument list})
{var local-variable-list;} {var local-variable-list;}
statements including return x; statements including return;
end; end;

There is no semicolon at the end of the argument list because the argument list is not the
end of the func or proc statement; the end keyword terminates the statement. Functions
may not be nested within each other.

The argument list is a list of variable names separated by commas. There are two ways to
pass arguments to a function: by value and by reference:

Value Arguments passed by value are local variables in the function. Their initial
values are passed from the calling context. Changes made in the function to a
variable passed by value do not affect the calling context.

Reference Arguments passed by reference are the same variables (by a different name)
as the variables passed from the calling context. Changes made to arguments
passed by reference do affect the calling context. Because of this, reference
arguments must be passed as variables (not expressions or constants) and the
variable must match the type of the argument (except we allow you to pass a
real variable where an integer variable is expected).

Simple (non-array) variables are passed by value. Simple variables can be passed by
reference by placing the & character before the name in the argument list declaration.

Arrays and sub-arrays are always passed by reference. Array arguments have empty
square brackets in the function declaration, for example one[] for a vector and two[][]
for a matrix. The number of dimensions of the passed array must match the declaration.
The array passed in sets the size of each dimension. You can find the size of an array
with the Len() function. An individual array element is a treated as a simple variable.

If you use the trans() or diag() operators to pass the transpose or diagonal of an array
to a function, the array is still passed by reference and changes made in the function to
array elements will change the corresponding elements in the original data.

The return keyword is used in a user-defined function to return control to the calling
context. In a proc, the return must not be followed by a value. In a func, the return
should be followed by a value of the correct type to match the function name. If no return
value is specified, a func that returns a real or integer value returns 0, and a func that
returns a string value returns a string of zero length.

Functions and
procedures

Argument lists

return

 The Spike2 script language

3-11

proc PrintInfo() 'no return value, no arguments
PrintLog(ChanTitle$(1)); 'Show the channel title
PrintLog(ChanComment$(1)); 'and the comment
return; 'return is optional in this case as...
end; '...end forces a return for a proc

func sumsq(a, b) 'sum the square of the arguments
return a*a + b*b;
end;

func removeExt$(name$) 'remove text after last . in a string
var n := 0, k := 1;
 repeat
 k:=InStr(name$,".",k); 'find position of next dot
 if (k > 0) then 'if found a new dot...
 n := k; '...remember where
 endif
 until k=0; 'until all found
if n=0 then
 return name$; 'no extension
else
 return Left$(name$,n-1);
end;

proc sumdiff(&arg1, &arg2) 'returns sum and difference of args
arg1 := arg1 + arg2; 'sum of arguments
arg2 := arg1 - 2*arg2; 'original arg1-arg2
return; 'results returned via arguments
end;

func sumArr(data[]) 'sum all elements of a vector
var sum:=0.0; 'initialise the total
var i%; 'index
for i%:=0 to Len(data[])-1 do
 sum := sum + data[i%]; 'of course, ArrSum() is much faster!
 next;
return sum;
end;

Func SumArr2(data[][]) 'Sum of all matrix elements
var rows%,cols%,i%,sum; 'sizes, index and sum, all set to 0
rows% := Len(data[0][]) 'get sizes of dimensions...
cols% := Len(data[][0]); '...so we can see which is bigger
if rows%>cols% then 'choose more efficient method
 for i%:=0 to cols%-1 do sum += ArrSum(data[i%][]) next;
else
 for i%:=0 to rows%-1 do sum += ArrSum(data[][i%]) next;
endif;
return sum;
end;

Variables declared within a function exist only within the body of the function. They
cannot be used from elsewhere. You can use the same name for variables in different
functions. Each variable is separate. In addition, if you call a function recursively (that is
it calls itself), each time you enter the function, you have a fresh set of variables.

Unlike global variables, which are only visible from the point in the script in which they
are declared onwards, and local variables, which are visible within a user-defined
function only, user-defined functions are visible from all points in the script. You may
define two functions that call each other, if you wish.

Examples of user-defined
functions

Scope of user-defined
functions

 Script language syntax

3-12

The script language allows a function or procedure to be passed as an argument. The
function declaration includes the declaration of the function type to be passed. Functions
and procedures can occur before or after the line in which they are used as an argument.

proc Sam(a,b$,c%)
...
end;

func Calc(va)
return 3*va*va-2.0*va;
end;

func PassFunc(x, func ff(realarg))
return ff(x);
end;

func PassProc(proc jim(realarg, strArg$, son%))
jim(1.0,”hello”,3);
end;

val := PassFunc(1.0, Calc); ’pass function
PassProc(Sam); ’pass procedure

The declaration of the procedure or function argument is exactly the same as for
declaring a user-defined function or procedure. When passing the function or procedure
as an argument, just give the name of the function or procedure; no brackets or arguments
are required. The compiler checks that the argument types of a function passed as an
argument match those declared in the function header. See the ToolbarSet() function
for an example.

Although user-defined functions and built-in functions are very similar, you are not
allowed to pass a built-in function as an argument to a built-in function. Further, you
cannot pass a built-in function to a user-defined function if it has one or more arguments
that can be of more than one type. For example, the built-in Sin() function can accept a
real argument, or a real array argument, and so cannot be passed.

Several built-in script commands use a channel specifier to define a list of 1 or more
channels. This argument is always called cSpc in the documentation. This argument
stands for a string, an integer array or an integer.

cSpc$ This holds a list of channel numbers and channel ranges, separated by
commas. A channel range is a start channel number followed by an end
channel number separated by two dots. The end channel number can be less
that the start channel number. For example "1,3,5..7,12..9" is a list of
channels 1, 3, 5, 6, 7, 9, 10, 11 and 12.

cSpc%[] The first element of the vector is the number of channels. The remaining
elements are channel numbers. It is an error for the vector passed in to be
shorter than the number of channels + 1.

cSpc% This is either a channel number, or –1 for all channels, -2 for visible channels
or –3 for selected channels.

In a result view, channel numbers start at 1, but we accept 0 (meaning 1) to avoid
breaking scripts written for older versions of Spike2. Some commands expect channels of
specific types; channels that do not meet the type requirements are removed from the list.
It is usually an error for a channel specification to generate an empty list.

Functions as arguments

Channel specifiers

 Commands by function

4-1

This section of the manual lists commands by function. The next section lists the
command alphabetically with a description of the command arguments and operation.

These commands open, close, manipulate, position, display, size, colour and create
windows (views). These commands apply to windows in general. See the sections on
Time, Result, XY and Text windows for more specific commands.
App Get the application view handle and version and special views
ChanNumbers Hide and show channel numbers
Colour Get or set the palette entry associated with a screen item
Draw Draw invalid regions of the view (and set x axis range)
DrawAll Update all invalid regions in all views
EditCopy Copy window to clipboard
FileClose Closes a window or windows
FileComment$ Gets and sets the file comment for time views
FileConvert$ Convert a foreign file to a Spike2 file and open it
FileName$ Gets the file name associated with a window
FileNew Opens an output file or a new text or data window
FileOpen Opens an existing file (in a window)
FilePrint Prints a range of data from the current view
FilePrintVisible Prints the current view
FilePrintScreen Prints all text-based, time and result views
FileQuit Closes the application
FileSave Save a view
FileSaveAs Save a view in variety of formats
FontGet Read back information about the font
FontSet Set the font for the current window
FocusHandle Get handle of script-controllable window with the focus
FrontView Get or set the front window on screen
Grid Get or set the visibility of the axis grid
LogHandle Gets the view handle of the log window
PaletteGet Get the RGB colour of a palette entry
PaletteSet Set the RGB colour of a palette entry
View Change or override current view and get view handle
ViewColour Override application colours for a view
ViewFind Get a view handle from a view title
ViewKind Get the type of the current view
ViewList Form a list of handles to views that meet a specification
ViewStandard Returns a window to a standard state
ViewUseColour Get and set monochrome/colour use for view
Window Sets the window size and position
WindowGetPos Get window position
WindowSize Changes the window size
WindowTitle$ Gets or changes the window title
WindowVisible Sets or gets the visibility of the window (hide/show)
XAxis Get or set visibility of the x axis
XAxisMode Control how the x axis is drawn
XAxisStyle Control x axis tick spacing and time view hh:mm:ss mode
XScroller Get or set visibility of x axis scroll bar
XUnits$ Get units of the x axis
YAxis Get or set the visibility of the y axis
YAxisMode Control how the y axis is drawn
YAxisStyle Control y axis tick spacing

4
Functional command

groups

Windows and views

 Commands by function

4-2

These commands manipulate data channels.
BinError Get or set error bar information
Binsize The sample interval for waveforms, otherwise time resolution
BurstMake Extract bursts to a memory channel from an event channel
BurstRevise Modify a list of bursts in a memory channel
BurstStats Collect statistics on bursts in preparation for BurstRevise
Chan$ Get the symbolic name for a channel
ChanCalibrate Calibrate waveform or WaveMark channels from known values
ChanColour Override drawing mode based channel colours
ChanComment$ Get or set the channel comment
ChanData Fill an array with a waveform or event times
ChanDelete Delete a channel from a time view
ChanDuplicate Duplicate channels in a time view
ChanHide Make a channel invisible
ChanKind Get the type of a channel
ChanList Get a list of channels meeting a specification
ChanMeasure Make the same measurements as the Cursor Regions dialog
ChanNew Create a new channel for ChanWriteWave() to write to
ChanOffset Set waveform and WaveMark value for input of zero
ChanOrder Modify the channel order and y axis grouping
ChanProcessAdd Add new processing option to a waveform or RealWave channel
ChanProcessArg Read or modify an argument of a channel process
ChanProcessClear Delete a process, all processes for a channel, or all processes
ChanProcessInfo Get information about the processes attached to a channel
ChanPort Get the physical sampling port of a time view data channel
ChanScale Set waveform and WaveMark channel scale factor
ChanSave Copy time view channels between views with optional time shift
ChanSearch Search a channel for a feature (peak, level crossing, slope…)
ChanSelect Select and report on selected state of channels
ChanShow Make a channel visible
ChanTitle$ Get or set the channel title string
ChanUnits$ Get or set the channel units
ChanValue Get channel data at a particular time or x axis position
ChanVisible Get the visibility state of a channel
ChanWeight Change the relative vertical space of a channel
ChanWriteWave Write data to a waveform or RealWave channel
Count Count items in a time range, sum bins in result view
DrawMode Get or set display mode for a channel
DupChan Get information about duplicate channels
EventToWaveform Convert an event channel into a waveform channel
FitLine Fit a straight line to waveform or result channel
LastTime Find the previous item in a channel (and return values)
MarkEdit Edit marker codes and other information
MarkInfo Get information on extended marker types
MarkMask Set the marker filter for a channel
MarkSet Set the marker codes for data in a time range
Maxtime Time of last item on the channel
MemChan Create a channel in memory
MemDeleteItem Delete one or more items from a memory channel
MemDeleteTime Delete one or more items based on time in a memory channel
MemGetItem Get information on item in memory channel
MemImport Import items into a memory channel
MemSave Write the contents of a memory channel to the data file
MemSetItem Edit or add an item in a memory channel
Minmax Find minimum and maximum values (and positions)
NextTime Find the next item in a channel (and return values)

Channel commands

 The Spike2 script language

4-3

These commands manipulate time views.
BinToX Convert time units to x axis units
DrawMode Get or set display mode for a channel
Dup Get the view handle of duplicates of the current view
EventToWaveform Create a waveform channel from events
ExportChanFormat Set channel format for export
ExportChanList Set list of channels for export
ExportRectFormat Set rectangular time view export
ExportTextFormat Set format for text output of channels
FileApplyResource Apply a resource file to the current time view
FileGlobalResource Set a global resource file
FileSaveResource Create a resource file matching the current time view
Maxtime Maximum x axis value for any channel in the view
Optimise Set reasonable y range for channels with axes
ReRun Get or set the rerunning state of a channel
ViewTrigger Control on-line triggered displays and off-line display stepping
WindowDuplicate Duplicate a time view
XLow Time of the start of the displayed area in seconds
XHigh Time of the end of the displayed area in seconds
XRange Set the x axis range for next draw
XScroller Show or hide the x axis scroll bar and controls
XTitle$ Get x axis title
XToBin Convert x axis units to time units
YAxisLock Get and set the locking state of grouped channels
YRange Set y axis range for a channel
YHigh Get upper limit of y axis for a channel
YLow Get lower limit of y axis for a channel

These commands manipulate result views. Result views can also be treated as arrays; so
all the array arithmetic commands are available.
BinError Get or set error bar information
Binsize Width of each bin in the x direction
BinToX Convert bin number to x axis value
DrawMode Get or set display mode for a channel
Maxtime Number of bins in the result view
Minmax Find minimum and maximum values (and positions)
Optimise Set reasonable y range for display
RasterAux Deprecated, use RasterSort() and RasterSymbol()
RasterGet Read back raster information
RasterSet Set raster information
RasterSort Get and set the sorting values
RasterSymbol Get and set the time values for raster symbols
Sweeps Gets and sets the number of items added to result view
XHigh Bin number of the end of the displayed area
XLow Bin number of the start of the displayed area
XRange Set the x axis range for next draw
XScroller Show or hide the x axis scroll bar and controls
XTitle$ Get and set x axis title
XToBin Convert x axis value to bin number
YAxisLock Get and set the locking state of grouped channels
YHigh Get upper limit of y axis
YLow Get lower limit of y axis
YRange Set y axis range

Time views

Result views

 Commands by function

4-4

XY views hold from 1 to 256 channels of (x, y) co-ordinate pairs that can be displayed in
a variety of styles. Most functions that work for views in general will work for an XY
view. The following are the XY view specific commands.
MeasureToXY Create an XY view and associated measurement process
XYAddData Add data points to a channel of an XY view
XYColour Set the colour of a channel
XYCount Return the number of XY data points in a channel
XYDelete Delete one or more data points from a channel
XYDrawMode Control how a channel is drawn
XYGetData Read data back from an XY channel
XYInCircle Count the number of XY points within a circle
XYInRect Count the number of XY points inside a rectangle
XYJoin Get or set the point joining method
XYKey Control the display of the XY view channel key
XYRange Get rectangle containing one or more channels
XYSetChan Create or modify an XY channel
XYSize Get or set maximum size of an XY channel
XYSort Change the sort (and draw) order of a channel

The following commands control the vertical cursors.
Cursor Set or get the position of a cursor
CursorActive Set or get the active cursor mode
CursorActiveGet Read back active cursor parameters
CursorDelete Delete a designated cursor
CursorExists Test if a cursor exists
CursorLabel Set or get the cursor label style
CursorLabelPos Set or get the cursor label position
CursorNew Add a new cursor (at a given position)
CursorRenumber Renumber the cursors in ascending position order
CursorSearch Trigger active cursor searches from the script
CursorSet Set the number (and position) of vertical cursors
CursorValid Test if an active cursor search succeeded
CursorVisible Get or set cursor visibility

Horizontal cursors are controlled from a script with the following commands.
HCursor Set or get the position of a horizontal cursor
HCursorChan Gets the channel that a horizontal cursor belongs to
HCursorDelete Delete a designated horizontal cursor
HCursorExists Test if a cursor exists
HCursorLabel Gets or sets the horizontal cursor style
HCursorLabelPos Gets or sets the horizontal cursor position
HCursorNew Add a new horizontal cursor on a channel (at a given position)
HCursorRenumber Renumbers the cursors from bottom to the top of the view

XY views

Vertical cursors

Horizontal cursors

 The Spike2 script language

4-5

These functions mimic the Edit menu commands and provide additional functionality.
EditClear Delete text from a text window at the caret
EditCopy Copy the current selection to the clipboard
EditCut Delete the current selection to the clipboard
EditPaste Paste the clipboard into the current text field
EditSelectAll Select the entire text or cursor window contents
MoveBy Move relative to current position
MoveTo Move to a particular place
Selection$ This function returns the text that is currently selected

Spike2 can create, read and write text files. You can also open a text file into a window.
FileNew Open a new text file in a window
FileOpen Open a text file in a window or for reading and writing
FileSaveAs Save a view in variety of formats, including text
Print Write formatted output to a file or log window
Read Extract data from a text file
ReadSetup Set separators and delimiters for Read and ReadStr

Spike2 can read and write binary files. Binary files provide links to other programs and
are generally more efficient than text for transferring large quantities of data.
FileClose Close a file opened in binary mode
FileOpen Open an external file in binary mode
BRead Extract 32-bit integer, 64-bit real and string data from a file
BReadSize Extract 8 and 16-bit integer and 32-bit real data from a file
BRWEndian Change byte order for read/write of numbers in binary files
BSeek Change the current file position for next read or write
BWrite Write 32-bit integer and 64-bit real data to a file
BWriteSize Write 8 and 16-bit integer, 32-bit real and string data to a file

Spike2 can read file information, change the current directory, delete and copy files and
convert foreign files into Spike2 format. You can also execute external files.
FileConvert$ Convert a foreign file to a Spike2 file and open it
FileCopy Copy one file to a new location
FileDate$ Retrieve date of creation of Spike2 data file
FileDelete Delete one or more files
FileList Get a list of files or directories
FilePath$ Get the current directory or directory for new data files
FilePathSet Change the current directory or directory for new data files
FileTime$ Retrieve time of creation of Spike2 data file
FileTimeDate Retrieve time and date of creation of Spike2 data file as numbers

Editing operations

Text files

Binary files

File system

 Commands by function

4-6

These commands exchange information with the user or let the user interact with the
data.
Inkey Return key code of last key user pressed
Input Prompt user for a number in a defined range
Input$ Prompt user for a string with a list of acceptable characters
Interact Allow user to interact with data
Keypress Detect if Inkey function would read a character
Message Display a message in a box, wait for OK
Print Formatted text output to a file or window
PrintLog Formatted text output to the Log window
Print$ Formatted text output to a string
Query Ask a user a question, wait for response
Sound Play a tone or a .wav file
Speak Convert text to speech on systems that support this
Yield Give idle time to the system; delay for a time
YieldSystem Surrender current time slice and sleep Spike2

You can build simple dialogs, with a set of fields stacked vertically or you can build free-
format dialogs (but with more work to define the positions of all the dialog fields):
DlgAllow Set allowed actions and change and idle functions
DlgButton Add buttons to the dialog and modify existing buttons
DlgChan Define a dialog entry as prompt and channel selection
DlgCheck Define a dialog item as a check box
DlgCreate Start a dialog definition
DlgEnable Enable and disable dialog items in change or idle functions
DlgGroup Position a group box in the dialog
DlgInteger Define a dialog entry as prompt and integer number input
DlgLabel Define a dialog entry as prompt only
DlgList Define a dialog entry as prompt and selection from a list
DlgReal Define a dialog entry as prompt and real number input
DlgShow Display the dialog, get values of fields
DlgString Define a dialog entry as prompt and string input
DlgText Define a fixed text string for the dialog
DlgValue Gives access to dialog fields in change and idle functions
DlgVisible Show and hide dialog items in change or idle functions
DlgXValue Define a dialog entry to collect an x axis value

These commands control the various toolbars and link script functions to the toolbar.
App Get the view handle of the toolbars
Toolbar Let the user interact with the toolbar
ToolbarClear Remove all defined buttons from the toolbar
ToolbarEnable Get or set the enables state of toolbar buttons
ToolbarSet Add a button (and associate a function with it)
ToolbarText Display a message using the toolbar
ToolbarVisible Get or set the visibility of the toolbar
SampleBar Controls the sample toolbar buttons
ScriptBar Controls the script toolbar buttons

User interaction
commands

 The Spike2 script language

4-7

These functions create new result views and analyse data into the result views.
BinError Get or set error bar information
MeasureToXY Create an XY view and associated measurement process
MeasureX Set the x part of a measurement
MeasureY Set the y part of a measurement
RasterAux Set additional data for sorted rasters (deprecated)
RasterGet Read back raster information
RasterSet Set raster information
RasterSort Get and set the sorting values
RasterSymbol Get and set the time values for raster symbols
SetEvtCrl Create result view for event correlation
SetEvtCrlShift Set shift for shuffled event correlation
SetINTH Create result view for interval histogram
SetPhase Create result view for phase histogram
SetPower Create result view for power spectrum
SetPSTH Create result view for post/peri-stimulus histogram
SetWaveCrl Create result view for waveform correlation
SetWaveCrlDC Set DC use/ignore for SetWaveCrl()
SetAverage Create result view for waveform copy/average/sum
SetResult Create result view for user-defined data
Sweeps Number of items added to result view
Process Process data into result view
ProcessAll Process all result views attached to a time view
ProcessAuto Process data automatically during sampling
ProcessTriggered Process triggered by data during sampling

The following mathematical functions are built into Spike2. You can apply many of these
functions to real arrays by passing an array to the function.
Abs Absolute value of a number or array
ATan Arc tangent of number or array
Cos Cosine of a number or array
Exp Exponential function of a number or array
Frac Remove integral part of a number or array
GammaP Incomplete Gamma function, used to calculate probabilities
Ln Natural logarithm of a number or array
LnGamma Natural logarithm of the Gamma function (use for big factorials)
Log Logarithm to base 10 of a number or array
Max Finds maximum of array or variables
Min Finds minimum of array or variables
Pow Raise a number or an array to a power
Rand Generate pseudo-random numbers with uniform density
RandExp Generate random numbers with exponential density
RandNorm Generate random numbers with normal density
Round Round a real number to the nearest integral value
Sin Sine of a number or array
Sqrt Square root of a number or an array
Tan Tangent of a number or array
Trunc Remove fractional part of number or array

Analysis

Mathematical
functions

 Commands by function

4-8

These functions are used with arrays and result views to speed up data manipulation. You
can also use the built-in mathematical functions directly on an array.
ArrAdd Adds an array or constant to an array
ArrConst Copies an array, or sets an array to a constant value
ArrDiff Replaces an array with an array of simple differences
ArrDiv Divides an array by another array or a constant
ArrDivR Divides array into another array or constant
ArrDot Forms the dot product (sum of products) of two arrays
ArrFFT Fourier transforms and related operations
ArrFilt Applies a FIR filter to an array
ArrIntgl Integrates array; inverse of ArrDiff()
ArrMul Multiples an array by another array or constant
ArrSort Sort an array and optionally order others in the same way
ArrSpline Interpolate one array to another using cubic splines
ArrSub Subtract constant from array, or difference of two arrays
ArrSubR Subtract array from constant, or reversed difference of arrays
ArrSum Sum, mean and standard deviation of an array
Len Returns the length of a string or array
MATDet Calculate the determinant of a matrix
MATInv Invert a matrix
MATMul Multiply matrices and vectors.
MATSolve Solve a set of linear equations
MATTrans Transpose a matrix (also see the trans() operator)
PCA Principal component analysis (singular value decomposition)

These functions manipulate strings and convert between strings and other variable types.
Asc ASCII code of first character of a string
Chr$ Converts a code to a one character string
DelStr$ Returns a string minus a sub-string
InStr Searches for a string in another string
LCase$ Returns lower case version of a string
Left$ Returns the leftmost characters of a string
Len Returns the length of a string or array
Mid$ Returns a sub-string of a string
Print$ Produce formatted string from variables
ReadStr Extract variables from a string
ReadSetup Set separators and delimiters for ReadStr and Read
Right$ Returns the rightmost characters of a string
Str$ Converts a number to a string
UCase$ Returns upper case version of a string
Val Converts a string to number

These functions do least squares fits of data to functions.
ChanFit Fit function to time, result or XY channels and display fitted line
FitExp Fits multiple exponentials
FitGauss Fit multiple Gaussians (normal distributions)
FitLine Fit straight line to time or result view data
FitLinear Fit to linear combination of user-defined functions
FitNLUser Fit to non-linear user function
FitPoly Fit polynomial to the data
FitSin Fit multiple sinusoids

Array and matrix
arithmetic

String functions

Curve fitting

 The Spike2 script language

4-9

These functions create and apply digital filters and manipulate the filter bank.
ArrFilt Array arithmetic routine to apply FIR coefficients to an array
FiltApply Apply a set of coefficients or a filter bank filter to a waveform
FiltAtten Set the desired attenuation of a filter in the filter bank
FiltCalc Force coefficient calculation of a filter in the filter bank
FiltComment$ Get or set comment for a filter in the filter bank
FiltCreate Create a new filter definition in the filter bank
FiltInfo Retrieve information about a filter in the filter bank
FiltName$ Get or set the name of a filter in the filter bank
FiltRange Get the useful sampling rate range for a filter bank filter
FIRMake Generate FIR filter coefficients in an array
FIRQuick Generate FIR filter coefficients with desired attenuation
FIRResponse Calculate frequency response of array of coefficients
IIRBp Create and/or apply an IIR bandpass filter
IIRBs Create and/or apply an IIR bandstop filter
IIRHp Create and/or apply an IIR highpass filter
IIRLp Create and/or apply an IIR lowpass filter
IIRNotch Create and/or apply an IIR notch filter
IIRReson Create and/or apply an IIR resonator filter

These commands set the sampling configuration to use when you create a new data file.
SampleAutoComment Control automatic prompt for file comment after sampling
SampleAutoCommit Controls how frequently a data file is flushed to disk
SampleAutoFile Set if file automatically written to disk at end of sampling
SampleAutoName$ Set file name template for automatic file saving
SampleCalibrate Set calibration of waveform or WaveMark channel
SampleComment$ Set or get the channel comment
SampleClear Sets the Sampling configuration to a known state
SampleEvent Adds a channel to sample event data
SampleDigMark Adds a channel to sample digital marker data
SampleLimitSize Set or clear the size limit on a file
SampleLimitTime Set or clear the time limit for sampling
SampleMode Set the sampling mode (Continuous, Timed, Triggered)
SampleOptimise Set methods for optimising waveform and WaveMark rates
SampleRepeats Set the number of files to sample in sequence
SampleSeqCtrl Set or get the allowed sequencer jump methods
SampleSequencer Set the name of the sequencer file
SampleSequencer$ Get the name of the sequencer file
SampleStartTrigger Set triggered or non-triggered sample start
SampleTextMark Adds a channel for text notes
SampleTimePerAdc Set the base ADC conversion interval
SampleTitle$ Set and get the title of a channel
SampleTrigger Enable peri-trigger sampling of groups of channels
SampleUsPerTime Set and get the basic timing interval
SampleWaveform Adds a channel to sample waveform data
SampleWaveMark Adds a channel to sample WaveMark data

These commands control data sampling. There is only one new data file at a time, and
these commands refer to it, regardless of the current view.
SampleAbort Stop sampling and throw data away
SampleHandle Gets the view handle of sampling windows and controls
SampleKey Adds to the keyboard marker channel, controls output sequencer

Digital filtering

Sampling
configuration

Runtime sampling

 Commands by function

4-10

SampleReset Clear the current data file and restart sampling
SampleSeqStep Get the current sequencer step
SampleSeqTable Get and set output sequencer table data
SampleSeqVar Set an output sequencer variable
SampleStart Start sampling after creating a new time view
SampleStatus Get the sampling state
SampleStop Stop sampling and keep the data
SampleText Adds a string to the text marker channel
SampleWrite Control writing data to sampling file

These commands control the output of waveforms during data sampling and offline.
Waveforms are identified by a key code and up to 10 can be defined.
PlayOffline Play offline via 1401 or sound card
PlayWaveAdd Add waveform to the on-line play list
PlayWaveChans Get or change the DAC channels of an area before sampling
PlayWaveCopy Update output waveforms in 1401 after sampling starts
PlayWaveCycles Get or change the repeats of a waveform
PlayWaveDelete Delete one or more waveforms from the play wave list
PlayWaveEnable Controls which waveforms in the list are available for playing
PlayWaveInfo$ Get waveform information including list of all waveform keys
PlayWaveLabel$ Get or set the label associated with each waveform
PlayWaveLink$ Get or set the links between waveforms
PlayWaveRate Get or set the desired base wave replay rate
PlayWaveSpeed Scale factor for the wave replay rate - can be used on-line
PlayWaveStatus$ Get information about waveform output during sampling
PlayWaveStop Stop the current output immediately or set one more cycle
PlayWaveTrigger Get or set the trigger state for a waveform

These functions control the CED 1401-18 discriminator card.
DiscrimChanGet Get the settings of a discriminator channel
DiscrimChanSet Change discriminator channel settings
DiscrimClear Set all channels to a known state
DiscrimLevel Get or set discriminator thresholds
DiscrimMode Get or set discriminator modes
DiscrimMonitor Get or set the waveform monitor channel
DiscrimTimeOut Get or set the time-out for modes 7 and 8

These functions control serial line controlled signal conditioners.
CondFilter Get or set the conditioner low-pass or high-pass filter
CondFilterList Get a list of possible low-pass or high-pass filter settings
CondGain Get or set the conditioner gain
CondGainList Get a list of the possible gains for the conditioner
CondGet Get all the settings for one channel of the conditioner
CondOffset Get or set the conditioner offset for a channel
CondOffsetLimit Get or set the conditioner offset range for a channel
CondRevision$ Get or set the conditioner offset for a channel
CondSet Single call to set all channel parameters
CondSourceList Get names of the signal sources available on the conditioner
CondType Get the type of signal conditioner

Arbitrary waveform
output

Discriminator control

Signal conditioner
control

 The Spike2 script language

4-11

These functions can be used when debugging a script.
Debug Set a permanent break point and disable/enable debugging
DebugList List internal Spike2 script objects
DebugOpts Gets and optionally sets system level debugging options
Eval Convert the argument to text and display

These functions don't fit well into any of the other categories!
App Get the program serial number
Date$ Get system date in a string in a variety of formats
Error$ Convert a runtime error code to a message string
Profile Access to the system registry and to Spike2 Preferences
ProgKill Terminate a process started by ProgRun
ProgRun Run a program, optionally position the window
ProgStatus Test if a program started by ProgRun is still active
ScriptRun Set a script to run when the current script ends
Seconds Get or set current relative time in seconds
Sound Play a tone or a .wav file
Speak Convert text to speech on systems that support this
System Get system revision as number
System$ Get system name as a string, access environment variables
Time$ Get system time in a string in a variety of formats
TimeDate Get system date and time as numbers

These functions can be used with a spike shape window.
Cursor Moving cursor 0 sets the time to read spikes from
FileClose Close the spike shape window
HCursor Set the horizontal cursor positions
Optimise Optimise the y range and horizontal cursors
SSButton Set and read button states in the window
SSChan Set and get channel information, save channel configuration
SSClassify Classify and create WaveMark data
SSOpen Open spike shape windows and get handle of open window
SSParam Equivalent to the spike shape parameters dialog
SSRun Get and set the run state and speed
SSTempDelete Delete templates based on index and code
SSTempGet Read back template shape
SSTempInfo Get and set template information (width, locking, counts)
SSTempSet Create and modify templates
SSTempSizeGet Get template size and offset in display and displayed points
SSTempSizeSet Set template size and position and display size in points
ViewLink Get the associated time view handle
Window Set the position of the spike shape window
WindowGetPos Get the window position
WindowVisible Show and hide the spike shape window
XHigh Get the start of the time view range to process
XLow Get the end of the time view range to process
XRange Set time range in associated time view to process
YHigh Read back the y axis range
YLow Read back the y axis range
YRange Set displayed y range

Debugging operations

Environment

Spike shape window

 Commands by function

4-12

These function control the Spike monitor window.
SMControl Get and set the states of the control bar items
SMOpen Open and or get the handle of a spike monitor window
ViewLink Get the associated time view handle
Window Set the position of the spike shape window
WindowGetPos Get the window position
WindowVisible Show and hide the spike shape window

These function control avi files associated with data fles.
MMAudio Get information on the audio content
MMImage Get a video image in a variety of formats
MMOpen Open and or get the handle of a multimedia file
MMPosition Set the play position and play state of a multimedia file
MMRate Set the desired frames per second during recording
MMVideo Get information about the video format

These functions let the script writer read to and write from serial line ports on their
computer. This feature would normally be used to control equipment during data capture.
SerialOpen Open a serial port and configure it (set Baud rate, parity etc.)
SerialWrite Write characters to the serial port
SerialRead Read characters from the serial port
SerialCount Count the number of data items available to read
SerialClose Release a previously opened serial port

These functions give the script writer contol over positioning the Spike2 application and
Spike2 windows in a multiple monitor environment.
System Get monitor count, positions and identify the primary monitor.
Window Position a script-controllable window relative to monitors.
WindowVisible Maximise the application over the entire desktop.

Spike Monitor

Multimedia files

Serial line control

Multiple monitor
support

 Alphabetical command reference

5-1

This section of the manual lists commands alphabetically. If you are not sure which
command you require, look in the previous chapter, Commands by function. You might
also find the index useful as it cross-references commands and common keywords.

This evaluates the absolute value of an expression as a real number. This can also form
the absolute value of a real or integer array.
Func Abs(x|x[]|x[][]);

x A real number, or a real or integer vector or matrix
Returns If x is an array, this returns 0 if all was well, or a negative error code if integer

overflow was detected. Otherwise it returns x if x is positive, otherwise -x.
See also: ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),

Round(), Sin(), Sqrt(), Tan(), Trunc()

This returns view handles for system specific windows and program information.
Func App({type%});

type% -3 The program serial number.
-2 The highest type% that returns a value.
-1 The program revision multiplied by 100.
The remaining values return view handles. If type% is omitted, 0 is used.
0 Application 4 Edit toolbar 8 Sample control panel
1 Main toolbar 5 Play wave bar 9 Sequence control panel
2 Status bar 6 Script bar
3 Running script 7 Sample bar

Returns The requested information or a handle for the selected window. If the requested
window does not exist, the return value is 0.

See also: View(), Dup(), LogHandle(), System(), Window()

This function adds a constant or an array to a real or integer array.

Func ArrAdd(dest[]{[]}, source[]{[]}|value);

dest The destination array (vector or matrix).
source An array of reals or integers with the same number of dimensions as dest. If the

arrays have different sizes, the smaller size is used for each dimension.
value A value to be added to all elements of the destination array.
Returns The function returns 0 if all was well, or a negative error code for integer

overflow. Overflow is detected when adding a real array to an integer array and
the result is set to the nearest valid integer.

In the following examples we assume that the current view is a result view:
var fred[100], jim%[200], two[3][30], add[3][30];
ArrAdd(fred[],1.0); 'Add 1.0 to all elements of fred
ArrAdd(fred[],jim%[]); 'Add elements 0-99 of jim% to fred
ArrAdd([],fred[10]); 'Add fred[10] to result channel 1
ArrAdd(two[][], add[][]); 'add corresponding elements

See also: ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(), ArrFFT(),
ArrFilt(), ArrIntgl(), ArrMul(), ArrSub(), ArrSum(), Len()

5

Alphabetical command
reference

Abs()

App()

ArrAdd()

ArrConst() Alphabetical command reference ArrDiv()

5-2

This function sets an array or result view to a constant value, or copies the elements of an
array or result view to another array or result view.
Func ArrConst(dest[]{[]}|dest%[]{[]}, source[]{[]}|value);

dest The destination real or integer array (vector or matrix).
source An array of reals or integers with the same number of dimensions as dest. If the

arrays have different sizes, the smaller size is used for each dimension.
value A value to be copied to all elements of the destination array.
Returns The function returns 0, or a negative error code. If an integer overflows, the

element is set to the nearest integer value to the result.

The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are one dimensional arrays,
a2d and b2d are two dimensional arrays. The arrays and value may be integer or real.

Function Operation
ArrConst(a1d[], value); a1d[i] := value
ArrConst(a1d[], b1d[]); a1d[i] := b1d[i]
ArrConst(a2d[][], value); a2d[j][i] := value
ArrConst(a2d[][], b2d[][]); a2d[j][i] := b2d[j][i]

See also: ArrAdd(),ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(), ArrFilt(),
ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len()

This function replaces an array or result view with an array of differences. You can use
this as a crude form of differentiation, however ArrFilt() provides a better method.
Proc ArrDiff(dest[]);

dest[] A real or integer vector that is replaced its differences. The first element of dest
is not changed.

The effect of the ArrDiff() function can be undone by ArrIntgl(). The following
block of code performs the same function as ArrDiff(work[]):
var work[100],i%;
for i%:=99 to 1 step -1 do work[i%] -= work[i%-1]; next;

See also: ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(), ArrDot(), ArrFFT(),
ArrFilt(), ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum()

This function divides a real or integer array by an array or a constant. Use ArrDivR() to
form the reciprocal of an array. Division by zero and integer overflow are detected.
Func ArrDiv(dest[]{[]}, source[]{[]}|value);

dest An array (vector or matrix) of real or integer values.
source An array of reals or integers with the same number of dimensions as dest, used

as the denominator of the division. If the arrays have different sizes, the smaller
size is used for each dimension.

value A value used as the denominator of the division.
Returns 0 or a negative error code if integer overflow or division by zero occurs.
If there was integer overflow when assigning the result to an integer array the result is set
to the nearest allowed integer value. If division by zero occurs, the associated destination
element is not changed.

ArrConst()

ArrDiff()

ArrDiv()

ArrDivR() The Spike2 script language ArrDot()

5-3

The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrDiv(a1d[], value); a1d[i] := a1d[i] / value
ArrDiv(a1d[], b1d[]); a1d[i] := a1d[i] / b1d[i]
ArrDiv(a2d[][], value); a2d[j][i] := a2d[j][i] / value
ArrDiv(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] / b2d[j][i]

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDivR(),ArrDot(), ArrFFT(),
ArrFilt(), ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum()

This function divides a real or integer array into an array or a constant.
Func ArrDivR(dest[]{[]}, source[]{[]}|value);

dest An array (vector or matrix) of reals or integers used as the denominator of the
division and for storage of the result.

source A real or integer array with the same number of dimensions as dest used as the
numerator of the division. If the arrays have different sizes, the smaller size is
used for each dimension.

value A value used as the numerator of the division.
Returns 0 or a negative error code if integer overflow or division by zero occurs.
If there was integer overflow when assigning the result to an integer array the result is set
to the nearest allowed integer value. If division by zero occurs, the associated destination
element is not changed.

The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrDivR(a1d[], value); a1d[i] := value / a1d[i]
ArrDivR(a1d[], b1d[]); a1d[i] := b1d[i] / a1d[i]
ArrDivR(a2d[][], value); a2d[j][i] := value / a2d[j][i]
ArrDivR(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] / b2d[j][i]

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDot(), ArrFilt(),
ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len()

This function multiplies a vector by another and returns the sum of the products
(sometimes called the dot product). The vectors are not changed.

Func ArrDot(arr1[], arr2[]);

arr1 A real or integer vector.
arr2 A real or integer vector.
Returns The function returns the sum of the products of the corresponding elements of

the two vectors.
See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrFFT(),

ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len()

ArrDivR()

ArrDot()

ArrFFT() Alphabetical command reference ArrFFT()

5-4

This command performs spectral analysis on a result view, or on an array of data.
Variants of this command produce log amplitude, linear amplitude, power and relative
phase as well as an option to window the original data. The command has the syntax:

Func ArrFFT(dest[], mode%);

dest A real vector to process. It should be a power of two points long, from 8 points
upwards; the upper size is limited by available memory. If the number of points
is not a power of two, the size is reduced to the next lower power of two points.

mode% The mode of the command, in the range 0 to 5. Modes are defined below.
Returns The function returns 0 or a negative error code.
This command uses real arithmetic to calculate the fast Fourier transform. This is more
precise, but somewhat slower than the integer transform used by SetPower().

Modes 1 and 3-5 take an array of data that is a set of equally spaced samples in some unit
(usually time). If this unit is xin, the output is equally spaced in units of 1/xin. In the
normal case of input equally spaced in seconds, the output is equally spaced in 1/seconds,
or Hz. If there are n input points, and the interval between the input points is t, the
spacing between the output points is 1/(n*t). The transform assumes that the sampled
waveform is composed of sine and cosine waves of frequencies: 0, 1/(n*t), 2/(n*t),
3/(n*t) up to (n/2)/(n*t) or 1/(2*t).

The phase information sits rather uncomfortably in a result view. When it is drawn, the x
axis has the correct increment per bin, but starts at the wrong frequency. If you need to
draw it, the simplest solution is to copy the phase information to bin 1 from bin n/2+1
and set bins 0 and n/2 to 0 (this destroys any amplitude information):

ArrConst([1:],[n/2+1:]); 'Copy phase to the start of the view
[0]:=0; [n/2]:=0; 'Set phase of the DC and Nyquist points
Draw(0,n/2+1); 'Display the phase

This mode is used to apply a raised cosine window to the data array. See SetPower()
for an explanation of windows. The selected data is multiplied by a raised cosine window
of maximum amplitude 1.0, minimum amplitude 0.0. This window causes a power loss in
the result of a factor of 3/8.

You can supply your own window to taper the data, using the array arithmetic
commands. The raised cosine is supplied as a general purpose window.

This mode replaces the data with its forward Fast Fourier Transform. You would most
likely use this to allow you to remove frequency components, then perform the inverse
transform. The output of this mode is in two parts, representing the real and imaginary
result of the transform (or the cosine and sine components). The first n/2+1 points of the
result hold the amplitudes of the cosine components of the result. The remaining n/2-1
points hold the amplitudes of the sine components. In the case of an 8 point transform,
the output has the format:

 point frequency contents point frequency contents
 0 DC(0) DC amplitude 4 4/(n*t) Nyquist amplitude
 1 1/(n*t) cosine amplitude 5 1/(n*t) sine amplitude
 2 2/(n*t) cosine amplitude 6 2/(n*t) sine amplitude
 3 3/(n*t) cosine amplitude 7 3/(n*t) sine amplitude

There is no sine amplitude at a frequency of 4/(n*t), the Nyquist frequency, as this sine
wave would have amplitude 0 at all sampled points.

ArrFFT()

Display of phase in result
views

Mode 0: Window data

Mode 1: Forward FFT

ArrFFT() The Spike2 script language ArrFFT()

5-5

This mode takes data in the format produced by the forward transform and converts it
back into a time series. In theory, the result of mode 1 followed by mode 2, or mode 2
followed by mode 1, would be the original data. However, each transform adds some
noise due to rounding effects in the arithmetic, so the transforms do not invert exactly.
One use of modes 1 and 2 is to filter data. For example, to remove high frequency noise
use mode 1, set unwanted frequency bins to 0, and use mode 2 to reconstruct the data.

This mode produces an output with the first n/2+1 points holding the log amplitude of the
power spectrum in dB, and the second n/2-1 points holding the phase (in radians) of the
data. In the case of our 8 point transform the output format would be:

 point frequency contents point frequency contents
 0 DC log amplitude in dB 4 4/(n*t) log amplitude in dB
 1 1/(n*t) log amplitude 5 1/(n*t) phase in radians
 2 2/(n*t) log amplitude 6 2/(n*t) phase in radians
 3 3/(n*t) log amplitude 7 3/(n*t) phase in radians

There is no phase information for DC or for the point at 4/(n*t). This is because the phase
for both of these points is zero. If you want the phase in degrees, multiply by 57.3968
(180º/π). The log amplitude is calculated by taking the result of a forward FFT (same as
mode 1 above) and forming:

dB = 10.0 Log(power) The power is calculated as for Mode 5

This mode produces the same output format as mode 3, but with amplitude in place of log
amplitude. The amplitude is calculated by taking the result of a forward FFT (same as
mode 1 above), and forming:

amplitude = (cos2+sin2) 0.5 There is no sin component for the DC and Nyquist

This mode produces the same output format as modes 2 and 3, but with the result as
power. The sum of the power components is equal to the sum of the squares of the
original data divided by the number of data points. The power is calculated by taking the
result of a forward FFT (same as mode 1 above), and forming:

power = (cos2+sin2) * 0.5 for all components except the DC and Nyquist
power = DC2 or Nyquist2 for the DC and Nyquist components

You can compare the output of this mode with the result of SetPower(). If you have a
waveform channel on channel 1 in view 1, and do the following:
var spView%, afView%; 'assume in a time view
spView% := SetPower(1,1024); 'select power spectrum
Process(0,1024*View(-1).Binsize(1)); 'process first 1024 points
WindowVisible(1); 'make window visible
afView% := SetAverage(1,1024,0);'To copy 1024 points
Process(0,0);WindowVisible(1); 'show the data
View(afView%); 'Move to the view holding data
ArrFFT([], 0);ArrFFT([], 5); 'Apply window, take power spectrum
Draw(0,500);Optimise(0); 'Show 500 bins of Power
View(spView%); 'Look at SetPower() result
Draw(0,500);Optimise(0); 'Show same bins of power spectrum

The results are identical except that the ArrFFT() view is 3/8 of the amplitude of the
view generated by SetPower(). The reason for the difference is that the SetPower()
command compensates for the effect of the window it uses internally by multiplying the
result by 8/3. To produce the same numeric result, multiply by 8/3.

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(),
ArrFFT(), ArrFilt(), ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(),
ArrSum(), Len(), SetPower()

Mode 2: Inverse FFT

Mode 3: dB and phase

Mode 4: Amplitude and
phase

Mode 5: Power and phase

ArrFilt() Alphabetical command reference ArrFilt()

5-6

This function applies a FIR (Finite Impulse Response) filter to a real array. You can use
FiltCalc() and FIRMake() to generate filter coefficients for a wide range of filters.
Func ArrFilt(dest[], coef[]);

dest[] A real vector holding the data to filter. It is replaced by the filtered data.
coef[] A real vector of filter coefficients. This is usually an odd number of data points

long so that the result is not phase shifted.
Returns The function returns 0 if there was no error, or a negative error code.

dest[]

Coefficients

Output
This diagram shows how the FIR filter works. Open circles represent filter coefficients,
solid circles are the input and output waveforms. Each output point is generated by
multiplying the waveform by the coefficients and summing the result. The coefficients
are then moved one step to the right and the process repeats.

From this description, you can see that the filter coefficients (from right to left) are the
impulse response of the filter. The impulse response is the output of a filter when the
input signal is all zero except for one sample of unit amplitude. In the example above
with seven coefficients, there is no time shift in the output. If the filter has an even
number of coefficients, there is an output time shift of half a sample.

The filter operation is applied to every vector element. There is a problem at the start and
end of the vector where some coefficients have no corresponding data element.

 ? ?

The simple solution is to take these missing points as copies of the first and last points.
This is usually better that taking these points as 0. You should remember that the first and
last (nc+1)/2 points are unreliable, where nc is the number of coefficients.

A simple use of this command is to produce three point smoothing of data, replacing each
point by the mean of itself and the two points on either side:
var data[1000],coef[3]; 'Arrays of data and the coefficients
... 'Fill data[] with values
coef[0]:=0.33333; coef[1]:=0.33333; coef[2]:=0.33333;
ArrFilt(data[],coef[]); 'smooth the data.

If you use this command to apply a causal filter, that is, one with all coefficients that use
data points ahead of the current point set to zero, you must still provide these coefficients.
If you omit the trailing zero coefficients, the output will be time shifted backwards by
half the number of coefficients you do supply.

See also: ArrDiff(), ArrDiv(), ArrDot(), ArrFFT(), ArrIntgl(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), FiltCalc(), FIRMake(), Len()

ArrFilt()

ArrIntgl() The Spike2 script language ArrSort()

5-7

This function is the inverse of ArrDiff(), replacing each point by the sum of the points
from the start of the array up to the element. The first element is unchanged.
Proc ArrIntgl(dest[]);

dest A vector of real or integer data.
The function is equivalent to the following:
for i%:=1 to Len(dest[])-1 do dest[i%] += dest[i%-1]; next;

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(),
ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len()

This command is used to form the product of a pair of arrays, or to scale an array by a
constant. A less obvious use is to negate an array by multiplying by -1.
Func ArrMul(dest[]{[]}, source[]{[]}|value);

dest A vector or matrix of real or integer numbers. If dest is integer, the
multiplication is done as reals and truncated to integer.

source A real or integer array with the same number of dimensions as dest. If the
arrays have different sizes, the smaller size is used for each dimension.

value A value to multiply the data in dest.
Returns The function returns 0 if all was well, or a negative error code.
The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrMul(a1d[], value); a1d[i] := a1d[i] * value
ArrMul(a1d[], b1d[]); a1d[i] := a1d[i] * b1d[i]
ArrMul(a2d[][], value); a2d[j][i] := a2d[j][i] * value
ArrMul(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] * b2d[j][i]

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(),
ArrIntgl(), ArrSub(), ArrSubR(), ArrSum(), Len(), MATMul()

This function sorts an array of any data type and optionally orders additional arrays to
match the sorted array.
Proc ArrSort(sort[]{, opt%{, arr1[]{, arr2[]{, ...}}});

sort[] An array of integer, real or string data to sort.
opt% This optional argument holds the sorting options. If omitted, the value 0 is used.

It is the sum of the following flag values:
1 Sort in descending order. If omitted, the data is sorted in ascending order.
2 Case sensitive sort when sort[] is an array of strings. String sorts are

usually case insensitive. If omitted, the sort is case insensitive.
arrn[] If present, these arrays are sorted in the same order as the sort[] array. The

arrays can be of any type. You can sort up to 18 additional arrays.

ArrIntgl()

ArrMul()

ArrSort()

ArrSpline() Alphabetical command reference ArrSub()

5-8

This function interpolates an array of real or integer data sampled at one rate into another
array sampled at a different rate using cubic splines. This assumes that the source data
has continuous first and second derivatives and that the second derivatives vary linearly
from point to point. The second derivatives at the first and last point of the source data
are set to zero. We interpolate from up to one input sampling interval before the first
source point to up to one sampling interval after the last source point.
Proc ArrSpline(dest[], source[]{, ratio{, start}});

dest A real or integer vector that holds the interpolated result.
source A vector that is integer if dest is integer or real if dest is real.
ratio If present, this is the ratio of the sampling interval of dest to the sampling

interval of source (or the source frequency divided by the dest frequency). If
omitted, we assume that the first and last points of the two arrays are aligned.
There are no restrictions on ratio, it can even be negative (in which case the
output is backwards relative to the input).

start If present, this is the position of the first point of dest relative to the first point
of source in units of the sample interval of the source array. If omitted, it is
assumed to be 0 (the first points of both arrays fall at the same position).

You will get the best results if you can supply source data before and after the output
time range. The effect of a source point on the interpolation of an interval n points away
falls by a factor of approximately 4 each time n increases by 1. There is rarely the need to
supply more than 15 data points before and after the interpolation range.

Suppose we have a source vector of 100 points sampled at 100 Hz, with the first point
sampled at 5.02 seconds, and we want to generate an array sampled at 1000 Hz that starts
at 5.335 and lasts 0.5 seconds. In this case, the value of ratio is 0.001/0.01, which is
0.1. The value of start is 31.5, which is the time difference (5.335 - 5.02) divided by
0.01, the sample interval of the source channel.

See also: ChanProcessAdd(), DrawMode()

This function forms the difference of two arrays or subtracts a constant from an array. If
the destination is an integer array, overflow is detected when subtracting real values.
Func ArrSub(dest[]{[]}, source[]{[]}|value);

dest A real or integer vector or matrix that holds the result.
source A real or integer array with the same number of dimensions as dest. If the

arrays have different sizes, the smaller size is used for each dimension.
value A real or integer value.
Returns 0 if all is well or a negative error code if integer overflow is detected.
The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors; a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrSub(a1d[], value); a1d[i] := a1d[i] - value
ArrSub(a1d[], b1d[]); a1d[i] := a1d[i] - b1d[i]
ArrSub(a2d[][], value); a2d[j][i] := a2d[j][i] - value
ArrSub(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] - b2d[j][i]

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(),
ArrIntgl(), ArrMul(), ArrSubR(), ArrSum(), Len()

ArrSpline()

An example

ArrSub()

ArrSubR() The Spike2 script language Asc()

5-9

This function forms the difference of two arrays or subtracts an array from a constant. If
the destination is an integer array, overflow is detected when subtracting real values.
Func ArrSubR(dest[]{[]}, source[]{[]}|value);

dest A real or integer vector or matrix.
source A real or integer array with the same number of dimensions as dest. If the

arrays have different sizes, the smaller size is used for each dimension.
value A real or integer value.
Returns 0 if all is well or a negative error code if integer overflow is detected.
The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrSubR(a1d[], value); a1d[i] := value - a1d[i]
ArrSubR(a1d[], b1d[]); a1d[i] := b1d[i] - a1d[i]
ArrSubR(a2d[][], value); a2d[j][i] := value - a2d[j][i]
ArrSubR(a2d[][], b2d[][]); a2d[j][i] := b2d[j][i] - a2d[j][i]

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(),
ArrIntgl(), ArrMul(), ArrSub(), ArrSum(), Len()

This function forms the sum of the values in a vector or matrix, and optionally forms the
mean and standard deviation of the vector or of each matrix column. The standard
deviation of m data points with a sum of squared difference from the mean of errSq is
sqrt(errSq/(m-1)). There are two command variants:
Func ArrSum(arr[]|arr%[]{, &mean{, &stDev}});
Func ArrSum(arr[][]|arr%[][]{, mean[], stDev[]});

arr A real or integer vector or matrix to process.
mean If present it is returned holding the mean of the values in the array. The mean is

the sum of the values divided by the number of array elements. If arr is an m by
n matrix, mean must be a vector of at least n elements and is returned holding
the mean of each column of arr.

stDev If present, this returns the standard deviation of the array elements around the
mean. If the array has only one element the result is 0. If arr is a m by n matrix,
stDev must be a vector with at least n elements and is returned holding the
standard deviation of each column of arr.

Returns The function returns the sum of all the array elements as a real number.

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(),
ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), Len()

This function returns the ASCII code of the first character in the string as an integer.
Func Asc(text$);

text$ The string to process.
See also: Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print$(),

Right$(), Str$(), UCase$(), Val()

ArrSubR()

ArrSum()

Asc()

ATan() Alphabetical command reference BinError()

5-10

This function returns the arc tangent of an expression, or the arc tangent of an array:
Func ATan(s|s[]|s[][] {,c});

s If the only argument, the function uses this for the arc tangent calculation. s can
also be a real array (in which case c must not be present).

c If this is present, the function uses s/c for the calculation.
Returns If s is an array, each element of s is replaced by its arc tangent in the range -π/2

to π/2 radians. The function returns 0 if all was well or a negative error code.
 When s is not an array, if s is the only argument, the function returns the arc

tangent of s in the range -π/2 to π/2. If c is present, the function calculates the
result of ATan(s/c) and uses the signs of s and c to decide the quadrant of the
result. With the second argument, the result is in the range -π to π.

See also: Abs(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan(), Trunc()

This function is used in a result view with error bins enabled to access the error
information. Error bins are enabled for a result view created with SetAverage() or with
SetResult() with 4 added to flags%. If you are setting the error information you must
set the sweep count with Sweeps() first as the sweep count is used to convert the
standard deviation into the internal storage format. There are two command variants; the
first transfers data for a single bin, the second for an array of bins:
Func BinError(chan%, bin% {,newSD});
Func BinError(chan%, bin%, sd[]{, set%});

chan% The channel number in the result view.
bin% The first bin number for which to get or set the error information.
newSD If present, this sets the standard deviation for a single bin.
sd[] An array used to hold standard deviation values. Values are transferred starting

at bin bin% in the result view. If the array is too long, extra bins are ignored.
set% If present and non-zero, the values in sd[] are copied to the result view. If

omitted or zero, values are copied from the result view into sd[].
Returns The first command variant returns the standard deviation at the time of the call.

The second variant returns the number of bins copied. If there are 0 or 1 sweeps
of data or errors are not enabled, the result is 0.

To illustrate how errors are calculated, we will assume that we are dealing with an
average that is set to display the mean of the data in each bin. In terms of the script
language, if the array s[] holds the contribution of each sweep to a particular bin, the
mean, standard deviation and standard error of the mean are calculated as follows:
var mean, sd:=0, i%, diff, sem;
for i%:= 0 to Sweeps()-1 do mean += s[i%] next; 'form sum
mean /= Sweeps(); 'form mean data value
for i%:= 0 to Sweeps()-1 do
 diff := s[i%]-mean; 'difference from mean
 sd += diff*diff; 'sum squares of differences
 next;
sd := Sqrt(sd/(Sweeps()-1)); 'the standard deviation
sem := sd/Sqrt(Sweeps()); 'the standard error of the mean

We divide by Sweeps()-1 to form the standard deviation because we have lost one
degree of freedom due to calculating the mean from the data.

See also: BinSize(), BinToX(), SetAverage(), SetResult(), Sweeps()

ATan()

BinError()

Binsize() The Spike2 script language BRead()

5-11

In a result view, this returns the x axis increment per bin. In a time view, the value
returned depends on the channel type.
Func Binsize({chan%});

chan% In a time view this is the channel from which to return information. If you omit
the argument, the function returns the file time resolution in seconds. In a result
view, chan% is ignored, and should be omitted.

Returns In a time view, the sampling interval between points is returned for Waveform,
WaveMark and RealWave channels or a negative number if the channel does not
exist. Otherwise the underlying time resolution of the file in seconds is returned.

See also: BinToX(), XToBin()

This converts bin numbers to x axis units in the current result view. If the current view is
a time view, it converts the underlying Spike2 time units into time in seconds.
Func BinToX(bin);

bin A bin number in the result view. You can give a non-integer bin number without
error. If you give a bin number outside the result view, the bin number is limited
to the range of the result view before it is converted to an x axis value.

 The x axis range of a result view is BinToX(0) to BinToX(MaxTime()). Do
not confuse this range with XLow() to XHigh(), which is the visible range of
the x axis in the current view.

 In a time view, this is in the underlying time units. If the value is beyond the x
axis range, it is limited to the x axis range. The value need not be integral, but
you should note that all data items in the time view have time stamps that
correspond with integral values of bin. The returned value is in seconds.

Returns It returns the equivalent x axis position.
See also: BinSize(), MaxTime(), XHigh(), XLow(), XToBin()

This reads data into variables and arrays from a binary file opened by FileOpen(). The
function reads 32-bit integers, 64-bit IEEE real numbers and zero-terminated strings.
Func BRead(&arg1|arg1[]|&arg1%|arg1%[]|&arg1$|arg1$[] {,...});

arg Arguments may be of any type. Spike2 reads a block of memory equal in size to
the combined size of the arguments and copies it into the arguments. Strings or
string arrays are read a byte at a time until a zero byte is read.

Returns It returns the number of data items for which complete data was read. This will
be less than the number of items in the list if end of file was reached. If an error
occurred during the read, a negative code is returned.

See also: FileOpen(), BReadSize(), BRWEndian(), BSeek(), BWrite()

Binsize()

BinToX()

BRead()

BReadSize() Alphabetical command reference BSeek()

5-12

This converts data into variables and arrays from a binary file opened by FileOpen().
The function reads 8, 16 and 32-bit integers and converts them to 32-bit integers, and 32
and 64-bit IEEE real numbers and converts them to 64-bit reals. It also reads strings from
fixed-size regions in the file (zero bytes are ignored during the read). The read is from the
current file position. The current position after the read is the byte after the last byte read.
Func BReadSize(size%, &arg|arg[]|&arg%|arg%[]|&arg$|arg$[]{,...});

size% The bytes to read for each argument. Legal values depend on the argument type:
 Integer 1, 2 or 4 Read 1, 2 or 4 bytes and sign extend to 32-bit integer.
 -1, -2 Read 1 or 2 bytes and zero extend to 32-bit integer.
 Real 4 Read 4 bytes as 32-bit real, convert to 64-bit real.
 8 Read 8 bytes as 64-bit real.
 String n Read n bytes into a string. Null characters end the string.
arg The target variable(s) to be filled with data. size% applies to all targets.
Returns It returns the number of data items for which complete data was read. This will

be less than the number of items in the list if end of file was reached. If an error
occurred during the read, a negative code is returned.

See also: FileOpen(), BRead(), BRWEndian(), BSeek(), BWrite()

This gets and sets the "endianism" of binary data files. This affects numeric data used
with BRead(), BReadSize(), BWrite() and BWriteSize(). PC programs normally
use little-endian data (least significant byte at lowest address). Some systems, including
the Macintosh, use big-endian data (most significant byte at lowest address). Binary files
are little-endian by default.

Most users do not need to use this routine. Only use it if you are writing binary files for
use on a big-endian computer or reading binary files that were generated with a big-
endian system.
Func BRWEndian({new%});

new% Omit or set –1 for no change. Set 0 for little-endian and 1 for big-endian.
Returns The current endianism as 0 for little, 1 for big or a negative error code.
See also: FileOpen(), BRead(), BReadSize(), BSeek(), BWrite(), BWriteSize()

This function moves and reports the current position in a file opened by FileOpen()
with a type% code of 9. The next binary read or write operation to the file starts from the
position returned by this function.
Func BSeek({pos% {, rel%}});

pos% The new file position. Positions are measured in terms of the byte offset in the
file from the start, the current position, or from the end. If a new position is not
given, the position is not changed and the function returns the current position.

rel% This determines to what the new position is relative:
0 Relative to the start of the file (same as omitting the argument).
1 Relative to the current position in the file.
2 Relative to the end of the file.

Returns The new file position relative to the start of the file or a negative error code.
See also: FileOpen(), BReadSize(), BRead()

BReadSize()

BRWEndian()

BSeek()

BurstMake() The Spike2 script language BurstRevise()

5-13

This function extracts burst start and end times from an event channel and writes them to
a memory channel. Three parameters control the formation of bursts: the interval between
the first two events in a burst, the interval between the last event in a burst and any
following event, and the minimum number of events in a burst.

Events

Bursts

Bursts

firstT maxT

firstT maxT

The diagram illustrates the method of forming bursts. In the first case, with a short
maximum interval between events, the algorithm finds three bursts. In the second case
with a longer period, the algorithm detects one burst. The command for this function is:

Func BurstMake(mChan%,eChan%,sTime,eTime,maxT{,firstT{,minE%}});

mChan% The channel number of an event or marker channel created by MemChan() for
the output. If this is a marker channel, the start of each burst is given a first
marker code of 00 and the end has a first marker code of 01.

eChan% The channel number of an event channel to search for bursts.
sTime The start of the time range to search for bursts.
eTime The end of the time range to search for bursts.
maxT The maximum time between two events (after the first pair) for the events to lie

in the same burst.
firstT The maximum time between the first two events in a burst. If omitted, maxT sets

the time interval for the first pair of events.
minE% The minimum number of events that can make up a burst. The default is 2.
Returns The function returns the number of bursts found, or a negative error code.
See also: BurstRevise(), BurstStats(), MemChan()

This command modifies a list of times, indicating bursts and produces a new list of bursts
that have inter-burst intervals and burst durations greater than specified minimum times
(See BurstStats() for more information).

Func BurstRevise(mChan%, eChan%, sTime, eTime, minI, minD);

mChan% A memory channel created by MemChan() holding event data to which the
output of this command is added. This can be the same channel as eChan%, but
if it is, the output is generated by deleting unwanted events from the channel.

eChan% The event or marker channel to read burst times from.
sTime The start of the time range to revise.
eTime The end of the time range to revise.
minI The minimum interval between the end of one burst and the start of the next.

Bursts with shorter intervals are amalgamated.
minD The minimum duration of a burst. Shorter bursts are deleted.
Returns The number of bursts in the output or a negative error code.
See also: BurstMake(), BurstStats(), MemChan()

BurstMake()

BurstRevise()

BurstStats() Alphabetical command reference BWrite()

5-14

This command returns statistics on bursts (possibly made by BurstMake()). Additional
rules can be applied to the bursts before the statistics are calculated to amalgamate bursts
that are too close together and to delete bursts that are too short. The statistics are the
mean and standard deviation of the duration of the bursts and the intervals between the
start of one burst and the start of the next.

Bursts

Bursts

minI minD

Duration Interval

Func BurstStats(eChan%, sTime, eTime,
 &meanI, &sdI, &meanD, &sdD{,minI{,minD}});

eChan% The event channel containing burst data. The first event found in the time range
is assumed to be the start of a burst, the second the end, and so on.

sTime The start of the time range to process.
eTime The end of the time range to process.
meanI This is a real variable that is returned holding the mean interval between the

starts of bursts (as long as at least 2 bursts were found).
sdI This is a real variable that is returned holding the standard deviation of the mean

interval (as long as at least 3 bursts were found).
meanD This is a real variable that is returned holding the mean burst duration (as long

as at least 1 burst was found).
sdD This is a real variable that is returned holding the standard deviation of the burst

durations (as long as at least 2 bursts were found).
minI This optional value sets the minimum interval between the end of one burst and

the start of the next. It takes the value 0.0 if omitted. Bursts that are closer than
this are amalgamated for the purpose of forming statistics.

minD This optional value (taken as 0.0 if omitted) sets the minimum burst duration.
Bursts shorter than this (after amalgamations) are ignored in the statistics.

Returns It returns the number of bursts used for the statistics, or a negative error code.
This command is used in scripts that optimise the values of minI and minD for forming
bursts. For example, when bursting is known to follow a cyclical pattern, one would like
to find values of minI and minD that minimise the total coefficient of variance:

Total coefficient of variance = (sdD/meanD)2 + (sdI/meanI)2

Once suitable values are found, the BurstRevise() command can generate a memory
channel holding bursts based on the optimised parameters.

See also: BurstMake(), BurstRevise(), MemChan()

This function writes binary data values and arrays into a file opened by FileOpen()
with a type% code of 9. The function can write 32-bit integers, 64-bit IEEE real numbers
and strings. The output is at the current position in the file. The current position after the
write is the byte after the last byte written.
Func BWrite(arg1 {,arg2 {,...}});

arg Arguments may be of any type, including arrays. Spike2 fills a block of memory
equal in size to the combined size of the arguments with the data held in the
arguments and copies it to the file. An integer uses 4 bytes and a real uses 8
bytes. A string is written as the bytes in the string plus an extra zero byte to
mark the end. Use BWriteSize() to write a fixed number of bytes.

BurstStats()

BWrite()

BWriteSize() The Spike2 script language ChanCalibrate()

5-15

Returns It returns the number of arguments for which complete data was written. If an
error occurred during the write, a negative code is returned.

See also: FileOpen(), BRead(), BReadSize(), BRWEndian(), BWriteSize()

This function writes variables or arrays as binary into a file opened by FileOpen() with
a type% code of 9. It writes 8, 16 and 32-bit integers and 32 and 64-bit reals and strings.
It allows you to write formats other than the 32-bit integer and 64-bit real used internally
by Spike2 and to write variable-length strings into fixed-size fields in a binary file.
Func BWriteSize(size%, arg1 {,arg2 {,...}});

size% Bytes to write for each argument (or array element if the argument is an array).
Legal values of size% depend on the argument type:

 Integer 1, 2 Write least significant 1 or 2 bytes.
 4 Write all 4 bytes of the integer.
 Real 4 Convert to 32-bit real and write 4 bytes.
 8 Write 8 bytes as 64-bit real.
 String n Write n bytes. Pad with zeros if the string is too short.
arg The target variable(s) to be filled with data. size% applies to all targets.
Returns It returns the number of data items for which complete data was written or a

negative error code.
See also: FileOpen(), BRead(), BReadSize(), BRWEndian(), BWrite()

This function converts a channel number or a list of channel numbers into a string.
Memory, duplicate and virtual channels are listed as they appear on screen (not just as
numbers). If a channel does not exist in the current view, it is represented as a number.
Func Chan$(chan%|chan%[]);

chan% Either a channel number or an array of integers in the same format as a channel
specification (the first element holds the number of items, followed by the
channel numbers).

Returns A channel specification string, for example "1,3,5..8,m2,v1a".

See also: ChanList()

This function is equivalent to the Analysis menu Calibrate command. It changes the scale
and offset of Waveform and WaveMark channels and rewrites RealWave channels so that
user-defined data sections have user-defined values. The command is:
Func ChanCalibrate(cSpc,mode%,cfg%,t1,t2,units$,v1{,v2{,t3,t4}});

cSpc A channel specifier for the channels to calibrate or -1 for all, -2 for visible and
-3 for selected channels. You cannot calibrate processed channels if the process
changes the scale or offset or any processed RealWave channel.

mode% The calibration mode. The items in brackets are the required optional arguments.
0 Mean levels of two time ranges (v2, t3, t4).
1 Values at two time points (v2).
2 Set offset from mean of time range.
3 Set scale from mean of time range.
4 Square wave, upper and lower level (v2).
5 Square wave, amplitude (Size) only.

BWriteSize()

Chan$()

ChanCalibrate()

ChanColour() Alphabetical command reference ChanComment$()

5-16

6 Peak to peak amplitude and mean (v2).
7 RMS amplitude about mean (v2).
8 Area under curve, assume zero at end.
9 Areas under curve, two time ranges (v2, t3, t4).
10 Slope of best-fit line to the data, the offset not changed.

cfg% If non-zero, the new calibration is saved in the sampling configuration.
t1,t2 In all modes except mode 1, these are the start and end of the first time range. In

mode 1 these times correspond to the two calibration values v1 and v2.
units$ The units to apply to the channel.
v1,v2 The values in user units that correspond to the times or time ranges. v1 is always

used; v2 is only used in modes 0, 1, 4, 6, 7 and 9.
t3,t4 A second time range. These values are used in modes 0 and 9.
Returns The return value is the sum of the following values:

1 A channel in the list did not exist or was the wrong type.
2 A channel was processed OK.
4 Unknown or unimplemented calibration mode.
8 A time range had the end past the start or two time ranges overlapped or the

two times in mode 1 were the same.
16 The v1 and/or v2 values were too big, too small or too similar.
32 Not enough data to process at least one channel in the list.
64 The data is unsuitable. For example, in mode 0 mean levels must differ by

at least the standard deviation of the data around the mean.

See also: ChanOffset(), ChanScale(), ChanUnits$()

This returns and optionally sets the colour of a channel in a time or result view. This
colour overrides the application colour set for the drawing mode of the channel.
Func ChanColour(chan%, item%{, col%});

chan% A channel in the time or result view.
item% The colour item to get or set; 0=background, 1=primary, 2=secondary colour.
col% If present, the new colour index for the item. There are 40 colours in the palette,

indexed 0 to 39. Use -1 to revert to the application colour for the drawing mode.
Returns The palette colour index at the time of the call, -1 if no colour is set or a

negative error code if the channel does not exist.

See also: Colour(), PaletteGet(), PaletteSet(), ViewColour(), XYColour()

This returns or sets the comment string for a channel in a time view. It returns an empty
string in a result view. The comment can be up to 71 characters long. It is an error to use
this in any other view type.
Func ChanComment$(chan%{, new$});

chan% A channel in the time view.
new$ An optional string with a new comment. If the string is too long, it is truncated.
Returns It returns the comment string for the designated channel. If the channel does not

exist, the function does nothing and returns an empty string. Setting a comment
for a result view does nothing, but is not an error.

See also: ChanTitle$(), FileComment$()

ChanColour()

ChanComment$()

ChanData() The Spike2 script language ChanDuplicate()

5-17

Fills an array with waveform data from a waveform or RealWave channel or with event
times from all other channel types. Use NextTime() and LastTime() to get data
attached to WaveMark, RealMark and TextMark channels and marker codes.
Func ChanData(chan%, arr[]|arr%[], sTime, eTime {,&fTime});

chan% The data channel in the current time view to read data from.
arr A real or integer array. Real arrays collect waveform data in user units and event

times in seconds. Integer arrays collect waveforms in ADC units and event times
in the underlying time units (as returned by Binsize()).

sTime The first data value returned is at or after this time in seconds.
eTime The last data point returned is before or at this time in seconds.
fTime This optional argument is a variable that is set to the time of the first data point.
Returns The number of data values placed in the array. Only contiguous waveform data

is returned; gaps terminate a read.
See also: Binsize(), ChanValue(), ChanWriteWave(), NextTime(), ChanScale()

This deletes a channel from a time, result or XY view. You can make the user confirm
time view channel deletion if the channel is stored in the file. Duplicated channels, and
memory buffer channels are not confirmed. In a result view you may only delete
duplicate channels. In an XY view you cannot delete the last XY channel as XY views
must always have at least one channel. Channels are always numbered consecutively in
an XY view, so if you delete a channel, the channel numbers of any higher numbered
channels will change.
Func ChanDelete(cSpc {,query%});

cSpc A channel specifier for the channels to delete or -1 for all, -2 for visible or -3 for
selected. In an XY view only channel numbers greater than 0 are allowed.

query% If present and non-zero, the user is asked to confirm the deletion if the channel is
part of a time view. You cannot delete channels that are being sampled.

Returns 0 if the channel was deleted or a negative error code if the user cancelled the
operation or tried to delete the last XY channel or for other problems.

See also: ChanDuplicate(), MemChan(), XYDelete(), XYSetChan()

This duplicates a time or result view channel. It can also be used in the Edit WaveMark
view to delete all duplicates of the current channel and generate duplicates with suitable
marker filter setting for each template. Use DupChan() to find duplicates of a channel.
Func ChanDuplicate({chan%});

chan% For time or result views, this is channel number to duplicate; this channel must
exist. This argument must be omitted for Edit WaveMark views.

Returns For time or result views it returns the channel number of the duplicate. For an
Edit WaveMark view, it returns the number of duplicates that were created. Any
error stops the script.

For time and result views the new channel is not displayed. Use ChanShow() to make it
visible. In an Edit WaveMark view, channels are made visible immediately. The
following example duplicates a time or result view channel and makes it visible:
var ch%;ch% := ChanDuplicate(1); 'create a duplicate
ChanShow(ch%); 'make visible

See also: ChanShow(), ChanDelete(), DupChan(), MemChan()

ChanData()

ChanDelete()

ChanDuplicate()

ChanFit() Alphabetical command reference ChanFit()

5-18

This function together with ChanFitCoef() and ChanFitShow() incorporates the
functionality of the Analysis menu Fit Data dialog. ChanFit() has three variants that:
initialise ready for a new fit, perform the fit and return information about the last fit. The
current window must be a time, result or XY view to use these functions.

This command associates a fit with a channel. The fit parameters and the coefficient
limits are reset to their default values, the coefficient hold flags are cleared and any
existing fit for this channel is removed.
Func ChanFit(chan%, type%, order%);

chan% The channel number to work on. Each channel in a time, result or XY view can
have one fit associated with it.

type% 0=Clear fit, 1=Exponential, 2=Polynomial, 3=Gaussian, 4=Sine, 5=Sigmoid.
order% The order of the fit. This is 1 or 2 for an exponential or Gaussian fit, 1 for a Sine

or Sigmoid fit and 1 to 5 for a polynomial fit. If type% is 0 this should also be 0.
Returns 0 if the command succeeded.

This variant of the command does the fit set by the previous variant.
Func ChanFit(chan%, opt%, start|start$, end|end${, ref|ref${,
 &err{, maxI% {,&iTer%{, covar[][]}}}}});

chan% A channel number in the current view that has had a fit initialised.
opt% This is the sum of:

1 Estimate the coefficients before fitting, else use current values.
2 Draw the fit over the user-defined range, not the fit range.

start This is the start of the fit range as a value or as a dialog expression string that is
to be evaluated.

end The end of the fit range in x axis units as a value or a string to evaluate.
ref The reference time as a value or a string to evaluate. If omitted start is used.
err If present, this optional variable is updated with the chi-squared or least-squares

error between the fit and the data.
maxI% If present, this sets the maximum number of iterations. If omitted, the current

number set for the channel is used. The system default number is 100.
iTer% If present, this integer variable is updated with the count of iterations done.
covar An optional two dimensional array of size at least [nCoef][nCoef] that is

returned holding the covariance matrix when the fit is complete. It is changed if
the return value is -1, 0 or 1. However, the values it contains are probably not
useful unless the return value is 0.

Returns 0 if the fit is complete, 1 if max iterations done, or a negative error code: -1=the
fit is not making progress (results may be OK), -2=the fit failed due to a singular
matrix, -5=the fit caused a floating point error, -6=too little data for the number
of coefficients, -7=unknown fitting function, -8=ran out of memory during the
fit (too many data points), -9=the fit was set up with bad parameters.

This variant of the command returns information about the current fit set for a channel.
Func ChanFit(chan%{, opt%});

chan% The channel number of the fit to return information about.
opt% This determines what information to return. If omitted, the default value is 0.

Positive values return information about the fit that is set-up to be done next.
Negative value return information about the last fit that was done and that can be
displayed. The returned information for each value of opt% is:

ChanFit()

Initialise fit information

Perform the fit

Get fit information

ChanFitCoef() The Spike2 script language ChanFitCoef()

5-19

opt% Returns opt% Returns
0 Fit type of next fit 1 Fit order of next fit
-1 1=a fit exists, 0=no fit exists -8 Reference x value
-2 Type of existing fit or 0 -9 User-defined x draw start
-3 Order of existing fit -10 User-defined x draw end
-4 Chi or least-squares error -11 1=chi-square, 0=least-square
-5 Fit probability (estimated) -12 Last fit result code
-6 X axis value at fit start -13 Number of fitted points
-7 X axis value at fit end -14 Number of fit iterations used

Returns The information requested by the opt% argument or 0 if opt% is out of range.
See also: ChanFitCoef(), ChanFitShow(), ChanFitValue(), FitExp(),

FitPoly()

This command gives you access to the fit coefficients for a channel in the current time,
result or XY view. You can return the values from any type of fit and set the initial values
and limits and hold values fixed for iterative fits. There are two command variants:

This command variant lets you read back the current coefficient values and set the
coefficient values and limits for iterative fitting:
Func ChanFitCoef(chan%{, num%{, new{, lower{, upper}}}});

chan% The channel number of the fit to access.
num% If this is omitted, the return value is the number of coefficients in the current fit.

If present, it is a coefficient number. The first coefficient is number 0. If num% is
present, the return value is the coefficient value for the existing fit, or if there is
no fit, the coefficient value that would be used as the starting point for the next
iterative fit is returned.

new If present, this sets the value of coefficient num% for the next iterative fit on this
channel.

lower If present, this sets the lower limit for coefficient num% for the next iterative fit
on this channel. There is currently no way to read back the coefficient limits.
There is also no check made that the limits are set to sensible values.

upper If present, this sets the upper limit for coefficient num% for the next iterative fit
on this channel.

Returns The number of coefficients or the value of coefficient num%.

This command variant sets the hold flags (equivalent to the Hold checkboxes in the Fit
Data dialog Coefficients tab).
Func ChanFitCoef(chan%, hold%[]);

chan% The channel number of the fit to access.
hold% An array of integers to correspond with the coefficients. If the array is too long,

extra elements are ignored. If it is too short, extra coefficients are not affected.
Set hold%[i%] to 1 to hold coefficient i% and to 0 to fit it. If hold%[i%] is
less than 0, the hold state is not changed, but hold%[i%] is set to 1 if the
corresponding coefficient is held and to 0 if it is not held.

Returns This always returns 0.
See also: ChanFit(), ChanFitShow(), ChanFitValue(), FitExp(), FitPoly()

ChanFitCoef()

Set and get coefficients

Get and set the hold flags

ChanFitShow() Alphabetical command reference ChanKind()

5-20

This controls the display of data fitted to a channel in the current time, result or XY view.
Func ChanFitShow(chan%{, opt%{, start|start${, end|end$}});

chan% The channel number of the fit to access.
opt% If present and positive, this is the sum of:

1 Display the fitted data.
2 Use the user-defined display range rather than the fitting range.
If opt% is omitted or positive, the return value is the current option value. Use
negative values to return the user-defined display range: -1=return the start,
-2=return the end.

start If present, this is an x axis value or a string holding a dialog expression to be
interpreted as an x axis value that sets the start of the user-defined display range.

end If present, this is an x axis value or a string holding a Dialog expression to be
interpreted as an x axis value that sets the end of the user-defined display range

Returns The current opt% value or the information requested by opt%. If there is no fit
defined for the channel, the return value is 0.

See also: ChanFit(), ChanFitShow(), ChanFitCoef(), FitExp(), FitPoly()

This function returns the value at a particular x axis value of the fitted function to a
channel in the current time, result or XY view.
Func ChanFitValue(chan%, x);

chan% The channel number of the fit to access.
x The x axis value at which to evaluate the current fit. You should be aware that

some of the fitting fuctions can overflow the floating point range if you ask for x
values beyond the fitted range of the function.

Returns The value of the fitted function at x. If the result is out of floating point range,
the function may return a floating point infinity or a NaN (Not a Number) value
or a 0. If there is no fit, the result is always 0.

See also: ChanFit(), ChanFitShow(), ChanFitCoef(), FitExp(), FitPoly()

Hide a channel, or a list of channels. Hiding a channel that doesn't exist has no effect.
Proc ChanHide(cSpc {,cSpc...});

cSpc A channel specifier or -1 for all, -2 for visible, and -3 for selected channels.
See also: ChanShow(), ChanList()

This returns the type of a channel in the current time, result or XY view.
Func ChanKind(chan%)

chan% The channel number. In a result view, channels start at 1, but we accept 0 as
meaning the first channel to be compatible with Spike2 version 3 scripts.

Returns A code for the channel type or -3 if this is not a time, XY or result view:
 0 None/deleted 3 Event (Event+) 6 WaveMark 9 Real wave

1 Waveform 4 Level 7 RealMark 120 XY channel
2 Event (Event-) 5 Marker 8 TextMark 127 Result channel

ChanFitShow()

ChanFitValue()

ChanHide()

ChanKind()

ChanList() The Spike2 script language ChanMeasure()

5-21

The result and XY codes changed at version 3.16. Use ViewKind() to detect result and
XY views if the script must be compatible with all versions of Spike2.

See also: ChanList(), MemChan(), ViewKind()

This function generates a channel list in an array for a time view, result or an XY view.
The channels can be filtered to show only a subset of the available channels. There are
two command variants:
Func ChanList(list%[]{, types%});
Func ChanList(list%[], str${, types%});

list% An integer array to fill with channel numbers. Element 0 is set to the number of
channels returned. The remaining elements are channel numbers. If the array is
too short, enough channels are returned to fill the array. It is unnecessary to list
all the channel numbers for an XY view, since they are numbered contiguously.

types% This specifies the channels to return. If omitted, all channels are returned. The
values are the same as those defined for the DlgChan() function. XY views
only allow exclude visible (1024) and exclude hidden (2048) channels.

str$ A channel specification such as "1..10,v1,m1" or "v1a". Only channels that
exist in the current view are returned in list%. If types% is provided, only
channels that match both the string and types% are returned in list%.

Returns The number of channels that would be returned if the array were of unlimited
length or 0 if the view is not the correct type.

See also: ChanKind(), ChanShow(), DlgChan()

This performs the cursor regions measurements on a channel in a time or result window.
Func ChanMeasure(chan%, type%, sPos, ePos{, &data%{, kind%}});

chan% The number of the channel to measure. In a result view, channels start at 1, but
we accept 0 as meaning the first channel to be compatible with version 3.

type% The type of measurement to take, see the documentation of the Cursor Regions
window for details of these measurements. The possible values are:

 1 Area 5 Area (scaled) 9 Minimum 13 Abs max. 17 Mean in X
2 Mean 6 Curve area 10 Peak to Peak 14 Peak 18 SD in X
3 Slope 7 Modulus 11 RMS Amplitude 15 Trough 19 Mean of abs
4 Sum 8 Maximum 12 Standard deviation 16 RMS error

sPos The start position for the measurement in x axis units. If sPos is greater than or
equal to ePos, the result is 0. sPos is converted to a bin number in result views;
the conversion is equivalent to Trunc(XToBin(sPos)).

ePos The end position in x axis units. In a result view, this is converted to a bin
number which must be greater than the bin number obtained from sPos.

data% Optional variable returned as 1 if a valid result was obtained or as 0 if there is no
result (equivalent to a blank cell in the Cursor Regions dialog).

kind% This optional variable forces a WaveMark channel to be treated as a waveform
or as events for this measurement. If 0 or omitted, the channel is treated as a
waveform if drawn in waveform, WaveMark or Cubic Spline mode, otherwise it
is treated as an event channel. 1 forces waveform and 2 forces event.

Returns The function returns the requested measurement value.
See also: ArrSum(), ChanData(), ChanValue(), XToBin()

ChanList()

ChanMeasure()

ChanNew() Alphabetical command reference ChanNew()

5-22

This function creates a new channel in the current time view. Unlike a memory channel,
the created channel is permanent; any data written to it occupies disk space. You can use
this to create channels for use with ChanWriteWave() and ChanSave().
Func ChanNew(chan%, type%{, size%{, binsz{, pre%{, trace%}}}});

chan% The channel number to use in the range 1 to the number of channels in the data
file (usually 32) or 0 for the first unused disk-based channel. You cannot use this
routine to overwrite an existing channel; use ChanDelete() to remove it first.

type% The type of channel to create. Codes are:
1 Waveform 4 Level (Event+-) 7 RealMark
2 Event (Event-) 5 Marker (default) 8 TextMark
3 Event (Event+) 6 WaveMark 9 Real wave

size% Used for TextMark, RealMark and WaveMark channels to set the maximum
number of characters, reals or waveform points to attach to each item. You can
use this to set the disk buffer size in bytes for other channel types, but we
recommend that you use 0 for the default buffer size.

binsz Used for waveform and WaveMark data to specify the time interval between the
waveform points. This is rounded to the nearest multiple of the underlying time
resolution. If you set this 0 or negative, the smallest bin size possible is set.

 If binsz is not a multiple of the underlying time resolution times time per ADC
for the file, versions of Spike2 before 4.03 cannot read it.

pre% This must be present for WaveMark data to set the number of pre-trigger points.
trace% Optional, default 1, the number of interleaved traces for WaveMark data.
Returns The channel number if the channel was created, or a negative error code.
Channels created in this way are given default titles, units and comments. You can set
these with the ChanTitle$(), ChanUnits$(), ChanComment$(), ChanScale() and
ChanOffset() routines. The following code creates a copy of channel wFrom% (a
waveform channel) in channel wTo%:
func CopyWave%(wFrom%, wTo%) 'Copy waveform to a memory channel
var err%, buffer%[8192], n%, sTime := 0.0;
if ChanKind(wFrom%)<>1 then return -1 endif; 'Not a waveform!
if ChanKind(wTo%)<>0 then ChanDelete(wTo%) endif; 'Check if used
ChanNew(wTo%, 1,0,BinSize(wFrom%)); 'Create waveform channel
if err%= wTo% then 'Created OK?
 ChanScale(wTo%, ChanScale(wFrom%)); 'Copy scale...
 ChanOffset(wTo%, ChanOffset(wFrom%)); '...and offset...
 ChanUnits$(wTo%, ChanUnits$(wFrom%)); '...and units
 ChanTitle$(wTo%, "Copy"); 'Set our own title
 ChanComment$(wTo%, "Copied from channel "+Str$(wFrom%));
 repeat
 n% := ChanData(wFrom%, buffer%[], sTime, MaxTime(), sTime);
 if n% > 0 then 'read ok?
 n% := ChanWriteWave(wTo%, buffer%[:n%], sTime)
 endif;
 if n% > 0 then sTime += n% * BinSize(wTo%) endif;
 until n% <= 0;
 ChanShow(wTo%); 'display new channel
endif;
return err%; 'Returns 0 if created OK
end;

See also: ChanData(), ChanDelete(), ChanSave(), ChanWriteWave(),
FileNew(), MemChan()

ChanNew()

ChanNumbers() The Spike2 script language ChanOrder()

5-23

You can show and hide channel numbers in the current view and get the channel number
state with this function. It is not an error to use this with data views that do not support
channel number display, but the command has no effect.
Func ChanNumbers({show%});

show% If present, 0 hides the channel number, and 1 shows it. Other values are reserved
(and currently have the same effect as 1).

Returns The channel number display state at the time of the call.
See also: YAxis(), YAxisMode()

Waveform and WaveMark data is stored as 16-bit integers with a scale factor and offset
to convert to user units. This function gets and/or sets the y axis value that corresponds to
a 16-bit waveform data value of zero. The y axis user units for a channel are:
y axis value = (16-bit value)*scale/6553.6 + offset

Func ChanOffset(chan% {,offset});

chan% The channel number.
offset If present, this sets the new channel offset. There are no limits on the value.
Returns The channel offset at the time of the call if this is a waveform or WaveMark

channel, or 0 if it is not.
See also: ChanCalibrate(), ChanScale(), Optimise()

This command changes the order of channels in a time or result view, groups channels
with a y axis so that they share a common y axis and sets the channel sorting order.
Func ChanOrder(dest%, pos%, cSpc);
Func ChanOrder(dest%, opt%);
Func ChanOrder(order%);

dest% The destination channel number or channel number used with opt%.
pos% The drop position relative to the destination channel: -1=drop before, 0=drop on

top, 1=drop after. If you drop between grouped channels, the dropped channels
become members of the group (as long as they have a y axis).

cSpc A channel specifier for the channels to move.
opt% 0=returns the number of channels in the group that dest% belongs to or 0 if not

grouped. 1-n returns the channel number of the nth channel in the group or 0 if
no channel. -1 ungroups the group and returns the number of changed channels.

order% This form of the command sorts all the channels into numerical order. Set -1 for
low, 1 for high numbered channels at the top and 0 to use the default channel
ordering set by the Edit menu Preferences.

Returns With cSpc it returns the number of moved channels. With order%, it returns -1
if low and 1 if high numbered channels were previously at the top.

See also: ChanWeight(), ViewStandard(), Yaxis(), YaxisLock()

ChanNumbers()

ChanOffset()

ChanOrder()

ChanPort() Alphabetical command reference ChanProcessArg()

5-24

This returns the physical hardware port that sampled data in a time view channel.
Func ChanPort(chan%);

chan% The channel number in the current time view.
Returns The physical data port or -1 if the view is not a time view, or if the channel was

not sampled. Both event and ADC ports are enumerated from 0.
See also: SampleEvent(), SampleWaveform(), SampleWaveMark()

This adds a channel process to a waveform or RealWave channel in a time view,
matching the effect of the Add button in the Channel Process dialog.
Func ChanProcessAdd(chan%, PType% {, arg1, arg2, ...});

chan% A waveform or RealWave channel number in the current time view.
PType% The process type. The following process types are currently defined:

0 Rectify. Positive values are unchanged, negative values are negated. Data
from waveform channels with a non-zero channel offset may be limited.

1 Smooth. This has one argument, a time range in seconds. The output at time t
is the average of the input data from times t-arg1 to t+arg1.

2 DC Remove. There is one argument, a time range in seconds. The output at
time t is the input minus the mean input from t-arg1 to t+arg1.

3 Slope. There is one argument, a time range in seconds. The slope at time t is
calculated from the points in the time range t-arg1 to t+arg1. If you apply
this process the channel scale and y axis units change and the channel offset
becomes 0. The output is in input units per second.

4 Time shift. There is one argument, a time shift in seconds. A positive value
shifts the trace right in the window, a negative value shifts it left.

5 Down sample. There is one argument, the down sample ratio.
6 Interpolate. Argument 1 is the sample interval, 2 is the alignment.
7 Chan match. Argument 1 is the channel to match.
8 RMS amplitude. Argument 1 is the time range.
9 Median filter. Argument 1 is the time range.

arg# Optional process arguments to match the Channel Process dialog arguments for
each process type. Each process has default arguments. It is an error to provide
too many arguments or for an argument to be incorrect for the process.

Returns The index of the added process in the list of processes for the channel.
See also: ChanProcessArg(), ChanProcessClear(), ChanProcessInfo()

This gives you access to the parameters of channel processes added by the Channel
Process dialog or by the ChanProcessAdd() command.
Func ChanProcessArg(chan%, id% {,n% {,arg}});

chan% The channel number in the current time view.
id% The process index. The first one added is number 1, the second is 2, and so on.
n% An optional argument number. The first argument is 1, the second 2, and so on.

If you omit n%, the function returns the number of arguments for this process. If
you supply n%, the function returns the argument value at the time of the call.

arg An optional argument that changes process argument n%. Arguments that are out
of range or illegal are ignored

ChanPort()

ChanProcessAdd()

ChanProcessArg()

ChanProcessClear() The Spike2 script language ChanSave()

5-25

Returns If n% is omitted this returns the number of arguments this process expects. If n%
is present it returns the value of argument n% at the time of the call.

See also: ChanProcessAdd(), ChanProcessClear(), ChanProcessInfo()

This removes a one or all processes from a channel or all processes from all channels.
Func ChanProcessClear({chan% {, id%}});

chan% A channel number in the current time view. If you omit this argument, or set it
to -1, all processes for all channels are removed.

id% The index of the process to delete. Set -1 to delete all processes for channel
chan%. After deleting, any remaining processes are renumbered.

Returns 0 if at least one process was deleted, -1 if no process was deleted.
See also: ChanProcessAdd(), ChanProcessArg(), ChanProcessInfo()

This returns information about processes attached to a channel.
Func ChanProcessInfo(chan% {,id% {, arg%}});

chan% The channel number in the current time view.
id% Omit this to return the count of processes for the channel or set it to the index of

the process to return information on. The first added process is number 1.
arg% Omit this to return the type of process index id%; see ChanProcessAdd() for

the type codes. If present, the command returns the type of argument arg%:
0=integer, 1=real, 2=string (unused), 4=channel. The first argument is number 1.

Returns The information requested or a negative error code.
See also: ChanProcessAdd(), ChanProcessArg(), ChanProcessClear()

This function copies data with an optional time shift from source channels in the current
time view to disk-based or memory buffer destination channels in any time view. If a
destination channel exists, ChanSave() adds data to it, otherwise it creates a disk-based
channel to match the source channel. You can set the number of disk-based channels in a
new data file with the nChans% argument of FileNew().

The source data must be compatible with the destination. All event-based data types are
mutually compatible. Destination data that is not present in the source is set to 0. Event
times are set as close to the original times as the time bases of the source and destination
views allow. If the conversion causes multiple events to fall at the same time, the
converter adds 1 tick to separate the times. However, it will not do this for more
consecutive events that the ratio of the two time bases.

If the source channel has a marker filter set, only events in the source channel that match
the marker filter are copied to the destination channel. If the destination channel has a
marker filter, the filter is unchanged for an existing channel and is set to accept all data
for a new channel.

Adc and RealWave channels are compatible; conversion between them uses the channel
scale and offset values. If the source and destination sample rates do not match, the data
is interpolated using cubic splines. This is also done for non-matching WaveMark data.

ChanProcessClear()

ChanProcessInfo()

ChanSave()

ChanSave() Alphabetical command reference ChanSave()

5-26

If a destination disk-based channel already contains data, any added event-based data
must be written after all data already contained in the channel. You can over-write
existing waveform data with the same restrictions as for ChanWriteWave().

Func ChanSave(cSpc, dest%{, dh%{, sTime{, sTo{, dTime}}}});

cSpc A channel specifier for the source channels or -1 for all, -2 for visible and -3 for
selected channels. If you set multiple channels, dest% must be set to 0 or -1.

dest% This sets the destination channel or channels in the view identified by dh%. If
cSpc refers to a single channel, this can be a channel number of a disk-based
channel or an existing memory channel; otherwise dest% must be 0 or -1.

 If dest% is 0, the lowest unused disk-based channels are used. If dest% is -1,
the same channel number as the source is used. If the destination channel does
not exist, it is created using the source channel settings.

dh% The handle of the destination view. Omit or set 0 to use the current time view.
sTime The start time to read source data. This is 0.0 if omitted.
sTo Source data is read up to this time. If omitted, the end of the data is used.
dTime The destination time. If this is omitted, sTime is used. The source data is time

shifted by dTime-sTime before being copied to the destination channels.
Returns With a single source channel, the return value is the destination channel number.

With multiple source channels, the return value is the number of channels that
copied without error. Negative return values mean: -1 = cSpc illegal, -2 =
dest% illegal, -3 = dh% is not a time view handle, -4 = could not create a
destination channel or an existing destination channel was not compatible with
the source, -5 = a file system error occurred when copying data.

This command has many applications. This example creates a new file and adds the
contents of two data files to it. We assume the files hold the same types of channels. In
this case we create an output file with the same time resolution as the first input file.
var fh%,dh%; 'file handles of the source and destination files
fh% := FileOpen("file1.smr", 0, 0); 'open file1
dh% := FileNew(7, 1, View(fh%).Binsize()*1e6, 1, 1); 'make output
View(fh%);ChanSave(-1, -1, dh%);FileClose(0,-1); 'copy and close
fh% := FileOpen("file2.smr", 0, 0); 'open file2 and append
ChanSave(-1, -1, dh%, 0, MaxTime(), View(dh%).MaxTime()+1.0);
FileClose(0,-1); 'close file2
View(dh%);ChanShow(-1);Draw(0, MaxTime()); 'Display the result

See also: ChanNew(), ChanOffset(), ChanScale(), ChanWriteWave(), FileNew()

Append files example

ChanScale() The Spike2 script language ChanSearch()

5-27

This function gets and/or sets the scaling between the 16-bit integer data used to store
waveform and WaveMark data and the real units of the channel. The 16-bit waveform
data has values between +32767 and -32768. The y axis user units for a channel are:
y axis value = (16-bit value)*scale/6553.6 + offset

With the standard ±5 Volt 1401 ADC inputs, 6553.6 is equivalent to 1 Volt at the 1401
input. In this case, a scale of 1.0 and an offset of 0.0 gives a y axis calibrated in Volts.
Func ChanScale(chan% {,scale});

chan% The channel number.
scale If present, sets the channel scaling. We suggest you don't set 0.0 as a scale!
Returns The scale at the time of the call for waveform or WaveMark channels, or 0.
See also: ChanCalibrate(), ChanOffset(), Optimise()

This searches a time view channel for a user-defined feature. It is the same as an active
cursor search, but does not use or move cursors. Searches are done in the current channel
drawing mode. WaveMark data drawn as a waveform is searched as a waveform; to
search it as events, set an event drawing mode. There is no need for the channel to be
visible; you only need to set the display mode before searching.
Func ChanSearch(chan%, mode%, sT, eT{, sp1{, sp2{, width
 {, flag%{, lv2}}}}};

chan% The number of a channel in the time view to search.
mode% This sets the search mode, as for the active cursors. Modes in italics (15 and 16)

cannot be used: mode 16 is not relevant and mode 15 can be emulated by mode
6, 7 or 8. See the cursor mode dialog documentation for details of each mode.
1 Maximum value 8 Falling threshold 15 Repolarisation %
2 Minimum value 9 Steepest rising 16 Expression
3 Max excursion 10 Steepest falling 17 Turning point
4 Peak find 11 Steepest slope (+/-) 18 Slope%
5 Trough find 12 Slope peak 19 Outside thresholds
6 Threshold 13 Slope trough 20 Inside thresholds
7 Rising threshold 14 Data points

sT,eT The search start and end times. If eT is less than sT, the search is backwards.
sp1 This is the amplitude for peaks, threshold level for threshold crossings, baseline

level for maximum excursion and number of points for mode 14. It is in the y
axis units of the search channel (y axis units per second for slopes). If omitted,
the value 0.0 is used. Set it to 0 if sp1 is not required for the mode.

sp2 This is hysteresis for threshold crossings and percent for Slope%. If omitted, the
value 0.0 is used. Set it to 0 if sp2 is not required for the mode.

width This is the width in seconds for slope measurements. It sets the minimum time
that the data must be above/below a level for threshold measures. It sets the
maximum allowed width of a peak or trough. If omitted, 0 is used. Set 0 if
width is not required for the mode or you do not want a time constraint.

flag% This is the sum of flag values and is 0 if omitted. At the moment, the only value
defined is 1=ignore gaps in waveform data. If this value is not set, a search of a
waveform channel will stop at a gap in the data.

lv2 This is the second level for modes 19 and 20. If omitted, 0 is used.
Returns A positive time if the search succeeds or -1 if it fails or a negative error code.
See also: ChanMeasure(), ChanValue(), CursorActive()

ChanScale()

ChanSearch()

ChanSelect() Alphabetical command reference ChanUnits$()

5-28

This function is used to report on the selected/unselected state of a channel in a time or
result view, and to change the selected state of a channel.
Func ChanSelect(chan% {,new%});

chan% The channel number or -1 for all visible channels. Hidden channels and non-
existent channels always appear to be unselected.

new% If present it sets the state: 0 for unselected, not 0 for selected. If omitted, the
state is unchanged. Attempts to change invisible channels are ignored.

Returns The channel state at the time of the call, 0 for unselected, 1 for selected. If you
set chan% to -1, the function returns the number of selected channels.

See also: ChanHide(), ChanOrder(), ChanShow(), ChanWeight()

Display a channel, or a list of channels in a time, result or XY view. Turning on a channel
that is on has no effect. Turning on a channel that doesn't exist has no effect.
Proc ChanShow(cSpc {,cSpc...});

cSpc A channel specification for the channels to show.
See also: ChanHide(), ChanList(), ChanVisible()

This returns or sets the channel title string in a time, result or XY view. A title string is up
to 9 characters long. In an XY view the channel titles are visible in the Key window.

Setting a duplicate channel title does not change the original channel. Setting the original
channel title sets the titles of duplicates unless the duplicates have their own title. If you
set the title of a duplicate to "", the title reverts to the title of the channel it duplicates.
Func ChanTitle$(chan%{,new$});

chan% The channel number. In XY views you can also use 0 to change the y axis title.
new$ An optional string holding the new channel title.
Returns The channel title string for the channel. If the channel does not exist, the

function does nothing and returns an empty string.

See also: ChanComment$(), XYKey()

This gets or sets the units for waveform or WaveMark channels and result or XY views.
From 5.03 you can read back and set the displayed units of time view event-based
channels. Changes to event-based channels are lost when the display mode changes.
Func ChanUnits$(chan%{,new$});

chan% A channel in the time view. In a result view, channels start at 1, but we accept 0
as meaning the first channel to be compatible with version 3. In an XY view the
channel number is ignored. We suggest you use 0 to match ChanTitle$().

new$ An optional string holding the new y axis units for the channel (up to 5
characters). If the string is too long, it is truncated.

Returns It returns the old units of the designated channel. If the channel does not exist or
is not of a suitable type, the function does nothing and returns an empty string.

See also: ChanScale(), ChanOffset(), ChanTitle$()

ChanSelect()

ChanShow()

ChanTitle$()

ChanUnits$()

ChanValue() The Spike2 script language ChanVisible()

5-29

In time views this returns the value of a channel at a time. For a waveform channel it
returns the waveform value, for other channel types, it returns a value in the y axis units
of the channel display mode. If the channel has no y axis or is drawn in raster mode, the
value is the time of the next event on the channel.

In a result view, this returns the value of the result corresponding to an x axis value. You
can use the [bin] notation to access result views by bin number.

Func ChanValue(chan%,pos{,&data%{,mode%{,binsz{,trig%|edge%}}}});

chan% The channel number in the time or result view.
pos In a time view, the time for which the value is needed. In a result view, this is

the x axis value for which a result in needed.
data% Returned as 1 if there is data at pos, 0 if not. For example, for a waveform if

there was no data within Binsize(chan%) of pos, this would be set to 0.
mode% If present, this sets the display mode in which to read the value from a time

view. If mode% is inappropriate or absent, the current display mode is used. This
parameter is ignored in a result view. The modes in a time view are:
0 The current mode for the channel. Any additional arguments are ignored.
1 Dots mode for events. Returns the event time at or after pos.
2 Lines mode, result is the same as mode 1.
3 Waveform mode.
4 WaveMark mode, returns waveform values for WaveMark channels.
5 Rate mode. The binSz argument sets the width of each bin.
6,11 Mean frequency mode, binSz sets the time period, 11 is rate per minute.
7,12 Instantaneous frequency, returns value at next event, 12 is per minute.
8 Raster mode, trig% sets the trigger channel, result as for mode 1.
13 Cubic spline for waveforms and WaveMark data.
16 Skyline mode for waveform, RealWave and RealMark channels.

binSz This sets the width of the rate histogram bins and the smoothing period for mean
frequency mode when specifying your own mode.

trig% The trigger channel for raster displays, we assume raster displays of level data
are never required.

edge% For level data event channels. This sets which edges of the signal to use for
mean frequency, instantaneous frequency and rate modes: 0=both edges,
1=rising edges, 2=falling edges. If edge% is omitted, both edges are used.

Returns It returns the value or 0 if no data is found. For waveform data, if there is no
data within Binsize(chan%) of the time, the value is zero.

If data% is omitted any error stops the script. Errors include: no current window, current
window not a time or result view, no data at pos, and pos beyond range of x axis. If
data% is present, errors cause it to be set to 0.

See also: ChanData()

This returns the state of a channel in a time, result or XY view as 1 if the channel is
visible and 0 if it is not. If you use a silly channel number, the result is 0 (not displayed).
Func ChanVisible(chan%);

chan% The channel to report on.
Returns 1 if the channel is displayed, 0 if it is not.
See also: ChanShow(), ChanHide()

ChanValue()

ChanVisible()

ChanWeight() Alphabetical command reference Chr$()

5-30

This function sets the relative vertical space to give a channel or a list of channels. The
standard vertical space corresponds to a weight of 1. When Spike2 allocates vertical
space, channels are of two types: channels with a y axis and channels without a y axis.
Spike2 calculates how much space to give each channel type assuming all channels have
a weight of 1. Then the actual space allocated is proportional to the standard space
multiplied by the weight factor. This means that if you increase the weight of one
channel, all other channels get less space in proportion to their original space.
Func ChanWeight(cSpc{, new});

cSpc The specification for the list of channels to process. See the Script language
syntax chapter for a definition of channel specifiers.

new If present, a value between 0.001 and 1000.0 that sets the weight for all the
channels in the list. Values outside this range are limited to the range.

Returns The command returns the channel weight of the first channel in the list.
See also: ChanOrder(), ViewStandard()

This function writes real or integer data to a waveform (16-bit integer) or RealWave (32-
bit floating point) channel. The time gap between array points is the Binsize() value of
the channel. You can overwrite existing data and add data to the end of the channel. You
cannot fill in gaps in wave channels; values written into gaps in previously written data
are ignored.
Func ChanWriteWave(chan%, arr[]|arr%[], sTime);

chan% The waveform or RealWave channel in the current time view to write data to.
This can be a duplicate channel, a disk channel or a memory channel. If you
write to a duplicated channel, the original channel data is changed.

arr A real or integer array to write to the channel. When writing real data to a
waveform channel or integer data to a RealWave channel, the data is converted
to match the channel format using the channel scale and offset. When writing to
a waveform, output is limited to 16-bit integers in the range -32768 to 32767.

sTime The first array point time. When overwriting, if the time does not align with
existing data it is reduced by less than one sample interval to align it.

Returns The number of points processed including points skipped due to gaps in existing
channel data or a negative error code, for example if the file is read-only.

The function will cause a fatal script error if used on the wrong view type, the wrong
channel type or if the system runs out of memory.

See also: Binsize(), ChanData(), ChanNew(), ChanOffset(), ChanScale()

This function converts a code to a character and returns it as a single character string.
Func Chr$(code%);

code% The code to convert. Codes that have no character representation will produce
unpredictable results.

See also: Asc(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print$(),
Right$(), Str$(), UCase$(), Val()

ChanWeight()

ChanWriteWave()

Chr$()

Colour() The Spike2 script language CondFeature()

5-31

This function gets and/or sets the colours of items. Colours are set in terms of the colour
palette, not directly in terms of colours. XY channels are coloured using XYColour().
The colours set for time and result view drawing modes can be overridden by
ChanColour().
Func Colour(item% {,col%});

item% This selects the item to be coloured. The available items are:
1 Time background 11 Rate fill 29 Controls (not used)
2 Waveform channel 12 Result background 30 Grid colour
3 Events as dots 13 Result lines 31 X and Y Axes
4 Events as lines 14 Result dots 32 XY background
5 Level events 15 Result skyline 33 Not saving to disk
6 Marker data 16 Result histogram 34 Result SEM and SD
7 Mean frequency 17 Result histogram fill 35 Fitted curves
8 Inst. Frequency 18-26 WaveMark codes 0-8 36 Cluster background
9 Raster dots 27 Channel number 37 WaveMark background
10 Rate outline 28 Cursors

col% If present, this sets the index of the colour in the colour palette to be applied to
the item. There are 40 colours in the palette, numbered 0 to 39.

Returns The index into the colour palette of the colour of the item at the time of the call.
See also: ChanColour(), PaletteGet(), PaletteSet(), XYColour()

The Cond… family of commands control signal conditioners. They support the CED 1902
programmable signal conditioner, the Power 1401 programmable gain options and the
Axon Instruments CyberAmp. Other conditioners may be added in the future.

These commands do not select which serial port (if any) the conditioner uses or the type
of conditioner supported. You choose the conditioner type when you install Spike2. You
set the serial port in the Edit menu Preferences option. All these commands require a
port% argument. This is the physical waveform input port number that the conditioner is
attached to. It is not a channel number in a time view.

You can access the built-in interactive support for the conditioner from the Sampling
Configuration channel parameters dialog. This can be a useful short-cut to getting the
lists of gains and signal sources available on your conditioner(s).

See also:CondFilter(), CondFilterList(), CondFilterType(), CondGain(),
CondGainList(), CondGet(), CondOffset(), CondOffsetLimit(),
CondRevision$(), CondSet(), CondSourceList(), CondType()

This command gets and sets special signal conditioner features that are not general
enough to have dedicated commands to support them. See the CondSet() command for
more details of conditioner operation. There are four command variants:
Func CondFeature(port%);

port% The waveform port number that the conditioner is connected to.
Returns The number of special features supported by the signal conditioner.

The command supports two types of features: those that have a set of discrete values such
as ["None", "Rectify"], and those that support a continuous range of floating point values,
such as 10.0 to 25.6, for example. To determine if the feature is continuous or discrete,
call the function with only the first 3 or 4 arguments.

Colour()

Conditioner
commands

CondFeature()

Get feature count

Get feature information

CondFilter() Alphabetical command reference CondFilterList()

5-32

Func CondFeature(port%, feat%, &name${,&flags%{, list$[]}});
Func CondFeature(port%, feat%, &name${,&flags%{, &low{, &high}}});

feat% The feature number, from 1 to the number of features available
name$ Returned set to the name of the feature.
flags% Returned set to the feature flags. Currently, none are defined, so this will be 0.
list$ Returned set to an array of the possible settings (strings) for discrete type.
low Returned as the low limit for a feature with continuous values.
high Returned as the upper limit for a feature with continuous values
Returns The number of discrete feature values, or 0 if the feature supports continuous

values over the range returned in low and high.

Func CondFeature(port%, feat%{, val});

val If present, it sets the value for the feature set by feat% and port%. If this is a
continuous feature, val sets the new value. If the feature has n discrete setting,
val should be 0 to n-1 to select the feature corresponding to the feature
description in list$[val]. If val exceeds the allowed range, a continuous
feature is set to the nearest allowed value and a discrete feature is unchanged.

Returns The feature value at the time of the call (before any change). This is an integer
index for features with discrete values otherwise it is the feature value.

See also: CondFilterList(), CondGain(), CondGainList(), CondGet(),
CondSet(), CondSourceList(), CondType()

This sets or gets the frequency of the low-pass or high-pass filter of the signal
conditioner. See the CondSet() command for more details of conditioner operation.
Func CondFilter(port%, high% {,freq{, type%}});

port% The waveform port number that the conditioner is connected to.
high% This selects which filter to set or get: 0 for low-pass, 1 for high-pass.
freq If present, this sets the desired corner frequency of the selected filter. See the

CondSet() description for more information. Set 0 for no filtering. If omitted,
the frequency is not changed. The high-pass frequency must be set lower than
the frequency of the low-pass filter, if not the function returns a negative code.

type% Optional, taken as 1 if omitted. The filter type to use when setting the filter.
Returns The cut-off frequency of the selected filter at the time of call, or a negative error

code. A return value of 0 means that there is no filtering of the type selected.
See also: CondFilterList(), CondGain(), CondGainList(), CondGet(),

CondOffset(), CondOffsetLimit(), CondRevision$(), CondSet(),
CondSourceList(), CondType()

This function gets a list of the possible filter frequencies of the conditioner. Conditioners
that support continuous frequency ranges also supply a list of frequencies to match the
list of frequencies shown in the conditioner control panel. See the CondSet() command
for more details of conditioner operation.
Func CondFilterList(port%, high%, freq[]{, type%});

port% The waveform port number that the conditioner is connected to.
high% Selects which filter to get: 0 for low-pass, 1 for high-pass.

Set feature value

CondFilter()

CondFilterList()

CondFilterType() The Spike2 script language CondGainList()

5-33

freq[] An array of reals holding the cut-off frequencies of the selected filter. A value of
0 means no filtering, that is the filter can be switched out of circuit.

type% Optional, taken as 1 if omitted. The filter type in the range 1 to the number of
types (as returned by CondFilterType()).

Returns The number of filtering frequencies of the conditioner or a negative error code.
See also: CondFilter(), CondFilterType(), CondGet(), CondOffset(),

CondOffsetLimit(), CondSet(), CondSourceList(), CondType()

This function returns information about the filter types supported by the conditioner for
the low pass and high pass filters. For example, the CED 1902 mk IV supports a choice
of filter types. There are three command variants:
Func CondFilterType(port%, high%);

port% The waveform port number that the conditioner is connected to.
high% Selects which filter to return information for: 0 for low-pass, 1 for high-pass.
Returns The number of filter types.

Func CondFilterType(port%, high%, 0);

Returns The currently selected filter type, from 1 to the number of filter types.

Func CondFilterType(port%,high%,type%{,&name${,&lower{,&upper}}});

type% The filter number, from 1 to the number of available filters.
name$ If present, returned holding the name of the filter selected by type%.
lower If present, returned as the lowest filter frequency (excludes 0, meaning ‘off’).
upper If present, returned as the highest supported filter frequency.
Returns The number of frequency values the filter can be set to (including 0) or 0 if the

filter corner frequency can be set to any value in the range lower to upper.
See also: CondFilter(), CondGain(), CondGainList(), CondGet(), CondSet(),

CondSourceList(), CondType()

This sets and gets the gain of the signal passing through the signal conditioner See the
CondSet() command for more details of conditioner operation.
Func CondGain(port% {,gain});

port% The waveform port number that the conditioner is connected to.
gain If present this sets the ratio of output signal to the input signal. If this argument

is omitted, the current gain is returned. The conditioner will set the nearest gain
it can to the requested value.

Returns The gain at the time of call, or a negative error code.
See also: CondFilter(), CondFilterList(), CondGainList(), CondGet(),

CondOffset(), CondOffsetLimit(), CondSet()

This function gets a list of the possible gains of the conditioner for the selected signal
source. See the CondSet() command for more details of conditioner operation.
Func CondGainList(port%, gain[]);

CondFilterType()

Get number of filter types

Get filter type in use

Get filter type information

CondGain()

CondGainList()

CondGet() Alphabetical command reference CondOffset()

5-34

port% The waveform port number that the conditioner is connected to.
gain[] An array of reals holding the conditioner gains for the selected signal source. If

a conditioner (for example, 1902) has a fixed set of gains, this is the set of gain
values. If the conditioner supports continuously variable gain, the first two
elements of this array hold the minimum and the maximum values of the gain.

Returns The number of gain values if the conditioner has a fixed set of gains or 2 if the
conditioner has continuously variable gain. In the case of an error, a negative
error code is returned.

See also: CondFilter(), CondFilterList(), CondGain(), CondOffset(),
CondOffsetLimit(), CondSet(), CondSourceList()

This function gets the input signal source of the signal conditioner, and the conditioner
settings for gain, offset, filters and coupling. The settings are returned in arguments
which must all be variables. See CondSet() for details of conditioner operation.
Func CondGet(port%, &in%, &gain, &offs, &low, &hi, ¬ch%, &ac%
 {, &typeL%{, &typeH%}});

port% The waveform port number that the conditioner is connected to.
in% Returned as the zero-based index of the input signal source (see CondSet()).
gain Returned as the ratio of output to input signal amplitude (ignoring filtering).
offs A value added to the input waveform to move it into a more useful range. Offset

is specified in user units and is only meaningful when DC coupling is used.
low Returned as the cut-off frequency of the low-pass filter. A value of 0 means that

there is no low-pass filtering enabled on this channel.
hi Returned as the cut-off frequency of the high-pass filter. A value of 0 means that

there is no high-pass filtering enabled on this channel.
notch% Returned as 0 if the mains notch filter is off, and 1 if it is on.
ac% Returned as 1 for AC or 0 for DC coupling.
typeL% Optional integer variable returned holding the low-pass filter type number as

described for CondFilterType().
typeH% Optional integer variable returned holding the high-pass filter type number.
Returns 0 if all well or a negative error code.
See also: CondFilter(), CondFilterType(), CondFilterList(), CondGain(),

CondGainList(), CondOffset(), CondSet(), CondSourceList()

This sets or gets the offset added to the input signal of the signal conditioner. See the
CondSet() command for more details of conditioner operation.
Func CondOffset(port%{, offs});

port% The waveform port number that the conditioner is connected to.
offs The value to add to the input waveform of the conditioner to move it into a more

useful range. If this argument is omitted, the current offset is returned. The
conditioner will set the nearest value it can to the requested value.

Returns The offset at the time of call, or a negative error code.
See also: CondGain(), CondGainList(), CondGet(), CondOffsetLimit(),

CondRevision$(), CondSet(), CondSourceList(), CondType()

CondGet()

CondOffset()

CondOffsetLimit() The Spike2 script language CondSet()

5-35

This function gets the maximum and minimum values of the offset range of the
conditioner for the currently selected signal source.
Func CondOffsetLimit(port%, offs[]);

port% The waveform port number that the conditioner is connected to.
offs[] This is an array of real numbers returned holding the minimum (offs[0]) and

the maximum (offs[1]) values of the offset range of the conditioner for the
currently selected signal source.

Returns 2 or a negative error code.
See also: CondGain(), CondGainList(), CondGet(), CondOffset(),

CondRevision$(), CondSet(), CondSourceList(), CondType()

This function returns the name and version of the signal conditioner as a string or a blank
string if there is no conditioner for the port.
Func CondRevision$(port%);

port% The waveform port number that the conditioner is connected to.
Returns This returns a string describing the signal conditioner. The strings defined so far

are: “1902ssh”, where ss is the 1902 ROM software version number and h is
the hardware revision level; and “CYBERAMP 3n0 REV x.y.z” where n is 2 or
8. If there is no conditioner attached to the port it returns an empty string.

See also: CondFeature(), CondFilter(), CondType()

This sets the input signal source, gain, offset, filters and coupling of the conditioner. All
values are requests. The actual values set will depend on the capabilities of the
conditioner. In all cases, the command sets the nearest value to that requested. If it is
important to know what has actually been set you should read back the values with
CondGet() after setting them, or use the functions for reading specific values.
Func CondSet(port%, in%, gain, offs {,low, high, notch%, ac%
 {, typeL%{, typeH%}}});

port% The waveform port number that the conditioner is connected to.
in% A conditioner has one or more signal sources. For example, the CED 1902

supports Grounded, Single ended, Normal Diff, Inverted Diff, etc.
Conditioners of the same type may have different sources. To select a source, set
in% to its zero-based index in the list returned by CondSourceList().

gain This is the desired ratio of output signal amplitude to the input signal amplitude
(ignoring the effect of any filtering). The actual gain depends on the capabilities
of the signal conditioner, see CondGainList(). The gain range may be altered
by the choice of signal source. For example, the 1902 Isolated Amp input has a
build-in gain of 100. This command sets the nearest gain to the requested value.

offs This is the desired value in user units to add to the input waveform to move it
into a more useful range. Offsets are only meaningful with DC coupling.
Different conditioners have different offset ranges, and the offset range may be
altered by the choice of signal source, see CondOffsetLimit(). The command
will set the nearest offset it can to the desired value.

low If present and greater than 0, it is the desired corner frequency of the low-pass
filter. Low-pass filters are used to reduce the high frequency content of the
signal, both to satisfy the sampling requirement, and in case where it is known
that no useful information is to be found in the signal above a certain frequency.

CondOffsetLimit()

CondRevision$()

CondSet()

CondSourceList() Alphabetical command reference CondType()

5-36

If omitted, or 0, there is no low-pass filtering. The actual filter value set depends
on the capability of the signal conditioner.

high If present and greater than 0, it is the high-pass filter corner frequency. High-
pass filters reduce the low-frequency content of the signal. This must be set
lower than the frequency of the low-pass filter; if not, the function returns a
negative code. If omitted, or set to 0, there is no high-pass filtering.

 Different signal conditioners have different ranges of frequency filtering. To
find out the real filter frequency set, use CondFilter(). CondFilterList()
returns the list of possible filter frequencies.

notch% Some signal conditioners have a mains-frequency notch filter (usually 50 Hz or
60 Hz) used to reduce the effect of mains interference on low level signals. This
filter will remove the fundamental 50 Hz or 60 Hz signal; it will not remove
higher harmonics (for example 150 Hz). If notch% is present with a value
greater than 0, the notch filter is on. If omitted, or 0, the notch filter is off.

ac% The 1902 supports both AC and DC signal coupling. If you set AC coupling you
should probably set the offset to zero. If ac% is greater than 0, the signal
conditioner is AC coupled. If omitted or 0, the signal conditioner is DC coupled.

typeL% Optional value, taken as 1 if omitted, that sets the low-pass filter type as
described for CondFilterType() in the range 1 to the number of filter types.

typeH% Optional value, taken as 1 if omitted, that sets the high-pass filter type.
Returns 0 if all is well or a negative error code.
See also: CondFilter(), CondFilterType(), CondGain(), CondGet(),

CondOffset(), CondRevision$(), CondType()

This function gets a list of the possible signal source names of the conditioner, or the
specific signal source name with the given index number.
Func CondSourceList(port%, src$[]|src$ {,in%});

port% The waveform port number that the conditioner is connected to.
src$ This is either a string variable or an array of strings that is returned holding the

name(s) of signal sources. Only one name is returned per string.
in% This argument lets you select an individual source or all sources. If present and

greater than or equal to 0, it is the zero-based index number of the signal source
to return. In this case, only one source is returned, even if src$ is an array.
If omitted and src$ is a string, the first source is returned in src$. If src$[] is
an array of strings, as many sources as will fit in the string array are returned.

Returns If in% is greater than or equal to 0, it returns 1 or a negative error code. If in% is
omitted, it returns the number of signal sources or a negative error code.

See also: CondFilterList(), CondGainList(), CondGet(), CondOffsetLimit(),
CondRevision$(), CondSet(), CondType()

This function returns the type of the signal conditioner.
Func CondType(port%);

port% The waveform port number that the conditioner is connected to.
Returns 0 for no conditioner or it is not the type set when installing, 1 for a CED 1902, 2

for an Axon Instruments CyberAmp and 3 for Power1401 with gain controls.
See also: CondFilterList(), CondGainList(), CondRevision$(),

CondSourceList()

CondSourceList()

CondType()

Cos() The Spike2 script language Cursor()

5-37

This calculates the cosine of one or an array of angles in radians.
Func Cos(x|x[]|x[][]);

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2π to 2π.

Returns When the argument is an array, the function replaces the array with the cosines
of all the points and returns either a negative error code or 0 if all was well.
When the argument is not an array the function returns the cosine of the angle.

See also: Abs(), ATan(), Cosh(), Exp(), Ln(), Log(), Pow(), Sin(), Sqrt(), Tan()

This calculates the hyperbolic cosine of one value or an array of values.
Func Cosh(x|x[]|x[][]);

x The value, or a real array of values.
Returns When the argument is an array, the function replaces each value with its

hyperbolic cosine and returns 0. When the argument is not an array the function
returns the cosh of the argument.

See also: ATan(), Cos(), Exp(), Ln(), Log(), Pow(), Sinh(), Sqrt(), Tanh()

In a time view this counts events and forms the mean level of a waveform channel. It can
also be used in a result view to sum bin contents between a start and end bin number.
Func Count(chan%, start, finish);

chan% The channel number in a time or result view. If the channel does not exist, -1 is
returned.

start The start time/bin. If start is greater than finish, the result is 0.
finish The last time/bin. In a time view, if start equals finish, only items that fall

exactly at the time count towards the result.
Returns In a time view, for waveform channels it returns the mean waveform level in the

time range (gaps in waveforms are ignored). If the time range falls entirely in a
gap, the result is 0. For all other channels, it returns the number of events. In a
result view it returns the sum of the bins in the range.

See also: ArrSum(), ChanData(), ChanMeasure()

This returns a cursor position and optionally sets a new position. If you move cursor 0 in
a time view, all active cursors 1-9 will search, equivalent to CursorSearch(1).
Func Cursor(num% {,where});

num% The cursor number to use in the range 1 to 9 (0 to 9 in a time view).
where If present, the new cursor position. If this exceeds the x axis range, it is limited

to the x axis. In a time view the position is in seconds. In a result view it is a bin
number, use XToBin() to convert an x axis value to a bin number. In an XY
view the position is in x axis units.

Returns The old cursor position or -1 if the cursor doesn't exist.
See also: BinToX(), XToBin(), CursorDelete(), CursorLabel(),

CursorLabelPos(), CursorNew(), CursorRenumber(), CursorSet(),
CursorVisible()

Cos()

Cosh()

Count()

Cursor()

CursorActive() Alphabetical command reference CursorActive()

5-38

This function retrieves the current active cursor mode and optionally sets a new mode and
search parameters. This is valid for a time view only. The function is equivalent to the
vertical cursor mode dialog. Once you have set a cursor mode you can command it to
seek with CursorSearch() and tell if the search succeeded with CursorValid().

Func CursorActive(num%);
Func CursorActive(num%, mode%{, ch%, str$|minSt, end${, def${,
 ampLev|n%{, hyPer{, width{, ref${, lev2}}}}}}});

num% This is the cursor number, from 0 to 9.
mode% If this argument is present, it sets the new cursor mode. Modes in italics cannot

be used for cursor 0 and are converted to Static mode. See the documentation for
the cursor mode dialog for details of each mode.
0 Static 7 Rising threshold 14 Data points
1 Maximum value 8 Falling threshold 15 Repolarisation %
2 Minimum value 9 Steepest rising 16 Expression
3 Maximum excursion 10 Steepest falling 17 Turning point
4 Peak find 11 Steepest slope (+/-) 18 Slope%
5 Trough find 12 Slope peak 19 Outside thresholds
6 Threshold 13 Slope trough 20 Inside thresholds

ch% The time view channel to search. Use 0 for modes that do not require a channel.
str$ This is an expression that sets the start time for the search when num% is not 0.

In expression mode (16) this is the expression to evaluate.
minSt This sets the minimum step for cursor 0 in all modes except 0 and 16.
end$ This string expression sets the end limit of the search. This is ignored for cursor

0 operations when it should be an empty string.
def$ Optional. If a search fails, and this string evaluates to a valid time, the cursor is

positioned at the time and the position is valid. This is ignored for cursor 0
operations when it should be an empty string.

ampLev A value or string that sets the amplitude for peaks, threshold level for threshold
crossings and baseline level for maximum excursion. It is in the y axis units of
the search channel (y axis units per second for slopes). If omitted, the value 0.0
is used. Set it to 0 or an empty string if ampLev is not required for the mode.

n% The data point count for mode 14. A value of 0 is treated as 1.
hyPer The hysteresis for threshold crossings and percent for modes 15 and 18. If

omitted, 0 is used. Set it to 0 if hyPer is not used by the mode.
width This is the width in seconds for all slope measurements. It sets the reference

level measurement width in mode 15. It sets the minimum time that the data
must be above/below a level for threshold measures. It sets the maximum
allowed width of a peak or trough. If omitted, 0 is used. Set it to 0 if width is
not used in the mode or you do not want a time constraint.

ref$ This string expression is used in mode 15 to set the time at which the 100%
value is measured. The 0% value is measured at the start time.

lev2 This sets the second threshold level in modes 19 and 20. If omitted, 0 is used.
You can supply this as a value or as a string to evaluate.

Returns The active cursor mode at the time of the call.
The arguments str$, end$, def$ and ref$ are strings holding expressions that evaluate
to a time in seconds. They are typically of the form "Cursor(0)+1.3". They can
contain any expression that would be valid in the Cursor mode dialog.

See also: CursorActiveGet(), CursorNew(), CursorSearch(), CursorValid(),
MeasureChan(), MeasureX()

CursorActive()

CursorActiveGet() The Spike2 script language CursorLabel()

5-39

This gets active cursor parameters set by CursorActive() or the cursor mode dialog.
Func CursorActiveGet(num%, item% {,&val$});

num% This is the cursor number from 0 to 9.
item% This specifies the parameter value as defined for CursorActive() to return:

1 ch% 3 end$ 5 ampLev|n% 7 width 9 ref$
2 str$ 4 def$ 6 hyPer 8 minSt 10 lev2

val$ This optional string variable is updated with the parameter value when item% is
2, 3, 4, 5, 9 or 10.

Returns The numerical value of items 1, 5, 6, 7, 8 and 10. Items 5 and 10 may return 0 if
the item is an un-parseable string. Otherwise it returns the active cursor mode.

See also: CursorActive(), CursorSearch(), CursorValid(), MeasureX()

Deletes a cursor. It is not an error to delete an unknown cursor (which has no effect). You
cannot delete cursor 0; use CursorVisible(0,0) to hide cursor 0.
Func CursorDelete({num%});

num% The cursor number to delete. If omitted, the highest numbered cursor is deleted.
Use -1 to delete all cursors 1-9.

Returns The value of num% if any cursors were deleted or 0 if no cursor was deleted.
See also: Cursor(), CursorNew(), CursorRenumber(), CursorSet()

Use this function to determine if a vertical cursor exists.
Func CursorExists(num%);

num% The cursor number in the range 0-9. Cursor 0 always exists in a time view and
never exists in any other view.

Returns 0 if the cursor does not exist, 1 if it does.
See also: CursorDelete(), CursorNew(),CursorValid(),HCursorExists()

This command sets (or gets) the current view cursor label style. Cursors can be annotated
with a position and/or the cursor number, or with a user-defined string:
Func CursorLabel({style%{, num%{, form$}}});

style% Label styles are: 0=None, 1=Position, 2=Number, 3=Both, 4=User-defined.
Unknown styles cause no change. Style 4 is used with a format string. Styles 0-3
set the styles of cursors selected by the num% field and the view style for new
cursors. Style 4 is applied to cursors set by num%; it does not set the view style.

num% A value of -1 or omitting the argument selects all cursors and sets the view style
for new cursors, 0-9 selects one cursor. In version 3, <=0 selected all cursors.

form$ Cursor label string with replaceable fields %p, %n and %v(chan) for position,
number and channel value; chan is the channel number whose value you
require. %w.dp and %w.dv(chan) formats are allowed where w and d are
numbers that set the field width and number of decimal places.

Returns The view cursor style as 0-3 before any change. If style% is omitted or not 0-3,
the current view cursor style is not changed.

See also: Cursor(), CursorLabelPos(), CursorNew(), CursorRenumber()

CursorActiveGet()

CursorDelete()

CursorExists()

CursorLabel()

CursorLabelPos() Alphabetical command reference CursorSearch()

5-40

This lets you set and read the position of the cursor label.
Func CursorLabelPos(num% {,pos});

num% The cursor number. Setting a silly number does nothing and returns -1.
pos If present, the command sets the label position as the percentage of the distance

from the top of the cursor. Out-of-range values are set to the appropriate limit.
Returns The cursor position before any change was made.
See also: Cursor(), CursorLabel(), CursorNew(), CursorRenumber()

This command adds a new cursor to the view at the designated position. You cannot use
this to create cursor 0 in a time view as this cursor always exists. To show cursor 0 use
CursorVisible(0,1). A new cursor is created in Static mode (not active).
Func CursorNew({where{, num%}});

where The cursor position. In a time view it is a time in seconds, in a result view, it is
the bin number. Use XToBin() to convert x axis units to bin numbers. In an XY
view it is in x axis units. The position is limited to the x axis range. If the
position is omitted, the cursor is placed in the middle of the window.

num% If this is omitted, or set to -1, the lowest-numbered free cursor is used. If this is a
cursor number, that cursor is created. This must be a legal cursor number or -1.

Returns It returns the cursor number as an integer, or 0 if all cursors are in use.
See also: Cursor(), CursorActive(), CursorDelete(), CursorLabel(),

CursorRenumber(), CursorSet(), CursorVisible(), XToBin()

This command renumbers the cursors from left to right in the view. It has no effect on
cursor 0. Active cursor and label information stays with the cursors, not the number.
Func CursorRenumber();

Returns The number of cursors that were renumbered (cursor 0 is not counted).
See also: Cursor(), CursorActive(), CursorDelete(), CursorLabel(),

CursorLabelPos(), CursorNew(), CursorSet()

This function causes active cursors in a time view to search according to the current
cursor mode. You can cause all cursors to search, or a restricted range of cursor numbers.
Moving cursor 0 with Cursor(0, new) also causes all cursors 1-9 to search.
Func CursorSearch(num% {,stop%});

num% This is the first cursor number to run the search defined by the active cursor
mode. Set this to 0 to cause cursor 0 to search forwards and to -1 for cursor 0 to
search backwards. CursorSearch(0) and CursorSearch(-1) are equivalent
to the Ctrl+Shift+Right and Ctrl+Shift+Left key combinations.

stop% This optional argument sets number of the last cursor to try to reposition. If you
omit this argument, all cursors from num% upward will search according to their
active mode. To reposition a single cursor set stop% the same as num%.

Returns The time that cursor num% moved to or -1 if didn’t move. You can also use
CursorValid() to test if searches have succeeded.

See also: Cursor(), CursorActive, CursorActiveGet(), CursorNew(),
CursorValid(), MeasureChan(), MeasureX()

CursorLabelPos()

CursorNew()

CursorRenumber()

CursorSearch()

CursorSet() The Spike2 script language CursorVisible()

5-41

This sets the number of vertical cursors in addition to cursor 0. It deletes cursors 1-9, then
positions num% cursors equally spaced in the view, numbered in order from left to right.
Finally, if any cursors positions are given, they are applied. The cursor labelling style is
not changed. This destroys all active cursor information for the deleted cursors.
Proc CursorSet(num% {,where1 {,where2 {,where3 {,where4...}}}});

num% The number of cursors to display in the range 0 to 9. It is a run-time error to ask
for more than 9 or less than 0 cursors. If num% is 0, cursor 0 is hidden.

whereN Optional positions of cursor N (1 to 9). Positions that are out of range are set
to the nearest valid position. In a time view positions are in seconds. In a result
view, they are the bin number; use XToBin() to convert x axis units to bin
numbers. In an XY view the position is in x axis units. You cannot change the
position of cursor 0 in a time view with this command.

Examples:
CursorSet(0); 'Delete 1-9, hide cursor 0
CursorSet(2,20,30); 'Delete 1-9, cursor 1 at 20, cursor 2 at 30

See also: BinToX(), Cursor(), CursorNew(), CursorRenumber(),
CursorVisible(), XToBin()

Use this function to test if the last search of a cursor in a time view succeeded. Cursor
positions are valid if a search succeeds or if the cursor is positioned manually or by a
script command. The position of a newly created cursor is valid.

Func CursorValid(num%);

num% The cursor number to test for a valid search result in the range 0-9.
Returns The result is 1 if the position of the nominated cursor is valid or 0 if it is invalid

or the cursor does not exist.
See also: CursorActive, CursorActiveGet(), CursorNew(), CursorSearch(),

CursorVisible(), MeasureChan(), MeasureX()

Vertical cursors can be hidden without deleting them. Interactively you can hide cursor 0,
but from a script you can show and hide any vertical cursor. Cursors are always made
visible by the Ctrl+n key combination.

Func CursorVisible(num% {,show%});

num% The cursor number in the range 0-9 or -1 for all vertical cursors.
show% If present set this to 0 to hide the cursor and non-zero to show it.
Returns The state of the cursor at the time of the call (0=hidden, 1=visible) or -1 if the

cursor does not exist. If num% is -1, the result is the number of vertical cursors.
See also: CursorExists(), CursorNew(), CursorSearch(), CursorValid()

CursorSet()

CursorValid()

CursorVisible()

Date$() Alphabetical command reference Debug()

5-42

This function returns a string holding the date. Use TimeDate() to get the date as
numbers. For this description, we assume that today’s date is Wednesday 1 April 1998,
the system language is English and the system date separator is “/”. Default argument
values are shown bold.
Func Date$({dayF%, {monF%, {yearF%, {order%, {sep$}}}}});

dayF% This sets the format of the day field in the date. This can be written as a day of
the week or the day number in the month, or both. The options are:
1 Show day of week: “Wednesday”.
2 Show the number of the day in the month with leading zeros: “01”.
4 Show the day without leading zeros: “1”. This overrides option 2.
8 Show abbreviated day of week: “Wed”.
16 Show weekday name first, regardless of the order% field.
Use 0 for no day field. Add the numbers for multiple options. For example, to
return “Wed 01”, use 11 (1+2+8) as the dayF% argument.
If you add 8 or 16, 1 is added automatically. If you request both the weekday
name and the number of the day, the name appears before the number.

monF% The format of the month field. This can be returned as either a name or a
number. If this argument is omitted, the value 3 is used. The options are:
0 No month field.
1 Show name of the month: “April”.
2 Show number of month: “04”
3 Show an abbreviated name of month: “Apr”
4 Show number of month with no leading zeros: “4”

yearF% The format of the year field. This can be returned as a two or four digit year.
0 No year is shown
1 Year is shown in two digits: “98”.
2 Year is shown in two digits with an apostrophe before it: “’98”.
3 Year is shown in four digits: “1998”.

order% The order that the day, month and year appear in the string.
0 Operating system settings
1 month/day/year
2 day/month/year
3 year/month/day

sep$ This string appears between the day, month and year fields as a separator. If this
string is empty or omitted, Spike2 supplies a separator based on system settings.

For example, Date$(20, 1, 2, 1, " ") returns "Wednesday April 1 ’98". As
20 is 16+4, we have the day first, even through the order% argument places the day in
between the month and the year. Date$() returns "01/Apr/98".

See also: Seconds(), FileDate$(), TimeDate(), Time$()

This command has two functions. It can open the debug window so you can step through
your script, set breakpoints and display and edit variables. From version 3 it can be used
to stop the user entering the debugger with the Esc key.
Proc Debug({msg$}|{Esc%});

msg$ When the command is used with no arguments, or with a string argument, the
script stops as though the Esc key had been pressed and enters the debugger. If
the debugging toolbar was hidden, it becomes visible. If the msg$ string is
present, the string is displayed in the bar at the top of the script window.

Date$()

Debug()

DebugList() The Spike2 script language DelStr$()

5-43

Esc% When the command is used with an integer argument, it enables and disables the
ability of the user to break out of a running script. If Esc% is 0, the user cannot
break out of a script into the debugger with the Esc key and must wait for it to
finish. If Esc% is 1, the user can break out. Spike2 enables the Esc key each
time a script starts, so make this the very first instruction of your script if you
want to be certain that the user cannot break out.

This command was included for use in situations such as student use, where it is
important that the user cannot break out of a script by accident. It is advisable to test your
script carefully before using this option. Once set, you cannot stop a looping script except
by forcing a fatal error. Make sure you save your script before setting this option.

See also: Eval()

This command is used for debugging problems in the system. It writes information to the
Log view about the internal list of “objects” used to implement the script language.
Proc DebugList(list% {, opt%});

list% This determines what to list. A value of 0 lists a summary of the options, 1 lists
fixed objects (constants and operators), 2 lists permanent objects (constants,
operators and built in commands). Values greater than 2 list information for the
object with that number.

opt% This optional argument (default value 0) sets the additional object information to
list. 1= list the index number, 2= list the type, 3= list both index and type.

See also: Debug(), Eval(), DebugOpts()

This command is used for debugging problems in the system. It controls internal options
used for debugging at the system level.
Func DebugOpts(opt% {,val%});

opt% This selects the option to return (and optionally to change). A value of 0 prints a
synopsis of available options to the Log view and the current value of each
option. Values greater than 0 return the value of that option, and print the option
information to the Log view. At the time of writing, only option 1, dump
compiled script to the file default.cod is implemented.

Val% If present, this sets the new value of the option.
See also: Debug(), Eval(), DebugList()

This function removes a sub-string from a string.
Func DelStr$(text$, index%, count%);

text$ The string to remove characters from. This string is not changed.
index% The start point for the deletion. The first character is index 1. If this is greater

than the length of the string, no characters are deleted.
count% The number of characters to remove. If this would extend beyond the end of the

string, the remainder of the string is removed.
Returns The original string with the indicated section deleted.

See also: Asc(), Chr$(), InStr(), LCase$(), Left$(), Len(), Mid$(), Print$(),
ReadStr(), Right$(), Str$(), UCase$(), Val()

DebugList()

DebugOpts()

DelStr$()

DiscrimChanGet() Alphabetical command reference DiscrimChanGet()

5-44

The Discrim… family of commands supports the 1401-18 event discriminator card,
which is available for the standard 1401 and the 1401plus only. You can also control the
1401-18 card interactively; see the Sample menu.

If you use these commands with the interactive discriminator dialog active, the dialog
changes to show any changes made from the script. You cannot change the current
channel the dialog displays (except with DiscrimClear()), so you will only see
changes in the dialog if the channel is the same as the current channel in the dialog.

See also: DiscrimChanGet(), DiscrimChanSet(), DiscrimClear(),
DiscrimLevel(), DiscrimMode(), DiscrimMonitor(),
DiscrimTimeOut()

This gets the input, spike2 event port, 1401 event input E1 or E3, mode, lower and higher
trigger levels, and the time-out for modes 7 and 8 of a discriminator channel.
Func DiscrimChanGet(chan%, &in%, &out%, &mode%, &low, &hi, &tOut);

chan% the discriminator channel number (0-7).
in% Returned holding the source of the discriminator channel as:

0 The discriminator is not used
1 From the 1401 front panel digital input port
2 From the front panel event input (channels 0-4) or ADC Ext (channel 5)

out% Returned holding a code that describes how the discriminator output, event
inputs and digital inputs are connected to the Spike2 event ports and the E1
(digital marker trigger) and E3 (start sampling trigger). The E1 and E3 values
are only valid for channels 1 and 3.

 Spike2 event port E1 (digital marker) or E3 (start sampling)
0 Disconnected. Disconnected
1 1401 digital input Disconnected
2 Discriminator output Disconnected
4 Disconnected To front panel E1 or E3
5 1401 digital input To E1 or E3
6 Discriminator output To E1 or E3
8 Disconnected Discriminator output
9 1401 digital input Discriminator output
10 Discriminator output Discriminator output

mode% the mode of the discriminator channel is returned in this variable:
1 detect a level below a threshold
2 detect a level above a threshold
3 pulse on rising signal through a threshold
4 pulse on falling signal through a threshold
5 detect a level inside a region set by two thresholds
6 detect a level outside region set by two thresholds
7 pulse when signal returns below lower threshold, without going above the

higher threshold, within a programmable time out period
8 pulse when signal returns above higher threshold, without going below the

lower threshold, within a programmable time out period
low Returned holding the lower threshold level in Volts.
high Returned holding the higher threshold level in Volts.
tOut Returns the programmable time out period used in modes 7 and 8.
Returns 0 if all well or a negative error code.
See also: DiscrimChanSet(), DiscrimClear(), DiscrimLevel(), DiscrimMode(),

DiscrimMonitor(), DiscrimTimeOut()

Discriminator (CED
1401-18) support

DiscrimChanGet()

DiscrimChanSet() The Spike2 script language DiscrimChanSet()

5-45

This sets the input, output, mode, lower and higher trigger levels, and the time-out (if the
mode is 7 or 8) of the discriminator channel.
Func DiscrimChanSet(chan%, in%, out%{, mode%, low, high, tOut});

chan% the discriminator channel number (0-7).
in% Sets the source of the discriminator channel as:

0 Disconnected
1 From the 1401 front panel digital input port
2 From the front panel event input (channels 0-4) or ADC Ext (channel 5).

For discriminator channels 6 and 7, you cannot set in% to 2 as there is no
1401 event input available as the source.

out% Sets how the discriminator output, event inputs and digital inputs connect to the
Spike2 event ports and the E1 (digital marker) and E3 (start sampling) triggers.
If in% is 0, out% is forced to 1. If both in% and out% are 1, out% is forced to 2.
Possible out% values are:
0 Spike2 event port disconnected
1 Spike2 event port connected to 1401 digital input
2 Spike2 event port connected to discriminator output
When the channel is 1 or 3 you can choose what the 1401 event input E1 (digital
marker) or E3 (start sampling) trigger connects to by adding 0, 4 or 8 to out%. If
in% is 0, adding 4 is forced. If in% is 2, adding 4 is treated as adding 8.
0 E1 or E3 is disconnected
4 E1 or E3 is connected to the front panel E1 or E3
8 E1 or E3 is connected to the discriminator output

mode% The discriminator channel mode (1-8). If omitted, no change is made.
1 detect a level below a threshold
2 detect a level above a threshold
3 pulse on rising signal through a threshold
4 pulse on falling signal through a threshold
5 detect a level inside a region set by two thresholds
6 detect a level outside region set by two thresholds
7 pulse when signal returns below lower threshold, without going above the

higher threshold, within a programmable time out period
8 pulse when signal returns above higher threshold, without going below the

lower threshold, within a programmable time out period
low Sets the lower threshold level in volts between -5 Volts and the higher threshold

level value. If omitted, no change is made. If the lower threshold level is given
greater than the higher one, it will be set equal to the higher level.

high Sets the higher threshold level in Volts between the lower threshold level value
and +5 Volts. If omitted, no change is made.

tOut Sets the time out period in seconds (0.00002 - 0.65535). This is only meaningful
in mode 7 or 8. If omitted, no change is made.
Spike2 stores and uses the values for the threshold levels and time out period in
terms of the resolution of the 1401-18 card. To find out the real value of the
threshold levels and time out, use DiscrimLevel() and DiscrimTimeOut().
The difference is usually very small.

Returns 0 if the operation completed without a problem, or a negative error code.
See also: DiscrimChanGet(), DiscrimClear(), DiscrimLevel(), DiscrimMode(),

DiscrimMonitor(), DiscrimTimeOut()

DiscrimChanSet()

DiscrimClear() Alphabetical command reference DiscrimMode()

5-46

This sets the Discriminator configuration dialogue contents to a standard state. All the
discriminator channels are disconnected. Spike2 event ports are connected to digital
inputs. E1 (digital marker trigger) and E3 (start sampling trigger) are connected to the
front panel E1 and E3. All the discriminator channels have mode 3, and the lower and
higher trigger levels are set to 1.25 and 2.5 Volts. The ADC monitor channel is set to 15.
If the discriminator dialog is open, channel 0 becomes the current channel.

Proc DiscrimClear();

See also: DiscrimChanGet(), DiscrimChanSet(), DiscrimLevel(),
DiscrimMode(), DiscrimMonitor(), DiscrimTimeOut()

This sets or gets the lower or higher threshold level values of the discriminator channel.

Func DiscrimLevel(chan%, which%, {level});

chan% The discriminator channel number (0-7).
which% Selects which level to set or get: 0 = lower, 1 = upper threshold level.
level If present it sets the threshold value in Volts:

If which% is 0, it is the lower level. It should lie between -5 volts and the higher
level. If it is set greater than the higher level, it is set equal to the higher one.
If which% is 1, it is the higher level. It should lie between the lower level and 5
Volts. If it is set less than the lower level, it is set equal to the lower one

Returns the lower or higher threshold level of the discriminator channel at the time of
call, or a negative error code.

See also: DiscrimChanGet(), DiscrimChanSet(), DiscrimClear(),
DiscrimMode(), DiscrimMonitor(), DiscrimTimeOut()

This sets or gets the mode of the discriminator channel.

Func DiscrimMode(chan%, {mode%});

chan% The discriminator channel number (0-7).
mode% The mode of the discriminator channel (1-8). If omitted, the current mode of the

discriminator channel is returned.
Returns The discriminator channel mode at the time of call, or a negative error code.

1 detect a level below a threshold
2 detect a level above a threshold
3 pulse on rising signal through a threshold
4 pulse on falling signal through a threshold
5 detect a level inside a region set by two thresholds
6 detect a level outside region set by two thresholds
7 pulse when signal returns below lower threshold, without going above the

higher threshold, within a programmable time out period
8 pulse when signal returns above higher threshold, without going below the

lower threshold, within a programmable time out period
See also: DiscrimChanGet(), DiscrimChanSet(), DiscrimClear(),

DiscrimLevel(), DiscrimMonitor(), DiscrimTimeOut()

DiscrimClear()

DiscrimLevel()

DiscrimMode()

DiscrimMonitor() The Spike2 script language DiscrimTimeOut()

5-47

This sets or gets the ADC monitor channel in the Discriminator configuration dialog.
Func DiscrimMonitor({chan%});

chan% Sets the ADC monitor channel number (0-15). If this is omitted, the current
ADC monitor channel number is returned.

Returns the ADC monitor channel number at the time of call, or a negative error code.
See also: DiscrimChanGet(), DiscrimChanSet(), DiscrimClear(),

DiscrimLevel(), DiscrimMode(), DiscrimTimeOut()

This sets or gets the time out period of mode 7 or 8 for the discriminator channel.
Func DiscrimTimeOut(chan%, {tOut});

chan% the discriminator channel number (0-7).
tOut the programmable time out period in seconds (0.00002 - 0.65535). This is only

meaningful in mode 7 or 8. If this is omitted, the current time out period is
returned.

Returns the time out period at the time of call, or a negative error code.
See also: DiscrimChanGet(), DiscrimChanSet(), DiscrimClear(),

DiscrimLevel(), DiscrimMode(), DiscrimMonitor()

You can define your own dialogs to get information from the user. You can define
dialogs in a simple way, where each item of information has a prompt, and the dialog is
laid out automatically, or you can build a dialog by specifying the position of every item.
A simple dialog has the structure shown in the diagram:

The dialog is arranged in terms of items. Unless
you specifically request otherwise, the dialog
items are stacked vertically above each other
with buttons arranged at the bottom.

The dialog has a title of your choosing at the top
and OK and Cancel plus user-defined buttons at
the bottom. When the dialog is used, pressing
the Enter key is equivalent to clicking on OK.

This form of dialog is very easy to program; there is no need to specify any position or
size information, the system works it all out. Some users require more complicated
dialogs, with control over the field positions. This is also possible, but harder to program.
You are allowed up to 1000 fields in a dialog (was 256 in version 4).

In more complex cases, you specify the position (and usually the width) of the box used
for user input. This allows you to arrange data items in the dialog in any way you choose.
It requires more work as you must calculate the positions of all the items.

There are new script functions to add and manipulate buttons, to collect a time or x axis
value and to add a group box. You can define script functions that are called in response
to button presses and user changes to the dialog and an idle-time function that is called
repeatedly whilst the dialog is waiting for user actions. All these functions can enable and
disable, hide and show and modify dialog items. DlgChan() can now get a channel from
an XY view. You can add tooltips for all the prompts in a dialog to give users a more
detailed explanation of a field. Finally, there are extensions to the integer, real and string
fields that allow you to define a drop-down list of selectable items to copy into the fields

DiscrimMonitor()

DiscrimTimeOut()

Dialogs

Version 5 extensions

DiscrimTimeOut() Alphabetical command reference DiscrimTimeOut()

5-48

and you can add a spin control to both integer and real numeric fields. All dialogs created
in previous versions of Spike2 should work without any change.

Positions within a dialog are set in dialog units. In the x (horizontal) direction, these are
in multiples of the maximum width of the characters ‘0’ to ‘9’. In the y (vertical)
direction, these are in multiples of the line spacing used for simple dialogs. The
maximum y position is 40. Unless you intend to produce complex dialogs with user-
defined positions, you need not be concerned with dialog units at all.

The simple example dialog shown above can be created by this code:
var ok%, item1%, item2%, item3, item4$:= "more...", item5;
DlgCreate ("Title for the dialog"); 'start new dialog
DlgInteger(1,"Item &1 prompt",0,10,0,0,1); 'range 0-10,spinner
DlgChan (2, "Item &2 prompt|Tip", 1); 'Waveform channel list
DlgReal (3, "Item &3 prompt", 1.0, 5.0); 'real, range 1.0-5.0
DlgString (4, "&More prompts...|Tip", 6); 'string, any characters
DlgCheck (5, "A &checkbox with a prompt");'a checkbox item
DlgButton (2, "&Extra||Tooltip"); 'button 2, tooltip

ok% := DlgShow(item1%, item2%, item3, item4$, item5); 'show dialog

In the functions that set an item with a prompt, if you precede a character in the prompt
with an ampersand (&), the following character is underlined and is used by Windows as
a short-cut key to move to the field or activate the button. All static dialog items except a
group box allow you define a tooltip by appending a vertical bar followed by the tooltip
text to the text$ argument. For example:
DlgReal(3, "Rate|Enter the sample rate in Hz", 100, 500);

Buttons allow you to specify an additional activation key and an optional tooltip by
adding a vertical bar followed by the key code and then another vertical bar followed by
the tooltip. See the label$ argument of ToolbarSet() for details of key codes.

This example shows how to respond to user
actions within a dialog. In this case we use a
checkbox to enable and disable a group of items
and a button that displays the current values of
dialog items. The numbered fields are:

1 An integer, range 0-10 with a spinner
2 A drop list of 4 items
3 A checkbox, used to enable items 4 and 5
4 A real number with a spinner
5 A string with a drop down list of items

We have added button 2 (buttons 0 and 1 are
Cancel and OK) and a group box around items 4 and 5. To make room for the group box,
the y positions of items 4 and 5 are set explicitly.

With DlgAllow() we have set Func Change%(item%) to be called whenever the user
changes a selection or checkbox or when an editable field loses the input focus. The
item% argument is set to the item number that changed or to 0 if the dialog is appearing
for the first time. We are interested in item 3, the checkbox, and we use the state to
enable or disable the group box and the items inside it.

Func Current%() is linked to the "Current" button and can be activated with the C
and F1 keys and has a tooltip. The function displays a message box that lists the current
values of items in the dialog.

Dialog units

Simple dialog example

Prompts, & and tooltips

More complex example

DlgAllow() The Spike2 script language DlgAllow()

5-49

var ok%, item1%, item2%, item3%, item4, item5$:= "Text", gp%;
DlgCreate("Dialog with user placement",0,0,40,7.5);
DlgInteger(1,"Integer 0 to 10",0,10,0,1,1); 'Int with spinner
DlgList(2,"List item","List 0|List 1|List 2|List 3", 4, 0, 2);
DlgCheck(3, "Checkbox enabling items",0,3); 'checkbox item
DlgReal(4, "Real 1 to 5",1.0,5.0,0,4.5,0.5); 'Real with spinner
DlgString(5, "String length 10",10,"",0,5.5, 'String item with
 "String 1|String 2|String 3"); ' drop-down list
DlgButton(2,"&Current|Ox70|Tooltip", Current%);'button F1+function
DlgAllow(0x3ff, 0, Change%); 'Allow all, no idle, change function
gp% := DlgGroup("Extra items",1,3.8,-1,2.9); 'Group box
ok% := DlgShow(item1%,item2%,item3%,item4,item5$);
Halt;

Func Change%(item%)
var v%;
docase
 case ((item% = 3) or (item% = 0)) then '0 is initial setup
 v% := DlgValue(3); 'get checkbox state
 DlgEnable(v%, gp%, 4, 5); 'enable groupbox+items 4, 5
endcase;
return 1; 'Return 1 to keep dialog running
end;

Func Current%()
var v1%, v2%, v3%, v4, v5$;
v1% := DlgValue(1); 'Retrieve the current values
v2% := DlgValue(2); v3% := DlgValue(3);
v4 := DlgValue(4); v5$:= DlgValue$(5);
Message("Values are %d, %d, %d, %g and %s",v1%,v2%,v3%,v4,v5$);
return 1; 'Return 1 to keep the dialog running
end;

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(), DlgCreate(),
DlgEnable(), DlgGroup(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText(), DlgValue(),
DlgVisible(), DlgXValue(), ToolbarSet()

Call this function after DlgCreate() and before DlgShow() to enable dialog idle time
processing, advanced call-back features and dynamic access to the dialog fields. There
are no restrictions on what call-back functions can do. However, it is not sensible to place
time-consuming code in an idle call-back function or to do anything other than check
dialog fields and possible display a warning message in a dialog-item-change function.
Call-back functions use DlgValue(), DlgEnable() and DlgVisible() to manipulate
the dialog fields. DlgAllow() is new in version 5.
Proc DlgAllow(allow% {,func id%(){, func ch%()}});

allow% A number that specifies the actions that the user can and cannot take while
interacting with Spike2. See Interact() for a full description.

id%() This is an integer function with no arguments. Use the name with no brackets,
for example DlgAllow(0,Idle%); where Func Idle%() is a script function.
When DlgShow() executes, the function is called repeatedly in system idle
time, as for the ToolbarSet() idle function.

 If the function return value is greater than 0, the dialog remains open. A zero or
negative return value closes the dialog and DlgShow() returns the same value.

 If this argument is omitted or 0, there is no idle time function.
ch%() This is an integer function with one integer argument, for example Func

Changed%(item%). You would use DlgAllow(0,0,Changed%); to link this

DlgAllow()

DlgButton() Alphabetical command reference DlgButton()

5-50

function to a dialog. Each time the user changes a dialog item, Spike2 calls the
function with the argument set to the changed item number. There is an initial
call with the argument set to 0 when the dialog is about to be displayed.

 A field is deemed to change when the user clicks a checkbox or changes a
selection in a list or moves the focus from an editable item after changing the
text. For real and integer values, the new value must be in range.

 If the change function returns greater than 0, the change is accepted. If the return
value is zero, the change is resisted and the focus set back to the changed item.
If the return value is negative, the dialog closes and DlgShow() returns this
value and the arguments are not updated.

See also: DlgCreate(), DlgEnable(), DlgShow(), DlgValue(), DlgVisible(),
Interact(), ToolbarSet()

Dialogs created by DlgCreate() have Cancel and OK buttons. This function adds,
deletes and changes buttons. You can link a script function to a button and use the
function return value to decide if the dialog should close. Use this function after
DlgCreate() and before DlgShow(). DlgButton() is new in version 5.
Proc DlgButton(but%, text${, func ff% {, x, y}});

but% The button number from 0 to 200. Button 0 is the cancel button, 1 is the OK
button. Button numbers higher than 1 create new buttons.

text$ This sets the button label. Set an empty string to delete a button. You cannot
delete button 1; the label is set back to OK if you try. The label text can be
followed by an optional key code and an optional tooltip separated by vertical
bars. See the label$ argument of ToolbarSet() for details of the format.

 If you set a key code, the button can be activated even when the dialog does not
have the input focus as long as it is the topmost user dialog and you have not
created a toolbar or interact bar from a function linked to the dialog. This allows
you to drag cursors in a window, then use the key code without the need to click
in the dialog to activate it first.

ff%() This is an integer function with no arguments that is called when the button is
used. Set the argument to zero or omit it if you don't want a button function, in
which case clicking the button closes the dialog, DlgShow() returns the button
number and the DlgShow() arguments are updated for all buttons except 0.

 If you supply a function, it is called each time the button is used and the function
return value determines what happens next:
<0 The button acts as Cancel. The dialog closes, DlgShow() returns this value

and its arguments are not updated.
0 The button acts as OK. The dialog closes and the DlgShow() return value

is the button number and its arguments are updated.
>0 The dialog continues to display.

 The button function can use DlgEnable(), DlgValue() and DlgVisible().
x,y Set the button position, both or neither of these must be supplied. If the button

position is not supplied it will be positioned at the bottom of the dialog.
See also: DlgEnable(), DlgShow(), DlgValue(), DlgVisible(), ToolbarSet()

DlgButton()

DlgChan() The Spike2 script language DlgChan()

5-51

You often need to select a channel from a time, result or XY view. This function defines
a dialog entry that lists channels that meet a specification. For simple dialogs, the wide, x
and y arguments are not used. Channel lists are checked or created when the DlgShow()
function runs. If the current view is not a time, result or XY view, the list is empty.
Proc DlgChan(item%, text$|wide, mask%|list%[]{, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the box

used to select a channel. If wide is omitted the number entry box has a default
width of the longest channel name in the list or 12, whichever is the smaller.

mask% This determines the channels to display. Select channel types by adding the
following codes, which are given as decimal and hexadecimal.

 1 0x1 Waveform or result view channel
 2 0x2 Event+ and Event- channels
 4 0x4 Event +- channels (level data)
 8 0x8 Marker channels
 16 0x10 WaveMark data
 32 0x20 TextMark data
 64 0x40 RealMark data
 128 0x80 Unused/deleted disk channels
 256 0x100 Deleted channels on disk
 512 0x200 Real wave channel

If none of the above values are used or this is an XY view, the list includes all
channels. Add the following codes to exclude channels from the list:

 1024 0x400 Exclude visible channels
 2048 0x800 Exclude hidden channels
 4096 0x1000 Exclude time view disk channels but not their duplicates
 8192 0x2000 Exclude memory channels but not their duplicates
 16384 0x4000 Exclude duplicated channels
 32768 0x8000 Exclude selected channels
 65536 0x10000 Exclude non-selected channels
 2097152 0x200000 Exclude virtual channels but not their duplicates

Finally, the following codes add special entries to the list:
 131072 0x20000 Add None as an entry in the list, returns 0
 262144 0x40000 Add All channels as an entry in the list, returns -1
 524288 0x80000 Add All visible channels as an entry, returns -2
 1048576 0x100000 Add Selected as an entry in the list, returns -3

list% As an alternative to a mask, you can pass in a channel list (as constructed by
ChanList()). This must be an array of channel numbers, with the first element
of the array holding the number of channels in the list.

x If omitted or zero, the selection box is right justified in the dialog box, otherwise
this sets the position of the left end of the channel selection box in dialog units.

y If omitted or zero, this takes the value of item%. It is the position of the bottom
of the channel selection box in dialog units.

The variable passed to DlgShow() for this field should be an integer. If the variable
passed in holds a channel number in the list, the field shows that channel, otherwise it
shows the first channel in the list (usually None). The result from this field in
DlgShow() is a channel number, or 0 if None is selected, -1 if All channels is
selected, -2 if All visible channels is selected or -3 if Selected is chosen.

See also: DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText(), DlgXValue()

DlgChan()

DlgCheck() Alphabetical command reference DlgEnable()

5-52

This defines a dialog item that is a check box (on the left) with a text string to its right.
For simple dialogs, the x and y arguments are not used.
Proc DlgCheck(item%, text${, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
x,y The position of the bottom left hand corner of the check box in dialog units. If

omitted, x is set to 2 and y to item%. When used without these fields, this
behaves exactly like the simple dialog functions, and can be mixed with them.

The associated DlgShow() variable should be an integer. It sets the initial state (0 for
unchecked, not 0 for checked) and returns the result as 0 (unchecked) or 1 (checked).
This item does not have a prompt. If you use DlgValue(), a string value refers to the
text and a numeric value refers to the check box state.

See also: DlgChan(),DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText(), DlgXValue()

This function starts the definition of a dialog and clears any DlgAllow() settings. It also
kills off any previous dialog that might be partially defined.
Func DlgCreate(title${, x{, y{, wide{, high{, help%|help$}}}}});

title$ A string holding the title for the dialog.
x,y Optional, taken as 0 if omitted. The position of the top left hand corner of the

dialog as a percentage of the screen size. The value 0 means centre the dialog.
Values out of the range 0 to 95 are limited to the range 0 to 95.

wide The width of the dialog in dialog units. If this is omitted, or set to 0, Spike2
works out the width for itself, based on the items in the dialog.

high The height of the dialog in dialog units. If omitted, or set to 0, Spike2 works it
out for itself, based on the dialog contents.

help This is a string or numeric identifier that identifies the help page to be displayed
if the user requests help when the dialog is displayed.

Returns This function returns 0 if all was well, or a negative error code.
For simple use, only the first argument is needed. The remainder are for use with more
complicated menus where precise control over menu items is required.

See also: DlgButton(), DlgChan(), DlgCheck(), DlgGroup(), DlgInteger(),
DlgLabel(), DlgList(), DlgReal(), DlgShow(), DlgString(),
DlgText(), DlgXValue()

Use this only from a dialog call-back function to enable or disable dialog items. With one
argument, it returns the enabled state of an item; with two or more arguments it sets the
enabled state of one or more items. Prompts and spin controls associated with the item
are also enabled or disabled. DlgEnable() is new in version 5.
Func DlgEnable(en%, item%|item%[]{, item%|item%[]...});
Func DlgEnable(item%);

en% Set 0 to disable list items, 1 to enable them and 2 to enable and give the first
item the input focus. Input focus changes should be used sparingly to avoid user
confusion; they can cause button clicks to be missed.

item% An item number or an array of item numbers of dialog elements. The item
number is either the number you set, or the number returned by DlgText() or

DlgCheck()

DlgCreate()

DlgEnable()

DlgGroup() The Spike2 script language DlgInteger()

5-53

DlgGroup(), or -button, where button is the button number. You cannot
access prompts separately from their items as this makes no sense.

Returns When called with a single argument it returns the enabled state of the item,
otherwise it returns 0.

See also: DlgAllow(), DlgCreate(), DlgShow(), DlgValue(), DlgVisible()

This routine creates a group box, which is a rectangular frame with a text label at the top
left corner. You can use this between calls to DlgCreate() and DlgShow(). There is
nothing for the user to edit in this item, so you do not supply an item number and there is
no matching argument in DlgShow(). However, the returned number is an item number
(above the values used to match items to DlgShow() arguments) that you can use in call-
back functions to identify the group box. This function was added at version 5.
Func DlgGroup(text$, x, y, width, height);

text$ The text to display at the top left of the group box. Any tooltip text is ignored.
x,y The position of the top left corner of the group box.
width If positive, the width of the group box. If negative, this is the offset of the right

hand side of the group box from the right hand edge of the dialog.
height The height of the group box.
Returns The routine returns an item number so that you can refer to this in call-back

functions to use DlgVisible() and DlgEnable().

See also: DlgCreate(), DlgEnable(), DlgShow(), DlgVisible()

This function defines a dialog entry that edits an integer with an optional spin control or
drop down list of selectable items. The numbers you enter may not contain a decimal
point. For simple dialogs, the wide, x, y, sp% and li$ arguments are not used. The sp
and li$ arguments are new in version 5.
Proc DlgInteger(item%, text$|wide, lo%, hi%{, x{, y{, sp%|li$}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the box in

which the user types the integer. If the width is not given the number entry box
has a default width of 11 digits (or width needed for the number range?).

lo% The start of the range of acceptable numbers.
hi% The end of the range of acceptable numbers.
x If omitted or zero, the number entry box is right justified in the dialog box,

otherwise this sets the position of the left end of the box in dialog units.
y If omitted or zero, this takes the value of item%. It is the position of the bottom

of the number entry box in dialog units.
sp% If present and non-zero, this adds a spin box with a click increment of sp%.
li$ If present, this argument is a list of items separated by vertical bars that can be

selected into the integer field, for example "1|10|100".
The variable passed into DlgShow() should be an integer. The field starts with the value
of the variable if it is in the range. Otherwise, it is limited to the nearer end of the range.

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText(), DlgXValue()

DlgGroup()

DlgInteger()

DlgLabel() Alphabetical command reference DlgList()

5-54

This function sets an item with no editable part that is used as a label. For simple dialogs,
the wide, x and y arguments are not used. You can add text to a dialog without using an
item number with DlgText().
Proc DlgLabel(item%, text${, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
x If omitted, the text is left justified in the dialog box. Otherwise, this sets the

position of the left end of the text in the dialog in dialog units.
y If omitted or zero, this takes the value of item%. It is the position of the bottom

of the text in the dialog in dialog units.
When you call DlgShow(), you must provide a dummy variable for this field. The
variable is not changed and can be of any type, but must be present.

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText(), DlgXValue()

This defines a dialog item for a one of n selection. Each of the possible items to select is
identified by a string. For simple dialogs, the wide, x and y arguments are not used.
Proc DlgList(item%, text$|wide, list$|list$[]{, n%{, x{, y}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text. The

list box width is the smaller of the longest string in the list or 20.
wide This is an alternative to the prompt. It sets the width of the box in which the user

selects an item. If you need a prompt you can use DlgText().
list$ A string of list items separated by a “|” character or an array of strings, one per

item. Long strings are truncated. The “|” method was new in version 3.
n% The number of entries to display. If this is omitted, or if it is larger than the

number of entries provided, then all the entries are displayed.
x If omitted or zero, the selection box is right justified in the dialog, otherwise this

sets the position of the left end of the selection box.
y The bottom of the selection box position. If omitted, the value of item% is used.

The result obtained from this is the index into the list of the list element chosen. The first
element is number 0. The variable passed to DlgShow() for this item should be an
integer. If the value of the variable is in the range 0 to n-1, this sets the item to be
displayed. Otherwise, the first item in the list is displayed.

The following example shows how to set a list:
var ok%,which%:=0; 'string list, test for OK, result
DlgCreate("List example"); 'Start the dialog
var list$[3]; 'these strings are the choices
list$[0] := "one"; list$[1] := "two"; list$[2] := "three";
DlgList(1,"Choose", list$[]); 'Add the list to the dialog
ok% := DlgShow(which%); 'Display dialog, wait for user

From version 3, you can replace the third, fourth and fifth lines with:
DlgList(1,"Choose","one|two|three"); 'version 3 onwards

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),
DlgReal(), DlgShow(), DlgString(), DlgText(), DlgXValue()

DlgLabel()

DlgList()

DlgReal() The Spike2 script language DlgString()

5-55

This function defines a dialog entry that edits a real number. For simple dialogs, the
wide, x and y arguments are not used. The sp and li$ arguments are new in version 5.
Proc DlgReal(item%, text$|wide, lo, hi{, x{, y{, sp|li$}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the box in

which the user types a real number. If wide is not given the box has a default
width of 12 digits.

lo,hi The range of acceptable numbers.
x If omitted or zero, the number edit box is right justified in the dialog, otherwise

this sets the position in dialog units of the left end of the number entry box.
y Bottom of the number edit box position. If omitted, the value of item% is used.
sp If present and non-zero, this adds a spin box with a click increment of sp.
li$ If present, this argument is a list of items separated by vertical bars that can be

selected into the editing field, for example "1.0|10.0|100.0".
The variable passed into DlgShow() should be a real number. The field will start with
the value of the variable if it is in the range, otherwise the value is limited to lo or hi.

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),
DlgList(),DlgShow(), DlgString(), DlgText(), DlgXValue()

This function displays the dialog you have built and returns values from the fields
identified by item numbers, or makes no changes if the dialog is cancelled. Once the
dialog has closed, all information about it is lost. You must create a new dialog before
you can use this function again.
Func DlgShow(&item1|item1[], &item2|item2[], &item3|item3[] ...);

Returns 0 if the user clicked on the Cancel button, or 1 if the user clicked on OK.
For each dialog item with an item number, you must provide a variable of a suitable type
to hold the result. It is an error to use the wrong variable type, except an integer field can
have a real or an integer variable. Items created with DlgLabel() must have a variable
too, even though it is not changed.

The variables also set the initial values. If an initial value is out of range, the value is
changed to the nearest legal value. In the case of a string, illegal characters are deleted
before display. In addition to passing a simple variable, you can pass an array. An array
with n elements matches n items in the dialog. The array type must match the items.

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),
DlgList(), DlgReal(), DlgString(), DlgText(), DlgXValue()

This defines a dialog entry that edits a text string. You can limit the characters that you
will accept in the string. For simple dialogs, the wide, x and y arguments are not used.
Proc DlgString(item%, text$|wide, max%{, legal${, x{,y{,sel$}}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the box in

which the user types the string. If the width is not given the number entry box
has a default width of max% or 60, whichever is the smaller.

DlgReal()

DlgShow()

DlgString()

DlgText() Alphabetical command reference DlgValue() and DlgValue$()

5-56

max% The maximum number of characters allowed in the string.
legal$ A list of acceptable characters. See Input$() for a full description. If this is

omitted, or an empty string, all characters are allowed.
x If omitted or zero, the string entry box is right justified in the dialog, otherwise

this sets the position in dialog units of the left end of the string entry box.
y If omitted or zero, this takes the value of item%. It is the position of the bottom

of the string entry box in dialog units.
sel$ If this string is present, it should hold a list of items separated by vertical bars,

for example "one|two|three". The field becomes an editable combo box with
the items in the drop down list. This is new at version 5.

The result from this operation is a string of legal characters. The variable passed to
DlgShow() should be a string. If the initial string set in DlgShow() contains illegal
characters, they are deleted. If the initial string is too long, it is truncated.

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),
DlgList(), DlgReal(), DlgShow(), DlgText(), DlgXValue(), Input$()

This places non-editable text in the dialog box. This is different from DlgLabel() as
you do not supply an item number and it does not require a variable in the DlgShow()
function. It returns an item number (higher than item numbers for matching arguments in
DlgShow()) that you can use to identify this field in call-back functions, for example
DlgVisible(). There was no returned value in Spike2 version 4.
Func DlgText(text$, x, y{, wide});

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
x,y The position of the bottom left hand corner of the first character in the string, in

dialog units. Set x to 0 for the default label position (the same as DlgLabel()).
wide Normally, the width of the field is set based on text$. This optional argument

sets the width in dialog units. This allows you to replace the text with a longer
string from a call-back function.

Returns An item number to identify this field for call-back functions.
See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),

DlgList(), DlgReal(), DlgShow(), DlgString(), DlgXValue()

These functions can only be used from a dialog call-back function to get and optionally
set the value of an item, item prompt or button text. They are new in version 5.
Func DlgValue(item%{, val});
Func DlgValue$(item%{, val$});

item% This identifies the dialog item. For items with arguments in DlgShow(), use the
item% value you set to create the field. For items created with DlgText() and
DlgGroup(), use the returned item number. For buttons use minus the button
number. To access the prompt for an item add 1000 to the item number.

val This optional argument holds the new item value. Use val on numeric fields or
to set a checkbox or an item number in a list. Use val$ to set a prompt, button
label or the text of an editable control or to select the first matching item in a list
box. It is up to you to make sure the text is acceptable for editable items.

Returns The returned value is the current value of the item. You can use DlgValue$()
on any item to get the current contents of the field, checkbox text, button or
prompt as a text string. Use DlgValue() to collect numeric or checkbox values.

DlgText()

DlgValue() and
DlgValue$()

DlgVisible() The Spike2 script language Draw()

5-57

If there is a problem running the command, for example if the item does not exist, or an
argument type is not appropriate for an item, the result is an empty string or the value 0.

See also: DlgCreate(), DlgEnable(), DlgShow(), DlgVisible()

This can only be used from a dialog call-back function to show or hide dialog items.
There are two versions of this command. The version with a single argument returns the
visible state of an item; the version with two or more arguments sets the visible state of
one or more dialog items. When you show or hide an item, any prompt or spin control
associated with the item is also shown or hidden. This function is new in version 5.
Func DlgVisible(show%, item%|item%[]{, item%|item%[]...});
Func DlgVisible(item%);

show% Set this to 1 to show the items in the list and to 0 to hide them.
item% An item number of an element of the dialog or an integer array containing a list

of item numbers. The item numbers are either the number you set, or the number
returned by DlgText() or DlgGroup(), or -button, where button is the
button number. You cannot access prompts separately from their items as this
makes no sense.

Returns When called with a single argument it returns the visible state of the item,
otherwise the return value is 0.

See also: DlgAllow(), DlgCreate(), DlgEnable(), DlgShow(), DlgValue()

This creates an editable combo box to collect an x axis value for the current time, result
or XY view. The combo box drop-down list is populated with cursor positions and other
window values when DlgShow() runs. If the current view is not suitable, the list is
empty. This control accepts expressions, for example: (Cursor(1)+Cursor(2))/2.
The matching DlgShow() argument is a real number to hold a time in seconds for a time
view, or an x axis value for other views. This command is new in version 5.
Proc DlgXValue(item%, text$|wide{, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the combo

box. If the width is not given the combo box has a default width of 18 numbers.
x If omitted or zero, the string entry box is right justified in the dialog, otherwise

this sets the position in dialog units of the left end of the string entry box.
y If omitted or zero, this takes the value of item%. It is the position of the bottom

of the string entry box in dialog units.
See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),

DlgList(), DlgReal(), DlgShow(), DlgString(), DlgText()

This optionally positions the current view and allows invalid regions to update. Draw()
with no arguments on a view that is up-to-date should make no change. The view is not
brought to the front.
Proc Draw({from {, size}});

from The left hand edge of the window. For a time window, this is in seconds. For a
result view, this is in bins. For an XY view, it is in x axis units.

DlgVisible()

DlgXValue()

Draw()

DrawAll() Alphabetical command reference DrawMode()

5-58

size The width of the window in the same units as from. A negative size is ignored.
With two arguments, the width is set (unless it is unchanged) and then it is drawn. With
one argument, the view scrolls by an integral number of pixels such that from is in the
first pixel. The following may not move the display if a pixel is more than a second wide:
Draw(XLow()+1.0); 'This may scroll by less than 1 second

Time views run from time 0 to the maximum time in the view. Result views have a fixed
number of bins, set when they are created. XY view axes can be any positive length.

See also: DrawAll(), XRange(), XLow(), XHigh(), Maxtime()

This routine updates all views with invalid regions. Nowadays, calling Yield() is a
better solution as this also allows the system time to clean up unused resources.
Proc DrawAll();

See also: Draw(), Yield()

This sets and reads the channel display mode in a time or result view. You can set the
display mode for hidden channels. The first command variant returns information, the
second is for time views, the third is for result views and the fourth is for sonograms.
Func DrawMode(chan%{,mode%});
Func DrawMode(cSpc, mode%{, dotSz%|binSz|flags%{, trig%|edge%}});
Func DrawMode(cSpc, mode%{, dotSz% {, opt%|err%{, sort}}});
Func DrawMode(cSpc, 9{, fftSz%, wnd%, top, range, xInc%, skip%});

chan% The channel number used to read back information with a negative mode%.
cSpc A channel specification or -1 for all, -2 for visible or-3 for selected channels.

The first channel in a result view is 1; we allow 0 to mean 1 for backwards
compatibility. Setting a draw mode for a bad channel number has no effect.

mode% If mode% is omitted, the function returns the mode. If negative, see below for
return values. Positive values set the display mode. If an inappropriate mode is
requested, no change is made. Some modes require additional parameters (for
example a bin size). If they are omitted, the last known value is used.

 The mode values for setting modes in a time view are:
0 The standard drawing mode for the channel.
1 Dots mode for events or a waveform. dotSz% argument can be used.
2 Lines mode. Shows event data as vertical ticks on a horizontal line. If

dotSz% is present and zero, the horizontal line is not drawn.
3 Waveform mode. Draws straight lines between waveform and WaveMark

points. No WaveMark codes are displayed (faster than WaveMark mode).
4 WaveMark mode. Only use this is you wish to see WaveMark codes as it

takes longer to draw than Waveform mode.
5 Rate mode. binSz sets the width of each bin in seconds.
6 Mean frequency mode. binSz sets the time period.
7 Instantaneous frequency mode. dotSz% can be used.
8 Raster mode. trig% sets the trigger channel, dotSz% is used.
9 Sonogram mode. In this mode the fftSz%, wnd%, top, range, xInc% and

skip% arguments are allowed (or can be omitted from the right).
fftSz% The block size for the Fourier Transform used to generate the

sonogram. Allowed values are 16, 32, 64, 256, 512, 1024, 2048
and 4096. Intermediate values set the next lower allowed value.

DrawAll()

DrawMode()

DrawMode() The Spike2 script language DrawMode()

5-59

wnd% The window applied to the data. 0 = no window, 1 = Hanning, 2 =
Hamming. Values 3 to 9 set Kaiser windows with -30 dB to -90 dB
sideband ripple in steps of 10 dB.

top The signal dB value relative to 1 bit at the ADC input to show as
the maximum density output. Signal values above top dB are
shown in maximum intensity. Values 0.0 to 100.0 are allowed.

range The range in dB of output data below top that is mapped into the
grey scale. Output below (top-range) is shown as minimum
intensity. Values greater than 0.0 and up to 100.0 are allowed.

xInc% The number of pixels (1 to 100) to step across the screen before
calculating the next set of sonogram values. This is normally 1.

skip% Normally 0. Set 1 to use one data block for each vertical strip of
sonogram to reduce the calculation time for large files (but only
shows samples of the sonogram). Values 0 and 1 are allowed.

10 WaveMark overdraw mode.
11 Same as mode 6, but display rate per minute rather than per second.
12 Same as mode 7, but display rate per minute rather than per second.
13 Cubic spline mode for waveform and WaveMark channels.
14 Text mode for Textmark channels. dotSz% is used. New in version 5.
15 State mode for marker channels. flags% is used. New in version 5.
16 Skyline mode for waveform, RealWave and RealMark channels. New in

version 5.

For a result view channel the modes are listed below.
0 The standard drawing mode for the result view.
1 Draw as a histogram. err% can be used.
2 Draw as a line. err% can be used.
3 Draw as dots. err% and dotSz% can be used.
4 Draw as a skyline. err% can be used.
8 Draw raster as lines, dotSz% sets the line length, opt% is used.
9 Draw raster as dots, dotSz% sets the dot size, opt% is used.
13 Cubic spline mode. err% can be used. New in version 5.

dotSz% Sets the dot or tick size to use on screen or the point size to use on a printer. 0 is
the smallest size available. The maximum size is 10. Use -1 for no size change.

binSz Sets rate histogram bin width and the mean frequency smoothing period.
flags% For markers in State mode, this sets the additional information to display. 0=no

extra information. Add 1 to draw the state number, 2 to display TextMark text.
trig% This is the trigger channel for time view raster displays. We assume that you do

not want to display a level event channel in raster mode.
edge% Sets the edges of level event data to use for mean and instantaneous frequency

and rate modes. 0 = both edges (default), 1 = rising edges and 2 = falling edges.
opt% Used in result view raster channels. The default is 0. Add 1 for horizontal line in

raster line mode. Add 2 for y axis as time of sweep or variable value in raster
modes. Add 16 to show symbols. For backwards compatibility, if sort% is
omitted, add 4 to select sort value 1 and 8 to select sort value 2. These values (4
and 8) are not returned when mode% is -12, use -15 to get the sort value.

err% Result view error drawing style: 0=none (default), 1=1 SEM, 2=2 SEM, 3=SD.
sort% Result view raster sort mode. 0=time (default), 1-4 = use sort variables 1 to 4.
Returns If a single channel is set it returns the previous mode%. For multiple channels or

an invalid call, it returns -1. Negative mode% values return drawing parameters:
-1 Reserved -4 trig% -7 wnd% -10 xInc% -13 err%
-2 dotSz% -5 edge% -8 top -11 skip% -14 sort%
-3 binSz -6 fftSz% -9 range -12 opt% -15 flags%

See also: Draw(), SetEvtCrl(), SetPSTH(), ViewStandard(), XYDrawMode()

Dup() Alphabetical command reference EditClear()

5-60

This gets the view handle of a duplicate of the current view or the number of duplicates.
Duplicated views are numbered from 1 (1 is the original). If a duplicate is deleted, higher
numbered duplicates are renumbered. See WindowDuplicate() for more information.
Func Dup({num%});

num% The number of the duplicate view to find, starting at 1. You can also pass 0 (or
omit num%) as an argument, to return the number of duplicates.

Returns If num% is greater than 0, this returns the view handle of the duplicate, or 0 if the
duplicate does not exist. If num% is 0 or omitted, this returns the number of
duplicates. The following code illustrates the use of Dup().

var maxDup%, i%, dvh%; 'declare variables
maxDup% := Dup(0); 'Get maximum numbered duplicate
for i% := 1 to maxDup% do 'loop round all possible duplicates
 dvh% := Dup(i%); 'get handle of this duplicate
 if (dvh% > 0) then 'does this duplicate exist?
 PrintLog(view(dvh%).WindowTitle$()+"\n");'print window title
 endif;
 next;

See also: App(), View(), WindowDuplicate()

This returns the number of duplicates of a channel in the current time or result view, or
the channel number of the nth duplicate, or it identifies the channel on which a duplicate
channel is based, or it identifies which duplicate of an original channel this is. See
ChanDuplicate() for more information on duplicate channels.
Func DupChan(chan%{, num%});

chan% A channel number in the current view. The channel must exist. If this channel is
a duplicate, the command behaves as though you passed the original channel on
which the duplicates are based.

num% If greater than 0, this is the index of a duplicate channel in the range 1 to the
number of duplicates. Use 0 to return the original channel that was duplicated.
Use -1 as an argument (or omit num%), to return the number of duplicates of the
channel. From version 5.10 onwards you can use –2 as an argument to return
which duplicate a channel is: 0 means not a duplicate, 1 upwards is the duplicate
index.

Returns If num% is greater than 0, this returns the channel number of the duplicate, or 0 if
the duplicate does not exist. If num% is 0, this returns the channel number that
chan% was duplicated from or chan% if it is the original. If num% is –1 or
omitted, this returns the number of duplicates. If num% is –2, this returns the
duplicate index of chan% (0 if not a duplicate, 1 for duplicate a and so on).

See also: ChanDuplicate()

In a result view, this command zeros the histogram data. In a text view, this command
deletes any selected text.
Func EditClear();

Returns The function returns 0 if nothing was deleted, otherwise it returns the number of
items deleted or 1 if the number is not known, or a negative error code.

See also: EditCut()

Dup()

DupChan()

EditClear()

EditCopy() The Spike2 script language EditSelectAll()

5-61

This command copies data from the current view to the clipboard. Time views copy as a
bitmap, as a scaleable image and as text in the format set by ExportRectFormat(),
ExportTextFormat(), ExportChanFormat() and ExportChanList(). Result and
XY views can copy as a bitmap, text and as a scaleable image. Multimedia views copy as
a bitmap. Text windows copy as text.
Func EditCopy({as%});

as% This sets how to copy data when several formats are possible. If omitted, all
formats are used. Systems that cannot implement some or all of these features
ignore the argument. The format value is the sum of:
1 Copy as a bitmap
2 Copy as a scaleable image (Windows metafile)
4 Copy as text

Returns It returns 0 if nothing was placed on the clipboard, or the sum of the format
specifiers for each format used.

See also: EditSelectAll(), ExportTextFormat(), ExportChanFormat(),
ExportRectFormat(), ExportChanList(), EditCut(), EditPaste()

This command cuts data from the current view to the clipboard and deletes the original.
Func EditCut({as%});

as% This optional argument sets how data is cut and copied to the clipboard.
Currently only text may be cut. If omitted, all allowed formats are used.
1 Cut and copy as a bitmap, has no effect
2 Cut and copy as a scaleable image (metafile), has no effect
4 Cut text to clipboard

Returns 0 if nothing was placed on the clipboard, or the sum of the format specifiers for
each format that was used. The only possible values now are 0 and 4.

See also: EditCopy(), EditClear()

You may only paste into a text window when the clipboard contains text. The contents of
the clipboard are inserted into the text at the current caret. If text is already selected, it is
replaced by the clipboard contents.
Func EditPaste();

Returns The function returns the number of characters inserted.

This function selects all items in the current view that can be copied to the clipboard.
This is the same as the Edit menu Select All option.
Func EditSelectAll();

Returns It returns the number of selected items that could be copied to the clipboard.
See also: EditCopy(), EditClear(), EditCut()

EditCopy()

EditCut()

EditPaste()

EditSelectAll()

Error$() Alphabetical command reference EventToWaveform()

5-62

This function converts a negative error code returned by a function into a text string.
Func Error$(code%);

code% A negative error code returned from a Spike2 function.
Returns It returns a string that describes the error.

See also: Debug(), Eval(), Print$(), PrintLog()

This evaluates the argument and converts the result into text. The text is displayed in the
Script window or Evaluate window message area, as appropriate, when the script ends.
Proc Eval(arg);

arg A real or integer number or a string.
If you use Eval() it will suppress any run-time error messages as it uses the same
mechanism as the error system. A common use of Eval() in a script is to report an error
condition during debugging, for example:
if val<0 then Eval("Negative value"); Halt; endif;

See also: Debug(), Error$(), Print(), PrintLog()

This function creates a waveform channel from an event channel. The waveform channel
contents depend on the frequency of the events. You can convert based on instantaneous
or smoothed frequency. VirtualChan() also converts events to a waveform.

Spike2 calculates instantaneous frequency as the reciprocal of event intervals. Between
events, the interval from the last event to the current time is compared with the interval
between the last two events. If it is less, the reciprocal of the last interval is used. If it is
more, the reciprocal of the interval from the last event is used.

t1 t2 t3t

1/(t2-t1) 1/(t-t2) 1/(t3-t2)

The diagram shows the result for three events at times t1, t2 and t3. From t1 to t2, the
result depends on events before t1. From t2 to t2+(t2-t1), the result is set by the previous
interval. From this point onwards to t3, the output reduces until at t3 it becomes 1/(t3-t2).

Spike2 calculates smoothed frequency by replacing (convoluting) each event with a
waveform of unit area. The built-in waveforms are symmetrical about the event time. If
the event is at time t, the waveforms extend from time t-smooth to t+smooth. You can
also provide your own waveforms, and these need not be symmetric.

Error$()

Eval()

EventToWaveform()

Instantaneous frequency

Smoothed frequency

EventToWaveform() The Spike2 script language EventToWaveform()

5-63

 Frequency

Events

smooth

The diagram shows the result of using the built-in raised cosine waveform. The area
under the curve for each spike is 1. You would normally use a smoothing period that
covered several events to obtain a smooth output.

Func EventToWaveform(smooth, eChan%, wChan%, wInt, sTime, eTime,
 maxF, meanF {,query% {,wave[]|wave%{, nPre}}});

smooth The smoothing period in seconds. Set this 0 or negative for instantaneous
frequency, otherwise an event at time t is spread over a time range t-smooth to
t+smooth seconds for symmetric functions. If you omit the wave argument, the
smoothing function is a raised cosine bell.

eChan% The channel number to use as a source of event times. If the channel is a marker,
and a marker filter is set, only filtered events are visible.

wChan% The channel number to create as a waveform channel in the range 1 to the
maximum allowed channels in the file.

wInt The desired sampling interval for the new channel in seconds. Values outside
the range 0.000001 to 1000 are errors. This interval is rounded to the nearest
multiple of the microseconds per time unit set for the file. Use BinSize() to
return the actual sampling interval. Before version 4.03, wInt was rounded to
the nearest multiple of the base ADC convert interval for the file. Older Spike2
versions will not open the file if you set an interval that they cannot achieve.

sTime The start time for output of the waveform data.
eTime The last time for waveform output will be less than or equal to this time. The

command processes events from sTime-smooth to eTime+smooth.
maxF The output is stored as if it were a sampled signal. That is as a 16-bit integer in

the range -32768 to 32767. maxF sets the frequency that corresponds to the
32767 value. It is the maximum frequency that can be represented in the result.
Frequencies higher than this are limited to maxF.

meanF This sets the frequency that corresponds to 0 in the 16-bit waveform data. Most
users set this to 0. The lowest frequency that can appear in the result is maxF-
2*(maxF-meanF). Frequencies lower than this are limited to this value.

 If the result lies in the range freq±delta, you get the best resolution by setting
maxF to freq+delta and meanF to freq.

query% Set this to 0 or omit it to query overwriting an existing channel. If this is present
and non-zero, an existing channel is overwritten with no comment.

wave% This optional argument is used when smooth is greater than 0 and sets the
smoothing function: 0=rectangular, 1=triangular, 2=raised cosine, 3=Gaussian
(to 4 sigmas). If omitted, raised cosine smoothing is used. These functions are
the same as are used for virtual channels.

wave[] If you provide an array, it is scaled to span smooth seconds. The sum of the
waveform values must be in the range 1.2e-38 to 3.4e+38. If nPre is omitted or
negative, the smoothing function is symmetrical and you supply the right-hand

The command

Exp() Alphabetical command reference ExportChanFormat()

5-64

side only. You can set any array size; the built-in functions use 1000 points. This
example matches the raised cosine generated with wave% set to 2.

 var wave[1000], i%, nPre := -1.0;
 const pi := 3.14159;
 for i% := 0 to 999 do wave[i%]:=1 + Cos(i%*pi/1000) next;

nPre This sets the index in wave[] that matches the event time for asymmetric
smoothing functions. The entire wave[] array is smooth seconds wide. If nPre
is omitted or negative, a symmetric function is assumed. This example generates
a typical asymmetric smoothing function in the wv[] array:

 var wv[400],i%, nPre;
const a:=40, b:=80; 'The time constants in points
for i%:=0 to 399 do wv[i%]:=exp(-i%/a)*(1-exp(-i%/b)) next;
nPre := b*Ln(1+a/b); 'Calculate position of maximum

Returns The function returns 0 unless the user decided not to overwrite a channel, in
which case the result is a negative error code. You can also get error -5799 if
you run out of memory (unlikely) or disk space.

This can be used to investigate frequency changes in an event train. If you have an event
channel of heart beats at 70 beats per minute (1.17 Hz) and you are seeking a respiration-
induced modulation at about 0.25 Hz, you can convert the heartbeats into a waveform
with this command. The result would be a constant level of 1.17 Hz, plus a small
oscillation around 0.25 Hz. The oscillation can be detected with SetPower().

For a 0.01 Hz resolution with SetPower(), you need 100 seconds of data per power
spectrum block. With a 1024 point transform size, a wInt of 0.1 Hz gives a block size of
102.4 seconds. The SetPower() result will have 512 bins, spanning the range 0 to 5.00
Hz in steps of 0.01 Hz. A smooth period of 5-10 seconds would be appropriate.

See also: BinSize(), SetPower(), VirtualChan()

This function calculates the exponential function for a single value, or replaces a real
array by its exponential. If a value is too large, overflow will occur, causing the script to
stop for single values, and a negative error code for arrays.
Func Exp(x|x[]|x[][]);

x The argument for the exponential function or an array of real values.
Returns With an array, the function returns 0 if all was well, or a negative error code if a

problem was found (such as overflow).
 With an expression, it returns the exponential of the number.

See also: Abs(), ATan(), Cos(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan(), Trunc()

This sets the channel text format used by ExportTextFormat(), FileSaveAs() and
EditCopy(). It is equivalent to the Channel type parameters section of the File Dump
Configuration dialog. See ExportTextFormat() for the command to reset the format.
Func ExportChanFormat(type%, synop%, data%{, as%});

type% The channel type to set the format for. Types 2, 3 and 4 share the same settings.
Types 1 and 9 also share the same settings.

 1 Waveform 3 Event (Evt+) 5 Marker 7 RealMark 9 RealWave
2 Event (Evt-) 4 Level (Evt+-) 6 WaveMark 8 TextMark

Uses of EventToWaveform

Exp()

ExportChanFormat()

ExportChanList() The Spike2 script language ExportRectFormat()

5-65

synop% Set this non-zero to enable synopsis output for this channel type.
data% Set this non-zero to enable data output for this channel type.
as% This sets the format for markers and descendent types. It is ignored and can be

omitted for waveform and event channels. If omitted or set to 0, the channels are
treated as their own type. The codes are the same as for the type% field.

Returns 0 if all was OK or a negative error code.
See also: FileSaveAs(), ExportChanList(), ExportTextFormat()

This command sets a time range and a channel list to export for use by FileSaveAs()
and EditCopy() in a time view. The current view must be a time view. When used with
ExportTextFormat(), repeated calls to this routine are additive. When used with
ExportRectFormat(), only the first set of channels is used. Call it with one or no
arguments to clear the list.
Proc ExportChanList(sTime, eTime, cSpc {,cSpc...});
Proc ExportChanList({flags%});

sTime The start time of the range of data to save.
eTime The end time of the range of data to save.
cSpc A channel specifier for the channels to export.
flags% This affects data written by FileSaveAs() with type% of 0 and is the sum of:

1 Time shift data so that the earliest sTime appears at time 0 in the output file.
2 Write RealWave channels as waveform data for backwards compatibility.

See also: FileSaveAs(), ExportChanFormat(), ExportTextFormat(),
ExportRectFormat(), EditCopy()

This command sets the text export format for use by FileSaveAs() and EditCopy()
in a time view. This is an alternative to using ExportTextFormat() and generates
equally spaced output in time for all channels. If used with no parameters, this will reset
the rectangular text output configuration to the default of 100 Hz output, linear
interpolation, WaveMark as event, RealMark as waveform, double-quotes delimiter and
tab for the separator. Otherwise at least 3 arguments must be supplied.
Proc ExportRectFormat({freq, inter%{, delim${, sep$}}})

freq This sets the number of output points per channel generated per second.
inter% This sets the interpolation method:

0 Use the data point nearest to the time.
1 Linear interpolation between the points either side.
2 Cubic spline interpolation (waveform data only).
3 Cubic spline interpolation if drawn splined, else linear (waveforms only).

delim$ This sets the character used to delimit the start and end of text strings. If
omitted, text strings are surrounded by quote marks, for example, "Volts".

sep$ The character to separate multiple data items on a line. If omitted, a Tab is used.
The following example exports channels 1, 2 and 3 at 200 Hz from times 10 seconds to
30 seconds as a text file. The times are shifted so that the first data item is at time 0.
Waveform channels are mapped to 200 Hz using cubic spline interpolation.

ExportChanList(1); 'Clear export list, sets zero shift
ExportChanList(10,30,1,2,3); 'Choose channels 1, 2 and 3
ExportRectFormat(200, 2, 0); 'Treat extended markers as events

ExportChanList()

ExportRectFormat()

ExportTextFormat() Alphabetical command reference FileClose()

5-66

FileSaveAs("rect.txt", 1); 'Export as text file, and...
EditCopy(); '...also copy to the clipboard

See also: FileSaveAs(), ExportChanList(), EditCopy()

This command sets the text export format for use by FileSaveAs() and EditCopy()
in a time view. It is equivalent to the top section of the File Dump Configuration dialog.
The form with no arguments resets the dialog to enable all check boxes, sets the columns
to 1, sets the string delimiter to a double quote mark, sets the separator to a tab character,
and sets all channel types to be treated as themselves.
Proc ExportTextFormat(head%, sum%, cols%{, delim${, sep$}});
Proc ExportTextFormat();

head% If this is non-zero, Spike2 will output the header.
sum% If this is non-zero, Spike2 outputs the channel summary information.
cols% The number of columns to use when writing waveforms and event times.
delim$ This sets the character used to delimit the start and end of text strings. If

omitted, text strings are surrounded by quote marks, for example, "Volts".
sep$ The character to separate multiple data items on a line. If omitted, a Tab is used.
The following example exports channels 1 and 2 from 90.0 to 100.0 seconds and from
110 to 120 seconds as a file 30 seconds long called fred.smr.
ExportChanList(1); 'Clear export list, sets zero shift
ExportChanList(90, 100, 1, 2);'set channels 1 and 2
ExportChanList(110,120, 1, 2);'add 10 more seconds after 10s gap
ExportTextFormat(); 'reset the file dump dialog
ExportChanFormat(1,0,1); 'turn off synopsis for waveform data
ExportTextFormat(0, 0, 1); 'No header or summary
FileSaveAs("fred.smr", 0); 'export to new data file

See also: FileSaveAs(), ExportChanList(), ExportChanFormat(), EditCopy()

This applies a resource file to the current time window. If the window is duplicated, all
other duplicates are deleted, then the resource file is applied, which may create duplicate
windows. The current time window handle is not changed. Handles of duplicate windows
are not preserved, even if the resource file creates the same number of duplicates.
Func FileApplyResource(name$);

name$ The resource file to apply. You must include the .s2r file extension and
required path. Remember that \ in a string must be entered as \\ or use /. If the
name is "" or contains a "*" or a "?", the user is prompted for a file.

Returns The number of modified windows (usually 1 unless the resource file generates
duplicates), 0 if the resource file did not contain suitable information, -1 if the
user cancelled the file dialog, -2 if the file could not be found or -3 if there is
any other problem.

See also: FileGlobalResource(), FileOpen(), FileSaveResource()

This is used to close the current window or external file. You can supply an argument to
close all windows associated with the current time or result view or to close all the
windows belonging to the application.
Func FileClose({all% {,query%});

ExportTextFormat()

FileApplyResource()

FileClose()

FileComment$() The Spike2 script language FileConvert$()

5-67

all% This argument determines the scope of the file closing. Possible values are:
-1 Close all windows except loaded scripts and debug windows.
0 Close the current view. This is the same as omitting all%.
1 Close all windows associated with the current view.

query% This determines what happens if a window holds unsaved data:
-1 Don't save the data or query the user
0 Query the user about each window that needs saving. If the user chooses

Cancel, the operation stops, leaving all unclosed windows behind. This is the
same as omitting query%.

Returns The number of views that have not been closed. This can occur if a view needs
saving and the user requests Cancel.

If the current view is a time view and you have been sampling data, you must call
SampleStop() before using this command to set a file name. If you do not, this is
equivalent to aborting sampling and your data file will not be saved. Use FileSaveAs()
just before calling FileClose() to set a file name.

Do not use View(fh%).FileClose() if fh% is the current view; you will get an error
when Spike2 tries to restore the current view. Use View(fh%);FileClose() instead.

See also: FileOpen(), FileSave(), FileSaveAs(), FileNew(), SampleStop()

This function accesses the file comments in the file associated with the current time view.
Files have five comment strings. Each string is up to 79 characters in length.
Func FileComment$(n% {,new$));

n% The number of the file comment line in the range 1 to 5
new$ If present, the command replaces the existing comment with new$.
Returns The comment at the time of the call or a blank string if n% is out of range.

See also: ChanComment$()

This function converts a data file from a “foreign” format into a Spike2 data file. The
range of foreign formats supported depends on the number of import filters in the
Spike5\import folder.
Func FileConvert$(src${, dest${, flag%{ ,&err%}}});

src$ This is the name of the file to convert. The file extension is used to determine
the file type (unless flag% bit 0 is set). Known file extensions include: abf,
cfs, cnt, cut, dat, eeg, ewb, ibw, son and uff. We expect to add more.

dest$ If this is present, it sets the destination file. If this is not a full path name, the
name is relative to the current directory. If you do not supply a file extension
then Spike2 appends ".smr". If you set any other file extension, Spike2 cannot
open the file as a Spike2 data file. If you do not supply this argument, the
converted file will be written to the same folder as the source file using the
original file name with the file extension changed to .smr.

flag% This argument is the sum of the flag values: 1=Ignore the file extension of the
source file and try all possible file converters, 2=Allow user interaction if
required (otherwise sensible, non-destructive defaults are used for all decisions).

err% Optional integer variable that is returned as 0 if the file was converted, otherwise
it is returned holding a negative error code.

FileComment$()

FileConvert$()

FileCopy() Alphabetical command reference FileGlobalResource()

5-68

Returns The full path name of the created file, or an empty string if the file was not
converted.

See also: FileOpen(), FilePath$(), FilePathSet(), FileList()

This function copies a source file to a destination file. File names can be specified in full
or relative to the current directory. Wildcards cannot be used.
Func FileCopy(src$, dest${, over%});

src$ The source file to copy to the destination. This file is not changed.
dest$ The destination file. If this file exists you must set over% to overwrite it.
over% If this optional argument is 0 or omitted, the copy will not overwrite an existing

destination file. Set to 1 to overwrite.
Returns The routine returns 1 if the file was copied, 0 if it was not. Reasons for failure

include: no source file, no destination path, insufficient disk space, destination
exists and insufficient rights.

See also: BRead(), BWrite(), FileDelete(), FileOpen(), ProgRun()

Since version 4.03, the time and date at which sampling started is saved in the data file.
This function returns a string holding the date. Use FileTimeDate() to get the date as
numbers. The current view must be a time view. The arguments are exactly the same as
for the Date$() command. If there is no date stored, the result is an empty string.
Func FileDate$({dayF%, {monF%, {yearF%, {order%, {sep$}}}}});

See also: Date$(), FileTimeDate(), FileTime$()

This deletes one or more files. File names can be specified in full or relative to the current
directory. Windows file names look like x:\folder1\folder2\foldern\file.ext
or \\machine\folder1\folder2\foldern\file.ext across a network. If a name
does not start with a \ or with x:\ (where x is a drive letter), the path is relative to the
current directory. Beware that \ must be written \\ in a string passed to the compiler.

Func FileDelete(name$[]|name${, opt%});

name$ This is either a string variable or an array of strings that holds the names of the
files to delete. Only one name per string and no wildcard characters are allowed.
If the names do not include a path they refer to files in the current directory.

opt% If this is present and non-zero, the user is asked before each file in the list is
deleted. You cannot delete protected or hidden or system files.

Returns The number of files deleted or a negative error code.
See also: FilePath$(), FilePathSet(), FileList()

This function is equivalent to the Global Resources dialog. Please see the documentation
for the dialog for a full explanation. The function has two forms: the first is for setting
values, the second is to read them back:
Func FileGlobalResource(flags%, loc%, name${, path$});
Func FileGlobalResource(&loc%, &name$, &path$);

flags% This is the sum of the following values:

FileCopy()

FileDate$()

FileDelete()

FileGlobalResource()

FileList() The Spike2 script language FileName$()

5-69

1 Enable the use of global resources. If unset, no global resources are used.
2 Only use global resources if a data file has no associated resource file.
4 Only use if the data file is within the path set by path$.

loc% The location of the global resource file. 0=the folder that Spike2 was run from,
1=search the data file folder, then the Spike2 folder, 2=the data file folder only.

name$ The name of the global resource file excluding the path and .s2r file extension.
path$ The file path within which to use the global resources. If you omit this argument

when setting values, the current path does not change.
Returns When setting values, the return value is 0 or a negative error code. When

reading back values, the return value is the flags% argument.
See also: FileApplyResource(), FileOpen(), FileSaveResource()

This function gets lists of files and sub-directories (folders) in the current directory and
can also return the path to the parent directory of the current directory. This function can
be used to process all files of a particular type in a particular directory.
Func FileList(names$[]|&name$, type%{, mask$});

name$ This is either a string variable or an array of strings that is returned holding the
name(s) of files or directories. Only one name is returned per string.

type% The objects in the current directory to list. The Parent directory is returned with
the full path, the others return the name in the current directory. Values are:
-3 Parent directory 2 Output sequence files (*.pls)
-2 Sub-directories 3 Spike2 script files (*.s2s)
-1 All files 4 Spike2 result view files (*.srf)
0 Spike2 data files (*.smr) 6 Spike2 configuration files (*.s2c)
1 Text files (*.txt) 12 XY view data file (*.sxy)

mask$ This optional string limits the names returned to those that match it; * and ? in
the mask are wildcards. ? matches any character and * matches any 0 or more
characters. Matching is case insensitive and from left to right.

Returns The number of names that met the specification or a negative error code. This
can be used to set the size of the string array required to hold all the results.

See also: FilePath$(), FilePathSet(), FileDelete(), FileName$()

This returns the name of the data file associated with the current view (if any). You can
recall the entire file name, or any part of it. If there is no file the result is an empty string.
Func FileName$({mode%});

mode% If present, determines what to return, if omitted taken as 0.
0 Or omitted, returns the full file name including the path
1 The disk drive/volume name
2 The path section, excluding the volume/drive and the name of the file
3 The file name up to but not including the last . excluding any trailing

number.
4 Any trailing numbers from 3.
5 The end of the file name from the last dot.

Returns A string holding the requested name, or a blank string if there is no file.

See also: FileList(), FilePath$(), FilePathSet()

FileList()

FileName$()

FileNew() Alphabetical command reference FileNew()

5-70

This is equivalent to the File menu New command. It creates a new window and returns
the handle. You can create visible or invisible windows. Creating an invisible window
lets you set the window position and properties before you draw it. The new window is
the current view and if visible, the front view. Use FileSaveAs() to name created files.
Func FileNew(type%{, mode%{, upt, tpa%, maxT{, nChan%}}});

type% The type of file to create:
0 A Spike2 data file based on the sampling configuration, ready for sampling.

This may open several windows, including the floating command window
and the sequencer control panel. Use SampleStart() to begin sampling
and SampleStop() to stop sampling before calling FileSaveAs() to give
the new file a name. During sampling, type 0 data files are saved in the
folder set by the Edit menu preferences or the FilePathSet() command.
Use FileSaveAs() command after SampleClose() to move the data file
to its final position on disk.

1 A text file in a window
2 An output sequence file in a window
3 A Spike2 script file
7 An empty Spike2 data file (not for sampling). upt%, tpa% and maxT must

be supplied. You can use ChanNew(), ChanWriteWave(), ChanSave(),
MemSave() or to add data. Use FileSaveAs() to name the new file.

12 An XY view with one (empty) data channel. Use XYAddData() to add
more data and XYSetChan() to create new channels.

mode% This optional argument determines how the new window is opened. The value is
the sum of these flags. If the argument is omitted, its value is 0. The flags are:
1 Make the new window(s) visible immediately. If this flag is not set the

window is created, but is invisible.
2 For data files, if the sampling configuration holds information for creating

additional windows, use it. If this flag is not set, data files extract enough
information from the sampling configuration to set the sampling parameters
for the data channels.

4 Show the spike shape setup dialog if there are WaveMark channels in the
sampling configuration for a data file. If the spike shape dialog appears, this
function does not return until the user closes the dialog.

upt Only for type% = 7. The microseconds per unit time for the new file. This
allows values in the range 0.001 to 32767. If upt is non-integral values, Spike2
versions prior to 4.02 will not open the file. This sets the time resolution of the
new file and the maximum length of the file, in time. There are a maximum of
231-1 time units in a file, so a 1 µs resolution limits a file to 30 minutes in length.

tpa% Only for type% = 7. The time units per ADC conversion for the new file. You
can set values in the range 1 to 32767 (for compatibility with Spike2 sampling
use 2 to 32767). The available sampling intervals for waveform data in the new
file are n * upt% * tpa% microseconds where n is an integer.

maxT Only for type% = 7. This sets the initial file size in time, which sets the value
returned by MaxTime() until data written to the file exceeds this time.

nChan% Only for type% = 7. This sets the number of channels in the file in the range 32
to 256. If you omit this argument, 32 channels are used. Spike2 version 4 can
read files with 32-100 channels. Version 3 can only read files with 32 channels.

Returns It returns the view handle (or the handle of the lowest numbered duplicate for a
data file with duplicate windows) or a negative error.

See also: ChanNew(), ChanSave(), ChanWriteWave(), FileOpen(), FileSave(),
FileSaveAs(), FileClose(), FilePathSet(), MaxTime(), MemSave(),
SampleStart(), SampleStop(), XYAddDAta(), XYSetChan()

FileNew()

FileOpen() The Spike2 script language FileOpen()

5-71

This is the equivalent of the File Open... menu command. It opens an existing Spike2
data file or a text file in a window, or an external text or binary file. If the file is already
opened, a handle for the existing view is returned. The window becomes the new current
view. You can create windows as visible or invisible. It is often more convenient to
create an invisible window so you can position it before making it visible.
Func FileOpen(name$, type% {,mode% {,text$}});

name$ The name of the file to open. This can include a path. The file name is operating
system dependent, see FileDelete(). If the name is blank or contains * or ?
(Windows only), the file dialog opens for the user to select a file. For file types 8
and 9 only, name$ can be of the form:

 "Type 1 (*.fl1)|*.fl1||Type 2 (*.fl2;*.fl3)|*.fl2;*.fl3||"

 This produces two file types, one with two extensions. There is one vertical bar
between the description and the template and two after every template.

type% The type of the file to open. The types currently defined are:
0 Open a Spike2 data file in a window
1 Open a text file in a window
2 Open an output sequence file in a window
3 Open a Spike2 script file in a window
4 Open a result view file in a window
6 Load configuration file or read configuration from data file
8 An external text file without a window for use by Read() or Print()
9 An external binary file without a window for use by BRead(), BWrite(),

BSeek() and other binary routines.
12 Open an XY view file in a window.

mode% This optional argument determines how the window or file opens. If the
argument is omitted, its value is 0. For file types 0 to 4 the value is the sum of:
1 Make the new window(s) visible immediately. If this flag is not set the

window is created, but is invisible.
2 Read resource information associated with the file. This may create more

than one window, depending on the file type. For data files, it restores the
file to the state as it was closed. If the flag is unset, resources are ignored.

4 Return an error if the file is already open in Spike2. If this flag is not set and
the file is already in use, it is brought to the front and its handle is returned.

When used with file types 8 and 9 the following values of mode% are used. The
file pointer (which sets the next output or input operation position) is set to the
start of the file in modes 0 and 1 and to the end in modes 2 and 3.
0 Open an existing file for reading only
1 Open a new file (or replace an existing file) for writing (and reading)
2 Open an existing file for writing (and reading)
3 Open a file for writing (and reading). If the file doesn’t exist, create it.

text$ An optional prompt displayed as part of the file dialog (not supported for
type%=6 on the Macintosh 68k version).

Returns If a file opens without any problem, the return value is the view handle for the
file (if multiple views open, it is the handle for the first time view created). For
configuration files (type% of 6), the return value is 0 if no error occurs. If the
file could not be opened, or the user pressed Cancel in the file open dialog, the
returned value is a negative error code.

 If multiple windows are created for a data file, you can get a list of the
associated view handles using ViewList(list%[],64).

See also: FileDelete(), FileNew(), FileSave(), FileSaveAs(), FileClose(),
BRead(), BReadSize(), BSeek(), BWrite(), BWriteSize(), ViewList()

FileOpen()

FilePath$() Alphabetical command reference FilePrint()

5-72

This function gets the “current directory”. This is the place on disk where file open and
file save dialogs start. It can also get the path for created data files and auto-saving.
Func FilePath$({opt%});

opt% If 0 or omitted, this gets the current directory, 1 returns the path for Spike2 data
files created by FileNew() as set by Edit menu Preferences, 2 gets the path to
the Spike2 application, 3 returns the path for automatic file saving as set by the
Sampling Configuration Automation tab.

Returns A string holding the path or an empty string if an error is detected.
See also: FileList(), FileName$(), FilePathSet()

This function sets the “current directory/folder”, and where Spike2 data files created by
FileNew() are stored until they are sent to their final resting place by FileSaveAs().
Func FilePathSet(path${,opt%{, make%|text$}});

path$ A string holding the new path to the directory. The path must conform to the
rules for path names on the host system and be less than 255 characters long. If
the path is empty a dialog opens for the user to select an existing
directory/folder.

opt% If omitted or zero, this sets the current directory. 1 sets the path for Spike2 data
files created by FileNew(), 2 is ignored, 3 sets the automatic file naming path.

make% If this is present and non-zero, the command will create the directory/folder if all
elements of the path exist except the last. You cannot use this option if path$ is
blank.

text$ Optional prompt for use with the dialog.
Returns Zero if the path was set, or a negative error code.
See also: FileList(), FileName$(), FilePath$()

This function is equivalent to the File menu Print command. It prints some or all of the
current view to the printer that is currently set for Spike2. If no printer has been set, the
current system printer is used. In a time or result view, it prints a range of data with the x
axis scaling set by the display. In a text or log view, it prints a range of text lines. There is
currently no script mechanism to choose a printer; you must do it interactively.
Func FilePrint({from{, to{, flags%}}});

from The start point of the print. This is in seconds in a time view, in bins in a result
view and in lines in a text view. If omitted, this is taken as the start of the view.

to The end point in the same units as from. If omitted, the end of the view is used.
flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.
Returns The function returns 0 if all went well; otherwise it returns a negative error.
The format of the printed output is based on the screen format of the current view.
Beware that for time and result views the output could be many (very many) pages long.

All the FilePrintXXXX() routines allow you to choose the orientation of the printed
output. If you do not set the orientation, the last print orientation you used in the current
Spike2 session is set. If you have not printed, the orientation depends on the current
orientation set for the system printer.

See also: FilePrintScreen(), FilePrintVisible()

FilePath$()

FilePathSet()

FilePrint()

FilePrintScreen() The Spike2 script language FileSave()

5-73

This function is equivalent to the File menu Print Screen command. It prints all visible
time, result, XY and text-based views to the current printer on one page. The page
positions are proportional to the view positions in the Spike2 application window.
Func FilePrintScreen({pTtl${, vTtl%{, box%{,scTxt%{,flags%}}}}});

pTtl$ This sets the page title string to print at the top of a page. If omitted or an empty
string, there is no page title.

vTtl% Set 1 or higher to print a title above each view, omitted or 0 for no title.
box% Set 1 or higher for a box around each view. If omitted, or 0, no box is drawn.
scTxt% Set 1 or higher to scale text differently in the x and y directions to match the

original. If omitted or 0 scale both directions by the same scale factor.
flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.

In version 4, the default was portrait mode.
Returns The function returns 0 if it all went well, or a negative error code.
See also: FilePrint(), FilePrintVisible()

This function prints the current view as it appears on the computer screen to the current
printer. In a text window, this prints the lines in the current selection. If there is no
selection, it prints the line containing the cursor.
Func FilePrintVisible({flags%});

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.
Returns The function returns 0 if all went well; otherwise it returns a negative error.
See also: FilePrint(), FilePrintScreen()

This is equivalent to the File menu Exit command. You are asked if you wish to save any
unsaved data before the application closes. If the user cancels the operation (because
there were files that needed saving), the script terminates, but the Spike2 application is
left running. Use FileClose(-1, -1) before FileQuit() to guarantee to exit.
Proc FileQuit();

See also: FileClose()

This function is equivalent to the File menu Save command and saves the current view as
a file on disk. If the view has not been saved previously the File menu Save As dialog
opens to request a file name. It cannot be used with external text or binary files. It cannot
be used with a time view unless it has been sampled and has not been saved.
Func FileSave();

Returns The function returns 0 if the operation was a success, or a negative error code.

You cannot use this command for a time view unless it has just been sampled; use
FileSaveAs() instead. When used with a time view that has just been sampled, if an
automatic file name is set, there is no prompt for a file name and the next automatic name
is used. However, if automatic filing is enabled, the file is saved as soon as sampling
stops, so this function is not needed.

See also: FileOpen(), FileSaveAs(), FileSaveResource(), FileClose(),
SampleAutoFile(), SampleAutoName$()

FilePrintScreen()

FilePrintVisible()

FileQuit()

FileSave()

Use with a time view

FileSaveAs() Alphabetical command reference FileSaveAs()

5-74

This function saves the current view as a file on disk in its native format, as text or as a
picture. It is equivalent to the File menu Save As command. This cannot be used for
external text or binary files. This command can also name data files created with
FileNew(7,...) and after sampling, but read the remarks about time views below.
Func FileSaveAs(name${, type%{, yes%{, text${, nChan%|flag%}}});

name$ The output file name including the file extension. If the string is empty or it
holds wild card characters * or ? or text$ is not empty, then the File menu Save
As dialog opens and name$ sets the initial list of files.

type% The type to save the file as (if omitted, type -1 is used):
-2 Valid for XY and result views only. Opens a File Save As dialog and allows

the user to choose the file type to save as.
-1 Save in the native format for the view.
 You can also use this to save and name a Spike2 data file immediately after

it has been sampled. This will also save any multimedia data associated
with the file. The correct sequence is:
1. Use FileNew(0, mode%) to create a data file
2. Use SampleStart() to start data capture
3. When capture is over use SampleStop() to stop capture, or wait for

the SampleStatus() to indicate that sampling has finished.
4. Use FileSaveAs(name$,-1) to set the file name
5. Use FileClose() to close the view

 Once a data file has been named you must use type 0 to save a selection of
channels to a new file; you cannot use type –1 again in a time view.

0 Save sections set by ExportChanList() to a new Spike2 data file. This
will not save associated multimedia files.

1 Save the contents of the current view as a Text file. If the current view is a
time window, Spike2 saves the channels set by ExportChanList() in the
text format set by ExportRectFormat() or ExportTextFormat() and
ExportChanFormat(). This also can be used for result and XY views.

2 Save a text view as an output sequence file.
3 Save a text view as a Script file.
4 Save as a result view (result views only).
5 Save the screen image of a time, result or XY view as a metafile. The file

extension sets the format; use WMF for a Windows metafile and EMF for an
enhanced metafile. You cannot save a view as a bitmap file from the script.

6 Save sampling configuration in a configuration file.
12 Save as XY view (XY views only).
13 Copy the screen image as bitmap (time, result and XY views only). If the

view is obscured by another window or not visible, the result is undefined.
yes% If this operation would overwrite an existing file you are asked if you wish to do

this unless yes% is present and non-zero.
text$ An optional prompt displayed as part of the file dialog to prompt the user. The

File Save As dialog will appear if text$ is not empty.
nChan% Used when type% is 0 to set the number of channels in the exported file in the

range 32-256. If omitted, the file has the same number of channels as the source
file. Spike2 version 4 can read files with up to 100 channels.

flag% This is used for result and XY views when type% is 1 (output as text) to
override the normal behaviour, which is to save all channels and all data points.
This optional argument has a default value of 0 and is the sum of:
1 Output only visible channels
2 Output only selected channels, or visible channels if no channel is selected

FileSaveAs()

FileSaveResource() The Spike2 script language FileTimeDate()

5-75

4 Output only data that is in the visible range (use 5 for visible data)
Returns The function returns 0 if the operation was a success, or a negative error code.

This command can save a time view that has just been sampled as described above for
type% set to -1. However, if automatic filing is set with SampleAutoFile() or by the
sampling configuration, the file is saved automatically as soon as sampling finishes and
using a type% of -1 will generate an error.

When automatic file naming is enabled with SampleAutoName$() or with the sampling
configuration, you can use this command to override the next sequential name, as long as
the file has not already been saved and has finished sampling.

See also: EditCopy(), ExportChanFormat(), ExportChanList(),
ExportTextFormat(), ExportRectFormat(), FileClose(), FileNew(),
SampleAutoFile(), SampleAutoName$()

This saves a resource file for the current time window. If the window is duplicated, all the
duplicates are saved.
Func FileSaveResource({name$})

name$ The resource file to save. You must include the .s2r file extension and required
path. Remember that \ in a string must be entered as \\ or use /. If the name is
"" or contains a "*" or a "?", the user is prompted for a file.

 If this argument is omitted, the current resource file that is in use is updated. If
there is no current resource file, one is created to match the file name.

Returns 0 if all was OK, -1 if the user cancelled the File Save dialog, -2 if the file could
not be saved for any other reason.

See also: FileGlobalResource(), FileApplyResource(), FileSave()

Since version 4.03, the time and date at which sampling started is saved in the data file.
This function returns a string holding the time. Use FileTimeDate() to get the date as
numbers. The current view must be a time view. The arguments are exactly the same as
for the Time$() command. If there is no time stored, the result is an empty string.
Func FileTime$({tBase%, {show%, {amPm%, {sep$}}}});

See also: Time$(), FileDate$(), FileTimeDate()

Since version 4.03, the time and date at which sampling started is saved in the data file.
This function returns the time and date as numbers. Use FileTime$() and
FileDate$() to get the result as strings. The current view must be a time view. The
arguments are exactly the same as for the TimeDate() command. If there is no date
stored, the returned values are all zero.
Proc FileTimeDate(&s%, {&m%,{&h%,{&d%,{&mon%,{&y%,{&wDay%}}}}}});
Proc FileTimeDate(now%[])

See also: Date$(), MaxTime(), Seconds(), Time$(), TimeDate()

Use with a newly sampled
time view

FileSaveResource()

FileTime$()

FileTimeDate()

FiltApply() Alphabetical command reference FiltAtten()

5-76

Applies a set of filter coefficients or a filter in the filter bank to a source waveform
channel in the current time view and places the resulting waveform in a destination
channel. If there is a large amount of data in the source channel, you should filter directly
to a disk based channel, rather than a memory channel to avoid running out of memory.

Each output point is generated from the same number of input points as there are filter
coefficients. Half these points are before the output point, and half are after. Where more
data is needed than exists in the source file (for example at the start and end of a file and
where there are gaps), extra points are made by duplicating the nearest valid point.
Func FiltApply(n%|coef[], dest%, srce%, sTime, eTime {,scale%});

n% Index of the filter in the filter bank to apply in the range 0-11, or
coef[] An array holding a set of FIR filter coefficients to apply to the waveform. The

size of the passed array sets the number of coefficients.
dest% The channel to hold the filtered waveform: either an unused disk channel, a

memory channel with the same sampling frequency as srce% or 0 to create a
compatible memory channel and place the filtered waveform in it. When a new
channel is created, the channel settings are copied from the old channel.

srce% The source waveform channel. There must be at least half the number of
sampling coefficients worth of data points before sTime if the output is to start
at sTime. Similarly, the channel must extend for the same number of data points
beyond eTime if the output is to extend to eTime.

sTime Time to start the output of filtered data. There is no output for areas where there
is no input data. If the filter has an even number of coefficients, the output is
shifted by half a sample relative to the input.

eTime The end of the time range for filtered data.
scale% If present and non-zero, the output scale and offset values are optimised to give

the best possible representation of the filtered data, but filtering takes twice as
long. If there is data in the channel already, this data may lose some of its
accuracy through this process. If you do not re-scale, the channel’s scale and
offset are unchanged and you run a slight risk of the waveform going outside the
16-bit range allowed for a waveform channel.

Returns The channel number that the output was written to or a negative error code. A
negative error code is also returned if the user clicks Cancel from the progress
bar that may appear during a long filtering operation or if dest% is a disk
channel that is in use. Delete an existing channel with ChanDelete(dest%).

See also: ChanDelete(), FiltAtten(), FiltCalc(), FiltComment$(),
FiltCreate(), FiltInfo(), FiltName$(), FiltRange()

This set the desired attenuation for a filter in the filter bank. When FiltApply() or
FiltCalc() is used, the number of coefficients needed to achieve this attenuation will
be generated. A value of zero sets the attenuation back to the default (-65 dB).
Func FiltAtten(index%{, dB});

index% Index of the filter in the filter bank to use in the range 0-11.
dB If present and negative, this is the desired attenuation for stop bands in the filter.
Returns The desired attenuation for a filter at the time of the call.
See also: FiltApply(), FiltCalc(), FiltComment$(), FiltCreate(),

FiltInfo(), FiltName$(), FiltRange()

FiltApply()

FiltAtten()

FiltCalc() The Spike2 script language FiltCalc()

5-77

The calculation of filter coefficients can take an appreciable time. This routine forces the
calculation of a filter for a particular sampling frequency if it has not already been done.
If you do not force the calculation, you can still use FiltApply() to apply a filter.
However, the coefficient calculation will then be done at the time of filter application,
which may not be desirable if the filtering operation is time critical.
Func FiltCalc(index%, sInt{, coeff[]{, &dBGot {, nCoef%}}});

index% Index of the filter in the filter bank to use in the range 0-11.
sInt% The sample interval of the waveform you are about to filter. This is the value

returned by BinSize() for a waveform channel.
coeff An array to be filled with the coefficients used for filtering. If the array is too

small, as many elements as will fit are set. The maximum size needed is 511.
dBGot If present, set to the attenuation in negative dB attained by the filter coefficients.
nCoef% If present, sets the number of coefficients used in the calculation (use an even

number for a full differentiator and an odd number for all other filter types).
Returns The number of coefficients generated by the filter. If you are passing the result

to FiltApply(), use coef[:n], not coef[] to pass n coefficients.

Suppose the first filter in the bank (index 0) is a low pass filter with the pass band edge at
50 Hz. If we know that we will need to filter a channel 4 (sampled at 200 Hz) with this
filter, we may want to calculate the coefficients needed in advance:
FiltCalc(0, BinSize(4));

This will calculate a filter corresponding to the specification of filter 0 for a sampling
frequency of 200 Hz with an attenuation in the stop band of at least the current desired
attenuation value for this filter.

The calculation of coefficients is a complex process and can produce silly results due to
floating point rounding errors in some situations. To ensure that you will always get a
useful result there is a limit to how small and how big a transition gap can be, relative to
the sampling frequency. There is a similar limit on the width of a pass or stop band:
• The transition gap and the width of a pass or stop band cannot be smaller than 0.0025

of the sampling frequency.
• The transition gap cannot be larger than 0.12 of the sampling frequency.

This function always calculates a set of coefficients, but may alter the filter specification
in order to do it (these changes are temporary, see later). This can happen in two cases:
1. If the sampling frequency is such that to produce the filter, the transition gap and/or

pass and stop band widths are outside their limits, then the widths are set to the limits
before calculating the filter. In our 50 Hz low pass filter example, if we calculate it
with respect to a 12 kHz sampling frequency, the minimum pass band width is
12000*0.0025 = 30 Hz. So, the filter would be changed to a 60 Hz low pass filter.

2. If half the sampling frequency (the Nyquist frequency) is less than an edge of a pass
or stop band, certain attributes of the filter are lost. In our 50 Hz low pass filter
example, if we tried to calculate with a sampling frequency of 80 Hz, we would see
that the Nyquist frequency is 40 Hz. No frequency above 40 Hz can be represented in
a waveform sampled at 80 Hz, so a 50 Hz low pass filter is equivalent to an “All pass”
filter. The filter specification will be altered to reflect this before calculating.

Any changes made to a filter specification to accommodate a particular calculation are
made with reference to the original specification, not the specification that was last used
for a calculation.

See also: FiltApply(), FiltAtten(), FiltComment$(), FiltCreate(),
FiltInfo(), FiltName$(), FiltRange()

FiltCalc()

An example

Constraints on filters

FiltComment$() Alphabetical command reference FiltInfo()

5-78

This function gets and sets the comment associated with a filter in the filter bank.
Func FiltComment$(index% {, new$});

index% Index of the filter in the filter bank to use in the range 0-11.
new$ If present, sets the new comment.
Returns The previous comment for the filter at the index.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltCreate(), FiltInfo(),

FiltName$(), FiltRange()

This function creates a filter in the filter bank to the supplied specification and gives it a
standard name and comment.
Func FiltCreate(index%, type%{, trW{, edge1{, edge2{, ...}}}});

index% Index of the new filter in the filter bank in the range 0-11. This action replaces
any existing filter at this index.

type% The type of the filter desired (see table).
trW The transition width of the filter. This is the frequency interval between the edge

of a stop band and the edge of the adjacent pass band.
edgeN This is a list of edges of pass bands in Hz. See the table.
Returns 0 if there was no problem or a negative error code if the filter was not created.
This table shows the relationship between different filter types and the meaning of the
corresponding arguments. The numbers in brackets indicate the nth pass band when there
is more than 1. An empty space in the table means that the argument is not required.

type% Name trW edge1 edge2 edge3 edge4
0 All stop
1 All pass
2 Low pass Yes High
3 High pass Yes Low
4 Band pass Yes Low High
5 Band stop Yes High(1) Low(2)
6 Low pass differentiator Yes High
7 Differentiator
8 1.5 Band Low pass Yes High(1) Low(2) High(2)
9 1.5 Band High pass Yes Low(1) High(1) Low(2)

10 2 Band pass Yes Low(1) High(1) Low(2) High(2)
11 2 Band stop Yes High(1) Low(2) High(2) Low(3)

The values entered correspond to the text fields shown in the Filter edit dialog box.

See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),
FiltInfo(), FiltName$(), FiltRange()

Retrieves information about a filter in the bank.
Func FiltInfo(index%{, what%});

index% Index of the filter in the filter bank to use in the range 0-11.
what% Which bit of information about the filter to return:

-2 Maximum what% number allowed
-1 Desired attenuation
0 type (if you supply no value, 0 is assumed)

FiltComment$()

FiltCreate()

FiltInfo()

FiltName$() The Spike2 script language FIRMake()

5-79

1 Transition width
2-5 edge1-edge4 given in FiltCreate()

Returns The information requested as real number.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltCreate(), FiltName$(), FiltRange()

This function gets and/or sets the name of a filter in the filter bank.
Func FiltName$(index% {, new$});

index% Index of the filter in the filter bank to use in the range 0-11.
new$ If present, sets the new name.
Returns The previous name of the filter at that index.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltInfo(), FiltCreate(), FiltRange()

Retrieves the minimum and maximum sampling rates that this filter can be applied to
without the specification being altered. See the FiltCalc() command, Constraints on
filters for more information.
Proc FiltRange(index%, &minFr, &maxFr);
index% Index of the filter in the filter bank to use in the range 0-11.
minFr Returns the minimum sampling frequency you can calculate the filter with

respect to, so that no transition width is greater than the maximum allowed and
that no attributes of the filter are lost.

maxFr Returns the maximum sampling frequency you can calculate the filter with
respect to without the transition (or band) widths being smaller than allowed.

It is possible to create a filter that cannot be applied to any sampling frequency without
being changed. This will be apparent because minFr will be larger than maxFr.

See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),
FiltInfo(), FiltCreate(), FiltName$()

This function creates FIR filter coefficients and places them in an array ready for use by
ArrFilt(). This command is very similar in operation to the DOS program FIRMake
and has similar input requirements. Unless you need precise control over all aspects of
filter generation, you may find it easier to use FiltCalc() or FIRQuick(). You will
need to read the detailed information about FIR filters in the description of the Digital
Filter dialog to get the best results from this command.
Proc FIRMake(type%, param[][], coef[]{, nGrid{, extFr[]}});

type% The type of filter file to produce: 1=Multiband filter, 2=Differentiator, 3=Hilbert
transformer, 4=Multiband pink noise (Multiband with 3 dB per octave roll-off).

param This is a 2-dimensional array. The size of the first dimension must be 4 or 5. The
size of the second dimension (n) should be the number of bands in your filter.
You pass in 4 values for each band (indices 0 to 3) to describe your filter:

 Indices 0 and 1 are the start and end frequency of each band. All frequencies are
given as fraction of a sampling frequency and so are in the range 0 to 0.5.

FiltName$()

FiltRange()

FIRMake()

FIRQuick() Alphabetical command reference FIRQuick()

5-80

 Index 2 is the function of the band. For all filter types except a differentiator,
this is the gain of the filter in the band in the range 0 to 1; the most common
values are 0 for a stop band and 1 for a pass band. For a differentiator, this is the
slope of the filter in the band, normally not more than 2. The gain at any
frequency f in the band is given by f*function.

 Index 3 is the relative weight to give the band. The weight sets the relative
importance of the band in multiband filters. The program divides each band into
frequency points and optimises the filter such that the maximum ripple times the
weight in each band is the same for all bands. The weight is independent of
frequency, except in the case of the differentiator, where the weight used is
weight/frequency.

 If there is an index 4 (the size of the first dimension was 5), this index is filled in
by the function with the ripple in the band in dB.

coef An array into which the FIR filter coefficients are placed. The size of this array
determines the number of filter coefficients that are calculated. It is important,
therefore, to make sure this array is exactly the size that you need. The
maximum number of coefficients is 511.

nGrid The grid density for the calculation. If omitted or set to 0, the default density of
16 is used. This sets the density of test points in internal tables used to search for
points of maximum deviation from the filter specification. The larger the value,
the longer it takes to compute the filter. There is seldom any point changing this
value unless you suspect that the program is missing the peak points.

extFr An array to hold the list of extremal frequencies (the list of frequencies within
the bands which have the largest deviation from the desired filter). If there are
n% coefficients, there are (n%+1)/2 extremal frequencies.

The parameters passed in must be correct or a fatal error results. Errors include:
overlapping band edges, band edges outside the range 0 to 0.5, too many coefficients,
differentiator slope less than 0. If the filter is not a differentiator the band function must
lie between 0 and 1, the band weight must be greater than 0.

For example, to create a low pass filter with a pass band from 0 to 0.3 and a stop band
from 0.35 to 0.5, and no return of the ripple, you would set up param as follows:

var param[4][2] 'No return of ripple, 2 bands
para[0][0] := 0; 'Starting frequency of pass band
para[1][0] := 0.3; 'Ending frequency of pass band
para[2][0] := 1; 'Desired gain (unity)
para[3][0] := 1; 'Give this band a weighting of 1

para[0][1] := 0.35; 'Starting frequency of stop band
para[1][1] := 0.5; 'Ending frequency of stop band
para[2][1] := 0; 'Desired gain of 0 (stop band)
para[3][1] := 10; 'Give this band a weighting of 10

See also: ArrFilt(), FiltApply(), FiltCalc(), FIRQuick(), FIRResponse()

This function creates a set of filter coefficients in the same way the FIRMake() does, but
many of the parameters are optional, allowing the most common filters to be created with
a minimal specification.
Func FIRQuick(coef[], type%, freq {, width {, atten}});

coef An array into which the FIR filter coefficients are placed. The size of this array
should be 511 (was 255 in versions before 4.01). This is the maximum number
of coefficients that can be created and this function reserves the right to return as
many as it feels necessary up to that value to create a good filter.

FIRQuick()

FIRResponse() The Spike2 script language FitCoef()

5-81

type% This sets the type of filter to create. 0=Low pass, 1=High pass, 2=Band pass,
3=Band stop and 4=Differentiator.

freq This is a fraction of the sampling rate in the range 0 to 0.5 and means different
things depending on the type of filter:

 For Low pass, High pass and Differentiator types, this represents the cut-off
frequency. This is the frequency of the higher edge of the first frequency band.

 For Band pass and Band stop filters, this is the midpoint of the middle frequency
band: the pass band in a Band pass filter, the stop band in a Band stop filter.

width For Low pass, High pass and Differentiator filters, this is the width of the
transition gap between the stop band and the pass band. The default value is 0.02
and there is an upper limit of 0.1 on this argument.

 For a Band pass, or Band stop filter, width is the width of the middle band. E.g.
if you ask for a Pass band filter with the freq parameter to be 0.25 and the
width to be 0.05, the middle pass band will be from 0.2 to 0.3. For these types of
filter, you still need a positive transition width. This transition width is 0.02 and
cannot be changed by the user.

atten The desired attenuation in the stop band in dB. The default is 50 dB. This is
analogous to the desired attenuation in the FiltAtten() command.

Returns The number of coefficients calculated. If the array is not large enough the
coefficient list is truncated (and the result is useless). If you are passing the
result to FiltApply(), use coef[:n], not coef[] to pass n coefficients.

See also: ArrFilt(), FiltApply(), FiltCalc(), FIRMake(), FIRResponse()

This function retrieves the frequency response of a given filter as amplitude or in dB.
Func FIRResponse(resp[], coef[]{, as%{, type%}});

resp The array to hold the frequency response. This array will be filled regardless of
its size. The first element is the amplitude response at 0 Hz and the last is the
amplitude response at the Nyquist frequency. The remaining elements are set to
the response at a frequency proportional to the element position in the array.

coef The coefficient array calculated by FIRMake(), FIRQuick() or FiltCalc().
as% If this is 0 or omitted, the response is in dB (0 dB is unchanged amplitude),

otherwise as linear amplitude (1.0 is unchanged).
type% If present, informs the command of the filter type. The types are the same as

those supplied for FIRQuick(): 0=Low pass, 1=High pass, 2=Band pass,
3=Band stop and 4=Differentiator. If a type is given, the time to calculate the
response is halved. If you are not sure what type of filter you have, or you have
type not covered by the FIRQuick() types, then do not supply a type to this
command.

See also: ArrFilt(), FiltCalc(), FIRMake(), FIRQuick()

This command gives you access to the fit coefficients for the next FitData() fit. You
can return the values from any type of fit and set the initial values and limits and hold
values fixed for iterative fits. There are two command variants:

This command variant lets you read back the current coefficient values and set the
coefficient values and limits for iterative fitting:
Func FitCoef({num%{, new{, lower{, upper}}}});

FIRResponse()

FitCoef()

Set and get coefficients

FitData() Alphabetical command reference FitData()

5-82

num% If this is omitted, the return value is the number of coefficients in the current fit.
If present, it is a coefficient number. The first coefficient is number 0. If num% is
present, the return value is the coefficient value for the existing fit, or if there is
no fit, the coefficient value that would be used as the starting point for the next
iterative fit is returned.

new If present, this sets the value of coefficient num% for the next iterative fit.
lower If present, this sets the lower limit for coefficient num% for the next iterative fit.

There is currently no way to read back the coefficient limits. There is also no
check made that the limits are set to sensible values.

upper If present, this sets the upper limit for coefficient num% for the next iterative fit.
Returns The number of coefficients or the value of coefficient num%.

This command variant allows you to hold some coefficients at their current values during
the next fit.
Func FitCoef(hold%[]);

hold% An array of integers to correspond with the coefficients. If the array is too long,
extra elements are ignored. If it is too short, extra coefficients are not affected.
Set hold%[i%] to 1 to hold coefficient i% and to 0 to fit it. If hold%[i%] is
less than 0, the hold state is not changed, but hold%[i%] is set to 1 if the
corresponding coefficient is held and to 0 if it is not held.

Returns This always returns 0.
See also: FitData(), FitValue(), FitExp(), ChanFitCoef()

This function, together with FitCoef() and FitValue(), lets you apply the same
fitting functions that are available for channel data to data in arrays. You supply arrays of
x and y data points and an optional array holding the standard deviation of the input data
point y values. There are three command variants:

The first variant sets the type of fit. If you select an iterative fit, the initial values of the
fitting coefficients are reset to standard values and any "hold" flags set by FitCoef()
are cleared. You can set your own initial values with the FitCoef() command or make
a guess at the initial values when performing the fit.

Func FitData(type%, order%);

type% The fit type. 0=Clear any fit, 1=Exponential, 2=Polynomial, 3=Gaussian,
4=Sine, 5=Sigmoid.

order% If positive, this is the order of the fit, if negative it is minus the number of fitted
coefficients. See the information about each fit for the allowed values for each
fit type. If type% is 0 this argument is ignored and should be 0.

Returns The number of fit coefficients for the fit or a negative error code.

This fits multiple exponentials by an iterative method. The data is fitted to the equation:

y = a0 exp(-x/a1) + a2 exp(-x/a3)… For an even number of coefficients
y = a0 exp(-x/a1) + a2 exp(-x/a3)… + an For an odd number of coefficients

You can set up to 10 coefficients or orders 1 to 5. If you use a fit order, the number of
coefficients is the order times 2. See the FitExp() command for more information.
Coefficient estimates are effective for orders 1 and 2.

Get and set the hold flags

FitData()

Initialise fit information

Exponential fit

FitData() The Spike2 script language FitData()

5-83

This fits y = a0 + a1x + a2x2 + a3x3 … to a set of (x,y) data points. The fitting is by a direct
method; there is no iteration. The fit order is the highest power of x to fit in the range 1 to
10. The number of coefficients is the fit order plus 1.

This fits multiple Gaussians by an iterative method. The data is fitted to the equation:

y = a0 exp(-½(x-a1)2/a2
2) + a3 exp(-½(x-a4)2/a5

2) + …

The fitted parameters (coefficients) are the ai. You can fit up to 3 Gaussians (order 1 to
3). The number of coefficients is given by the fit order times 3. Coefficient estimates
become less useful as the order increases.

This fits multiple sinusoids by an iterative method. The data is fitted to the equation:

y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + … {+ a3n}

The fitted coefficients are the ai. Angles are evaluated in radians. You can fit up to 3
sinusoids (order 3) and an optional offset. Although the function is given in terms of sine
functions, you can easily convert to cosines by subtracting π/2 from the phase angle (a2,
a5, a8) after the fit. The coefficient count can be set to 3, 4, 6, 7, 9 or 10. If you use
orders, the number of coefficients is order times 3 and you cannot set an offset. A useful
coefficient estimate is made for a single sinusoid fit.

This fits a single Boltzmann sigmoid by an iterative method. The data is fitted to the
equation:

y = a0 + (a1 - a0)/(1 + exp((a2 – x)/ a3)

In terms of the fitted result, a0 and a1 are the low and high fitting limits, a2 is the X50
point and a3 is a measure of the slope at the X50 point. You can set order 1 only, or 4
coefficients.

This variant of the command does the fit set by the previous variant. Use the FitCoef()
command to preset fit coefficients and to read back the result of the fit.

Func FitData(opt%, y[], x[]{, s[]|s{, &err{,
 maxI% {,&iTer%{, covar[][]}}}}});

opt% 1=Estimate the coefficients before fitting, 0=use current values. Note that the
estimates are usually only useful for a small number of coefficients.

y[] An array of y values to be fitted.
x[] A corresponding array of x values.
s[]|s A corresponding array of standard deviations for the data points defined by y[]

and x, or a single value, being the standard deviation of each point. If this value
is omitted or set to 1.0, the result is a least squares fit. If standard deviations are
supplied, the result is a chi-squared fit.

err If present, this optional variable is updated with the chi-squared or least-squares
error between the fit and the data.

maxI% If present, this changes the maximum number of iterations from 100.
iTer% If present, this integer variable is updated with the count of iterations done.
covar An optional two dimensional array of size at least [nCoef][nCoef] that is

returned holding the covariance matrix when the fit is complete. It is changed if
the return value is -1, 0 or 1. However, the values it contains are probably not
useful unless the return value is 0.

Returns 0 if the fit is complete, 1 if max iterations done, or a negative error code: -1=the
fit is not making progress (results may be OK), -2=the fit failed due to a singular
matrix, -5=the fit caused a floating point error, -6=too little data for the number

Polynomial fit

Gaussian fit

Sine fit

Sigmoid fit

Perform the fit

FitExp() Alphabetical command reference FitExp()

5-84

of coefficients, -7=unknown fitting function, -8=ran out of memory during the
fit (too many data points), -9=the fit was set up with bad parameters.

This variant of the command returns information about the current fit.
Func FitData({opt%});

opt% This determines what to return. opt% values match ChanFit(), where possible.
The returned information for each value of opt% is:
opt% Returns opt% Returns

0 Fit type of next fit 1 Fit order of next fit
-1 1=a fit exists, 0=no fit exists -8 Not used
-2 Type of last fit or 0 -9 Not used
-3 Number of coefficients -10 Not used
-4 Chi or least-squares error -11 1=chi-square, 0=least-square
-5 Fit probability (estimated) -12 Last fit result code
-6 Lowest x value fitted -13 Number of fitted points
-7 Highest x value fitted -14 Number of fit iterations used

Returns The information requested by the opt% argument or 0 if opt% is out of range.
See also: ChanFit(), FitCoef(), FitValue()

This command fits multiple exponentials to arrays of x,y data points, with an optional
weight for each point. Fitting is by an iterative method. The data is fitted to the equation:

y = a0 exp(-x/a1) + a2 exp (-x/a3)… For an even number of coefficients
y = a0 exp(-x/a1) + a2 exp (-x/a3)… + an For an odd number of coefficients

The fitted coefficients are the ai; odd numbered ai are assumed to be positive. You can fit
up to 5 exponentials or 4 exponentials and an offset. However, experience shows that
trying to fit more than two exponentials requires care. The fit from even two exponentials
should be viewed with caution, especially if the odd coefficients are similar. The
commands to implement this are:

The first command sets the number of exponentials to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitExp(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit in the range 2 to 10. If this is even, the first
form of the function above is used. If it is odd, the final coefficient is an offset.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation
(σ), then the error value returned when you iterate to find the best fit is the χ2
value and the fit is a chi-squared fit.

 If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this array, the fit is a least-squares error fit, and the error value returned is
the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients.

Get fit information

FitExp()

Set up the problem

FitExp() The Spike2 script language FitExp()

5-85

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

It is important that you give reasonable initial values for the coefficients, especially when
you fit more than one exponent. You should limit the odd coefficient values (the time
constants) so that they cannot be zero and make sure that multiple exponents do not have
overlapping ranges. If two exponents get similar values, the fit is degenerate and will
wander around forever without getting anywhere. However, setting too rigid a range may
damage the fitting process as sometimes the minimisation process has to follow a
convoluted n-dimensional path to reach the goal, and the path may need to wander quite a
bit. Let experience be your guide.

If you do not give starting values, the command will make a simplistic guess at the fitting
values. As we expect that you know more about the "right" answer than the command
does, we suggest that you set the values you want.
func FitExp(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.
val The initial value to assign to the coefficient. If you have set low and high limits,

and the value is outside these limits, it is set to the nearer limit.
lo,hi If present, these two values set the acceptable range of values for this

coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitExp(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first exponent in a[1], the
second amplitude in a[2], the second exponent in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the
fit has converged, -1 if the fit is not improving but the result may be OK. Other
negative numbers indicate failure.

Normally the command fits all the coefficients, but you can use this variant to select the
coefficients to fit. You can use this command at any time after you have set the problem
until the iteration variant returns 0 or -1.
func FitExp(fit%[]);

Set coefficient values and
ranges

Iterate to a solution

Select coefficients to fit

FitGauss() Alphabetical command reference FitGauss()

5-86

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held
constant, otherwise it is fitted. If all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

This is a template for using these commands to fit all the coefficients:
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var coefs[4],err; 'coefficients and squared error
... 'in here goes code to get the data
FitExp(4, y[], x[]); 'fit two exponentials (no sigma array)
FitExp(0, 1.0, 0.2, 4); 'set first amplitude and limit range
FitExp(1, .01, .001, .03);'set first time constant and range
FitExp(2, 2.0, 0.1, 6); 'set second amplitude and limit range
FitExp(3, .08, .03, .15); 'set second time constant and range
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitExp(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

See also: ChanFit(), FitGauss(), FitLinear(), FitNLUser(), FitPoly(),
FitSin()

This command fits multiple Gaussians to x,y data points with an optional weight for each
point. Fitting is by an iterative method. The input data is fitted to the equation:

y = a0 exp(-½(x-a1)2/a2
2) + a3 exp(-½(x-a4)2/a5

2) + …

The fitted parameters (coefficients) are the ai. You can fit up to 3 Gaussians. The
commands to implement this are:

The first command sets the number of Gaussians to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitGauss(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit. The legal values are 3, 6 and 9 for one, two
and three Gaussians.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation
(σ), then the error value returned when you iterate to find the best fit is the χ2
value and the fit is a chi-squared fit.

 If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this array, the fit is a least-squares error fit, and the error value returned is
the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

An example

FitGauss()

Set up the problem

FitGauss() The Spike2 script language FitGauss()

5-87

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple Gaussians, it is usual that the centre of
each distribution is easy to determine. If you can set the centres and limit them so that
they cannot overlap, the fit usually will proceed without any problems, even for multiple
Gaussians. If you do not give starting values, the command will make a simplistic guess
at the fitting values. As we expect that you know more about the “right” answer than the
command does, we suggest that you set the values you want.

func FitGauss(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.
val The initial value to assign to the coefficient. If you have set low and high limits,

and the value is outside these limits, it is set to the nearer limit.
lo,hi If present, these two values set the acceptable range of values for this

coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

As long as you make a reasonable estimate of the centre points, there should be no
problems fitting multiple Gaussians.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).

func FitGauss(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first centre in a[1], the
first sigma in a[2], the second amplitude in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the
fit has converged, -1 if the fit is not improving but the result may be OK. Other
negative numbers indicate failure.

Remember that even when a minimum is found, there is no guarantee that this is the
minimum. It is the best minimum that this algorithm can find given the starting point.

Normally the command fits all the coefficients, but you can use this variant to select the
coefficients to fit. You can use this command at any time after you have set the problem
until the iteration variant returns 0 or -1.
func FitGauss(fit%[]);

Set coefficient values and
ranges

Iterate to a solution

Select coefficients to fit

FitLine() Alphabetical command reference FitLinear()

5-88

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held
constant, otherwise it is fitted. If all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

This is a template for using these commands to fit all the coefficients:
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var coefs[4], err; 'coefficients and error squared
... 'in here goes code to get the data
FitGauss(3, y[], x[], s[]); 'fit one gaussian
FitGauss(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitGauss(1, 2, 1.5, 2.5); 'set centre of the gaussian and range
FitGauss(2, 0.5, 0.3, 1.9); 'set width and limit range
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitGauss(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

See also: ChanFit(), FitExp(), FitLinear(), FitNLUser(), FitPoly(),
FitSin()

This function calculates the least-squares best-fit line to a set of data points from a time
view waveform, RealWave or WaveMark channel or a result view. It fits: y = m x + c
through the data points (xi, yi) so as to minimise the error given by: Sumi(yi - m xi -c)2. In
this expression, m is the gradient of the line and c is the y axis intercept when x is 0.
Func FitLine(chan%, start, finish, &grad{, &inter{, &corr}});

chan% A channel holding suitable data in the current time or result view.
start The start time for processing in a time view, the start bin in a result view.
finish The end time for processing in a time view, the end bin in a result view. Data at

the finish time, or in the finish bin, is included in the calculation.
grad This is returned holding the gradient of the best fit line (m).
inter Optional, returned holding the intercept of the line with the y axis (c).
corr Optional, returned holding correlation coefficient indicating the “goodness of

fit” of the line. Values close to 1 or -1 indicate a good fit; values close to 0
indicate a very poor fit. This parameter is often referred to as r in textbooks.

Returns 0 if all was OK, or -1 if there were not at least 2 data points.
The results are in user units, so in a time view with a waveform measured in Volts, the
units of the gradient are Volts per second and the units of the intercept are Volts. In a
result view, the units are y axis units per x axis unit. They are not y units per bin.

See also: ChanFit(), ChanMeasure(), FitLinear(),FitPoly()

This command fits y = a0 f0(x) + a1 f1(x) + a2 f2(x)… to a set of (x,y) data points. If you can
provide error estimates for each y value, you can use the covariance output from this
command to provide confidence limits on the calculated coefficients and you can use the
returned χ2 value to test if the model is likely to fit the data. The command is:
func FitLinear(coef[], y[], x[][]{, s{, covar[][]{, r[]{, mR}}}});

An example

FitLine()

FitLinear()

FitLinear() The Spike2 script language FitLinear()

5-89

coef[] A real array which sets the number of coefficients to fit and which return the
best fit set of coefficients. The array must be between 2 and 10 elements long.
The coefficient a0 is returned in coef[0], a1 in coef[1] and so on.

y[] A real array of y values.
x[][] This array specifies the values of the functions f(x) at each data point. If there

are nc coefficients and nd data values, this array must be of size at least
[nd][nc]. Viewed as a rectangular grid with the coefficients running from left
to right and the data running from top to bottom, the values you must fill in are:

 f0(x0) f1(x0) f2(x0) f3(x0) … fnc-1(x0)
f0(x1) f1(x1) f2(x1) f3(x1) … fnc-1(x1)
f0(x2) f1(x2) f2(x2) f3(x2) … fnc-1(x2)
… … … … … …
f0(xnd-1) f1(xnd-1) f2(xnd-1) f3(xnd-1) … fnc-1(xnd-1)

s This is either a real array holding the standard deviations of the y[] data points,
or a real value holding the standard deviation of all data points. If s is omitted or
zero, a least-squares error fit is performed, otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number
of coefficients fitted) that is returned holding the covariance matrix.

r[] An optional array of size at least [nc] (nc is the number of coefficients fitted)
that is returned holding diagnostic information about the fit. The less relevant a
fitting function ƒ(x) is to the fit, the smaller the value returned. The element of
the array that corresponds to the most relevant function is returned as 1.0,
smaller numbers indicate less relevance.

 If your fitting functions are not independent of each other, several coefficients
may have low r values. The solution is to remove one of the functions from the
fit, or to set the mR argument to exclude one of the functions, then fit again. If
the remaining coefficients become relevant, you have excluded a function that
was a linear combination of the others. If the remaining coefficients still are not
relevant, you have eliminated a function that did not contribute to the fit.

mR You can use this optional variable to set the minimum relevance for a function.
Functions that have less relevance than this are “edited” out of the fit and their
coefficient is returned as 0. If you do not provide this value, the minimum is set
to 10-15, which will probably not exclude any values.

Returns The function returns the chi-square value for the fit if s[] or s is given (and
non-zero), or the sum of squares of the errors between the data points and the
best fit line if s is omitted or is zero.

The smallest of the sizes of the y[] array (and s[] array, if provided) and the second
dimension of x[][] sets the number of data points. It is a fatal error for the number of
data points to be less than the number of coefficients.

This demonstrates how to fit data to the function y = a*sin(x/10) + b*cos(x/20).
The x values vary from 0 to 49 in steps of 1. The function MakeFunc() calculates a trial
data set plus noise. We set s to 1.0, so FitLinear() returns the sum of squares of the
errors between the fitted and input data. If you run this example, you will notice that the
returned value is slightly less than the sum of squares of the added errors.
const NCOEF%:=2,NDATA%:=50;' coefficient and data sizes
var x[NDATA%][NCOEF%]; ' array of function information
const noise := 0.01; ' controls how much noise we add
var data[NDATA%], err := 0;' space for our function and errors
' Generate raw data. Fit y = a*sin(x/10)+b*cos(x/20)
var coef[NCOEF%], i%, r; ' coefficients, index, random noise
coef[0]:=1.0; coef[1]:=2; ' set coefficients for generated data
MakeFunc(data[], coef[], x[][]); ' Generate the data, then...
for i%:=0 to NDATA%-1 do ' ...add noise to it

An example

FitNLUser() Alphabetical command reference FitNLUser()

5-90

 r := (rand()-0.5)*noise;' the noise to add
 data[i%] += r; ' add noise to the data
 err := err + r*r; ' accumulate sum of squared noise
 next;

var covar[NCOEF%][NCOEF%]; ' covariance array
var sig2, a[NCOEF%]; ' sigma, fitted coefficients
var rel[NCOEF%]; ' array for "relevance" values
sig2 := FitLinear(a[], data[], x[][], 1, covar[][], rel[]);
Message("sig^2=%g, err=%g\ncoefs=%g\nrel=%g",sig2,err,a[],rel[]);
halt;

'y is the output array (x values are 0, 1, 2...), a is the array
'of coefficients. Y = a*sin(x/10)+b*cos(x/20)
proc MakeFunc(y[], a[], x[][])
var nd%,v; ' coefficient index, work space
for nd% := 0 to NDATA%-1 do
 v := Sin(nd% / 10.0); ' first funcion
 x[nd%][0] := v; ' save the value;
 y[nd%] := a[0] * v; ' start to build the result
 v := Cos(nd%/20.0); ' second function
 x[nd%][1] := v; ' save it
 y[nd%] += a[1]*v; ' full result
next;
end;

See also: ChanFit(), FitExp(), FitGauss(), FitNLUser(), FitPoly(), FitSin()

This command uses a non-linear fitting algorithm to fit a user-defined function to a set of
data points. The function to be fitted is of the form y = f(x, a0, a1, a2…) where the ai are
coefficients to determine. You must be able to calculate the differential of the function f
with respect to each of the coefficients. You can optionally supply an array to weight
each data point. The commands to implement this are:

The first command sets the user-defined function, the number of coefficients you want to
fit, the number of data points and optionally, you can set the weight to give each data
point. You must call this function before you call any of the others.
func FitNLUser(User(ind%, a[], dyda[]), nCoef%, nData%{, s[]|s});

User() A user-defined function which is called by the fitting routine. The function is
passed the current values of the coefficients. It returns the error between the
function and the data point identified by ind% and the differentials of the
function with respect to each of the coefficients at that point. The return value
should be the y data value at the index minus the calculated value of the function
at the x value, using the coefficients passed in.

ind% The index into the data points at which to evaluate the error and differentials. If
there are n data points, ind% runs from 0 to n-1. You can rely on the function
being called with the same coefficients as ind% increments from 0 to n-1, which
may be useful if you have complex functions of the coefficients to evaluate.

a An array of length nCoef% holding the current values of the coefficients. The
coefficients are refreshed for each call to the user-defined function, so it is not
an error to change them; however this is usually not done.

dyda An array of length nCoef% which your function should fill in with the values of
the partial differential of the function with respect to each of the coefficients.
For example, if you were fitting y = a0*exp(-a1*x) then set dyda[0] = δy/δa0
= exp(-a1*x) and dyda[1] = δy/δa1 = -a0 *a1*exp(-a1*x).

nCoef% The number of coefficients to fit in the range 1 to 10.

FitNLUser()

Set up the problem

FitNLUser() The Spike2 script language FitNLUser()

5-91

nData% The number of data points you will be fitting. If s[] is provided as an array, the
value of nData% used is the smaller of nData% and the length of the s[] array.
It is a fatal error for the number of data points used to be less than nCoef%.

s This argument is optional. It is either an array of weights to be given to each
data point in the fit or a single weight to apply to all data points. If this value is
the expected standard deviation (σ) of the y value of the data points, then the
error value returned is the χ2 value and the fit is a chi-squared fit. If this value is
proportional to the expected error at the data point, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this argument, the fit is a least-squares error fit, and the error value returned
is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

Unlike the other fitting routines, you will notice that the x and y data values are not
passed into the command. Instead, the user-defined function is passed an index to the data
values. It is assumed that the data is accessible by the user function.

Due to restrictions in the implementation of the script language, you cannot debug
through the user-defined function. If you set a break point in it, or attempt to step into it
you will get errors. We recommend that you check the returned values from the user-
defined function by calling it from your own script code.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. If you do not give starting values, the command will set them all to zero,
which is unlikely to be correct.
func FitNLUser(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.
val The initial value to assign to the coefficient. If you have set low and high limits,

and the value is outside these limits, it is set to the nearer limit.
lo,hi If present, these two values set the acceptable range of values for this

coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitNLUser(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

Set coefficient values and
ranges

Iterate to a solution

FitPoly() Alphabetical command reference FitPoly()

5-92

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the
fit has converged, -1 if the fit is not improving but the result may be OK. Other
negative numbers indicate failure.

Remember that even when a minimum is found, there is no guarantee that it is the
minimum. It is the best minimum that this algorithm can find given the starting point.

Normally the command fits all the coefficients, but you can use this variant to select the
coefficients to fit. You can use this command at any time after you have set the problem
until the iteration variant returns 0 or -1.
func FitNLUser(fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held
constant, otherwise it is fitted. If all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

The following is an example of using this set of commands to fit the user-defined
function y = a * exp(-b*x). In this example we generate some test data and add to it
a random error. There are two coefficients to be fitted (a and b).

const NDATA%:=100, NCOEF% := 2;
var x[NDATA%],y[NDATA%],i%;
for i% := 0 to NDATA%-1 do ' Generate data
 x[i%] := i%; ' a:=1, b:=0.05 and add some noise
 y[i%] := exp(-0.05*i%)+(rand()-0.5)*0.01;
 next;

FitNLUser(UserFnc, NCOEF%, NDATA%); 'Link user function
FitNLUser(0, 0.5, 0.01, 2); 'Set range of amplitude
FitNLUser(1, 0.01, 0.001, 1); 'Set range of exponent

var coefs[NCOEF%], err, iter%;
i% := FitNLUser(coefs[], err, 100, iter%);
Message("fit=%d, Err=%g, iter=%d, coefs=%g",i%,err,iter%,coefs[]);
halt;

' The user-defined function: y = a * exp(-b*x);
' dy/da = exp(-b*x), dy/db = -x * a * exp(-b*x)
func UserFnc(ind%, a[], dyda[])
var xi,yi,r;
xi := x[ind%]; ' local copy of x value
yi := y[ind%]; ' local copy of y value
dyda[0] := exp(-a[1]*xi); ' differential of y with respect to a
r := dyda[0] * a[0]; ' intermediate value
dyda[1] := -xi * r; ' differential of y with respect to b
return yi-r;
end

See also: FitExp(), FitGauss(), FitLinear(), FitPoly(), FitSin()

This command fits y = a0 + a1x + a2x2 + a3x3 … to a set of (x,y) data points. If you can
provide error estimates for each y value, you can use the covariance output from this
command to provide confidence limits on the calculated coefficients and you can use the
returned χ2 value to test if the model is likely to fit the data. The command is:

Select coefficients to fit

An example

FitPoly()

FitPoly() The Spike2 script language FitPoly()

5-93

func FitPoly(coef[], y[], x[]{, s[]|s{, covar[][]}});

coef[] A real array that sets the number of coefficients and returns the coefficient
values. The array must be between 2 and 10 elements long. The coefficient a0 is
returned in coef[0], a1 in coef[1] and so on.

y[] A real array of y values. The smaller of the sizes of the x[] and y[] arrays (and
s[] array, if provided), sets the number of data points. It is a fatal error for the
number of data points to be less than the number of coefficients.

x[] A real array of x values.
s This is an optional argument. It is either a real array holding the standard

deviations of each of the y[] data points, or it is a real value holding the
standard deviation of all of the data points. If the argument is omitted or set to
zero, a least-squares error fit is performed, otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number
of coefficients fitted) that is returned holding the covariance matrix.

Returns The function returns chi-squared if s[] or s is given (and non-zero), otherwise
it returns the sum of squares of the errors between the raw and fitted data.

This example generates test data, adds random noise, then fits a polynomial to the data.
const NCOEF% := 5; ' number of coefficients
const NDATA%:=50; ' number of data points
var y[NDATA%], x[NDATA%]; ' space for x and y values for fit
const noise := 1; ' noise to add
var err := 0.0; ' will be sum of squares of added noise
var cf[NCOEF%], i%, r;
cf[0]:=1.0; cf[1]:=-80; cf[2]:=-2.0; cf[3]:=0.5; cf[4]:=-0.009;
MakePoly(cf[],x[],y[]); ' generate ideal data as polynomial
for i%:=0 to NDATA%-1 do ' now add some noise to it
 r := (rand()-0.5)*noise;
 y[i%] += r; ' add noise to the data
 err += r*r; ' sum of squares of added noise
 next;
var sig2, a[NCOEF%]; ' a[] will be the fitted coefficients
sig2 := FitPoly(a[], y[], x[]);
Message("sig2=%g, noise=%g\nfitted=%8.4f\nideal =%8.4f",
 sig2, err, a[], cf[]);
halt;

'a[] input array of coefficients
'x[] output x co-ordinates, y[] output data values
proc MakePoly(a[], x[], y[])
var i%,j%,xv,s;
for i% := 0 to Len(y[])-1 do
 s := 0.0;
 xv := 1;
 for j% := 0 to NCOEF%-1 do
 s += a[j%]*xv;
 xv *= i%;
 next;
 y[i%] := s;
 x[i%] := i%;
 next;
end;

See also: ChanFit(), FitExp(), FitGauss(), FitLinear(), FitSin()

An example

FitSin() Alphabetical command reference FitSin()

5-94

This command fits multiple sinusoids to arrays of x,y data points, with an optional weight
for each point. Fitting is by an iterative method. The input data is fitted to the equation:

y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + … {+ a3n}

The fitted coefficients are the ai. Angles are evaluated in radians. You can fit up to 3
sinusoids and an optional offset. Although the function is given in terms of sine
functions, you can easily convert to cosines by subtracting π/2 from the phase angle (a2,
a5, a8) after the fit. The commands to implement this are:

The first command sets the number of sinusoids to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitSin(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit. The only legal values are 3, 6 and 9 for one,
two and three sinusoids or 4, 7 and 10 to include an offset as the last coefficient.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation
(σ), then the error value returned when you iterate to find the best fit is the χ2
value and the fit is a chi-squared fit.

 If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this array, the fit is a least-squares error fit, and the error value returned is
the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0, indicating that the fit is complete.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple sinusoids you will usually either know,
or have a good idea of the frequencies. You should limit the range of each frequency so
that they cannot overlap. If you can do this, the fit will proceed quickly. If you do not
give starting values, the command will make a simplistic guess at the fitting values. As
we expect that you know more about the "right" answer than the command does, we
suggest that you set the values you want.
func FitSin(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.
val The initial value to assign to the coefficient. If you have set low and high limits,

and the value is outside these limits, it is set to the nearer limit.
lo,hi If present, these two values set the acceptable range of values for this

coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

FitSin()

Set up the problem

Set coefficient values and
ranges

FitSin() The Spike2 script language FitSin()

5-95

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitSin(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first frequency in a[1],
the first phase angle in a[2], the second amplitude in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the
fit has converged, -1 if the fit is not improving but the result may be OK. Other
negative numbers indicate failure.

Even when a minimum is found, there is no guarantee that this is the minimum, only that
it is the best minimum that this algorithm can find given the starting point.

Sometimes you may wish to hold some coefficients fixed while you fit others. Normally
the command will fit all the coefficients, but you can use this command variant to select
the coefficients to fit. You can use this command at any time after you have set the
problem until the iteration variant returns 0 or -1.
func FitSin(fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held
constant, otherwise it is fitted. If all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again. For a sinusoidal fit it
is likely that you will know the frequency to fit, so you may well hold this constant.

The following is a template for using this command (assuming you don't want to fit the
frequency, which we assume you know).
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var fit%[3]; 'we want to hold the frequency
var coefs[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitSin(3, y[], x[], s[]); 'fit one sinusoid

'Note that we let the phase take any value
FitSin(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitSin(1, .02, .01, .03); 'set frequency
FitSin(2, 0., 0.3, 1.9); 'set width and limit range

'Now we say that we don't want to fit the frequency
ArrConst(fit%[],1); 'set all elements to 1

Iterate to a solution

Select coefficients to fit

An example

FitValue() Alphabetical command reference FontSet()

5-96

fit%[1] := 0; 'but not element 1 (=frequency)
FitSin(fit%[]); 'so the frequency is fixed
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitSin(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

See also: FitExp(), FitGauss(), FitLinear(), FitNLUser(), FitSin()

This function returns the value at a particular x axis point of the fitted function set by the
last FitData() command.
Func FitValue(x);

x The x axis value at which to evaluate the current fit. You should be aware that
some of the fitting fuctions can overflow the floating point range if you ask for x
values beyond the fitted range of the function.

Returns The value of the fitted function at x. If the result is out of floating point range,
the function may return a floating point infinity or a NaN (Not a Number) value
or a 0. If there is no fit, the result is always 0.

See also: FitCoef(), FitData(), FitExp(), ChanFitValue()

This function returns the view handle of the script-controllable window with the input
focus (the active window). Unlike FrontView(), it can return any type of window, for
example multimedia and spike shape windows.
Func FocusHandle();

Returns The handle of a window that the script can manipulate, or 0 if the focus is not in
such a window.

See also: FrontView()

This function gets the name of the font, and its characteristics for the current view.
Func FontGet(&name$, &size, &style%);

name$ This string variable is returned holding the name of the font.
size The real number variable is returned holding the point size of the font.
style% Returned holding the style: 0=Normal, 1=Italic, 2=Bold, 3=Bold and Italic.
Returns The function returns 0 if all was well or a negative error code. If an error occurs,

the variables are not changed.
See also: FontSet()

This function sets the font for the current view. Text-based views (text, sequencer and
script) should be set to non-proportionally spaced fonts only. If you set proportional
fonts, the caret position in the view will be incorrect and the text will be difficult to edit.
Func FontSet(name$|code%, size, style%);

name$ A string holding the font name to use or you can specify a font code:
code% This is an alternative method of specifying a font. We recognise these codes:

FitValue()

FocusHandle()

FontGet()

FontSet()

Frac() The Spike2 script language GammaP(), GammaQ()

5-97

0 The standard system font, whatever that might be
1 A non-proportionally spaced font, usually Courier-like
2 A proportionally spaced non-serifed font, such as Helvetica or Arial
3 A proportionally spaced serifed font, such as Times Roman
4 A symbol font
5 A decorative font, such as Zapf-Dingbats or TrueType Wingdings

size The point size required. Your system may limit the allowed range.
style% The type style: 0=Normal, 1=Italic, 2=Bold, 3=Bold and Italic.
Returns The function returns 0 if the font change succeeded, or a negative error code.
See also: FontGet()

Returns the fractional part of a real number or converts a real array to its fractional parts.
Func Frac(x|x[]|x[][]);

x A real number or an array of reals.
Returns For arrays, it returns 0 or a negative error code. If x is not an array it returns a

real number equal to x-Trunc(x). Frac(4.7) is 0.7, Frac(-4.7) is -0.7.
See also: Abs(), ATan(), Cos(), Exp(), Ln(), Log(), Max(), Min(), Pow(), Rand(),

Round(), Sin(), Sqrt(), Tan(), Trunc()

The front view is the time, result, XY or text-based view that decides which menu
appears in the main window. You can use this command to get the front view, or to set it.
When a view becomes the front view, it is moved to the front and made the current view.
If an invisible or iconised view is made the front view, it is made visible automatically,
(equivalent to WindowVisible(1)).

You can also use this command to move other windows (for example the multimedia and
Spike shape windows) to the top and make them the current view, but such windows are
not returned by this command. Use FocusHandle() to return these windows.
Func FrontView({vh%});

vh% Either 0 or omitted to return the front view handle, a view handle to be set, or -n,
meaning the nth duplicate of the time view associated with the current view.

Returns 0 if there are no visible views, -1 if the view handle passed is not a valid view
handle, otherwise it returns the view handle of the view that was at the front.

See also: FocusHandle(), View(), WindowVisible()

The incomplete gamma function P(a, x) is defined mathematically as:

P(a, x) = ∫
0

x

e-tt a-1dt / Γ(a)

This is named GammaP() in the script. We also define the complement of this function,
GammaQ(a,x), which is 1.0-GammaP(a,x). From them are obtained the error function,
the cumulative Poisson probability function and the Chi-squared probability function.

The error function erf(x) = 2/√π ∫
0

x

e-t2dt = GammaP(0.5, x*x)

The cumulative Poisson probability function relates to a Poisson process of random
events and is the probability that, given an expected number of events r in a given time

Frac()

FrontView()

GammaP(),
GammaQ()

Grid() Alphabetical command reference HCursor()

5-98

period, the actual number was greater than or equal to n. This turns out to be
GammaP(n,r). Also, the probability that there are less than n events is GammaQ(n,r).

The Chi-squared probability function is useful where we are fitting a model to data.
Given a fitting function that fits the data with n degrees of freedom (if you have nData
data points and nCoef coefficients you usually have nData-nCoef degrees of freedom),
and given that the errors in the data points are normally distributed, the probability of a
Chi-squared value less than chisq is GammaP(n/2, chisq/2). Similarly, the
probability of a chisq value at least as large as chisq is GammaQ(n/2, chisq/2). So,
if you know the chi-squared value from a fitting exercise, you can ask "What is the
probability of getting this value (or a greater one) given that my model fits the data?" If
the probability is very small, it is likely that your model does not fit the data, or your fit
has not converged to the correct solution.
Func GammaP(a, x);
Func GammaQ(a, x);

a This must be positive, it is a fatal error if it is not.
x This must be positive, it is a fatal error if it is not.
Returns These functions return the incomplete Gamma function and the complement of

the incomplete Gamma function.

See also: LnGamma()

This function turns the background grid on and off for the current time, result or XY
view. It also returns the state of the grid.
Func Grid({on%});

on% Optional, sets the grid state. 0 = off, 1 = on, omit for no change.
Returns The state of the grid at the time of the call, or a negative error code. Changes

made by this function do not cause an immediate redraw.

See also: XAxis(), XScroller(), YAxis()

The gutter is the area on the left of a text-based window where bookmarks and script
break points appear. This function returns and optionally sets the gutter visible state. If
you set a large font size you may wish to hide the gutter.
Func Gutter({show%});

show% Optional, sets the gutter state. 0 = hide, 1 = show, -1 or omitted for no change.
Returns The gutter state at the time of the call: 0 = hidden, 1=visible.

This function returns the position of a horizontal cursor, and optionally sets a new
position. You can get and set positions of cursors attached to invisible channels or
channels that have no y axis. It is also used with spike shape window to set trigger levels.
Func HCursor(num% {,where {,chan%}});

num% The cursor to use. It is an error to attempt this operation on an unknown cursor.
 In a spike shape window, cursor 1 is the low trigger level, 2 is the high trigger, 3

is the low limit (if enabled), 4 is the high limit (if enabled). To set the cursor for
trace n (0-3) add 4*n to the cursor number.

Grid()

Gutter()

HCursor()

HCursorChan() The Spike2 script language HCursorLabel()

5-99

where If this parameter is given it sets the new position of the cursor.
chan% If this parameter is given, it sets the channel number. In XY or spike shape

views you should omit this argument as it is ignored.
Returns The function returns the position of the cursor at the time of the call.
See also: HCursorChan(), HCursorDelete(), HCursorLabel(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This function returns the channel number that a particular cursor is attached to.
Func HCursorChan(num%);

num% The horizontal cursor number.
Returns It returns the channel number that the cursor is attached to, or 0 if this cursor is

not attached to any channel or if the channel number is out of the allowed range.
XY views return 1 as the channel number.

See also: HCursor(), HCursorDelete(), HCursorNew(), HCursorRenumber()

This deletes the designated horizontal cursor. It is not an error to delete an unknown
cursor; it just has no effect.
Func HCursorDelete({num%});

num% The number of the cursor to delete. If this is omitted, the highest numbered
cursor is deleted. Set -1 to delete all horizontal cursors.

Returns The number of the deleted cursor or 0 if no cursor was deleted.
See also: HCursor(), HCursorChan(), HCursorLabel(), HCursorLabelPos(),

HCursorNew(), HCursorRenumber()

Use this function to determine if a horizontal cursor exists.
Func HCursorExists(num%);

num% The cursor number in the range 1-4.
Returns 0 if the cursor does not exist, 1 if it does.
See also: HCursorNew(), CursorExists()

This command sets (or gets) the cursor label style for the current view.
Func HCursorLabel({style%{, num%{, form$}}})

style% The cursor style. Cursors can be annotated with a position or the cursor number
or a user-defined style. The styles are: 0=Neither, 1=Position, 2=Number,
3=Both, 4=User-defined (not Macintosh yet). Unknown styles cause no change.

num% The cursor number for style 4. 0 means all cursors, 1-4 for a single cursor.
form$ The label string for style 4. The string has replaceable parameters %p, and %n for

position and number. We also allow %w.dp where w and d are numbers that set
the field width and decimal places. You cannot read back a label format string.

Returns The previous cursor style. If you omit style%, the style does not change.
See also: HCursorLabelPos(), HCursorNew(), HCursorRenumber()

HCursorChan()

HCursorDelete()

HCursorExists()

HCursorLabel()

HCursorLabelPos() Alphabetical command reference Help()

5-100

This lets you set and read the position of the cursor label.
Func HCursorLabelPos(num% {,pos});

num% The cursor number. Setting a silly number does nothing and returns -1.
pos If present, the command sets the position. The position is a percentage of the

distance from the left of the cursor at which to position the value. Out of range
values are set to the appropriate limit.

Returns The cursor position before any change was made.
See also: HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),

HCursorNew(), HCursorRenumber()

This function creates a new horizontal cursor in a time or result view and assigns it to a
channel. You can create up to 4 horizontal cursors.
Func HCursorNew(chan% {,where});

chan% A channel for the new cursor. If the channel is hidden, the cursor is not visible.
You should use a channel number of 1 for XY and result views.

where An optional argument setting the cursor position. If this is omitted, the cursor is
placed in the middle of the y axis or at zero if there is no y axis.

Returns It returns the horizontal cursor number or 0 if all cursors are in use.
See also: HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),

HCursorLabelPos(), HCursorRenumber()

This command renumbers the cursors from bottom to top. There are no arguments.
Func HCursorRenumber();

Returns The number of cursors found in the view.
See also: HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),

HCursorLabelPos(), HCursorNew()

The help available depends on the system. The Windows version uses the standard
Windows help system. The Macintosh version may provide help through Apple Guide in
future releases.
Func Help(topic%|topic$ {,file$});

topic% A numeric code for the help topic. These codes are assigned by the help system
author. Code 0 changes the default help file to file$.

topic$ A string holding a help topic keyword or phrase to look-up.
file$ If this is omitted, or the string is empty, the standard Spike2 help file is used. If

this holds a filename, this filename is used as the help file.
Returns 1 if the help topic was found, 0 if it was not found, -1 if no help file was found.
The Windows SDK has some help-authoring tools, and third-party tools are available.

HCursorLabelPos()

HCursorNew()

HCursorRenumber()

Help()

Help() The Spike2 script language Help()

5-101

The IIRxxxx() script commands make it easy for you to generate and apply IIR
(Infinite Impulse Response) filters to data held in arrays of real numbers. The data values
are assumed to be a sampled sequence, spaced at equal intervals. You can create digital
filters that are modelled on Butterworth, Bessel, Chebyshev type 1 and Chebyshev type 2
highpass, lowpass, bandstop and bandpass filters. You can also create digital resonators
and notch filters. The commands are:
IIRBp() Bandpass filter IIRHp() Highpass filter IIRNotch() Notch filter
IIRBs() Bandstop filter IIRLp() Lowpass filter IIRReson() Resonator

The algorithms used to create the filters are based on the mkfilter program, written by
Tony Fisher of York University. The basic idea is to position the s-plane poles and zeros
for a normalised low-pass filter of the desired characteristic and order, then to transform
the filter to the desired type.

The theory of IIR filters is beyond the scope of this manual; a classic reference work is
Theory and Application of Digital Signal Processing by Rabiner and Gold, published in
1975. The IIR filters generated by these commands can be modelled by:
 N M
y[n] = Σ ai x[n-i]/G + Σ bi y[n-i]
 i=0 i=1

where the x[n] are the sequence of input data values, the y[n] are the sequence of output
values, the ai and the bi are the filter coefficients (some of which may be zero) and G is
the filter gain. Although G could be incorporated into the ai, for computational reasons
we keep it separate. In the filters designed by the IIRxxxx() commands, N=M and is the
order of the filter for lowpass and highpass designs and is twice the order for bandpass
and bandstop designs. The order of these filters determines the sharpness of the filter cut-
off: the higher the order, the sharper the cut-off.

When compared to FIR filters, IIR filters have advantages:
• They can generate much steeper edges and narrower notches for the same

computational effort.
• The filters are causal, which means that the filter output is only affected by current

and previous data. If you run a step change through FIR filters you typically see
ringing before the step as well as after it.

However, they also have disadvantages:
• IIR filters are prone to stability problems, FIR filters are unconditionally stable. All

IIR filters generated by these commands should be stable, but high order band pass
and band stop filters with narrow pass or stop bands may have problems.

• They impose a group delay on the data that varies with frequency. This means that
they do not preserve the shape of a waveform, in particular, the positions of peaks
and troughs will change.

You can remedy the group delay problem by running a filter forwards, then backwards,
through the data. However, this makes the filter non-causal, removing one of the
advantages of using an IIR filter. The commands allow you to check the impulse, step,
frequency and phase response of the filters, and we recommend that you do so before
using a generated filter for a critical purpose.

The lowpass, highpass, bandpass and bandstop filters generate digital filters modelled on
four types of analogue filter: Butterworth, Bessel, Chebyshev type 1 and Chebyshev type
2. The resulting digital filters are not identical to the analogue filters as the mapping from
the analogue to the digital domain distorts the frequency scale. In many cases, this
improves the performance of the digital filter over the analogue counterpart.

IIR commands

IIR and FIR filters

Help() Alphabetical command reference Help()

5-102

You can generate notch and resonator filters plus lowpass, highpass, bandpass and
bandstop filters modelled on Butterworth, Bessel and Chebyshev analogue filters. The
examples for Butterworth, Bessel and Chebyshev filters show a fifth order lowpass filter
with the edge set to 0.2 with inset examples of high-pass, bandpass and bandstop filters.

These have a maximally flat pass band, but pay for
this by not having the steepest possible transition
between the pass band and the stop band. The
example shows a low pass fifth order Butterworth
filter with a cut-off frequency set to 0.2 of the sample
rate. The x axis is frequency, the y axis is the filter
gain. Both axes are linear.

An analogue Bessel filter has the property that the
group delay is maximally flat, which means that it
tends to preserve the shape of a signal passed through
it. This leads to filters with a gentle cut-off. When
digitised, the constant group delay property is
compromised; the higher the filter order, the worse
the group delay. The example shows a fifth order low
pass filter at 0.2 of the sample rate.

Filters of this type are based on Chebyshev
polynomials and have the fastest transition between
the pass band and the stop band for a given ripple in
the pass band and no ripples in the stop band. In the
example, the ripple has been set to 3 dB, to match the
other examples, though you would normally choose
less ripple than this.

Filters of this type are defined by the start of the stop
band and the stop band ripple. The filter has the
fastest transition between the pass and stop bands
given the stop band ripple and no ripple in the pass
band. The example shows a fifth order filter with a
40 dB stop band ripple and with the stop band
starting at 0.2 of the sample rate.

Notch filters are defined by a centre frequency and a
q factor. q is the width of the stop band at the –3 dB
point divided by the centre frequency: the higher the
q, the narrower the notch. Notch filters are often used
to remove mains hum, but if you do this you will
likely need to set notches at the first few odd
harmonics of the mains frequency. The example has
a centre frequency of 0.2 and a q of 10, so the width
the –3 dB point is 0.02 of the sample rate.

A resonator is the inverse of a notch. It is defined in
terms of a centre frequency and a q factor. q is the
width of the pass band at the –3 dB point divided by
the centre frequency: the higher the q, the narrower
the resonance. Resonators are sometimes used as
alternatives to a narrow bandpass filter. The example
shows a centre frequency of 0.2 of the sample rate
and a q of 10, so the width of the pass band at the –3
dB point is 0.02 of the sample rate.

Filter types

Butterworth

Bessel

Chebyshev type 1

Chebyshev type 2

Notch

Resonator

Help() The Spike2 script language Help()

5-103

There are six IIR commands. The commands are all independent and they each remember
the last filter you created. They all support the following variants:

You can use a command variant of this form to return filter information:
Func IIRxxxx(get%{, arr[]{[]}});

get% The form of the command using this argument is used to read back information
about the last filter created with this command. The argument can be:
1 arr[] is filled in with the impulse response of the filter. The return value is

the magnitude of the largest value in arr[]. For example, if the impulse
response ranged in values from –0.5 to 0.3, 0.5 would be returned.

2 arr[] is filled in with the step response of the filter. The return value is the
magnitude of the largest value in arr[].

3 arr[][] is a matrix with 2 columns and r rows. The frequency response is
returned as complex numbers in the columns; column 0 holds the real part
and column 1 the imaginary part. The first row corresponds to a frequency of
0; the final row corresponds to a frequency of half the sampling rate. The
frequencies are spaced as 0.5/(r-1). The return value is the maximum
magnitude of the returned frequency response (if you wish to normalise the
response curve to a maximum of 1.0).

4 The same as 3 except that the results are returned as the amplitude response
in column 0 and the phase response in column 1. If the real and imaginary
parts of the response are r and i, column 0 holds sqrt(r*r+i*i) and
column 1 holds atan(i, r). The return value is the maximum returned
amplitude response.

5 Returns the number of filter coefficients (2*order%+1) to apply to the filter
input values and fills in arr[] with these values. These correspond to the ai
in the filter expression. However, we return the values in reverse order as this
makes them easier to use as a dot product with old values.

6 Returns the number of filter coefficients (2*order%+1) to apply to the filter
output values and fills in arr[] with these values. These correspond to the bi
in the filter expression. However, we return the values in reverse order to
match the ai. The final value is always –1.0 (corresponding to b0, which is
not used when implementing the filter).

7 Returns the filter gain G.
8 arr[][] is a matrix with 2 columns. The return value is the number of poles

in the s-plane and the matrix is filled in with the poles as complex numbers
with the real part in column 0 and the imaginary part in column 1.

9 The same as 8, but returning the s-plane zeros.
10 The same as 8, but returning the z-plane poles.
11 The same as 8, but returning the z-plane zeros.

This command applies the current filter to an array of equally spaced data. The variant
with a single argument applies the filter forward through the array; with two arguments
you have to option of running it backwards. Running the filter forwards introduces a
phase shift into the output. Running the filter a second time, but backwards, cancels the
phase shift at the expense of a non-causal filter.
Func IIRxxxx(data[]{, flags%});

data An array of data to filter.

flags% Optional, taken as 0 if omitted. Set to 1 to run the filter backwards.

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRLp(), IIRNotch(),
IIRReson()

Common command
variants

Get filter information

Apply existing filter

IIRBp() Alphabetical command reference IIRBs()

5-104

This function creates and applies IIR (Infinite Impulse Response) band pass filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRBp(data[]|0, lo, hi, order%{, type%{, ripple}});
Func IIRBp(data[]{, flags%});
Func IIRBp(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created band
pass filter is used. Otherwise, the filter defined by the remaining arguments is
used forwards. Replace data with 0 to create a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards.
lo The low corner frequency of the band stop filter. This is expressed as a fraction

of the sample rate and is limited to the range 0.0002 to 0.4998. For Chebyshev
type 2 filters, this is the point at which the attenuation reaches the ripple value,
for all other filters this sets the –3 dB point.

hi The high corner frequency of the band pass filter. This is expressed as a fraction
of the sampling rate and is limited to the range lo+0.0002 to 0.4998. For
Chebyshev type 2 filters, this is the point at which the attenuation reaches the
ripple value, for all other filters this sets the –3 dB point.

order% The order of the lowpass filter used as the basis of the design, in the range 1 to
10. The order of the filter implemented is order%*2. High orders (order% > 7)
and narrow bands may cause inaccuracy in the filter. Narrow means that (hi-
lo)/sqrt(lo*hi) is less than 0.2, for example.

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev
type 2. The default value is 0 for a Butterworth filter.

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or
the desired minimum cut in the stop bands for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success. The other command forms have their
return values included in the description of the get% argument or return 0.

See also: FIRMake(), IIRBs(), IIRHp(), IIRLp(), IIRNotch(), IIRReson()

This function creates and applies IIR (Infinite Impulse Response) band stop filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRBp(data[]|0, lo, hi, order%{, type%{, ripple}});
Func IIRBp(data[]{, flags%});
Func IIRBp(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created band
stop filter is used. Otherwise, the filter defined by the remaining arguments is
applied forwards. Replace data with 0 to create a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards.
lo The low corner frequency of the band pass filter. This is expressed as a fraction

of the sample rate and is limited to the range 0.0002 to 0.4998. For Chebyshev
filters, this is the point at which the attenuation reaches the ripple value, for
other filters this sets the –3 dB point.

IIRBp()

IIRBs()

IIRHp() The Spike2 script language IIRHp()

5-105

hi The high corner frequency of the band pass filter. This is expressed as a fraction
of the sampling rate and is limited to the range lo+0.0002 to 0.4998. For
Chebyshev type 2 filters, this is the point at which the attenuation reaches the
ripple value, for all other filters this sets the –3 dB point.

order% The order of the lowpass filter used as the basis of the design, in the range 1 to
10. The order of the filter implemented is order%*2. High orders and narrow
pass bands may lose numerical accuracy in the filter output.

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev
type 2. The default value is 0 for a Butterworth filter.

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or
the desired minimum cut in the stop band for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success. The other command forms have their
return values included in the description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRHp(), IIRLp(), IIRNotch(), IIRReson()

This function creates and applies IIR (Infinite Impulse Response) high pass filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRHp(data[]|0, edge, order%{, type%{, ripple}});
Func IIRHp(data[]{, flags%});
Func IIRHp(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created high
pass filter is used. Otherwise, the filter defined by the remaining arguments is
applied forwards. Replace data with 0 to create a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards.
edge The corner frequency of the high pass filter. This is expressed as a fraction of

the sample rate and is limited to the range 0.0002 to 0.4998. For Chebyshev
filters, this is the point at which the attenuation reaches the ripple value, for
other filters this sets the –3 dB point.

order% The order of the filter in the range 1 to 10.
type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev

type 2. The default value is 0 for a Butterworth filter.
ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or

the desired minimum cut in the stop bands for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success. The other command forms have their
return values included in the description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRLp(), IIRNotch(), IIRReson()

IIRHp()

IIRLp() Alphabetical command reference IIRNotch()

5-106

This function creates and applies IIR (Infinite Impulse Response) low pass filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRLp(data[]|0, edge, order%{, type%{, ripple}});
Func IIRLp(data[]{, flags%});
Func IIRLp(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created low
pass filter is used. Otherwise, the filter defined by the remaining arguments is
applied forwards. Replace data with 0 to create a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards.
edge The corner frequency of the low pass filter. This is expressed as a fraction of the

sample rate and is limited to the range 0.0002 to 0.4998. For Chebyshev filters,
this is the point at which the attenuation reaches the ripple value, for other
filters this sets the –3 dB point.

order% The order of the filter in the range 1 to 10.
type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev

type 2. The default value is 0 for a Butterworth filter.
ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or

the desired minimum cut in the stop bands for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success. The other command forms have their
return values included in the description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRNotch(), IIRReson()

This function creates and applies IIR (Infinite Impulse Response) notch filters to arrays
of data. You can run the filter forwards or backwards through the data. The gain of the
notch filter is zero at the notch frequency and 1 at low and high frequencies.
Func IIRNotch(data[]|0, fr, q);
Func IIRNotch(data[]{, flags%});
Func IIRNotch(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created
notch filter is used. Otherwise, the filter defined by the remaining arguments is
applied forwards. Replace data with 0 to create a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards.
fr The frequency of the notch. This is expressed as a fraction of the sample rate

and is limited to the range 0.0002 to 0.4998.
q The desired q factor for the notch filter. If the two –3 dB points either side of the

notch are at frequencies Flo and Fhi, q is given by fr/(Fhi-Flo). The higher
the q, the narrower the notch. Try 100 as a starting point.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

IIRLp()

IIRNotch()

IIRReson() The Spike2 script language Inkey()

5-107

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success. The other command forms have their
return values included in the description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRLp(), IIRReson()

This function creates and applies IIR (Infinite Impulse Response) resonator filters to
arrays of data. You can run the filter forwards or backwards through the data. The gain of
the filter is 1 at the resonator frequency and zero at low and high frequencies.
Func IIRReson(data[]|0, fr, q);
Func IIRReson(data[]{, flags%});
Func IIRReson(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created band
stop filter is used. Otherwise, the filter defined by the remaining arguments is
applied forwards. Replace data with 0 to create a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards.
fr The centre frequency of the resonator. This is expressed as a fraction of the

sample rate and is limited to the range 0.0002 to 0.4998.
q The desired q factor for the resonator. If the two –3 dB points either side of the

resonance are at frequencies Flo and Fhi, q is given by fr/(Fhi-Flo). The
higher the q, the narrower the resonance. Try 100 as a starting point.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success. The other command forms have their
return values included in the description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRLp(), IIRNotch()

This function is provided for compatibility with the MS-DOS version of Spike2. Do not
use it in new scripts. It returns the ASCII code for the key pressed, or -1 if no key was
pressed. In some cases Spike2 absorbs keystrokes, for example if you are sampling and
the current window is the sampling time window all keystrokes are taken as markers.
Func Inkey();

Returns The key code or -1 if there is no pending key. The codes are:
 1-31 Ctrl+ABC...XYZ[\]^_ 65-95 ABC...XYZ[\]^_
 32 space 96 `
 33-47 !"#$%&'()*+,-./ 97-126 abc...xyz{|}~
 48-64 0123456789:;<=>?@ 127 Rubout

See also: Interact(), Keypress(), Toolbar(), ToolbarSet()

IIRReson()

Inkey()

Input() Alphabetical command reference InStr()

5-108

This function reads a number from the user. It opens a window with a message, and
displays the initial value of a variable. You can limit the range of the result.
Func Input(text$, val {,low {,high}});

text$ A string holding a prompt for the user. If the string includes a vertical bar, the
text before the vertical bar is used as the window title.

val The initial value to be displayed for editing. If limits are given, and the initial
value is outside the limits, it is set to the nearer limit.

low An optional low limit for the result. If low>=high, the limits are ignored.
high An optional high limit for the result.
Returns The value typed in. The function always returns a value. If an out-of-range value

is entered, the function warns the user and a correct value must be given. When
parsing the input, leading white space is ignored and the number interpretation
stops at the first non-numeric character or the end of the string.

See also: DlgReal(), DlgInteger(), Input$(), Inkey()

This function reads user input into a string variable. It opens a window with a message,
and displays a string. You can also limit the range of acceptable characters.
Func Input$(text$, edit${, maxSz%{, legal$}});

text$ A string holding a prompt for the user. If the string includes a vertical bar, the
text before the vertical bar is used as the window title.

edit$ The starting value for the text to edit.
maxSz% Optional, maximum size of the response string.
legal$ An string holding acceptable characters. edit$ is filtered before display. A

hyphen indicates a range of characters. To include a hyphen in the list, place it
first or last in the string. Upper and lower case characters are distinct. For upper
and lower case characters and integer numbers use: "a-zA-Z0-9".

 If this string is omitted, all printing characters are allowed, equivalent to " -~"
(space to tilde). For simple use, the sequence of printing characters is:

 space !"#$%&'()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

 The order of extended or accented characters is system and country dependent.
Returns The result is the edited string. A blank string is a possible result.
See also: DlgString(), Input(), Inkey()

This function searches for a string within another string. This function is case sensitive.
Func InStr(text$, find$ {,index%});

text$ The string to be searched.
find$ The string to look for.
index% If present, the start character index for the search. The first character is index 1.
Returns The index of the first matched character, or 0 if the string is not found.
See also: Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print$(),

ReadStr(), Right$(), Str$(), UCase$(), Val()

Input()

Input$()

InStr()

Interact() The Spike2 script language Keypress()

5-109

This function provides a quick and easy way to interact with a user. It displays the
interact toolbar at the top of the Spike2 window and pauses the script until a button or a
key linked to a button is pressed. Cursors can always be dragged as we assume that they
are one of the main ways of interacting with the data. You can limit the user actions when
the bar is active.
Func Interact(msg$, allow% {,help {, lb1$ {,lb2$ {,lb3$...}}}});

msg$ A message to display in the message area of the toolbar. The message area
competes with the button area. With many buttons, the text may not be visible.

allow% A number that specifies the actions that the user can and cannot take while
interacting with Spike2. 0 allows the user to inspect data and position cursors in
a single, unmoveable window. The codes are shown in both decimal and
hexadecimal format. The number is the sum of possible activity codes.

1 0x0001 Can change application
2 0x0002 Can change the current window
4 0x0004 Can move and resize windows
8 0x0008 Can use File menu

16 0x0010 Can use Edit menu
32 0x0020 Can use View menu but not ReRun
64 0x0040 Can use Analysis menu

128 0x0080 Can use Cursor menu and add cursors
256 0x0100 Can use Window menu
512 0x0200 Can use Sample menu

1024 0x0400 No changes to y axis
2048 0x0800 No changes to x axis
4096 0x1000 No horizontal cursor channel change

help This is either the number of a help item (CED internal use) or it is a help context
string. This is used to set the help information that is presented when the user
presses the F1 key. Set 0 to accept the default help. Set a string as displayed in
the Help Index to select a help topic, for example "Cursors: Adding".

lb1$ These label strings create buttons, from right to left, in the tool bar. If no labels
are given, one label is displayed with the text "OK". The maximum number of
buttons is 17. Buttons can be linked to the keyboard using & and by adding a
vertical bar followed by a key code to the end of the label. You can also set a
tooltip. The format is "Label|code|tip". See the documentation for label$
in the ToolbarSet() command for details.

Returns The number of the button that was pressed. Buttons are numbered in order, so
lb1$ is button 1, lb2$ is button 2 and so on.

If a toolbar created by Toolbar() is present, it is hidden during the Interact()
command and restored after Interact() returns.

See also: Toolbar(), ToolbarSet()

This function returns 1 if the Inkey() function would return a character, or 0 if it would
not. This function and Inkey() are provided for compatibility with the MS-DOS version
of Spike2 and are not recommended for new scripts.
Func Keypress();

Returns 1 if a key is ready to read, 0 if there is no key.
See also: Inkey(), Interact(), Toolbar(), ToolbarSet()

Interact()

Keypress()

LastTime() Alphabetical command reference Len()

5-110

This function finds the first item on a channel before a time. If a marker filter is applied
to the channel, only data in the filter is visible. This function is for time views only.
Func LastTime(chan%, time{,&val|code%[]{,data[]|data%[]|&data$}});

chan% The channel number in the view to use.
time The time to search before. Items at the time are ignored. To start a backward

search that guarantees to iterate through all items, start at Maxtime(chan%)+1.
val Optional: for waveform channels it returns the waveform value. For event level

channels, it is returned 0 if the transition is low to high, and 1 if the transition is
high to low. If there is no event it returns the level at time; 0 for low, 1 for high.

code% This optional parameter is only used if the channel is a marker type (marker,
RealMark, TextMark, WaveMark). This is an array with at least four elements
that is filled in with the marker codes.

data Filled with data from RealMark and WaveMark channels. If there is insufficient
data to fill it, unused entries are unchanged. An integer array can be used with
WaveMark data to collect a copy of the 16-bit data that holds the waveform. If
WaveMark data has multiple traces, use data[points%][traces%] to get real
data and data%[points%][traces%] to get the integer data.

data$ A string returned holding the text from a TextMark channel.
Returns The function returns either the time of the next item, or -1 if there are no more

items to be found or a negative error code.
See also: ChanData(), MaxTime(), NextTime()

This function converts a string into lower case.
Func LCase$(text$);

text$ The string to convert.
Returns A lower cased version of the original string.
See also: Asc(), Chr$(), Str$(), UCase$(), Val()

This function returns the first n characters of a string.
Func Left$(text$, n);

text$ A string of text.
n The number of characters to extract.
Returns The first n characters, or all the string if it is less than n characters long.
See also: DelStr$(), Len(), Mid$(), Right$()

This function returns the length of a string or the size of a one dimensional array.
Func Len(text$);
Func Len(arr[]);

text$ The text string.
arr[] A one dimensional array. It is an error to pass in a two dimensional array.
Returns The length of the string or the array, as an integer.
You can find out the size of each dimension of a two dimensional array as follows:

LastTime()

LCase$()

Left$()

Len()

Ln() The Spike2 script language LogHandle()

5-111

proc something(arr[][]) 'function passed a 2-d array
var n%; n% := Len(arr[][0]); 'get size of first dimension
var m%; m% := Len(arr[0][]); 'get size of second dimension

See also: Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Mid$(),
Print$(), Right$(), Str$(), UCase$(), Val()

This function calculates the natural logarithm (inverse of Exp()) of an expression, or
replaces the elements of an array with their natural logarithms.
Func Ln(x|x[]|x[][]);

x A real number or a real array. Zero or negative numbers cause the script to halt
with an error unless the argument is an array, when an error code is returned.

Returns When used with an array, it returns 0 if all was well, or a negative error code.
When used with an expression, it returns the natural logarithm of the argument.

See also: Abs(), ATan(), Cos(), Exp(), Frac(), Log(), Max(), Min(), Pow(),
Rand(), Round(), Sin(), Sqrt(), Tan(), Trunc()

The gamma function Γ(x) has the useful property that Γ(n+1) is the same as n! (n
factorial) for integral values of n. However, it increases very rapidly with x, reaching
floating-point infinity when x is 172.62. To avoid this problem, the script returns the
natural logarithm of the gamma function. The definition of the gamma function is:

Γ(a) = ∫
0

∝

e-tt a-1dt

Func LnGamma(a);

a A positive value. The script stops with a fatal error if this is negative.
Returns The natural logarithm of the Gamma function of a.

See also: GammaP()

Takes the logarithm to the base 10 of the argument.
Func Log(x|x[]|x[][]);

x A real number or a real array. Zero or negative numbers cause the script to halt
with an error unless the argument is an array, when an error code is returned.

Returns With an array, this returns 0 if all was well or a negative error code. With an
expression, this returns the logarithm of the number to the base 10.

See also: Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Max(), Min(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan(), Trunc()

This returns the view handle of the log window (which always exists).
Func LogHandle();

See also: Print(), PrintLog(), View()

Ln()

LnGamma()

Log()

LogHandle()

MarkEdit() Alphabetical command reference MarkMask()

5-112

This changes the data stored in a marker at a particular time. You can get the data using
LastTime() and NextTime().
Func MarkEdit(chan%, time, code%[]{, data$|data[]|data%[]});

chan% The marker, TextMark, WaveMark or RealMark channel to edit.
time The time of the marker (must match exactly).
code% Array of 4 marker codes (bottom 8 bits used) to replace markers in the channel.
data The data to replace the data in the marker. If you use integer data with a

WaveMark, the bottom 16 bits of each integer replace the data. To update a
WaveMark with multiple traces use a two-dimensional array, for example with
32 points and 4 traces use var data[32][4]; to declare the array.

Returns 0 if a marker was edited, or -1 if no marker exists at time.
See also: LastTime(), MarkInfo(), MarkMask(), MarkSet(), NextTime()

This sets the marker codes of a marker, WaveMark, TextMark or RealMark channel in a
time range. If a marker filter mask is set, only data that is passed by the mask is changed.
Func MarkSet(chan%, sT, eT, code%[]);
Func MarkSet(chan%, sT, eT, c0%{, c1%{, c2%{, c3%}}});

chan% The channel to process.
sT,eT The time range to process.
code% An array of 4 integers holding the new marker codes in the range 0 to 255 or -1

for a code that is unchanged.
c0-c3% One to four marker codes as an alternative to code%[]. Use values 0 to 255 to

change a code and -1 (or omit the value) to leave a code unchanged.
Returns The number of markers that were changed.

See also: LastTime(), MarkEdit(), MarkMask(), NextTime()

This function sets the mask for a marker, WaveMark, TextMark or RealMark channel.
Each data item in one of these channels has four marker codes. Each code has a value
from 0 to 255. Each data channel (and duplicated channel) has its own marker filter that
determines the visible data items. A marker filter has four masks, one for each of the four
marker codes. For each mask, you can specify which codes are wanted. There are two
marker filter modes. In the diagrams, a marker data item is represented as a time stamp,
four marker codes and data values that depend on the marker type.

A marker data item is allowed through the
mask if each of the four codes in the data
item is present in the corresponding mask.
We think of this as and mode because for
the filter to pass the marker, marker code 0 must be is mask 0 and marker code 1 in mask
1 and marker code 2 in mask 2 and marker code 3 in mask 3. In this mode, masks 1, 2
and 3 are usually set to accept all codes and masking is used for layer 0.

A marker data item is allowed through the
mask if any of the four marker codes is
present in mask 0. A code 00 is only
accepted for the first of the four marker
codes. Masks 1 to 3 are ignored. We think of this as or mode because marker code 0 or 1
or 2 or 3 must be present in mask 0 for the filter to pass the marker for display or

MarkEdit()

MarkSet()

MarkMask()

Mode 0 (AND) Marker 0 1 2 data…3

mask 3mask 1 mask 2mask 0

time stamp

Filter

Mode 1 (OR) Marker 0 1 2 data…3

mask 3mask 1 mask 2mask 0

time stamp

Filter

MarkMask() The Spike2 script language MarkMask()

5-113

analysis. This mode can be used with spike shape data (WaveMark) where two spikes
have collided and the marker represents a spike of two different templates.

There are three command variants, the first sets the filter codes, the second the filter
mode and the third allows you to read and set the mask:
Func MarkMask(chan%, layer%, set%, code%|code$ {,code%|code$...});
Func MarkMask(chan%, mode%);
Func MarkMask(chan%, mask%[]{[]}{, write%});

chan% The channel number to work on. If this is not a suitable channel, the function
does nothing and returns a negative error code.

layer% The layer of the mask in the range 0 to 3 or -1 for all layers.
set% 1 to include codes in the mask, 0 to exclude codes or -1 to invert the mask.

Inverting a mask changes all included codes to excluded and vice versa.
code% A number in the range 0 to 255 setting a code to include or exclude. You can

specify more than one code at a time. -1 is also allowed, meaning all codes.
code$ Each character in the string is converted to its ASCII value, and used as a code.
mode% The variant with two arguments returns the current mode of the marker filter and

optionally sets the mode of matching as 0 or 1 or -1 for no change.
mask% This is an array that is usually declared as mask%[256][4] or mask%[256]

that maps onto the mask. The second dimension sets the layer. A one-
dimensional array maps onto layer 0. When reading, elements are set to 0 or 1.
When writing, zero element clear and non-zero elements set the corresponding
item in the mask. If the array size does not match 256 by 4, data is transferred
between array items that map onto the mask.

write% If this optional argument is omitted or zero, the mask% array is filled with data.
If it is 1, the mask data is copied to the mask.

Returns 0 if all is OK, or a negative error code.

A common requirement is to allow all markers to be used. This is achieved by:
MarkMask(chan%, -1, 1, -1); 'Set all codes for all layers

To fill or empty or invert a complete layer use:
MarkMask(chan%, layer%, set%, -1); 'Apply set% to entire layer

This example sets the keyboard marker channel mask (channel 31) to show only markers
0 and 1 (start and stop recording markers) and key presses for A, B, C and D:
MarkMask(31, 0); 'set mode 0
MarkMask(31,-1, 1,-1); 'include everything (reset)
MarkMask(31, 0, 0, -1); 'exclude everything in layer 0
MarkMask(31, 0, 1, 0, 1, "ABCD"); 'include the codes we want

You can use this command together with ChanDuplicate() to split a marker channel
into several channels based on marker codes.

See also: ChanDuplicate(), LastTime(), MarkEdit(), MarkInfo(), MarkSet(),
NextTime()

MarkInfo() Alphabetical command reference MATMul()

5-114

This function is used to get information on the extended marker types (TextMark,
WaveMark and RealMark).
Func MarkInfo(chan% {,&pre% {,trace%}});

chan% The channel to get the information from.
pre% If present, returned as the number of pre-peak points for WaveMark data.
trace% If present, returned as the number of traces (electrodes) in the WaveMark data.
Returns For WaveMark data it returns the number of waveform points, for TextMark

data it returns the maximum string length and for RealMark data it returns the
number of reals attached to each marker. For all other channel types it returns 0.

See also: LastTime(), MarkEdit(), MarkMask(), MarkSet(), NextTime()

This calculates the determinant of a matrix (a two dimensional array).
Func MATDet(mat[][]);

mat A two dimensional array with the same number of rows and columns.
Returns The determinant of mat or 0.0 if the matrix is singular.

See also: ArrAdd(), MATInv(), MATMul(), MATTrans()

This inverts a matrix (a two dimensional array) and optionally returns the determinant.
Func MATInv(inv[][] {,src[][]{, &det}});

inv A two dimensional array to hold the result. If src is omitted, inv is replaced by
its own inverse. The number of rows and columns of inv must be the same.

src If present, the matrix to invert. The numbers of rows and columns of this two
dimensional array must be at least as large as inv.

det If present, returned holding the determinant of the inverted matrix.
Returns 0 if all was OK, -1 if the matrix was singular or very close to singular.

See also: ArrAdd(), MATMul()

This function multiplies matrices and/or vectors. In matrix terms, this evaluates A = BC
where A is an m rows by n columns matrix, B is an m by p matrix and C is a p by n
matrix. Vectors of length v are treated as a v by 1 matrix.
Proc MATMul(a[]{[]}, b[]{[]}, c[]{[]});

a A m by n matrix of reals or a vector of length m (n is 1) to hold the result.
b A m by p matrix or a vector of length m (p is 1).
c A p by n matrix or a vector of length p (n must be 1).
If you pass any of a, b or c as a vector, they are treated as a n by 1 matrix, where n is the
length of the vector. Use the trans() operator to convert a vector to a 1 by n matrix.

See also: ArrMul(), MATInv()

MarkInfo()

MATDet()

MATInv()

MATMul()

MATSolve() The Spike2 script language Maxtime()

5-115

This function solves the matrix equation Ax = y for x, given A and y. Both x and y are
vectors of length n and A is an n by n matrix.
Func MATSolve(x[], a[][], y[]);

x A one dimensional real array of length n to hold the result.
a A two dimensional (n by n) array of reals holding the matrix.
y A one dimensional real array of length n.
Returns The functions returns 0 if all is OK or -1 if a is a singular matrix.
See also: ArrMul(), MATInv()

This transposes a matrix (a two dimensional array), swapping the rows and columns. This
procedure physically moves the data, unlike the trans() or ` operator, which remaps
the matrix without moving any data. It is usually much more efficient to use trans().
Proc MATTrans(mat[][]{, src[][]});

mat A m by n matrix returned holding the transpose of src. If src is omitted, m must
be equal to n and the rows and columns of mat are swapped.

src Optional, a n by m matrix to transpose.
See also: ArrAdd(), MATMul()

This function returns the index of the maximum value in an array, or the maximum of
several real and/or integer variables.
Func Max(arr[]|arr%[]|val1 {,val2 {,val3...}});

arr A real or integer array.

valn A list of real and/or integer values to scan for a maximum.

Returns The maximum value or array index of the maximum.

See also: Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Min(), MinMax(),
Pow(), Rand(), Round(), Sin(), Sqrt(), Tan(), Trunc(), XYRange()

In a time view, this returns the maximum time in seconds in the file or in a channel, or
the current sample time during sampling. In a result view, it returns the number of bins.
Func MaxTime({chan%});

chan% Optional channel number for time views, ignored in result views. If present, the
function gets the maximum time in the channel ignoring any marker filter. If
there is no data in the channel, the return value is -1.

Returns The value returned is negative if the channel does not exist. If the current view is
of the wrong type the script stops with an error.

To find the time of the last item in the marker filter on a channel with a marker filter set:
time := LastTime(chan%, MaxTime(chan%)+1.0);

With a marker filter set, Spike2 has to search the data to find a marker that is in the filter.
MaxTime() returns the last data item in the channel regardless of the marker code. The
+1.0 is because LastTime() finds data before the search time.

See also: Len(), LastTime(), NextTime(), Seconds()

MATSolve()

MATTrans()

Max()

Maxtime()

MeasureChan() Alphabetical command reference MeasureChan()

5-116

This function adds or changes a measurement channel in an XY view created with
MeasureToXY() using the settings previously defined by using MeasureX() and
MeasureY(). The XY view must be the current view. This command implements some
of the functionality of the XY plot setting dialog.
Func MeasureChan(chan%, name${, pts%});

chan% This is 0 to add a new channel or the number of an existing channel to change
settings. MeasureToXY() creates an XY view with one channel, so you will
usually call this function with chan% set to 1. You can have up to 32
measurement channels in the XY view.

name$ This sets the name of the channel and can be up to 9 characters long.
pts% Sets the maximum number of points for this channel, if omitted or set to zero

then all points are used. When a points limit is set and more points are added,
the oldest points are deleted.

Returns The channel number these settings were applied to or a negative error code.
See also: CursorActive(), MeasureToXY(), MeasureX(), MeasureY()

MeasureChan()

MeasureToChan() The Spike2 script language MeasureToChan()

5-117

This creates a new Event, Marker or RealMark channel with an associated measurement
process and cursor 0 iteration method for the current time view. The Process()
command adds items to the new channel based on active cursor measurements. Before
calling this function, use MeasureX() to set the measurement method to 102 (Time) and
set expr1$ to generate the time stamps of the new items. If you select any other method
this command will return an error code. The iteration must produce times in ascending
order unless the output is to a memory channel.

If you are creating a RealMark channel, you must call MeasureY() before this function
to define the measurement to attach to each data item added to the new channel.

Func MeasureToChan(dest%, name$, type%, mode%, chan%, min|exp$
 {, lv|lv${ ,hw{, flgs%{, qu${, width{, lv2|lv2$}}}}}});

dest% This is the output channel number or zero for the lowest numbered, unused
memory channel. Set 1 to 400 for channels in the data file and 401 to 800 for
specific memory channels. It is a fatal error to set a channel that is in use.

name$ The output channel name. Channel units, if required, are inferred from chan%
and the measurement method.

type% This sets the output channel type, as for ChanKind(). The allowed types are: 2
or 3 for Event, 5 for a Marker, and 7 for RealMark. If you wish to store data
other than event times in the file, you should set type% to 7.

mode% This is the cursor 0 iteration mode. Modes are the same as in CursorActive()
but not all modes can be used. Valid modes are:
4 Peak find 8 Falling threshold 14 Data points 19 Outside levels
5 Trough find 12 Slope peak 16 Expression 20 Inside levels
7 Rising threshold 13 Slope trough 17 Turning point

chan% This is the channel searched by the cursor 0 iterator. In expression mode (16),
this is ignored and should be set to 0.

min This is the minimum allowed step for cursor 0 used in all modes except 16.
exp$ This is the expression that is evaluated in mode 16.
lv This number or string expression sets the threshold level for threshold modes

and the peak size for peak and trough modes. It is in the y axis units of channel
chan% or y axis units per second for modes 12 and 13. In mode 14 it sets the
points as a number and defaults to 1. This argument is ignored and should be 0
or omitted for modes that do not require it.

hw This sets the hysteresis level in y axis units for threshold modes. This argument
is ignored and should be 0 or omitted for modes that do not require it. For
backwards compatibility, if width is omitted, it sets the width in seconds for
slope measurements.

flgs% This is the sum of option flags. Add 1 to force a common x axis Add 2 for user
checks on the cursor positions. The default value is zero.

qu$ This sets the qualification expression for the iteration. If left blank then all
iteration positions will be used. If not blank, and it evaluates to non-zero, then
the iteration is skipped.

width This sets the width, in seconds, for slope measurements. Set this 0 or omit it in
modes that do not require it.

lv2 This number or string expression is used with lv to set the two threshold levels
for cursor iteration modes 19 and 20.

Returns The function result is the number of the created channel.

See also: CursorActive(), MeasureChan(), MeasureX(), MeasureY(), Process()

MeasureToChan()

MeasureToXY() Alphabetical command reference MeasureToXY()

5-118

This creates a new XY view with a measurement process and cursor 0 iteration method
for channels in the current time view. It creates one output channel with a default
measurement method. Use MeasureX(), MeasureY() and MeasureChan() to edit the
method and add channels. Use Process() to generate the plot. The new XY view is the
current view and is invisible. Use WindowVisible(1) to make it visible. These
commands implement the functionality of the Measurements to XY view dialog.
Func MeasureToXY(mode%, chan%, min|exp$
 {, lv|lv${ ,hw{, flgs%{, qu${, width{, lv2|lv2$}}}}}});

mode% This is the cursor 0 iteration mode. Modes are the same as in CursorActive()
but not all modes can be used. Valid modes are:
4 Peak find 8 Falling threshold 14 Data points 19 Outside levels
5 Trough find 12 Slope peak 16 Expression 20 Inside levels
7 Rising threshold 13 Slope trough 17 Turning point

chan% This is the channel searched by the cursor 0 iterator. In expression mode (16),
this is ignored and should be set to 0.

min This is the minimum allowed step for cursor 0 used in all modes except 16.
exp$ This is the expression that is evaluated in mode 16.
lv This number or string expression sets the threshold level for threshold modes

and the peak size for peak and trough modes. It is in the y axis units of channel
chan% or y axis units per second for modes 12 and 13. In mode 14 it sets the
points as a number and defaults to 1. This argument is ignored and should be 0
or omitted for modes that do not require it.

hw This sets the hysteresis level in y axis units for threshold modes. This argument
is ignored and should be 0 or omitted for modes that do not require it. For
backwards compatibility, if width is omitted, it sets the width in seconds for
slope measurements.

flgs% This is the sum of option flags. Add 1 to force a common x axis Add 2 for user
checks on the cursor positions. The default value is zero.

qu$ This sets the qualification expression for the iteration. If left blank then all
iteration positions will be used. If not blank, and it evaluates to non-zero, then
the iteration is skipped.

width Set this value in seconds; use 0 or omit it in modes that do not require it. For
slopes it sets the time over which the slope is measured. For peaks and troughs,
it sets the maximum peak width (use 0 for no maximum). For threshold modes
7, 8, 19 and 20 it sets the minimum crossing time (Delay in the dialog).

lv2 This number or string expression together with lv sets the two threshold levels
for cursor iteration modes 19 and 20.

Returns The function result is an XY view handle or a negative error code.

Arguments passed as strings are not evaluated until data is processed. Invalid strings
generate invalid measurements and no data points in the XY view.

This code generates a plot of the peak values from channel 1 of the current time view.
Peaks must be at least 0.1 seconds apart and the data must fall by at least 1 y axis unit
after each peak.
var xy%; 'Handle of new xy view
xy%:=MeasureToXY(4, 1, 0.1, 1); 'Peak, chan 1, min step 0.1, amp 1
WindowVisible(1); 'Window is invisible, so show it
MeasureX(102, 0, "Cursor(0)"); 'x = Time, no channel, at cursor 0
MeasureY(100, 1, "Cursor(0)"); 'y = Value of chan 1 at cursor 0
MeasureChan(1, "Peaks", 0); 'Set the title, no point limit
Process(0.0, View(-1).MaxTime(),0,1); 'Process all the data

See also: CursorActive(), MeasureChan(), MeasureX(), MeasureY(), Process()

MeasureToXY()

Example

MeasureX() The Spike2 script language MeasureY()

5-119

The MeasureX() and MeasureY() functions set the x and y part of a measurement for a
measurement channel. The settings are saved but have no effect until MeasureChan() or
MeasureToChan() are used to change or create a channel. This command implements
some of the functionality of the XY plot setting dialog. The current view must be the
target of the measurements.
Func MeasureX(type%, chan%, expr1|coef% {,expr2 {,width}});
Func MeasureY(type%, chan%, expr1|coef% {,expr2 {,width}});

type% This sets the x or y measurement type. Values less than 100 match those for the
ChanMeasure() command (types 5 and 1 are identical for this command). If
you are using MeasureX() for use with MeasureToChan(), the only valid
type% is 102.

 1 Area 5 Area (scaled) 9 Minimum 13 Abs max. 17 Mean in X
2 Mean 6 Curve area 10 Peak to Peak 14 Peak 18 SD in X
3 Slope 7 Modulus 11 RMS Amplitude 15 Trough 19 Mean of abs
4 Sum 8 Maximum 12 Standard deviation 16 RMS error

 Values from 100 up are:
100 Value 104 0-based fit coefficient 108 Value product
101 Value difference 105 User entered value
102 Time 106 Expression
103 Time difference 107 Value ratio

chan% This is the channel number for the measurement. For time, user entered and
expression measurements it is ignored and should be set to 0.

expr1 Either a real value or a string expression that evaluates as the start time for
measurements over a time range, as the position for time (102) and value
measurements and as the expression used for measurement type 106.

coef% The zero-based coefficient number for measurement type 104.
expr2 Either a real value or a string expression that evaluates as the end time for

measurements over a time range and as the reference time for position for
single-point measurements and differences. Set this to an empty string when
width is required and this is not.

width This is the measurement width for value and value difference measurements.
The default value is zero.

Returns The function return value is zero or a negative error code.
See also: CursorActive(), MeasureChan(), MeasureToChan(), MeasureToXY()

This is identical to MeasureX() and sets the y part of a measurement for a measurement
channel. The settings are saved but have no effect until MeasureChan() is used to
change or create a channel. See the MeasureX() documentation for details.
Func MeasureY(type%, chan%, expr1$ {,expr2$ {,width}});

See also: MeasureX()

MeasureX()

MeasureY()

MemChan() Alphabetical command reference MemDeleteItem()

5-120

This function creates a new channel in memory and attaches it to the file in the current
time view. You can have up to 400 memory channels per file.
Func MemChan(type%{, size%{, binsz{, pre%{, trace%}}}});

type% The type of channel to create. Codes are:
1 Waveform 4 Level (Event+-) 7 RealMark
2 Event (Event-) 5 Marker (default) 8 TextMark
3 Event (Event+) 6 WaveMark 9 Real wave

size% For TextMark, RealMark and WaveMark channels this sets the number of
characters, reals or waveform points to attach to each item. It is ignored for all
other channel types and should be set to 0.

binsz Used for waveform and WaveMark data to specify the time interval between the
waveform points. This is rounded to the nearest multiple of the underlying time
resolution. If you set this 0 or negative, the smallest bin size possible is set.

pre% This must be present for WaveMark data to set the number of pre-trigger points.
trace% Optional, default 1, sets the number of WaveMark traces in range 1 to 4.
Returns Either the channel number of the newly created channel, or 0 if there are no free

channels, or a negative error code.
Channels created in this way are given default titles, units and comments. You can set
these with the ChanTitle$(), ChanUnits$(), ChanComment$(), ChanScale() and
ChanOffset() routines. The following code creates a copy of channel wChan% (a
waveform channel) as a memory channel:
func CopyWave%(wChan%) 'Copy waveform to a memory channel
var mc%;
if ChanKind(wChan%)<>1 then return 0 endif; 'Not a waveform!
mc% := MemChan(1,0,BinSize(wChan%)); 'Create waveform channel
if mc%>0 then 'Created OK?
 ChanScale(mc%, ChanScale(wChan%)); 'Copy scale...
 ChanOffset(mc%, ChanOffset(wChan%)); '...and offset...
 ChanUnits$(mc%, ChanUnits$(wChan%)); '...and units
 ChanTitle$(mc%, "Copy"); 'Set our own title
 ChanComment$(mc%, "Copied from channel "+Str$(wChan%));
 MemImport(mc%, wChan%, 0, MaxTime()); 'Copy data
 ChanShow(mc%); 'display new channel
endif;
return mc%; 'Return the new channel number
end;

See also: ChanNew(), MemDeleteItem(), MemDeleteTime(), MemGetItem(),
MemImport(), MemSave(), MemSetItem()

This function deletes one or more items from a channel created by MemChan(). To delete
the entire channel use ChanDelete().
Func MemDeleteItem(chan% {,index% {,num%}});

chan% The channel number of a channel created by MemChan().
index% The ordinal index into the channel to the item to delete. The first item is

numbered 1. If you specify index -1 or omit this argument, all items are deleted.
num% The number of items to delete from index%. Default value is 1.
Returns The number of items deleted or a negative error code.
See also: MemChan(), MemDeleteTime(), MemGetItem(), MemImport(), MemSave(),

MemSetItem()

MemChan()

MemDeleteItem()

MemDeleteTime() The Spike2 script language MemGetItem()

5-121

This function deletes one or more items from a memory channel based on a time range. If
a marker filter is set, only items in the filter are deleted unless you add 4 to mode%.
Func MemDeleteTime(chan%, mode%, t1 {,t2});

chan% The channel number of a channel created by MemChan().
mode% This sets the items to delete and how to interpret the time range t1 and t2:

0 A single item is deleted. t1 is the item time and t2 is a timing tolerance (0
if t2 is omitted). The nearest item to t1 in the time range t1-t2 to t1+t2
is deleted. If there are no items in the range, nothing is deleted.

1 Delete all items from time t1-t2 to t1+t2. If t2 is omitted, 0 is used.
2 Delete the first item from time t1 to t2. If t2 is omitted it is taken as t1.
3 Delete all items from time t1 to t2. If t2 is omitted, it is taken as t1.
+4 If you add 4 to the mode, any marker filter for the channel is ignored.

t1, t2 Two times, in seconds, that set the time range for items to delete.
Returns The number of items deleted, or a negative error code.
See also: MemChan(), MemDeleteItem(), MemGetItem(), MemSetItem()

This returns information about a memory channel item. The items are identified by their
ordinal position in the channel, not by time, and any mask set for markers is ignored.
Func MemGetItem(chan% {,index% {,code%[] {,&data$|data[]}}});
Func MemGetItem(chan%, index%, &wave|&wave%|wave[]|wave%[]{,&n%});

chan% The channel number of a channel created by MemChan().
index% The ordinal index into the channel to the item required. The first item is

numbered 1. If you omit the index, or specify index 0, the function returns the
number of items in the channel.

The remaining fields are only allowed if the index is non-zero.
code% This is an integer array of at least 4 elements that is returned holding the channel

marker codes. If there are no markers, the codes are all set to 0.
data This must be a string variable for TextMark data or a real array for RealMark or

WaveMark data. It is returned holding the data from the item. If the data type is
incorrect for the channel, it is not changed. For an array, the points returned is
the smaller of the size of the array and the number of values in the item. You can
use a two dimensional array to collect WaveMark data with multiple traces. The
second dimension is for the traces: var data[points%][traces%];

wave This argument collects waveforms from waveform channels. If a real variable or
array is passed, the waveform data is in user units. If an integer variable or array
is passed, the data is a copy of the 16-bit integer data used by Spike2 to store
waveforms. The maximum number of elements copied is the array size.

 When an array is used, only contiguous data is returned. A gap in the data (when
the interval between two points is greater that the sample interval for the
channel) terminates the data transfer.

 You may find that ChanData() is easier to use when you want to collect
waveform (or event) data based on a time range.

n% If the previous argument is an array this optional argument returns the number
of data items copied into the array.

Returns For index% of 0 or omitted, the function returns the number of items in the
channel. If an index is given that is outside the range of items present, the
function returns -1. Otherwise it returns the time of the item.

See also: ChanData(), MemChan(), MemDeleteItem(), MemDeleteTime(),
MemImport(), MemSave(), MemSetItem()

MemDeleteTime()

MemGetItem()

MemImport() Alphabetical command reference MemImport()

5-122

This function imports data into a channel created by MemChan(). There are some
restrictions on the type of data channel that you can import from, depending on the type
of the destination channel.

Destination Source Restrictions
Waveform Waveform

All others
Data copied, but must match sample interval
Not available, see EventToWaveform()

Event Waveform
All others

Can extract event times
Times are extracted from the channel.

Level Waveform
All others

Can extract event times
Times are extracted from the channel. First time in
destination is assumed to be a low to high transition.

Marker Waveform
Event, Level
All others

Can extract event times, coded for peak/trough etc.
Marker codes all set to 0.
Marker codes are copied.

TextMark Waveform
Event, Level
TextMark
All others

Can extract event times, coded for peak/trough etc.
Copies times, marker codes set 0, empty strings
Copies all data, strings may be truncated if too long.
Copies marker information, empty strings

RealMark Waveform
Event, Level
RealMark
WaveMark
All others

Can extract event times, coded for peak/trough etc.
Times copied, marker codes and reals set to 0
Copied, real data truncated or zero padded as needed
Copied, waveform to reals, padded/truncated
Marker portion copied, reals filled with 0

WaveMark Waveform
Event, Level
WaveMark
All others

Special option, event channel marks waveforms
Copies times, marker codes set to 0, waveform set 0
Copies all data, waveforms aligned on trigger point
Copies marker, waveform filled with zeros

You can extract events or markers from waveform data using peak search and level
crossing techniques. You can convert waveform data to WaveMark data with a special
option that chops sections of waveform data out based on event times on a third channel.

The first command variant imports data from a compatible channel. All event and marker
channels can be copied to each other, but the information transferred is the lowest
common denominator of the two channel types. Missing data is padded with zeros.
Waveform data is compatible with itself if both channels have the same sampling rate.
Func MemImport(chan%, inCh%, start, end);

chan% The channel number of a channel created by MemChan().
inCh% The channel number to import data from.
start The start time to collect data from.
end The end time to collect data up to (and including).

The mode%, time, level and code% arguments are used when extracting events from
waveform data. The level crossing modes use linear interpolation between points to find
the exact time of the waveform crossing. The peak and trough modes fit a parabola to the
three points around the peak or trough to estimate the time more accurately.

When extracting events to a WaveMark channel from waveform data, the time saved is
the time of the start of the waveform section, not the peak/trough or level crossing time.
The saved waveform data starts the number of points before each event set by the pre%
parameter to MemChan(). The WaveMark time is adjusted to match the waveform. If
both channels do not have the same sampling rate, the copied waveform is set to zero.

Func MemImport(chan%,inCh%,start,end{,mode%,time,level{,code%}});

MemImport()

Import compatible channel

Extracting events from
waveforms

MemSave() The Spike2 script language MemSave()

5-123

mode% The mode of data extraction. The modes are:
0 Extract events based on the time of a peak in the waveform. If the

destination is a marker, these events are coded as 2 unless code% is set.
1 Extract events based on the time of a trough in the waveform. If the

destination is a marker, the events are coded 3 unless code% is set.
2 Extract events based on times when the waveform rises through level. If

the destination is a marker, the events are coded 4 unless code% is set.
3 Extract events based on times when the waveform falls through level. If

the destination is a marker, the events are coded 5 unless code% is set.
time The minimum time between detected events. Use this to filter noisy signals.
level In modes 0 and 1, this is the distance that the waveform must fall after a peak or

rise after a trough. In modes 2 and 3 it is the level to cross to detect an event.
code% If present and positive it overrides the codes based on mode% that are applied to

the events. The low byte of code% sets the first marker code; the remaining
marker codes are always 0.

The special mode to convert waveform to WaveMark data uses an extra channel to mark
the waveform sections to be extracted. The waveform must have the same sampling rate
as set for the WaveMark channel. The saved waveform data starts the number of points
before each event set by the pre% parameter to MemChan().
Func MemImport(chan%, inCh%, start, end, eCh%);

eCh% A channel holding event times to mark the waveform sections to extract. The
time saved is the time of the first point in each waveform section. If the channel
contains marker codes, these are copied to the memory channel.

Returns It returns the number of items added to the channel, or a negative error code.
See also: MemChan(), MemGetItem(), MemSave(), MemSetItem()

This writes a channel created by MemChan() to the data file associated with the current
window, making the data permanent. The memory channel is not changed; use
ChanDelete() to remove it.
Func MemSave(chan%, dest%{, type%{, query%{, bufSz%}});

chan% A channel created by the MemChan() function.
dest% The destination channel in the file. This must be in the range 1 to the maximum

number of channels allowed in the data file.
type% The type of data to save the data as. The type selected must be compatible with

the data in the memory channel. Codes are:
0 Same type (default) 3 Event (Evt+) 6 WaveMark 9 RealWave
1 Waveform 4 Level (Evt+-) 7 RealMark
2 Event (Evt-) 5 Marker 8 TextMark
The special code -1 means append the memory channel to an existing channel.
The new data must occur after the last item in the dest% channel and the dest%
channel must be of a compatible type to the memory channel.

query% If this is not present or zero, and the dest% channel is already in use, the user is
queried about overwriting it. If this is non-zero, no query is made.

bufSz% If present and greater than 0, this sets the disk block size in bytes for waveform
and RealWave data. If omitted (recommended) or zero, a default size is used.

Returns The number of items written, or a negative error code.
See also: ChanDelete(), ChanWriteWave(), MemChan(), MemImport()

WaveMark from events and
waveform data

MemSave()

MemSetItem() Alphabetical command reference Mid$()

5-124

This function edits or adds an item in a channel created by MemChan(). The item is
identified by its ordinal position in the channel and any mask set for markers is ignored.
Func MemSetItem(chan%, index%, time{, code%[]{, data$|data[]}});
Func MemSetItem(chan%, index%, time, wave|wave%|wave[]|wave%[]);

chan% The channel number of a channel created by MemChan().
index% The index of the item to edit. The first item is number 1. An index of 0 adds a

new item to the buffer at a position set by time (which must be positive).
time The item time, or -1 for no change. If index% is 0, you must supply a time. For

a waveform channel, it sets the time of the first data point but if there is already
data in the channel, time is adjusted by up to half the sampling interval to be
compatible with the sampling interval of the channel and the existing data.

code% This is an integer array of at least 4 elements that hold the marker codes for the
channel. If the channel does not require marker codes, this argument is ignored.
If this parameter is omitted for a channel with markers, the codes are set to 0.

data A string for TextMark data or a real array for RealMark or WaveMark, holding
the item data. If the data type is incorrect it is ignored. The number of points or
characters set is the smaller of the number passed and the number expected. For
RealMark and WaveMark data, if the array is too short, the extra values are
unchanged when index% > 0 (editing) and have the value 0 if index% is 0.

 WaveMark and waveform real values are limited to the range -5*scale+offs
to 4.99985*scale+offs. A two dimensional array is allowed for WaveMark
data: var data[points%][traces%]; passed in as data[][].

wave For a waveform you can set one value, or an array. Real values are limited as
described above. For integers, the lower 16-bits of the 32-bit integer are copied
to the channel (values greater than 32767 or less than -32768 will overflow).

Returns The function returns the index at which the data was stored. If an index is given
that is outside the range of items present, the function returns -1.

See also: ChanWriteWave(), MemChan(), MemGetItem(), MemImport(), MemSave()

This function displays a message in a box with an OK button that the user must click to
remove the message. Alternatively, the user can press the Enter key.
Proc Message(form$ {,arg1 {,arg2...}});

form$ A string that defines the output format as for Print(). If the string includes a
vertical bar, the text before the vertical bar is used as the window title.

arg1,2 The arguments used to replace %d, %f and %s type formats.
You can split the message into multiple lines by including \n in the form$ string. Long
messages are truncated.

See also: Print(), Input(), Query(), DlgCreate()

This function returns a sub-string of a string.
Func Mid$(text$, index% {,count%});

text$ A text string.
index% The starting character in the string. The first character is index 1.
count% The maximum characters to return. If omitted, there is no limit on the number.
Returns The sub-string. If index% is larger than Len(text$), the string is empty.
See also: Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(),

Print$(), Right$(), Str$(), UCase$(), Val()

MemSetItem()

Message()

Mid$()

Min() The Spike2 script language Minmax()

5-125

This function returns the index of the minimum value in an array, or the minimum of
several real and/or integer variables.
Func Min(arr[]|arr%[]|val1 {,val2 {,val3...}});

arr A real or integer array.

valn A list of real and/or integer values to scan for a minimum.

Returns The minimum value or array index of the minimum.

See also: Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Minmax(),
Pow(), Rand(), Round(), Sin(), Sqrt(), Tan(), Trunc(), XYRange()

Minmax() finds the minimum and maximum values for result views and time view
channels with a y axis, or the minimum and maximum intervals for an event or marker
channel drawn as dots or lines. Min() and Max() are preferred in result views.
Func Minmax(chan%, start, finish, &min, &max,{,&minP{,&maxP
 {,mode% {,binsz {,trig%|edge%}}}}});

chan% The channel number in the time or result view.
start The start position in time for a time view, in bins for a result view.
finish The end position in time for a time view, in bins for a result view.
min The minimum value is returned in this variable.
max The maximum value is returned in this variable.
minP The position of the minimum is returned in this variable.
maxP The position of the maximum is returned in this variable.
mode% If present, this sets the drawing mode in which to find the minimum and

maximum. If mode% is absent or inappropriate, the display mode is used. This
parameter is ignored in a result view. The modes in a time view are:
0 The standard mode for the channel.
1 Dots mode for events. The dotSz% argument can be used.
2 Lines mode.
3 Waveform mode. This is the only mode for waveform channels.
4 WaveMark mode.
5 Rate mode. The binSz argument sets the width of each bin.
6 Mean frequency mode. binSz sets the time period.
7 Instantaneous frequency mode. dotSz% can be used.
8 Raster mode. trig% sets the trigger channel, dotSz% is used.

binSz This sets the width of the rate histogram bins and the smoothing period for mean
frequency mode when specifying your own mode.

trig% The trigger channel for raster displays, level data raster displays are impossible.
edge% For level data event channels. It sets which edges of the level signal are used for

mean frequency, instantaneous frequency and rate modes. The values are:
0 Use both edges (same as omitting the parameter).
1 Use rising edges.
2 Use falling edges

Returns Zero if all was well or a negative error code.

See also: Min(), Max(), XYRange()

Min()

Minmax()

MMAudio() Alphabetical command reference MMImage()

5-126

This returns information about the audio content of the current multimedia window.
Func MMAudio({&rate});

rate If present, this is returned as the sample rate per channel, in Hz.

Returns The number of audio channels or 0 if no audio or not a multimedia window.

See also: MMOpen(), MMImage(), MMPosition(), MMVideo()

This copies the image at the current position in the current multimedia view to one or
more data arrays. The two-dimensional arrays that collect the image are treated as
x[v][h], where v is a vertical co-ordinate and h is a horizontal co-ordinate. x[0][0] is
at the bottom left of the image. Use MMVideo() to get the image size. Sections of the
array that do not map onto the image are not changed.
Func MMImage(rgb%[][]);
Func MMImage(map[][]|mode%{, r[][]{, g[][]{, b[][]}}});
Func MMImage(-1, h[][]{, l[][]{, s[][]}}});

rgb% If the first argument is a two-dimensional integer array, it is returned with each
array element holding one pixel in RGB32 format. Bits 0-7 hold the Red
intensity, bits 8-15 hold the Green and bits 16-23 hold the Blue. Bits 24-31 are
0. Any additional arguments are ignored.

mode% If the first argument is 1, the r,g and b arrays are
filled with Red, Green and Blue intensities. If
mode% is set to 2, the arrays are filled with Cyan,
Magenta and Yellow intensities. The colour
components will be in the range 0 to 1.0,
inclusive. If mode% is 0, the r array is filled with
a monochrome representation of the data with 0
representing black and 1.0 representing white;
the g and b arrays are set to 0, if they are present.

 If the first argument is -1, the h, l and s arrays
return HLS (Hue, Lightness and Saturation) data.
Hue is in degrees around a colour hexagon with
Blue at 0, Red at 120 and Green at 240 degrees. Lightness represents the amount
of white in a colour, from 0 (black) to 1.0 (white). Saturation is a measure of the
purity of a colour, from 0 (gray) to 1.0, which is a pure colour.

map If this is present, it should be a 3x3 array that maps the red, green and blue
(RGB) in the image into the r, g and b arrays that you provide. The first array
index sets the array: 0 for r, 1 for g and 2 for b. The second array index sets the
colour: 0 for red, 1 for green and 2 for blue. The array values set how much of
each colour should be added into the result.

 If R, G and B (all in the range 0.0 to 1.0), represent the colour of a pixel, the r
array pixel is set to R*map[0][0]+G[]*map[0][1]+B*map[0][2]. The g and
b arrays (if present) are calculated with the first index of map set to 1 and 2.

r,g,b These arrays, when present are filled with RGB colour information. If map% is
used, the values in the arrays depend on the map values. If mode% is used, the
values will be in the range 0 to 1.

h,l,s These arrays are used when the first argument is -1. They are returned holding
the hue (0 to 360), lightness (0 to 1.0) and saturation (0 to 1.0).

Returns 1 if the copy succeeded and 0 if it failed.

See also: EditCopy(), MMOpen(), MMPosition(), MMVideo()

MMAudio()

MMImage()

Blue

Red

Yellow

Green Cyan

0º

60º

Magenta

120º
180º

240º 300º

S

L

L=0 (black)

L=1 (white)

MMOpen() The Spike2 script language MMRate()

5-127

This counts, opens and returns the view handles of multimedia windows associated with
the current time or multimedia view. Multimedia files associated with fname.smr are
named fname-1.avi, fName-2.avi and so on. If a multimedia window is opened or
located, it becomes the current view. If multiple windows open, the last-opened window
becomes the current view. This does not access the s2video application window.
Func MMOpen({n%{, mode%}});

n% Set to 0 to open or count all associated multimedia files. Set to n (greater than 0)
for the nth multimedia file. It is not an error to open a file that is already open.

mode% This optional argument has the default value 0 and is the sum of the following:
1 Make new windows visible. Omitting this does not hide an existing window.
2 Reserved.
4 Do not open any new windows, do not change the current view. Use this to

find a view handle or count the multimedia windows.

Returns If n% is 0 or omitted, the return value is the number of associated multimedia
files that are open. If n% is greater than 0, and a file was opened, or was already
open, the return value is the view handle.

See also: FileClose(), MMAudio(), MMImage(), MMPosition(), MMVideo()

This sets and gets the play position and state of the current multimedia window or sets the
state of all multimedia windows associated with the current time view. Multimedia
windows track any change in the associated time view position. Use this command to
change the play position or state independently of the time view. Use Rerun() to replay
a time view and all associated multimedia windows together. Multimedia windows play
in real time or at the rate set by the last Rerun() to the window.
Func MMPosition({pos{, sPlay%{, &gPlay%}}});

pos The time, in seconds, in the multimedia stream to move to. Omit this argument
or set it negative for no position change.

sPlay% This argument controls the play state. Omit it or set it to -1 for no change in the
play state. Set 0 to stop playing and set 1 to start playing.

gPlay% If this argument is present it is returned holding the play state after the command
has run as 0 for not playing and 1 for playing.

Returns The return value is the play position after any changes made by the command
have been made or -1 if an error occurred or no window was found. If the
command is applied to a time view, the return value is for the lowest numbered
multimedia window found.

See also: MMAudio(), MMImage(), MMOpen(), MMVideo(), Rerun()

This requests the attached s2video applications to change the video frame rate. You
cannot run faster than the camera frame rate. The rate is achieved by dropping frames
from the video stream; the result may be faster or slower than you request.
Func MMRate(fps);

fps The desired frames per second. Rates of 0 or less set the minimum of the camera
rate or the maximum frame rate set in the s2video application.

Returns The number of external windows that this request was sent to.

See also: MMAudio(), MMImage(), MMOpen(), MMPosition(), MMVideo()

MMOpen()

MMPosition()

MMRate()

MMVideo() Alphabetical command reference NextTime()

5-128

This returns information about the video content of the current multimedia window.
Func MMVideo({&hPix%{, &vPix%{, &fps}}});

hPix% If present, returned as the number of horizontal pixels in the image.

VPix% If present, returned as the number of vertical pixels in the image.

fps If present, returned as the frames per second value held in the image file.

Returns 0 if no video is present or this is not a multimedia window or 1 if there is video
in the multimedia window.

See also: MMAudio(), MMImage(), MMOpen(), MMPosition()

This moves the text caret in a text window relative to the current position by lines and/or
a character offset. You can extend or cancel the current selection.
Func MoveBy(sel%{, char%{, line%}});

sel% With char% present, if sel% is zero, all selections are cleared. If non-zero the
selection is extended to the destination of the move. With char% omitted
sel%=0 returns the character offset, 1 the line number and 2 the column.

char% If line% is absent, the new position is obtained by adding char% to the current
character offset in the file. You cannot move the caret beyond the existing text.

line% If present it specifies a line offset. The new line is the current line number plus
line% and the new character position is the current character position in the line
plus char%. The new line number is limited to the existing text. If the new
character position is beyond the start or end of the line it is limited to the line.

Returns It returns the new position. MoveBy(1,0) returns the current position without
changing the selection. See sel% (above) to get line and column numbers.

See also: MoveTo(), Selection$()

This moves the text caret in a text window. You position the caret by lines and/or a
character offset. You can extend or cancel the text selection. The first line is number 1.
Func MoveTo(sel%, char%{, line%});

sel% If zero, all selections are cleared. If non-zero the selection is extended to the
destination of the move and the new current position is the start of the selection.

char% If line% is absent, this sets the new position in the file. You cannot move the
caret beyond the existing text. 0 places the caret at the start of the text.

line% If present it specifies the new line number. The new line number is limited to the
existing text. char% sets the position in this line (and is limited to the line).

Returns The function returns the new position in the file.
See also: MoveBy(), Selection$()

This finds the next item on a channel after a time. If a marker filter is in use, only data
that is included in the filter is visible. It is an error to use this function in a result view.
Func NextTime(chan%, time{,&val|code%[]{,data[]|data%[]|&data$}});

chan% The channel number in the view to use.
time The time to start the search after. Items at the time are ignored. To ensure that

items at time 0 are found, set the start time of the search to a negative time.

MMVideo()

MoveBy()

MoveTo()

NextTime()

Optimise() The Spike2 script language PaletteSet()

5-129

val Optional: for waveform channels it returns the waveform value. For event level
channels, it is returned 0 if the transition is low to high, and 1 if the transition is
high to low. If there is no event it returns the level at time; 0 for low, 1 for high.

code% This optional parameter is only used if the channel is a marker type. This is an
array with at least four elements that is filled in with the marker codes.

data Gets data from RealMark and WaveMark channels. If there is insufficient data,
unused entries are unchanged. Integer arrays are for WaveMark channels and
return the 16-bit data that holds the waveform. If WaveMark data has multiple
traces, use a two dimensional array. The trace number is the second index.

data$ A string returned holding the text from a TextMark channel.
Returns The time of the next item, -1 if there are no more items or a negative error code.
See also: ChanData(), LastTime(), MaxTime()

This optimises y axes over an x axis range in time, result or XY views in the same way as
the Y Range dialog optimise button. You can optimise a hidden channel. In an XY view,
all channels share the same y range, so optimising affects all channels. You can also use
this on a spike shape window (with no arguments) to optimise the display.
Proc Optimise({chan%{, start{, finish}}});

chan% The channel to optimise. We also allow -1 for all, -2 for visible and -3 for all
selected channels. If omitted, -1 is used, for all channels.

start The start of the region to optimise. This is in x axis units for a time or XY view
and in bins for a result view. If omitted, this is the start of the window.

finish The end of the region to optimise. If omitted, this is the end of the window.

See also: ChanOffset(), ChanScale(), YRange(), YLow(), YHigh()

This reads back the percentages of red, green and blue in a colour in the palette.
Proc PaletteGet(col%, &red, &green, &blue);

col% The colour index in the palette in the range 0 to 39.
red The percentage of red in the colour.
green The percentage of green in the colour.
blue The percentage of blue in the colour.
See also: ChanColour(), Colour(), PaletteSet(), XYColour()

This sets the colour of one of the 40 palette colours. Colours 0 to 6 form a grey scale and
cannot be changed. Colours are specified using the RGB (Red, Green, Blue) colour
model. For example, bright blue is (0%, 0%, 100%). Bright yellow is (100%, 100%, 0%).
Black is (0%, 0%, 0%) and white is (100%, 100%, 100%).
Proc PaletteSet(col%, red, green, blue {,solid%});

col% The colour index in the palette in the range 0 to 39. Attempting to change a
fixed colour or a non-existent colour has no effect.

red The percentage of red in the colour.
green The percentage of green in the colour.
blue The percentage of blue in the colour.

Optimise()

PaletteGet()

PaletteSet()

PCA() Alphabetical command reference PlayOffline()

5-130

solid% If present and non-zero, sets the nearest solid colour (all pixels have the same
hue in a solid colour). Systems that don't need to do this ignore solid%.

See also: ChanColour(), Colour(), PaletteGet(), XYColour()

This command performs Principal Component Analysis on a matrix of data. This can take
a long time if the input matrix is large.
Func PCA(flags%, x[][]{, w[]{, v[][]}});

flags% Add the following values to control pre-processing of the input data:
1 Subtract the mean value of each row from each row
2 Normalise each row to have mean 0.0 and variance 1.0
4 Subtract the mean value of each column from each column
8 Normalise each column to have mean 0.0 and variance 1.0
You would normally pre-process the rows or the columns, not both. If you set
flags for both, the rows are processed first.

x[][] A m rows by n columns matrix of input data that is replaced by the output data.
The first array index is the rows; the second is the columns. There must be at
least as many rows as columns (m >= n). If you have insufficient data you can
use a square matrix and fill the missing rows with zeros. If you were computing
the principal components of spike data, on input, each row would be a spike
waveform. On output, each row holds the proportion of each of the n principal
components scaled by the w[] array that, when added together, would best (in a
least-squares error sense) represent the input data.

w[] This is an optional array of length at least n that is returned holding the variance
of the input data that each component accounts for. The components are ordered
such that w[i] >= w[i+1].

v[][] This is an optional square matrix of size n by n that is returned holding the n
principal components in the rows.

Returns 0 if the function succeeded, -1 if m < n, -2 if w has less than n elements or v has
less than n rows or columns.

You can find an overview of PCA in the Clustering spikes chapter of the Spike2 manual.
In the terms of that overview, x[][] corresponds with the X matrix on input and the U
matrix on output, w[] is the diagonal of W and v[][] is the matrix V.

This command plays an area of the current time view through the 1401 DACs or through
the sound card in the computer. If you close the view during sampling, output will cease.
You cannot use the 1401 for sampling and PlayOffline() simultaneously. You cannot
use the sound card if it is already in use. If you choose the sound card, the default wave
out device is used.

Unless the waveform to replay is small (total points less than 32000), it is copied to the
output device in chunks, as required. This operation happens in the background, but you
must make time for it by allowing Spike2 to idle, or by checking the play position.

There are two versions of the command; the first starts output and the second reports the
play position and allows you to stop the output early.
func PlayOffline(cSpc,dacs%,sTime,eTime{,rep%{,scale{,flag%}}});
func PlayOffline({what%{, &rep%}});

cSpc A channel specification for up to 4 channels to be played. These can be any mix
of waveform, WaveMark or RealWave channels. The channels can have
different sample rates; the rate of the first channel is taken as the rate of all

PCA()

PlayOffline()

PlayWaveAdd() The Spike2 script language PlayWaveAdd()

5-131

channels and the data for the other channels is matched to the first by linear
interpolation. Gaps in the data are output as zeros.

dacs% This is either an integer array of 1401 DAC channel numbers (the first DAC is
numbered 0), or a single integer, being the number of the first DAC channel to
use. If a single integer is used, and more than 1 channel is in use, the second,
third and fourth channels use DACs (dacs%+1) mod 4, (dacs%+2) mod 4,
(dacs%+3) mod 4.

 If the DAC number for the first channel is negative, output is to the system wave
out device (usually a sound card). The maximum number of channels allowed
depends on your system, but will usually be at least 2.

sTime The start time in the current time view. This, together with eTime defines the
data region to play.

eTime The end time of the region in the current time view to output.
rep% In the setup call, this sets the number of times to play the output. If omitted, the

value 1 is used. To play for as many repeats as possible use the value 0. The
total number of points to play is limited to 2 to the power 32 (about 4 billion).

 In the status call, this returns the number of repeats completed.
scale You can scale the replay rate in the range 0.25 to 4.0 (quarter speed to four times

the channel rate). If you omit this argument, 1 is used, for output at the rate of
the first channel.

flag% Set this to 1 to position cursor 0 at the current replay position. The cursor is
displayed if it is hidden. When the play finishes, the cursor is hidden if it was
originally hidden.

what% Set this to –1 to stop output. Omit or set to 0 to report the position only. Both
forms of the command return the position at the time of the call or –1 if there
was no play in progress.

Returns The setup call returns 0 if all was OK, else –1 if there is a problem with the
number of channels or DAC channels, -2 for an internal setup problem, -3 if the
output rate is too fast, -4 if the rate is too fast to replay in chunks, -5 if memory
was exhausted, -6 for a problem with the sound card, -7 for a stupid points
count. The status call returns the replay position, in seconds, or –1 if there is no
replay in progress, or it has finished.

See also: DlgShow(), Interact(), PlayWaveAdd(), Toolbar(), Yield()

This command adds a new area to the on-line play wave list. When you create a data file,
Spike2 reserves 1401 memory and transfers any stored waveform to it. The area is set to
play once and is not linked to any other area. The area replay speed factor is set to 1.0
and the wave is set to non-triggered. You must use this command before you use
FileNew() to create the sampling window.

There are three command variants. The first adds a wave from the current time view or
from a Spike2 data file, the second adds a wave from a data array, and the third reserves
space without setting any data.
func PlayWaveAdd(key$, lb$, dac%, sT, eT, wch%{, mem% {,path$}});
func PlayWaveAdd(key$, lb$, dac%, rate, data{%}[]{[]});
func PlayWaveAdd(key$, lb$, dac%, rate, size%);

key$ The first character of key$ identifies this wave and triggers the wave playing in
SampleKey(). It is an error to use Chr$(0) or an empty string as a key.

lb$ The label for the play wave control bar button that will play this wave, and
record the character code as a keyboard marker. Labels can be up to 7 characters

PlayWaveAdd()

PlayWaveAdd() Alphabetical command reference PlayWaveAdd()

5-132

long. If you include & as a character, it will not appear on the button, but the
next character will be underlined and can be used as a keyboard short-cut.

dac% Either a single DAC channel number or an array of DAC channel numbers.
These are the outputs that will be used to play the data. The channel numbers
must be in the range 0 to 3, and if more than one channel is specified, the
channel numbers must be different.

sT,eT The start and end times of the data in either the current time view, or in the file
identified by the path$ variable to be used as a source of output data.

wch% Either a single channel, or an array of channels to use as a data source for
playing. There must be one source channel for each output channel set by the
dac% variable. The channels can be either waveform or WaveMark data. The
sample rate is taken from the sampling rate of the first channel in the list. If
subsequent channels in the list have different rates, data is interpolated.

mem% If present, and non-zero, the data is converted to a memory image and becomes
independent of the data file. Otherwise, Spike2 stores the file name and extracts
the data as required for sampling.

path$ This optional argument sets the name of the file to extract data from. If absent,
the current view (which must be a time view) is used as the data source. The file
must exist and hold suitable data channels.

rate When the data does not come from a file, this value sets the sample rate for each
channel in Hz. Spike2 will get as close to this rate as it can.

data This is either an integer or a real array. If there is more than one DAC channel to
play, the array must have the same number of rows as there are DACs, that is if
there are three DACs, the array must be equivalent to var data[n][3]; where
n is the number of data points. If this is an integer array, the bottom 16 bits of
each element is played through the DACs. If the data is in a real array, we
assume that the full range of the DACs is ±5 Volts and that the data is the
required output value in Volts.

size% This is the number of data points per channel to reserve for this area. The data
values are not specified and you must use PlayWaveCopy() to transfer data to
the 1401 for playing after sampling has started.

Returns The memory bytes in the 1401 used to hold this data, or a negative error code.
This command does not transfer the data to the 1401, that happens when the start
sampling command is given. Spike2 always keeps a minimum memory area for data
sampling, so there is a limit to size of the waveforms that can be copied to the 1401. This
size limit is not known until sampling starts. There is also a limit on the size of a
waveform that can be stored in the list, which is 32,000,000 bytes (was 2,000,000 bytes
before version 5.09).

If you wish to link areas together or set the number of times the area is to be repeated or
change the area speed factor, use one of the other PlayWave...() commands. The
SampleClear() command removes all stored waveforms.

To start a waveform playing from the script you can use the SampleKey() function with
the same key as set for the area or the output sequencer WAVEGO instruction.

See also: FileNew(), PlayWaveChans(), PlayWaveCycles(), PlayWaveDelete(),
PlayWaveEnable(), PlayWaveInfo$(), PlayWaveLabel$(),
PlayWaveLink$(), PlayWaveRate(), PlayWaveSpeed(),
PlayWaveTrigger(), SampleClear()

PlayWaveChans() The Spike2 script language PlayWaveCycles()

5-133

This function lets you read back or set the DAC channels assigned to a particular play
wave area. You cannot change the DAC assignments after sampling has started.
func PlayWaveChans(key${, ch%[] {, set%}});

key$ The first character of the string identifies the play wave area.
ch% An optional integer array used to collect or set the DAC channel numbers. The

array size must match the number of channels.
set% If omitted or 0, the ch% array is filled in with the DAC channels used. If non-

zero, the DAC channels are changed to the list defined by the ch% argument.
Returns The command returns the number of DACs in the area or a negative error code.
See also: PlayWaveAdd(), PlayWaveInfo$(), PlayWaveLabel$(),

PlayWaveLink$(), PlayWaveRate()

This command is used to update a play wave data area in the 1401 memory. This can be
done at any time that SampleStatus() returns 0 or 2, even while a wave is playing.
func PlayWaveCopy(key$, data{%}[]{[]}{, offs%});

key$ The first character of the string identifies the area to be updated.
data This is either an integer or a real array. If there is more than one DAC channel to

play, the array must have the same number of columns as there are DACs, that is
if there are three DACs, the array must be equivalent to var data[n][3];
where n is the number of data points. If this is an integer array, the bottom 16
bits of each element is played through the DACs. If the data is in a real array, we
assume that the full range of the DACs is ±5 Volts and that the data is the
required output value in Volts. The data in the array is copied to 1401 memory.
It is an error for the array size to be larger than the memory area in the 1401.

offs% The destination offset within the data area, in data points per channel. If the size
of the data is such that the copy operation would extend beyond the end of the
target area, the extra data is copied to the start of the area. The first offset is 0.
Use PlayWaveStatus$() to find the next offset to be written to the DACs.

Returns The function returns 0 if all went well or if you call when there is no sampling
or sampling is stopping. It returns a negative error code if there is a problem or
you have requested sampling to start and it hasn’t yet started.

See also: PlayWaveCycles(), PlayWaveLink$(), PlayWaveSpeed(),
PlayWaveStatus$(), PlayWaveStop(), SampleStatus()

This function gets and sets the number of times to play a waveform area associated with a
particular key. If this is used on-line, it will also change the number of repeats for the
next play of the waveform.
func PlayWaveCycles(key$, {new%});

key$ The first character of the string identifies the play wave area.
new% If present, this sets the number of cycles to play. The value 0 sets a very large

number of cycles.
Returns The number of cycles set at the time of the call.
See also: PlayWaveAdd(), PlayWaveEnable(), PlayWaveInfo$(),

PlayWaveLabel$(), PlayWaveLink$(), PlayWaveRate(),
PlayWaveSpeed(), PlayWaveStatus$(), PlayWaveStop()

PlayWaveChans()

PlayWaveCopy()

PlayWaveCycles()

PlayWaveDelete() Alphabetical command reference PlayWaveLabel$()

5-134

This function deletes one or more play wave areas from the sampling configuration. If
you do this while sampling is in progress it will not change the waves loaded to the 1401.
func PlayWaveDelete({keys$});

keys$ If this is omitted, all play wave areas are deleted. If it is present, all areas with a
key that is in this string are deleted. Case is significant for play areas; "abc"
and "ABC" are not the same.

Returns The number of areas deleted or a negative error code.
See also: PlayWaveAdd(), SampleClear()

This function reports on the enabled state of a play wave area and optionally enables and
disables it. Enabled areas are setup in the 1401 when sampling starts. Changes made with
this function once sampling has started will not change the waves loaded to the 1401.
func PlayWaveEnable(keys$,{set%});

key$ The first character of the string identifies the play wave area.
set% If present and zero, the area is disabled. If non-zero, the area is enabled.
Returns The enabled state (1=enabled, 0=disabled) of the area at the time of the call, or a

negative error code.
See also: PlayWaveAdd(), PlayWaveInfo$(), PlayWaveStatus$()

This function returns the list of keys associated with play wave areas, or gets the type of a
particular area and the name of any associated data file.
func PlayWaveInfo$({key$, &size%, &type%});

key$ If omitted, the function returns the list of keys associated with the play wave
areas. If present, information about a specific area is returned in the remaining
arguments and the function returns any file name associated with the area.

size% If present, this is returned as the number of data points per channel that will be
played out for this channel.

type% This returns the type of the area as: 0= unused, 1 = data is taken from a data file,
2 = area has a memory image of data (and may also have an associated data
file), 3 = area is reserved by the script but there is no associated data.

Returns If there is no key$ value, then a string is returned holding one key character for
each area. If there is a key, then the function returns the name of any data file
associated with the area, in which case type% will be returned as 1 or 2.

See also: PlayWaveAdd(), PlayWaveChans(), PlayWaveCycles(),
PlayWaveEnable(), PlayWaveLabel$(), PlayWaveLink$(),
PlayWaveRate(), PlayWaveSpeed(), PlayWaveStatus$()

This function returns and/or changes the label associated with each play area. The label
can be up to 7 characters long and is used to label the buttons that appear on the Play
waveform control bar. If you include & as a character, it does not appear in the label and
the next character is underlined and can be used as a short cut to the button when the
control bar is the current window.
func PlayWaveLabel$(key$, {new$});

key$ The first character of the string identifies the play wave area.

PlayWaveDelete()

PlayWaveEnable()

PlayWaveInfo$()

PlayWaveLabel$()

PlayWaveLink$() The Spike2 script language PlayWaveSpeed()

5-135

new$ If this is present, the label for the area is changed to the string. If the string is
more than 7 characters long, only the first 7 are used.

Returns The label at the time of the function call.
See also: PlayWaveAdd()

You can link play wave areas together. Linked areas must have the same number of
output channels and the same output channel list. The sample rate used is the sample rate
for the area that is played first. You can change links during replay if SampleStatus()
is 0 or 2. Both the area to link from and the area to link to must exist at the time of the
call.
func PlayWaveLink$(key${, to$});

key$ The first character of the string identifies the play wave area.
to$ If present, the first character of this string sets the area to link to. Use Chr$(0)

to cancel the link from the area set by key$.
Returns The key character of the area that was linked at the time of the call or an empty

string if no area was linked or there was an error.
See also: PlayWaveAdd(), PlayWaveStatus$(), SampleStatus()

This function gets or sets the base play rate for a play wave area. This is the standard play
rate that can be changed by PlayWaveSpeed(). Changes to the rate made after sampling
starts have no effect on the output; use PlayWaveSpeed() for on-line changes.
func PlayWaveRate(key$, {new});

key$ The first character of the string identifies the play wave area.
new If present, this is the new play rate for the area, in samples per second. You can

set any value you like (not 0 or negative) and Spike2 will get as close as it can
with the available hardware.

Returns The rate for the channel at the time of the function call.
See also: PlayWaveAdd(), PlayWaveLink$(), PlayWaveSpeed(), SampleKey()

You can alter the sample rate for a play wave area by a factor of 0.25 to 4.0 with this
command. Spike2 may not be able to play at the rate you request; it will set the closest
rate it can. The Hz argument returns the achieved rate. On-line changes are allowed.
func PlayWaveSpeed(key${, new{, wait%{, Hz}}});

key$ The first character of the string identifies the play wave area. If this area is
playing, or an area that this area links to, the rate will change during playing.

new If present, this is the new speed factor for the area, in the range 0.25 to 4.0.
Spike2 gets as close to this speed factor as it can with the available hardware.

wait% If present and non-zero, any on-line speed change is postponed until the end of
the current cycle and will happen within a few milliseconds of the cycle end.

Hz If present and a sampling document is open, it returns the real replay rate in Hz.
Returns The speed factor for the area at the time of the function call or 0 if there is no

area defined by the key.
See also: PlayWaveAdd(), PlayWaveLink$(), PlayWaveRate(), SampleKey()

PlayWaveLink$()

PlayWaveRate()

PlayWaveSpeed()

PlayWaveStatus$() Alphabetical command reference Pow()

5-136

This function returns information about waveform output during sampling.
func PlayWaveStatus$({&pos%{, &cyc%}}});

pos% If present, this returns the next position, in terms of the number of points per
channel in the area, to write to the DACs. The first position is 0. The DACs hold
one data point ready for output on the next clock tick, so pos% is the next but
one index to output. If you play an area with a triggered start but do not trigger
it, pos% is 1, not 0. This is because the DACs are already holding index 0, ready
to output when the trigger arrives.

cyc% If present, this integer variable is returned holding the number of cycles left to
play (including the current cycle).

Returns The key code of the area that is playing or waiting for a trigger, or an empty
string if no area is playing or sampling is not active.

See also: PlayWaveAdd(), PlayWaveCycles(), PlayWaveLink$(),
PlayWaveRate(), PlayWaveSpeed(), PlayWaveStop(), SampleKey()

This function requests that the currently playing wave is stopped, either immediately, or
when the current cycle finishes.
func PlayWaveStop(cEnd%);

cEnd% If present and non-zero, the current cycle for the playing area will be the last
cycle for that area, otherwise output will stop immediately.

Returns 1 for OK, 0 if not playing or a negative error code.
See also: PlayWaveAdd(), PlayWaveCycles(), PlayWaveStatus$(), SampleKey()

This function reports and optionally changes the trigger state of a play wave area. If an
area is triggered, a play request prepares the area but output does not start until a trigger
signal is received by the 1401. This trigger is the E3 front panel input for the 1401plus
and is the Trigger input for the micro1401 and Power1401 unless it is routed to the rear
panel by the Edit Preferences menu.
func PlayWaveTrigger(keys$,{set%});

key$ The first character of the string identifies the play wave area.
set% If present this sets the triggered state. 0 = not triggered and non-zero = triggered.
Returns The trigger state (1=triggered, 0=not triggered) of the area matching the first

character in keys$ at the time of the call, or a negative error code.
See also: PlayWaveAdd(), PlayWaveEnable(), PlayWaveStatus$()

This function raises x to the power of y. If the calculation underflows, the result is 0.
Func Pow(x|x[]|x[][], y);

x A real number or a real array to be raised to the power of y.
y The exponent. If x is negative, y must be integral.
Returns If x is an array, it returns 0 or a negative error code. If x is a number, it returns x

to the power of y unless an error is detected, when the script halts.
See also: Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Rand(),

Round(), Sin(), Sqrt(), Tan(), Trunc()

PlayWaveStatus$()

PlayWaveStop()

PlayWaveTrigger()

Pow()

Print() The Spike2 script language Print()

5-137

This command prints to the current view at the text caret. If the first argument is a string
(not an array), it is used as format information for the remaining arguments. If the first
argument is an array or not a string or if there are more arguments than format specifiers,
Spike2 prints the arguments without a format specifier in a standard format and adds a
new line character at the end. If you provide a format string and you require a new line
character at the end of the output, include \n at the end of the format string.
Func Print(form$|arg0 {,arg1 {,arg2...}});

form$ A string that specifies how to treat the following arguments. The string contains
two types of characters: ordinary text that is copied to the output unchanged and
format specifiers that convert the following arguments to text. Format specifiers
start with % and end with one of the letters d, x, c, s, f, e or g in upper or lower
case. For a % in the output, use %% in the format string.

arg1,2 The arguments used to replace %c, %d, %e, %f, %g, %s and %x type formats.
Returns 0 or a negative error code. Fields that cannot be printed are filled with asterisks.

The full format specifier is: %{flags}{width}{.precision}format

The flags are optional and can be placed in any order. They are single characters that
modify the format specification as follows:
- Specifies that the converted argument is left justified in the output field.
+ Valid for numbers, and specifies that positive numbers have a + sign.
space If the first character of a field is not a sign, a space is added.
0 For numbers, causes the output to be padded on the left to the field width with 0.
For x format, 0x is prefixed to non-zero arguments. For e, f and g formats, the

output always has a decimal point. For g formats, trailing zeros are not removed.

If this is omitted, the output field will be as wide as is required to express the argument. If
present, it is a number that sets the minimum output field width. If the output is narrower
than this, the field is padded on the left (on the right if the - flag was used) to this width
with spaces (zeros if the 0 flag was used). The maximum width for numbers is 100.

This number sets the maximum number of characters to be printed for a string, the
number of digits after the decimal point for e and f formats, the number of significant
figures for g format and the minimum number of digits for d format (leading zeros are
added if required). It is ignored for c format. There is no limit to the size of a string.
Numeric fields have a maximum precision value of 100.

The format character determines how the argument is converted into text. Both upper and
lower cased version of the format character can be given. If the formatting contains
alphabetic characters (for example the e in an exponent, or hexadecimal digits a-f), if
the formatting character is given in upper case the output becomes upper case too (e+23
and 0x23ab become E+23 and 0X23AB). The formats are:

c The argument is printed as a single character. If the argument is a numeric type, it is
converted to an integer, then the low byte of the integer (this is equivalent to
integer mod 256) is converted to the equivalent ASCII character. You can use
this to insert control codes into the output. If the argument is a string, the first
character of the string is output. The following example prints two tab characters, the
first using the standard tab escape, the second with the ASCII code for tab (8):

 Print("\t%c", 8);

d The argument must be a numeric type and is printed as a decimal integer with no
decimal point. If a string is passed as an argument the field is filled with asterisks.
The following prints “ 23,0002”:

 Print("%4d,%.4d", 23, 2.3);

Print()

Format specifiers
flags

width

precision

format

Print$() Alphabetical command reference PrintLog()

5-138

e The argument must be a numeric type; otherwise the field is filled with asterisks. The
argument is printed as {-}m.dddddde±xx{x} where the number of d’s is set by the
precision (which defaults to 6). A precision of 0 suppresses the decimal point unless
the # flag is used. The exponent has at least 2 digits (in some implementations of
Spike2 there may always be 3 digits, others use 2 digits unless 3 are required). The
following prints “2.300000e+01,2.3E+00”:

 Print("%4e,%.1E", 23, 2.3);

f The argument must be a numeric type; otherwise the field is filled with asterisks. The
argument is printed as {-}mmm.ddd with the number of d’s set by the precision
(which defaults to 6) and the number of m’s set by the size of the number. A
precision of 0 suppresses the decimal point unless the # flag is used. The following
prints “+23.000000,0002.3”:

 Print("%+f,%06.1f", 23, 2.3);

g The argument must be a numeric type; otherwise the field is filled with asterisks.
This uses e format if the exponent is less than -4 or greater than or equal to the
precision, otherwise f format is used. Trailing zeros and a trailing decimal point are
not printed unless the # flag is used. The following prints “2.3e-06,2.300000”:

 Print("%g,%#g", 0.0000023, 2.3);

s The argument must be a string; otherwise the field is filled with asterisks.

x The argument must be a numeric type and is printed as a hexadecimal integer with
no leading 0x unless the # flag is used. The following prints “1f,0X001F”:

 Print("%x,%#.4X", 31, 31);

The d, e, f, g, s and x formats support arrays. One dimensional arrays have elements
separated by commas; two dimensional arrays use commas for columns and new lines for
rows. If there is a format string, the matching format specifier is applied to all elements.

See also: Message(), ToolbarText(), Print$(), PrintLog()

This command prints formatted output into a string. The syntax is identical to the
Print() command, but the function returns the generated output as a string.
Func Print$(form$|arg0 {,arg1 {,arg2...}});

form$ An optional string with formatting information. See Print() for a description.
arg1,2 The data to format into a string.
Returns It returns the string that is the result of the formatting operation. Fields that

cannot be printed are filled with asterisks.
See also: Asc(), Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print(),

PrintLog(), Right$(), Str$(), UCase$(), Val()

This command prints to the log window. The syntax is identical to the Print()
command, except that the output always goes to the end of the log window.
Func PrintLog(form$|arg0 {,arg1 {,arg2...}});

form$ An optional string with formatting information. See Print() for a description.
arg1,2 The data to print.
Returns 0 or a negative error code. Fields that cannot be printed are filled with asterisks.
See also: Print(), Print$(), Message()

Arrays in the argument list

Print$()

PrintLog()

Process() The Spike2 script language ProcessAll()

5-139

Processes the current view. For result and XY views, the time view to process data from
must be open. The times for start and end of processing are times in the time view. Use
View(-1).Cursor(1) to refer to time view times from result and XY views.
Func Process(sTime, eTime{, clear%{, opt%{, dest%{,
 gate%, len, pre{, mCd%}}});

sTime The time to start processing from, in seconds. Negative times are treated as zero.
Times greater than Maxtime() cause no processing. In triggered modes with no
trigger channel, this sets the trigger time and eTime is ignored. In Phase
histograms with no Cycle channel, this sets the start of a cycle.

eTime The end time for processing. In Phase histogram mode with no Cycle channel,
this sets the end time of a single cycle.

clear% If present, and non-zero, the result view bins are cleared before the results of the
analysis are added to the result view and Sweeps() result is reset.

opt% If present and non-zero, the result view is optimised after processing the data.
dest% Used when processing to a channel from MeasureToChan(). If not used it

should be set to 0. This identifies the destination channel for processing. If
omitted or 0, all suitable channels are processed. It is not an error if this doesn’t
match a destination channel, but no processing happens.

gate% If present, this is the channel number of an event or marker-based channel in the
associated time view to use as a gate. Both len and pre must be present.

len The time to process for each gate event in the time sTime to eTime.
pre How far before each gate event to start processing.
mCd% If present and gate% is a marker or derived type, it holds the marker code to use

as the gate. Set this to -1 or omit it to use the current channel marker filter.
Returns This returns the number of items processed. This is the number of intervals

considered for an INTH (even if they didn't fall in the histogram), the number of
sweeps for sweep-based analysis, the number of data blocks for SetPower().
In the case of an error, a negative error code is returned.

See also: MeasureToChan(), MeasureToXY(), ProcessAll(), SetAverage(),
SetEvtCrl(), SetINTH(), SetPhase(), SetPSTH(), SetPower(),
SetResult(), SetWaveCrl(), Sweeps()

This function runs all processes that use the current time view as a data source. It is as if a
Process() command were used for each target view using the current processing
settings. These are the settings you would see if you opened the Process Settings dialog
for the target. If you have already used a Process() command on a target, this sets the
current processing settings.
Func ProcessAll(sTime, eTime);

sTime The time to start processing from, in seconds. Negative times are treated as zero.
Times greater than Maxtime() cause no processing. In triggered modes with no
trigger channel, this sets the trigger time and eTime is ignored. In Phase
histograms with no Cycle channel, this sets the start of a cycle.

eTime The end time for processing. In Phase histogram mode with no Cycle channel,
this sets the end time of a single cycle.

Returns Zero if no errors or a negative error code.
See also: MeasureToChan(), Process(), MeasureToXY(), SetAverage(),

SetEvtCrl(), SetINTH(), SetPhase(), SetPSTH(), SetPower(),
SetResult(), SetWaveCrl(), Sweeps()

Process()

ProcessAll()

ProcessAuto() Alphabetical command reference Profile()

5-140

This is equivalent to the Process Dialog for a New file in Automatic mode. The current
view must be the view where the results appear. The processing parameters set by this
command are used when this view is given a chance to update.
Func ProcessAuto(delay, mode%{, opt%{, last{, leeway{, dest%}}}});

delay The minimum time between updates, in seconds.
mode% 0=accumulate all data. 1=clear the result, process the most recent last seconds.
opt% If present and non-zero, the result view is optimised after each process.
last The length of time to process in mode 1, in seconds; ignored in mode 0.
leeway How close cursor 0 can be to the file end for XY views and MeasureToChan().
dest% The channel for MeasureToChan(), ignored for other process types. If omitted

or 0, all suitable channels are processed. It is not an error if this doesn’t match a
destination channel, but no processing happens.

Returns 0 or a negative error code.
See also: MeasureToChan(), MeasureToXY(), ProcessTriggered(), Process()

This is equivalent to the Process Dialog used with a New file in Gated mode. The current
view must be the view where the results appear. The processing parameters set by this
command are used when this view is given a chance to update.
Func ProcessTriggered(len,pre,gate%{,clr%{,opt%,{mCd%{,dest%}}}});

len The length of data to process around each gate event, in seconds.
pre The pre-event time, in seconds.
gate% The channel holding gate events or markers.
clr% If present, and non-zero, the result view bins are cleared before the results of the

analysis are added to the result view and Sweeps() result is reset.
opt% If present and non-zero, the result view is optimised after processing the data.
mCd% If present and gate% is a marker or derived type, it holds the marker code to use

as the gate. Set this to -1 or omit it to use the current channel marker filter.
dest% The channel for MeasureToChan(), ignored for other process types. If omitted

or 0, all suitable channels are processed. It is not an error if this doesn’t match a
destination channel, but no processing happens.

Returns 0 or a negative error code.
See also: MeasureToChan(), MeasureToXY(), ProcessTriggered(), Process()

Spike2 saves information in the HKEY_CURRENT_USER\Software\CED\Spike2 section
of the system registry. The registry is a tree of keys with values attached to each key. If
you think of the registry as a filing system, the keys are folders and the values are files.
Keys and values are identified by case-insensitive text strings. The Profile() command
manipulates the keys and values within the Spike2 section of the registry.

You can also view and edit the registry with the regedt32 program, which is part of
your system. Select Run from the start menu and type regedt32 then click OK. Please
read the regedt32 help information before using this program. It is a very powerful tool;
careless use can severely damage your system.

Do not write vast quantities of data into the registry; it is a system resource and should be
treated with respect. If you must save a lot of data, write it to a text or binary file and save
the file name in the registry. If you think that you may have messed up the Spike2 section

ProcessAuto()

ProcessTriggered()

Profile()

Profile() The Spike2 script language Profile()

5-141

of the registry, use regedt32 to locate the Spike2 section and delete it. The next time
you run Spike2 the section will be restored; you will lose any preferences you had set.
Proc Profile(key${, name${, val%{, &read%}}});
Proc Profile(key${, name${, val${, &read$}}});

key$ This sets the key to use in the Spike2 registry section. Set key$ empty to use
the Spike2 key. You can use nested keys separated by a backslash, for example
"My bit\\stuff" to use the key stuff inside the key My bit. The key name
may not start with a backslash. Remember to use two backslashes inside quote
marks; a single backslash is an escape character. It is never an error to refer to a
key that does not exist; the system creates missing keys for you.

name$ This string identifies the data in the key to read or write. If you set an empty
name, this refers to the (default) data item for the key set by key$.

val This is either a string or an integer. If read is omitted, val is written to the
registry. If read is present, val is returned if the registry item does not exist.

read If present, it must have the same type as val. This is a variable that is set to the
value held in the registry. If name$ is not in the registry, read is set to val.

Profile() can be used with 1 to 4 arguments. It has a different function in each case:
1 The key identified by key$ is deleted. All sub-keys and data values attached to the

key and sub-keys are also deleted. Nothing is done if key$ is empty.
2 The value identified by name$ in the key key$ is deleted.
3 The value identified by name$ in the key key$ is set to val% or val$.
4 The value identified by name$ in the key key$ is returned in val% or val$.

The following script example collects values at the start, then saves them at the end:
var path$, count%;
Profile("My data", "path", "c:\\work", path$); 'get initial path
Profile("My data", "count", 0, count%); 'and initial count
... 'your script...
Profile("My data","path", path$); 'save final value
Profile("My data","count", count%); 'save final count

HKEY_CURRENT_USER\Software\CED\Spike2 holds the following keys:

This key holds the list of scripts to load into the script bar when Spike starts.

This key holds the editor settings for scripts, output sequences and general text editing.

This key holds the margins in units of 0.01 mm for printing data views, and the margins
in mm and header and footer text for text-based views.

The values in this key are mainly set by the Edit menu preferences. If you change any
Edit menu Preferences value in this key, Spike2 will use the changed information
immediately. The values are all integers except the file path, which is a string:

E3 trigger at rear 0=Sample and PlayWave trigger on front panel, 1=on rear
Enhanced Metafile 0=Windows metafile, 1=enhanced metafile for clipboard.
Enter debug on error 0=Do not enter debug, 1=enter debug
Event ports at rear 0=Events 0&1 on front panel, 1=on rear panel.
Fast online scroll 0=Normal, 1=faster (inaccurate) scrolling algorithm
Line thickness codes Bits 0-3 = Axis code, bits 4-7 = Data code. The codes 0-15 map

onto the 16 values in the drop down list. Bit 7=1 to use lines not
rectangles to draw axes.

Low channels at top 0=Standard display shows low channel at bottom, 1=at top.
Metafile NoCompress 0=Compress when multiple points per x pixel, 1=no compress.
Metafile Scale 0-11 selects from the list of allowed scale factors.
New file path New data file directory or blank for current folder.
No Save Prompt 0=Prompt to save derived views, 1=no prompt.

Registry use by Spike2

BarList

Editor

PageSetup

Preferences

ProgKill() Alphabetical command reference ProgRun()

5-142

Save modified scripts 0=Do not save, 1=save
Ten volt 1401 0=5 Volt 1401, 1=10 Volt 1401, 2=same as last 1401.
Use colour 0=Use Black and White, 1=Use Colour (from the View menu).
The keys with names starting "Bars-" are used by system code to restore dockable
toolbars. You can delete them all safely; any other change is likely to crash Spike2.

This key holds the list of recently used files that appear at the bottom of the file menu.

This key holds the information to recover data from interrupted sampling sessions.

This is where the evaluate bar saves the last few evaluated lines. The colour palette is
also saved here. Set "No MThread Sampling" to 1 to force single threaded sampling.

The Tip of the Day dialog uses this key to remember the last tip position.

Spike2 uses this key to detect when a new version of the program is run for the first time.

In Windows NT derived systems, this key holds the desired working set sizes. The Help
menu About Spike2 dialog displays the current working set sizes. Click Help in this
dialog to read more about using these registry values.
Minimum working set Minimum size in kB (units of 1024 bytes), default is 800
Maximum working set Maximum size in kB, default is 4000 (4 MB)

See also: ViewUseColour()

This function terminates a program started using ProgRun(). This can be dangerous, as
it will terminate a program without giving it the opportunity to save data.
Func ProgKill(pHdl%);

pHdl% A program handle returned by ProgRun().
Returns Zero or a negative error code.

See also: ProgRun(), ProgStatus()

This function runs a program using command line arguments as if from a command
prompt. Use ProgRun() to test the program status, ProgKill() to terminate it. The
program inherits its environment variables from Spike2, see System$() for details.
Func ProgRun(cmd$ {,code% {,xLow, yLow, xHigh, yHigh}});

cmd$ The command string as typed at a command prompt. To run shell command x
use "cmd /c x" in Windows NT and XP, "command /c x" in Windows 9x.
To run another copy of Spike2, use "sonview.exe /M {filename}".

code% If present, this sets the initial application window state: 0=Hidden, 1=Normal,
2=Iconised, 3=maximised. Some programs set their own window state so this
may not work. The next 4 arguments set the Normal window position:

xLow Position of the left window edge as a percentage of the screen width.
yLow Position of the top window edge as a percentage of the screen height.
xHigh The right hand edge as a percentage of the screen width.
yHigh The bottom edge position as a percentage of the screen height.
Returns A program handle or a negative error code. ProgStatus() releases resources

associated with the handle when it detects that the program has terminated.

See also: FileCopy(), FileDelete(), ProgKill(), ProgStatus(), System$()

Recent file list

Recover

Settings

Tip

Version

Win32

ProgKill()

ProgRun()

ProgStatus() The Spike2 script language RandExp()

5-143

This function tests if a program started with ProgRun() is still running. If it is not,
resources associated with the program handle are released.
Func ProgStatus(pHdl%);

pHdl% The program handle returned by ProgRun().
Returns 1=program is running, 0=terminated, resources released, handle now invalid. A

negative error code (-1525) means that the handle is invalid.

See also: ProgKill(), ProgRun()

This function is used to ask the user a Yes/No question. It opens a window with a
message and two buttons. The window is removed when a button is pressed.
Func Query(text$, {,Yes$ {,No$}});

text$ This string forms the text in the window. If the string includes a vertical bar, the
text before the vertical bar is used as the window title.

Yes$ This sets the text for the first button. If this argument is omitted, "Yes" is used.
No$ This sets the text for the second button. If this is omitted, "No" is used.
Returns 1 if the user selects Yes or presses Enter, 0 if the user selects the No button.
See also: Print(), Input(), Message(), DlgCreate()

This returns pseudo-random numbers with a uniform density in a set range. The values
returned are R * scl + off where R is in the range 0 up to, but not including, 1. Spike2
initialises the generator with a random seed based on the time. You must set the seed for
a repeatable sequence. The sequence is independent of RandExp() and RandNorm().
Func Rand(seed);
Func Rand({scl, off});
Func Rand(arr[]{[]}{, scl{, off}});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside
this range, the fractional part of the number is used. If you use 0.0 as the seed,
the generator is initialised with a seed based on the system time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an
integer array is used, the random number is truncated to an integer.

scl This scales the random number. If omitted, it has the value 1.
off This offsets the random number. If omitted it has the value 0.
Returns If the first argument is not an array, the return value is a random number in the

range off up to off+scl. If a seed is given, a random number is still returned.
If the first argument is an array, the return value is 0.0.

See also: RandExp(), RandNorm()

This function returns pseudo-random numbers with an exponential density, suitable for
generating Poisson statistics. The values returned are R * mean + off where R is a
random number with the density function p(x) = e-x. When you start Spike2, the generator
is initialised with a random seed based on the time. For repeatable sequences, you must
set a seed. The sequence is independent of Rand() and RandNorm().
Func RandExp(seed);
Func RandExp({mean, off});
Func RandExp(arr[]{[]}{, mean{, off}});

ProgStatus()

Query()

Rand()

RandExp()

RandNorm() Alphabetical command reference RasterAux()

5-144

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside
this range, the fractional part of the number is used. If you use 0.0 as the seed,
the generator is initialised with a seed based on the time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an
integer array is used, the random number is truncated to an integer.

mean This scales the random number. If omitted, it has the value 1.
off This offsets the random number. If omitted it has the value 0.
Returns If the first argument is not an array, the return value is a random number. If a

seed is given, a random number is still returned. If the first argument is an array,
the return value is 0.0.

The following example fills an array with event times with a mean interval t:
RandExp(arr[], t); 'Fill arr with event intervals
ArrIntgl(arr[]); 'convert intervals to times

See also: Rand(), RandNorm()

This function returns pseudo-random numbers with a normal density. The values returned
are R * scl + off where R is a random number with a normal probability density
function p(x) = (2π)-½e-x2/2; this has a mean of 0 and a variance of 1. When you start
Spike2, the generator is initialised with a random seed based on the time. For a repeatable
sequence, you must set a seed. The sequence is independent of Rand() and RandExp().
Func RandNorm(seed);
Func RandNorm({scl, off});
Func RandNorm(arr[]{[]}{, scl{, off}});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside
this range, the fractional part of the number is used. If you use 0.0 as the seed,
the generator is initialised with a seed based on the time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an
integer array is used, the random number is truncated to an integer.

scl This scales the random number. If omitted, it has the value 1.
off This offsets the random number. If omitted it has the value 0.
Returns If the first argument is not an array, the return value is a random number. If a

seed is given, a random number is still returned. If the first argument is an array,
the return value is 0.0.

See also: Rand(), RandExp()

This is now deprecated; use RasterSort() or RasterSymbol() instead. It is here for
version 4 compatibility, but will be removed in a future release. This function returns and
optionally sets some of the raster auxiliary values for a channel in the current result view.

Values 0 and 1 are used to sort the sweeps and can be selected in addition to time order
by the DrawMode() command. Unset values read back as zero.

Values 2 to 5 are the times, in seconds relative to the start of the file, of four markers
(circle, cross, square and triangle) to display in the sweep. The markers are drawn in the
colours set for WaveMark codes 1 to 4. Markers appear if their position relative to the
sweep trigger lies within the sweep. Unset values read back as a negative time.
Func RasterAux(chan%, sweep%, num% {,new});

chan% The channel in the result view. The channel must have raster data enabled.

RandNorm()

RasterAux()

RasterGet() The Spike2 script language RasterSet()

5-145

sweep% The sweep number in the range 1 to the number of sweeps in the channel.
num% The auxiliary value to return and optionally change in the range 0 to 5.
new If present, this changes the auxiliary value for the sweep.
Returns The auxiliary value at the time of the call.

Replace RasterAux(c%,s%,n%{,new}) with RasterSort(c%,s%,n%{,new}) if n%
is 0 or 1, and with RasterSymbol(c%,s%,n%-2{,new}) if n% is 2 to 5.

See also: DrawMode(), RasterGet(), RasterSet(), RasterSort(),
RasterSymbol(), SetEvtCrl(), SetPSTH()

This returns a sweep of raster data for a result view channel for which raster data has
been enabled. Using this when the current view is not a result view causes a fatal error.
Func RasterGet(chan%{,sweep%{,&sT{,data{%}[]{,&tick{,&eT}}}}});

chan% The channel number in the result view. If this is the only argument, the return
value is the number of sweeps in the channel.

sweep% The sweep number in the result view in the range 1 to the number of sweeps. If
this argument is present, the return value is the number of times in the sweep.

sT This is returned holding the time in seconds of the start of the sweep in the
original data. This is not the sweep trigger time (the time that corresponds to the
x axis 0 in the result view). The trigger time is sT-BinToX(0).

data This optional array is filled with sweep event times. A real array returns times in
seconds; an integer array returns times in units of the microseconds per time
used when the view was created. The number of times copied into the array is
the lesser of the number of times in the sweep and the length of the array.

tick This optional real value is the number of seconds per time units used when times
are returned as an integer array. That is, if you multiply each integer time
returned in data%[], you would get the time in seconds. If you created the
result view using SetResult() it is the tick value you passed in, otherwise it is
the BinSize() value from the associated time view.

eT This optional real value is returned holding the end time of the sweep, in
seconds. This is usually only of interest for data created with SetPhase().

Returns The count of sweeps in the channel, times in the sweep or a negative error code.
See also: RasterSet(), RasterSort(), SetEvtCrl(), SetPhase(), SetPSTH()

This function sets the raster data for a sweep for a channel of a result view. You can
replace the data for an existing sweep, or add a new sweep. It is a fatal script error to call
this function when the current view is not a result view.
Func RasterSet(chan%, sweep%, sT {,data[]|data%[] {,eT}});

chan% The channel number in the result view.
sweep% This is either in the range 1 to Sweeps() to replace the existing raster data for a

sweep, or it can be 0 to add a new sweep. If you add a new sweep, the new
sweep is added to all channels. The remaining channels have a sweep added that
has the same start time, and no data. If your result view has multiple channels,
only use a sweep% value of 0 for one of the channels.

sT This sets the time of the start of the sweep, in seconds. This is not the trigger
time of the sweep (the time that corresponds to the x axis 0 in the result view).
The trigger time is sT-BinToX(0).

RasterGet()

RasterSet()

RasterSort() Alphabetical command reference RasterSymbol()

5-146

data This is a real or an integer array holding the events times for the sweep. The size
of the array sets the number of items. If this is a real array, the times are in
seconds. If this is an integer array, the times are in the underlying tick units (see
RasterGet() and SetResult() for details). Times outside the time range
start to start+MaxTime()*BinSize() are ignored.

eT This optional value is the end time of the sweep. If you supply this, all times in
the data array are mapped into the time period sT to eT, regardless of the x axis
scaling set for the result view. This argument is usually only used when working
with or emulating a Phase histogram.

Returns The sweep number that received the data or a negative error code.
See also: RasterGet(), RasterSort(), SetEvtCrl(), SetPhase(), SetPSTH()

Each raster sweep has 4 values that can be used to sort displayed rasters. The
DrawMode() command selects between time order and one of these values. This function
returns and optionally sets these values for the current result view.
Func RasterSort(chan%, sweep%, num% {,new});

chan% The channel in the result view. The channel must have raster data enabled.
sweep% The sweep number in the range 1 to the number of sweeps in the channel.
num% The sort value to return and optionally change in the range 1 to 4.
new If present, this changes sort value num% for the sweep.
Returns The sort value at the time of the call. Unset values read back as zero.
See also: DrawMode(), RasterGet(), RasterSet(), RasterSymbol(),

SetEvtCrl(), SetPSTH()

Each raster sweep has 8 values that can be displayed as symbols. This function returns
and optionally sets these values for the current result view. The values are times, in
seconds relative to the start of the file. The 8 markers are: circle, cross, square, up
triangle, plus, diamond, down triangle, filled square. The markers are drawn in the
colours set for WaveMark codes 1 to 8. Markers appear if their position relative to the
sweep trigger lies within the sweep. Unset values read back as a negative time.
Func RasterSymbol(chan%, sweep%, num% {,new});

chan% The channel in the result view. The channel must have raster data enabled.
sweep% The sweep number in the range 1 to the number of sweeps in the channel.
num% The symbol number in the range 1 to 8 to get or set.
new If present, this sets the symbol time for the sweep. Set -1 to cancel the symbol.
Returns The symbol time at the time of the call. Unset symbols have a negative time.
See also: DrawMode(), RasterGet(), RasterSet(), SetEvtCrl(), SetPSTH()

RasterSort()

RasterSymbol()

Read() The Spike2 script language Read()

5-147

This function reads the next line from the current text view or external text file and
converts the text into variables. The read starts at the beginning of the line containing the
text cursor. The text cursor moves to the start of the next line after the read.
Func Read({&var1 {, &var2 {,&var3 ...}}});

varn Arguments must be variables. They can be any type. One dimensional arrays are
allowed. The variable type determines how to convert the string data. In a
successful call, each variable matches a field in the string, and the value of the
variable changes to the value found in the field. A call to Read() with no
arguments skips a line.

Returns The function returns the number of fields in the text string that were successfully
extracted and returned in variables, or a negative error code. Attempts to read
past the end of the file produce the end of file error code.

It is not an error to run out of data before all the variables have been updated. If this is a
possibility you must check that the number of items returned matches the number you
expected. An array of length n is treated as n individual values.

The source string is expected to hold data values as real numbers, integer numbers
(decimal or hexadecimal introduced by 0x) and strings. Strings can be delimited by quote
marks, for example "This is a string", or they can be just text. If a string is not
delimited, it is deemed to run to the end of the source string, so no other items can follow
it. You can use ReadSetup() to change the characters that delimit a string and also to
define hard separator characters within non-delimited strings. String delimiters are not
returned as part of the string.

Normally, the fields in the source string are separated by white space (tabs and spaces)
and commas. Space characters are “soft” separators. You can have any number of spaces
between fields. Tabs and commas are treated as “hard” separators. Two consecutive hard
separators (with or without intervening soft separators), imply a blank field. You can use
ReadSetup() to redefine the soft and hard separators. When reading a field, the
following rules are followed:
1. Soft separator (space) characters are skipped over
2. If the field is a string and the next character is a delimiter, it is skipped.
3. Characters that are legal for the destination variable are extracted until a non-legal

character or a separator or a required string delimiter or end of data is found. The
characters read are converted into the variable type. If an error occurs in the
translation, the function returns the error. Blank fields assigned to numbers are
treated as 0. Blank fields assigned to strings produce empty strings.

4. Characters are skipped until a separator character is found or end of data. If a soft
separator is found, it and any further soft separators are skipped. If the next character
is a hard separator it is also skipped.

5. If there are no more variables or no more data, the process stops, else back to step 1.

The following example shows a source line, followed by a Read() function, then the
assignment statements that would be equivalent to the Read():

"This is text" , 2 3 4,, 4.56 Text too 3 4 5 The source line
n := Read(fred$, jim[1:2], sam, dick%, tom%, sally$, a, b, c);

n := 7; This is equivalent to the result
fred$:= "This is text";
jim[1] := 2; jim[2] := 3; sam := 4; dick% := 0; tom% := 4;
sally$:= "Text too 3 4 5"
a, b and c are not changed

See also: EditCopy(), FileOpen(), ReadSetup(), ReadStr(), Selection$()

Read()

Example

ReadSetup() Alphabetical command reference ReRun()

5-148

This sets the separators and delimiters used by Read() and ReadStr() to convert text
into numbers and strings. You can also set string delimiters and set a string separator.
Proc ReadSetup({hard${, soft${, sDel${, eDel${, sSep$}}}}});

hard$ The characters to use as hard separators between all fields. If this is omitted or
the string is empty, the standard hard separators of comma and tab are used.

soft$ The characters to use as soft separators. If this is omitted, the space character is
set as a soft separator. If soft$ is empty, no soft separators are used.

sDel$ The characters that delimit the start of a string. If omitted, a double quote is
used. If empty, no delimiter is set. Delimiters are not returned in the string.

eDel$ The characters that delimit the end of a string. If omitted, a double quote is used.
If empty, no delimiter is set. If sDel$ and eDel$ are the same length, only the
end delimiter character that matches the start delimiter position is used. For
example, to delimit strings with <text> or 'text' set sDel$ to "<'" and
eDel$ to ">'". You can repeat a character to force different lengths.

sSep$ The list of hard separator characters for strings that have no start delimiter. For
example, setting "|" lets you read one|two|three into three separate strings.

See also: Read(), ReadStr(), Val()

This function extracts data fields from a string and converts them into variables.
Func ReadStr(text$, &var1 {, &var2 {, &var3...}});

text$ The string used as a source of data.
var The arguments must all be variables. The variables can be of any type, and can

be one dimensional arrays. The type of each variable determines how the
function tries to extract data from the string. See Read() for details.

Returns The function returns the number of fields in the text string that were successfully
extracted and returned in variables, or a negative error code.

It is not an error to run out of data before all the variables have been updated. If this is a
possibility you must check the returned value. If an array is passed in, it is treated as
though it was the number of individual values held in the array.

See also: Read(), ReadSetup(), Val()

This function controls the rerun of the current time view and is equivalent to the View
menu ReRun command. You cannot use this on a file that is being sampled.
Func ReRun({run%{, sTime{, eTime{, scale}}}});

run% If >0, the current time view starts to rerun unless it is already rerunning. If zero,
rerun is cancelled for the time view. Omit to leave the state unchanged. Use -1
to return the current sTime, -2 to return eTime and -3 to return scale. The
sTime, eTime and scale arguments are used when run% > 0.

sTime Sets the start time for the rerun. If omitted, 0 is used.
eTime Sets the end time of the rerun. If omitted MaxTime() is used.
scale Sets the time scale for the rerun. If omitted, 1.0 is used. A value of 2 reruns

twice as fast. Values from 0.01 to 100.0 are allowed.
Returns If run% is positive or omitted the command returns the state at the time of the

call: 0=not rerunning, 1=rerunning, -1= rerunning is not allowed. Negative
values of run% return the current rerun settings.

ReadSetup()

ReadStr()

ReRun()

Right$() The Spike2 script language SampleAutoCommit()

5-149

This function returns the rightmost n characters of a string.
Func Right$(text$, n);

text$ A string of text.
n The number of characters to return.
Returns The last n characters of the string, or all the string if it is less than n characters.
See also: Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(),

Print$(), ReadStr(), Str$(), UCase$(), Val()

Rounds a real number or an array of reals to the nearest whole number.
Func Round(x|x[]|x[][]);

x A real number or an array of reals.
Returns If x is an array it returns 0. Otherwise it returns a real number with no fractional

part that is the nearest to the original number.
See also: Frac(), Max(), Min(), Trunc()

This cancels sampling a file or file sequence and closes any associated data, result and
cursor views without saving them. If a result view derived from the data has been saved,
the saved file remains. It is equivalent to the Abort button in the sampling control panel.
Func SampleAbort();

Returns 0 if sampling was aborted, or a negative error code.
See also: SampleKey(), SampleReset(), SampleStart(), SampleStop(),

SampleStatus(), SampleText(), SampleWrite()

This gets or sets file auto-commenting state as set in the sampling configuration dialog.
Func SampleAutoComment({yes%});

yes% If present a non-zero value turns on automatic prompting for file comments
when sampling ends and zero turns it off. If absent, no change is made.

Returns the automatic commenting flag at the time of the function call, 0=off, 1= on.
See also: FileComment$(), SampleAutoFile(), SampleAutoName$()

This gets or sets the automatic file commit period as set in the sampling configuration
dialog. There is an overhead associated with the commit operation; do not set needlessly
short time periods. A period of 0 means no file commit.
Func SampleAutoCommit({every%});

every% If present this sets the automatic file commit interval in seconds. The value is
limited to the range 0 to 1800 seconds (a maximum of 30 minutes).

Returns the automatic commit period in seconds at the time of the function call.
See also: FileSave(), SampleAutoFile(), SampleWrite()

Right$()

Round()

SampleAbort()

SampleAutoComment()

SampleAutoCommit()

SampleAutoFile() Alphabetical command reference SampleCalibrate()

5-150

This gets or sets the automatic filing state as set in the sampling configuration dialog.
Func SampleAutoFile({yes%});

yes% If present, a non-zero value turns on automatic data filing when sampling ends
and zero turns it off. If absent, no change is made.

Returns the automatic filing state at the time of the function call, 0=off, 1= on.
See also: FileSave(), FileSaveAs(), FilePathSet(), SampleAutoName$(),

SampleAutoComment(), SampleRepeats()

This gets or sets the template for file auto-naming as in the sampling configuration
dialog. The path is set by FilePathSet(). The name must be set before you open the
file for sampling for the automatic name to be used.
Func SampleAutoName$({name$});

name$ If present, this is the template for file auto-naming. An empty string turns off
auto-naming. The maximum name length is 20 characters. See the sampling
configuration documentation for details on the template string.

Returns The auto-naming template at the time of the function call.
See also: FilePathSet(), SampleAutoFile(), SampleAutoComment()

This gives you access to the Sample toolbar. The format of strings passed by this
command is the button label (up to 8 characters), followed by a vertical bar, followed by
the full path name to a sampling configuration file, including the .s2c file extension,
followed by a vertical bar then, a comment to display when the mouse pointer is over the
button. If you call the command with no arguments it returns the number of buttons in the
toolbar.
Func SampleBar({n% {, &get$}});
Func SampleBar(set$);

n% If set to -1, get$ must be omitted, all buttons are cleared and the function
returns 0. When set to the number of a button (the first button is 0), get$ is as
described above. In this case, the function returns -1 if the button does not exist,
0 if it exists and is the last button, and 1 if higher-numbered buttons exist.

set$ The string passed in should have the format described above. The function
returns the new number of buttons or -1 if all buttons are already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets two buttons:
SampleBar(-1); 'clear all buttons
SampleBar("Fast|C:\\Spike3\\Fast.s2c|Fast 4 channel sampling");
SampleBar("Faster|C:\\Spike3\\FastXX.s2c|Very fast sampling");

See also: App()

This sets the waveform or WaveMark channel calibration. It changes the units, scale and
offset fields only. See the Sampling Configuration dialog for a description of these fields.
Func SampleCalibrate(chan%, units$, scale, offset);

chan% The channel number of a waveform or WaveMark channel (1-100).
units$ The units to use. If the string is longer than 5 characters only the first 5 are used.

SampleAutoFile()

SampleAutoName$()

SampleBar()

SampleCalibrate()

SampleChannels() The Spike2 script language SampleDigMark()

5-151

scale The scale factor for the channel.
offset The offset for the channel.
Returns 0 if all was well, or a negative error code.
See also: SampleTimePerAdc(), SampleTitle$(), SampleUsPerTime(),

SampleWaveform(), SampleWaveMark()

This function returns and optionally sets the maximum number of channels in the data
file. The next time you sample, the data file will have space for this number of channels.
Spike2 version 5 allows up to 256 channels. Version 4 reads files with up to 100
channels. Version 3 can only read files with 32 channels. The maximum number of
channels that you can sample is 100.
Func SampleChannels({nChan%});

nChan% If present, this sets the number of channels in the next data file created for
sampling in the range 32-256. Numbers outside this range are set to the nearer
limit. The maximum channel number for sampling is the smaller of the
maximum channels in the file or 100.

Returns The number of channels set at the time of the call.
See also: FileNew(), FileSaveAs(), SampleClear(),

This sets the sampling configuration to a standard state. The data file is set to 32 channels
(all Off except the keyboard), sampling mode is Continuous, microseconds per time is 10,
time per ADC is 10, sequence files are disconnected, Stop sampling when… fields are
disabled and the automatic file name template is cleared. All sample rate optimising is
disabled (equivalent to SampleOptimise(0,0,0)).
Proc SampleClear();

See also: SampleLimitSize(), SampleLimitTime(), SampleOptimise(),
SampleTimePerAdc(), SampleUsPerTime()

This function gets and sets the comment attached to a channel in the Sampling
Configuration dialog.
Func SampleComment$(chan% {,new$});

chan% The channel number in the window (1 to 100).
new$ If present, the new comment. If the comment is too long, it is truncated.
Returns The original comment, or an empty string if the channel number is illegal.
See also: SampleDigMark(), SampleEvent(), SampleTextMark(),

SampleTitle$(), SampleWaveform(), SampleWaveMark()

This adds the digital marker channel to the sampling configuration.
Func SampleDigMark(rate)

rate The expected sustained rate for digital markers on this channel in Hz.
Returns 0 if all went well, or a negative error code.
See also: SampleEvent(), SampleTextMark(), SampleTitle$()

SampleChannels()

SampleClear()

SampleComment$()

SampleDigMark()

SampleEvent() Alphabetical command reference SampleLimitTime()

5-152

This function sets a channel to sample event data.
Func SampleEvent(chan%, port%, type%, rate);

chan% The channel number in the file to use for this data (1-100).
port% The event port number.
type% The type of the event channel: 0=Events on a falling edge (Event-), 1=Events on

a rising edge (Event +), 2=Events on both edges (Level)
rate The expected maximum sustained event rate on the channel in Hz.
Returns 0 if all went well, or a negative error code.
See also: SampleClear(), SampleDigMark(), SampleTitle$()

Returns view handles linked to sampling. This can be used to position, show and hide the
output sequencer and sampling control panels. App() also returns control panel handles.
Func SampleHandle(which%);

which% Selects which view handle to return:
0 Sampling time view 1 Sampling control panel 2 Sequencer control panel

Returns The view handle or 0 if the view does not exist.
See also: App(), View(), ViewList(), Window(), WindowVisible()

Adds an event to the keyboard marker channel of a sampling file as if you had typed it,
including triggering the output sequencer and arbitrary waveform output. There was no
return value before version 5.04.
Func SampleKey(key$);

key$ The first character of the string is added to the keyboard marker channel.
Returns The time stamp of the added marker in seconds or -1 if no file is sampling.
See also: PlayWaveAdd(), SampleText(), SampleWrite()

This corresponds to Starting and stopping: Stop at file size in the Automation dialog.
Func SampleLimitSize({size});

size The size limit for the output file, in kB. A positive value sets the size and
enables the limit. A negative value sets the limit to the positive value of size, but
disables the limit. A zero value, or omitting the argument, means no change.

Returns The limit before the call. If the limit is disabled, the size is returned negated.
See also: SampleClear(), SampleLimitTime(), SampleMode(), SampleRepeats()

This corresponds to Starting and stopping: Stop at time in the Automation dialog.
Func SampleLimitTime({time});

time The time in seconds to set as a limit. A positive time sets the limit and enables it.
A negative time sets the limit to the positive time, but disables the limit. A value
of zero, or omitting the argument, leaves the time limit unchanged.

Returns The limit before the call. If the limit is disabled, the time is returned negated.
See also: SampleClear(), SampleLimitSize(), SampleMode(), SampleRepeats()

SampleEvent()

SampleHandle()

SampleKey()

SampleLimitSize()

SampleLimitTime()

SampleMode() The Spike2 script language SampleOptimise()

5-153

This function sets and gets the sampling mode in the Sampling configuration dialog. To
set Triggered mode you should use SampleTrigger() as mode 3 is maintained here for
backwards compatibility with previous versions of Spike2.
Func SampleMode(mode%{, time, trig%|every});

mode% This argument determines the action of the command:
0 Returns the current mode as 1, 2, or 3 for Continuous, Timed or Triggered.

Any additional arguments are ignored.
1 Sets Continuous recording mode.
2 Sets Timed recording mode. All three arguments are required.
3 Sets Triggered recording mode. All three arguments are required.
-1 Returns the For field value, valid in Timed mode.
-2 Returns the value of the Every field, valid for Timed sampling mode.
-3 Returns the Trigger field value, valid in Triggered sampling mode.

time In modes 2 and 3 it sets the For field of the Sampling mode group, in seconds.
every In mode 2 it sets the Every field for timed sampling, in seconds.
trig% The trigger channel number for mode 3. This channel must exist in the sampling

configuration and can be of any type except a waveform or WaveMark channel.
Returns For modes 0-3 it returns the current sampling mode as 1-3, or a negative error

code. In mode -1 to -3 it returns the information described for mode%, above.
If you set triggered mode, triggers 2 to 4 are disabled and the command is equivalent to
calling SampleTrigger(1, trig%, -1, 0.0, time, -1).

See also: SampleClear(), SampleTrigger()

This function sets and gets the sample rate optimising settings in the Resolution tab of the
Sampling configuration dialog. Spike2 can match the requested sample rates for
waveform and WaveMark channels by changing the microseconds per time unit, time
units per ADC convert and by making waveform channels into Quick or Slow channels.

The available ADC sample rate is divided by giving one share to each WaveMark
channel, one to each Quick channel and one to the entire Slow channel group. The actual
rates for each waveform channel (Quick or Slow) can then be further down-sampled by
taking one point in n. For example, with 4 Slow channels, the fastest rate for a Slow
channel is one quarter the fastest rate for a Quick channel.

The rates are optimised each time you change any aspect of the sampling configuration
that affects the sample rate. With full optimise set and slow sampling rates it can take an
appreciable time for Spike2 to search all possible combinations for the best sample rates.
For this reason, SampleClear() sets no optimise and version 3 compatibility. We
recommend that you use this command after all the other sample setup commands so that
you pay the time penalty for optimising once.
Func SampleOptimise(opt%, group%, type% {,usLo% {,usHi%}});
Func SampleOptimise(get%);

opt% This sets the optimise method. Values are:
0 No optimise of microseconds per time or time per ADC.
1 Partial, optimise time per ADC, no optimise of microseconds per time.
2 Full, optimise both time per ADC and microseconds per time.

group% This controls the use of Quick channels. Values are:
0 Version 3 compatible; no Quick channels and channel divides up to 65535.
1 Group channels with the same ideal rate so they get the same actual rate.
2 Optimise for the least error in rate; channels with the same ideal rate may

get different actual rates.

SampleMode()

SampleOptimise()

SampleRepeats() Alphabetical command reference SampleReset()

5-154

type% Set the type of 1401 to optimise for:
0 Works with all supported 1401s except a 1401plus with an old ADC.
1 1401plus with an old ADC. 4 Micro1401 mk II
2 Power1401 5 Power1401 625
3 1401plus or a micro1401 6 micro1401 (not mk II)

usLo% If present, it sets the low limit, in microseconds, for optimising microseconds
per time unit (when opt% is 2). Values outside the range 1 to 1000 are ignored.

usHi% If present, it sets the high limit, in microseconds, for optimising microseconds
per time unit. Values outside the range 1 to 1000 are ignored.

get% Use the function with one argument to read back the current settings. The values
0 to 4 read back the current values of opt%, group%, type%, usLo% and usHi%.

Returns The setting version returns the current optimise method. When called with one
argument, the return values are as documented for get%.

See also: SampleClear(), SampleLimitSize(), SampleLimitTime(),
SampleTimePerAdc(), SampleUsPerTime()

This gets and optionally sets the Sampling configuration Automation tab Repeats field,
which is used to sample a sequence of files with automatically incrementing names. You
can use it online to return the number of files left to sample. You can choose to trigger
each file in the sequence, or just the first with SampleStartTrigger().
Func SampleRepeats({files%});

files% The number of files to sample; 0 and 1 both sample a single file. Set -1 to return
the number of files that remain to be sampled (including the current file). If you
omit this argument, the number of files is not changed.

Returns The number of repeats set at the time of the call or the number of files that
remain to be sampled.

You must also set a file name with SampleAutoName$(), set automatic file saving with
SampleAutoFile(1) and set a time or size limit with SampleLimitTime() or
SampleLimitSize(), or load a suitable sampling configuration with these values set.

To make life easier for the script programmer, each file in the sequence has the same
view handle, which is the handle of the first file you create with FileNew(). As each file
reaches the time or size limit, it is saved, closed and replaced with the next file. The view
handle always references a file, but its file name and sampling status will vary. The last
sampled file in the sequence is not closed. You can use SampleStop() or
SampleAbort() to end a sequence early and SampleReset() to restart a file.

See also: SampleAutoFile(), SampleAutoName$(), SampleLimitSize(),
SampleLimitTime(), SampleStartTrigger(), SampleStop()

This abandons sampling, deletes any data that has been written to disk, and returns to a
state as if FileNew() had just been used to create a new data file. If it is used when
sampling a sequence of files, the current file is restarted and the sequence continues.
Func SampleReset();

Returns 0 if the reset operation completed without a problem, or a negative error code.
See also: SampleAbort(), SampleKey(), SampleStart(), SampleStop(),

SampleStatus(), SampleText(), SampleWrite()

SampleRepeats()

SampleReset()

SampleSeqCtrl() The Spike2 script language SampleSequencer()

5-155

This sets and gets options that control the use of the output sequence. Currently there is
only one option.
Func SampleSeqCtrl(opt%{, new%});

opt% There is currently only one option: 1 = get or set the sequencer jump control.
This is the same as the Sequencer jumps controlled by setting in the
Sequencer tab of the Sampling configuration dialog.

new% The new value for the control option. For the jump control: 0 = keyboard,
control panel and script, 1 = control panel and script, 2 = script only.

Returns If you are setting a value or this is used at an inappropriate time, the function
returns 0. If you are reading a value, the function returns the value.

See also: SampleKey(), SampleSeqStep(), SampleSequencer$(), SampleStart()

This returns the current sequencer step or -1 if not sampling. If no sequence is running
the result is usually 0 (but this is not guaranteed).
Func SampleSeqStep();

Returns The current sequence step number, or -1 if not sampling.
See also: SampleKey(), SampleSequencer$(), SampleSeqVar()

If there is a sampling document with an output sequence, you can use this function to find
the size of any table set in the sequence by the TABSZ directive. You can also use this to
transfer data between an integer array and the table.
Func SampleSeqTable({tab%[]{, offs%{, get%}}});

tab%[] An integer array holding items to transfer to the 1401 sequencer table or to hold
items read back from the table. The array size sets the maximum item count

offs% This sets the index into the sequencer table to start the transfer. The first index in
the table is 0. If this value is negative or greater than or equal to the sequencer
table size, no data is transferred. If omitted, the value 0 is used.

get% Set 0 or omit this argument to transfer data to the sequencer table, set to 1 to
transfer data from the sequencer table.

Returns If you call this with no arguments, the return value is the size of the sequencer
table. Otherwise, the returned value is the number of items transferred between
the sequencer table and the array. A negative error code is also possible, for
example -1 if there is no sampling document.

See also: SampleKey(), SampleSequencer$(), SampleSeqVar()

You can use this function to set the sequencer file to attach to the Sampling
configuration. Use SampleSequencer$() to get the name of the current sequencer file.
Func SampleSequencer(new$);

new$ The name of the sequence file. Pass an empty string to set no sequencer file.
Returns It returns 0 if all was well, or a negative error code.
See also: SampleKey(), SampleSequencer$(), SampleSeqVar()

SampleSeqCtrl()

SampleSeqStep()

SampleSeqTable()

SampleSequencer()

SampleSequencer$() Alphabetical command reference SampleStartTrigger()

5-156

This function returns the name of the sequencer file that is currently attached to the
sampling configuration. Use SampleSequencer() to set the file.
Func SampleSequencer$();

Returns It returns the current sequencer file name, or an empty string if there is no file.
The returned name includes the full path.

See also: SampleKey(), SampleSequencer(), SampleSeqVar()

This is used during sampling with an output sequence, to get or set the value of an output
sequencer variable. Values set before the sampling window exists are ignored. From 4.04,
values set before SampleStart() set the initial variable values. Previously they took
effect after sampling started.
Func SampleSeqVar(sVar%{, new%});

sVar% The sequencer variable to set or read, in the range 1 to 64.
new% The new value for the output sequencer variable. If present, the value of the

variable is updated. Omit to return the variable value. A common error when
setting variables for the DAC instruction is to set a value 65536 times too small.

Returns If you are setting a value, or this is used at an inappropriate time, the function
returns 0. If you are reading a value, the function returns the value.

See also: SampleKey(), SampleSeqStep(), SampleSequencer$(), SampleStart()

This function can be used after FileNew() has created a new time view based on the
current Sampling configuration. It starts sampling immediately, or on a trigger.
Func SampleStart({trig%});

trig% 0 = start sampling immediately (default), 1 = wait for a Trigger input signal
(1401plus Event 3 input), -1 = use the sample configuration trigger setting.

Returns 0 if all went well or a negative error code.
See also: SampleAbort(), SampleRepeats(), SampleReset(), SampleStop(),

SampleStartTrigger(), SampleStatus(), SampleWrite()

This gets and optionally sets the trigger option used when sampling starts. It is equivalent
to Starting and stopping: Triggering in the Sampling configuration Automation tab.
Func SampleStartTrigger({trig%});

trig% Omit this argument for no change. The following values can be used:
-1 Use whatever state the user previously set in the sampling control panel
0 Sampling is not triggered
1 Sampling starts on a trigger; repeated files are not triggered
2 Sampling starts on a trigger; repeated files are triggered

Returns The trigger state (as for the trig% argument) at the time of the call.
See also: SampleAbort(), SampleRepeats(), SampleReset(), SampleStop(),

SampleStart(), SampleStatus(), SampleWrite()

SampleSequencer$()

SampleSeqVar()

SampleStart()

SampleStartTrigger()

SampleStatus() The Spike2 script language SampleTextMark()

5-157

This function enquires about the state of any sampling.
Func SampleStatus();

Returns A code indicating the sampling state or -1 if there is no sampling:
0 A time view is ready to sample, but it has not been told to start yet
1 Sampling is waiting for an Event 3 trigger
2 Sampling is now in progress
3 Sampling is stopping (the code changes to -1 when it has stopped)

See also: SampleAbort(), SampleReset(), SampleStart(), SampleStop()

This function stops sampling in progress, and is equivalent to the Stop button of the
floating command window. The function does not return until sampling has stopped. If
used in a file sequence, the sequence is cancelled and the current file is saved.
Func SampleStop();

Returns 0 if sampling stopped correctly or a negative error code.
See also: SampleAbort(), SampleKey(), SampleReset(),

SampleStart(),SampleStatus(), SampleText(), SampleWrite()

This function adds text to a text marker channel during sampling. Text marker channels
are created with the SampleTextMark() command.
Func SampleText(text$ {,time {,code%[]}});

text$ The text string to attach to the text marker. If the string is longer than the
maximum length set for the channel, extra characters are ignored.

Time The time for the text marker. If this argument is omitted, negative, less than the
time of the last text marker, greater than the current sampling time or this is the
triggered sampling mode trigger channel, then the current sampling time is used

code% The first four elements of this array set the marker codes stored with the text
string. If this argument is omitted the codes are set to 0. Codes are limited to the
range 0-255. Only the lower 8 bits of codes outside this range are stored.

Returns 0 if all was OK, or a negative error code.
See also: SampleAbort(), SampleKey(), SampleReset(), SampleStart(),

SampleStop(), SampleStatus(), SampleTextMark()

This function sets channel 30 as a text marker channel. Each event on a text marker
channel holds a time, marker codes and a text string. You can add text markers to this
channel using the SampleText() command and from a serial line.
Func SampleTextMark(max%{, port%{, term$
 {, baud%{, bits%{, par%{, stop%{, hsk%}}}}}}});

max% This sets the maximum number of characters that can be attached to each text
marker in the range 1 to 200. If 0 is passed, the channel is deleted from the list.

port% Serial port, in the range 1 to 9, to use to read on-line TextMark data. If omitted,
no serial data is read. When reading, characters with codes less than 32 are
ignored unless they are the terminator character.

term$ Optional terminating character for serial line read. If omitted, "\r" is used
(carriage return, character code 13).

SampleStatus()

SampleStop()

SampleText()

SampleTextMark()

SampleTimePerAdc() Alphabetical command reference SampleTrigger()

5-158

baud% This sets the serial line Baud rate (number of bits per second). The maximum
character transfer rate is of order one-tenth this figure. All standard Baud rates
from 50 to 115200 are supported. If you do not supply a Baud rate, 9600 is used.

bits% The number of data bits to encode a character (7 or 8). If omitted, 8 is set.
par% Set this to 0 for no parity check, 1 for odd parity or 2 for even parity. If you do

not specify this argument, no parity is set.
stop% This sets the number of stop bits as 1 or 2. If omitted, 1 stop bit is set.
hsk% This sets the handshake mode, sometimes called flow control. 0= no handshake,

1=hardware handshake, 2=XON/XOFF protocol. If omitted, 0 is set.
Returns 0 or a negative error code.
See also: SampleText(), SampleComment$(), SampleClear()

This sets and gets the number of time units set by SampleUsPerTime() for each ADC
conversion. The product of the time per ADC and the microseconds per unit time must be
at least 3 for Power1401 and 6 for 1401plus and micro1401. Lower values will cause
sampling to fail. If the optimise method is set by SampleOptimise() is not 0, this call
will have no effect as time per ADC will be recalculated.
Func SampleTimePerAdc({new%});

new% The number of clock ticks per conversion in the range 1 to 32767. If this is
omitted the value is not changed. Illegal values stop the script with a fatal error.

Returns The value of the time per ADC convert at the time of the call.
See also: SampleOptimise(), SampleUsPerTime(), SampleWaveform()

This gets and sets the title attached to a channel in the Sampling Configuration dialog.
Func SampleTitle$(chan% {,new$});

chan% The channel number.
new$ If present, the new title. If the title is too long, it is truncated.
Returns The title at the time of the call, or an empty string for illegal channel numbers.
See also: SampleCalibrate(), SampleComment$(), SampleClear()

There are four triggers that can be set to determine which data for a channel is written to
disk. Each trigger is associated with a list of channels. The first trigger is also set by
SampleMode() for backwards compatibility. You cannot change the triggering after
sampling has started. Channels not associated with a trigger are written continuously.
Func SampleTrigger(trig%, scr%, code%, relS, relE{, cSpc});
Func SampleTrigger(trig%, get%);

trig% A trigger number in the range 1 to 4. Setting a trigger sets triggered sampling
mode. This is cancelled by SampleClear() or by calling SampleMode().

scr% A source channel for triggers. The channel is not checked here, so you can put in
anything that could be a channel number. However, it is checked when you start
sampling and if this is not an event-based channel the trigger is ignored.

code% If the src% channel is Marker-based, you can choose to only trigger when the
first marker code matches this value (in the range 0 to 255). Set -1 to accept all
markers. If the source is not a marker, code% is ignored.

SampleTimePerAdc()

SampleTitle$()

SampleTrigger()

SampleUsPerTime() The Spike2 script language SampleWaveMark()

5-159

relS The start of the triggered area relative to the trigger time, in seconds. This can be
negative or positive, but must be less than relE. There are limits on how far
into the past a trigger can go; there is a warning message when sampling starts if
the triggering requests are impossible.

relE The end of the triggered area relative to the trigger time. This must be greater
than relS. Spike2 saves data in buffers so you may get more data saved to disk
that you requested.

cSpc A channel specification for the channels to trigger. If you omit this argument all
channels are selected for triggering. You cannot use the standard channel
specification values -2 or -3.

get% You can use the second command variant to return trigger values. Get values:
-1 -2 -3 -4 -5

scr% code% relS relE CSpc, -1=all, 1-n for one, 0=multiple
 If more than one channel is selected, the channel specification returns 0.
Returns The first variant returns 0 or an error code. The second variant returns the

requested value.
See also: SampleClear(), SampleMode()

This gets and optionally sets the basic time unit used for sampling. If the optimise method
is set to full by SampleOptimise(2,...), changes to the basic time units have no
effect as Spike2 chooses the best value to optimise the waveform sample rates.
Func SampleUsPerTime({new});

new If present, this sets the basic time unit in the range 2-1000 microseconds. Out of
range values cause a fatal script error. If you sample with a Power1401 or
Micro1401 mk II, the value is rounded to the nearest 0.1 microseconds. For all
older 1401 types the value is rounded to the nearest microsecond.

Returns The current value of microseconds per time unit.
See also: SampleLimitTime(), SampleOptimise(), SampleTimePerAdc()

This function adds a waveform channel to the list of channels required. If the channel is
already in use, it is replaced. The units, scale and offset fields are set to the standard
Spike2 defaults (input in Volts). The title and comment of the channel are not changed.
Func SampleWaveform(chan%, port%, ideal);

chan% The channel number to use for the new channel in the range 1 to 100.
port% An unused (by a waveform channel) 1401 waveform port in the range 0-31.
ideal The ideal sampling rate that you would like for the port in Hz. Remember that

you may not get this rate. Spike2 will set the nearest rate it can.
Returns 0 if all went well, or a negative error code.
See also: SampleOptimise(), SampleTimePerAdc(), SampleUsPerTime()

This adds a WaveMark channel to the sample list. The units, scale and offset fields are set
to the Spike2 defaults (input in Volts). The channel title and comment are not changed.
See the Sampling Configuration dialog description for sample rate details.
Func SampleWaveMark(chan%, port%, rate,size%,pre%{,ideal{,nTr%}});

SampleUsPerTime()

SampleWaveform()

SampleWaveMark()

SampleWrite() Alphabetical command reference ScriptBar()

5-160

chan% The channel number to use for the new channel in the range 1 to 100.
port% The 1401 waveform port in the range 0-31.
rate The estimated maximum sustained spike rate, used to allocate buffer space.
size% The number of waveform samples to save for each WaveMark This must be an

even number in the range 10 to 126.
pre% The number of points before the peak/trough of each spike, range 0 to size%-1;
ideal If present, this sets the ideal sample rate, in samples per second, for all

WaveMark channels. This must be in the range 1.0 to 500000.0 Hz.
nTr% If present, this sets the number of traces to sample as 1, 2 or 4. The default is 1.
Returns 0 if all went well, or a negative error code.
See also: SampleOptimise(), SampleTimePerAdc(), SampleUsPerTime()

This controls writing data to the file during sampling. You can enable and disable writing
of some or all channels, and obtain the sampling state of channels and channel groups.
Func SampleWrite(write% {,chan%|chan%[]});

write% This determines the action taken by the command:
-1 Report on the state of the channel (or channels) given by the next argument.
0 Disable writing to disk (pause) the channels given by the next argument
1 Enable writing to disk (un-pause) the channels given by the next argument

chan% This sets the channels to operate on. If omitted, all channels are used. If this is
an integer, it is the channel number. If it is an array, index 0 holds the number of
channels following; the remaining elements hold a list of channel numbers.

Returns The state of writing for the channel or channels:
0 Disabled 1 Enabled 2 Some channels in list are enabled

See also: SampleAbort(), SampleKey(), SampleReset(), SampleStart(),
SampleStop(), SampleStatus(), SampleText()

This controls the Script toolbar. Call the command with no arguments to return the
number of toolbar buttons. The first button is numbered 0.
Func ScriptBar({nBut%{, &get$}});
Func ScriptBar(set$);

nBut% Set -1 and omit get$ to clear all buttons and return 0. Otherwise it is a button
number and returns -1 if the button does not exist, 0 if it is the last button, and 1
if higher-numbered buttons exist. get$ returns the information as for set$.

set$ This holds up to 8 characters of button label, a vertical bar, the path to the script
file including .s2s, a vertical bar and a pop-up comment. The function returns
the new number of buttons or -1 if all buttons are already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets a button:
ScriptBar(-1); 'clear all buttons
ScriptBar("ToolMake|C:\\Scripts\\ToolMake.s2s|Build a toolbar");

See also: App()

SampleWrite()

ScriptBar()

ScriptRun() The Spike2 script language SerialCount()

5-161

This sets the name of a script to run when the current script terminates. You can pass
information to the new script using disk files or by using the Profile() command. You
can call this function as often as you like; only the last use has any effect.
Proc ScriptRun(name${, flags%});

name$ The script file to run. You can supply a path relative to the current folder or a
full path to the script file. If you supply a relative path, it must still be valid at
the end of the current script. Set name$ to "" to cancel running a script.

flags% Optional flags that control the new script. If omitted, 0 is used. The only flag
defined now is 1 = run new script even if the current script ends in an error.

If the file you name does not exist when Spike2 tries to run it, nothing happens. If the
nominated script is not already loaded, Spike2 will load it, run it and unload it.

See also: App(), Profile()

This returns the time in seconds. This is used for relative time measurements. You can
also set the timer. If you want the time into sampling, use the Maxtime() function.
Func Seconds({set});

set If present, this sets the time in seconds. The time is 0 when Spike2 starts.
Returns The time in seconds. This is the value before any new time is set.

See also: Date$(), MaxTime(), Time$(), TimeDate()

This function returns the text in the current view that is currently selected.
Func Selection$();

Returns The current text selection. If there is no text selected, or if the view is
inappropriate for this action, an empty string is returned.

See also: EditCopy(), EditCut(), EditPaste(), MoveBy(), MoveTo()

This function closes a serial port opened by SerialOpen(). Closing a port releases
memory and system resources. Ports are automatically closed when a script ends,
however it is good practice to close a port when your script has finished with it.
Func SerialClose(port%);

port% The serial port to close as defined for SerialOpen().
Returns 0 or a negative error code
See also: SerialOpen(), SerialWrite(), SerialRead(), SerialCount()

This counts the characters or items buffered in a serial port opened by SerialOpen().
Use this to detect input so your script can do other tasks while waiting for serial data.
There is an internal buffer of 1024 characters per port that is filled when you use
SerialCount(). The size of this buffer limits the number of characters that this
function can tell you about. To avoid character loss when you are not using a serial line
handshake, do not buffer up more than a few hundred characters with SerialCount().
Func SerialCount(port% {,term$});

ScriptRun()

Seconds()

Selection$()

SerialClose()

SerialCount()

SerialOpen() Alphabetical command reference SerialRead()

5-162

port% The serial port to use as defined for SerialOpen().
term$ An optional string holding the character(s) that terminate an input item.
Returns If term$ is absent or empty, this returns the number of characters that could be

read. If term$ is set, this returns the number of complete items that end with
term$ that could be read.

See also: SerialOpen(), SerialWrite(), SerialRead(), SerialClose()

This function opens a serial port and configures it for use by the other serial line
functions. It is not an error to call SerialOpen more than once on the same port. The
serial routines use the host operating system serial line support. Consult your system
documentation for information on serial line connections and Baud rate limits.
Func SerialOpen(port%{, baud%{, bits%{, par%{, stop%{, hsk%}}}}});

port% The serial port to use, in the range 1 to 9. The number of ports depends on the
computer. Two ports (1 and 2) are common on both PC and Macintosh systems.

baud% This sets the serial line Baud rate (number of bits per second). The maximum
character transfer rate is of order one-tenth this figure. All standard rates from
50 to 115200 Baud are supported. If you omit baud%, 9600 is used.

bits% The number of data bits to encode a character. Windows supports 4 to 8 bits, the
Macintosh supports 7 or 8. If bits% is omitted, 8 is set. Standard values are 7 or
8 data bits. If you set 7 data bits, character codes from 0 to 127 can be read. If
you set 8 data bits, codes from 0 to 255 are possible.

par% Set this to 0 for no parity check, 1 for odd parity or 2 for even parity. If you do
not specify this argument, no parity is set.

stop% This sets the number of stop bits as 1 or 2. If omitted, 1 stop bit is set. If you
specify 5 data bits, a request for 2 stop bits results in 1.5 stop bits being used.

hsk% This sets the handshake mode, sometimes called “flow control”. 0 sets no
handshake, 1 sets a hardware handshake, 2 sets XON/XOFF protocol.

Returns 0 or a negative error code.
See also: SerialWrite(), SerialRead(), SerialCount(), SerialClose()

This function reads characters, a string, an array of strings, or binary data from a
nominated serial port that was previously opened with SerialOpen(). Binary data can
include character code 0; string data never includes character 0.
Func SerialRead(port%, &in$|in$[]|&in%|in%[]{,term${, max%}});

port% The serial port to read from as defined for SerialOpen().
in$ A single string or an array of strings to fill with characters. To use an array of

strings you must set a terminator or all input goes to the first string in the array.
in% A single integer (term$ and max% are ignored) or an array of integers (term$

and max% can be used) to read binary data. Each integer can hold one character,
coded as 0 up to 255. The function returns the number of characters returned.

term$ If this is an empty string or omitted, all characters read are input to the string,
integer array or to the first string in the string array and the number of characters
read can be limited by max%. The function returns the number of characters read.

 If term$ is not empty, the contents are used to separate data items in the input
stream. Only complete items are returned and the terminator is not included. For
example, set the terminator to "\n" if lines end in line feed, or to "\r\n" if

SerialOpen()

SerialRead()

SerialWrite() The Spike2 script language SerialWrite()

5-163

input lines end with carriage return then line feed. If in$ is a string, one item at
most is returned. If in$[] is an array, one item is returned per array element.
The function returns the number of items read unless in is an integer (in% or
in%[]) when it returns the number of characters returned.

max% If present, it sets the maximum number of characters to read into each string or
into the integer array. If a terminator is set, but not found after this many
characters, the function breaks the input at this point as if a terminator had been
found. There is a maximum limit set by the integer array size, the size of the
buffers used by Spike2 to process data and by the size of the system buffers used
outside Spike2. This is typically 1024 characters.

Returns The function returns the number of characters or items read or a negative error
code. If there is nothing to read, it waits 1 second for characters to arrive before
timing out and returning 0. Use SerialCount() to test for items to read to
avoid a time out.

See also: SerialOpen(), SerialWrite(), SerialCount(), SerialClose()

This writes one or more strings or binary data to a serial port opened by SerialOpen().
Func SerialWrite(port%, out$|out$[]|out%|out%[]{, term$});

port% The serial port to write to as defined for SerialOpen().
out$ A single string or an array of strings to write to the output. The return value is

the number of strings written. If a time-out occurs, the function returns the
number of complete strings sent before the time-out.

out% A single integer or an integer array to write as binary. One value is written per
integer. The output written depends on the number of data bits set for the port;
7-bit data writes as out% band 127, 8-bit data writes as out% band 255. The
return value is 1 if the transfer succeeded.

term$ If present, it is written to the output port after the contents of out%, out%[] or
out$ or after each string in out$[].

Returns As defined above or a negative error code. If the output system becomes full, the
function waits for one second before timing out.

See also: SerialOpen(), SerialRead(), SerialCount(), SerialClose()

SerialWrite()

SetAverage() Alphabetical command reference SetEvtCrl()

5-164

These commands create result views attached to the current time view or to the time
window associated with the current result view. Apart from SetResult(), which creates
a result view that is not dependent on a time view, these routines correspond with the
Analysis menu New Result view commands. They do not update the display (use Draw()
or DrawAll()), nor do they perform any analysis (see the Process() command).

The commands return a view handle, or a negative error code. Errors include: Bad
channel number, illegal number of bins, out of memory, illegal bin size. The new view is
made the current view. However, it is created invisibly and must be made visible with
WindowVisible(1) before it will appear when drawn.

Most commands accept a channel list specifier, written as cSpc. It can be an integer
channel number, or -1 for all, -2 for visible or -3 for selected channels. It can also be a
channel specification string, such as "1..4,6,10" or an integer array where the first
element is the channel count, the remaining elements are the channel numbers. Whatever
channels are specified, only channels of the correct type for the command are used. If a
channel is duplicated, the first occurrence is used. It is an error if the resulting list is
empty. Channels are created in the result view in the order they appear in the
specification. The first channel in the list generates result view channel 1, the second
generates channel 2, and so on.

This command creates a result view to hold the sum or average of sweeps of waveform
data. The Process() command does the analysis. Sweeps() reports the number of
sweeps accumulated. Omitted optional arguments have the value 0. The function is:

Func SetAverage(cSpc, bins% {,offset {,trig% {,flags%}}});

cSpc A channel list specifier defining channels to average. The channels must be
waveform or WaveMark channels in the current time view, or in the time view
associated with the current result view. Invalid channels are removed from the
list. The resulting channel list must hold at least one valid channel. All the
channels must have the same sampling rate; any channels that do not match the
sample rate of the first channel in the list are ignored.

bins% The number of bins required. There must be at least one bin. The maximum is
limited by available memory. The bin width is the waveform sampling interval.

offset This sets the pre-trigger time to show in the result. If omitted, 0 is used.
trig% The channel number to use as a trigger for each sweep. If this is omitted, or set

to 0, then each call to Process() takes the start time as the trigger time.
flags% This is the sum of flag values. Add 1 to display the mean data and not the sum.

Add 4 to enable error bars. If flags% is omitted, the value 0 is used.
Returns The function returns a handle for the new view, or a negative error code.
See also: BinError(), ChanData(), DrawMode(), Process(), Sweeps()

This creates a result view of event correlation histograms and optional raster displays.
The Process() command does the analysis. Sweeps() reports the number of triggers
processed. You can take measurements from an auxiliary channel from each sweep and
use this value to sort rasters, display a symbol and/or discard sweeps. See the Event
correlation in the Analysis menu for details. See RasterSort() and RasterSymbol()
for a description of sort values and symbol times.
Func SetEvtCrl(cSpc, bins%, binsz{, offset{, trig%{, flags%
 {, aCh%{, Mn, Mx}}}}});

SetXXXX commands

SetAverage()

SetEvtCrl()

SetEvtCrlShift() The Spike2 script language SetEvtCrlShift()

5-165

cSpc A channel list specifier of event or marker channels in the current time view, or
in the time view associated with the current result view. Invalid channels are
ignored. The resulting channel list must hold at least one valid channel.

bins% The number of bins in the histogram. There must be at least 1 bin.
binsz The width of each bin in seconds. This is converted into underlying time units.
offset This sets the pre-trigger time to show in the histogram.
trig% The channel number to use as a trigger for each sweep. If this is omitted, or set

to 0, then each call to Process() takes the start time as the trigger time.
flags% This is the sum of: 1 to scale the result as spikes per second, 2 to enable raster

displays, 8 for backwards aCh% event search, 16 to exclude rather than include
values that lie in the Mn to Mx range. If omitted, 0 is used.

aCh% Auxiliary measurement channel. The measured value sets raster sort value 1. For
waveform or RealWave channels, this is the waveform value at the trigger time.
For all other channel types, it is the latency of the first event on the channel
before/after the trigger and it also sets the time of symbol 1. If you omit aCh%,
there is no auxiliary channel.

Mn,Mx If present, these arguments set the range of measured values from aCh% that
control if a sweep is included or excluded.

Returns The function returns a handle for the new view, or a negative error code.
For an auto-correlation, set trig% the same as chan%. In this case, we do not count the
result of correlating each event with itself. If you must count self-correlations, add
Sweeps() to the bin holding the time shift of zero.
See also: SetEvtCrlShift(), DrawMode(), Process(), RasterSet(), Sweeps()

This can be used when the current result view was created by SetEvtCrl(). It sets a
time shift for the next Process() command to produce shuffled correlations by shifting
one channel with respect to the other without changing the result view time axis.
Proc SetEvtCrlShift(shift);

shift This value can be positive or negative. It causes the data on the trig% channel
to be correlated with data from channel chan% at a time shift later. The shift is
set back to zero after the Process() command on this result view.

Consider two channels of events (to be correlated) and a channel marking stimuli:
 a

b

stim

a with b a shifted with b

difference

If the stimulus channel holds events at some constant interval int, by shifting all events
on one of the two channels by int, the only correlation between the two channels left is
the correlation due to the stimulus. Thus by forming the difference between the unshifted
correlation and the shifted correlation, you can obtain the correlation between a and b
with the effect of the stimulus removed.

See also: SetEvtCrl(), Process()

SetEvtCrlShift()

SetINTH() Alphabetical command reference SetPhase()

5-166

This function creates a result window to hold an interval histogram. The Process()
command does the analysis. Each interval processed increments the value returned by
Sweeps(), even intervals that are too short or too long to contribute to the histogram.
Func SetINTH(cSpc, bins%, binsz{, minInt});

cSpc A channel list specifier of event or marker channels in the current time view, or
in the time view associated with the current result view. Invalid channels are
ignored. The resulting channel list must hold at least one valid channel.

bins% The number of bins required. There must be at least one bin. The maximum is
limited by available memory.

binsz The width of each bin in seconds. This is converted into underlying time units.
minInt This sets the start of the first analysis bin, in seconds. Shorter intervals are

counted for Sweeps(), but not included in the histogram. If omitted, 0 is used.
Returns The function returns a handle for the new view, or a negative error code.
See also: Process(), Sweeps()

This function creates a result view to hold phase histograms with optional raster displays.
The Process() command does the analysis. Sweeps() reports the number of cycles
analysed. You can measure a value for each sweep from an auxiliary channel and use this
value to sort rasters, display a symbol and discard sweeps. See the description of the
Analysis menu Phase histogram for details. See RasterSort() and RasterSymbol()
for a description of sort values and symbol times.
Func SetPhase(cSpc, bins%{, minCyc{, maxCyc{, cycle%{, flags%
 {, aCh%{, Mn, Mx}}}}});

cSpc A channel list specifier of event or marker channels in the current time view, or
in the time view associated with the current result view. Invalid channels are
ignored. The resulting channel list must hold at least one valid channel.

bins% The number of bins required. There must be at least one bin. The maximum is
limited by available memory. The bins are each 360/bins% wide.

minCyc The minimum cycle time to use in seconds. If two consecutive cycle markers are
closer than this time, the cycle is ignored, and is not counted by Sweeps(). If
this is omitted, a value of 0.0 is used.

maxCyc The maximum cycle time to use in seconds. If two consecutive cycle markers
are further apart than this, the cycle is ignored, and is not counted by Sweeps().
If this is omitted, there is no limit on cycle size.

cycle% The channel number to use as the cycle start and end marker. If this is omitted,
or set to 0, then each call to Process() takes the start time and end time as
marking a single cycle.

flags% This is the sum of: 2 to enable raster displays, 8 for backwards aCh% event
search, 16 to exclude rather than include sweeps with measured values that lie in
the Mn to Mx range. If omitted, 0 is used.

aCh% Auxiliary measurement channel. The measured value sets raster sort value 1. For
waveform or RealWave channels, this is the waveform value at the cycle start.
For all other channel types, it is the latency of the first event on the channel
before/after the cycle start and it also sets the symbol 1 time. If you omit aCh%,
there is no auxiliary channel.

Mn,Mx If present, these arguments set the range of measured values from aCh% that
control if a sweep is included or excluded.

Returns The function returns a handle for the new view, or a negative error code.
See also: DrawMode(), SetEvtCrl(), Process(), RasterSet(), Sweeps()

SetINTH()

SetPhase()

SetPower() The Spike2 script language SetPSTH()

5-167

This function creates a result view to hold a power spectrum. The Process() command
does the analysis. The function is as follows:
Func SetPower(cSpc, fftsz% {,wnd%});

cSpc A channel list specifier of waveform channels in the current time view, or in the
time view associated with the current result view. Invalid channels are removed
from the list. The resulting channel list must hold at least one valid channel. All
the channels must have the same sampling rate; any channels that do not match
the sample rate of the first channel in the list are ignored.

fftsz% The size of the transform used in the FFT. This must be a power of 2 in the
range 16 to 16384. The result view has half this number of bins. The width of
each bin is the sampling rate of the channel divided by fftsz%. Each block of
fftsz% data points processed increments the value for Sweeps().

wnd% The window to use. 0 = none, 1 = Hanning, 2 = Hamming. Values 3 to 9 set
Kaiser windows with -30 dB to -90 dB sideband ripple in steps of 10 dB. If this
is omitted a Hanning window is applied.

Returns The function returns a handle for the new view, or a negative error code.
See also: ArrFFT(), Process(), Sweeps()

This creates a result view to hold a peri-stimulus time histogram with an optional raster
display. The Process() command does the analysis. Sweeps() returns the number of
triggers processed. You can measure a value for each sweep from an auxiliary channel
and use this to sort rasters, display a symbol and discard sweeps. See the description of
the PSTH in the Analysis menu for details. See RasterSort() and RasterSymbol()
for a description of sort values and symbol times.
Func SetPSTH(cSpc, bins%, binsz {,offset {,trig% {,flags%
 {,aCh% {,Mn,Mx}}}}});

cSpc A channel list specifier of event or marker channels in the current time view, or
in the time view associated with the current result view. Invalid channels are
ignored. The resulting channel list must hold at least one valid channel.

bins% The number of bins required. There must be at least one bin.
binsz The width of each bin in seconds. This is converted into underlying time units.
offset This sets the pre-trigger time, in seconds. If omitted, 0.0 is used.
trig% The channel number to use as a trigger for each sweep. If this is omitted, or set

to 0, then each call to Process() takes the start time as the trigger time.
flags% This is the sum of: 1 to scale the result as spikes per second, 2 to enable raster

displays, 8 for backwards aCh% event search, 16 to exclude rather than include
values that lie in the Mn to Mx range. If omitted, 0 is used.

aCh% Auxiliary measurement channel. The measured value sets raster sort value 1. For
waveform or RealWave channels, this is the waveform value at the trigger time.
For all other channel types, the value is the latency of the first event on the
channel before/after the trigger and it also sets the symbol 1 time. If you omit
aCh%, there is no auxiliary channel.

Mn,Mx If present, these arguments set the range of measured values from aCh% that
control if a sweep is included or excluded.

Returns The function returns a handle for the new view, or a negative error code.
See also: DrawMode(), SetEvtCrl(), Process(), RasterAux(), Sweeps()

SetPower()

SetPSTH()

SetResult() Alphabetical command reference SetWaveCrlDC()

5-168

This function creates a result view of user-defined type, attached to no time view and
with no implied Process(). Sweeps() will return 0 unless you set the sweep count.
Func SetResult({chans%,} bins%, binsz, offset, title$, xU$
 {,yU$ {,xT$ {,yT$ {,flags% {,tick}}}}});

chans% This sets number of channels in the new result view. Omit for 1 channel. See the
View() documentation for access to multiple channel result view data.

bins% The number of bins in the view.
binsz The width of each bin. Bins should have a positive non-zero width.
offset The x axis value at the start of the first bin.
title$ The window title.
xU$ The x axis units.
yU$ Optional, y axis units, blank if omitted.
xT$ Optional, x axis title (otherwise blank).
yT$ Optional, y axis title (otherwise blank).
flags% Add 2 to enable raster data, add 4 to enable error bars. The default value is 0.
tick This is required if you enable raster data. Result views store raster data as 32-bit

integers. tick is the time resolution for this data. When working with a time
view, set tick to BinSize(), the time resolution of the time view. The
maximum time of a raster event is 2147483647*tick seconds.

Returns The function returns a handle for the new view, or a negative error code.

See also: BinError(), RasterGet(), RasterSet(), Sweeps(), View()

This creates a result view to hold the waveform correlation between waveform channels
sampled at the same rate. The Process() command does the analysis. Sweeps()
returns the number of data points used on the reference channel.
Func SetWaveCrl(cSpc, ref%, bins% {,offset});

cSpc A channel list specifier of waveform channels in the current time view, or in the
time view associated with the current result view. Invalid channels are removed
from the list. There must be at least one valid channel. Channels that do not
match the sample rate of the first channel in the list are ignored.

ref% A reference waveform channel that is correlated with all the waveform channels.
bins% The number of bins in the correlation. The bin width is the channel sampling

interval. This calculation is slow compared to the other SetXXXX commands.
The time taken is proportional to the length of the area processed times bins%.

offset The time to show before the zero time shift, in seconds. If omitted, 0 is used.
Returns The function returns a handle for the new view, or a negative error code.
See also: SetWaveCrlDC(), Process(), Sweeps()

To use this function the current view must be a waveform correlation result view. It sets
whether the DC levels of the two signals is removed before the correlation or not.
Func SetWaveCrlDC({useDC%})

useDC% If present, a zero value removes the DC, a non-zero value (default) includes it.
Returns The useDC% value before the call. It returns a negative error if this view is a

result view but not a waveform correlation.

SetResult()

SetWaveCrl()

SetWaveCrlDC()

Sin() The Spike2 script language Sound()

5-169

If you change the setting the view is drawn at the next opportunity.

See also: SetWaveCrl(), Process()

This calculates the sine of an angle in radians, or converts an array of angles into sines.
Func Sin(x|x[]|x[][]);

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2π to 2π.

Returns When the argument is an array, the function replaces the array with the sines and
returns 0 or a negative error code. When the argument is not an array the
function returns the sine of the angle.

See also: ATan(), Cos(), Cosh(), Sinh(), Tan(), Tanh()

This calculates the hyperbolic sine of a value or of an array of values.
Func Sinh(x|x[]|x[][]);

x The value, or an array of real values.
Returns When the argument is an array, the function replaces the array elements with

their hyperbolic sines and returns 0. When the argument is not an array the
function returns the hyperbolic sine of the argument.

See also: ATan(), Cos(), Cosh(), Sinh(), Tan(), Tanh()

This has two variants. The first plays a short “beep” in Windows 9x and a tone of set
pitch and duration in later systems using the system speaker. The second plays a .WAV
file or system sound if your system has multimedia support.

Func Sound(freq%, dur{, midi%}); Tone output (not using sound card)
Func Sound(name${, flags%); Multimedia sound card output

freq% If midi% is 0 or omitted this holds the sound frequency in Hz. If midi% is non-
zero this is a MIDI value in the range 1-127. A MIDI value of 60 is middle C, 61
is C# and so on. Add or subtract 12 to change the note by one octave.

dur The sound duration, in seconds. The script stops during output.
midi% If present and non-zero, freq% is interpreted as a MIDI value.
name$ The name of .wav file or of a system sound. You can supply the full path to the

file or just a file name and the system will search for the file in the current
directory, the Windows directory, the Windows system directory, directories
listed in the PATH environmental variable and the list of directories mapped in a
network. If no file extension is given, .wav is assumed. The file must be short
enough to fit in available physical memory, so this function is suitable for files
of a few seconds duration only.

 A blank name halts sound output. If name$ is any of the following (case is
important), a standard system sound plays:
"S*" Asterisk "SS" Start "SE" Exit "SH" Hand
"SW" Welcome "S?" Query "SD" Default "S!" Exclamation

flags% This optional argument controls how the data is played. It is the sum of:
0x0001 1 Play asynchronously (start output and return). Without this flag,

Spike2 does nothing until replay ends.

Sin()

Sinh()

Sound()

Speak() Alphabetical command reference Speak()

5-170

0x0002 2 Silence when sound not found. Normally Sound() plays the
system default sound if the nominated sound cannot be found.

0x0008 8 Loop sound until stopped by another Sound() command. You
must also supply the asynchronous flag if you use loop mode.

0x0010 16 Don’t stop a playing sound. Normally, unless the “No wait” flag
is set, each command cancels any playing sound.

0x2000 8192 No wait if sound is already playing. Sound("",0x2010) returns
1 if a previous asynchronous sound is finished and 0 if not.

If you don’t supply this argument, the flag value is set to 0x2000.
Returns The tone output returns 0 or a negative error code. The multimedia output

returns non-zero if the function succeeded and zero if it failed.

See also: Speak()

If your system supports text to speech, this command allows you to convert a text string
into speech. Currently we provide no facilities to setup voices or to route the sound
output; you must do this from the Speech applet in the control panel.

Func Speak(text${, opt%}); Convert text to speech
Func Speak({what%{, val}}); Speech status and control

text$ A string holding the text to output, for example "Sampling has started".
opt% This optional argument (default value 1) controls the text conversion and output

method. It is the sum of the following flags:
1 Speak asynchronously. Without this flag the command waits until speech

output is over before returning.
2 Cancel any pending speech output.
4 Speak punctuation marks in the text.
8 Process embedded SAPI XML; the www.microsoft.com/speech web site

has more information on this advanced topic. For example:
Speak("Emphasis on <EMPH>this</EMPH> word",8);

16 Reset to the standard voice settings before speaking.
what% An optional variable, taken as 0 if it is omitted:

0 Returns 1 if speech is playing and 0 if it is not.
1 Wait for up to val seconds (default value 3.0) for output to end. The return

value is 0 if playing is finished, 1 if it continues after val seconds.
2 Returns the current speech speed in the range -10 to 10; 0 is the standard

speed. If val is present, it sets the new speed.
3 Returns the current speech volume in the range 0 to 100, 100 is the

standard volume. If val is present, it sets the new volume.
val An optional argument used when what% is greater than 0.
Returns If there is no speech support available, or a system error occurs, the command

returns -1. Otherwise the first command variant returns 0 if all is well and the
second variant returns the values listed for what%.

To use TTS (text to speech), you need a suitable sound card and the Microsoft SAPI
software support. Windows XP has this software included with the operating system. You
can get text to speech support as a download for other versions of Windows. In August
2004, the speech support was available as SpeechSDK51MSM.exe from the web page
www.microsoft.com/speech/download/sdk51/ but this location may change.

See also: Sound()

Speak()

Sqrt() The Spike2 script language SMControl()

5-171

Forms the square root of a real number or an array of real numbers. Negative numbers
halt the script with an error when x is not an array. With an array, negative numbers are
set to 0 and an error is returned.
Func Sqrt(x|x[]|x[][]);

x A real number or a real array to replace with an array of square roots.
Returns With an array, this returns 0 if all was well, or a negative error code. With an

expression, it returns the square root of the expression.

See also: Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(),
Rand(), Round(), Sin(), Tan(), Trunc()

This function gets the handle and optionally opens the spike monitor window. The
current view must be a time view or a spike monitor window. Close the spike monitor
window with FileClose(). Use the SMControl() command to control the window.
You can use the Window() and WindowVisible() commands to size, show and hide
the window.
Func SMOpen({type%{, mode%});

type% This argument is assumed to be zero if omitted. Allowed values are:
0 The return value is the window handle of the spike monitor window

associated with the current view, or 0 if there is no open window.
1 Open the spike monitor window. Return its handle or 0 if we failed.

mode% If this is zero or omitted, the dialog is created invisibly. Set 1 to make it visible.
This is ignored unless type% is 1.

Returns The return value is the view handle of the spike monitor window or 0.
See also: FileClose(), SMControl(), ViewLink(), Window(), WindowVisible()

This function sets and reads the toolbar and edit field states of the current spike monitor
window. See the documentation of the spike monitor window for a full description.
Func SMControl(item%{, new});

item% This identifies the item:
0 Draw mode 0=3D, 1=2D, 2=2D separated
1 Fade to background 0=no fade, 1=fade
2 Colour last spike only 0=colour all, 1=colour last, the rest are grey
3 Use thick lines 0=use thin lines, 1=use thick lines (slow)
4 Timed (smooth) update 0=update on new data, 1=update on timer
5 At end mode 0=use cursor 0, 1=at end of file
6 Lock y axes 0=track data size, 1=fix at current size
7 Show duplicate channels 0=Show originals only, 1=show duplicates
8 Maximum spikes In the range 1 to 40
9 Time range In the range 0.003 to MaxTime()

10 Display rectangles 0=no, 1=show front and back rectangles
11 Front rectangle x offset In the range 0 to 0.9
12 Front rectangle scale In the range 0.1 to 1.0
13 Back rectangle x offset In the range 0 to 0.9
14 Back rectangle scale In the range 0.1 to 1.0

new If present, this sets the state of the item. See the table for acceptable values.
Returns The item state at the time of the call or -1 if the item does not exist.
See also: SSChan(), SSClassify(), SSOpen(), SSParam(), SSRun()

Sqrt()

SMOpen()

SMControl()

SSButton() Alphabetical command reference SSClassify()

5-172

This function sets and reads the toolbar and checkbox states of the current spike shape
window. See the documentation of the spike shape dialogs for a description of the items.
Func SSButton({item%{, new%}});

item% If omitted, all items are reset to 0. Otherwise this identifies the item:
0 Overdraw spikes 0=no overdraw, 1=overdraw
1 Show template boundaries 0=hide, 1=show
2 Show non-matching spikes 0=hide, 1=show
3 Play sound for each spike 0=no sound, 1=sound
4 Scroll time view to track cursor 0 0=no track, 1=track
5 At end mode (online) 0=not at end, 1=at end
6 Circular replay 0=stop at end, 1=circular
7 Make templates 0=no, 1=Yes
8 Build by code 0=by shape, 1=by code
9 Number of horizontal cursors 0=2, 1=4

10 Set which marker code to use 0-3 for layers 0-3
11 Overlay drawing of traces 0=no overlay, 1=overlay
12 Set size of displayed templates 0=small, 1=medium, 2=large

new% If present, this sets the state of the item. Use 1 to select the feature (depress the
button or check the box) and 0 to unselect it. Item 10 supports values 0-3.

Returns The item state at the time of the call or -1 if the item does not exist or no item%.
See also: SSChan(), SSClassify(), SSOpen(), SSParam(), SSRun()

This function sets and gets the current channel in the current spike shape dialog.
Func SSChan({ch%});

ch% If omitted or 0, the return value is the current channel. If greater than 0, ch% sets
the channel and the return value is the ch% (or the original channel if channel
ch% is not suitable). If the channel changes, the old channel settings are saved.

 If ch% is -1, the return value is the number of interleaved traces in the dialog. In
the New Stereotrode or New Tetrode dialogs, this is 2 or 4. In the Edit
WaveMark dialog it is the number of interleaved traces for the current channel.

 If ch% is -2, this forces the channel configuration to be saved; the return value is
0. Use this before FileClose() as that does not save the current settings.

 In a New Stereotrode or New Tetrode dialog ch% is a zero based channel index
into the list of channels to combine and the return value is the channel number.

Returns The return value depends on the ch% argument.
See also: SSButton(), SSClassify(), SSOpen(), SSParam(), SSRun()

This function is equivalent to the New Channel button in the New WaveMark dialog and
to the Reclassify button in the Edit WaveMark dialog. The arguments from new% onward
are ignored in the Edit WaveMark dialog.
Func SSClassify({speed%{, new%{, type%{, noQu%}}}});

speed% If this is omitted, the function returns 1 if the dialog is currently reclassifying or
creating a new channel and 0 if it is not. If present, use the values:
-1 To cancel any ongoing reclassification or writing to a new channel.
0 Start reclassifying or writing a new channel with display updates. This takes

place in idle time, so you must provide some with Yield() or by using
Toolbar(), Interact() or DlgShow().

SSButton()

SSChan()

SSClassify()

SSOpen() The Spike2 script language SSParam()

5-173

1 Reclassify or write a new channel in fast mode, with no display updates. The
operation will complete before control returns to the script.

new% The channel number to create in the New WaveMark dialog.
type% The channel type to create. You can use types: 2 (Event-), 3(Event+), 4(Level),

5(Marker) or 6 (WaveMark) only. If omitted, type 6 (WaveMark) is used.
noQu% If the channel set by new% is already in use and this argument is omitted or 0,

the user is asked if they want to overwrite it. Set non-zero for no query.
Returns If speed% is omitted, the return value is 1 if reclassification or writing a new

channel with display updates is in progress, otherwise 0.
See also: SSButton(), SSChan(), SSOpen(), SSParam(), SSRun()

This function opens and returns information about spike shape dialogs. The current view
must be a time view or a spike shape dialog. Close this dialog with FileClose().
Func SSOpen({type%{, mode%});

type% This argument is assumed to be zero if omitted. Allowed values are:
-1 The function returns the type of any open spike shape dialog associated

with the current time view or 0 if there is no open dialog. Returned values
are 1=Edit WaveMark, 2=New WaveMark, 3=New n-trode.

0 The return value is the window handle of any open spike shape dialog
associated with the current view, or 0 if there is no open dialog.

1 Open the Edit WaveMark dialog and return its handle or 0.
2 Open the New WaveMark dialog and return its handle or 0.
3 Open the New n-trode dialog with selected channels. Return its handle or 0.

mode% If this is zero or omitted, the dialog is created invisibly. Set 1 to make it visible.
This is ignored unless type% is greater than 0.

Returns The return value depends on the type% argument.
See also: SSButton(), SSChan(), SSClassify(), SSParam(), SSRun(),

ViewLink()

This function sets the template parameters for the current spike shape dialog and reads
back the state of individual parameters. This is equivalent to the template parameters
dialog; see that dialog for a full description of the arguments. The command has two
variants. In the first you supply all the arguments (use the value -1 to leave an argument
unchanged). In the second variant you can get or set the value of a single item.
Func SSParam(new%,wide,rare%,AMax,PMin,flg%,mode%,nAT%,int%,tc%);
Func SSParam(item%{, value});

new% If new% is greater than 0, this sets number of spikes for a new template.
wide The width of a new template as a percentage of the template amplitude.
rare% Templates with spikes rarer than 1 in rate% are discounted.
AMax Maximum amplitude change for tracking or 0 for no amplitude tracking.
PMin Minimum percentage of point in the template for a possible match.
flg% This is the sum of: 1 = use minimum percentage only when building templates,

2 = Remove DC value from spike data before matching.
mode% The mode for adding spikes to the template: 0=All, 1=Autofix, 2=track.
nAT% The number of spikes for Autofix and track modes.
int% The interpolation method to use: 0=linear, 1=parabolic, 2=cubic spline.

SSOpen()

SSParam()

SSRun() Alphabetical command reference SSTempGet()

5-174

tc% The high-pass time constant to apply to the data expressed as 2 to the power tc%
data samples with tc% in the range 1 to 30. Use 31 for no high pass filter.

item% Used in the second command variant. Set -2 to copy the current settings to all
channels. Set -1 to reset the values to a standard state. Set 0 to close the
parameters dialog if it is open. Otherwise set 1 to 10 to select one of the
arguments new% (1) to tc% (10) and the return value will be the value of that
item at the time of the call.

value If present, this sets the new value of the parameter when item% is greater than 0.
Returns The first command variant returns 0. The second variant, with item% greater

than 0, returns the item value at the time of the call and item% less than zero
returns 0. For item%=0, the return value is 1 if the parameter dialog was open.

See also: SSButton(), SSChan(), SSClassify(), SSOpen(), SSRun()

This function gets and sets the run state of the current view, which must be a spike shape
window. Use Cursor(0) to get the current run position.
Func SSRun({run%});

run% If omitted, no change is made, otherwise negative values are backwards and
positive are forwards. 0 means stop, 1=step, 2=run as fast as possible, 3= run in
real time, 4-= run at 91 Hz, 5=31 Hz and so on up to 15=1 Hz.

Returns The run state at the time of the call.
See also: SSButton(), SSChan(), SSClassify(), SSOpen(), SSParam()

This function deletes one or more templates for the current channel of the current view,
which must be a spike shape window. If this command is used with no arguments, or with
both arguments set to -1, the entire template system is cleared, equivalent to clicking the
clear all templates button in the dialog.
Func SSTempDelete({n%{, code%}});

n% The zero-based index of a template or -1 for all templates. Templates that match
this index and the code% argument are deleted. If this is omitted, -1 is used.

code% If this is omitted or set to -1, all templates codes are deleted. Otherwise only
templates selected by n% that match code% are deleted.

Returns The number of deleted templates or -1 if n% is not a template index.
See also: SSButton(), SSChan(), SSClassify(), SSOpen(), SSParam(), SSRun(),

SSTempGet(), SSTempInfo(), SSTempSet(), SSTempSizeGet(),
SSTempSizeSet()

This function gets information about the current set of templates for the current channel
of the current view, which must be a spike shape window. It can also return the current
raw data displayed in the template window.
Func SSTempGet(n%{, temp[]{[]}{, what%{, &count%}});

n% This is the zero-based index of the template to return information from or to -1
to get the currently displayed waveform. Use SSTempSizeGet() to get the
number of displayed points and the number of points in the template.

temp This optional array is filled with template data. If there is insufficient data to fill
it, unused entries are unchanged. An integer or real array can be used. If the

SSRun()

SSTempDelete()

SSTempGet()

SSTempInfo() The Spike2 script language SSTempInfo()

5-175

template has multiple traces, use temp[points%][traces%] to get real data
and temp%[points%][traces%] to get integer data. See ChanScale() for an
explanation of the use of integer and real data for waveform values.

what% Omit this or set it to 0 to return the mean template waveform. It is ignored if n%
is -1. 1 = return the template upper limit, 2 = return the lower limit, 3 = return
the template width. The width is half the distance between the upper and lower
template limits.

count% This optional integer variable is returned set to the number of events that were
accumulated into this template. It is ignored if n% is -1.

Returns If n% is positive, the return value is the template code or -1 if the template does
not exist. If n% is -1, in Edit WaveMark dialogs, the return value is the currently
selected sort code of the spike or -1 if you are on-line and the current data did
not trigger (background data). In Create WaveMark dialogs the return value is 1
for triggered data and 0 for background data.

See also: ChanScale(), SSButton(), SSChan(), SSClassify(), SSOpen(),
SSParam(), SSRun(), SSTempDelete(), SSTempInfo(), SSTempSet(),
SSTempSizeGet(), SSTempSizeSet()

This function gets and sets template information for the current channel of the current
view, which must be a spike shape window.
Func SSTempInfo({n%, item%{, val%{, noLim%}});

n% If this is omitted, the return value is the number of templates. If present, it is the
zero-based index of a template or -1 for all templates (if appropriate). When
returning a value, if -1 is used, the value for template 0 is returned.

item% This selects the information to get or set. Items 0-2 operate on all templates.
Items 3-6 operate on visible templates only (n% in the range 0 to 19).
0 Get the index of the first template, starting at n%, that has a code of val%.
1 Get the code for template n%. It sets the code if val% is greater than 0.
2 Get the count of spikes for template n%.
3 Get the event counter. If val% is positive, it sets the event count.
4 Get the lock state of template n%. val%=0 to clear the lock and >0 to set it.
5 Change the template width by val% pixels. Set val% to 1 and -1 to mimic

the increase and decrease width buttons. noLim% can be used.
6 Change the template width by val% channel units. noLim% can be used.

val% Use this argument when setting values and to locate codes when item% is 0.
noLim% Set non-zero with item codes 5 and 6 to remove the template width limits that

are usually enforced to stop the template becoming too wide or too narrow. Each
point of a template has a mean value and a width. It also has a minimum width,
which is initialised to the original width when the template was created. The
width is allowed to increase to up to 4 times the minimum width, but not to
become less that the original. If you allow the width to override these limits, the
minimum width is adjusted, as required.

Returns The value selected by item% at the time of the call. The return value is 0 for
items 5 and 6. The return value is -1 if a template is not found.

See also: SSButton(), SSChan(), SSClassify(), SSOpen(), SSParam(), SSRun(),
SSTempDelete(), SSTempGet(), SSTempSet(), SSTempSizeGet(),
SSTempSizeSet()

SSTempInfo()

SSTempSet() Alphabetical command reference SSTempSizeGet()

5-176

This function creates a template or adds the current spike in the window to a nominated
template in the current channel of the current view, which must be a spike shape view.
The first command variant creates a new template from user-supplied data.

The second variant adds the currently displayed data in the window to a nominated
template or creates a new template from it. In the Edit WaveMark dialog this also sets the
classification code of the displayed data. If this code is not in the current Marker Filter
for the source channel, the displayed data changes to the next available spike. It can also
renumber and sort the displayed templates and to update online templates in the 1401 to
match the templates in the dialog.
Func SSTempSet(temp[]{[]}, code%, wide{, count%});
Func SSTempSet({n%{, code%}});

temp Used when creating a new template from arrays of data. This is a one or two
dimensional array holding the template shape. An integer or real array can be
used. If the template has multiple traces, use temp[points%][traces%] for
real data and temp%[points%][traces%] for integer data. See ChanScale()
for an explanation of the use of integer and real data for waveform values. If the
array is too short or has too few traces, missing values are set to 0.

code% This is used when creating a new template. Set it to 0 (or omit it in the second
command variant) to use the lowest unused code or set it to the code to use for
the new template in the range 1-255.

count% This optional argument has a default value of 1, and sets the number of spikes
that contributed to the template.

wide A number or an array holding the template width, which is half the distance
between the upper and lower template limits. If you supply an array, the shape
of this array should match the temp array.

 If you supply a number, all points are given the same width. This is in user units
if temp is a real array and is in channel units if temp is an integer array.

n% Optional. If omitted, the currently displayed waveform is added to the best-fit
template. Set it to the zero-based index of an existing template to add the current
waveform to the template. Set to -1 to add a new template, in which case code%
determines the code of the new template. Set -2 to renumber the existing
templates, in which case code% sets the lowest numbered code used. Set -3 to
sort the templates into ascending code order. Set -4 to update online templates
during sampling.

Returns The zero-based index of the template that was added or modified or -1 if there
was a problem (no matching template, unknown template index or no current
waveform). The second variant with n% less than -1 returns 0.

See also: SSTempDelete(), SSTempGet(), SSTempInfo(), SSTempSizeGet(),
SSTempSizeSet()

This function gets the template size and the displayed data area for the current channel.
The current view must be a spike shape window. All arguments are integer variables that
are set to the template and display sizes.
Func SSTempSizeGet({&start%{, &show%{, &pre%}}});

start% If present, set to the point offset to the template start in the raw data display area.
show% If present, set to the number of data points in the raw data display area.
pre% If present, set to the number of pre-trigger points in the raw data display area.
Returns the number of data points in the template.
See also: SSTempDelete(), SSTempGet(), SSTempInfo(), SSTempSet(),

SSTempSizeSet()

SSTempSet()

SSTempSizeGet()

SSTempSizeSet() The Spike2 script language System$()

5-177

This sets the template size and the displayed data area. The template must lie within the
displayed data area with at least 2 data points before and after the template. If you set a
template area that exceeds these limits, the command attempts to increase the display area
(if this is possible). Use YRange() and Optimise() to set the displayed y range,
Proc SSTempSize(start%{, n%{, show%{, pre%}}});

start% This is the offset to the beginning of the template from the start of the displayed
area. It must be at least 2. Set -1 to leave the start point unchanged.

n% This sets the number of data points in the template. To keep the current number
of points, either omit this argument or set it to -1.

show% The requested number of points to display in the main data window; it has no
effect in the Edit WaveMark dialog. Omit show% or use -1 for no change. If odd,
show% is reduced by 1. It is also adjusted if it is too large or too small.

pre% This sets the number of pre-trigger points to display in the main data window in
the range 0 to show%-1. This has no effect in the Edit WaveMark dialog. Omit
pre% or set -1 for no change. Out of range values are set to the appropriate limit.

See also: SSClassify(), SSTempDelete(), SSTempGet(), SSTempInfo(),
SSTempSet(), SSTempSizeGet(), YRange()

This converts a number to a string.
Func Str$(x {,width% {,sigf%}});

x A number to be converted.
width% Optional minimum field width. The number is right justified in this width.
sigf% Optional number of significant figures (default is 6).
Returns A string holding a representation of the number.
See also: Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(),

Print$(), Print(), Right$(), UCase$(), Val()

This function returns the number of items accumulated in the result view.
Func Sweeps({set%});

set% If present, this sets the number of sweeps held by the view. You might use it to
sum waveform averages in a result view so that the sweep count is correct.

Returns The value returned depends on the type of the result view (see the SetXXXX
commands). It is an error to use this in any type of view other than a result view.

See also: SetAverage(), SetEvtCrl(), SetINTH(), SetPhase(), SetPower(),
SetPSTH(), SetWaveCrl()

This returns the operating system name and accesses Spike2 environment variables. The
environment holds a list of strings of the form "name=value". You can get or set the
value associated with name. You can also read all the strings into a string array.
Func System$({var$ {,value$}});
Func System$(list$[] {,&n%});

var$ If present, this is the name of an environment variable (case insensitive).
value$ If present, the new value. An empty string deletes the environment variable.

SSTempSizeSet()

Str$()

Sweeps()

System$()

System() Alphabetical command reference Tanh()

5-178

list$ An array of strings to fill with environment strings of the form "name=value".
n% An optional integer that is returned holding the number of elements copied.
Returns With no arguments, it returns: "Windows SS build n" where SS is the

operating system and n is the build number. Otherwise it returns the value of the
environment variable identified by var$ or an empty string.

Each process has its own environment. A process started with ProgRun() inherits a copy
of the Spike2 environment, so you can pass it information. However, you cannot see
environment changes made by the new process. Here are some examples of use:
var list$[200], value$, n%, i%;
PrintLog("%s\n", System$()); 'Print OS name
System$("fred","good"); 'Assign the value "good" to fred
PrintLog("%s\n", System$("fred")); 'get value of fred
System$("fred",""); 'Delete fred from the environment
System$(list$[], n%); 'Print all environment strings
for i%:=0 to n%-1 do PrintLog("%s\n",list$[i%]) next;

See also: ProgRun(), System()

This function returns the operating system version as a number and gets information
about desktop screens. Use the App() command to get the version number of Spike2.
Func System({get%{, scr%{, sz%[]}}});

get% If omitted or 0, the return value is the operating system revision times 100:
351=NT 3.51, 400=95 and NT 4, 410=98, 490=Me, 500=NT 2000, 501=XP. If
1, the function returns information about installed desktop monitors.

scr% Set 0 to return the number of desktop monitors; sz%[] gets the pixel co-
ordinates of the desktop. Set to n (>0) to get the pixel co-ordinates of screen n;
returns 1 for the primary monitor, 0 if not and -1 if it does not exist.

sz%[] Optional array of at least 4 elements to return pixel positions. Elements 0 and 1
hold the top left x and y, 2 and 3 hold bottom right x and y.

See also: App(), System$(), Window(), WindowVisible()

This calculates the tangent of an angle in radians or converts an array of angles into
tangents. Tangents of odd multiples of π/2 are infinite, so cause computational overflow.
There are 2π radians in 360°. π is approximately3.14159265359 (4.0*ATan(1)).
Func Tan(x|x[]|x[][]);

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2π to 2π.

Returns For an array, it returns a negative error code (for overflow) or 0. When the
argument is not an array the function returns the tangent of the angle.

See also: ATan(), Cos(), Ln(), Log(), Pow(), Sin(), Sqrt()

This calculates the hyperbolic tangent of a value or an array of values.
Func Tanh(x|x[]|x[][]);

x The value or an array of real values.
Returns For an array, it returns 0. Otherwise it returns the hyperbolic tangent of x.

See also: ATan(), Cos(), Cosh(), Ln(), Log(), Pow(), Sin(), Sinh(), Sqrt()

System()

Tan()

Tanh()

Time$() The Spike2 script language TimeDate()

5-179

This function returns the current system time of day as a string. If no arguments are
supplied, the returned string shows hours, minutes and seconds in a format determined by
the operating system settings. To obtain the time as numbers, use TimeDate(). To
obtain relative time and fractions of a second, use Seconds().
Func Time$({tBase%, {show%, {amPm%, {sep$}}}});

tBase% Specifies the time base to show the time in. You can choose between 24 hour or
12 hour clock mode. If this argument is omitted, 0 is used.
0 Operating system settings 2 12 hour format
1 24 hour format

show% Specifies the time fields to show. Add the values of the required options together
and use that as the argument. If this argument is omitted or a value of 0 is used,
7 (1+2+4) is used for 24 hour format and 15 (1+2+4+8) for 12 hour format.
1 Show hours 4 Show seconds
2 Show minutes 8 Remove leading zeros from hours

amPm% This sets the position of the “AM” or “PM” string in 12 hour format and has no
effect in 24 hour format. If omitted, a value of zero is used. The string that gets
printed (“AM” or “PM”) is specified by the operating system.
0 Operating system settings 2 Show to the left of the time
1 Show to the right of the time 3 Hide the “AM” or “PM” string

sep$ This string appears between adjacent time fields. If sep$ = “:” then the time
will appear as 12:04:45. If an empty string is entered or sep$ is omitted, the
operating system settings are used.

See also: Date$(), FileTime$(), Seconds(), TimeDate()

This returns the time and date in seconds, minutes, hours, days, months, and years plus
the day of the week. You can use separate variables for each field or an integer array. To
get the data or time as a string, use Date$() or Time$(). To measure relative times, or
times to a fraction of a second, see the Seconds() command. To get the current
sampling time, see MaxTime().
Proc TimeDate(&s%, {&m%, {&h%, {&d%, {&mon%, {&y%, {&wDay%}}}}}});
Proc TimeDate(now%[])

s% If s% is the only argument, it is set to the number of seconds since midnight.
Otherwise it is set to the number of seconds since the start of the current minute.

m% If this is the last argument, it is set to the number of minutes since midnight.
Otherwise it is set to the number of full minutes since the start of the hour.

h% If present, the number of hours since Midnight is returned in this variable.
d% If present, the day of the month is returned as an integer in the range 1 to 31.
mon% If present, the month number is returned as an integer in the range 1 to 12.
y% If present, the year number is returned here. It will be an integer such as 2002.
wDay% If present, the day of the week will be returned here as 0=Monday to 6=Sunday.
now%[] If an array is the first and only argument, the first seven elements are filled with

time and date data. The array can be less than seven elements long. Element 0 is
set to the seconds, 1 to the minutes, 2 to the hours, and so on.

See also: Date$(), MaxTime(), Seconds(), Time$()

Time$()

TimeDate()

Toolbar() Alphabetical command reference ToolbarClear()

5-180

The toolbar is at the top of the screen, below the menu. The bar has a message area and
can hold buttons that are used in the Interact() and Toolbar() commands. When
you start a script, the toolbar is invisible and contains no buttons. When a script stops
running, the toolbar becomes invisible (if it was visible).

You can define up to 40
visible buttons, numbered
from 1, in your toolbar.
There is an invisible button
0, which sets a function that is called while the toolbar waits for a button to be pressed.

Buttons can be linked to the keyboard. However, any keys linked to buttons belong to the
toolbar when it is active and waiting for a button press. If you link the A key to a button,
each time you press A, the button is pressed, even if the text caret is in a text window.

See also: Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarSet(), ToolbarText(), ToolbarVisible()

This function displays the toolbar and waits for the user to click a button or press a linked
key. If button 0 is defined with an associated function, that function is called repeatedly
while no button is pressed. If no buttons are defined or enabled, or if all buttons become
undefined or disabled, the toolbar state is illegal and an error is returned. If the toolbar
was not visible, it becomes visible when this command is given.

When the Toolbar is active, Spike2 ignores the “escape” key (command-dot on the
Macintosh, Esc on the PC) unless an “escape button” has been set by ToolbarSet().
Func Toolbar(text$, allow% {,help%|help$});

text$ A message to display in the message area of the toolbar. The message area
competes with the button area. With many buttons, the text may not be visible.

allow% A code that defines what the user can do (apart from pressing toolbar buttons).
See Interact() for the allowed values.

help This is either the number of a help item (CED internal use) or it is a help context
string. This is used to set the help information that is presented when the user
presses the F1 key. Set 0 to accept the default help. Set a string as displayed in
the Help Index to select a help topic, for example "Cursors: Adding".

Returns The function returns the number of the button that was pressed to leave the
toolbar, or a negative code returned by an associated function.

The buttons are displayed in order of their item number. Undefined items leave a gap
between the buttons. This effect can be used to group related buttons together.

See also: Interact(), ToolbarClear(), ToolbarEnable(), ToolbarSet(),
ToolbarText(), ToolbarVisible()

This function removes some or all of the toolbar buttons. If you delete all buttons, the
Toolbar() function inserts an OK button, so you can get out of the Toolbar()
function. Use ToolbarText("") to clear the toolbar message.
Proc ToolbarClear({item%});

item% If present, this is the button to clear. Buttons are numbered from 0. If omitted,
all buttons are cleared. If the toolbar is visible, changes are shown immediately.

See also: Interact(), Toolbar(), ToolbarSet(), ToolbarText()

The toolbar

Toolbar()

ToolbarClear()

ToolbarEnable() The Spike2 script language ToolbarSet()

5-181

This function enables and disables toolbar buttons, and reports on the state of a button.
Enabling an undefined button has no effect. If you disable all the buttons and then use the
Toolbar() function, or if you disable all the buttons in a function linked to the toolbar,
and there is no idle function set, a single OK button is displayed.
Func ToolbarEnable(item% {,state%});

item% The number of the button or -1 for all buttons. You must enable and disable
button 0 with ToolbarSet() and ToolbarClear().

state% If present this sets the button state. 0 disables a button, 1 enables it.
Returns The function returns the state of the button prior to the call, as 0 for disabled and

1 for enabled. If all buttons were selected the function returns 0. If an undefined
button, or button 0 is selected, the function returns -1.

See also: Interact(), Toolbar(), ToolbarClear(), ToolbarSet(),
ToolbarText(), ToolbarVisible()

This function adds a button to the toolbar and optionally associates a function with it.
When a button is added, it is added in the enabled state.
Proc ToolbarSet(item%, label$ {,func ff%()});

item% The button number in the range 1 to 40 to add or replace or 0 to set or clear a
function that is called repeatedly while the toolbar waits for a button press.

 You can set an “escape” key as described in Toolbar(), by negating item%.
For example ToolbarSet(-2,"Quit"); sets button 2 as the escape key.

label$ The button label plus optional key code and tooltip as "Label|code|tip".
Labels compete for space with each other; use tooltips for lengthy explanations.
The label is ignored for button 0. Tooltips can be up to 79 characters long. To
use a tooltip with no code use "Label||A tooltip with no code field".

 To link a key to a button, place & before a character in the label or add a vertical
bar and a key code in hexadecimal (e.g. 0x30), octal (e.g. 060) or decimal (e.g.
48) to the end of the label. Characters set by & are case insensitive. For example
"a&Maze" generates the label aMaze and responds to m or M; the label
"F1:Go|0x70" generates the label F1:Go and responds to the F1 key. Useful
key codes include (nk = numeric keypad):

 0x08 Backspace 0x09 Tab 0x0d Enter 0x1b Escape
0x20 Spacebar 0x21 Page up 0x22 Page down 0x23 End
0x24 Home 0x25 Left arrow 0x26 Up arrow 0x27 Right arrow
0x28 Down arrow 0x2e Del 0x30-0x39 0-9 0x41-0x5a A-Z
0x60-0x69 nk 0-9 0x6a nk * 0x6b nk + 0x6c nk separator
0x6d nk - 0x62 nk . 0x6f nk / 0x70-0x87 F1-F24

 Use of other keys codes or use of & before characters other than a-z, A-Z or 0-9
may cause unpredictable and undesirable effects.

 Beware: When the toolbar is active, it owns all keys linked to it. If A is linked,
you cannot type a or A into a text window with the toolbar active.

ff%() This is the name of a function with no arguments. The name with no brackets is
given, for example ToolbarSet(1,"Go",DoIt%); where Func DoIt%() is
defined somewhere in the script. When the Toolbar() function is used and the
user clicks on the button, the linked function runs. If the item% 0 function is set,
that function runs while no button is pressed. The function return value controls
the action of Toolbar() after a button is pressed.

 If it returns 0, the Toolbar() function returns to the caller, passing back the
button number. If it returns a negative number, the Toolbar() call returns the

ToolbarEnable()

ToolbarSet()

ToolbarText() Alphabetical command reference UCase$()

5-182

negative number. If it returns a number greater than 0, the Toolbar() function
does not return, but waits for the next button. An item 0 function must return a
value greater than 0, otherwise Toolbar() will return immediately.

 If this argument is omitted, there is no function linked to the button. When the
user clicks on the button, the Toolbar() function returns the button number.

See also: Asc(), Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarText(), ToolbarVisible()

This replaces any message in the toolbar, and makes the toolbar visible if it is invisible. It
can be used to give a progress report on the state of a script that takes a while to run.
Proc ToolbarText(msg$);

msg$ A string to be displayed in the message area of the toolbar.
See also: Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),

ToolbarSet(), ToolbarVisible()

This function reports on the visibility of the toolbar, and can also show and hide it. You
cannot hide the toolbar if the Toolbar() function is in use.

Func ToolbarVisible({show%});

show% If present and non-zero, the toolbar is made visible. If this is zero, and the
Toolbar() function is not active, the toolbar is made invisible.

Returns The state of the toolbar at the time of the call. The state is returned as 2 if the
toolbar is active, 1 if it is visible but inactive and 0 if it is invisible.

See also: Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarSet(), ToolbarText()

Removes the fractional part of a real number or array. To truncate a real number to an
integer, assign the real to the integer. ArrConst() copies a real array to an integer array.
Func Trunc(x|x[]);

x A real number or a real array.
Returns 0 or a negative error code for an array. For a number it returns the value with the

fractional part removed. Trunc(4.7) is 4.0; Trunc(-4.7) is -4.0.

See also: Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(),
Rand(), Round(), Sin(), Sqrt(), Tan(), Trunc()

This function converts a string into upper case. The upper-case operation may be system
dependent. Some systems may provide localised uppercasing, others may only provide
the minimum translation of the ASCII characters a-z to A-Z.
Func UCase$(text$);

text$ The string to convert.
Returns An upper case version of the original string.
See also: Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(),

Print$(), ReadStr(), Right$(), Str$(), Val()

ToolbarText()

ToolbarVisible()

Trunc()

UCase$()

Val() The Spike2 script language View(), View().x() and View().[]

5-183

This converts a string to a number. The converter allows the same number format as the
script compiler and leading white space is ignored.
Func Val(text${, &nCh%});

text$ The string to convert to a number. The expected format is:
 {white space}{-}{digits}{.digits}{e|E{+|-}digits}

nCh% If present, it is set to the number of characters used to construct the number.
Returns It returns the extracted number, or zero if no number was present.
See also: Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(),

Print$(), ReadStr(), Right$(), Str$(), UCase$()

The View() function sets the current view and returns the last view handle. A view
handle is a positive integer > 0. Changing the current view does not change the focus or
bring the view to the front, use FrontView() to do that.
Func View({vh%});

vh% An integer argument being:
>0 A valid view handle of a view that is to be made the current view. Use

ViewKind() to test for a valid handle.
0 (or omitted) no change of the current view is required.
<0 If vh% is -n, this selects the nth duplicate of the time view that is associated

with the current view. The current view can be a time, result or XY view. If
the current view is a time view, this is equivalent to Dup(n). View(-1) in
a result or XY view returns the time view from which it was created.

Returns the view handle of the view that was current at the time of the call. If an
argument is passed in which is not valid, the script stops with an error.

The View().x() construction overrides the current view for the evaluation of x(). For
example, View(vh%).Draw(1,2) draws view number vh%. It is an error if the selected
view does not exist or if the function closes the original view, and the script stops.
View(vh%).x()

vh% A view handle of an existing view, 0 for the current view, or -n for the nth
duplicate of the time view associated with the current view.

The equivalent code to View(vh%).x() is:
var temp%;
temp% := View(vh%); 'Save the current view
x(); 'call the user-defined or built-in function
View(temp%); 'restore the original view

This means that View(vh%).FileClose() causes an error if vh% is the current view.

The View().[] construction overrides the current view to give you access to the data
arrays that form result view channels.
View(vh%{,ch%}).[]

vh% A view handle of an existing result view or 0 for the current result view.

ch% An optional channel number in the result view. If omitted, channel 1 is assumed.

For example:
ArrConst(View(0,2).[6:20], 0); 'zero 20 elements of channel 2
View(rv%).[4] := 3; 'set fifth element of channel 1

See also: App(), Dup(), FileClose(), FrontView(), SampleHandle(),
ViewFind(), ViewKind(), ViewList()

Val()

View(), View().x() and
View().[]

View().x()

View().[]

ViewColour() Alphabetical command reference ViewLink()

5-184

This function gets and sets the colours of time, result and XY view items, overriding the
application-wide colours set by Colour(). Currently you can set the background colour.
Func ViewColour(item%{, col%});

item% The colour item to get or set; 0=background
col% If present, the new colour index for the item. There are 40 colours in the palette

with indices 0 to 39. Use -1 to revert to the application colour for the item.
Returns The palette colour index at the time of the call or -1 if no view colour is set.
See also: ChanColour(), Colour(), PaletteGet(), PaletteSet(), XYColour()

This function searches for a window with a given title and returns its view handle.
Func ViewFind(title$);

title$ A string holding the view title to search for.
Returns The view handle of a view with a matching title, or 0 if no view matches.
See also: WindowTitle$(), View(), ViewList()

This function returns the type of the current view or a view identified by a view handle.
Types 5-7 are reserved. Type 11 windows include the sampling configuration window
and control panel, the sequencer control panel and multimedia windows.
Func ViewKind({vh%});

vh% An optional view handle. If omitted, the type of the current view is returned.
Use -n in a result or XY view to find the nth duplicate of the time view from
which the current view was created.

Returns The type of the current view or the view identified by vh%. View types are:
-2 Invalid handle 1 Text view 4 Result view 10 Application window
-1 Unknown type 2 Output sequence 8 External text file 11 Other types
0 Time view 3 Script 9 External binary file 12 XY view

See also: ChanKind(), SampleHandle(), ViewList()

This function returns the view handle of the view that owns the current window. For
example, you can use this to get the time view that owns a multimedia, spike shape or
spike monitor window or the time view that created a result or XY view. This is slightly
different from View(-n), which finds the nth duplicate of the time view linked to the
current time, result or XY view.
Func ViewLink();

Returns The handle of the linked view, or 0 if there is no such view.
See also: App(), SampleHandle(), View(), ViewKind(), ViewList()

ViewColour()

ViewFind()

ViewKind()

ViewLink()

ViewList() The Spike2 script language ViewTrigger()

5-185

This function fills an integer array with a list of view handles. It never returns the view
handle of the running script; use the App() command to get this.
Func ViewList({list%[] {,types%}});

list% An integer array that is returned holding view handles. The first element of the
array (element 0) is filled with the number of handles returned. If the array is too
small to hold the full number, the number that will fit are returned.

types% The types of view to include. This is a code that can be used to filter the view
handles. The filter is formed by adding the types from the list below. If this is
omitted or if no types are specified for inclusion, all view handles are returned.
 1 Time views 8 Script views 512 External binary 4096 XY views
 2 Text views 16 Result views 1024 Application view
 4 Sequencer 256 External text 2048 Other view types

You can also exclude views otherwise included by adding:
 8192 Exclude views not directly related to the current view
 16384 Exclude visible windows
 32768 Exclude hidden windows
 65536 Exclude duplicates

Returns The number of windows that match types%.
The following example prints all the window titles into the log view:
var list%[100],i%; 'Assume no more than 99 views
ViewList(list%[]); 'Get a list of all the views
for i%:=1 to list%[0] do 'Iterate round all the views
 PrintLog(view(list%[i%]).WindowTitle$()+"\n");
 next;

See also: App(), SampleHandle(), ViewKind()

This sets the current time, result or XY view to a standard state by making all channels
and axes visible in their standard drawing mode, axis range and colour. All channels are
given standard spacing and are ungrouped and the channels are sorted into the numerical
order set by the Edit menu Preferences. In a time view, duplicate channels are deleted,
triggered mode is disabled and any channel processing is removed. In an XY view the
key is hidden and the axes are optimised. It has no effect on other view types.
Proc ViewStandard();

See also: ChanOrder(), ChanWeight(), DrawMode(), XYDrawMode()

This controls the triggered drawing mode available for time views; it is a fatal error to use
this command in a different view type. This command is the equivalent of the View menu
Display Trigger command.

Func ViewTrigger(chan%, pre, hold, xZero% {,cur0%}); Set and enable
Func ViewTrigger({mode%}); Enable/disable and get information

chan% The event, marker, WaveMark, TextMark or RealMark trigger channel. Set this
to 0 for a paged display on-line or during rerun.

pre The pre-trigger time to display, in seconds.
hold The minimum hold time for on-line displays, the minimum time to the

next/previous trigger event for off-line use.
xZero% If this is set to 1, the x axis zero point (for display only) is moved to the trigger

time. All time measurements are still relative to the start of the file.

ViewList()

ViewStandard()

ViewTrigger()

ViewUseColour() Alphabetical command reference VirtualChan()

5-186

cur0% This optional argument controls the cursor 0 action each time the view is
triggered. 0=no action, 1=move cursor 0 without causing the active cursors to
iterate, 2=move cursor 0 and update any active cursor positions. If this argument
is omitted, the value 0 is used.

mode% This command version gets information, moves to the next and previous trigger,
and enables and disables the trigger. With no arguments, the command returns
the enabled or disabled state as 1 or 0. If there is a single argument, it can be:
3 Move to the next trigger and return the trigger time or -1 if no trigger is

found or if the trigger is not enabled.
2 Move to the previous trigger and return the trigger time or -1 if no trigger is

found or if the trigger is not enabled.
1 Enable the View trigger with the current settings.
0 Disable the trigger.
-1 Return the trigger channel.
-2 Return the pre trigger time.
-3 Return the hold time.
-4 Return the xZero% state.
-5 Return the cur0% state.

Returns When the command is used with a negative argument, the command returns the
requested information, of -1 if the information is not available. All other use
returns the enabled/disabled state as 1 or 0, or a negative error code.

See also: DrawMode(), ViewStandard(), XYDrawMode()

This function can be used to force the display to use black and white only, or to use the
colours set in the Colour dialog or by the Colour() command.
Func ViewUseColour({use%});

use% If present, a value of 0 forces Spike2 to display all windows in black and white.
Any other value allows the use of colour. If omitted, no change is made.

Returns The current state as 1 if colour is in use, 0 if black and white is used.

See also: ChanColour(), Colour(), XYColour()

This command controls virtual channels in the current time view. Virtual channels are
formed by combining existing waveform and RealWave channels using an algebraic
expression. This command has the functionality of the Virtual Channel dialog. The first
command variant creates and modifies a virtual channel, the second reports the state of a
virtual channel.

Func VirtualChan(chan%, expr${, match%{, binsz{, align}}});
Func VirtualChan(chan%, get%{, &expr$});

chan% In the first command variant, set this to 0 to create a new virtual channel and
return the channel number. The remaining arguments set the initial channel
settings, otherwise default values are used. If not 0, this is the number of an
existing virtual channel to modify or from which to read back the settings.

expr$ In the first command variant, this is a string expression defining the output. See
the Analysis chapter of the Spike2 manual for details. In the second command
variant, this is an optional string variable that is returned holding the current
expression for the channel.

ViewUseColour()

VirtualChan()

Window() The Spike2 script language Window()

5-187

match% This is the number of an existing waveform, RealWave or WaveMark channel to
match for sample interval and alignment. If 0, the sample interval and alignment
are set by the binsz and align arguments. If negative, no change is made.

binsz If match% is 0, this sets the sample interval of the channel. Values of binsz less
than the file time resolution are ignored, as are values less than or equal to 0.

align If match% is 0, this sets the channel alignment. Values less than 0 are ignored.
get% In the second command variant, get% determines the returned value. 0 = the

state of the expression parsing, 1 = match%, 2 = binsz, 3 = align.
Returns When creating a new channel, the return value is the new channel number or a

negative error code. When modifying an existing channel, the return value is a
negative code if the match%, binsz or align arguments are illegal, a positive
code if the expression contains an error and 0 if there was no error. The second
variant returns the requested information or a negative error code. If get% is 0,
the return value is 0 if the expression is acceptable and a positive code if not.

See also: MemChan()

This sets the position and size of the current view. Normally, positions are percentages
from the top left-hand corner of the application window size. You can also set positions
relative to a monitor. This can also be used to position, dock and float dockable toolbars.
Proc Window(xLow, yLow{, xHigh{, yHigh{, scr%{, rel%}}}});

xLow Position of the left hand edge of the window. When docking a dockable toolbar,
the xLow and xHigh values correspond to the position of the top left corner of
the window when dropped with the mouse.

yLow Position of the top edge of the window.
xHigh If present, the right hand edge. If omitted the previous width is maintained. If

the window is made too small, the minimum allowed size is used. If the current
view is a dockable control and yHigh is 0, values less than 1 or greater than 4
float the window at (xLow, yLow), otherwise xHigh sets the docking state:
1 Docked to the left window edge 3 Docked to the right edge
2 Docked to the top window edge 4 Docked to the bottom edge

yHigh If present, the bottom edge position. If omitted the previous height is
maintained. If the window is made too small, the minimum allowed size is used.

 If the Window is dockable and yHigh is 0, this command sets the docked state
of the window (see xHigh). Otherwise the window is floated with the nearest
allowed width that is no more than xHigh-xLow. If xHigh-xLow is 0 or
negative YHigh sets the height of the dockable window.

scr% Optional screen selector for views, dialogs and the application window. If
omitted or -1, positions are relative to the application window. Otherwise, 0
selects the entire desktop rectangle and greater values select a particular screen
rectangle (but see rel%). See System() for more screen information.

rel% Ignored unless scr% is greater than 0. Set 0 or omit for positions relative to the
intersection of the selected monitor and the application window, 1 for positions
relative to the monitor. If there is no intersection, there is no position change.
When positioning the application window, rel% is treated as if it were 1.

Examples:
view(App()).Window(0,0,100,100, 0); 'use all desktop
view(App()).Window(0,0,100,100,2); 'use all second monitor

See also: App(), System(), WindowDuplicate(), WindowGetPos(), WindowSize(),
WindowTitle$(), WindowVisible()

Window()

WindowDuplicate() Alphabetical command reference WindowTitle$()

5-188

This duplicates the current time window, creating a new window that has all the settings
of the current window. It does not duplicate channels; these are shared with the existing
window. The new window becomes the current view and is created invisibly.
Func WindowDuplicate();

Returns The view handle of the new window, a negative error code or 0 if there are no
free duplicates. There is a limit of 64 duplicates per window.

See also: Window(), WindowGetPos(), WindowTitle$(), WindowVisible()

This gets the window position of the current view with respect to the application window.
Positions are measured from the top left-hand corner as a percentage.
Proc WindowGetPos(&xLow, &yLow ,&xHigh ,&yHigh);

xLow A real variable that is set to the position of the left hand edge of the window.
yLow A real variable that is set to the position of the top edge of the window.
xHigh A real variable that is set to the position of the right hand edge of the window or

that returns a docking code for a docked control bar if yHigh is returned as 0.
1 Docked to the left window edge 3 Docked to the right edge
2 Docked to the top window edge 4 Docked to the bottom edge

yHigh A real variable that is set to the position of the bottom edge of the window or to
0 if the window is docked.

See also: Window(), WindowDuplicate(),WindowSize(), WindowVisible()

This resizes the current view without changing the top left-hand corner position. Setting a
negative size causes no change. Setting a size less than the minimum or greater than the
maximum allowed sets the appropriate limit. There are no errors from this function.
Proc WindowSize(width, height);

width The width of the window as a percentage of the available area.
height The height of the window as a percentage of the available area.
You can also use this to resize the application window or a dockable control bar when it
is floating; use App() to get the handles. For control bars, if width is greater than zero,
its sets the width, otherwise height is used to set the height. If the control bar can be
resized, it will use the width or the height and will calculate the other dimension itself.

See also: App(), Window(), WindowDuplicate(), WindowGetPos(),
WindowTitle$(), WindowVisible()

This function gets and sets (where allowed) the current window title. Most windows can
return a title. If you change a title, dependent window titles change, for example, cursor
windows belonging to time views track the title of the time view.
Func WindowTitle$({new$});

new$ If present, this sets the new window title. Window titles must follow any system
rules for length or content. Illegal titles (for example titles containing control
characters) are mangled or ignored at the discretion of the system.

Returns The window title as it was prior to this call.
See also: Window(), WindowDuplicate(), WindowGetPos(), WindowSize()

WindowDuplicate()

WindowGetPos()

WindowSize()

WindowTitle$()

WindowVisible() The Spike2 script language XAxisStyle()

5-189

This function is used to get and set the visible state of the current window. This function
can also be used on the application window, however the effect will vary with the system
and on some, there may be no effect at all.
Func WindowVisible({code%});

code% If present, this sets the window state. The possible states are:
0 Hidden, the window becomes invisible. A hidden window can be sent data,

sized and so on, the result is just not visible.
1 Normal, the window assumes its last normal size and position and is made

visible if it was invisible or iconised.
2 Iconised under Windows, hidden on the Macintosh. An iconised window can

be sent data, sized and so on; the result is not visible. This will dock a
dockable window at its last docked position.

3 Maximise, make it as large as possible or float a dockable window.
4 Application window only; extend over all available desktop monitors.

Returns The window state prior to this call.
See also: FrontView(), Window(), WindowDuplicate(), WindowGetPos(),

WindowSize(), WindowTitle$()

This turns on and off the x axis of the current view and returns the state of the x axis.
Func XAxis({on%});

on% Set the axis state. If omitted, no change is made. 0=Hide axis, 1=Show axis.
Returns The axis state at the time of the call (0 or 1, as above) or a negative error code. It

is an error to use this function on a view that has no concept of an x axis.
See also: XAxisMode(), XAxisStyle(), XHigh(), XLow(), XRange()

This function controls what is drawn in an x axis.
Func XAxisMode({mode%});

mode% Optional argument that controls how the axis is displayed. If omitted, no change
is made. Possible values are the sum of the following:
1 Hide all the title information.
2 Hide all the unit information.
4 Hide small ticks on the x axis. Small ticks are hidden if big ticks are hidden.
8 Hide numbers on the x axis. Numbers are hidden if big ticks are hidden.
16 Hide the big ticks and the horizontal line that joins them.
32 Scale bar axis. If selected, add 4 to remove the end caps.

Returns The x axis mode value at the time of the call or a negative error code.
See also: XAxis(), XHigh(), XLow(), XRange(), YAxisMode()

This function controls the x axis mode (seconds, hours minutes and seconds, time of day)
for a time view, and the major and minor tick spacing for all views that have an x axis. If
you set values that would cause illegible or unintelligible axes, they are stored but not
used unless the axis range or scaling changes to make the values useful.
Func XAxisStyle({style%{, nTick%{, major}}});

style% In a time view, set 1 for an axis in seconds, 2 for hours minutes and seconds and
3 for time of day. Omit style% or use 0 to leave the style unchanged. A value

WindowVisible()

XAxis()

XAxisMode()

XAxisStyle()

XHigh() Alphabetical command reference XRange()

5-190

of -1 returns the number of minor divisions set or 0 for automatic. A value of -2
returns the major tick spacing or 0 for automatic spacing.

nTick% The number of minor tick subdivisions or 0 for automatic spacing. Omit nTick%
or set it to -1 for no change.

major If present, values greater than 0 sets the major tick spacing. Values less than or
equal to 0 select automatic major tick spacing.

Returns If style% is positive or omitted it returns the style at the time of the call. See
the description of style% for negative values.

See also: XAxis(), XAxisMode(), XHigh(), XLow(), XRange(), YAxisStyle()

This returns the x axis value at the right hand side of the current time, result or XY view
or the end of the time range to process for a spike shape view. Use with other views
causes a fatal script error.
Func XHigh()

Returns In a time view, the result is in seconds. In a result view, the result is in bins and
can be fractional. In an XY view the result is in x axis units.

This example pages through a time or result view from the current position to the end.
while (xHigh() < MaxTime()) do Draw(XHigh()) wend;

See also: Draw(), XRange(), BinToX(), XToBin(), XLow()

This returns the x axis value at the left hand side of the current time, result or XY view or
the start of the time range to process for a spike shape view.
Func XLow()

Returns In a time view, the result is in seconds. In a result view, the result is in bins and
can be fractional. It is a fatal error to use this in an inappropriate view.

For example, this code pages a time or result view from the current position to the start of
the file. In an XY view it moves the view to the left if the current position is past 0.
while XLow()>0 do Draw(XLow()-(XHigh()-XLow())) wend;

See also: Draw(), XRange(), BinToX(), XToBin(), XHigh()

This sets the x axis range to display in a time result or XY view in x axis units (not bins
for a result view). Unlike Draw(), the view does not update immediately; updates wait
for the next Draw(), DrawAll(), Yield() or some interactive activity. It also sets the
time range to process in a spike shape window.
Proc XRange(from {,to});

from The left hand edge of the view in x axis units (seconds for a time view). You can
set from to -1 in a time view that is sampling or re-running to make the view
scroll automatically to show the most recent data at the right-hand edge.

to The right hand edge of the view. If omitted, the view stays the same width.
Values are limited to the axis range for time and result views; there is no limit in an XY
view. Without to, it preserves the width, adjusting from if required. If the resulting
width is less than the minimum allowed, no change is made.

See also: Draw(), XLow(), XHigh()

XHigh()

XLow()

XRange()

XScroller() The Spike2 script language XYAddData()

5-191

This function gets and optionally sets the visibility of the x axis scroll bar and controls.
Func XScroller({show%});

show% If present, 0 hides the scroll bar and buttons, non-zero shows it.
Returns 0 if the scroll bar was hidden, 1 if it was visible.

This gets and sets the x axis title in a result or XY view. In a time view, it has no effect
and returns an empty string. The window updates with a new title at the next opportunity.
Func XTitle$({new$});

New$ If present, this sets the new x axis title in a result view.
Returns The x axis title at the time of the call.
See also: ChanTitle$()

In a result view, this converts between bin numbers and x axis units. In a time view, it
converts between time in seconds and the underlying Spike2 time units.
Func XToBin(x);

x An x axis value. If it exceeds the x axis range it is limited to the nearer end.
Returns In a result view it returns the bin position that corresponds to x. In a time view,

it converts seconds to the underlying time units used for the file.
See also: BinToX()

This function gets the units of the x axis. You can also set the units in a result or XY
view. The window will update with the new units at the next opportunity.
Func XUnits$({new$});

New$ If present, this sets the new x axis units in a result view.
Returns The x axis units at the time of the call.
See also: ChanUnits$()

This adds data points to an XY view channel. If the axes are set to automatic expanding
mode by XYDrawMode(), they will change when you add a new data point that is out of
the current axis range. If the channel is set to a fixed size (see XYSize()), adding new
points causes older points to be deleted once the channel is full. The first form of the
command allows unrestricted x and y positions. The second form was added at version
5.04 and is for data that is equally spaced in the x direction.
Func XYAddData(chan%, x|x[]|x%[], y|y[]|y%[]);
Func XYAddData(chan%, y[], xInc{, xOff});

chan% A channel number in the current XY view. The first channel is number 1.
x The x co-ordinate(s) of the added data point(s). In the first form of the

command, both x and y must be either single variables or arrays. If they are
arrays, the number of data points added is equal to the size of the smaller array.

y The y co-ordinate(s) of the added data point(s). In the second form of the
command, this is an array of equally spaced data in x.

xInc Sets the x spacing between the y data points in the second form of the command.

XScroller()

XTitle$()

XToBin()

XUnits$()

XYAddData()

XYColour() Alphabetical command reference XYDrawMode()

5-192

xOff Sets the x position of the first data point in the second form of the command. If
omitted, the first position is set to 0.

Returns The number of data points which have been added successfully.

See also: XYColour(), XYDelete(), XYDrawMode(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize(), XYSort()

This gets or sets a channel colour in the current XY view. The default colour is black.
Func XYColour(chan% {,col%});

chan% A channel number in the current XY view. The first channel is number 1.
col% The index of the colour in the colour palette. There are 40 colours in the palette;

their indexes are numbered from 0 to 39. If omitted, there is no colour change.
Returns The colour index in the colour palette at time of call or a negative error code.
See also: Colour(), XYDrawMode(), XYJoin(), XYKey(), XYSetChan()

This gets the number of data points in a channel in the current XY view. To find the
maximum number of data points, see the XYSize() command.
Func XYCount(chan%);

chan% A channel number in the current XY view. The first channel is number 1.
Returns The number of data points in the channel or a negative error code.
See also: XYAddData(), XYDelete(), XYJoin(), XYGetData(), XYInCircle(),

XYInRect(), XYRange(), XYSetChan(), XYSize()

This command deletes a range of data points or all data points from one channel of the
current XY view. Use ChanDelete() to delete the entire channel.
Func XYDelete(chan% {,first% {,last%}});

chan% A channel number in the current XY view. The first channel is number 1.
first% The zero-based index of the first point to delete. Omit to delete all points.
last% The zero-based index of the last data point to delete. If omitted, data points from

first% to the last point in the channel are deleted. If last% is less than first%
no data points are deleted.

Returns The function returns the number of deleted data points.

The index number of a data point depends on the current sorting method of the channel
set by XYSort(). For different sorting methods, a data point may have different index
numbers. The data points in a channel have continuous index numbers. When a point has
been deleted the remaining points re-index themselves automatically.

See also: ChanDelete(), XYAddData(), XYCount(), XYSetChan(), XYSize()

This gets and sets the drawing and automatic axis expansion modes of a channel in the
current XY view. It is an error to use this command with any other view type.
Func XYDrawMode(chan%, which% {,new%});

XYColour()

XYCount()

XYDelete()

XYDrawMode()

XYGetData() The Spike2 script language XYGetData()

5-193

chan% A channel number in the current XY view. The first channel is number 1. This is
ignored when which% is 5, as all XY channels share the same axes. -1 can also
be used, meaning all channels.

which% The drawing parameter to get or set in the range 1 to 5. When setting
parameters, the new value is held in the new% argument. The values are:
1 Get or set the data point draw mode. The drawing modes are:

0 dots (default) 1 boxes 2 plus signs +
3 crosses x 4 circles (NT only) 5 triangles
6 diamonds 7 horizontal line 8 vertical line

2 Get or set the size of the data points in points (units of approximately 0.353
mm). The sizes allowed are 0 to 100; 0 is invisible. The default size is 5.

3 Get or set the line style. If the line thickness is greater than 1 all lines are
drawn as style 0. Styles are:
0 solid (default) 1 dotted 2 dashed

4 Get or set the line thickness in points. Thickness values range from 0
(invisible) to 10. The default is 1.

5 Get or set automatic axis range mode. This applies to the entire view, so the
chan% argument is ignored. Values are:
0 The axes do not change automatically when new data points are added.
1 When new data points are added that lie outside the current x or y axis

range, the data and axes screen area update at the next opportunity to
display all the data.

new% New draw mode or axis expanding mode. If omitted, no change is made.
Returns The value of the relevant channel draw mode or axis expanding mode at the time

of the call or a negative error code.
See also: XYAddData(), XYColour(), XYCount(), XYDelete(), XYGetData(),

XYInCircle(), XYInRect(), XYJoin(), XYKey(), XYRange(),
XYSetChan(), XYSize(), XYSort()

This gets data points between two indices from a channel in the current XY view. It is an
error to use this command with any other view type.
Func XYGetData(chan%, &x|x[], &y|y[] {,first% {,last%}});

chan% A channel number in the current XY view. The first channel is number 1.
x|x[] The returned x co-ordinate(s) of data point(s). When arrays are used, either both

x and y must be arrays or neither can be. The smaller of the two arrays sets the
maximum number of data points that can be returned.

y|y[] The returned y co-ordinate(s) of data point(s).
first% The zero-based index of the first data point to return. If omitted, 0 is used.
last% The zero-based index of the last data point returned, used when x and y are

arrays. If omitted or greater than or equal to the number of data points, the final
data point is the last one in the channel. If last% is less than first%, no data
points are returned.

Returns The number of data points copied. If the x or y arrays are not big enough to hold
all the data points from first% to last%, the return value is the array size. If x
or y are not arrays, if a data point with index first% exists, 1 is returned.

The index number of a data point depends on the current sorting method (see XYSort()).

See also: XYAddData(), XYCount(), XYDelete(), XYInCircle(), XYInRect(),
XYJoin(), XYRange(), XYKey(), XYSetChan(), XYSize(), XYSort()

XYGetData()

XYInCircle() Alphabetical command reference XYJoin()

5-194

This gets the number of data points inside a circle defined by xc, yc, and r in the current
XY view. A general point (x,y) is considered to be inside the circle if:
(x-xc)2 + (y-yc)2 <= r2

Points lying on the circumference are considered inside, but owing to floating-point
rounding effects they may be indeterminate.
Func XYInCircle(chan%, xc, yc, r);

chan% A channel number in the current XY view. The first channel is number 1.
xc,yc These are the x and y co-ordinates of the centre of the circle.
r This is the radius of the circle. r must be >= 0.
Returns The number of data points inside the circle or a negative error code.

See also: XYAddData(), XYInRect(), XYJoin(), XYRange()

This function returns the number of data points in a channel of the current XY view that
lie inside a rectangle. To be inside, a data point must lie between the low rectangle
coordinate up to, but not including the high coordinate. This is so that two rectangles with
a common edge will not both count a data point on the boundary.
Func XYInRect(chan%, xl, yl, xh, yh);

chan% A channel number in the current XY view.
xl,xh The x co-ordinates of the left and right hand edges of the rectangle. xh must be

greater than or equal to xl.
yl,yh The y co-ordinates of the bottom and top edges of the rectangle. yh must be

greater than or equal to yl.
Returns The number of data points inside the rectangle or a negative error code.
See also: XYInCircle(), XYGetData(), XYJoin(), XYRange()

This function gets or sets the data point joining method of a channel in the current XY
view. Data points can be separated, joined by lines, or joined by lines with the last point
connected to the first point (making a closed loop).
Func XYJoin(chan% {,join%});

chan% A channel number in the current XY view. The first channel is number 1. -1 is
also allowed, meaning all channels.

join% If present, this is the new joining method of the channel. If this is omitted, no
change is made. The data point joining methods are:
0 Not joined by lines (this is the default joining method)
1 Joined by lines. The line styles are set by XYDrawMode().
2 Joined by lines and the last data point is connected to the first data point to

form a closed loop.
Returns The joining method at the time of the call or a negative error code.
See also: XYColour(), XYDrawMode(), XYKey(), XYSetChan(), XYSort()

XYInCircle()

XYInRect()

XYJoin()

XYKey() The Spike2 script language XYSetChan()

5-195

This gets or sets the display mode and positions of the channel key for the current XY
view. The key displays channel titles (set by ChanTitle$()) and drawing symbols of all
the visible channels. It can be positioned anywhere within the data area. The key can be
framed or unframed, transparent or opaque and visible or invisible.
Func XYKey(which%, {new});

which% This determines which property of the key we are interested in. Properties are:
1 Visibility of the key. 0 if the key is hidden (default), 1 if it is visible.
2 Background state. 0 for opaque (default), 1 for transparent.
3 Draw border. 0 for no border, 1 to draw a border (default)
4 Key left hand edge x position. It is measured from the left-hand edge of the x

axis and is a percentage of the drawn x axis width in the range 0 to 100. The
default value is 0.

5 Key top edge y position. It is measured from the top of the XY view as a
percentage of the drawn y axis height in the range 0 to 100. The default is 0.

new If present it changes the selected property. If it is omitted, no change is made.
Returns The value selected by which% at the time of call, or a negative error code.
See also: ChanTitle$(), XYColour(), XYDrawMode(), XYJoin(), XYSetChan()

This function gets the range of data values of a channel or channels in the current XY
view. This is equivalent to the smallest rectangle that encloses the points.
Func XYRange(chan%, &xLow, &yLow, &xHigh, &yHigh);

chan% A channel number in the current XY view or -1 for all channels or -2 for all
visible channels. The first channel is number 1.

xLow A variable returned with the smallest x value found in the channel(s).
yLow A variable returned with the smallest y value found in the channel(s).
xHigh A variable returned with the biggest x value found in the channel(s).
yHigh A variable returned with the biggest y value found in the channel(s).
Returns 0 if there are no data points, or the channel does not exist, 1 if values found.
See also: XYAddData(), XYCount(), XYDrawMode(), XYGetData(), XYInCircle(),

XYInRect(), XYSetChan(), XYSize()

This function creates a new channel or modifies an existing channel in the current XY
view. It is an error to use this function if the current view is not an XY view. This
function can modify all properties of an existing channel without calling the XYSize(),
XYSort(), XYJoin() and XYColour() commands individually.
Func XYSetChan(chan% {,size% {,sort% {,join% {,col%}}}});

chan% A channel number in the current XY view. If chan% is 0, a new channel is
created. Each XY view can have maximum of 256 channels, numbered 1 to 256.
Spike2 creates the first channel automatically when you open a new XY view
with FileNew(). If chan% is not 0, it must be the channel number of an
existing channel to modify or -1 to modify all channels.

size% This sets the number of data points in the channel and how and if the number of
data points can extend. The only limits on the number of data points are the
available memory and the time taken to draw the view.

 A value of zero (the default) sets no limit on the number of points and the size
of the channel expands as required to hold data added to it.

XYKey()

XYRange()

XYSetChan()

XYSize() Alphabetical command reference XYSize()

5-196

 If a negative size is given, for example -n, this limits the number of points in the
channel to n. If more than n points are added, the oldest points are deleted to
make space for the newer points. If you set a negative size for an existing
channel that is smaller than the points in the channel, points are deleted.

 If a positive value is set, for example n, this allocates storage space for n data
points, but the storage will grow as required to accommodate further points.
Using a positive number rather than 0 can save time if you know in advance the
likely number of data points as it costs time to grow the data storage.

sort% This sets the sorting method of data points. The sorting method is only important
if the points are joined. If they are not joined, it is much more efficient to leave
them unsorted as sorting a large list of points takes time. The sort methods are:
0 Unsorted (default). Data is drawn and sorted in the order that it was added.

The most recently added point has the highest sort index.
1 Sorted by x value. The index runs from points with the most negative x value

to points with the most positive x value.
2 Sorted by y value. The index runs from points with the most negative y value

to points with the most positive y value.
 If this is omitted, the default value 0 is used for a new channel. For an existing

channel, there is no change in sorting method.
join% If present, this is the new joining method of the channel. If this is omitted, no

change is made to an existing channel; a new channel is given mode 0. The data
point joining methods are:
0 Not joined by lines (this is the default joining method)
1 Joined by lines. The line styles are set by XYDrawMode().
2 Joined by lines and also connect the first and last data points to form a loop.

col% If present, this sets the index of the colour in the colour palette to use for this
channel. There are 40 colours with indices 0 to 39. If omitted, the colour of an
existing channel is not changed. The default colour for a new channel is the
colour that a user has chosen for an ADC channel in a time window.

Returns The highest channel number that was affected or a negative error code. When
you create a channel, the value returned is the new channel number.

See also: XYAddData(), XYColour(), XYDelete(), XYDrawMode(), XYJoin(),
XYKey(), XYRange(), XYSize(), XYSort()

This function gets and sets the limits on the number of data points of a channel in the
current XY view. Channels can be set to have a fixed size, or to expand as more data is
added. The only limit on the number of data points is the available memory and the time
taken to draw data.
Func XYSize(chan% {,size});

chan% A channel number in the current XY view. The first channel is number 1.
size% This sets the number of data points in the channel and how and if the number of

data points can extend. A value of zero sets no limit on the number of points and
the size of the channel expands as required to hold data added to it.

 If a negative size is given, for example -n, this limits the number of points in the
channel to n. If more than n points are added, the oldest points are deleted to
make space for the newer points. If you set a negative size for an existing
channel that is smaller than the points in the channel, points are deleted.

 If a positive value is set, for example n, this allocates storage space for n data
points, but the storage will grow as required to accommodate further points.

XYSize()

XYSort() The Spike2 script language YAxis()

5-197

Using a positive number rather than 0 can save time if you know in advance the
likely number of data points as it costs time to grow the data storage.

 If this is omitted, there is no change to the size.
Returns If the number of points for the channel is fixed at n points, the function returns

-n. Otherwise, the function returns the maximum number of points that could be
stored in the channel without allocating additional storage space.

See also: XYAddData(), XYColour(), XYCount(), XYDelete(), XYDrawMode(),
XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSort()

In the current XY view, gets or sets the sorting method of the channel.
Func XYSort(chan% {,sort%});

chan% the channel number in the current XY view. The first channel is number 1.
sort% This sets the sorting method of data points. The sorting method is only important

if the points are joined. If they are not joined, it is much more efficient to leave
them unsorted as sorting a large list of points takes time. The sort methods are:
0 Unsorted (default). Data is drawn and sorted in the order that it was added.

The most recently added point has the highest sort index.
1 Sorted by x value. The index runs from points with the most negative x value

to points with the most positive x value.
2 Sorted by y value. The index runs from points with the most negative y value

to points with the most positive y value.
 If this is omitted, there is no change in sorting method.
Returns The function returns the sorting method at time of call or a negative error code.
See also: XYAddData(), XYColour(), XYCount(), XYDelete(), XYDrawMode(),

XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize()

This function is used to turn the y axes on and off, in the current view and to find the
state of the y axes in a view.
Func YAxis({on%});

on% Optional argument that sets the state of the axes. If omitted, no change is made.
Possible values are:
0 Hide all y axes in the view.
1 Show all y axes in the view.

Returns The state of the y axes at the time of the call (0 or 1) or a negative error code.

See also: ChanOffset(), ChanScale(), Grid(), Optimise(), XAxis(),
XScroller(), YAxisMode(), YHigh(), YLow(), YRange()

XYSort()

YAxis()

YAxisLock() Alphabetical command reference YAxisStyle()

5-198

This function locks and unlocks the axes of grouped channels and reports on the locked
state of grouped channels. If you lock a group, the grouped channels keep their own axis
ranges, but display using the axis of the first channel in the group. The YRange(),
YHigh() and YLow() commands operate on the information stored with a channel. To
change the displayed range of grouped and locked channels, you must use YRange() on
the first channel in a group.
Func YAxisLock(chan%{, opt%{, vOffs}});

chan% A channel that is in the group that you wish to address.
opt% If present, values of 1 and 0 set and unset the locked state. A value of -1 returns

the visual offset per channel for the group. If omitted, no change is made.
vOffs If present, this sets the y axis display offset to apply between channels in the

group. The nth channel has a visual offset of (n-1)*offs.
Returns The current locked state of the group unless opt% was -1, when it returns the y

axis visual offset per channel for the group.

See also: ChanOrder(), YAxisMode(), YHigh(), YLow(), YRange()

This function controls what is drawn in a y axis and where the y axis is placed with
respect to the data.
Func YAxisMode({mode%});

mode% Optional argument that controls how the axis is displayed. If omitted, no change
is made. Possible values are the sum of the following values:
1 Hide all the title information.
2 Hide all the unit information.
4 Hide y axis small ticks. They are also hidden when big ticks are hidden.
8 Hide y axis numbers. They are also hidden when big ticks are hidden.
16 Hide the big ticks and the vertical line that joins them.
32 Scale bar axis. If selected add 4 to remove the end caps.
4096 Place the y axis on the right of the data

Returns The state of the y axis mode at the time of the call or a negative error code.

See also: ChanNumbers(), YAxis(), YAxisStyle(), YHigh(), YLow(), YRange()

This function controls the y axis major and minor tick spacing. If you set values that
would cause illegible or unintelligible axes, they are stored but not used unless the axis
range or scaling changes to make the values useful.
Func YAxisStyle(cSpc, opt%{, major});

cSpc A channel specifier or -1 for all, -2 for visible and -3 for selected channels.
When multiple channels are specified, returned values are for the first channel.

opt% Values greater than 0 set the number of subdivisions between major ticks. 0 sets
automatic small tick calculation. Use -1 for no change. Values less than -1 return
information, but do not change the axis style

major If present and opt% is greater than -2, values greater than 0 sets the major tick
spacing. Values less than or equal to 0 select automatic major tick spacing.

Returns If opt% is -2 this returns the current number of forced subdivisions or 0 if they
are not forced. If opt% is -3 this returns the current major tick spacing if forced
or 0 if not forced. Otherwise the return value is 0 or a negative error code.

See also: YAxis(), YAxisMode(), YHigh(), YLow(), YRange(), XAxisStyle()

YAxisLock()

YAxisMode()

YAxisStyle()

Yield() The Spike2 script language YieldSystem()

5-199

This function suspends script operation for a user defined time and allows Spike2 to idle.
During the idle time, invalid screen areas update, you can interact with the program and
Spike2 has the opportunity to do housekeeping such as releasing temporary system
resources. If your script runs for long periods without using Interact() or Toolbar(),
adding an occasional Yield() can make it feel more responsive and stop the system
marking Spike2 as "not responding".

Func Yield({wait{, allow%}});

wait The minimum time to wait, in seconds. If omitted or 0, Spike2 gives the system
one idle cycle. If greater than 0 and there is still waiting time left after an idle
cycle completes, other processes are given the opportunity to run between idle
cycles. If set negative, there is no idle cycle but the allow% argument is applied.

allow% This defines what the user can do during the wait period. See Interact() for
the allowed values. The allow% value is cancelled after the command unless
wait is 0 or negative.

Returns The function returns 1. We may add more return codes in future versions.
See also: Interact(), MaxTime(), Seconds(), Toolbar(), YieldSystem()

To share the system CPU(s) among competing processes, the operating system allocates
time slices of around 10 milliseconds based on process priorities and recent process
activity. A process can surrender a time slice if it has nothing to do. A typical application
spends most of its time waiting for user input, which appears as messages in the
application message queue; it will surrender a time slice if the message queue is empty
unless it has a task to work on. Spike2 normally surrenders time slices, but if you run a
script, it runs for the full time slice unless it is in Yield(), Interact(), or you use
ToolBar() or DlgShow() without an idle routine.

The YieldSystem() command causes Spike2 to surrender the current time slice and
suspends the user interface and script thread for a user-defined time or until a new
message arrives in the Spike2 input queue. It has no effect on sampling, which runs in a
separate thread. Unlike Yield(), it does not allow Spike2 to idle.

Proc YieldSystem({wait});

wait The time to wait, in seconds, before resuming the thread. Values are rounded to
the nearest millisecond. Values greater than 10 are treated as 10 seconds; values
less than –10 are treated as –10 seconds.

For wait values greater than 0, the wait is ended by unserviced messages; keyboard and
mouse activity, timers for screen updates and the like cause messages. If wait is 0 or
omitted, the current time slice is surrendered, but if Spike2 is the highest priority task it
will be re-scheduled immediately. Negative values suspend Spike2 for –wait seconds
regardless of messages.

YieldSystem() with wait values greater than 0 returns immediately if there are
messages in the input queue. Unless you allow Spike2 to idle, either with a Yield() call
or with Toolbar() or DlgShow(), there will always be pending messages, so it will
have no effect. If you have a script loop that causes 100% CPU usage, inserting:
Yield();YieldSystem(0.001);

will give other processes a chance to run. Increasing the wait time up to 0.05 will further
reduce the CPU usage. Larger values have little additional effect due to timer messages

Yield()

YieldSystem()

YHigh() Alphabetical command reference YRange()

5-200

ending the wait early. To give as much system time as possible to other tasks without
allowing Spike2 to idle, you can use:
YieldSystem(-0.001);

In this case, increasing the time to –10.0 will have an effect; Spike2 will feel completely
unresponsive until the time period has elapsed.

See also: Interact(), DlgShow(), Seconds(), Toolbar(), Yield()

This function returns the upper y axis limit for the y axis of a channel in a time, result or
XY view. The return value ignores the grouped or locked state of the channel.
Func YHigh(chan%);

chan% The channel number (use 0 for an XY view).
Returns The value at the appropriate end of the axis.
See also: YAxisLock(), YRange(), ChanScale(), ChanOffset(), Optimise()

This function returns the lower y axis limit for the y axis of a channel in a time, result or
XY view. The return value ignores the grouped or locked state of the channel.
Func YLow(chan%);

chan% The channel number. Use 0 for an XY view.
Returns The value at the appropriate end of the axis.
See also: YAxisLock(), YRange(), ChanScale(), ChanOffset(), Optimise()

This sets the displayed y axis range for a channel. It has no effect if the current channel
display mode has no y axis. If the y range changes, the display updates at the next
opportunity. If you omit low and high, Spike2 displays the “full” range of the channel,
equivalent to the Show All button in the Y Axis dialog.
Proc YRange(chan%{, low, high});

chan% The channel number in a time or result view, 0 in an XY or spike shape view.
You can also use -1 for all, -2 for visible and -3 for selected channels.

low The value for the bottom of the y axis. If omitted, and the channel type has a
known range, Spike2 sets low and high to suitable limits. For example, for a
waveform channel displayed as a waveform the limits are those set by the 16-bit
nature of the data. For a sonogram channel, the limits are 0 and half the
sampling rate. For an event channel the limits are 0 and the maximum sustained
event rate set in the sampling configuration dialog.

high The value for the top of the y axis. If low and high are the same, or too close,
the range is not changed. It is an error to supply low and omit high.

See also: YAxisLock(), YHigh(), YLow(), ChanScale(), Optimise()

YHigh()

YLow()

YRange()

 Translating DOS scripts

6-1

This section is for Spike2 for DOS users who need to move scripts to the Spike2 for
Windows environment. If you do not need to translate old scripts you can skip this
information. We provide a translator that will do most of the hard work required for the
changes, but it cannot cope with all possible scripts and it cannot translate keywords for
which no equivalent exists.

To use the translator, open the DOS script as a text file and select the Script menu
Convert DOS Script option. This opens a new script window for the output (plus any
notes about changes you may need to make) and sends a summary of the notes to the Log
window. The translator marks the output with notes like:
DrawMode(-1, mode+1); 'Original was "DRAWMODE mode"
'*** Note 7: No exact equivalent of DRAWMODE
'*** The effect of the new DRAWMODE may not be exactly the same. We have
'*** selected all channels and set a mode, please check it.

Because the mode is held in a variable the translator has no way of knowing what this
will be at run time or what type of view will be active. It has made the best guess it can at
the required translation, but is warning that you should inspect the result to be sure that it
is right. If the same warning is required later in the script, the message is just:
'*** Note 7: No exact equivalent of DRAWMODE

Please don't expect the result to be perfect. It is our experience that the more effort went
into the DOS script to make it look good on screen, the less successful the result.

Spike2 for DOS supports some 146 keywords and 14 operators. Because many of the
keywords use numeric codes to make one keyword perform several different functions,
there are some 200 different commands to translate. The vast majority translate exactly
without any problem. All the maths functions, use of variables, strings and arrays and
PROCs translate without any problem, as do expressions using these items.

Spike2 for DOS has built into it a structure of 6 views that can hold time or result views
plus text and graphic output streams. It is the mapping of this architecture to a windowed
environment that causes most of the problems in translating a script.

We cannot translate concepts that have no equivalent in the windowed environment. For
example, overdrawing of data has no equivalent (yet) so does not translate. Scripts that
contain syntax errors cannot translate! It is quite common for the translator to find errors
in scripts, usually in IF or DOCASE statements in branches that were never executed. If
the translator complains about your script, correct the errors and try again.

The keywords that do not translate at all come into the following categories:

• Keywords that make little difference to the functioning of a script or are there
because of lack of memory in DOS or are intrinsic to the DOS system or are related
to debugging: DUMPM, FREEMEM, NUMVAR, NUMARR, NUMSTR, SHOWVARS,
PARAMSTR. The lack of these is usually not a problem.

• Keywords associated with user-defined drawing of lines and/or boxes in views and
overdrawing of data. These are the ones that will cause most problems. We will
address these in future releases: BOX, DRAWTO, DRAWR, MOVER, OVERDRAW,
SETAXES. You may be able to work around this using XY views.

• Keywords associated with running multiple scripts from one script to compensate for
the lack of space (20,000 characters) allowed in the DOS scripts. From version 3, the
only limit to script size built into the program is that a script must be less than 32,000

6
Introduction

What will translate

What will not translate

 Translating DOS scripts

6-2

lines long. We have not yet decided on the best way to produce large multi-file
scripts. Missing keywords are: EXECUTE, EXECUTED, GLOBAL. Note that you can
have multiple scripts loaded at a time, so some of the need for these keywords is
reduced. From version 4.08, the ScriptRun() command lets you set a script to run
after the current script ends.

• Keywords associated with plotting and to some extent printing. Plotting is translated
to printing as much as possible. There is no exact equivalent of export in HPGL or
PIC format, but there is the far superior (in most cases) option of copy to the
clipboard. PLOTTO is not supported at all.

• Finally there is the SETPLACE command. Please let us know if you use it.

Everything else either translates completely, or translates with some worries about
compatibility that are marked with notes in the output.

This section describes how the translator copes with problems in the translation, and also
explains the extra script variables and functions declared to emulate the original Spike2
for DOS environment.

:= In the DOS version := is treated as an operator, and has a value. In the
windowed version, := is not an operator. Instead it indicates an assignment
statement. Use of := as an operator is flagged as an error, for example:

 a:=b:=3.0; 'This is legal in the DOS version
b:=3.0; a := b; 'You must edit the original to this

 The following is also not translatable (and is often a mistake):
 if a := b ... 'Allowed in the DOS version

a := b; if a... 'You must edit the original to this

 Very few scripts make use of the assignment operator in this way.

+-*/... Other operators (+-*/%&| and comparisons) differ because in the new script
operators have an order of precedence. This means that 4+5*6 is 34 in the new
script, not 54 as in the DOS script. Because of this all expressions are
analysed and rewritten to insert and remove brackets as required.

Codes Many DOS script commands use numeric codes to indicate the operation, for
example STRFUNC. The new script avoids the use of codes as much as
possible to make the commands readable, and because the length of a
command name does not slow down the script at run time. For example
compare i% := InStr(text$, find$); with STRFUNC 4 text$ find$
I. If you use a variable in place of a code we cannot translate.

Clear This keyword is not translated. If you intend to clear out text you could try
using SelectAll();EditClear().

Drawing The commands associated with drawing (BOX, DRAWTO, DRAWR, MOVER and to
some extent MOVETO) have no equivalent.

ESCAPE This keyword has no real equivalent and is translated as 0. You can get
exactly the same effect by adding an extra Cancel button to an Interact bar,
testing the result from the DlgShow() command or by setting an escape
button in the Toolbar() command. However, such transformations are
beyond the capabilities of the script converter, so you must do them yourself.

Execute This is not translated. Executed is translated as 0.

General translation
issues

 The Spike2 script language

6-3

File The new file command does not automatically support the use of numbers as
part of a name. We add Func File() to emulate this and sort out the views.

FRAME This is ignored in ON/OFF and treated as 1 in expressions.

Global This is translated as var.

Help This is translated, but most unlikely to be of any use unless you write your
own help files.

names The new script language defines many more commands than the DOS version.
These commands have descriptive names that may well clash with names your
script used. If a name clash is detected we add QQ to the end of the original
name. The translator also preserves your capitalisation of all user-defined
names (though the system is not case-sensitive).

NewEvent The memory channel functions have more functionality than the NEWEVENT
buffer. The variable neqq% holds the memory channel number used to
emulate both NEWEVENT and EVENT. The memory channels behave just like
any other channel, so you must be in the correct time view to use them.

Normal If your script uses this command we add Proc Normal(v%) to emulate it.

Numxxx The NUMARR, NUMVAR and NUMSTR keywords are ignored.

Overdraw This keyword is not supported. It is translated as 0 in expressions. You may be
able to emulate overdrawing with an XY view. The overdraw WaveMark
mode will overdraw Spike shapes for you.

PrintTo This keyword does not exist, so we add our own to emulate it. We also add the
variable pqq% to hold the view handle of the view to which printing to a file
should be sent. Any printing that previously went to the screen is now routed
to the Log window.

Print When printing text, you must now specify new lines in the output with the \n
escape sequence. The translator adds this to the end of format strings unless it
detects that output is to a device that is specified by an expression that starts
with a minus sign. This will work in almost all cases, but you should check.
The %d format now applies to integer output, use %f for reals. The translator
attempts to do this for you by looking for possible numeric format expressions
in all literal strings. Please check all strings in your script that contain % to
make sure that the translator hasn't corrupted them.

Plot The difference between printing and plotting is blurred in the windowed
environment. Plotting calls are translated to printing calls and the plotter
control calls are not supported. To export an image you can copy to the
clipboard or save the view as a picture.

Process There is a Process() command in the new script, but unlike the DOS script
where the current view must be a time view to use Process, in the new script
you must be in the result view (this is because there can be multiple result
views simultaneously attached to a time view). To get round this we use
ProcessQQ() to emulate the old situation.

 Translating DOS scripts

6-4

ScreenL The ScreenL and ScreenR keywords translate to XLow() and XHigh().
However, users can scroll result views to fractional bin positions. In the
windowed version, do not assume that the value returned by XLow() or
XHigh() in a result view is integral.

Setxxx If you create result views, we call Proc CreateView(v%, vh%), where v%
is the old view number (1 to 6) and vh% is the handle for the new view. This
takes care of linking result views and time views together (in DOS you could
have only one result view linked to a time view).

SetAxes This is not translated. You can draw your own images using the XY views,
but the mapping between the DOS drawing commands and the Windows ones
is not simple and it is probably better done by hand.

TITLE This is ignored in ON/OFF and treated as 1 in expressions.

View To emulate the 6 views we add Proc ViewQQ() and a two dimensional array
vqq%[7][2] to hold the view handles of the 6 views and the handle of any
result view attached to a time view for ProcessQQ(). We also add a variable
view% to hold the current view number (1-6). DOS scripts all assume that
there is a time window, so if your script uses views, a call to ViewQQ(0) is
made at the start to initialise the system. If the current view is already a time
view it is used, otherwise you must name a file.

Once Spike2 has translated your script, and you have checked that it runs we would
suggest that you consider reworking it so that it no longer depends on the old architecture
of 6 views. This usually means declaring variables at the top of your script to hold
handles to the views you will use and removing the vqq%[][] array, the view% variable
and Proc ViewQQ().

You should also examine the code for places where the script converter has been verbose.
For example, DRAW becomes FrontView(view());Draw(); to make sure that a drawn
view is visible. Very often you can delete FrontView(view()); as this is only needed
if the current view is hidden or covered by other windows.

After translating

 XY views

7-1

XY views have a wide variety of uses, from displaying user-defined graphs to drawing
pictures. XY views have the following features:

• One x axis and one y axis shared between all data channels in the XY view, so all the
channels share the same space, so you can overdraw one channel with another.

• Up to 256 data channels allowed in the view.

• Each data channel is a list of (x,y) data points. The number of data points in a channel
is limited only by available memory and drawing time. However, you can limit the
number of data points on a channel, in which case new data points replace the oldest
data points.

• The data points can be drawn with markers at each data point. The range of marker
styles currently includes: dots, boxes, plus signs, crosses, circles (Windows NT only),
triangles, diamonds, horizontal lines and vertical lines. The size of the markers can
also be set, and they can be made invisible.

• The data points can be joined with solid, dotted or dashed lines, and the line thickness
can be varied. You can also choose to join the last point in a channel to the first point
to make a loop.

• You can sort the order of the data points in a channel by x, by y or by order of
insertion in the channel. This is only important if the data points are joined.

• The colour of the lines and markers can be chosen. If no colour is set, the same colour
as for a waveform channel in a time view is set.

There are several example scripts included with Spike2 that illustrate some of the uses of
XY views. You will find them in the scripts folder:
FFTWater This draw a “waterfall” type display showing the variation in the power

spectrum of a waveform channel with time.
DE A script that uses a genetic algorithm to fit a double exponential.
HRaster This shows a raster display and a PSTH of event data with the raster

drawn above the PSTH.
Clock An analogue clock for your Toolbar idle routine.
PingPong A very silly example indeed.

Although you can create an XY view from the File New menu command, the usual way
to generate XY views is with the Analysis menu Measurements command or with the
script language. The script language can generate an XY view for general use with the
FileNew() command and as the target for measurements with a Process() command
with the MeasureToXY() command. See the documentation for MeasureToXY() for an
example.

The following assumes that you have some familiarity with the script language. An XY
view always has at least one data channel, so when you create a view, you also create a
channel. The following script code shows you how to make an XY view:
var xy%; 'handle for the XY view
xy% := FileNew(12,1); 'type 12=XY, 1=make visible now

If you want to add additional channels you can do this using the XYSetChan()
command. You can also use this command to set a channel to a particular state. The
following sets channel 1 (the first channel) to show data points joined by lines with no
limit on the number of data points, drawn in the standard colour:
XYSetChan(1, 0, 0, 1); 'chan 1, no size limit, no sort, joined
XYDrawMode(1, 2, 0); 'set a marker size of 0 (invisible)

7

Introduction

Creating an XY view

 XY views

7-2

To add data points to a channel you use the XYAddData() command. You can add single
points, or pass an array of x and y co-ordinates. The following code adds three points to
draw a triangle:

XYAddData(1, 0, 0); 'add a point to channel 1 at (0, 0)
XYAddData(1, 1, 0); 'add a point at (1,0)
XYAddData(1, 0.5, 1); 'add a point at (0.5, 1)

You will notice that the result of this draws only two sides of a triangle. We could
complete the figure by adding an additional data point at (0,0), but it is just as easy to
change the line joining mode to "Looped", and the figure is completed for you:
XYJoin(1,2); 'set looped mode

You can use the XY view to overdraw data. For example, suppose we have a waveform
channel and another channel of trigger markers and we want to superimpose the first 100
data points after each trigger. The following example does this. To make it a little easier
to see, we have displaced each triggered data sweep slightly to the right and up. We have
also turned off the x and y axes.

The code required to produce this image is quite short and can be easily adapted to
display other types of data. This example expects to run with the demo.smr data file in
the Spike2\Data folder created when you installed the program. To run with other files
you would need to adjust the channel numbers.

The first line declares variables to remember the time and XY window handles
(identifiers) and a variable to hold the number of points read. The second line checks that
the current view is a time view and gives up if it is not. The third line remembers the time
view handle.
var tv%, wh%, np%; 'time view, XY view, points read
if ViewKind() then Message("Not a time view");Halt endif;
tv% := View(); 'save view handle

The next three lines declare an array to hold 100 data points, a variable to hold the trigger
time (and we set it to -1 so we see the first event, even if it is at time 0), and we call the
MakeWindow%() function (see below) that creates the XY window for us. We set the
first argument to the time interval between data points in out time view so that the x
spacing of the data points is correct. The second and third arguments to this function set
the distance each “slice” of data is moved to the right and up.

Overdrawing data

 The Spike2 script language

7-3

var wave[100]; 'space for 100 waveform data points
var t := -1; 'start time for trigger search
wh% := MakeWindow%(BinSize(1), 0.01, 0.5); 'start waterfall view

To generate the data we run round a loop (repeat…until (t<0) or (t>20);) that
finds the time of the next trigger on channel 2 , reads in 100 data points into the array
wave[] and then as long as the data read correctly, adds the data into the XY window.
repeat
 View(tv%); 'Make time view current
 t := NextTime(2, t); 'Get next trigger time from channel 2
 np% := ChanData(1, wave[], t, MaxTime()); 'get channel 1 data
 if (np% > 0) then AddSlice(wave[:np%]) endif; 'add to picture
until (t < 0) or (t>20); 'until end or we reach 20 seconds

The final task is to make the XY window visible and halt.
View(wh%).WindowVisible(1); 'make XY window visible
halt;

The remaining code can be copied from the FFTWater.s2s script. The variables with
names starting WF are used to remember the initial waterfall settings. There are two
functions in this code. MakeWindow%() prepares for the waterfall display by creating the
XY window and storing the information needed to position the channels. AddSlice()
takes an array of data points and adds it to the display as an additional channel.

'================== Waterfall display code =====================
var WFxInc,WFyInc,WFbinSz,WFSlices%,WFvh%;
'
'xBinSz Width of each bin (sample interval)
'xInc Add to each slice x co-ords to give waterfall effect
'yInc Add to each slice y co-ords to give waterfall effect
Func MakeWindow%(xBinSz, xInc, yInc)
WFSlices% := 0; 'no slices yet
WFxInc := xInc; 'save x increment per slice
WFyInc := yInc; 'save y increment per slice
WFbinSz:= xBinSz; 'save data point separation
WFvh% := FileNew(12); 'create a new XY window (hidden)
return WFvh%; 'return the XY window handle
end;

Func AddSlice(y[]) 'Add data to the waterfall
View(WFvh%); 'select the waterfall view
var ch%:=1; 'true if this is the first channel
if WFSlices% = 0 then 'if first channel no need to create
 XYSetChan(1,-Len(y[]),0,1); 'set original channel
else
 ch% := XYSetChan(0, -Len(y[]), 0, 1);'create new channel
 if (ch% <= 0) then return ch% endif; 'No more channels
endif;
WFSlices% := ch%; 'number of slices
XYDrawMode(ch%,2,0); 'Hide the markers (set size of 0)
var x[Len(y[])]; 'space for x values, same size as y[]
ArrConst(x[], WFbinSz); 'generate x axis values, set the same
x[0]:=(ch%-1)*WFxInc; 'set x offset as first value
ArrIntgl(x[]); 'form the x positions
ArrAdd(y[],(ch%-1)*WFyInc); 'add the y offset to the y array
XYAddData(ch%, x[], y[]); 'add the (x,y) data points
return 1; 'return >0 means all OK
end;

 XY views

7-4

 Curve fitting from a script

8-1

It frequently happens that you have a set of data values (x1,y1), (x2,y2) … (xn,yn) that you
wish to test against a theoretical model y = f(x, a0, a1, a2…) where the ai are coefficients
that are to be set to constant values which give the best fit of the model to the data values.

For example, if we were looking at the extension of a spring (y) as it is loaded by weights
(x), we might wish to fit the straight line y = a0 + a1x to some measured data points so
that we could measure a weight by the extension it caused. A careful experimenter might
also wish to know what the probable error was in a0 and a1 so that the probable error in
any weight deduced from an extension would be known. An even more cautious
experimenter might want to know if the straight-line formula was likely to model the
measured data.

To avoid repeating definitions throughout the remainder of this chapter the following will
be taken as defined. We apologise to the statisticians who may read the following and
shudder.

Given a set of n values yj, the mean is Σj yj / n (the symbol Σj means form the sum over all
indices j of the expression that follows).

If the mean of a set of n data values yj is ym, then the variance σ2 (sigma squared) of this
set of values is:

σ2 = Σj (yj - ym)2 / n if ym is known independently of the data values yj
σ2 = Σj (yj - ym)2 / (n - 1) if ym is calculated from the data values yj

For a data set of any reasonable size, the use of n-1 or n in the denominator should make
little difference.

The standard deviation σ (sigma) of a data set is the square root of the variance. Both the
variance and the standard deviation are used as measures of the width of the distribution.

If you measure a data value in any real system, there is
always some error in the measurement. Once you have
made a (very) large number of measurements, you can
form a curve showing the probability of getting any
particular value. One would hope that this error
distribution would show a large peak at the “correct”
value of the measurement and the width of this
distribution would show the spread of likely errors.

There is a particular error distribution that often occurs, called the Normal distribution. If
a set of measurements is normally distributed, with a mean ym and standard deviation σ,
then the probability of measuring any particular value y is proportional to:

P(y) ∝ exp(-½(y-ym)2/σ2)

It is for this distribution of errors that we have the well-known result that 68% of the
values lie within one standard deviation of the mean, that 95% lie within two standard
deviations and that 99.7% lie within three standard deviations. Of course, if the error
distribution is not normal, these results do not apply.

8

Introduction

mean

variance

standard deviation

Normal distribution

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
sigma

 Curve fitting from a script

8-2

The fitting routines given here define best fit as the values of ai (the coefficients) that
minimise the chi-squared value (χ2), defined as the sum over the measured data points of
the square of the difference between the measured and predicted values divided by the
variance of the data point:

χ2 = Σj ((yj - f(xj, ai))2 / σj
2)

where (xj, yj) is a data point and σj
2 is the variance of the measured data at that point.

If the sigma of each data point is unknown, then the fitting routines can be used to
minimise Σj (yj - f(xj, ai))2 which produces the same result as a chi-squared fit would
produce if the variance of the errors at all the data points was the same. This is commonly
called least-squares fitting (meaning that the fit minimises the sum of squares of the
errors between the fitted function and the data).

Chi-squared fitting is also a maximum likelihood fit if the errors in the data points are
normally distributed. This means that as well as minimising the chi-squared value, the fit
also selects the most probable set of coefficients that model your data. If your data
measurement errors are not normally distributed you can still use this method, but the fit
is not maximum likelihood.

If your errors are normally distributed and if you know the variance(s) of the data points,
you can form good estimates of the variance of the fitted coefficients, and you can also
test if the function you have fitted is likely to model the data.

If your errors are normally distributed but you do not know the variance of the errors at
the data points, you can make an estimate of the variance of the errors (based on the
assumption that the variance is the same for them all and that the model does fit the data),
by fitting your model and calculating the variance from the errors between the best fit and
the data. Having done this, you cannot then use this variance to test if the fit is likely to
model the data.

Once your fit is completed, it is a good idea to look at the graph of the errors between
your original data and the fitted data (the residuals or residual errors). If your errors are
normally distributed and are independent, you would expect this graph to be more or less
horizontal with no obvious trends. If this is not the case, you should consider if the
correct model function has been selected, or if the fitting function has found the true
minimum.

A linear fit is one in which the theoretical model y = f(x, a0, a1, a2…) can be expressed as
y = a0 f0(x) + a1 f1(x) + a2 f2(x) … for example y = a0 + a1x + a2x2. Linear fits are relatively
quick as they are done in one step. Usually, the only thing that can cause a problem is if
the functions fi(x) are not linearly independent. The methods we use can usually detect
this problem, and can still give a useful result.

A non-linear fit means all other cases, for example, y = a0 exp(-a1 x) + a2. We solve these
types of problem by making an initial guess at the coefficients (and ideally providing a
range of values that the result is known to lie in) and then improving this guess. This
process repeats until some criterion is met. Each repeat is called an iteration, so we call
this an iterative process.

Chi-squared

Residuals

Linear fit
Non-linear fit

 The Spike2 script language

8-3

Several of the script fitting routines return a covariance array. If you have n coefficients,
this array is of size n by n and is diagonally symmetric. If the errors in the original data
points are normally distributed, the diagonal elements of this array are the variances in
the values of the fitted coefficients. The remaining elements are the co-variances of pairs
of the fitting parameters and can be used to estimate errors in derived values that depend
on the product of two of the coefficients. If the errors are not normally distributed, the
further away from normal the errors are, the less useful is the covariance array as a direct
indication of the variances in the fitted coefficients.

For example, in the case of the linear fit y = a0 + a1x + a2x2 you might collect your three
coefficients in the array coef[], and the covariance in the array covar[][]. In this
case, the a0 value is returned in coef[0] and its variance in covar[0][0], the a1 value
is returned in coef[1] and its variance in covar[1][1], and the a2 value is returned in
coef[2] and its variance in covar[2][2].

Because the array is diagonally symmetric, covar[i][j] is equal to covar[j][i] and
the off-diagonal elements are the expected variance in the product of pairs of the
coefficients, so covar[1][2] is the variance of a1a2.

If you have not supplied the standard deviations of the errors in the data points, the
covariance array is calculated on the assumption that all data points have a standard
deviation of 1.0, and the covariance array is incorrectly scaled. In this case, if inspection
of the residuals leads you to the conclusion that the function does indeed fit the data and
that the errors are more or less the same for all values and not too far from normally
distributed, then you can scale the covariance array to the correct values by multiplying
all the elements of the array by the sum of squares of the errors between the data and the
fitted values divided by the number of data points. If there are nD% data points and the
sum of squares of the errors is errSq, then use ArrMul(cover[][], errSq/nD%); to
rescale the covariance.

Having fitted our data, we would like some idea of how the errors in the original data
feed through to uncertainties in the values of the coefficients. The best way to do this is to
obtain many sets of (x,y) data and fit our coefficient to each set. Then we can inspect the
values of the coefficients and obtain a mean and standard deviation for each coefficient.
However, this is very time consuming.

If the errors in the data are normally distributed (or not too far from this ideal case) and
known, then the covariance array gives you some useful information. The square root of
the covariance for a particular coefficient is the expected standard deviation in that value
(given that the remaining coefficients remain fixed at optimum values). In script language
terms, the standard deviation of coef[i] is sqrt(covar[i][i]).

In this case you would expect the coefficient to be within one standard deviation of the
“correct” result 68% of the time, within 2 standard deviations 95% of the time and within
3 standard deviations 99.7% of the time.

If the errors in the original data are normally distributed and known (not calculated from
the fit), and you know the χ2 value for the fitted data, you can ask the question, “Given
the known errors in the original data, how likely is it that you would get a value of χ2 at
least this large given that the data is correctly modelled by the fitting function plus
normally distributed noise?” The answer is (at least in terms of the script language) that
the probability is: GammaQ((nData% - nCoef%)/2.0, chiSq/2.0); where nData%
is the number of data points to be fitted, nCoef% is the number of coefficients that were
fitted and chiSq is the χ2 value for the fit. GammaQ() is the incomplete Gamma function.

Covariance array

What does the covariance
mean?

Testing the fit

 Curve fitting from a script

8-4

If you want to follow this result up in a statistical textbook, you should look up chi-
squared distribution for n degrees of freedom. In our case, we have nData%-nCoef%
degrees of freedom.

If the fit is reasonable, you should expect a probability value between 0.1 and 1 (but be a
bit suspicious if you always get values close to 1.0, as you may have overestimated the
errors in the data). If the wrong function has been fitted or if the fit is poor you usually
get a very small probability.

Intermediate values (0.0001 to 0.1) may indicate that the errors in the original data were
actually larger than you thought, or they may indicate that the model does not explain all
the variation in the data.

In addition to the interactive Analysis menu Fit Data command, the following fitting
related functions are available in the script language:

This fits a polynomial of the form y = a0 + a1x + a2x2 + a3x3…

This fits a straight line to data in a time or result view.

This fits y = a0 f 0(x) + a1 f 1(x) + a2 f 2(x)…

This fits multiple exponentials of the form y = a0 exp(-x/a1) + a2 exp (-x/a3)…

This fits Gaussians of the form y = a0 exp(-½(x-a1)2/a2
2) + a3 exp(-½(x-a4)2/a5

2) + …

This fits multiple sinusoids of the form y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + …

This fits a user-defined function of the form y = f(x, a0, a1, a2…) to a set of data points
where the ai are constant coefficients to be determined. You must be able to calculate the
differential of the function f with respect to each of the ai coefficients. This is the most
general fitting routine, and also the slowest and most complex to use.

Use these functions to calculate the error function erf(x), the cumulative Poisson
probability function and the Chi-squared probability function. These are very useful when
considering probabilities of fits associated with the normally distributed data.

This calculates the natural logarithm of the Gamma function. It can be used to calculate
the log of large factorials and is useful when working with probability distributions.

Fitting routines

FitPoly()

FitLine()

FitLinear()

FitExp()

FitGauss()

FitSin()

FitNLUser()

GammaP(), GammaQ()

LnGamma()

 Index

Index-1

—Symbols—
\ string literal escape character, 3-2
$ string variable designator, 3-2
& reference parameter designator, 3-10
& in Windows dialog prompts, 5-48
{} optional syntax, 1-4
| vertical bar, 1-4
= equality test operator, 3-6
+ arithmetic add, 3-5
+= add and assign, 3-4
+= Append string, 3-4
+ Concatenate strings, 3-6
:= assignment, 3-4, 3-6
() round brackets, 3-5
[] Array subscripts, 3-5
[start:size] array syntax, 3-3
: array range designator, 3-3
; Statement separator, 3-4
< <= > >= arithmetic comparison, 3-5
< <= > >= String comparisons, 3-6
/ arithmetic divide, 3-5
/= divide and assign, 3-4
= arithmetic equality, 3-5
= String equality, 3-6
% Integer variable designator, 3-2
* multiply, 3-5
*= multiply and assign, 3-4
<> arithmetic inequality, 3-5
<> String inequality, 3-6
' Comment designator, 3-4
-= subtract and assign, 3-4
- Unary minus and subtract, 3-5

—1—
1902

Get revision, 5-35
script support, 5-31

—A—
Abort sampling, 5-149
Abs(), 5-1
Absolute value of expression or array, 5-1
Active cursors

CursorActive(), 5-38
CursorActiveGet(), 5-39
CursorSearch(), 5-40
CursorValid(), 5-41

Add cursor, 5-40
Add to array, 5-1
Amplitude of power spectrum, 5-5
Amplitude of waveform, 5-27, 5-29
Analysis

Command synopsis, 4-7
Create arbitrary result view, 5-168
Event correlation, 5-164
Interval histogram, 5-166
Number of items accumulated, 5-177
Peri-stimulus time histogram (PSTH), 5-

167
Phase histogram, 5-166

Process all linked views, 5-139
Process time view data, 5-139
Shuffled event correlation, 5-165
Waveform average and accumulate, 5-164
Waveform correlation, 5-168
Waveform correlation DC removal, 5-168

and operator, 3-5
App(), 5-1
Application close, 5-73
Application window handle, 5-1
Arbitrary waveform output, 4-10
Arc tangent function, 5-10
Argument lists, 3-10
ArrAdd(), 5-1
Array arithmetic, 4-8
Arrays, 3-3

Absolute value, 5-1
Add constant or array, 5-1
Arc tangent function, 5-10
Command summary, 4-8
Copy, 5-2
Cosine of array, 5-37
Cubic splines, 5-8
Declaring, 3-4
Difference of two arrays, 5-8, 5-9
Differences between elements, 5-2
Division, 5-2, 5-3
Dot product, 5-3
Exponential function, 5-64
FFT analysis, 5-4
Fill with channel data, 5-17
Fill with channel list, 5-21
FIR filter, 5-6
Fractional part of real number, 5-97
Gain and phase, 5-4
Hyperbolic cosine of array, 5-37
Hyperbolic sine, 5-169
Hyperbolic tangent, 5-178
Integrate, 5-7
Inverse FFT, 5-5
Length of array, 5-110
Logarithm to base 10, 5-111
Logarithm to base e, 5-111
Maximum value, 5-115
Mean and standard deviation, 5-9
Minimum value, 5-125
Multiplication, 5-7
Natural logarithm, 5-111
Negate, 5-7
Passing to functions, 3-3
Power function, 5-136
Power spectrum, 5-4
Resample array, 5-8
Result view as an array, 3-4
Set to constant, 5-2
Sine of array elements, 5-169
Smoothing and filtering, 5-6
Sorting, 5-7
Square root of array elements, 5-171
Subtract array from value or array, 5-8
Subtract value or array from array, 5-9
Sum of product, 5-3
Sum of values, 5-9
Syntax, 3-3

Tangent of the array elements, 5-178
Total of array elements, 5-9
Truncate real array elements, 5-182
Use of [a:b] syntax, 3-3

ArrConst(), 5-2
ArrDiff(), 5-2
ArrDiv(), 5-2
ArrDivR(), 5-3
ArrDot(), 5-3
ArrFFT(), 5-4
ArrFilt(), 5-6
ArrIntgl(), 5-7
ArrMul(), 5-7
ArrSort(), 5-7
ArrSpline(), 5-8
ArrSub(), 5-8
ArrSubR(), 5-9
ArrSum(), 5-9
Asc(), 5-9
ASCII code of character, 5-9
ASCII to string conversion, 5-30
Assignment, 3-4, 3-6
ATan(), 5-10
Auto-correlation of waveform, 5-168
Automatic file save at sample end, 5-150
Automatic file saving folder, 5-72
Automatic processing during sampling, 5-

140
Automatic scrolling, 5-190
Average waveform data, 5-164
Axis controls

Drawing colour, 5-31
XY view data tracking, 5-192

Axis grid display control, 5-98

—B—
band binary and operator, 3-5
Beep or tone output, 5-169
Bin access in result view, 3-4
Bin number to x axis unit conversion, 5-11
Binary file commands, 4-5
Binary files

Close, 5-66
Little or big endian, 5-12
Move current position, 5-12
Open, 5-71
Read data, 5-11, 5-12
Write data, 5-14, 5-15

BinError(), 5-10
Binsize(), 5-11
BinToX(), 5-11
Bitmap output

To clipboard, 5-61
To file, 5-74

Black and White display, 5-186
Boltzmann sigmoid, 5-83
bor binary logical or operator, 3-5
BOX DOS script command, 6-1
BRead(), 5-11
BReadSize(), 5-12
Break points, 2-1

Clear all, 2-1
Breaking out of a script, 2-2

 Index

Index-2

BRWEndian(), 5-12
BSeek(), 5-12
Burst analysis

Burst statistics, 5-14
Creating bursts from events, 5-13
Revising bursts, 5-13

BurstMake(), 5-13
BurstRevise(), 5-13
BurstStats(), 5-14
Buttons. see toolbar and Interact()
BWrite(), 5-14
BWriteSize(), 5-15
bxor binary exclusive or operator, 3-5

—C—
Calibrate waveform, 5-15, 5-23, 5-27
Call stack in debug, 2-4
case. see docase
CED 1902 signal conditioner, 5-31
Chan$(), 5-15
ChanCalibrate(), 5-15
ChanColour(), 5-16
ChanComment$(), 5-16
ChanData(), 5-17
ChanDelete(), 5-17
ChanDuplicate(), 5-17
ChanFit(), 5-18
ChanFitCoef(), 5-19
ChanFitShow(), 5-20
ChanFitValue(), 5-20
ChanHide(), 5-20
ChanKind(), 5-20
ChanList(), 5-21
ChanMeasure(), 5-21
Channel

Add new XY view channel, 5-195
Attach horizontal cursor, 5-99
Comment, 5-16
Copy data from XY view, 5-193
Copy into an array, 5-17
Create, 5-22
Delete, 5-17
Duplicate, 5-17
Event count, 5-37
Find duplicate, 5-60
Generate channel list, 5-21
Get or set title, 5-28
Get or set units, 5-28
Get selected state, 5-28
Get visible state, 5-29
Groups, 5-23
Hide, 5-20
Maximum time of item in channel, 5-115
Measure region, 5-21
Memory based channels, 5-120
Minimum, maximum and positions, 5-125
Modify XY view channel settings, 5-195
Number in data file, 5-151
Number show and hide, 5-23
Order, 5-23
Selecting, 5-28
Selecting in a dialog, 5-51
Set colour, 5-16
Show, 5-28

Time of next item, 5-128
Time of previous item, 5-110
Type of a channel, 5-20
Value at given position, 5-29
Vertical space, 5-30
Weight, 5-30
Write wave data, 5-30

Channel commands, 4-2
Channel number

Drawing colour, 5-31
Show and hide, 5-23

Channel specifier, 3-12, 5-164
ChanNew(), 5-22
ChanNumbers(), 5-23
ChanOffset(), 5-23
ChanOrder(), 5-23
ChanPort(), 5-24
ChanProcessAdd(), 5-24
ChanProcessArg(), 5-24
ChanProcessClear(), 5-25
ChanProcessInfo(), 5-25
ChanSave(), 5-25
ChanScale(), 5-27
ChanSearch(), 5-27
ChanSelect(), 5-28
ChanShow(), 5-28
ChanTitle$(), 5-28
ChanUnits$(), 5-28
ChanValue(), 5-29
ChanVisible(), 5-29
ChanWeight(), 5-30
ChanWriteWave(), 5-30
Character code, 5-30
Character code (ASCII), 5-9
Check box in a dialog, 5-52
Chi-squared probability function, 5-98
Chi-squared value, 8-2
Chr$(), 5-30
CLEAR DOS script command, 6-2
Clipboard

Copy and Cut data, 5-61
Cut current selection to the clipboard, 5-

61
Paste, 5-61

Close Spike2 application, 5-73
Close window, 5-66
Coefficients, 5-6
Colon, array range designator, 3-3
Colour palette, 5-129
Colour(), 5-31
Colours of screen items, 5-31

Data channels, 5-16
Force Black and White, 5-186
View colours, 5-184
XY view, 5-192

Column number in text view, 5-128
Command line, 5-142
Comment

File comment automatic prompting, 5-149
Get and set channel comment, 5-16
Get and set file comment, 5-67
In script language, 3-4

Commit data file, 5-149
Comparison operators, 3-5

Compile script, 2-1
CondFeature (), 5-31
CondFilter(), 5-32
CondFilterList(), 5-32
CondFilterType(), 5-33
CondGain(), 5-33
CondGainList(), 5-33
CondGet(), 5-34
Conditioner commands, 5-31
CondOffset(), 5-34
CondOffsetLimit(), 5-35
CondRevision$(), 5-35
CondSet(), 5-35
CondSourceList(), 5-36
CondType(), 5-36
Configuration files

Load from script, 5-71
Save from script, 5-74
Suppress use of, 5-70

Connections
Port for WaveMark data, 5-159
Setting port for event channel, 5-152
Setting port for waveform channel, 5-159

Constant delarations, 3-5
Convert

A number to a string, 5-177
A string to a number, 5-183
A string to upper case, 5-182
Between channel types with

MemImport(), 5-122
Event to waveform, 5-62, 5-186
Number to a character, 5-30
Parse string into variables, 5-148
Parse string setup, 5-148
Result view bin to x axis units, 5-11
Seconds to Spike2 time units, 5-191
String to lower case, 5-110
X axis units to bins, 5-191

Convert foreign file format, 5-67
Converting between data types, 3-2
Copy

Array or result view to another, 5-2
External file, 5-68
The current selection to the clipboard, 5-

61
Waveform to result view, 5-164

Correlation of events, 5-164
Cos(), 5-37
Cosh(), 5-37
Cosine of expression, 5-37
Count

points in XY circle, 5-194
points in XY rectangle, 5-194

Count events in time range, 5-37
Count(), 5-37
Covariance array, 8-3
Create new permanent channel, 5-123
Create new result view, 5-164
Create result view, 5-168
CreateView() DOS emulation function,

6-4
Creating new channels

In memory, 5-120
On disk, 5-22

 The Spike2 script language

Index-3

Cross-correlation of events, 5-164
Cross-correlation of waveforms, 5-168
cSpc channel specifier, 3-12, 5-164
Cumulative Poisson probability function, 5-

97
Curly brackets, 1-4
Current directory, 5-72
Current view, 1-2, 2-3, 5-183
Cursor commands, 4-4
Cursor(), 5-37
CursorActive(), 5-38
CursorActiveGet(), 5-39
CursorDelete(), 5-39
CursorExists(), 5-39
CursorLabel(), 5-39
CursorLabelPos(), 5-40
CursorNew(), 5-40
CursorRenumber(), 5-40
Cursors

Channel for horizontal cursor, 5-99
Create new cursor, 5-40
Delete, 5-39
Delete horizontal cursor, 5-99
Drawing colour, 5-31
Get and set horizontal position, 5-98
Horizontal cursor label position, 5-100
Horizontal cursor label style, 5-99
Label position, 5-40
Label style, 5-39
New horizontal cursor, 5-100
Position, 5-37
Renumber cursors, 5-40
Renumber horizontal cursors, 5-100
Set number, 5-41
User-defined style, 5-39, 5-99

CursorSearch(), 5-40
CursorSet(), 5-41
CursorValid(), 5-41
CursorVisible(), 5-41
Curve fitting

Exponentials, 5-82, 5-84
Gaussian, 5-83, 5-86
Linear, 5-88
Non-linear, 5-90
Polynomial, 5-83, 5-92
Sigmoid, 5-83
Sinusoid, 5-83
Sinusoids, 5-94

Cut
The current selection to the clipboard, 5-

61
CyberAmp

Get revision, 5-35
script support, 5-31

—D—
DAC output during sampling, 4-10
Data types, 3-1

Compatibility, 3-2
Date

as a string, 5-42
as numbers, 5-179
data file creation, 5-68

Date$(), 5-42

DC removal in waveform correlation, 5-168
Debug

Call stack, 2-4
Enter debug on error, 2-3
Enter debugger, 2-2, 5-42
Globals window, 2-4
Locals window, 2-4
Operations, 4-11
Script commands, 4-11

Debug script, 2-2
Debug(), 2-2, 5-42
DebugList(), 5-43
DebugOpts(), 5-43
Delay in script. See Yield()
Delete

Channel, 5-17
Cursor, 5-39
File, 5-68
Horizontal cursor, 5-99
Memory channel, 5-120
Memory channel time range, 5-121
Selection, 5-60
Substring, 5-43
XY view data, 5-192

DelStr$(), 5-43
Determinant of a matrix, 5-114
diag() operator, 3-3
Diagonal of a matrix, 3-3
Dialogs

Buttons, 5-50
Check box, 5-52
Create new dialog, 5-52
Dialog units, 5-48
Display and collect responses, 5-55
Enable and disable items, 5-52
Get item value, 5-56
Get time or x value, 5-57
Group boxes, 5-53
Integer number input, 5-53
Real number input, 5-55
Selecting a channel, 5-51
Selecting one value from a list, 5-54
Set label, 5-54, 5-56
Show or hide items, 5-57
Simple format, 5-47
Text string input, 5-55
User actions and call-backs, 5-49
User-defined, 5-47

Differences between array elements, 5-2
Digital filter bank

Apply from script, 5-76
Create digital filter from script, 5-78
Filter name from script, 5-79
Force filter calculation, 5-77
Get filter bank information, 5-78
Sampling frequency range, 5-79
Set attenuation of filter bank filter, 5-76
Set comment in filter bank, 5-78

Digital filtering, 4-9
Directory for files, 5-72
DiscrimChanGet(), 5-44
DiscrimChanSet(), 5-45
DiscrimClear(), 5-46
DiscrimLevel(), 5-46

DiscrimMode(), 5-46
DiscrimMonitor(), 5-47
DiscrimTimeOut(), 5-47
Display channel, 5-28
Divide operator with integer arguments, 3-5
Division of arrays, 5-2, 5-3
DlgAllow(), 5-49
DlgButton(), 5-50
DlgChan(), 5-51
DlgCheck(), 5-52
DlgCreate(), 5-52
DlgEnable(), 5-52
DlgGroup(), 5-53
DlgInteger(), 5-53
DlgLabel(), 5-54
DlgList(), 5-54
DlgReal(), 5-55
DlgShow(), 5-55
DlgString(), 5-55
DlgText(), 5-56
DlgValue(), 5-56
DlgVisible(), 5-57
DlgXValue(), 5-57
docase, 3-7
Dockable toolbars, 5-187

Change floating size, 5-188
Change state, 5-189
Get docked state, 5-188
Get handle, 5-1

DOS command line, 5-142
Dot product of arrays, 5-3
Draw a view, 5-57
Draw(), 5-57
DrawAll(), 5-58
Drawing modes

Join XY view points, 5-194
XY view, 5-192

DrawMode(), 5-58
DRAWR DOS script command, 6-1
DRAWTO DOS script command, 6-1
DUMPM DOS script command, 6-1
Dup(), 5-60
DupChan(), 5-60
Duplicate

Channel, 5-17
Channel, find, 5-60
View, 5-188
View, get handle, 5-60

—E—
e, Mathematical constant, 3-6
Edit marker codes, 5-112
Edit memory channel, 5-124
Edit toolbar handle, 5-1
EditClear(), 5-60
EditCopy(), 5-61
EditCut(), 5-61
Editing commands, 4-5
Editing script commands, 4-5
EditPaste(), 5-61
EditSelectAll(), 5-61
else. see if and docase. see if and
docase

 Index

Index-4

end, 3-10
endcase. see docase
endif. see if
Environment variables, 5-177
Environmental functions, 4-11
Erase file, 5-68
Error bars

DrawMode(), SD, SEM, 5-59
Script access, 5-10
SetAverage(), 5-164
SetResult(), 5-168

Error codes as text, 5-62
Error function, erf(x), 5-97
Error$(), 5-62
Errors

Enter debug on error, 2-3
Esc key in a script, 2-2
Escape character backslash, 3-2
ESCAPE DOS script command, 6-2
Eval(), 5-62
Evaluate argument, 5-62
Event correlation, 5-164
Event data

Burst formation, 5-13
Convert to waveform, 5-62
Drawing colour, 5-31
Read times into an array, 5-17

Event discriminator
Script commands, 4-10

EVENT DOS script command, 6-3
Events in time range, 5-37
EventToWaveform(), 5-62
EXECUTE DOS script command, 6-2
Execute program, 5-142
EXECUTED DOS script command, 6-2
Exit from Spike2, 5-73
Exp(), 5-64
Exponential fitting, 5-82, 5-84
Exponential function, 5-64
Export data file, 5-74
ExportChanFormat(), 5-64
ExportChanList(), 5-65
ExportRectFormat(), 5-65
ExportTextFormat(), 5-66
Expressions, 3-5
External files, 5-71
External program

Kill, 5-142
Run, 5-142
Status of, 5-143

Extract fields from a string, 5-148

—F—
Feature search, 5-27

Active cursors, 5-38
Start cursor search, 5-40
Test search, 5-41

FFT analysis
Of arrays, 5-4
Of waveform data, 5-167

File
Apply resource, 5-66
Automatic file commit, 5-149

Automatic save at sample end, 5-150
Comment, 5-67
Comment automatic prompting, 5-149
Convert foreign format, 5-67
Copy external file, 5-68
Delete list of files, 5-68
Global resource file, 5-68
List of files, 5-69
Name, 5-69
Name for automatic filing, 5-150
New window, 5-70
Open window or external file, 5-71
Parent and child directories/folders, 5-69
Save resource, 5-75

FILE DOS script command, 6-3
File system commands, 4-5
FileApplyResource(), 5-66
FileClose(), 5-66
FileComment$(), 5-67
FileConvert$(), 5-67
FileCopy(), 5-68
FileDate$(), 5-68
FileDelete(), 5-68
FileGlobalResource (), 5-68
FileList(), 5-69
FileName$(), 5-69
FileNew(), 5-70

XY view, 7-1
FileOpen(), 5-71
FilePath$(), 5-72
FilePathSet(), 5-72
FilePrint(), 5-72
FilePrintScreen(), 5-73
FilePrintVisible(), 5-73
FileQuit(), 5-73
FileSave(), 5-73
FileSaveAs(), 5-74
FileSaveResource(), 5-75
FileTime$(), 5-75
FileTimeDate(), 5-75
FiltApply(), 5-76
FiltAtten(), 5-76
FiltCalc(), 5-77
FiltComment$(), 5-78
FiltCreate(), 5-78
Filter bank. See Digital filter bank
Filter coefficients, 5-6
Filter marker data, 5-112
Filtering of arrays, 5-6
FiltInfo(), 5-78
FiltName$(), 5-79
FiltRange(), 5-79
Find a view, 5-184
Find feature, 5-27

Active cursors, 5-38
Start cursor search, 5-40
Test search, 5-41

Find func or proc, 2-1
FIR filter

Apply from script, 5-76
Frequency response, 5-81
Make coefficients, 5-79
Make coefficients (simplified), 5-80
Script functions, 4-9

FIR filter of array, 5-6
FIRMake(), 5-79
FIRQuick(), 5-80
FIRResponse(), 5-81
FitCoef(), 5-81
FitData(), 5-82
FitExp(), 5-84
FitGauss(), 5-86
FitLine(), 5-88
FitLinear(), 5-88
FitNLUser(), 5-90
FitPoly(), 5-92
FitSin(), 5-94
Fitting routines, 8-4
FitValue(), 5-96
Flow of control statements, 3-7
FocusHandle(), 5-96
Folder for files, 5-72
Font

Get font characteristics, 5-96
Set font, 5-96

FontGet(), 5-96
FontSet(), 5-96
for, 3-8
Formatted text output, 5-137, 5-138
Frac(), 5-97
Fractional part of real number or array, 5-97
FRAME DOS script command, 6-3
FREEMEM DOS script command, 6-1
FrontView(), 5-97
func, 3-10
Function argument lists, 3-10
Functions and procedures, 3-10
Functions as arguments, 3-12

—G—
Gain, 5-27
GammaP(), 5-97
GammaQ(), 5-97
Gaussian fitting, 5-83, 5-86
GLOBAL DOS script command, 6-3
GLOBAL DOS script command, 6-2
Global resource files, 5-68
Globals window, 2-4
Grid colour, 5-31
Grid(), 5-98
Groups of channels, 5-23
Gutter(), 5-98

—H—
Halt, 3-9
HCursor(), 5-98
HCursorChan(), 5-99
HCursorDelete(), 5-99
HCursorExists(), 5-99
HCursorLabel(), 5-99
HCursorLabelPos(), 5-100
HCursorNew(), 5-100
HCursorRenumber(), 5-100
HELP DOS script command, 6-3
Help(), 5-100
Hexadecimal number format, 3-2, 5-138

 The Spike2 script language

Index-5

Hide a channel, 5-20
Hide window, 5-189
Hide X axis scroll bar, 5-191
Hide y axis, 5-197
Horizontal cursor. see Cursor
Horizontal cursor commands, 4-4
Host operating system, 5-177, 5-178
Hyperbolic cosine, 5-37
Hyperbolic tangent, 5-178

—I—
if statement, 3-7
IIR filter

Overview, 5-101
Script commands, 4-9

IIRBp(), 5-104
IIRBs(), 5-104
IIRHp(), 5-105
IIRLp(), 5-106
IIRNotch(), 5-106
IIRReson(), 5-107
Import data into memory channel, 5-122
Import foreign data file, 5-67
Impulse response, 5-6
Indent text, 2-2
Inkey(), 5-107
Input a single number, 5-108
Input a string, 5-108
Input from the keyboard, 5-107
Input$(), 5-108
Input(), 5-108
Insert data into memory channel, 5-124
Instantaneous frequency, 5-58, 5-62

Drawing colour, 5-31
InStr(), 5-108
Integer data type, 3-2
Integrate array, 5-7
Interact(), 5-109
Interval histogram (INTH), 5-166
Inverse FFT, 5-5
Invert matrix, 5-114

—J—
Join data points in XY view, 5-194

—K—
Key window, 5-28, 5-185

Control of, 5-195
Keyboard input, 5-107

Interact(), 5-109
ToolbarSet(), 5-181

Keyboard test, 5-109
Keypress(), 5-109
Keywords, 3-1
Kind of channel, 5-20

—L—
Label position of cursor, 5-40
Label style of cursor, 5-39
LastTime(), 5-110
LCase$(), 5-110

Least-squares linear fit, 5-88
Left$(), 5-110
Legal characters in string input, 5-108
Len(), 3-10, 5-110
Length of array or string, 5-110
Line length in script, 3-1
Line number in text window, 5-128
Linear fit, 8-2
Linear fitting, 5-88
Linear least-squares fit, 5-88
List of channels, 5-21
List of files, 5-69
List of views, 5-185
literal string delimiter, 3-2
Ln(), 5-111
LnGamma(), 5-111
Locals window, 2-4
Log amplitude of the power spectrum in dB,

5-5
Log window, 5-111
Log(), 5-111
Logarithm to base 10, 5-111
Logarithm to base e, 5-111
LogHandle(), 5-111
Lower case version of a string, 5-110

—M—
MarkEdit(), 5-112
Marker codes, 5-112

Edit codes, 5-112
Marker data

Set codes, 5-112
MarkInfo(), 5-114
MarkMask(), 5-112
MarkSet(), 5-112
Mask for marker data, 5-112
MATDet(), 5-114
Mathematical constants, 3-6
Mathematical functions, 4-7
MATInv(), 5-114
MATMul(), 5-114
Matrix, 3-3

Determinant of, 5-114
Diagonal of, 3-3
Inverse of, 5-114
Multiplication, 5-114
Solve linear equations, 5-115
Transpose of, 3-3, 5-115

Matrix arithmetic, 4-8
MATSolve(), 5-115
MATTrans(), 5-115
Max(), 5-115
Maximum and minimum of XY channel, 5-

195
Maximum of channel or result view, 5-125
Maximum value, 5-115
Maxtime(), 5-115
mean, 8-1
Mean frequency, 5-58, 5-62

Drawing colour, 5-31
Mean of array, 5-9
MeasureChan(), 5-116
Measurements

MeasureChan(), 5-116

MeasureToXY(), 5-118
MeasureX(), 5-119
MeasureY(), 5-119

MeasureToChan(), 5-117
MeasureToXY(), 5-118
MeasureX(), 5-119
MemChan(), 5-120
MemDeleteItem(), 5-120
MemDeleteTime(), 5-121
MemGetItem(), 5-121
MemImport(), 5-122
Memory channels

Add or edit data, 5-124
Creating, 5-120
Delete, 5-120
Delete time range, 5-121
Get item data, 5-121
Import data, 5-122
Write to file, 5-123

MemSave(), 5-123
MemSetItem(), 5-124
Message(), 5-124
Metafile output

To clipboard, 5-61
Mid$(), 5-124
Min(), 5-125
Minimum of channel or result view, 5-125
Minimum value, 5-125
Minmax(), 5-125
MMAudio(), 5-126
MMImage(), 5-126
MMOpen(), 5-127
MMPosition(), 5-127
MMRate(), 5-127
MMVideo(), 5-128
mod remainder operator, 3-5
Monochrome display, 5-186
Move in text and cursor windows, 5-128
MoveBy(), 5-128
MOVER DOS script command, 6-1
MoveTo(), 5-128
Multimedia sound output, 5-169

Speech, 5-170
Multimedia window

Audio information, 5-126
Open window, 5-127
RGB data access, 5-126
Set and get play position, 5-127

Multimedia window
Set and get play state, 5-127

Multiple monitor support, 4-12, 5-178, 5-189
Multiplication

arrays, 5-7
Matrices, 5-114

—N—
Name format, 3-1
Natural logarithm, 5-111
Negate array, 5-7
neqq% DOS emulation variable, 6-3
New cursor, 5-40
New file, 5-70
New horizontal cursor, 5-100

 Index

Index-6

New result view, 5-164
NEWEVENT DOS script command, 6-3
next, 3-8
NextTime(), 5-128
Non-linear fit, 8-2
Non-linear fitting, 5-90
Normal distribution, 8-1
NORMAL DOS script command, 6-3
Normal settings for a view, 5-185
not logical operator, 3-5
NUMARR DOS script command, 6-1
Numeric input, 5-108
NUMSTR DOS script command, 6-1
NUMVAR DOS script command, 6-1

—O—
Offset waveform, 5-23
Open file, 5-71
Operating system, 5-177, 5-178
Operators, 3-5

Order of precedence, 3-5
Precedence Spike2 for DOS, 6-2

Optimise the display, 5-129
Optimise(), 5-129
or operator, 3-5
Order of channels, 5-23
Oscilloscope style triggered display, 5-185
Outdent text, 2-2
Output sequencer

Get current step, 5-155
Get file name, 5-156
Keyboard link control, 5-155
Set file name, 5-155
Set variable, 5-156
Table access, 5-155

Overdraw data, 7-2
OVERDRAW DOS script command, 6-1
Overwrite wave data, 5-30

—P—
Palette for colour, 5-129
PaletteGet(), 5-129
PaletteSet(), 5-129
PARAMSTR DOS script command, 6-1
Passing arguments

by reference, 3-10
by value, 3-10
functions and procedures, 3-12

Paste from clipboard, 5-61
Path for file operations, 5-72
PCA(), 5-130
Peak to Peak value, 5-21
Peri-stimulus time histogram (PSTH), 5-167
Phase display (FFT) in result view, 5-4
Phase histogram, 5-166
Phase of power spectrum, 5-5
pi, Mathematical constant, 3-6, 5-178
Play wave bar handle, 5-1
Play wave during output, 4-10
PlayOffline(), 5-130
PlayWaveAdd(), 5-131
PlayWaveChans(), 5-133

PlayWaveCopy(), 5-133
PlayWaveCycles(), 5-133
PlayWaveDelete(), 5-134
PlayWaveEnable(), 5-134
PlayWaveInfo$(), 5-134
PlayWaveLabel$(), 5-134
PlayWaveLink$(), 5-135
PlayWaveRate(), 5-135
PlayWaveSpeed(), 5-135
PlayWaveStatus$(), 5-136
PlayWaveStop(), 5-136
PlayWaveTrigger(), 5-136
PLOTTO DOS script command, 6-2
Polynomial fitting, 5-83, 5-92
Port

For WaveMark data, 5-159
Setting for event channel, 5-152
Setting for waveform channel, 5-159

Position of cursor, 5-37
Position of window, 5-187, 5-188
Pow(), 5-136
Power function, 5-136
Power spectra

Of arrays, 5-4
Of waveform channels, 5-167

pqq% DOS emulation variable, 6-3
Precedence of operators, 3-5

Spike2 for DOS, 6-2
Preferences

Script access, 5-140
Principal Component Analysis, 5-130
Print

All views on screen, 5-73
Formatted text output, 5-137, 5-138
Print visible region, 5-73
Range of data, 5-72
To log window, 5-138
To string, 5-138

Print$(), 5-138
Print(), 5-137
PrintLog(), 5-138
PrintTo() DOS emulation function, 6-3
proc, 3-10
Procedures as arguments, 3-12
PROCESS DOS script command, 6-3
Process time view data to result view, 5-139
Process(), 5-139
ProcessAll(), 5-139
ProcessAuto(), 5-140
ProcessQQ() DOS emulation function, 6-

3
ProcessTriggered(), 5-140
Profile(), 5-140
ProgKill(), 5-142
ProgRun(), 5-142
ProgStatus(), 5-143

—Q—
QQ suffix for DOS emulation, 6-3
Query(), 5-143
Quit Spike2, 5-73

—R—
Radians, 5-10, 5-37, 5-169

Convert to degrees, 5-178
Rand(), 5-143
RandExp(), 5-143
RandNorm(), 5-144
Random number generator, 5-143

Exponential distribution, 5-143
Normal distribution, 5-144

Range of data points in XY view, 5-195
Raster drawing mode, 5-58

Drawing colour, 5-31
in a result view, 5-164, 5-166, 5-167

RasterAux(), 5-144
RasterGet(), 5-145
RasterSet(), 5-145
RasterSort(), 5-146
RasterSymbol(), 5-146
Rate drawing mode

Drawing colour, 5-31
Set from script, 5-58

Read binary data, 5-11, 5-12
Read channel into an array, 5-17
Read text file

Input from a text file into variable(s), 5-
147

Open file, 5-71
Read(), 5-147
ReadSetup(), 5-148
ReadStr(), 5-148
Real data type, 3-1
RealMark data

Get information, 5-114
RealWave data

Write to channel, 5-30
Reciprocal of array, 5-3
Reference parameters, 3-10
Registry access, 5-140
Renumber cursors, 5-40
Renumber horizontal cursors, 5-100
repeat, 3-8
ReRun a file, 5-148
ReRun(), 5-148
Residuals, 8-2
Resource information suppression, 5-71
Result view

Access to contents, 3-4
Array access, 3-3, 3-4
Bin width, 5-11
Convert x axis units to bin number, 5-191
Create user-defined view, 5-168
Drawing colours, 5-31
Error bars, 5-10
Get or set units, 5-28
Minimum, maximum and positions, 5-125
Number of items accumulated, 5-177
Open file from script, 5-71
Printing, 5-72
Process data, 5-139
Script commands, 4-3
Sum of bins, 5-37
Value at given x axis position, 5-29

return, 3-10
Right$(), 5-149

 The Spike2 script language

Index-7

Rightmost characters from a string, 5-149
RMS Amplitude, 5-21

Calibration method, 5-16
Channel process option, 5-24
Trend plot, 5-119

Round a real to nearest whole number, 5-149
Round(), 5-149
RS232 script commands, 4-12
Run external program, 5-142
Run script, 2-1

—S—
Sample bar handle, 5-1
Sample control panel handle, 5-1
Sample toolbar

Control from script language, 5-150
SampleAbort(), 5-149
SampleAutoComment(), 5-149
SampleAutoCommit(), 5-149
SampleAutoFile(), 5-150
SampleAutoName$(), 5-150
SampleBar(), 5-150
SampleCalibrate(), 5-150
SampleChannels(), 5-151
SampleClear(), 5-151
SampleComment$(), 5-151
SampleDigMark(), 5-151
SampleEvent(), 5-152
SampleHandle(), 5-152
SampleKey(), 5-152
SampleLimitSize(), 5-152
SampleLimitTime(), 5-152
SampleMode(), 5-153
SampleOptimise(), 5-153
SampleRepeats(), 5-154
SampleReset(), 5-154
SampleSeqCtrl(), 5-155
SampleSeqStep (), 5-155
SampleSeqTable (), 5-155
SampleSequencer$(), 5-156
SampleSequencer(), 5-155
SampleSeqVar(), 5-156
SampleStart(), 5-156
SampleStartTrigger(), 5-156
SampleStatus(), 5-157
SampleStop(), 5-157
SampleText(), 5-157
SampleTextMark(), 5-157
SampleTimePerAdc(), 5-158
SampleTitle$(), 5-158
SampleTrigger(), 5-158
SampleUsPerTime(), 5-159
SampleWaveform(), 5-159
SampleWaveMark(), 5-159
SampleWrite(), 5-160
Sampling

Automatic processing, 5-140
Naming data file from a script, 5-70, 5-74
Runtime control functions, 4-9
Setting where data is stored during

sampling, 5-72
Triggered start, 5-156
View handles, 5-152, 5-154

Sampling configuration

Channel comment, 5-151
Event channel, 5-152
Functions, 4-9
Limit file size, 5-152
Limit sample time, 5-152
Number of channels, 5-151
Number of repeats, 5-154
Optimise rate settings, 5-153
Reset configuration, 5-151
Sample mode, 5-153
Save, 5-74
Triggered start, 5-156

Scale waveform, 5-27
Scope of variables and user-defined

functions, 3-11
Screen dump to printer, 5-73
SCREENL and SCREENH DOS script

command, 6-4
Script

Call stack, 2-4
Clear all break points, 2-1
Compile, 2-1
Debug, 2-2
Enter debug on error, 2-3
Find func or proc, 2-1
Handle of running script, 5-1
Run, 2-1
Set and clear break points, 2-1
Split text window, 2-1

Script Bar
Control from script language, 5-160
handle, 5-1

ScriptBar(), 5-160
ScriptRun(), 5-161
Scroll bar, show and hide, 5-191
Scroll display, 5-57
Search data

Active cursors, 5-38
For feature, 5-27
Start cursor search, 5-40
Test search, 5-41

Search for view, 5-184
Seconds(), 5-161
Select a channel, 5-28
Select all copyable items, 5-61
Selection$(), 5-161
Semicolon, statement separator, 3-4
Sequencer control panel handle, 5-1
Serial line script commands, 4-12
Serial number

Read, 5-1
SerialClose(), 5-161
SerialCount(), 5-161
SerialOpen(), 5-162
SerialRead(), 5-162
SerialWrite(), 5-163
SetAverage(), 5-164
SETAXES DOS script command, 6-1
SetEvtCrl(), 5-164
SetEvtCrlShift(), 5-165
SetINTH(), 5-166
SetPhase(), 5-166
SETPLACE DOS script command, 6-2
SetPower(), 5-167

SetPSTH(), 5-167
SetResult(), 5-168
SetWaveCrl(), 5-168
SetWaveCrlDC(), 5-168
Show channel (list), 5-28
Show window, 5-189
Show X axis scroll bar, 5-191
Show y axis, 5-197
SHOWVARS DOS script command, 6-1
Shuffled event correlation, 5-165
Sigmoid fitting, 5-83
Signal conditioner, 5-31

Get and set gain, 5-33
Get and set offset, 5-34
Get and set special features, 5-31
Get list of gains, 5-33
Get list of sources, 5-36
Get offset range, 5-35
Get revision, 5-35
Get type, 5-36
List filter frequencies, 5-32
List filter types, 5-33
Low-pass and high-pass filters, 5-32
Read all port settings, 5-34
Script commands, 4-10
Set all parameters, 5-35

Sin(), 5-169
Sine of an angle in radians, 5-169
Single step a script, 2-3
Sinh(), 5-169
Sinusoid fitting, 5-83
Sinusoidal fitting, 5-94
Size of window, 5-188
SMControl(), 5-171
Smoothed frequency, 5-62
Smoothing of arrays, 5-6
SMOpen(), 5-171
Solid colour, 5-129
Solve linear equations, 5-115
Sonogram drawing mode, 5-58
Sort arrays, 5-7
Sort channels, 5-23
Sound output, 5-169
Sound(), 5-169
Spawn program, 5-142
Speak(), 5-170
Speech output, 5-170
Spike monitor window

control state, 5-171
Open and get handle, 5-171

Spike shape window
Button states, 5-172
Create new spike channel, 5-172
Create, merge or replace template, 5-176
Delete templates, 5-174
Display range, 5-200
Duplicate channels, 5-17
Get and set template information, 5-175
Get template and display size, 5-176
Get template data, 5-174
Open dialog, 5-173
Optimise display, 5-129
Parameters, 5-173
Reclassify channel, 5-172

 Index

Index-8

Run state, 5-174
Script function list, 4-11
Set channel, 5-172
Set template and display size, 5-177
Set trigger levels, 5-98

Splitter control, 2-1
Sqrt(), 5-171
Square root, 5-171
SSButton(), 5-172
SSChan(), 5-172
SSClassify(), 5-172
SSOpen(), 5-173
SSParam(), 5-173
SSRun(), 5-174
SSTempDelete(), 5-174
SSTempGet(), 5-174
SSTempInfo(), 5-175
SSTempSet(), 5-176
SSTempSizeGet(), 5-176
SSTempSizeSet(), 5-177
Standard deviation, 5-21, 8-1

Burst statistics, 5-14
Error bars, 5-10, 5-59
of array, 5-9

Standard error of the mean
Error bars, 5-10, 5-59

Standard settings for a view, 5-185
Statements, 3-4
Status bar

Handle, 5-1
Show and hide, 5-1

Str$(), 5-177
Straight line fit, 5-88
STRFUNC DOS script command, 6-2
String functions, 4-8
String input, 5-108
Strings, 3-2

ASCII code, 5-9
Comparison operators, 3-6
Conversions, 4-8
Convert a number to a string, 5-177
Convert ASCII to string, 5-30
Convert to a number, 5-183
Convert to lower case, 5-110
Convert to upper case, 5-182
Currently selected text, 5-161
Delete substring, 5-43
Extract fields from, 5-148
Extract fields setup, 5-148
Extract middle of a string, 5-124
Find string within another string, 5-108
Get rightmost characters, 5-149
Leftmost characters of string, 5-110
Length of a string, 5-110
Printing into, 5-138
Read from binary file, 5-12
Read string from user, 5-108
Reading using a dialog, 5-55
Specifying legal characters in input, 5-108
Write to binary file, 5-15

Substring of a string, 5-124
Subtraction of arrays and values, 5-8, 5-9
Sum of array, 5-9
Sum of array product, 5-3

Sum of bin contents, 5-37
Sweeps(), 5-177
Syntax colouring, 2-2
System$(), 5-177
System(), 5-178

—T—
Tan(), 5-178
Tangent of an angle in radians, 5-178
Tanh(), 5-178
Text copy, 5-61
Text file script commands, 4-5
Text to speech, 5-170
Text view

Get column number, 5-128
Get line number, 5-128
Move absolute, 5-128
Move relative, 5-128
Move to line number, 5-128

TextMark data
Add marker from script on-line, 5-157
Add to memory channel, 5-124
Create channel for sampling, 5-157
Edit existing mark, 5-112
Get information, 5-114
Read string, 5-110, 5-129

Time
data file creation, 5-75
Into sampling, 5-115
Maximum time in a file, 5-115
Of next item on a channel, 5-128
Of previous item on a channel, 5-110
Resolution for channels, 5-11

Time of day
as a string, 5-179
as numbers, 5-179

Time shift, 5-6
Time view

Apply resource file, 5-66
Background colour, 5-31
Convert seconds to Spike2 time units, 5-

191
Copy data to array, 5-17
Count of events, 5-37
Printing, 5-72
Process data, 5-139
Save resource file, 5-75
Script commands, 4-3
Time of next item, 5-128
Time of previous item, 5-110
Value at given time, 5-29

Time$(), 5-179
TimeDate(), 5-179
Title of window, 5-188
Title string for channel, 5-28
Toolbar, 5-180

Add buttons, 5-181
Change text, 5-182
Clear all buttons, 5-180
Enable and disable buttons, 5-181
Show and hide, 5-182
System toolbar, 5-1
User interaction, 5-180
window handle, 5-1

Toolbar(), 5-180
ToolbarClear(), 5-180
ToolbarEnable(), 5-181
ToolbarSet(), 5-181
ToolbarText(), 5-182
ToolbarVisible(), 5-182
Tooltips

DlgButton, 5-50
In user-defined dialog, 5-48
Interact, 5-109
Toolbar, 5-181

Trace through a script, 2-3
trans() operator, 3-3
Translating DOS scripts, 6-1
Transpose of matrix, 5-115
Trend plot

MeasureChan(), 5-116
MeasureToXY(), 5-118
MeasureX(), 5-119
MeasureY(), 5-119

Triggered start of sampling, 5-156
Triggered time view, 5-185
Trunc(), 5-182
Truncate real number, 5-182
Type compatibility, 3-2
Types of data, 3-1

—U—
UCase$(), 5-182
Units for waveform or WaveMark channel,

5-28
until, 3-8
Update all views, 5-58
Update invalid regions in a view, 5-57
Upper case a string, 5-182
User interaction

Ask user a Yes/No question, 5-143
Command summary, 4-6
Dialogs, 5-47
Input single key, 5-107
Let user interact with data, 5-109
Message in pop-up window, 5-124
Print formatted text, 5-137, 5-138
Read a number in a pop-up window, 5-

108
Read a string in a pop-up window, 5-108
Test for key available to read, 5-109
The toolbar, 5-180

User-defined functions and procedures, 3-10

—V—
Val(), 5-183
Value parameters, 3-10
var keyword, 3-4
Variable

Inspecting value, 2-4
Names, 3-1
Types, 3-1

Variable declarations, 3-4
variance, 8-1
vector, 3-3
Vertical bar notation, 1-4
Vertical cursor commands, 4-4

 The Spike2 script language

Index-9

Vertical space for channels, 5-30
View handle, 1-2

Close view, 5-66
Create result view, 5-164
Duplicate views, 5-60
Find from view title, 5-184
for Log window, 5-111
for new result view, 5-164, 5-166, 5-167,

5-168
for new view, 5-70
for opened view, 5-71
for sampling windows, 5-152
for system windows, 5-1
Get and set, 5-183
Get linked views, 5-184
Get list of views, 5-185
Get type of view, 5-184
Override current view, 5-183
Sampling windows, 5-152
Set colour for view, 5-184
Set or get current view, 5-183
Update the view, 5-57

View manipulation functions, 4-1
View(), 5-183
View().x(), 5-183
ViewColour(), 5-184
ViewFind(), 5-184
ViewKind(), 5-184
ViewLink(), 5-184
ViewList(), 5-185
ViewQQ() DOS emulation function, 6-4
ViewStandard(), 5-185
ViewTrigger(), 5-185
ViewUseColour(), 5-186
VirtualChan(), 5-186
Visible state of a window, 5-189
Visible state of channel, 5-29
vqq%[7][2] DOS emulation array, 6-4

—W—
Wait in script. See Yield()
Waterfall script example, 7-3
WAVE file output, 5-169
Waveform data

Amplitude, 5-29
Average, accumulate or copy to result

view, 5-164
Copy into an array, 5-17
Correlation, 5-168
Create from events, 5-62
Drawing colour, 5-31
Mean level, 5-37
Offset, 5-23
Output during sampling, 4-10
Power spectrum, 5-167
Sampling interval, 5-11
Sampling setup, 5-159
Scaling, 5-27
Units, 5-28
Write to channel, 5-30

Waveform output
Add waveform to list, 5-131
Change and get DAC list, 5-133

Change cycles, 5-133
Control bar buttons, 5-134
Delete area, 5-134
Enable area, 5-134
Get area information, 5-134
Link and unlink areas, 5-135
Output rate variation, 5-135
Play offline, 5-130
Sample rate, 5-135
Status during output, 5-136
Stop output, 5-136
Trigger state, 5-136
Update waveform on-line, 5-133

WaveMark data
Drawing colour, 5-31
Get information, 5-114
Offset, 5-23
Overdraw mode, 5-59
Sampling interval, 5-11
Scaling, 5-27
Setup for sampling, 5-159
Show setup dialog, 5-70
Traces, 5-22, 5-110, 5-112, 5-114, 5-120,

5-121, 5-124, 5-129
Units, 5-28

Weighting of channel space, 5-30
wend, 3-8
while, 3-8
Window data for FFT, 5-4
Window(), 5-187
WindowDuplicate(), 5-188
WindowGetPos(), 5-188
Windows

Close window, 5-66
Current view, 5-183
Duplication, 5-188
Get linked view, 5-184
Get list of view handles, 5-185
Help, 5-100
Manipulation functions, 4-1
Number input with prompt, 5-108
Pop-up message window, 5-124
Position, 5-187, 5-188
Query user in pop-up window, 5-143
Show and hide, 5-189
Size, 5-188
Standard settings, 5-185
String input with prompt, 5-108
Title, 5-188
View handle, 5-183

WindowSize(), 5-188
WindowTitle$(), 5-188
WindowVisible(), 5-189
Working Set, 5-142
Write binary data, 5-14, 5-15
Write memory channel to disk, 5-123

—X—
X axis

Bin number conversions, 5-11
Display set region, 5-57
Drawing mode, 5-189
Drawing style, 5-189
Increment per bin in result view, 5-11

Range, 5-190
seconds, hms and time of day, 5-189
Show and hide features, 5-189
Show and hide scroll bar, 5-191
Tick spacing, 5-189
Title, 5-191
Units, 5-191
Value at given position, 5-29

XAxis(), 5-189
XAxisMode(), 5-189
XAxisStyle(), 5-189
XHigh(), 5-190
XLow(), 5-190
xor exclusive logical or, 3-5
XRange(), 5-190
XScroller(), 5-191
XTitle$(), 5-191
XToBin(), 5-191
XUnits$(), 5-191
XY view

Add data, 5-191
Automatic axis expansion, 5-192
Background colour, 5-31
Channel list, 5-21
Create a new channel, 5-195
Create new XY view, 5-70
Creating from script, 7-1
Data joining method, 5-194
Data range, 5-195
Delete data points, 5-192
Drawing styles, 5-192
Get data points, 5-193
Get or set title, 5-28
Get or set units, 5-28
Limit points per channel, 5-196
Modify all channel settings, 5-195
Open file from script, 5-71
Overdraw data, 7-2
Points inside a circle, 5-194
Points inside a rectangle, 5-194
Script commands, 4-4
Set channel colour, 5-192
Set Key properties, 5-195
Sort points, 5-197

XYAddData(), 5-191
XYColour(), 5-192
XYCount(), 5-192
XYDelete(), 5-192
XYDrawMode(), 5-192
XYGetData(), 5-193
XYInCircle(), 5-194
XYInRect(), 5-194
XYJoin(), 5-194
XYKey(), 5-195
XYRange(), 5-195
XYSetChan(), 5-195
XYSize(), 5-196
XYSort(), 5-197

—Y—
Y axis

Channel number show and hide, 5-23
Drawing mode, 5-198
Drawing style, 5-198

 Index

Index-10

Get current limits, 5-200
Lock channels, 5-198
Range optimising, 5-129
Right and left, 5-198
Set limits, 5-200
Show all, 5-200
Show and hide, 5-197

Show and hide features, 5-198
Tick spacing, 5-198

YAxis(), 5-197
YAxisLock(), 5-198
YAxisMode(), 5-198
YAxisStyle(), 5-198
YHigh(), 5-200

Yield time to the system, 5-199
Yield(), 5-199
YieldSystem(), 5-199
YLow(), 5-200
YRange(), 5-200

	Table of Contents
	Introduction
	What is a script?
	Hello world
	Views and view handles
	Writing scripts by example
	Using recorded actions
	Differences between systems
	Notation conventions
	Sources of script information

	The script window and debugging
	Script window
	Syntax colouring
	Editing features for scripts

	Debug overview
	Preparing to debug
	Inspecting variables
	Call stack

	Script language syntax
	Script format
	Keywords and names
	Data types
	Arrays of data
	Result views as arrays
	Statement types
	Comments in a script
	Variable declarations
	Constant declarations
	Expressions and operators
	Flow of control statements
	Functions and procedures
	Channel specifiers

	Commands by function
	Windows and views
	Channel commands
	Time views
	Result views
	XY views
	Vertical cursors
	Horizontal cursors
	Editing operations
	Text files
	Binary files
	File system
	User interaction commands
	Analysis
	Mathematical functions
	Array and matrix arithmetic
	String functions
	Curve fitting
	Digital filtering
	Sampling configuration
	Runtime sampling
	Arbitrary waveform output
	Discriminator control
	Signal conditioner control
	Debugging operations
	Environment
	Spike shape window
	Spike Monitor
	Multimedia files
	Serial line control
	Multiple monitor support

	Alphabetical command reference
	A
	Abs()
	App()
	ArrAdd()
	ArrConst()
	ArrDiff()
	ArrDiv()
	ArrDivR()
	ArrDot()
	ArrFFT()
	ArrFilt()
	ArrIntgl()
	ArrMul()
	ArrSort()
	ArrSpline()
	ArrSub()
	ArrSubR()
	ArrSum()
	Asc()
	ATan()

	B
	BinError()
	Binsize()
	BinToX()
	BRead()
	BReadSize()
	BRWEndian()
	BSeek()
	BurstMake()
	BurstRevise()
	BurstStats()
	BWrite()
	BWriteSize()

	C
	Chan...()
	Chan$()
	ChanCalibrate()
	ChanColour()
	ChanComment$()
	ChanData()
	ChanDelete()
	ChanDuplicate()
	ChanFit()
	ChanFitCoef()
	ChanFitShow()
	ChanFitValue()
	ChanHide()
	ChanKind()
	ChanList()
	ChanMeasure()
	ChanNew()
	ChanNumbers()
	ChanOffset()
	ChanOrder()
	ChanPort()
	ChanProcessAdd()
	ChanProcessArg()
	ChanProcessClear()
	ChanProcessInfo()
	ChanSave()
	ChanScale()
	ChanSearch()
	ChanSelect()
	ChanShow()
	ChanTitle$()
	ChanUnits$()
	ChanValue()
	ChanVisible()
	ChanWeight()
	ChanWriteWave()

	Chr$()
	Colour()
	Conditioner commands
	CondFeature()
	CondFilter()
	CondFilterList()
	CondFilterType()
	CondGain()
	CondGainList()
	CondGet()
	CondOffset()
	CondOffsetLimit()
	CondRevision$()
	CondSet()
	CondSourceList()
	CondType()

	Cos()
	Cosh()
	Count()
	Cursor...()
	Cursor()
	CursorActive()
	CursorActiveGet()
	CursorDelete()
	CursorExists()
	CursorLabel()
	CursorLabelPos()
	CursorNew()
	CursorRenumber()
	CursorSearch()
	CursorSet()
	CursorValid()
	CursorVisible()

	D
	Date$()
	Debug()
	DebugList()
	DebugOpts()
	DelStr$()
	Discriminator (CED 1401-18) support
	DiscrimChanGet()
	DiscrimChanSet()
	DiscrimClear()
	DiscrimLevel()
	DiscrimMode()
	DiscrimMonitor()
	DiscrimTimeOut()
	Dialogs
	DlgAllow()
	DlgButton()
	DlgChan()
	DlgCheck()
	DlgCreate()
	DlgEnable()
	DlgGroup()
	DlgInteger()
	DlgLabel()
	DlgList()
	DlgReal()
	DlgShow()
	DlgString()
	DlgText()
	DlgValue() and DlgValue$()
	DlgVisible()
	DlgXValue()
	Draw()
	DrawAll()
	DrawMode()
	Dup()
	DupChan()

	E
	EditClear()
	EditCopy()
	EditCut()
	EditPaste()
	EditSelectAll()
	Error$()
	Eval()
	EventToWaveform()
	Exp()
	ExportChanFormat()
	ExportChanList()
	ExportRectFormat()
	ExportTextFormat()

	F
	File...()
	FileApplyResource()
	FileClose()
	FileComment$()
	FileConvert$()
	FileCopy()
	FileDate$()
	FileDelete()
	FileGlobalResource()
	FileList()
	FileName$()
	FileNew()
	FileOpen()
	FilePath$()
	FilePathSet()
	FilePrint()
	FilePrintScreen()
	FilePrintVisible()
	FileQuit()
	FileSave()
	FileSaveAs()
	FileSaveResource()
	FileTime$()
	FileTimeDate()

	Filt...()
	FiltApply()
	FiltAtten()
	FiltCalc()
	FiltComment$()
	FiltCreate()
	FiltInfo()
	FiltName$()
	FiltRange()

	FIRMake()
	FIRQuick()
	FIRResponse()
	FitCoef()
	FitData()
	FitExp()
	FitGauss()
	FitLine()
	FitLinear()
	FitNLUser()
	FitPoly()
	FitSin()
	FitValue()
	FocusHandle()
	FontGet()
	FontSet()
	Frac()
	FrontView()

	G-H
	GammaP(), GammaQ()
	Grid()
	Gutter()
	HCursor()
	HCursorChan()
	HCursorDelete()
	HCursorExists()
	HCursorLabel()
	HCursorLabelPos()
	HCursorNew()
	HCursorRenumber()
	Help()

	I-L
	IIR commands
	IIRBp()
	IIRBs()
	IIRHp()
	IIRLp()
	IIRNotch()
	IIRReson()
	Inkey()
	Input()
	Input$()
	InStr()
	Interact()
	Keypress()
	LastTime()
	LCase$()
	Left$()
	Len()
	Ln()
	LnGamma()
	Log()
	LogHandle()

	M
	Mark...()
	MarkEdit()
	MarkSet()
	MarkMask()
	MarkInfo()

	MAT...()
	MATDet()
	MATInv()
	MATMul()
	MATSolve()
	MATTrans()

	Max()
	Maxtime()
	Measure...()
	MeasureChan()
	MeasureToChan()
	MeasureToXY()
	MeasureX()
	MeasureY()

	Mem...()
	MemChan()
	MemDeleteItem()
	MemDeleteTime()
	MemGetItem()
	MemImport()
	MemSave()
	MemSetItem()

	Message()
	Mid$()
	Min()
	Minmax()
	MM...()
	MMAudio()
	MMImage()
	MMOpen()
	MMPosition()
	MMRate()
	MMVideo()

	MoveBy()
	MoveTo()

	N-Q
	NextTime()
	Optimise()
	PaletteGet()
	PaletteSet()
	PCA()
	Play...()
	PlayOffline()
	PlayWaveAdd()
	PlayWaveChans()
	PlayWaveCopy()
	PlayWaveCycles()
	PlayWaveDelete()
	PlayWaveEnable()
	PlayWaveInfo$()
	PlayWaveLabel$()
	PlayWaveLink$()
	PlayWaveRate()
	PlayWaveSpeed()
	PlayWaveStatus$()
	PlayWaveStop()
	PlayWaveTrigger()

	Pow()
	Print()
	Print$()
	PrintLog()
	Process()
	ProcessAll()
	ProcessAuto()
	ProcessTriggered()
	Profile()
	ProgKill()
	ProgRun()
	ProgStatus()
	Query()

	R
	Rand()
	RandExp()
	RandNorm()
	RasterAux()
	RasterGet()
	RasterSet()
	RasterSort()
	RasterSymbol()
	Read()
	ReadSetup()
	ReadStr()
	ReRun()
	Right$()
	Round()

	S
	Sample...()
	SampleAbort()
	SampleAutoComment()
	SampleAutoCommit()
	SampleAutoFile()
	SampleAutoName$()
	SampleBar()
	SampleCalibrate()
	SampleChannels()
	SampleClear()
	SampleComment$()
	SampleDigMark()
	SampleEvent()
	SampleHandle()
	SampleKey()
	SampleLimitSize()
	SampleLimitTime()
	SampleMode()
	SampleOptimise()
	SampleRepeats()
	SampleReset()
	SampleSeqCtrl()
	SampleSeqStep()
	SampleSeqTable()
	SampleSequencer()
	SampleSequencer$()
	SampleSeqVar()
	SampleStart()
	SampleStartTrigger()
	SampleStatus()
	SampleStop()
	SampleText()
	SampleTextMark()
	SampleTimePerAdc()
	SampleTitle$()
	SampleTrigger()
	SampleUsPerTime()
	SampleWaveform()
	SampleWaveMark()
	SampleWrite()

	ScriptBar()
	ScriptRun()
	Seconds()
	Selection$()
	Serial...()
	SerialClose()
	SerialCount()
	SerialOpen()
	SerialRead()
	SerialWrite()

	SetXXXX commands
	SetAverage()
	SetEvtCrl()
	SetEvtCrlShift()
	SetINTH()
	SetPhase()
	SetPower()
	SetPSTH()
	SetResult()
	SetWaveCrl()
	SetWaveCrlDC()

	Sin()
	Sinh()
	Sound()
	Speak()
	Sqrt()
	SMOpen()
	SMControl()
	SS...()
	SSButton()
	SSChan()
	SSClassify()
	SSOpen()
	SSParam()
	SSRun()
	SSTempDelete()
	SSTempGet()
	SSTempInfo()
	SSTempSet()
	SSTempSizeGet()
	SSTempSizeSet()

	Str$()
	Sweeps()
	System$()
	System()

	T
	Tan()
	Tanh()
	Time$()
	TimeDate()
	The toolbar
	Toolbar()
	ToolbarClear()
	ToolbarEnable()
	ToolbarSet()
	ToolbarText()
	ToolbarVisible()
	Trunc()

	U-V
	UCase$()
	Val()
	View(), View().x() and View().[]
	ViewColour()
	ViewFind()
	ViewKind()
	ViewLink()
	ViewList()
	ViewStandard()
	ViewTrigger()
	ViewUseColour()
	VirtualChan()

	W
	Window()
	WindowDuplicate()
	WindowGetPos()
	WindowSize()
	WindowTitle$()
	WindowVisible()

	X
	XAxis()
	XAxisMode()
	XAxisStyle()
	XHigh()
	XLow()
	XRange()
	XScroller()
	XTitle$()
	XToBin()
	XUnits$()
	XY...()
	XYAddData()
	XYColour()
	XYCount()
	XYDelete()
	XYDrawMode()
	XYGetData()
	XYInCircle()
	XYInRect()
	XYJoin()
	XYKey()
	XYRange()
	XYSetChan()
	XYSize()
	XYSort()

	Y
	YAxis()
	YAxisLock()
	YAxisMode()
	YAxisStyle()
	Yield()
	YieldSystem()
	YHigh()
	YLow()
	YRange()

	Translating DOS scripts
	Introduction
	What will translate
	What will not translate
	General translation issues
	After translating

	XY views
	Introduction
	Creating an XY view
	Overdrawing data

	Curve fitting from a script
	Introduction
	Normal distribution
	Chi-squared
	Residuals
	Linear fit�Non-linear fit
	Covariance array
	Testing the fit
	Fitting routines

	Index
	—Symbols—
	—1—
	—A—
	—B—
	—C—
	—D—
	—E—
	—F—
	—G—
	—H—
	—I—
	—J—
	—K—
	—L—
	—M—
	—N—
	—O—
	—P—
	—Q—
	—R—
	—S—
	—T—
	—U—
	—V—
	—W—
	—X—
	—Y—

