
The Signal
script language

Version 2.13

March 2003

ii

Copyright  Cambridge Electronic Design Limited 2003

Neither the whole nor any part of the information contained in, or the product described
in, this guide may be adapted or reproduced in any material form except with the prior
written approval of Cambridge Electronic Design Limited.

First edition (1.00) May 1997
Second edition (1.50) May 1998
Third edition (1.60) July 1998
Fourth edition (1.70) Nov 1998
Fifth edition (1.80) May 1999
Sixth edition (2.00) July 2000
Seventh edition (2.02) Sept 2000
Eighth edition (2.05) July 2001
Ninth edition (2.10) June 2002
Tenth edition (2.11) Jan 2003
Eleventh edition (2.13) Mar 2003

Published by:

Cambridge Electronic Design Limited
Science Park
Milton Road
Cambridge
CB4 0FE
UK

Telephone: Cambridge (01223) 420186
International +44 1223 420186

Fax: Cambridge (01223) 420488
International +44 1223 420488

Email: info@ced.co.uk
Web site: http://www.ced.co.uk

Curve fitting procedures are based on routines in Numerical Recipes: The Art of
Scientific Computing, published by Cambridge University Press, and are used by
permission.

Trademarks and Tradenames used in this guide are acknowledged to be the Trademarks
and Tradenames of their respective Companies and Corporations.

Table of Contents

iii

Introduction..1-1
What is a script?.. 1-1
Views and view handles.. 1-1
Writing scripts by example ... 1-1
Using recorded actions.. 1-2
Derived views ... 1-4
Notation conventions .. 1-4

The script window and debugging...2-1
Syntax colouring ... 2-2
Editing features for scripts .. 2-2
Debug overview.. 2-2
Preparing to debug .. 2-2
Inspecting variables .. 2-4
Call stack... 2-4

Script language syntax..3-1
Script format ... 3-1
Keywords and names .. 3-1
Data types ... 3-1
Arrays.. 3-3
Data views as arrays.. 3-3
Statement types ... 3-4
Comments ... 3-4
Variable declarations .. 3-4
Constant delarations.. 3-5
Expressions and operators... 3-5
Flow of control statements.. 3-7
Functions and procedures ... 3-9

Commands by function...4-1
Windows and views .. 4-1
Data views... 4-2
Vertical cursors ... 4-2
Horizontal cursors... 4-3
Channels.. 4-3
Buffer .. 4-4
XY view.. 4-4
Sampling configuration commands... 4-5
Runtime sampling commands ... 4-7
Analysis .. 4-7
Signal conditioner control... 4-7
Editing operations ... 4-8
String functions... 4-8
Array arithmetic functions .. 4-8
Mathematical functions... 4-9
Digital filtering.. 4-9
Fitting functions .. 4-10
User interaction commands... 4-10
File system .. 4-11
Text files ... 4-11
CFS variables .. 4-11
Binary files.. 4-11
Serial line control.. 4-12
Debugging operations ... 4-12

Table of Contents

iv

Environment ... 4-12

Alphabetical command reference .. 5-1
Abs() ... 5-1
App()... 5-1
AppendFrame()... 5-1
ArrXXX commands.. 5-2
ArrAdd() ... 5-3
ArrConst()... 5-3
ArrDiff() ... 5-4
ArrDiv() .. 5-4
ArrDivR() ... 5-5
ArrDot() .. 5-5
ArrFFT() ... 5-5
ArrFilt() .. 5-8
ArrIntgl() .. 5-9
ArrMul() ... 5-9
ArrSub().. 5-10
ArrSubR() ... 5-10
ArrSum()... 5-11
Asc() ... 5-11
ATan() .. 5-11
BinError() ... 5-12
BinSize()... 5-12
BinToX() .. 5-13
BinZero() .. 5-13
BRead()... 5-13
BReadSize().. 5-14
BSeek() ... 5-14
Buffer commands.. 5-15
BuffAdd() ... 5-15
BuffAddTo()... 5-15
BuffAcc().. 5-16
BuffClear().. 5-16
BuffCopy() ... 5-16
BuffCopyTo() ... 5-16
BuffDiv() .. 5-16
BuffDivBy().. 5-17
BuffExchange() .. 5-17
BuffMul() ... 5-17
BuffMulBy()... 5-17
BuffSub() .. 5-17
BuffSubFrom() ... 5-18
BuffUnAcc()... 5-18
BWrite().. 5-18
BWriteSize() ... 5-19
ChanCount() ... 5-19
ChanDelete()... 5-19
ChanDiff() .. 5-20
ChanIntgl() ... 5-20
ChanItems() .. 5-20
ChanKind() ... 5-21
ChanList()... 5-21
ChanMean() .. 5-21
ChanMeasure() ... 5-22
ChanNegate().. 5-22
ChanNumbers() .. 5-22

The Signal script language

v

ChanOffset() ... 5-23
ChanOrder() .. 5-23
ChanPoints() ... 5-23
ChanRange() ... 5-24
ChanRectify().. 5-24
ChanScale()... 5-24
ChanSearch() .. 5-25
ChanSelect().. 5-25
ChanShift().. 5-26
ChanShow() .. 5-26
ChanSmooth() ... 5-27
ChanSubDC().. 5-27
ChanTitle$().. 5-28
ChanUnits$()... 5-28
ChanValue().. 5-28
ChanVisible().. 5-29
ChanWeight().. 5-29
ChanZero().. 5-30
Chr$().. 5-30
Colour()... 5-30
Conditioner commands ... 5-31
CondFilter() .. 5-31
CondFilterList() .. 5-31
CondGain() ... 5-32
CondGainList() ... 5-32
CondGet() ... 5-32
CondOffset() ... 5-33
CondOffsetLimit() .. 5-33
CondRevision$() ... 5-33
CondSet() .. 5-34
CondSourceList().. 5-35
CondType() ... 5-35
Cos().. 5-35
Cursor()... 5-36
CursorActiveGet()... 5-36
CursorActiveSet() ... 5-37
CursorDelete() .. 5-37
CursorExists() ... 5-37
CursorLabel().. 5-38
CursorLabelPos() .. 5-38
CursorMode().. 5-38
CursorNew() ... 5-39
CursorRenumber() .. 5-39
CursorSet().. 5-39
Date$() .. 5-40
Debug() ... 5-41
DeleteFrame() ... 5-41
DelStr$() ... 5-41
Dialogs .. 5-42
DlgChan() ... 5-43
DlgCheck().. 5-44
DlgCreate() ... 5-44
DlgInteger() .. 5-45
DlgLabel()... 5-45
DlgList().. 5-46
DlgReal() .. 5-46
DlgShow()... 5-47

Table of Contents

vi

DlgString().. 5-47
DlgText() .. 5-48
Draw()... 5-48
DrawAll() ... 5-48
DrawMode() ... 5-49
Dup()... 5-50
EditClear() .. 5-50
EditCopy() .. 5-50
EditCut() ... 5-51
EditPaste() .. 5-51
EditSelectAll() .. 5-51
Error$() ... 5-51
Eval() .. 5-51
Exp() ... 5-52
ExportChanFormat()... 5-52
ExportChanList() .. 5-52
ExportFrameList() .. 5-53
ExportTextFormat().. 5-53
ExportTimeRange() .. 5-54
FileClose() .. 5-54
FileComment$().. 5-54
FileConvert$() .. 5-55
FileCopy()... 5-55
FileDelete() ... 5-56
FileExportAs() .. 5-56
FileGetIntVar() ... 5-57
FileGetRealVar() .. 5-57
FileGetStrVar$() ... 5-57
FileList() ... 5-58
FileName$().. 5-58
FileNew().. 5-59
FileOpen()... 5-60
FilePath$() .. 5-61
FilePathSet() ... 5-61
FilePrint().. 5-62
FilePrintScreen()... 5-62
FilePrintVisible() .. 5-62
FileQuit() .. 5-63
FileSave().. 5-63
FileSaveAs() ... 5-63
FileVarCount().. 5-63
FileVarInfo()... 5-64
FiltApply() .. 5-65
FiltAtten() ... 5-65
FiltCalc()... 5-66
FiltComment$() .. 5-67
FiltCreate().. 5-67
FiltInfo() ... 5-68
FiltName$() .. 5-68
FiltRange().. 5-68
FIRMake() .. 5-68
FIRQuick() ... 5-70
FIRResponse() .. 5-70
Curve Fitting... 5-71
Testing the fit.. 5-73
FitExp()... 5-74
FitGauss() ... 5-76

The Signal script language

vii

FitLine() .. 5-78
FitLinear() ... 5-79
FitNLUser() .. 5-80
FitPoly() .. 5-83
FitSin() .. 5-84
FontGet()... 5-87
FontSet() ... 5-87
Frac()... 5-87
Frame().. 5-88
FrameAbsStart().. 5-88
FrameComment$() .. 5-88
FrameCount().. 5-88
FrameFlag()... 5-88
FrameGetIntVar() ... 5-89
FrameGetRealVar()... 5-89
FrameGetStrVar$() ... 5-90
FrameList() ... 5-90
FrameMean()... 5-91
FrameSave().. 5-91
FrameState().. 5-92
FrameTag() ... 5-92
FrameUserVar() .. 5-92
FrameVarCount() .. 5-93
FrameVarInfo() ... 5-93
FrontView() .. 5-93
GammaP() ... 5-94
GammaQ() .. 5-94
Grid() .. 5-94
HCursor() .. 5-95
HCursorChan().. 5-95
HCursorDelete().. 5-95
HCursorExists() .. 5-95
HCursorLabel() ... 5-96
HCursorLabelPos() ... 5-96
HCursorNew() .. 5-96
HCursorRenumber() ... 5-96
Help() .. 5-97
Input() ... 5-97
Input$() ... 5-97
InStr().. 5-98
Interact().. 5-98
LastTime()... 5-99
LCase$().. 5-99
Left$() ... 5-99
Len().. 5-99
Ln() ... 5-100
LnGamma()... 5-100
Log() ... 5-100
LogHandle().. 5-100
MarkCode()... 5-101
MarkEdit() .. 5-101
MarkTime()... 5-101
Max() .. 5-101
Maxtime() ... 5-102
Message().. 5-102
Mid$() ... 5-102
Min() ... 5-103

Table of Contents

viii

Minmax() .. 5-103
Mintime().. 5-104
MoveBy().. 5-104
MoveTo().. 5-104
NextTime() ... 5-105
Optimise() ... 5-105
Overdraw() ... 5-106
OverdrawFrames().. 5-106
OverdrawGetFrames() .. 5-107
PaletteGet() ... 5-107
PaletteSet().. 5-107
Pow() .. 5-108
Print().. 5-108
Print$().. 5-110
PrintLog() ... 5-110
Process() ... 5-110
ProcessAll() .. 5-111
ProcessFrames().. 5-111
ProcessOnline() .. 5-112
Profile()... 5-112
ProgKill().. 5-114
ProgRun() ... 5-115
ProgStatus() .. 5-115
ProtocolAdd() ... 5-115
ProtocolClear() ... 5-115
ProtocolDel() .. 5-116
ProtocolFlags() ... 5-116
ProtocolName$() .. 5-116
Protocols() .. 5-116
ProtocolStepGet() ... 5-117
ProtocolStepSet().. 5-117
Pulse output commands .. 5-118
PulseAdd() .. 5-118
PulseClear() .. 5-119
PulseDataGet().. 5-119
PulseDataSet() .. 5-119
PulseDel() ... 5-120
PulseFlags() .. 5-120
PulseName$() ... 5-121
Pulses() ... 5-121
PulseTimesGet() ... 5-121
PulseTimesSet().. 5-122
PulseType()... 5-122
PulseVarGet() ... 5-123
PulseVarSet().. 5-123
PulseWaveformGet() .. 5-124
PulseWaveformSet()... 5-124
PulseWaveGet().. 5-125
PulseWaveSet() .. 5-125
Query() ... 5-125
Rand() ... 5-125
Read() ... 5-126
ReadStr()... 5-127
Right$()... 5-127
Round()... 5-127
SampleAbort() .. 5-127
SampleAbsLevel() .. 5-128

The Signal script language

ix

SampleAccept()... 5-128
SampleArtefactGet() ... 5-128
SampleArtefactSet().. 5-129
SampleAutoFile().. 5-129
SampleAutoName$() .. 5-129
SampleBar() .. 5-130
SampleBurst() ... 5-130
SampleClear() ... 5-130
SampleDacFull() ... 5-130
SampleDacMask()... 5-131
SampleDacUnits$()... 5-131
SampleDacZero() .. 5-131
SampleDigIMask().. 5-131
SampleDigOMask() .. 5-132
SampleFixedInt() .. 5-132
SampleFixedVar()... 5-132
SampleHandle() .. 5-132
SampleKey() ... 5-133
SampleKeyMark()... 5-133
SampleLimitFrames() ... 5-133
SampleLimitSize() .. 5-133
SampleLimitTime()... 5-134
SampleMode()... 5-134
SampleOutClock() .. 5-134
SampleOutLength()... 5-135
SampleOutMode()... 5-135
SampleOutTrig() ... 5-135
SamplePause()... 5-135
SamplePeriBitState()... 5-136
SamplePeriDigBit()... 5-136
SamplePeriHyst() .. 5-136
SamplePeriLevel() .. 5-136
SamplePeriLowLev() .. 5-137
SamplePeriType() ... 5-137
SamplePeriPoints() ... 5-137
SamplePoints() .. 5-137
SamplePortFull()... 5-138
SamplePortName$().. 5-138
SamplePortOptions$()... 5-138
SamplePorts().. 5-138
SamplePortUnits$()... 5-139
SamplePortZero().. 5-139
SampleProtocol() .. 5-139
SampleRate()... 5-139
SampleReset() ... 5-140
SampleStart() .. 5-140
SampleState() .. 5-140
SampleStateDac() ... 5-140
SampleStateDig() .. 5-141
SampleStateRepeats() ... 5-141
SampleStates() .. 5-141
SampleStatesIdle() .. 5-141
SampleStatesMode() ... 5-142
SampleStatesOrder() ... 5-142
SampleStatesRepeats().. 5-142
SampleStatesReset().. 5-142
SampleStatesRun().. 5-142

Table of Contents

x

SampleStatus().. 5-143
SampleStop() .. 5-143
SampleSweep() ... 5-143
SampleTrigger().. 5-143
SampleWrite() .. 5-144
ScriptBar() .. 5-144
ScriptRun() ... 5-144
Seconds() .. 5-145
Selection$()... 5-145
SerialClose() ... 5-145
SerialCount() .. 5-145
SerialOpen().. 5-146
SerialRead() .. 5-147
SerialWrite() ... 5-147
SetXXX commands .. 5-148
SetAmplitude() ... 5-148
SetAutoAv() ... 5-149
SetAverage()... 5-150
SetCopy().. 5-150
SetLeak() .. 5-151
SetMemory()... 5-152
SetPower() .. 5-152
SetTrend()... 5-153
SetTrendChan() .. 5-154
ShowBuffer() .. 5-154
ShowFunc() .. 5-154
Sin() .. 5-155
Sound() ... 5-155
Sqrt()... 5-156
Str$()... 5-156
Sweeps() ... 5-156
System$().. 5-156
System().. 5-156
Tan() ... 5-157
Time$() ... 5-157
TimeDate().. 5-158
TimeRatio() .. 5-158
TimeUnits$() .. 5-158
The toolbar.. 5-159
Toolbar()... 5-159
ToolbarClear() .. 5-160
ToolbarEnable().. 5-160
ToolbarSet().. 5-161
ToolbarText().. 5-162
ToolbarVisible() ... 5-162
Trunc() .. 5-162
UCase$()... 5-162
Val().. 5-163
View()... 5-163
View(v,c).[] .. 5-163
View().x() ... 5-164
ViewFind() ... 5-164
ViewKind()... 5-164
ViewList()... 5-165
ViewSource().. 5-165
ViewStandard()... 5-165
ViewUseColour().. 5-165

The Signal script language

xi

Window() .. 5-166
WindowDuplicate() .. 5-166
WindowGetPos() .. 5-166
WindowSize() ... 5-167
WindowTitle$() .. 5-167
WindowVisible() .. 5-167
XAxis() ... 5-168
XAxisMode() .. 5-168
XAxisStyle() ... 5-168
XHigh()... 5-169
XLow().. 5-169
XRange()... 5-169
XScroller() .. 5-169
XTitle$() ... 5-169
XToBin()... 5-170
XUnits$() .. 5-170
XYAddData().. 5-170
XYColour() ... 5-170
XYCount() .. 5-171
XYDelete().. 5-171
XYDrawMode().. 5-171
XYGetData()... 5-172
XYInCircle() ... 5-173
XYInRect() ... 5-173
XYJoin() ... 5-173
XYKey() ... 5-174
XYRange().. 5-174
XYSetChan() .. 5-174
XYSize() ... 5-176
XYSort() ... 5-176
YAxis() ... 5-177
YAxisMode() .. 5-177
YAxisStyle() ... 5-177
Yield() ... 5-178
YHigh()... 5-178
YLow().. 5-178
YRange()... 5-179

Table of Contents

xii

Introduction

1-1

For many users, the interactive nature of Signal may provide all the functionality
required. This is often the case where the basic problem to be addressed is to present the
data in a variety of formats for visual inspection with, perhaps, a few numbers to extract
by cursor analysis and a picture to cut and paste into another application. However, some
users need analysis of the form:

1. Find the first peak in the frame after a cursor.
2. Find the trough after that.
3. Compute the time difference between these two points and the slope of the line.
4. Print the results.
5. If not at the end of the file, move to the next frame and go back to step 1.

This could all be done manually, but it would be very tedious. A script can automate this
process, however it requires more effort initially to write it. A script is a list of
instructions (which can include loops, branches and calls to user-defined and built-in
functions) that control the Signal environment. You can create scripts by example, or
type them in by hand. If you are new to script writing it would be a good idea to work
through the relevant chapters in the Training Manual before referring to this manual for
more detailed information.

The most basic concept in a script is that of a view and the view handle that identifies it.
A view is a window in Signal that the script language can manipulate. The running script
is hidden from most commands, however you can obtain its handle using App() so you
can show and hide it.

There is always a current view. Even if you close all windows the Log view, used for text
output by the PrintLog() command, remains. Whenever you use a built-in function
that creates a new view, the function returns a view handle. The view handle is simply an
integer number that identifies the view. It is used with the View() and FrontView()
functions to specify the current view and the view that should be on top of all windows.

Whenever a script creates a new view, the view becomes the current view. However,
views are created invisibly so that they can be configured before appearing. You can use
WindowVisible(1) to display a new window.

To help you write scripts Signal can monitor your actions and write the equivalent script.
This is often a great way to get going writing scripts, but it has limitations. Scripts
generated this way only repeat actions that you have already made. The good point of
recording your actions is that Signal shows you the correct function to use for each
activity.

For example, let us suppose that you have opened a data file. Use the Turn Recording
On option of the Script menu. Click on the data file view, then select Analysis, New
memory view, Waveform average, and with the default settings, process all the frames in
the file. Finally you use the Stop recording command in the Script menu. Signal opens
a new window holding the equivalent script:

var v3%;
var v4%;
v3%:=ViewFind("Example.cfs");
FrontView(v3%);
v4%:=SetAverage(-1,0.04,0,0,0);
WindowVisible(1);
ProcessFrames(1,-1,-1,0,1);

1
What is a script?

Views and view
handles

Writing scripts by
example

Introduction

1-2

The ViewFind(), FrontView(), SetAverage(), and ProcessFrames() functions
are described in this manual and they reflect the actions that you performed. The v3% and
v4% variables hold view handles. The script needs to save these handles in unique
variables. To do this it generates variable names based on the internal view number.

The WindowVisible(1) command is present because new windows are hidden when
they are created by the script. Signal creates invisible windows so that you can size and
position them before display to prevent excessive screen repainting.

The script recorder produces all the optional arguments for ProcessFrames(), to
process all the frames from 1 to the last frame in the file, and to optimise the y axes after
processing. The memory view is not cleared before processing, which in this case makes
no difference as the new memory view is created with zero data.

Now do the same again, using the Turn Recording On option of the Script menu,
clicking on the data file view, selecting Analysis, New memory view, Waveform
average, as before, but this time change the settings to select channel 3, width 0.02 and
start offset of 0.01, then process. When you use the Stop recording command you will
see a similar script, but with different arguments for SetAverage(). In this example we
did not change the options in the Process dialog.

var v5%;
var v8%;
v5%:=ViewFind("Example.cfs");
FrontView(v8%);
v4%:=SetAverage(-1,0.02,0.01,0,0);
WindowVisible(1);
ProcessFrames(1,-1,-1,0,1);

You can use the Turn Recording On option of the Script menu before any small
sequence of operations. Then use the Stop recording command in the Script menu to
see the script commands generated.

You can now run the recorded script, using the control buttons at the upper right of the
script window. The script runs and generates a new memory view, repeating your
actions. Now suppose we want to run this for several files, each one selected by the user.
You must edit the script a bit more and add in some looping control. The following script
suggests a solution. Notice that we have now changed the view handle variables to names
that are a little easier to remember.

We simplify the ProcessFrames() command to replace start frame by -1 for all frames
in the data file. Without the optional arguments, the y axis will not be optimised after the
processing. SetAverage(1) also needs no extra arguments to average data in channel 1
for the whole frame.

var fileH%, aveH%; 'view handle variables
fileH% := FileOpen("", 0, 1); 'blank for dialog, single window
while fileH% > 0 do 'FileOpen returns -ve if no file
 aveH% := SetAverage(1);
 WindowVisible(1); 'Average channel 1
 ProcessFrames(-1); 'Process all frames in the file
 Draw(); 'Update the average display
 fileH% := FileOpen("", 0, 1); 'ask for the next file, or cancel
wend;

Using recorded
actions

The Signal script language

1-3

This time, Signal prompts you for the file to open. The file identifier is negative if
anything goes wrong opening the file, or if you press the Cancel button. We have also
included a Draw() statement to force Signal to draw the data after it calculates the
average. There is a problem with this script if you open a file that does not contain a
channel 1 that holds waveform data although this is unlikely in Signal. We will deal with
this a little later.

However, you will find that the screen gets rather cluttered up with windows. We do not
want the original window once we have calculated the average, so the next step is to
delete it, adding the line
View(fileH%).FileClose(); 'Shut the old window

The View(). syntax allows a function to access data belonging to a view other than the
current view. The fileH% argument, and the dot after the command, tell the script
system that we want to change the current view to the data file view temporarily, for the
duration of the FileClose() function.

We have also added a line to close down all the windows at the start, to reduce the clutter
when the script starts.

var fileH%, aveH%;
FileClose(-1); 'close all windows to tidy up
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 aveH% := SetAverage(1); 'set up average on selected chan
 WindowVisible(1); 'make average visible
 ProcessFrames(-1); 'do the average
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the average display
 fileH% := FileOpen("", 0, 1); 'ask for the next file, or cancel
wend;

This seems somewhat better, but we still have the problem that there will be an error if
the file does not hold a channel 1, or it is of the wrong type. The solution to this is to ask
the user to choose a channel using a dialog. We will have a dialog with a single field that
asks us to select a suitable channel:

var fileH%, aveH%, chan%; 'Add a new variable for channel
FileClose(-1); 'close all windows to tidy up
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 DlgCreate("Channel selection"); 'Start a dialog
 DlgChan(1, "Choose channel to average", 1); 'all waveform
 if (DlgShow(chan%) > 0) and 'User pressed OK and...
 (chan% > 0) then '...selected a channel?
 aveH% := SetAverage(chan%); 'set up average on selected chan
 WindowVisible(1); 'make average visible
 ProcessFrames(-1); 'average all the frames
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the display
 endif
 fileH% := FileOpen("", 0, 1); 'ask for the next file
wend;

The DlgCreate() function has started the definition of a dialog with one field that the
user can control. The DlgChan() function sets a prompt for the field, and declares it to
be a channel list from which we must select a channel (or we can select the No channel
entry). The DlgShow() function opens the dialog and waits for you to select a channel
and press OK or Cancel. The if statement checks that all is well before making the
histogram.

Introduction

1-4

The current view when the ProcessFrames() command is used is the memory view
and we may want to access information about the data file, such as the maximum frame
number in the original time view. The View(). syntax allows a function to access data
belonging to a view other than the current view.

var fileV%;
var aveV%;
fileV%:=ViewFind("Example.cfs");
FrontView(fileV%);
aveV%:=SetAverage(-1,0.04,0,0,0);
WindowVisible(1);
ProcessFrames(1, View(fileV%).FrameCount(),-1,0,1);

In this example we replaced -1 for last frame in file with the actual frame number
returned by the FrameCount() function. The fileV% argument, and the dot after the
command, tell the script system that we want to change the current view to the data file
view temporarily, for the duration of the FrameCount() function.

In many scripts we will have a variable such as fileV% holding the data view handle,
but you can also use the function ViewSource() to access it directly. The following
script shows how you would ensure that when you present this message you are counting
frames in the data view associated with the current memory view.

var fileV%, aveV%;
fileV%:=ViewFind("Example.cfs"); 'view data file
if fileV%>0 then
 FrontView(fileV%);
 aveV%:=SetAverage(3); 'set up average of channel 3
 WindowVisible(1);
 ProcessFrames(-1); 'process all frames in the file
 Message("We averaged %d frames",View(ViewSource()).FrameCount());
endif

In this example the Message() command displays a string in which %d is replaced by
the value for the frame count.

Throughout this manual we use the font of this sentence to signify descriptive text.
Function declarations, variables and code examples print in a monospaced font, for
example a% := View(0). We show optional keywords and arguments to functions in
curly braces:

func Example(needed1, needed2 {,opt1 {,opt2}});

In this example, the first two arguments are always required; the last two are optional.
Any of the following would be acceptable uses of the function:

a := Example(1,2); 'Call omitting the optional arguments
a := Example(1,2,3); 'Call omitting one argument
a := Example(1,2,3,4); 'Call using all arguments

A vertical bar between arguments means that there is a choice of argument type:

func Choice(i%|r|str$);

In this case, the function takes a single argument that could be an integer, a real or a
string. The function will detect the type that you have passed and may perform a different
action depending upon the type.

Three dots (...) stand for a list of further, similar items.

Derived views

Notation conventions

The script window and debugging

2-1

You use the script window when you write and debug a script. Once you are satisfied
that your script runs correctly you would normally run a script from the script menu
without displaying the source code. You can have several scripts loaded at a time and
select one to run with the Script menu Run Script command.

The script window is a
text window with a few
extra controls including
a “splitter” control so
that you can view two
parts of the script at the
same time. To use the
splitter control, drag it down the window. To cancel it, drag it to the top or bottom of the
window. There is no script language control of the splitter.

To the left of the text area is a margin where you can set break points (one is shown
already set) and bookmarks and where the current line of the script is indicated during
debugging. Above the text area is a message bar and several controls. The controls have
the following functions:

This control is a quick way to find any func or proc in your script. Click on this to
display a list, in alphabetical order, of the names of all user-defined routines. Select one,
and the window will scroll to it. To be located, the keywords func and proc must be at
the start of a line and the name of the routine must be on the same line.

The script compiler checks the syntax of the script and if no errors are found it creates
the compiled version, ready to run. If the script has not been changed since the last
compile and no other script has been compiled, the button is disabled as there is no need
to compile again. Signal can have one compiled script in memory at a time.

If the script has not been compiled it is compiled first. If no errors are found, Signal runs
the compiled version, starting from the beginning. Signal skips over proc ... end;
and func ... end; statements, so the initial code can come before, between or after
any user-defined procedures and functions. This button is disabled once the script has
started to run.

This button sets a break point on the line containing the text caret, or clears a break if one
is already set. A break point stops a running script when it reaches the start of the line
containing the break point. You can also set and clear break points by moving the mouse
pointer over the margin on the left of the script and double clicking.

Not all statements can have break points set on them. Some statements, such as var,
const and func and proc compile to entries in a symbol table; they generate no code. If
you set a break point on one of them the break point will appear at the next statement that
is breakable. If you set break points before you compile your script, you may find that
some break points move to the next “breakable” line when you compile.

This button is enabled if there are any break points set in the script. Click this button to
remove all break points from the script. Break points can be set and cleared at any time,
even before your script has been compiled.

This button provides help on the script language. It takes you to an alphabetic list of all
the built-in script functions. If you scroll to the bottom of this list you can also find links
to the script language syntax and to the script language command grouped by function.
Within a script, you can get help on keywords and built in commands by clicking on the
keyword or command and pressing the F1 key.

2
Script window

Function

Compile

Run

Set break point

Clear all break points

Help

Splitter controlMargin

The script window and debugging

2-2

Signal version 2 supports syntax colouring for the script editor. The language keywords
have the standard colour blue, quoted text strings have the standard colour red, and
comments have the standard colour green. Normal text is black and the text background
is white.

There are some extra editing features that can help you when writing scripts. If you like
to indent your text, you can indent and outdent selected blocks by selecting one or more
characters, then use the Tab key to indent and the Shift-Tab combination to outdent.
The text moves by one tab stop.

Despite all our attempts to make writing a script easy, and all your attempts to get things
right, sooner or later (usually sooner), a script will refuse to do what you expect. Rather
than admit to human error, programmers attribute such failures to “bugs”, hence the act
of removing such effects is “debugging”. The term dates back to times when an insect in
the high voltage supply to a thermionic valve really could cause hardware problems.

To make bug extermination a relatively simple task, Signal has a “debugger” built into
the script system. With the debugger you can:

● Step one statement at a time
● Step into or over procedures and functions
● Step out of a procedure or function
● Step to a particular line
● View local and global variables
● Edit variable values
● See how you reached a particular function or procedure
● Set and clear break points

With these tools at your disposal, most bugs are easy to track down.

Unlike most languages, the Signal
script language does not need any
special preparation for debugging
except that you must set a break
point or include the Debug(); command at the point in your script at which you want to
enter the debugger. When your script reaches the break point or the Debug();
command, the script stops and the debug toolbar will appear (if it was not already
visible). The picture above shows the toolbar as a floating window, but you can dock it to
any side of the Signal window by dragging it over to the window edge.

You can also enter the debugger by pressing the Esc key (you may need to hold it down
for a second or two, depending on what the script is doing). If the Toolbar() or
Interact() commands are active, hold down the Esc key and click on a button. This is
a very useful way to break out of programs that are running round in a loop with no exit!
You can stop the user entering debug with the Debug(0) command, but we suggest that
this feature is added after the script has been tested! Once you have disabled debugging,
there is no way out of a loop.

Stop running the script. There is no check that you really meant to do this, as we
assume that if you know enough to get into the debugger, you know what you are

doing! You can use the Debug() command to disable the debugger.

Syntax colouring

Editing features for
scripts

Debug overview

Preparing to debug

The Signal script language

2-3

Display the current line in the script. If the script window is not visible, this will
make it visible, then bring it to the top and scroll the text to the current line.

If the current statement contains a call to a user-defined Proc or a Func, step into
it, otherwise just step. This does not work with the Toolbar() command which

is not user-defined, but which can cause user-defined routines to be called. To step into a
user-defined Func that is linked to a Toolbar() command, set a break point in the
Func.

Step over this statement to the next statement. If you have more than one
statement on a line you will have to click this button once for each statement, not

once per line.

If you are in a procedure or function, step until you return from it. This does not
work if you are in a function run from the Toolbar() command as there is

nowhere to return to. In this case, the button behaves as if you had pressed the run
button.

Run until the script reaches the start of the line containing the text caret. This is
slightly quicker than setting a break point, running to it, then clearing it (which is

what this does).

Run the script. This disables the buttons on the debug toolbar and the script runs
until it reaches a break point or the end of the script.

Show the local variables for the current user-defined func or proc in a window.
If there is no current routine, the window is empty. You can edit a value by

double clicking on the variable. Elements of arrays are displayed for the width of the text
window. If an array is longer than the space in the window, the text display for the array
ends with … to show that there is more data.

Show the global variable values in a window. You can edit a global variable by
double clicking on it. The very first entry in this window lists the current view by

handle, type and window name.

Display the call stack (list of calls to user-defined functions with their arguments)
on the way to the current line in a window. If the Toolbar() function has been

used, the arguments for it appear, but the function name is blank.

The debug toolbar and the locals, globals and the call window close at the end of a script.
The buttons in the debug toolbar are disabled if they cannot be used. If you forget what a
particular button does, move the mouse pointer over the button. A “Tool tip” window
will open next to the button with a short description and if the Status bar is visible, a
longer description can be seen there.

The script window and debugging

2-4

The example above shows a script that prompts the user for a data file, opens it and prints
a summary of the variables in the file to the log window. The user set a break point, ran
the script then clicked on the Step button three times and clicked the Globals button.

If the locals or globals windows are open, they display a list of variables. If there are
more variables than can fit in the window you can scroll the list up and down to show
them all. Simple variables are followed by their values. If you double click on one a new
window opens in which you can edit the value of the variable.

If you double click on an array, a new window opens that lists the values of the elements
of the array. You must double click on an element to edit the value. There is a limit of
32000 to the number of array elements that can be displayed and edited. This should not
be a problem for most users. Function and procedure arguments show the name and
cannot be edited.

The call stack can sometimes be
useful to figure out how your script
arrived at a position in your code.
This is particularly true if your
script makes recursive use of
functions. A function is recursive
when it calls itself, either directly,
or indirectly through other
functions. This example implements
factorials using recursion. We have
set a break point and then displayed
the call stack so you can see all the calls, and the arguments for each call. A common
fault with scripts is to have mutually recursive user options. This leads to users
burrowing deeper and deeper into the call stack until they run out of memory. The call
stack can help to detect such problems.

Inspecting variables

Call stack

Script language syntax

3-1

A script consists of lines of text. Each line can be up to 240 characters long, however we
suggest a maximum line length of 78 characters as experience shows that this makes
printing and transfer of scripts to other systems simple.

The script compiler treats consecutive white space as a single space except within a
literal string. White space characters are end of line, carriage return, space and tab. The
compiler treats comments as white space.

The maximum size of the script is limited by the Signal script editor and this size varies
with the version of the program and the operating system in use. All versions support
scripts of at least 32,000 characters.

All keywords, user-defined functions and variable names in the script language start with
one of the letters a to z followed by the characters a to z and 0 to 9. Keywords and
names are not case sensitive, however, users are encouraged to be consistent in their use
of case as it makes scripts easier to read. Variables and user-defined functions use the
characters % and $ at the end of the name to indicate integer and string type.

User-defined names can extend up to a line in length. Most users will restrict themselves
to a maximum of 20 or so characters.

The following keywords are reserved and cannot be used for variables or function names:
and band bor bxor case
const do docase else end
endcase endif for func halt
if mod next not or
proc repeat resize return step
then to until var view
wend while xor

Further, names used by Signal built-in functions cannot be redefined as user functions or
global variables. They can be redefined as local variables (not recommended).

There are three basic data types in the script language: real, integer and string. The real
and integer types store numbers, the string type stores characters. Integer numbers have
no fractional part, and are useful for indexing arrays or for describing objects for which
fractions have no meaning. Integers have a limited (but large) range of allowed values.

Real numbers span a very large range of number and can have fractional parts. They are
often used to describe real-world items, for example the weight of an object.

Strings hold text and automatically grow and shrink in length to suit the number of text
characters stored within them.

This type is a double precision floating point number. Numbers are stored to an accuracy
of at least 16 decimal digits and can have a magnitude in the range 10e-308 to 10e308.
Variables of this type have no special character to identify them. Real constants have a
decimal point or the letter e or E to differentiate from integers. White space is not
allowed in a sequence of characters that define a real number. Real number constants
have one of the following formats where digit is a decimal digit in the range 0 to 9:
{-}{digit(s)}digit.{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}.digit{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}digitE|e{+|-}digit(s)

3
Script format

Keywords and names

Data types

Real data type

Script language syntax

3-2

A number must fit on a line, but apart from this, there is no limit on the number of digits.
The following are legal real numbers:
1.2345 -3.14159 .1 1. 1e6 23e-6 -43e+03

E or e followed by a power of 10 introduces exponential format. The last three numbers
above are: 1000000 0.000023 -43000.0. The following are not real constants:

1 e6 White space is not allowed 1E3.5 Fractional powers are not allowed
2.0E Missing exponent digits 1e500 The number is too large

The integer type is identified by a % at the end of the variable name and stores 32-bit
signed integer (whole) numbers in the range -2,147,483,648 to 2,147,483,647. There is
no decimal point in an integer number. An integer number has the following formats
(where digit is a decimal digit 0 to 9, and hexadecimal-digit is 0 to 9 or a to f or A
to F with a standing for decimal 10 to f standing for decimal 15):
{-}{digit(s)}digit
{-}0x|X{hexadecimal-digit(s)}hexadecimal-digit

You may assign real numbers to an integer, but it is an error to assign numbers beyond
the integer range. Non-integral real numbers are truncated (towards zero) to the next
integral number before assignment. Integer numbers are written as a list of decimal digits
with no intervening spaces or decimal points. They can optionally be preceded by a
minus sign. The following are examples of integers:

1 -1 -2147483647 0 0x6789abcd 0X100 -0xced

Integers use less storage space than real numbers and are slightly faster to work with. If
you do not need fractional numbers or huge numeric ranges, use integers.

Strings are lists of characters. String variable names end in a $. String variables can hold
strings up to 65534 characters long. Literal strings in the body of a program are enclosed
in double quotation marks, for example:

"This is a string"

String literals may not extend over more than one line. Consecutive strings with only
white space between them are concatenated, so the following:

"This string starts on one lin"
"e and ends on another"

is interpreted as "This string starts on one line and ends on another".
Strings can hold special characters, introduced by the escape character backslash:

\" The double quote character (this would normally terminate the string)
\\ The Backslash character itself (beware DOS paths)
\t The Tab character
\n The New Line character (or characters, depending on the system)
\r The Carriage Return character (ASCII code 13)

You can assign integer numbers to real variables and real numbers to integer variables
(unless the real number is out of the integer range when a run-time error will occur).
When a real number is converted to an integer, it is truncated. The Asc(), Chr$(),
Str$() and Val() functions convert between strings and numbers.

Integer data type

String data type

Conversion between data
types

The Signal script language

3-3

The three basic types (integers, reals and strings) can be made into one and two
dimensional arrays. You declare arrays with the var statement and as function
arguments. To reference array elements, enclose the array element number in square
brackets, for example: fred[24]. The first array element is number 0. To reference two
dimensional arrays use two sets of brackets: jim[3][23]. The current result view is
referenced as an array with no name, for example [0], [1], [2] for the first three bins.

You specify sub-arrays of an array as array[start:size]. The colon inside square
brackets, or empty square brackets means that you are defining a sub-array. The number
before the colon specifies the start index, the number after the colon specifies the number
of elements. If you omit start, 0 is used. If you omit size, the array up to the end from
the start index is used.

For example, consider the array of real numbers declared as var data[15]. This array
has 15 elements numbered 0 to 14. To pass the array to a function, you could specify:

data[3] This is a real variable, being the fourth element of the array.
data[] This is the entire array. This is the same as data[:] or data[0:15].
data[3:9] This is a sub-array of length 9, being elements 3 to 11.
data[:8] This is a sub-array, being elements 0 to 7.

var data[15]

data[3:9]

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

With a two dimensional array, life becomes a little more complicated. You can pass a
single array element, a one dimensional array, or a two dimensional array. Consider the
array sq[6][7]. The following possibilities exist:
sq[a][b] a single real number
sq[a][b:c] sub-array of length c
sq[a:b][c] sub-array of length b
sq[a:b][c:d] sub-array dimensions b by d

This diagram shows how sub-arrays are
constructed. sq[1:4][0] is a one dimensional
array of 4 elements. This could be passed to a
function that expects a one dimensional array as an
argument. sq[5][1:6] is also a one dimensional
array, this time of 6 elements. sq[2:2][2:4] is a
two dimensional array, with dimensions [2][4].

The script language can treat a channel in a data view as an array. To access an
individual array element use View(v%,c%).[index] where v% is the view handle, c% is
the channel number and index is the bin number, starting from 0. You can pass a
channel from a data view to a function as an array using View(v%,c%).[] for the entire
array and View(v%,c%).[a:b] for a sub-array starting at element a of length b.
View(0,1)[0:3] for the first three values in channel 1 of the current view.

Marker channels act as arrays holding time values, they are read-only data because
marker data times must be kept sorted. The only way to change a marker time is by using
the MarkTime() function.

If you change a visible data view, the modified area is marked as invalid and will be
redrawn at the next opportunity.

Arrays of data

var sq[6][7]

0 1 2 3 4 5 6

0

1

2

3

4

5

sq[1:4][0]

sq[2:2][2:4]

sq[5][1:6]

Data views as arrays

Script language syntax

3-4

The script language is composed of statements. Statements are separated by a semicolon.
Semicolons are not required before else, endif, case, endcase, until, next, end
and wend or after end, endif, endcase, next and wend. White space is allowed
between items in statements, and statements can be spread over several lines. Statements
may include comments. Statements are of one of the following types:
• A variable or constant declaration
• An assignment statement of the form:

 variable := expression; Set the variable to the value of the expression
variable += expression; Add the expression value to the variable
variable -= expression; Subtract the expression value from the variable
variable *= expression; Multiply the variable by the expression value
variable /= expression; Divide the variable by the expression value

The +=, -=, *= and /= assignments are not available before version 1.50. += can
also be used with strings (a$+=b$ is the same as a$:=a$+b$, but is more efficient).

• A flow of control statement, described below
• A procedure call or a function with the result ignored, for example View(vh%);

A comment is introduced by a single quotation mark. All text after the quotation mark is
ignored up to the end of the line.
View(vh%); 'This is a comment, and extends to the end of the line

Variables are created by the var keyword. This is followed by a list of variable names.
You must declare all variable names before you can use them. Arrays are declared as
variables with the size of each dimension in square brackets. The first item in an array is
at index 0. If an array is declared as being of size n, the last element is indexed n-1.
var myInt%,myReal,myString$; 'an integer, a real and a string
var aInt%[20],arl[100],aStr$[3] 'integer, real and string arrays
var a2d[10][4]; '10 arrays of arrays of 4 reals
var square$[3][3]; '3 arrays of 3 arrays of strings

Variables can be defined in the main program, or in user-defined functions. Variables
defined in the main program are global. They can be accessed from anywhere in the
script after their definition. Variables defined in user-defined functions exist from the
point of definition to the end of the function and are deleted when the function ends. If
you have a recursive function, each time you enter the function you get a fresh set of
variables.

The dimensions of global arrays must be constant expressions. The dimensions of local
arrays can be set by variables or calculated expressions.

Simple variables (not arrays) can be initialised to constants when they are declared. The
initialising expression may not include variables or function calls. Uninitialised numeric
variables are set to 0, uninitialised strings are empty.
var Sam%:=3+2, jim := 2.3214, sally$:= "My name is \"Sally\"";

Statement types

Comments in a script

Variable declarations

The Signal script language

3-5

Constants are created by the const keyword. A constant can be of any of the three basic
data types, and must be initialised as part of the constant declaration. Constants cannot be
arrays. The syntax and use of constants is the same as for variables, except that you
cannot assign to them or pass them to a function or procedure as a reference parameter.
const Sam%:=3+2, jim := 2.3214, sally$:= "My name is \"Sally\"";

Anywhere in the script where a numeric value can be used, so can a numeric expression.
Anywhere a string constant could be used, a string expression is also acceptable.
Expressions are formed from functions, variables, constants, brackets and operators. In
numerical expressions, the following operators are allowed, listed in order of precedence:

Operators Names
Highest [], () Array subscript, round brackets

-, not Unary minus, logical not
*, /, mod Multiply, divide and modulus (remainder)
+, - Add and subtract
<, <=, >, >= Less, less or equal, greater, greater or equal
=, <> Equal and not equal
and, band Logical and, bitwise and

Lowest or, xor, bor,
bxor

Logical and exclusive or and bitwise versions

The order of precedence determines the order in which operators are applied within an
expression. Without rules on the order of precedence, 4+2*3 could be interpreted as 18
or 10 depending on whether the add or the multiply was done first. Our rules say that
multiply has a higher precedence, so the result is 10. If in doubt, use round brackets, as in
4+(2*3) to make your meaning clear. Extra brackets do not slow down the script.

The divide operator returns an integer result if both the divisor and the dividend are
integers. If either is a real value, the result is a real. So 1/3 evaluates to 0, while 1.0/3,
1/3.0 and 1.0/3.0 all evaluate to 0.333333…

The minus sign occurs twice in the list because minus is used in two distinct ways: to
form the difference of two values (as in fred:=23-jim) and to negate a single value
(fred :=-jim). Operators that work with two values are called binary, operators that
work with a single value are called unary. There are four unary operators, [], (), - and
not, the remainder are binary.

There is no explicit TRUE or FALSE keyword in the language. The value zero is treated as
false, and any non-zero value is treated as true. Logical comparisons have the value 1 for
true. So not 0 has the value 1, and the not of any other value is 0. If you use a real
number for a logical test, remember that the only way to guarantee that a real number is
zero is by assigning zero to it. For example, the following loop may never end:
var add:=1.0;
repeat
 add := add - 1.0/3.0; ' beware, 1/3 would have the value 0!
until add = 0.0; ' beware, add may never be exactly 0

Even changing the final test to add<=0.0 leads to a loop that could cycle 3 or 4 times
depending on the implementation of floating point numbers.

Constant declarations

Expressions and
operators

Numeric operators

Script language syntax

3-6

The result of the comparison operators is integer 0 if the comparison is false and integer
1 if the comparison is true. The result of the binary arithmetic operators is integer if both
operands are integers, otherwise the result is a real number. The result of the logical
operators is integer 0 or 1. The result of the exclusive or operator is true if one operand is
true and the other is false.

The bitwise operators band, bor and bxor treat their operands as integers, and produce
an integer result on a bit by bit basis. They are not allowed with real number operands.

Operators Names
Highest + Concatenate

<, <=, >, >= Less, less or equal, greater, greater or equal
Lowest =, <> Equal and not equal

The comparison operators can be applied to strings. Strings are compared character by
character, from left to right. The comparison is case sensitive. To be equal, two strings
must be identical. You can also use the + operator with strings to concatenate them (join
them together). The character order for comparisons (lowest to highest) is:

space !"#$%&'()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

Do not confuse assignment := with the equality comparison operator, =. They are entirely
different. The result of an assignment does not have a value, so you cannot write
statements like a:=b:=c;.

The following (meaningless) code gives examples of expressions.
var jim,fred,sam,sue%,pip%,alf$,jane$;
jim := Sin(0.25) + Cos(0.25);
fred := 2 + 3 * 4; 'Result is 14.0 as * has higher precedence
fred := (2 + 3)* 4; 'Result is 20.0
fred += 1; 'Add 1 to fred
sue% := 49.734; 'Result is 49
sue% := -49.734; 'Result is -49
pip% := 1 + fred > 9; 'Result is 1 as 21.0 is greater than 9
jane$:= "Jane";
alf$:= "alf";
sam := jane$ > alf$; 'Result is 0.0 (a is greater than J)
sam := UCase$(jane$)>UCase$(alf$); 'Result is 1.0 (A < J)
sam := "same" > "sam"; 'Result is 1.0
pip% := 23 mod 7; 'Result is 2
jim := 23 mod 6.5; 'Result is 3.5
jim := -32 mod 6; 'Result is -2.0
sue% := jim and not sam;'Result is 0 (jim = -2.0 and sam = 1.0)
pip% := 1 and 0 or 2>1; 'Result is 1
sue% := 9 band 8; 'Result is 8 (9=1001 in binary, 8=1000)
sue% := 9 bxor 8; 'Result is 1
sue% := 9 bor 8; 'Result is 9

We don't provide maths constants as built-in symbols, but the two most common ones, e
and pi are easily generated within a script; e is Exp(1.0) and pi is 4.0*ATan(1.0).

String operators

Examples of expressions

Mathematical constants

The Signal script language

3-7

If scripts were simply a list of commands to be executed in order, their usefulness would
be severely limited. The flow of control statements let scripts loop and branch. It is
considered good practice to keep flow of control statements on separate lines, but the
script syntax does not require this. There are two branching statements, if...endif and
docase...endcase, and three looping statements, repeat...until, while...wend
and for...next. You can also use user-defined functions and procedures with the Func
and Proc statements.

The if statement can be used in two ways. When used without an else, a single section
of code can be executed conditionally. When used with an else, one of two sections of
code is executed. If you need more than two alternative branches, the docase statement
is usually more compact than nesting many if statements.

if expression then 'The simple form of an if
 zero or more statements;
endif;

if expression then 'Using an else
 zero or more statements;
else
 zero or more statements;
endif;

If the expression is non-zero, the statements after the then are executed. If the
expression is zero, only the statements after the else are executed. The following code
adds 1 or 2 to a number, depending on it being odd or even:
if num% mod 2 then
 num%:=num%+2; 'note that the semicolons before...
else '...the else and endif are optional.
 num%:=num%+1;
endif;

'The following is equivalent
if num% mod 2 then num%:=num%+2 else num%:=num%+1 endif;

These keywords enclose a list of case statements forming a multiway branch. Each
case is scanned until one is found with a non-zero expression, or the else is found. If
the else is omitted, control passes to the statement after the endcase if no case is non-
zero. Only the first non-zero case is executed (or the else if no case is non-zero).

docase
 case exp1 then
 statement list;
 case exp2 then
 statement list;
 ...
 else
 statement list;
endcase;

The following example sets a string value depending on the value of a number:
var base%:=8,msg$;
docase
 case base%=2 then msg$:= "Binary";
 case base%=8 then msg$:= "Octal";
 case base%=10 then msg$:= "Decimal";
 case base%=16 then msg$:= "Hexadecimal";
 else msg$:= "Pardon?";
endcase;

Flow of control
statements

if...endif

docase...endcase

Script language syntax

3-8

The statements between repeat and until are repeated until the expression after the until
keyword evaluates to non-zero. The body of a repeat loop is always executed at least
once. If you need the possibility of zero repeats, use a while loop. The syntax of the
statement is:

repeat
 zero or more statements;
until expression;

For example, the following code prints the times of all data items on channel 3 (plus an
extra -1 at the end):

var time := -1; 'start time of search
repeat
 time := NextTime(3, time); 'find next item time
 PrintLog("%f\n", time); 'display the time to the log
until time<0; 'until no data found

The statements between the keywords are repeated while an expression is not zero. If the
expression is zero the first time, the statements in between are not executed. The while
loop can be executed zero times, unlike the repeat loop, which is always executed at least
once.

while expression do
 zero or more statements;
wend;

The following code fragment, finds the first number that is a power of two that is greater
than or equal to some number:

var test%:=437, try%:=1;
while try%<test% do 'if try% is too small...
 try% := try% * 2; '...double it
wend;

For loops execute a group of statements a number of times with a variable changed by a
fixed amount on each iteration. The loop can be executed zero times. The syntax is:

for v := exp1 to exp2 {step exp3} do
 zero or more statements;
next;

v This is the loop variable and may be a real number, or an integer. It must be a
simple variable, not an array element.

exp1 This expression sets the initial variable value before the looping begins.
exp2 This expression is evaluated once, before the loop starts, and is used to test for

the end of the loop. If step is positive or omitted (when it is 1), the loop stops
when the variable is greater than exp2. If step is negative, the loop stops when
the variable is less than exp2.

exp3 This expression is evaluated once, before the loop starts, and sets the increment
added to the variable when the next statement is reached. If there is no step
exp3 in the code, the increment is 1. The value of exp3 can be positive or
negative.

repeat...until

while...wend

for...next

The Signal script language

3-9

The following example prints the squares of all the integers between 10 and 1:
var num%;
for num% := 10 to 1 step -1 do
 PrintLog("%d squared is %d\n", num%, num% * num%);
next;

If you want a for loop where the end value and/or the step size are evaluated each time
round the loop you should use a while…wend or repeat…until construction.

The Halt keyword terminates a script. A script also terminates if the path of execution
reaches the end of the script. When a script halts, any open external files associated with
the Read() or Print() functions are closed and any windows with invalid regions are
updated. Control then returns to the user.

A user-defined function is a named block of code. It can access global variables and
create its own local variables. Information is passed into user-defined functions through
arguments. Information can be returned by giving the function a value, by altering the
values of arguments passed by reference or by changing global variables.

User-defined functions that return a value are introduced by the func keyword, those
that do not are introduced by the proc keyword. The end keyword marks the end of a
function. The return keyword returns from a function. If return is omitted, the
function returns to the caller when it reaches the end statement. Arguments can be
passed to functions by enclosing them in brackets after the function. Functions that return
a value or a string have names that specify the type of the returned value. A function is
defined as:

func name({argument list}) or proc name({argument list})
{var local-variable-list;} {var local-variable-list;}
statements including return x; statements including return;
end; end;

There is no semicolon at the end of the argument list because the argument list is not the
end of the func or proc statement; the end keyword terminates the statement. Functions
may not be nested within each other.

The argument list is a list of variable names separated by commas. There are two ways to
pass arguments to a function: by value and by reference:

Value Arguments passed by value are local variables in the function. Their initial
values are passed from the calling context. Changes made in the function to a
variable passed by value do not affect the calling context.

Reference Arguments passed by reference are the same variables (by a different name)
as the variables passed from the calling context. Changes made to arguments
passed by reference do affect the calling context. Because of this, reference
arguments must be passed as variables (not expressions or constants) and the
variable must match the type of the argument (except we allow you to pass a
real variable where an integer variable is expected).

Simple (non-array) variables are passed by value. Simple variables can be passed by
reference by placing the & character before the name in the argument list declaration.

Halt

Functions and
procedures

Argument lists

Script language syntax

3-10

Arrays and sub-arrays are always passed by reference. Array arguments have empty
square brackets in the function declaration, for example one[] and two[][]. The size of
the array is taken from the array passed in. You can find the size of an array with the
Len() function. An individual array element is a treated as a simple variable.

The return keyword is used in a user-defined function to return control to the calling
context. In a proc, the return must not be followed by a value. In a func, the return
should be followed by a value of the correct type to match the function name. If no return
value is specified, a func that returns a real or integer value returns 0, and a func that
returns a string value returns a string of zero length.

proc PrintInfo() 'no return value, no arguments
PrintLog(ChanTitle$(1)); 'Show the channel title
PrintLog(ChanComment$(1)); 'and the comment
return; 'return is optional in this case as...
end; '...end forces a return for a proc

func sumsq(a, b) 'sum the square of the arguments
return a*a + b*b;
end;

func removeExt$(name$) 'remove text after last . in a string
var n := 0, k := 1;
 repeat
 k:=InStr(name$,".",k); 'find position of next dot
 if (k > 0) then 'if found a new dot...
 n := k; '...remember where
 endif
 until k=0; 'until all found
if n=0 then
 return name$; 'no extension
else
 return Left$(name$,n-1);
end;

proc sumdiff(&arg1, &arg2) 'returns sum and difference of args
arg1 := arg1 + arg2; 'sum of arguments
arg2 := arg1 - 2*arg2; 'original arg1-arg2
return; 'results returned via arguments
end;

func sumArr(data[]) 'sum all elements of an array
var sum:=0.0; 'initialise the total
var i%; 'index
for i%:=0 to Len(data[])-1 do
 sum := sum + data[i%]; 'of course, ArrSum() is much faster!
 next;
return sum;
end;

Func SumArr2(data[][]) 'Efficient sum of 2d array elements
var n1%,n2%,i%,sum; 'sizes, index and sum, all set to 0
n1% := Len(data[0][]); 'get sizes of arrays...
n2% := Len(data[][0]); '...so we can see which is bigger
if n1%>n2% then 'choose most efficient method
 for i%:=0 to n2%-1 do sum := sum + ArrSum(data[i%][]) next;
else
 for i%:=0 to n1%-1 do sum := sum + ArrSum(data[][i%]) next;
endif;
return sum;
end;

Variables declared within a function exist only within the body of the function. They
cannot be used from elsewhere. You can use the same name for variables in different

return

Examples of user-defined
functions

The Signal script language

3-11

functions. Each variable is separate. In addition, if you call a function recursively (that is
it calls itself), each time you enter the function, you have a fresh set of variables.

Unlike global variables, which are only visible from the point in the script in which they
are declared onwards and local variables, which are visible within a user-defined
function only, user-defined functions are visible from all points in the script. You may
define two functions that call each other, if you wish.

The script language allows a function or procedure to be passed as an argument. The
function declaration includes the declaration of the function type to be passed. Functions
and procedures can occur before or after the line in which they are used as an argument.

proc Sam(a,b$,c%)
...
end;

func Calc(va)
return 3*va*va-2.0*va;
end;

func PassFunc(x, func ff(realarg))
return ff(x);
end;

func PassProc(proc jim(realarg, strArg$, son%))
jim(1.0,”hello”,3);
end;

val := PassFunc(1.0, Calc); ’pass function
PassProc(Sam); ’pass procedure

The declaration of the procedure or function argument is exactly the same as for
declaring a user-defined function or procedure. When passing the function or procedure
as an argument, just give the name of the function or procedure, no brackets or
arguments are required. The compiler checks that the argument types of a function
passed as an argument match those declared in the function header. See the
ToolbarSet() function for an example.

Although user-defined functions and built-in functions are very similar, you are not
allowed to pass a built-in function as an argument to a built-in function. Further, you
cannot pass a built-in function to a user-defined function if it has one or more arguments
that can be of more than one type. For example, the built-in Sin() function can accept a
real argument, or a real array argument, and so cannot be passed.

Scope of user-defined
functions

Functions as arguments

Script language syntax

3-12

Commands by function

4-1

This section of the manual lists commands by function. The next section lists the
command alphabetically with a description of the command arguments and operation.

These commands are used to manipulate windows (views) to position them, display and
size them, colour them and create them.

App Get the application window view handle
ChanNumbers Show or hide channel numbers
Colour Get or set the palette entry associated with a screen item
Dup Get the view handle of duplicates of the current view
Draw Draw invalid regions of the view (and set x axis range)
DrawAll Update all invalid regions in all views
FileClose Closes a window or windows
FileComment$ Gets and sets the file comment for time views
FileConvert$ Convert a foreign file to a Signal file and open it
FileName$ Gets the file name associated with a window
FileNew Opens an output file or a new text or data window
FileOpen Opens an existing file (in a window)
FilePrint Prints a range of data from the current view
FilePrintVisible Prints the current view
FilePrintScreen Prints all text-based and data views
FileQuit Closes the Signal application
FileExportAs Export from a data view in a variety of formats
FileSave Save a view with same name
FileSaveAs Save a view with specified new name
FontGet Read back information about the font
FontSet Set the font for the current window
FrontView Get or set the front window on screen
Grid Get or set the visibility of the axis grid
LogHandle Gets the view handle of the log window
PaletteGet Get the RGB colour of a palette entry
PaletteSet Set the RGB colour of a palette entry
SampleHandle Gets the view handle of sampling windows and controls
View Change or override current view and get view handle
ViewFind Get a view handle from a view title
ViewKind Get the type of the current view or other view
ViewList Form a list of handles to views that meet a specification
ViewStandard Returns a window to a standard state
ViewUseColour Get and set monochrome/colour use for view
Window Sets the window size and position
WindowDuplicate Duplicate a time view
WindowGetPos Get window position
WindowSize Changes the window size
WindowTitle$ Gets or changes the window title
WindowVisible Sets or gets the visibility of the window (hide/show)
XAxis Get or set the visibility of the x axis
XAxisMode Get or set the visibility of the x axis’ features (eg big ticks)
XAxisStyle Get or set the x axis major and minor tick spacing
YAxis Get or set the visibility of the y axis
YAxisMode Get or set the visibility of the y axis’ features (eg big ticks)
YAxisStyle Get or set the y axis major and minor tick spacing

4
Functional command

groups

Windows and views

Commands by function

4-2

These commands operate on any data view, whether a file view, memory view or
sampling document view.

AppendFrame Add a new data frame to end of data
DeleteFrame Delete a data frame if not on disk
ExportChanFormat Set channel format for export
ExportChanList Set list of channels for export
ExportFrameList Set a list of frames for export
ExportTextFormat Set format for text output of channels
ExportTimeRange Set x axis range for export of data
FileExportAs Export from a data view in a variety of formats
Frame Get or set the current frame
FrameAbsStart Get or set the current frame absolute start time
FrameComment$ Get or set the comment with the current frame
FrameCount The number of frames in the file (or 1 in a memory view)
FrameList Fills an array with frame numbers according to a frame spec
FrameFlag Gets or sets a frame flag
FrameSave Saves changed frame data or discards changes
FrameState Gets or sets the frame state value
FrameTag Gets or sets the frame tag
FrameUserVar Gets or sets a frame user variable
Maxtime Maximum x axis value in the current frame
Mintime Minimum x axis value in the current frame
Overdraw Enables or disables drawing the frame display list
OverdrawFrames Sets a frame display list for the view
OverdrawGetFrames Gets the frame numbers from the display list for the view
ShowBuffer Get or set the frame buffer display state
Sweeps Number of items processed into memory view
TimeRatio Get the scaling factor from X units to seconds
TimeUnits$ Get the current time units
XLow The start of the displayed area in x axis units
XHigh The end of the displayed area in x axis units
XRange Set the x axis range for next draw
XScroller Show or hide the x axis scroll bar and controls
XTitle$ X axis title. Can be set, in a memory or sampling document view
XUnits$ X axis units. Can be set, in a memory or sampling document view

The following commands control the vertical cursors. Where possible, changes to cursors
cause immediate screen changes; changes do not wait for the next Draw command. This
is unlike almost all other command that save up changes until the next draw.

Cursor Set or get the position of a cursor
CursorActiveGet Get the active cursor parameters
CursorActiveSet Set the active cursor parameters
CursorDelete Delete a designated cursor
CursorExists Test if a cursor exists
CursorLabel Set or get the cursor label style
CursorLabelPos Set or get the cursor label position
CursorMode Set or get the cursor mode
CursorNew Add a new cursor (at a given position)
CursorRenumber Renumber the cursors in ascending position order
CursorSet Set the number (and position) of vertical cursors

Data views

Vertical cursors

The Signal script language

4-3

Horizontal cursors belong to a channel, but can be dragged to different channels within a
view by the user. Horizontal cursors have a value and are drawn at the y axis position
corresponding to the value. If the value is beyond the range of the y axis, the cursor is
invisible. If you delete a channel with horizontal cursors, the cursors are deleted.

HCursor Set or get the position of a horizontal cursor
HCursorChan Gets the channel that a horizontal cursor belongs to
HCursorDelete Delete a designated horizontal cursor
HCursorExists Test if a horizontal cursor exists
HCursorLabel Gets or sets the horizontal cursor style
HCursorLabelPos Gets or sets the horizontal cursor position
HCursorNew Add a new horizontal cursor on a channel (at a given position)
HCursorRenumber Renumbers the cursors from bottom to the top of the view

These commands operate on channels in a data or XY view. Channel data can also be
treated as an array, so you can use all the array arithmetic commands. In a memory view,
you can use the commands BinSize and BinZero to get or set x axis scale and offset,
but in any other data view you can use these commands only to get x axis values.

BinSize X axis interval for waveforms or resolution for markers
BinToX Bin or item number at x axis position
BinZero X axis position of the first bin on the channel
ChanCount Count channels of a given type
ChanDelete Delete a channel from an XY view only
ChanDiff Differentiate data in specified channels
ChanIntgl Integrate data in specified channels
ChanItems Count items in a channel within an x axis range
ChanKind Get the type of a channel
ChanList Get a list of channels meeting a specification
ChanMean Mean of waveform level within an x axis range
ChanMeasure Take a variety of measurements on channel data
ChanNegate Negate (invert) data in specified channels
ChanOffset Offset data in specified channels by a constant value
ChanOrder Modify the channel order and y axis grouping
ChanPoints Number of data items in the channel in the frame
ChanRectify Rectify data in specified channels
ChanScale Scale data in specified channels by a constant value
ChanSearch Scan a channel of data for a particular feature
ChanSelect Select and report on selected state of channels
ChanShift Shift data in specified channels left or right
ChanShow Make a channel visible or invisible
ChanSmooth Smooth (3 or 5 point) data in specified channels
ChanSubDC Remove DC offset from data in specified channels
ChanRange Get start and count of items in an x axis range
ChanTitle$ Get or set the channel title string
ChanUnits$ Get or set the channel units
ChanValue Get channel data at a particular time or x axis position
ChanVisible Get the visibility state of a channel
ChanWeight Change the relative vertical space of a channel
ChanZero Clear data in specified channels
DrawMode Get or set display mode for a channel
LastTime Find the previous item in a channel (and return values)
MarkCode Get a marker code(s)
MarkEdit Edit a marker code(s)
MarkTime Change position of a marker

Horizontal cursors

Channels

Commands by function

4-4

Maxtime Time of last item on the channel
Minmax Find minimum and maximum values (and positions)
Mintime Time of first item on the channel
NextTime Find the next item in a channel (and return values)
Optimise Set reasonable y range for channels with axes
XToBin Convert x axis value to bin number
YLow Get lower limit of y axis for a channel
YHigh Get upper limit of y axis for a channel
YRange Set y axis range for a channel

These commands operate on the frame buffer that is attached to each file or memory
view. The buffer can be shown or hidden using the ShowBuffer function, these
commands perform arithmetic between the buffer and a frame in the data view. These
functions operate on all points in all waveform channels in the buffer. The functions that
modify a frame in the data document have names such as BuffAddTo or BuffMulBy,
while functions that change the frame buffer are called BuffAdd or BuffMul. Note that
you can use the channel data manipulation commands to change buffer data, as well as
accessing the buffer data directly.

BuffAdd Add data to the frame buffer
BuffAddTo Add frame buffer to a data framer
BuffAcc Add data to average in frame buffer
BuffClear Clear all channels in the frame buffer
BuffCopy Copy data to the frame buffer
BuffCopyTo Copy frame buffer to the data frame
BuffDiv Divide frame buffer by data
BuffDivBy Divide data frame by the frame buffer
BuffExchange Exchange data in the frame buffer and data frame
BuffMul Multiply frame buffer by data
BuffMulBy Multiply data frame by frame buffer
BuffSub Subtract data from frame buffer
BuffSubFrom Subtract frame buffer from a data frame
BuffUnAcc Remove data from average in frame buffer

These commands specifically manipulate XY views. XY views have from 1 to 100
channels of data. Each channel holds a list of (x, y) co-ordinate pairs that can be
displayed in a variety of styles. Most functions that work on views in general will also
work on an XY view.

XYAddData Add data points to a channel of an XY view
XYColour Set the colour of a channel
XYCount Return the number of XY data points in a channel
XYDelete Delete one or more data points from a channel
XYDrawMode Control how a channel is drawn
XYGetData Read data back from an XY channel
XYInCircle Count the number of XY points within a circle
XYInRect Count the number of XY points inside a rectangle
XYJoin Get or set the point joining method
XYKey Control the display of the XY view channel key
XYRange Get rectangle containing one or more channels
XYSetChan Create or modify an XY channel
XYSize Get or set maximum size of an XY channel
XYSort Change the sort (and draw) order of a channel

Buffer

XY views

The Signal script language

4-5

These commands correspond to actions on the Sampling configuration dialog. They get
or change the sampling configuration settings that will be used the next time you create a
new Signal data file for sampling.

These commands correspond to the General page of the configuration, or are general-
purpose in intent. A few of these can also interact with sampling in progress.

SampleBurst Set or get the burst mode flag
SampleClear Set the Sampling configuration to a known state
SampleKeyMark Add or remove the keyboard marker channel
SampleMode Set or get the sweep mode for sampling
SamplePause Set or get pause at sweep end flag
SamplePoints Set or get the number of data points per ADC port
SamplePorts Set or get which ADC ports to sample from
SampleRate Set or get the ADC sample rate per channel in Hz
SampleTrigger Set or get the triggered sweeps flag
SampleWrite Control writing data to sampling file

These commands correspond to the Ports page of the sampling configuration.

SamplePortFull Set ADC port value for full input
SamplePortName$ Set ADC port title
SamplePortOptions$ Set ADC port online processing options
SamplePortUnits$ Set ADC port units
SamplePortZero Set ADC port value for zero

These commands correspond to the Outputs page of the sampling configuration.

SampleDacFull Set or get a DAC full-scale value
SampleDacMask Set or get the DAC output enable mask
SampleDacUnits$ Set or get a DAC units string
SampleDacZero Set or get a DAC zero value
SampleDigOMask Set or get the digital outputs enable mask
SampleOutClock Set or get the outputs clock period
SampleOutMode Set or get the outputs mode

These commands correspond to the States page of the sampling configuration.

SampleDigIMask Set or get digital inputs enable mask
SampleStates Set or get states enable and number of extra states
SampleStatesIdle Set or get states ordering cycles before idling
SampleStatesMode Set or get multiple states mode
SampleStatesOrder Set or get multiple states ordering mode
SampleStatesRepeats Set or get multiple states repeats count
SampleStateDac Set or get DAC data for individual state
SampleStateDig Set or get digital bits for individual state
SampleStateRepeats Set or get repeats for individual state

Sampling
configuration

commands

Commands by function

4-6

These correspond to the Protocols dialog available from the States page.

Protocols Get number of protocols set up
ProtocolAdd Add a new protocol to list
ProtocolClear Initialise a protocol
ProtocolDel Delete a protocol from list
ProtocolFlags Set or get protocol flags
ProtocolName$ Set or get protocol name
ProtocolStepGet Get information on protocol step
ProtocolStepSet Set protocol step values

These commands correspond to the Automation page of the sampling configuration.

SampleArtefactGet Get the artefact rejection settings
SampleArtefactSet Set the artefact rejection settings
SampleAutoFile Set or get the automatic file save flag
SampleAutoName$ Set or get the template for automatic file naming
SampleLimitFrames Set or clear the limit on the number of frames in the new file
SampleLimitSize Set or clear the size limit of the new file
SampleLimitTime Set or clear the limit on the overall sampling time

These commands correspond to the Peri-trigger page of the sampling configuration.

SamplePeriDigBit Set digital bit for peri-trigger digital type
SamplePeriBitState Set digital triggering to be on bit high or low
SamplePeriHyst Set hysteresis value for peri-trigger + or - analog type
SamplePeriLevel Set threshold level for peri-trigger analog types
SamplePeriLowLev Set lower threshold level for peri-trigger =analog type
SamplePeriType Set type of peri-trigger
SamplePeriPoints Set peri-trigger pre-trigger points

These commands correspond to the pulse dialog or to outputs page items that specifically
interact with the pulses output. The pulse functions can all be used while sampling is in
progress to alter the pulses in use.

SampleAbsLevel Set or get the pulses absolute levels flag (in outputs page)
SampleFixedInt Set or get the fixed interval sweep mode interval
SampleFixedVar Set or get the fixed interval percentage variation
SampleOutLength Set or get the pulses output frame length
SampleOutTrig Set or get the pulses sampling sweep trigger time
Pulses Get the number of pulses for an output port
PulseAdd Add a new pulse to the outputs for a port
PulseClear Remove all pulses from the outputs for a port
PulseDel Remove a pulse from the outputs for a port
PulseFlags Set or get the options flags for a pulse
PulseName$ Set or get a pulse name
PulseType Get a pulse type code
PulseDataSet Set the amplitude and other values for a pulse
PulseDataGet Get the amplitude and other values for a pulse
PulseVarSet Set the variation parameters for a pulse
PulseVarSet Get the variation parameters for a pulse
PulseTimesSet Set the times for a pulse
PulseTimesGet Get the times for a pulse
PulseWaveSet Set the waveform output parameters
PulseWaveGet Get the waveform output parameters
PulseWaveformSet Set the waveform output data for a DAC
PulseWaveformGet Get the waveform output data for a DAC

The Signal script language

4-7

These commands control and interact with the data sampling process. Signal samples into
one data file at a time, and these commands refer to it, regardless of the current view. The
commands can also be used to retrieve the current settings.

SampleAbort Exit from sampling and throw data away
SampleAccept Accept or reject the current sweep
SampleHandle Gets the view handle of sampling windows and controls
SampleKey Adds to the keyboard marker channel, controls output sequencer
SamplePeriHyst Alter hysteresis for peri-trigger + or - analog type
SamplePeriLevel Alter threshold level for peri-trigger analog types
SamplePeriLowLev Alter lower threshold level for peri-trigger =analog type
SampleProtocol Set protocol to be used for state sequencing
SampleReset Clear all data from the new file and get ready to start again
SampleStart Start sampling after creating a new time view
SampleState Set state for next frame to be sampled a new time view
SampleStatesReset Reset states sequencing and pulse variations
SampleStatesRun Set state sequencing run mode or manual
SampleStatus Get the current sampling state
SampleStop Stop sampling and keep the data
SampleSweep Start another sampling sweep

These functions create new memory or XY views and define an analysis process for
them.

SetAmplitude Set up an amplitude histogram view derived from a file view
SetAutoAv Set up an auto-average multi frame view derived from a file view
SetAverage Set up a waveform average view derived from a file view
SetLeak Set up a leak-subtracted view produced from a file view
SetPower Set up a power spectrum view derived from a file view
SetTrend Set up an XY trend plot derived from a file or memory view
SetTrendChan Add a channel to XY trend plot set up by SetTrend

These functions create new memory views without an attached analysis process.

SetCopy Set up a memory view copied from a file view
SetMemory Set up a memory view for user-defined data

The Process commands work with views with an attached analysis process. They carry
out the analysis process defined when setting up the memory view, processing data from
the source view into the memory or XY view attached to it.

Process Carry out the analysis process on the current frame from file
ProcessAll Process all memory views attached to a file view
ProcessFrames Carry out the analysis process on multiple frames from file
ProcessOnline Carry out the analysis process during sampling
Sweeps Number of items processed into memory view

These functions control serial line controlled signal conditioners.

CondFilter Get or set the conditioner low-pass or high-pass filter
CondFilterList Get a list of possible low-pass or high-pass filter settings
CondGain Get or set the conditioner gain
CondGainList Get a list of the possible gains for the conditioner
CondGet Get all the settings for one channel of the conditioner
CondOffset Get or set the conditioner offset for a channel

Runtime sampling
commands

Analysis

Signal conditioner
control

Commands by function

4-8

CondOffsetLimit Get or set the conditioner offset range for a channel
CondRevision$ Get or set the conditioner offset for a channel
CondSet Single call to set all channel parameters
CondSourceList Get names of the signal sources available on the conditioner
CondType Get the type of signal conditioner

These functions mimic the Edit menu commands and provide additional functionality.

EditClear Delete text from a text window at the caret
EditCopy Copy the current selection to the clipboard
EditCut Delete the current selection to the clipboard
EditPaste Paste the clipboard into the current text field
EditSelectAll Select the entire text or cursor window contents
MoveBy Move relative to current position
MoveTo Move to a particular place
Selection$ This function returns the text that is currently selected

The following functions are used to manipulate strings and to convert between strings
and other variable types.

Asc ASCII code of first character of a string
Chr$ Converts a code to a one character string
DelStr$ Returns a string minus a substring
InStr Searches for a string in another string
LCase$ Returns lower case version of a string
Left$ Returns the leftmost characters of a string
Len Returns the length of a string or array
Mid$ Returns a substring of a string
Print$ Produce formatted string from variables
ReadStr Extract variables from a string
Right$ Returns the rightmost characters of a string
Str$ Converts a number to a string
UCase$ Returns upper case version of a string
Val Converts a string to number

These functions can be used with arrays and channel data to speed up data manipulation.
In this section, the word array can be applied to an array declared with the var or proc
or func statements, or to channel data in a file or memory view. These functions operate
on one dimensional arrays only. Integer arrays can be used where indicated, but beware
of overflow.

The functions all return a negative error code if there is a problem or zero if the function
completed without error. The array arithmetic attempts to fix problems by setting the
result element to a (possibly) useful value.

You can apply built-in mathematical functions directly on an array. For example, to form
the square root of all the elements of array fred[] use Sqrt(fred[]). To access data
in channel c of view v use View(v,c).[{aExp}] in place of fred[{aExp}] where
aExp is an optional expression to specify elements as described in the script language
syntax. For example, to subtract channel 2 from channel 1 in view v1%, use
ArrSub(View(v1%,1)[],View(v1%, 2).[]).

Editing operations

String functions

Array arithmetic
functions

The Signal script language

4-9

ArrAdd Adds an array or constant to an array
ArrConst Copies an array, or sets an array to a constant value
ArrDiff Replaces an array with an array of simple differences
ArrDiv Divides an array by another array or a constant
ArrDivR Divides array into another array or constant
ArrDot Forms the dot product (sum of products) of two arrays
ArrFFT Fourier transform and related operations
ArrFilt Applies a FIR filter to an array
ArrIntgl Integrates array; inverse of ArrDiff()
ArrMul Multiples an array by another array or constant
ArrSub Subtract constant from array, or difference of two arrays
ArrSubR Subtract array from constant, or reversed difference of arrays
ArrSum Sum, mean and standard deviation of an array
Len Returns the length of a string or array

The following mathematical functions are built into Signal. You can apply most of the
arithmetic functions to real arrays by passing an array or channel data to the function.

Abs Absolute value of a number or array
ATan Arc tangent of number or array
Cos Cosine of a number or array
Exp Exponential function of a number or array
Frac Remove integral part of a number or array
GammaP The incomplete gamma function
GammaQ 1 – GammaP()
Ln Natural logarithm of a number or array
LnGamma The natural logarithm of the gamma function
Log Logarithm to base 10 of a number or array
Max Finds maximum of array or variables
Min Finds minimum of array or variables
Pow Raise a number or an array to a power
Rand Returns a pseudo-random number
Round Round a real number to the nearest integral value
Sin Sine of a number or array
Sqrt Square root of a number or an array
Tan Tangent of a number or array
Trunc Remove fractional part of number or array

These functions create and apply digital filters and manipulate the filter bank.
ArrFilt Array arithmetic routine to apply FIR coefficients to an array
FiltApply Apply a set of coefficients or a filter bank filter to a waveform
FiltAtten Set the desired attenuation of a filter in the filter bank
FiltCalc Force coefficient calculation of a filter in the filter bank
FiltComment$ Get or set comment for a filter in the filter bank
FiltCreate Create a new filter definition in the filter bank
FiltInfo Retrieve information about a filter in the filter bank
FiltName$ Get or set the name of a filter in the filter bank
FiltRange Get the useful sampling rate range for a filter bank filter
FIRMake Generate FIR filter coefficients in an array
FIRQuick Generate FIR filter coefficients with desired attenuation
FIRResponse Calculate frequency response of array of coefficients

Mathematical
functions

Digital filtering

Commands by function

4-10

The following fitting functions are built into Signal.

FitExp Fit multiple exponentials to arrays of x,y data points
FitGauss Fit multiple gaussians to arrays of x,y data points
FitLine Fit a straight line to waveform channel data
FitLinear Fits y = a0f0(x) + a1f1(x) + a2f2(x) ... to a set of x,y data points
FitNLUser Fit a non-linear user-defined function to a set of data points
FitPoly Fits a0 + a1x + a2x2 + a3x3 ... to a set of x,y data points
FitSin Fits a0Sin(a1x+a2) + a3Sin(a4x+a5) + ... to a set of x,y data points

These commands allow you to give information to, or get information from the user.
They also let the user interact with the data.

Input Prompt user for a number in a defined range
Input$ Prompt user for a string with a list of acceptable characters
Interact Allow user to interact with data
Message Display a message in a box, wait for OK
Print Formatted text output to a file or window
PrintLog Formatted text output to the Log window
Print$ Formatted text output to a string
Query Ask a user a question, wait for response

You can build simple dialogs, with a set of fields stacked vertically or you can build free-
format dialogs (but with more work to define the positions of all the dialog fields):

DlgCreate Start a dialog definition
DlgChan Define a dialog entry as prompt and channel selection
DlgCheck Define a dialog item as a check box
DlgInteger Define a dialog entry as prompt and integer number input
DlgLabel Define a dialog entry as prompt only
DlgList Define a dialog entry as prompt and selection from a list
DlgReal Define a dialog entry as prompt and real number input
DlgShow Display the dialog, get values of fields
DlgString Define a dialog entry as prompt and string input
DlgText Define a fixed text string for the dialog

The toolbar commands define the buttons available to the user on the toolbar, and allow
the user to interact with the data, and have access to script functionality.

Toolbar Let the user interact with the toolbar
ToolbarClear Remove all defined buttons from the toolbar
ToolbarEnable Get or set the enables state of toolbar buttons
ToolbarSet Add a button (and associate a function with it)
ToolbarText Display a message using the toolbar
ToolbarVisible Get or set the visibility of the toolbar
SampleBar Controls the sample bar buttons
ScriptBr Controls the script bar buttons

Fitting functions

User interaction
commands

The Signal script language

4-11

Signal can read information about files and directories and also change the current
directory and delete or copy files.

FileCopy Copies a file from one place to another
FileDelete Delete one or more files
FileList Get a list of files or directories
FilePath$ Get the current directory or directory for new data files
FilePathSet Change the current directory or directory for new data files

Signal can create text files and read from them. You can also open a text file into a
window.

FileNew Open a new text file in a window
FileOpen Open a text file in a window or for reading and writing
FileSaveAs Save a view in variety of formats, including text
Print Write formatted output to a file or log window
Read Extract data from a text file

The following script commands read file and frame variables from CFS files written by
other software. For those familiar with the CFS library for programming in DOS, the
frames were referred to as data sections (DS).

FileGetIntVar Read the value of an integer file variable
FileGetRealVar Read the value of a floating point file variable
FileGetStrVar$ Read a string file variable
FileVarCount Get the number of file variables in the file
FileVarInfo Get the type and name of a numbered file variable
FrameGetIntVar Read the value of an integer frame variable
FrameGetRealVar Read the value of a floating point frame variable
FrameGetStrVar$ Read a string frame variable
FrameVarCount Get the number of frame variables in the file
FrameVarInfo Get the type and name of a numbered frame variable

Signal can read and write binary files. These provide links to other software and are
generally more efficient than text for passing large quantities of data between programs.

FileClose Close a file opened in binary mode
FileOpen Open an external file in binary mode
BRead Extract 32-bit integer, 64-bit real and string data from a file
BReadSize Extract 8 and 16-bit integer and 32-bit real data from a file
BSeek Change the current file position for next read or write
BWrite Write 32-bit integer and 64-bit real data to a file
BWriteSize Write 8 and 16-bit integer, 32-bit real and string data to a file

File system

Text files

CFS variables

Binary files

Commands by function

4-12

These functions let the script writer read to and write from serial line ports on their
computer. This feature can be used to control equipment during data capture, although
they are not needed for controlling the signal conditioners for which the CondXXX
family of commands are provided.

SerialOpen Open a serial port and configure it (set Baud rate, parity etc.)
SerialWrite Write characters to the serial port
SerialRead Read characters from the serial port
SerialCount Count the number of data items available to read
SerialClose Release a previously opened serial port

These functions can be used when debugging a script.

Debug Set a permanent break point or disable the Esc key
Eval Convert the argument to text and display

These functions don't fit well into any of the other categories!

Date$ Get system date in a string in a variety of formats
Error$ Convert a runtime error code to a message string
Profile Read or write the registry entries used by Signal
ScriptRun Set the next script to run automatically
Seconds Get or set current relative time in seconds
Sound Play a tone or a .wav file
System Get system revision as number
System$ Get system name as a string
Time$ Get system time in a string in a variety of formats
TimeDate Get system date and time as numbers
Yield Allow the system to catch up on background processing

Serial line control

Debugging operations

Environment

Alphabetical command reference

5-1

This section of the manual lists commands alphabetically. If you are not sure which
command you require, look in the Commands by function chapter. You might also find
the index useful as it cross-references commands and common keywords.

This evaluates the absolute value of an expression as a real number. This can also form
the absolute value of a real or integer array.

Func Abs(x|x[]);

x A real number or a real or integer array.
Returns If x is an array, this returns 0 if all was well, or a negative error code if integer

overflow was detected. Otherwise it returns x if x is positive, otherwise -x.

Signal is a MDI (multiple document interface) application, and lives in a window. This
function returns the application window handle, and some special Signal view handles.
Other Signal view handles are returned by functions creating them or finding them.

Func App({type%});

type% This specifies the window handle to return. If omitted the value 0 is used:
-2 The highest view handle currently used by Signal.
-1 100 times the program revision.
0 The application window, so users can resize the application.
1 The Signal system toolbar handle, so it can be hidden and shown.
2 The Signal status bar handle, so it can be hidden and shown.
3 The window handle of the running script (so you can hide it).
4 The Signal edit bar handle, so it can be hidden and shown.
5 The Signal script bar handle, so it can be hidden and shown.
6 The Signal sample configurations bar handle, so it can be hidden and shown.

Returns A handle for the selected window. If the requested window does not exist the
return value is 0.

For example:
View(App(3)); 'make script window the current view
WindowVisible(0); 'hide script window
View(App(0)); 'application window is the current view
WindowVisible(3); 'resize the Signal window to mid screen

See also:View(), Dup(), ViewFind(), Window(), WindowVisible()

This function appends a new frame to the current data view, which should not be an
online sampling view. The new frame will be cleared or can optionally be initialised with
a copy of the current frame’s data. The current frame in the view is not changed.

Func AppendFrame({copy%});

copy% If this is present and non-zero the new frame will hold a copy of the current
frame’s data.

Returns Zero or a negative error code.
See also:DeleteFrame(), FrameCount(), FrameFlag(), FrameTag()

5
Alphabetical command

reference

Abs()

App()

AppendFrame()

ArrXXX() commands Alphabetical command reference ArrXXX() commands

5-2

These functions operate on one dimensional arrays of data, allowing you to use one script
step to replace code that would otherwise need a loop such as repeat...until,
while...wend or for...next. A loop with the equivalent operations on every item of
data takes a lot longer to execute than a Signal array command that does the same thing.
You can declare an array variable in your script, or an array can be the items in a channel
of a data view which you access using the View(v,c).[] construction in place of
fred[]. The source or destination in the following functions can be data in a view or an
array variable declared with the var or proc or func statements.

An array argument can be an array or part of an array as described in detail in the Arrays
of data section in the Script language syntax chapter. The following is a list of the array
commands, followed by some examples of how they might appear in a script.

The array commands are:

Func ArrAdd(dest[], source[]|value);
Func ArrConst(dest[], source[]|value);
Proc ArrDiff(dest[]);
Func ArrDiv(dest[], source[]|value);
Func ArrDivR(dest[], source[]|value);
Func ArrDot(source1[],source2[]);
Func ArrFFT(dest[], mode%);
Func ArrFilt(dest[], coef[]);
Func ArrIntgl(dest[]);
Func ArrMul(dest[], source[]|value);
Func ArrSub(dest[], source[]|value);
Func ArrSubR(dest[], source[]|value);
Func ArrSum(source[]{, &mean{, &stDev}});

dest A real or integer array, or a view, that holds the result.
source A real or integer array, or a view.
value A real or integer value
Integer overflow can be detected with integer destination arrays when the source or value
is a real. ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(), ArrFilt(),
ArrMul(), ArrSub(), ArrSubR(), ArrSum() can all return a negative error code
to indicate integer overflow.
The following are examples of what the function calls can look like in action. These are
examples of using all or part of single dimension arrays.
var fred[100], tom[100], jim%[200];
var val:=0.5;

ArrAdd(fred[],jim%[]); 'Add elements 0-99 of jim% to fred
ArrSub(fred[],tom[]); 'Subtract each tom% from each fred
ArrSubR(fred[]),tom[]); 'The negative of the above result
ArrSub(jim%[],val); 'Subract val from all elements of jim%

ArrAdd(jim%[2:8],10); 'Add value 10 to elements 2-9 of jim%

These are examples of using all or part of two dimension arrays.
var chans[2][100]; 'Array of 2 rows and 100 columns
var data[3][30]; 'Array of three rows and thirty columns
var jim%[200]

ArrDot(chans[0][],chans[1][]); 'form the dot product of two rows

This would set first two elements of column one to the first two elements of jim%
ArrConst(data[0:2][1],jim%[]); 'copy jim% to one column of data

ArrXXX() commands

ArrAdd() The Signal script language ArrConst()

5-3

and this would do exactly the same
data[0][1]:=jim%[0];
data[1][1]:=jim%[1];

These are examples of using array arithmetic functions on data view channel data.
If vm% is a data view handle, and ch% is a channel number, the following will add the
value of the single element fred[10] to all elements of channel ch% in data view
ArrAdd(View(vm%,ch%).[], fred[10]);

This will subtract data in channel 2 from channel 1 in data view vm%
ArrSub(View(vm%,1).[],View(vm%, 2).[]);

See also:ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(),
ArrDot(), ArrFFT(), ArrFilt(), ArrIntgl(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), Len(), View(v,c).[]

This function adds a constant, or an array, to an array. See ArrXXX() for examples of
using arrays as arguments.

Func ArrAdd(dest[], source[]|value);

dest The destination array.
source A source array to add element by element to the destination. If source and dest

are of different sizes, the size of the smaller sets the number of elements copied.
value A value to be added to all elements of the destination array.
Returns The function returns 0 if all was well, or a negative error code for integer over-

flow. Overflow is detected when adding a real array to an integer array and the
result is set to the nearest valid integer.

See also: ArrXXX(),ArrConst(), ArrDiv(), ArrDivR(), ArrDot(),
ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len(), BuffAdd(),
BuffAddTo(), View(v,c).[]

This function sets array elements to a constant value, or copies the elements of an array
to another array. See ArrXXX() for examples of using arrays as arguments.

Func ArrConst(dest[]|dest%[], source[]|value);

dest The destination real or integer array.
source A source array to be copied to the destination. If source and dest are of different

sizes, the size of the smaller determines the number of elements copied.
value A value to be copied to all elements of the destination array.
Returns The function returns 0, or a negative error code. If an integer overflows, the

element is set to the nearest integer value to the result.

See also:ArrXXX(),ArrAdd(), ArrDiv(), ArrDivR(), ArrDot(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), BuffCopy(), BuffCopyTo(),
BuffExchange(), Len(), View(v,c).[]

ArrAdd()

ArrConst()

ArrDiff() Alphabetical command reference ArrDiv()

5-4

This procedure replaces an array with an array of differences. You can use this as a crude
form of differentiation, however ArrFilt() provides a better method. See ArrXXX()
for examples of using arrays as arguments.

Proc ArrDiff(dest[]);

dest[] A real or integer array that is to be replaced by an array of differences. The first
element of the array is left unchanged.

The effect of the ArrDiff() function can be undone by ArrIntgl(). The following
two blocks of code perform the same function:

var work[100],i%;
...
ArrDiff(work[]); 'Form differences
...
for i%:=99 to 1 step -1 do 'Form differences the hard way
 work[i%] := work[i%] - work[i%-1];
 next;

See also:ArrXXX(),ArrFilt(), ChanDiff(), Len(), View(v,c).[]

This function divides a real or integer array by an array or a constant. Use ArrDivR() to
form the reciprocal of an array. See ArrXXX() for examples of using arrays as
arguments.

Func ArrDiv(dest[], source[]|value)

dest An array of reals or integers.
source An array of reals or integers used as the denominator of the division.
value A value used as the denominator of the division.
 Returns The function returns 0 if there were no problems, or a negative error code.
The following examples show the effect of the various combinations of arguments:

var dest[100], source[100], value, i%;
ArrDiv(dest[],source[]); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := dest[i%] / source[i%];
 next;

ArrDiv(dest[],value); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := dest[i%]/value;
 next;

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDivR(),
ArrDot(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), BuffDiv,
BuffDivBy(), Len(), View(v,c).[]

ArrDiff()

ArrDiv()

ArrDivR() The Signal script language ArrFFT()

5-5

This function (Array Divide Reversed) divides a real or integer array into an array or a
constant. See ArrXXX() for examples of using arrays as arguments.

Func ArrDivR(dest[], source[]|value);

dest An array of reals or integers used as the denominator of the division and for
storage of the result.

source An array of reals or integers used as the numerator of the division.
value A value used as the numerator of the division.
Returns The function returns 0 if there were no problems, or a negative error code if

there was a problem (for example division by zero or integer overflow).
The following examples show the effect of the various combinations of arguments:

var dest[100], source[100], value, i%;
 ArrDivR(dest[],source[]); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := source[i%] / dest[i%];
 next;

ArrDivR(dest[],value); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := value / dest[i%];
 next;

See also:ArrXXX(),ArrAdd(), ArrConst(), ArrDiv(), ArrDot(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), BuffDiv(), BuffDivBy(),
Len(), View(v,c).[]

This function multiplies one array by another and returns the sum of the products
(sometimes called the dot product of two arrays). The arrays are not changed. See
ArrXXX() for examples of using arrays as arguments.

Func ArrDot(arr1[], arr2[]);

arr1 An array of reals or integers.
arr2 An array of reals or integers.
Returns The function returns the sum of the products of the corresponding elements of

arr1 and arr2.
See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),

ArrDivR(), ArrFFT(), ArrFilt(), ArrIntgl(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), Len(), View(v,c).[]

This command performs spectral analysis on an array of data. Variants of this command
produce log amplitude, linear amplitude, power and relative phase as well as an option to
window the original data. See ArrXXX() for examples of using arrays as arguments.

Func ArrFFT(dest[], mode%);

dest An array of real numbers to process. The array should be a power of two and at
least eight points long. If the number of points is not a power of two, the size is
reduced to the next lower power of two points.

mode% The mode of the command, in the range 0 to 5. Modes are defined below.
Returns The function returns 0 or a negative error code.

ArrDivR()

ArrDot()

ArrFFT()

ArrFFT() Alphabetical command reference ArrFFT()

5-6

Modes 1 and 3-5 take an array of data that is a set of equally spaced samples in some unit
(usually time). If this unit is xin, the output is equally spaced in units of 1/xin. In the
normal case of input equally spaced in seconds, the output is equally spaced in 1/seconds,
or Hz. If there are n input points, and the interval between the input points is t, the
spacing between the output points is 1/(n*t). The transform assumes that the sampled
waveform is composed of sine and cosine waves of frequencies: 0, 1/(n*t), 2/(n*t),
3/(n*t) up to (n/2)/(n*t) or 1/(2*t).

The phase information sits rather uncomfortably in a data view. When it is drawn, the x
axis has the correct increment per bin, but starts at the wrong frequency. If you need to
draw it, the simplest solution is to copy the phase information to bin 1 from bin n/2+1
and set bins 0 and n/2 to 0 (this destroys any amplitude information):

ArrConst(View(0,1).[1:], View(0,1).[n/2+1:]); 'Copy phase to start
View(0,1).[0]:=0; View(0,1).[n/2]:=0; 'Clear DC and Nyquist points
View(0).Draw(0, MaxTime()/2); 'Display the phase

This mode is used to apply a raised cosine window to the data array. See SetPower()
for an explanation of windows. The selected data is multiplied by a raised cosine window
of maximum amplitude 1.0, minimum amplitude 0.0. This window causes a power loss in
the result of a factor of 3/8.

You can supply your own window to taper the data, using the array arithmetic
commands. The raised cosine is supplied as a general purpose window.

This mode replaces the data with its forward Fast Fourier Transform. You could use this
to remove frequency components, then perform the inverse transform. The output of this
mode is in two parts, representing the real and imaginary result of the transform (or the
cosine and sine components). The first n/2+1 points of the result hold the amplitudes of
the cosine components of the result, the remaining n/2-1 points hold the amplitudes of
the sine components. In the case of an 8 point transform, the output has the format:

point frequency contents point frequency contents
0 DC(0) amplitude 4 4/(n*t) cosine amplitude
1 1/(n*t) cosine amplitude 5 1/(n*t) sine amplitude
2 2/(n*t) cosine amplitude 6 2/(n*t) sine amplitude
3 3/(n*t) cosine amplitude 7 3/(n*t) sine amplitude

There is no sine amplitude at a frequency of 4/(n*t) as this sine wave has amplitude 0 at
all sampled points.

This mode takes data in the format produced by the forward transform and converts it
back into a time series. In theory, the result of mode 1 followed by mode 2, or mode 2
followed by mode 1, would be the original data. However, each transform adds some
noise due to rounding effects in the arithmetic, so the transforms do not invert exactly.

One use of modes 1 and 2 is to filter data. For example, to remove high frequency noise
use mode 1, set unwanted frequency bins to 0, and use mode 2 to reconstruct the data.

This mode produces an output with the first n/2+1 points holding the log amplitude of the
power spectrum in dB, and the second n/2-1 points holding the phase (in radians) of the
data. In the case of our 8 point transform the output format would be:

Display of phase in data
views

Mode 0: Window the data

Mode 1: Forward FFT

Mode 2: Inverse FFT

Mode 3: dB and phase

ArrFFT() The Signal script language ArrFFT()

5-7

point frequency contents point frequency contents
0 DC log amplitude in dB 4 4/(n*t) log amplitude in dB
1 1/(n*t) log amplitude 5 1/(n*t) phase in radians
2 2/(n*t) log amplitude 6 2/(n*t) phase in radians
3 3/(n*t) log amplitude 7 3/(n*t) phase in radians

There is no phase information for DC or for the point at 4/(n*t) because the phase for
both of these is zero. If you want phase in degrees, multiply by 57.3968 . The log
amplitude is calculated by taking the result of a forward FFT (same as mode 1 above)
and forming:

dB = 10.0 Log(power) Power as defined for mode 5

This mode produces the same output format as mode 3, but with amplitude in place of
log amplitude. The amplitude is calculated by taking the result of a forward FFT (same as
mode 1 above), and forming:

amplitude = (cos2+sin2) 0.5

This mode produces the same output format as modes 2 and 3, but with the result in
terms of RMS power. The power is calculated by taking the result of a forward FFT
(same as mode 1 above), and forming:

power = = (cos2+sin2) * 0.5 for all components except the DC and Nyquist
power = DC2 or Nyquist2 for the DC and Nyquist components

You can compare the output of this mode with the result of SetPower(). If you have a
waveform channel on channel 2 in view 1, with at least 1024 data points and do the
following:

var dView%,spView%, m%; 'assume we are in a time view
var ch%:=2; 'use data from channel 2
var xRes; 'x resolution to apply to result

dView%:=View(0); 'store handle for data view
spView% := SetPower(ch%,1024); 'select power spectrum channel 1
Process(0); 'process first 1024 data points
WindowVisible(1); 'make new memory view visible
xRes:=BinSize(1); 'get spectrum resolution in Hz
m%:=SetMemory(1,1024,xRes,0,0,0,0,"FFT","Hz","Volt^2","","Power");
' created memory view ready to hold 1024 points for transformation
WindowVisible(1); 'make new memory view visible
ArrConst(View(m%,1).[],View(dView%,ch%).[]); 'copy channel data
ArrFFT(View(m%,1).[], 0); 'apply raised cosine window to it
ArrFFT(View(m%,1).[], 5); 'take power spectrum
ArrMul(View(m%,1).[0:513], 4.0/3.0); 'adjust amplitude
Draw(0,500*BinSize(1)); Optimise(1); 'show 500 bins of power
View(spView%); 'look at SetPower() result
Draw(0,500*BinSize(1)); Optimise(1); 'show same bins of power

The two results are identical. The view generated by ArrFFT() would be 3/8 of the
amplitude of the view generated by SetPower(). The reason for the difference is that
the SetPower() command compensates for the effect of the window it uses internally
by multiplying the result by 8/3. To produce the same numeric result, multiply by 8/3.

Note: The behaviour of the ArrFFT function in mode 5 (Power and Phase) was altered in
version 1.60 of Signal. Previous versions produced a result which was 3/4 of the
SetPower() result.

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),
ArrDivR(), ArrDot(), ArrFilt(), ArrIntgl(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), Len(), SetPower(),
View(v,c).[]

Mode 4: Amplitude and
phase

Mode 5: Power and phase

ArrFilt() Alphabetical command reference ArrFilt()

5-8

This function filters a real array by replacing each element by the product of a coefficient
array and the surrounding elements of the original array. This implements a FIR (Finite
Impulse Response) filter. See ArrXXX() for examples of using arrays as arguments.

Func ArrFilt(dest[], coef[]);

dest[] A real array holding the data to be filtered. It is replaced by the filtered data.
coef[] A real array of filter coefficients. This array is usually an odd number of data

points long so that the result is not phase shifted.
Returns The function returns 0 if there was no error, or a negative error code.

dest[]

Coefficients

Output

This diagram shows the general principle of the FIR filter. The hollow circles represent
the filter coefficients, and the solid circles are the input and output waveforms. Each
output point is generated by multiplying the waveform by the coefficients and summing
the result. The coefficients are then moved one step to the right and the process repeats.

From this description, you can see that the filter coefficients (from right to left) are the
impulse response of the filter. The impulse response is the output of a filter when the
input signal is all zero except for one sample of unit amplitude.

In the example above with seven coefficients, there is no time shift caused by the filter. If
the filter uses an even number of coefficients, there is a time shift in the output of half a
sample period.

The filter operation is applied to every element of the array. To do this at the start and
end of the array there is a problem as some of the coefficients have no corresponding
data element.

? ?

The simple solution is to take these missing points as copies of the first and last points.
This is usually better that taking these points as 0. You should remember that the first
and last (nc+1)/2 points are unreliable, where nc is the number of coefficients.

A simple use of this command is to produce three point smoothing of data, replacing
each point by the mean of itself and the two points on either side:

ArrFilt()

ArrIntgl() The Signal script language ArrMul()

5-9

var data[1000],coef[3]; 'arrays of data and the coefficients
... 'fill data[] with values
ArrConst(coef[],0.33333); 'set all three coefficients to 0.33333
ArrFilt(data[],coef[]); 'smooth the data.

A more complicated example would be to implement a differentiator to calculate the
slope or gradient of an array. The simplest case is to use two points:

coef[0]:=-1; coef[1]:=1; 'simple difference
ArrFilt(data[], coef[0:1]); 'for differences, equivalent to...
ArrDiff(data[]); '... just using the differences

A simple difference produces a very crude differentiator. A slightly better one, with three
coefficients is:

coef[0] := -0.5; coef[1] := 0.0; coef[2] := 0.5;
ArrFilt(data[], coef[]);

You can improve the result with more points, for example for 4 points, the coefficients
are -0.3, -0.1, 0.1, 0.3 and for five points try -0.2, -0.1, 0.0, 0.1, 0.2. It is more usual to
use an odd number of points as this does not cause a shift of the result by half a point.

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(),
ArrDot(), ArrFFT(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(),
ChanSmooth(), Len(), View(v,c).[]

This procedure is the inverse of ArrDiff(), replacing each point by the sum of the
points from the start of the array up to the element. See ArrXXX() for examples of using
arrays as arguments.

Proc ArrIntgl(dest[]);

dest An array or real or integer data.
Each element of the array is replaced by the sum of all the elements up to and including
that element. The function is equivalent to the following:

for i%:=1 to Len(dest[])-1 do
 dest[i%] := dest[i%] + dest[i%-1];

See also: ArrXXX(),ArrDiff(), ChanIntgl(), Len(), View(v,c).[]

This command is used to form the product of a pair of arrays, or to scale an array by a
constant. A less obvious use is to negate an array by multiplying by -1. See ArrXXX()
for examples of using arrays as arguments.

Func ArrMul(dest[], source[]|value);

dest An array of reals or integers.
source An array of reals or integers to multiply the data in dest, element by element.
value A value to multiply the data in dest.
Returns The function returns 0 if all was well, or a negative error code.
If the dest array is integer, the multiplications are done as reals and truncated to integer.

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(),
ArrDot(), ArrSub(), ArrSubR(), ArrSum(), BuffMul(),
BuffMulBy(), Len(), View(v,c).[]

ArrIntgl()

ArrMul()

ArrSub() Alphabetical command reference ArrSubR()

5-10

This function forms the difference of two arrays or subtracts a constant from an array.
Integer overflow is detected with integer destination arrays when the source or value is a
real. See ArrXXX() for examples of using arrays as arguments.

Func ArrSub(dest[], source[]|value);

dest A real or integer array, or a view, that holds the result.
source A real or integer array, or a view.
value A real or integer value.
Returns If no overflow is detected, the function returns 0. Overflow is flagged by a

negative error code.
The function performs the following operations:

var dest[100], source[100], value, i%;
ArrSub(dest[],source[]); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := dest[i%] - source[i%];
 next;

ArrSub(dest[],value); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := dest[i%] - value;
 next;

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),
ArrDivR(), ArrDot(), ArrMul(), ArrSubR(), ArrSum(),
BuffSub(), BuffSubFrom(), Len(), View(v,c).[]

This function forms the difference of two arrays or subtracts an array from a constant.
Integer overflow is detected with integer destination arrays when the source or value is a
real. See ArrXXX() for examples of using arrays as arguments.

Func ArrSubR(dest[], source[]|value);

dest A real or integer array that holds the result.
source A real or integer array.
value A real or integer value.
Returns If no overflow is detected, the function returns 0. Overflow is flagged by a

negative error code.
The function performs the following operations:

var dest[100], source[100], value, i%;
ArrSubR(dest[],source[]); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := source[i%] - dest[i%];
 next;

ArrSubR(dest[],value); 'Is equivalent to...
for i%:=0 to 99 do
 dest[i%] := value - dest[i%];
 next;

See also: ArrXXX(),ArrSub(), ArrSum(), BuffSub(), BuffSubFrom(),
Len(), View(v,c).[]

ArrSub()

ArrSubR()

ArrSum() The Signal script language ATan()

5-11

This function forms the sum of the values in an array, and optionally forms the mean and
standard deviation. See ArrXXX() for examples of using arrays as arguments.

Func ArrSum(arr[]|arr%[]{, &mean{, &stDev}});

arr A real or integer array to process.
mean If present it is returned holding the mean of the values in the array. The mean is

the sum of the values divided by the number of array elements.
stDev If present, this is returns the standard deviation of the array elements. If the

array has only one element the result is 0. It is equivalent to:
Func StDev(arr[])
var n%, i%, mean, sumSq:=0.0, temp;
n% := Len(arr[]); 'get array size
mean := ArrSum(arr[])/n%;'mean value
for i%:=0 to n%-1 do 'form sum of squares
 temp := arr[i%] - mean;
 sumSq := sumSq + temp * temp;
 next;
if (n%>1) then
 return Sqrt(sumSq/(n%-1));
else
 return 0.0;
endif;
end;

Returns The function returns the sum of the array elements

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),
ArrDivR(), ArrDot(), ArrFFT(), ArrFilt(), ArrIntgl(),
ArrMul(), ArrSub(), ArrSubR(), Len(), View(v,c).[]

This function returns the ASCII code of the first character in the string as an integer.

Func Asc(text$);

text$ The string to process.
See also:Chr$(), %c format in Print(),

This function returns the arc tangent of an expression, or the arc tangent of an array:

Func ATan(s|s[] {,c});

s If the only argument, the function uses this for the arc tangent calculation. s can
also be a real array (in which case c must not be present).

c If this is present, the function uses s/c for the calculation.
Returns If s is an array, each element of s is replaced by its arc tangent in the range -pi/2

to pi/2 radians. The function returns 0 if all was well or a negative error code.
When s is not an array, if s is the only argument, the function returns the arc
tangent of s in the range -pi/2 to pi/2. If c is present, the function calculates the
result of ATan(s/c) and uses the signs of s and c to decide the quadrant of the
result. With the second argument, the result is in the range -pi to pi.

See also:Cos(), Sin(), Tan()

ArrSum()

Asc()

ATan()

BinError() Alphabetical command reference BinSize()

5-12

This function is used in a memory or file view with error bins enabled to access the error
information. Error bins are created for a memory view created with SetAverage() or
SetAutoAv() with the last agrgument set to 1 and are subsequently stored in the cfs file
if the memory view is saved.
Func BinError(chan%, bin% {,newSD});

chan% The channel number in the memory view.
bin% The bin number to get or set the error information.
newSD You can display error information in several ways, but this function always

works in terms of the standard deviation of the data.
Returns The standard deviation at the time of the call. If there is less than 2 sweeps of

data, or errors are not enabled, the result is 0.
To illustrate how errors are calculated, we will assume that we are dealing with an
average set to display the mean of the data in each bin. In terms of the script language, if
the array s[] holds the contribution of each sweep to a particular bin, the mean, standard
deviation and standard error of the mean are calculated as follows:

var mean, sd:=0, i%, diff, sem;
for i%:= 0 to Sweeps()-1 do
 mean += s[i%]; 'form sum of data
 next;
mean /= Sweeps(); 'form mean data value
for i%:= 0 to Sweeps()-1 do
 diff := s[i%]-mean; 'difference from mean
 sd += diff*diff; 'sum squares of differences
 next;
sd := Sqrt(sd/(Sweeps()-1)); 'the standard deviation
sem := sd/Sqrt(Sweeps()); 'the standard error of the mean

We divide by Sweeps()-1 to form the standard deviation because we have lost one
degree of freedom due to calculating the mean from the data.

See also: BinSize(), BinToX(), SetAutoAv(), SetAverage(), Sweeps(),
XToBin()

The value returned by this function is normally the x axis increment per point but
depends upon the channel type. You can set the bin size in a memory view only.
Func BinSize(chan%, {nSize})

chan% The channel number (1 to n) for which to return information.
nSize If this is present it sets a new x axis resolution in a memory view.
Returns The returned value is negative if the channel doesn't exist. Otherwise the value

returned depends on the channel type:
Waveform This is the x axis interval between points on the channel. For

sampled data this is the sample interval.
Marker The underlying x axis resolution of the channel.

See also:BinToX(), XToBin(), SampleRate()

BinError()

BinSize()

BinToX() The Signal script language BRead()

5-13

This function converts between bin numbers and x axis units in the current view.
Func BinToX(chan%, bin);

chan% The channel (1 to n) for which to return information.
bin A bin number in the view. You can give a non-integer bin number without error.

If you give a bin number outside the range of the view, the bin number is limited
to the range of the view.

Returns The returned value is zero if the channel doesn't exist. Otherwise it is the
equivalent x axis position.

See also:BinSize(), XToBin(), BinZero()

This function returns the x axis position for the first bin in the frame on the given
channel. In a memory view you can also set this.

Func BinZero(chan%{,offset});

chan% The channel (1 to n) for which to return information.
offset If this is provided it sets a new x axis position for the first data point for

channels in a memory view.
Returns The returned value is zero if the channel doesn't exist. Otherwise it is the

equivalent x axis position of the start of the data.
See also:BinToX(), XToBin(), BinZero()

This reads data into variables and arrays from a binary file opened by FileOpen(). The
function reads 32-bit integers, 64-bit IEEE real numbers and zero terminated strings.

Func BRead(&arg1|arg1[]|&arg1%|arg1%[]|&arg1$|arg1$[] {,...});

arg Up to 20 arguments of any type. Signal reads a block of memory equal in size to
the combined size of the arguments and copies it into the arguments. Strings or
string arrays are read a byte at a time until a zero byte is read.

Returns It returns the number of data items for which complete data was read. This will
be less than the number of items in the list if end of file was reached. If an error
occurred during the read, a negative code is returned.

See also:FileOpen(), BReadSize(), BSeek(), BWrite()

BinToX()

BinZero()

BRead()

BReadSize() Alphabetical command reference BSeek()

5-14

This converts data into variables and arrays from a binary file opened by FileOpen().
The function reads 8, 16 and 32-bit integers and converts them to 32-bit integers, and 32
and 64-bit IEEE real numbers and converts them to 64-bit reals. It also reads strings from
fixed size regions in the file (zeros are ignored during the read). The read is from the
current file position. The current position after the read is the byte after the last byte read.

Func BReadSize(size%, &arg|arg[]|&arg%|arg%[]|&arg$|arg$[]{,...});

size% The bytes to read for each argument. Legal values depend on the argument type:
Integer 1,2 or 4 Read 1, 2 or 4 bytes and sign extend to 32-bit integer.

-1,-2 Read 1 or 2 bytes and zero extend to 32-bit integer.
Real 4 Read 4 bytes as 32-bit real, convert to 64-bit real.

8 Read 8 bytes as 64-bit real.
String n Read n bytes into a string. Null characters end the string.

arg Up to 19 target variable(s) to be filled with data. size% applies to all targets.
Returns It returns the number of data items for which complete data was read. This will

be less than the number of items in the list if end of file was reached. If an error
occurred during the read, a negative code is returned.

See also:FileOpen(), BRead(), BSeek(), BWrite()

This function moves and reports the current position in a binary file opened by
FileOpen(). The next binary read or write operation to the file starts from the position
returned by this function.

Func BSeek({pos% {, rel%}});

pos% The new file position. Positions are measured in terms of the byte offset in the
file from the start, the current position, or from the end. If a new position is not
given, the position is not changed and the function returns the current position.

rel% This determines to what the new position is relative.
0 Relative to the start of the file (same as omitting the argument)
1 Relative to the current position in the file
2 Relative to the end of the file

Returns The new file position relative to the start of the file or a negative error code.
See also:FileOpen(), BReadSize(),BRead(), BWrite()

BReadSize()

BSeek()

BuffAdd() The Signal script language BuffAddTo()

5-15

The Buff… family of commands can be used to carry out arithmetic on sets of data
frames using the built-in frame buffer. The frame buffer is an extra frame of data
attached to a data document that is provided automatically by Signal. This can be used to
hold the results of arithmetic on frames, or to modify the document data. To help to avoid
confusion, commands that modify buffer data all have a simple name such as BuffSub,
or BuffCopy, while commands that modify the document frame data have qualified
names such as BuffSubFrom or BuffCopyTo.

Nearly all of the BuffXXX commands require a frame% argument. This specifies the
frame in the data document that is to be used if omitted the current frame is used. The
current frame in the view is not changed.

The buffer commands do not have channel specification arguments as they operate on all
channels. If you require more precise control over frame arithmetic operations, this can
be achieved by creating an invisible view to act as a buffer using SetCopy() or
SetMemory(), and then manipulation the frame data directly.

You can access the built-in interactive support for using the frame buffer from the
analysis menu or by using the multiple frame dialog.

See also:ShowBuffer(), BuffAdd(), BuffAddTo(), BuffAcc(),
BuffClear(), BuffCopy(), BuffCopyTo(), BuffDiv(),
BuffDivBy(), BuffExchange(), BuffMul(), BuffMulBy(),
BuffSub(), BuffSubFrom(), BuffUnAcc(), SetCopy(),
SetMemory()

This adds the specified frame data to the frame buffer for the current view document.

Func BuffAdd({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrAdd(), View(v,c).[], BuffXXX()

This adds the frame buffer for the current view document to the specified frame data.

Func BuffAddTo({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrAdd(), View(v,c).[], BuffXXX()

BuffXXX() Buffer
commands

BuffAdd()

BuffAddTo()

BuffAcc() Alphabetical command reference BuffDiv()

5-16

This adds the specified frame data to an average in the frame buffer for the current view
document. The addition is carried out in such a way as to maintain the data as an average,
which can be eg. subtracted from data frames. If you mix BuffAcc() and BuffAdd()
operations, the overall effect will probably be rather messy.

Func BuffAcc({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrAdd(), BuffUnAcc(), View(v,c).[], BuffXXX()

This clears the data in the frame buffer for the current view document.

Func BuffClear();

Returns Zero or a negative error code.
See also:ArrConst(), View(v,c).[], BuffXXX()

This copies the specified frame data to the frame buffer for the current view document.

Func BuffCopy({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrConst(), View(v,c).[], BuffXXX()

This copies the frame buffer data for the current view document into the specified data
frame.

Func BuffCopyTo({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrConst(), View(v,c).[], BuffXXX()

This divides the frame buffer for the current view document by the specified frame data.

Func BuffDiv({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrDiv(), View(v,c).[], BuffXXX()

BuffAcc()

BuffClear()

BuffCopy()

BuffCopyTo()

BuffDiv()

BuffDivBy() The Signal script language BuffSub()

5-17

This divides the specified frame data by the frame buffer for the current view document.

Func BuffDivBy({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrDiv(), View(v,c).[], BuffXXX()

This exchanges the specified frame data with the frame buffer data for the current view
document.

Func BuffExchange({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrConst(), View(v,c).[], BuffXXX()

This multiplies the frame buffer for the current view document by the data in the
specified frame.

Func BuffMul({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrMul(), View(v,c).[], BuffXXX()

This multiplies the specified frame data by the frame buffer for the current view
document.

Func BuffMulBy({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrMul(), View(v,c).[], BuffXXX()

This subtracts the specified frame data from the frame buffer for the current view
document.

Func BuffSub({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrSub(), View(v,c).[], BuffXXX()

BuffDivBy()

BuffExchange()

BuffMul()

BuffMulBy()

BuffSub()

BuffSubFrom() Alphabetical command reference BWrite()

5-18

This subtracts the frame buffer for the current view document from the specified frame
data.

Func BuffSubFrom({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrSub(), View(v,c).[], BuffXXX()

This subtracts the specified frame data from an average in the frame buffer for the
current view document. The arithmetic is carried out in such a way as to maintain the
data as an average with the specified frame now not included. If the frame was never
included in the average, or if you mix BuffUnAcc() and BuffSub() operations, the
overall effect will probably be rather messy.

Func BuffUnAcc({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also:ArrSub(), BuffAcc(), View(v,c).[], BuffXXX()

This function writes binary data values and arrays into a binary file opened or created by
FileOpen(). The function can write 32-bit integers, 64-bit IEEE real numbers and
strings. The output is at the current position in the file. The current position after the
write is the byte after the last byte written.

Func BWrite(arg1 {,arg2 {,...}});

arg Up to 20 arguments of any type, including arrays. Signal fills a block of
memory equal in size to the combined size of the arguments with the data held
in the arguments and copies it to the file.
An integer uses 4 bytes and a real uses 8 bytes. A string is written as the bytes in
the string and plus an extra zero byte to mark the end. Use BWriteSize() to
write a fixed number of bytes.

Returns It returns the number of arguments for which complete data was written. If an
error occurred during the write, a negative code is returned.

See also:FileOpen(), BWriteSize(), BRead(), BReadSize()

BuffSubFrom()

BuffUnAcc()

BWrite()

BWriteSize() The Signal script language ChanDelete()

5-19

This writes variables or arrays as binary into a file opened or created by FileOpen().
The function can write 8, 16 and 32-bit integers, 32 and 64-bit reals and strings. This
allows you to write formats other than the 32-bit integer and 64-bit real used internally
by Signal and to write variable length strings into fixed size fields in a binary file.
Func BWriteSize(size%, arg1 {,arg2 {,...}});

size% Bytes to write for each argument (or array element if the argument is an array).
Legal values depend on the argument type:
Integer 1,2 Write least significant 1 or 2 bytes

4 Write all 4 bytes of the integer
Real 4 Convert to 32-bit real and write 4 bytes

8 Write 8 bytes as 64-bit real
String n Write n bytes. Pad with zeros if the string is too short

arg Up to 19 target variable(s) to be filled with data. size% applies to all targets.
Returns It returns the number of data items for which complete data was written or a

negative error code.
See also:FileOpen(), BWrite(), BRead(), BReadSize()

This counts channels in a data or XY view.

Func ChanCount({chan%});

chan% If present, this specifies the channels to count (this is ignored for XY views). If
omitted, the total channel count is returned. It can be -1 for all channels, -2 for
all visible channels, -3 for all selected channels, -4 for waveform channels or -5
for marker channels, -6 for selected waveform channels or visible if none
selected, -7 for visible waveform channels or -8 for selected waveform
channels.

Returns The returned value is the number of channels of the specified type.
See also:ChanList()

This function deletes a channel from an XY view. You have the option of having the user
confirm the deletion if the channel is stored in the file. You cannot delete the last XY
channel as XY views must always have at least one channel. Channels are always
numbered consecutively, so if you delete a channel, the channel numbers of any higher
numbered channels will change. Changes will not become permanent until the XY view
is saved.
Func ChanDelete(chan% {,query%});

chan% The channel to delete, from 1 to the number of channels in the view.
query% If present and non-zero, the user is asked to confirm the channel deletion if the

channel is part of a saved data file.
Returns 0 if the channel was deleted or a negative error code if the user cancelled the

operation or tried to delete the last XY channel or for other problems.
See also:XYDelete(), XYSetChan()

BWriteSize()

ChanCount()

ChanDelete()

ChanDiff() Alphabetical command reference ChanItems()

5-20

This differentiates the data in specifed waveform channels of the current frame in the
current view. If the frame buffer is being shown, the frame buffer data is used instead.
All data points in the channels used are modified.

Func ChanDiff(chan%|chan%[]|chan$);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrDiff()

This integrates the data in specifed waveform channels of the current frame in the current
view. If the frame buffer is being shown, the frame buffer data is used instead. All data
points in the channels used are modified.

Func ChanIntgl(chan%|chan%[]|chan$);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrIntgl()

This counts waveform points, or markers, in a data view over an x axis range.

Func ChanItems(chan%, start, finish);

chan% The channel number (1 to n) for which to return information.
start The start position in x axis units. If start is greater than finish, the result is 0.
finish The last position in x axis units. If start equals finish, only items that fall exactly

at the position count towards the result.
Returns The returned value is negative if the channel doesn't exist. Otherwise it is the

number of data items in the range. This will be a count of markers or waveform
points depending on the channel type.

See also:ChanRange(), ChanPoints(), View(v,c).[], XYRange()

ChanDiff()

ChanIntgl()

ChanItems()

ChanKind() The Signal script language ChanMean()

5-21

This returns the type of a channel in the current data or XY view.
Func ChanKind(chan%)

chan% The channel number (1 to n) for which to return information.
Returns -1 for a bad channel number, -2 if not a data or XY view, or:

0 Waveform 1 Marker 2 Text Marker (future)
3 XY channel

See also:ViewKind()

This function generates an array of channel numbers from the current data or XY view.
The channels can be filtered to show only a subset of the available channels.

Func ChanList(list%[] {, types%});

list% An integer array to fill with channel numbers. Element 0 is set to the number of
channels returned. The remaining elements are channel numbers. If the array is
too short, enough channels are returned to fill the array. You will find that it is
unnecessary to list all the channel numbers for an XY view, since they are
numbered contiguously.

types% This argument specifies which channels to return. If omitted, all channels are
returned. The values are the same as those defined for mask% with the
DlgChan() function. This argument is ignored in an XY view where all
channels are the same type.

Returns The number of channels that would be returned if the array was of unlimited
length or 0 if the view is not a data or XY view.

See also:ChanShow(), ChanCount(), ChanDelete(), DlgChan(),
XYSetChan()

This forms the mean level of a waveform channel in an x axis range.

Func ChanMean(chan%, start, finish[, stDev]);

chan% The channel number (1 to n) for which to form the mean.
start The start position in x axis units. If start is greater than finish, the result is 0.
finish The last position in x axis units.
stDev If present, this is returns the standard deviation of the data values in the range. If

there is only one item the result is 0.
Returns It returns the sum of the data values in the range divided by the number of items.

If the channel is not a waveform channel the script will fail.
See also:ArrSum(), ChanMeasure()

ChanKind()

ChanList()

ChanMean()

ChanMeasure() Alphabetical command reference ChanNumbers()

5-22

This performs any of the cursor regions measurements on a channel.
Func ChanMeasure(chan%, type%, start|start$, end|end$);

chan% The channel number (1 to n) on which to perform the measurement.
type% The type of measurement to take, see the documentation of the Cursor

Regions window for details of these measurements. The possible values are:
1 Curve area 2 Mean 3 Slope
4 Area 5 Sum 6 Modulus
7 Maximum 8 Minimum 9 Amplitude
10 RMS Amplitude 11 Standard dev. 12 Absolute maximum
13 Peak 14 Trough

start The start position for the measurement in x axis units. If start is greater than
finish, the result is 0.

start$ The start position for the measurement expressed as a string. This allows
constructs such as “Cursor(1)” to be used.

end The end position in x axis units.
end$ The end position as a string. If the start value is a string, the end value must be a

string as well.
Returns The function returns the requested measurement value.
See also:ArrSum(), ChanMean(), ChanValue()

This negates (inverts) the data in specifed waveform channels of the current frame in the
current view. If the frame buffer is being shown, the frame buffer data is used instead.
All data points in the channels used are modified.

Func ChanNegate(chan%|chan%[]|chan$);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels, -6 for selected channels or visible if none selected, -7 for
visible waveform channels or -8 for selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrMul()

You can show and hide channel numbers in the current view and get the channel number
state with this function. It is not an error to use this with data views that do not support
channel number display, but the command has no effect.
Func ChanNumbers({show%});

show% If present, 0 hides the channel number, and 1 shows it. Other values are reserved
(and currently have the same effect as 1).

Returns The channel number display state at the time of the call.
See also:YAxis(), YAxisMode()

ChanMeasure()

ChanNegate()

ChanNumbers()

ChanOffset() The Signal script language ChanPoints()

5-23

This offsets the data in specifed waveform channels of the current frame in the current
view by adding a constant value to it. If the frame buffer is being shown, the frame buffer
data is used instead. All data points in the channels used are modified.

Func ChanOffset(chan%|chan%[]|chan$, val);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
val The value to add to the data, which can be negative for offsetting down.
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanScale(), ChanShift(), ChanZero(), ArrAdd()

You can change the order of channels in a data or memory view, or group channels with
a y axis so that they share a common axis with this command. This is equivalent to
clicking and dragging the channel number. You can change individual channels, or sort
all channels into numberical order:

Func ChanOrder(dest%, pos%, cSpc)
Func ChanOrder(order%);

dest% The destination channel number.
Pos% The position to drop the moved channels relative to the destination channel. Use

–1 to drop before, 0 to drop on top and 1 to drop after. If you drop a channel
between grouped channels, then the dropped channels become members of the
group (as long as they have a y axis).

cSpc A channel specifier for the channels to move.
order% In this form of the command, all the channels are sorted into numerical order.

Set –1 for low numbered channels at the top, 1 for High numbered channels at
the top and 0 to use the default channel ordering set by the Edit menu
Preferences.

Returns When used with a list of channels the command returns the number of channels
that were moved. When used to set the order of all channels, the return value is
-1 if low numbered channels were placed at the top and 1 if high numbered
channels were at the top.

See also:ChanWeight(), ViewStandard()

This function returns the total number of data items in the frame on the specified channel
in a data or XY view.

Func ChanPoints(chan%);

chan% The channel number (1 to n) for which to return the number of items.
Returns The number of data points in a frame.
See also:ChanRange(), ChanItems(), View(v,c).[], XYCount()

ChanOffset()

ChanOrder()

ChanPoints()

ChanRange() Alphabetical command reference ChanScale()

5-24

This function finds data items in a given x axis range.

Func ChanRange(chan%, &start, finish, &item);

chan% The channel number, from 1 to n.
start The start position in x axis units. This returns the start position of the first data

point in the range, or it is left unchanged if no data is found.
finish The end position in x axis units.
item The index in the view of the data item found at the start position.
Returns The number of data items found in the range defined by start and finish.
See also:ChanPoints(), ChanItems(), View(v,c).[]

This rectifies the data in specifed waveform channels of the current frame in the current
view. If the frame buffer is being shown, the frame buffer data is used instead. All data
points in the channels used are modified.

Func ChanRectify(chan%|chan%[]|chan$);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanVisible(), ChanZero()

This scales the data in specifed waveform channels of the current frame in the current
view by multiplying it by a constant value. If the frame buffer is being shown, the frame
buffer data is used instead. All data points in the channels used are modified.

Func ChanScale(chan%|chan%[]|chan$, val);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list. This is followed by a list of positive channel
numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
val The value to multiply by.
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrMul()

ChanRange()

ChanRectify()

ChanScale()

ChanSearch() The Signal script language ChanSelect()

5-25

This function searches a channel in file or memory view for the next user-defined feature
in a time range. It is exactly the same as an active cursor search, but does not use or move
cursors. By avoiding the need to draw and move cursors, this function should be more
efficient than using the active cursors, but there is no visual feedback.

Func ChanSearch(chan% ,mode%, &sT, eT{, sp1{, sp2{, width}}};

chan% The number of a channel in the time view to search.
mode% This sets the search mode, as for the active cursors. See the cursor mode dialog

documentation for details of each mode.
1 Maximum value 7 Rising threshold 13 Slope threshold
2 Minimum value 8 Falling threshold 14 Rising slope threshold
3 Maximum excursion 9 Steepest rising 15 Falling slope threshold
4 Peak find 10 Steepest falling 16 Absolute max slope
5 Trough find 11 Slope peak 17 Turning point
6 Threshold 12 Slope trough 18 Slope%

sT The start time for the search. This value will be returned with the result of the
search.

eT The end time for the search. If eT is less than sT, the search is backwards.
sp1 This is the threshold level for threshold crossings and baseline level for

maximum excursion. It is in the y axis units of the search channel (y axis units
per second for slopes). If omitted, the value 0.0 is used. Set it to 0 if sp1 is not
required for the mode.

sp2 This is hysteresis for peak, trough and threshold crossings and percent for
Slope%. If omitted, the value 0.0 is used. Set it to 0 if sp2 is not required for the
mode.

width This is the width in seconds for all slope measurements. If omitted, the value 0.0
is used. Set it to 0 if width is not required for the mode.

Returns 0 if the search succeeds or -1 if the search fails or a negative error code.
See also:ChanMeasure(), ChanValue(), CursorActiveGet(),

CursorActiveSet()

This function is used to report on the selected/unselected state of a channel in a data
view, and to change the selected state of a channel.

Func ChanSelect(chan%|chan%[]|chan$ {,new%});

chan% The channel number (1 to n) or -1 for all channels, -2 for all visible channels, -3
for all selected channels, -4 for waveform channels or -5 for marker channels, -6
for selected waveform channels or visible if none selected, -7 for visible
waveform channels or -8 for selected waveform channels. Hidden channels
cannot be selected.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
new% If present it sets the state: 0 for unselected, not 0 for selected. If omitted, the

state is unchanged. Attempts to change invisible channels are ignored.
Returns If you set chan% to a positive channel number the function returns the channel

state at the time of the call, 0 for unselected, 1 for selected. Otherwise the
function returns the number of selected channels at the time of the call.

See also:ChanList(), ChanOrder(), ChanVisible(), ChanWeight()

ChanSearch()

ChanSelect()

ChanShift() Alphabetical command reference ChanShow()

5-26

This shifts the data in specifed waveform channels of the current frame in the current
view a specified number of points right or left. The data is actually rotated so that points
that ‘fall off’ one end are shifted back in at the other. If the frame buffer is being shown,
the frame buffer data is used instead. All data points in the channels used are modified.

Func ChanShift(chan%|chan%[]|chan$, shift%);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
shift% The number of point to shift the data. A negative value shifts points left, a

positive value shifts points right.
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrAdd()

Display or hide a channel, or a list of channels, in a data or XY view. Turning on a
channel that is on has no effect. Turning on a channel that doesn't exist has no effect.

Func ChanShow(chan%|chan%[]|chan$ {,yes%});

chan% This is a channel to show or hide. A channel number (1 to n), or -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
yes% If this is non-zero it turns the specified channels on and if it is zero it turns them

off. If yes% is omitted no changes are made.
Returns If you set chan% to a positive channel number the function returns the channel

state at the time of the call, 1 for visible, 0 for invisible. Otherwise it returns -1.
See also:ChanList(), ChanVisible()

ChanShift()

ChanShow()

ChanSmooth() The Signal script language ChanSubDC()

5-27

This smooths the data in specifed waveform channels of the current frame in the current
view by replacing each point by the average of n adjacent points, where n can be 3 or 5.
If the frame buffer is being shown, the frame buffer data is used instead. All data points
in the channels used are modified.

Func ChanSmooth(chan%|chan%[]|chan$, width);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
width This sets the width to smooth over, either 3 or 5.
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrFilt()

This function subtracts any DC offset present in the data in specifed waveform channels
of the current frame in the current view. The DC offset is measured over the time range
specified, all data points in the channels are modified. If the frame buffer is being shown,
the frame buffer data is used instead.

Func ChanSubDC(chan%|chan%[]|chan$, start, finish);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
start The start position for measurement of the DC level.
finish The end position for measurement of the DC level.
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrSum()

ChanSmooth()

ChanSubDC()

ChanTitle$() Alphabetical command reference ChanValue()

5-28

This returns the title for a channel in a data or XY view. In a memory or XY views, or in
a sampling document view, it can also set the channel title. For XY views only, it can
also be used to get or set the Y axis title. In an XY view the channel titles are visible in
the Key window.

Func ChanTitle$(chan%{,new$})

chan% The channel number (1 to n). For an XY view only, a channel number of zero
can be used to access the Y axis title.

new$ If present, in a sampling document or memory view, this string holds the new
channel title. If the string is too long, it is truncated.

Returns The original title for the channel. If the channel does not exist, the function does
nothing and returns an empty string

See also:ChanUnits$(), XTitle$(), XYKey(), YAxis()

This returns the units for a waveform channel in a data view or the Y axis units in an XY
view. In a memory, XY, or sampling document view, it can also set the units.

Func ChanUnits$(chan%{,new$})

chan% A channel number (1 to n). This is ignored in an XY, where it operates on the Y
axis units only.

new$ If present, in a sampling document, XY or memory view, this string holds the
new channel title. If the string is too long, it is truncated.

Returns It returns the original units for the channel. If the channel does not exist or is not
of a suitable type, the function does nothing and returns an empty string.

See also:ChanTitle$(), XUnits$(), YAxis()

This returns the value on a given channel at a given position. It returns a value in the y
axis units of the channel display mode. If the display mode has no y axis the value is the
x axis position of the next item on the channel.
This returns the value corresponding to an x axis value. Use the View(v,c).[bin]
notation or BinToX(bin) to access view data by bin number.

Func ChanValue(chan%, pos {,&data%{,mode%{,binsz}}})

chan% A channel number (1 to n).
pos The x axis position for which the value is needed.
data% This is returned as 1 if there was data at the position, 0 if there was not. For

example on a waveform channel with time on the x axis, if there was no
waveform point within BinSize(chan%) of the time set by pos, this would be
set to 0.

mode% This will have no effect for a waveform channel. If present for a marker
channel, this sets the display mode to use for extracting a value from a view. If
an inappropriate mode is requested or if mode% is absent, the actual display
mode is used. The modes are:
0 The current mode for the channel. Any additional arguments are ignored.
1 Dots mode for markers, returns the position of the marker at or after pos.
2 Lines mode for markers, result is the same as mode 1.
3 Rate mode for markers. If the binSz argument is present it sets the width of

each bin otherwise the bin width is set to 1.0.

ChanTitle$()

ChanUnits$()

ChanValue()

ChanVisible() The Signal script language ChanWeight()

5-29

binSz If present, when mode% specifies rate mode for markers, this sets the width of
the rate histogram bins in x axis units.

Returns It returns the value or zero if no data is found. For display modes with a y axis,
if there is no data within BinSize(chan%) of the position, the value is zero.
This is the same value returned by the Cursor Values menu for the channel

If data% is not provided any error stops the script. Errors include: no current window,
current window not a data view, no data at pos, and pos beyond range of x axis. If
data% is present, errors cause data% to be set to 0.

For example, to get data value on channel 1 at the position of the cursor number 1 in the
view on data file, mydata.cfs.
vdata%:=ViewFind("mydata.cfs"); 'view handle for data
FrontView(vdata%); 'focus on the data window
ampl:=ChanValue(1,Cursor(1)); 'get data value at cursor

See also:BinToX(), Cursor(), ChanMeasure(), DrawMode(), Interact(),
View(v,c).[]

This returns the show state of the channel as 1 if the channel is visible and 0 if it is not. If
you use a silly channel number, the result is 0 (not displayed).

Func ChanVisible(chan%);

chan% The channel number (1 to n) to report on.
Returns 1 if the channel is displayed, 0 if it is not.
See also:ChanShow()

This function sets the relative vertical space to give a channel or a list of channels. The
standard vertical space corresponds to a weight of 1. When Signal allocates vertical
space, channels are of two types: channels with a y axis and channels without a y axis.
Signal calculates how much space to give each channel type assuming all channels have
a weight of 1. Then the actual space allocated is proportional to the standard space
multiplied by the weight factor. This means that if you increase the weight of one
channel, all other channels get less space in proportion to their original space.
Func ChanWeight(cSpc{, new});

cSpc The specification for the list of channels to process. See the Script language
syntax chapter for a definition of channel specifiers.

new If present, a value between 0.001 and 1000.0 that sets the weight for all the
channels in the list. Values outside this range are limited to the range.

Returns The command returns the channel weight of the first channel in the list.
See also:ChanOrder(), ViewStandard()

ChanVisible()

ChanWeight()

ChanZero() Alphabetical command reference Colour()

5-30

This sets to zero the data in specifed waveform channels of the current frame in the
current view. If the frame buffer is being shown, the frame buffer data is used instead.
All data points in the channels used are modified.

Func ChanZero(chan%|chan%[]|chan$);

chan% This sets the channel to use. This can be the channel number (1 to n), -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
Returns 0 or a negative error code.
See also:ShowBuffer(), ChanShow(), ChanZero(), ArrConst()

This function converts a code to a character and returns it as a single character string.

Func Chr$(code%);

code% The code to convert. Codes that have no character representation will produce
unpredictable results when printed or displayed.

See also:Asc(), %c format in Print()

This function gets and/or sets the colours of items. Colours are set in terms of the colour
palette displayed in the Colour menu, not directly in terms of colours. XY view channels
are coloured using XYColour().

Func Colour(item% {,col%});

item% This is the item number, being the position of the item in the Colour menu, as
follows:
1 Data view background 11 Rate histogram fill
2 Waveform as line 12 Text labels
3 Waveform as dots 13 Cursors & cursor labels
4 Waveform as skyline 14 Controls (not used)
5 Waveform as histogram 15 Data display grid
6 Waveform histogram fill 16 Axis markings and text labels
7 Markers as dots 17 Tagged frames background
8 Makers as lines 18 Frame list traces
9 Marker text 19 XY view background
10 Rate histogram 20 Error bar colour

col% If present, this sets the index of the colour in the colour palette to be applied to
the item. There are 40 colours in the palette, numbered 0 to 39. The first 7
colours in the palette are set to grey scales from black to white, and the rest can
be selected or mixed from basic colours.

Returns The index into the colour palette of the colour of the item at the time of the call.
See also:PaletteGet(), PaletteSet(), XYColour()

ChanZero()

Chr$()

Colour()

CondFilter() The Signal script language CondFilterList()

5-31

The Cond… family of commands can be used to control external signal conditioners
through the serial ports. At the time of writing, these commands support the CED 1902
programmable signal conditioner and the Axon Instruments CyberAmp. Other
conditioners may be added in the future.

These commands do not define which serial port is used by the conditioner nor the type
of conditioner supported. When you install Signal you must choose the conditioner type
and set the serial port.

All these commands require a port% argument. This is the physical waveform input port
number that the conditioner channel is attached to. It is not the channel number in a view.

You can access the built-in interactive support for the conditioner from the sampling
configuration channel setup dialog. This can be a useful short-cut to getting the lists of
gains and signal sources available on your conditioner(s).

See individual commands and CondSet() for further details of conditioner operation.
See also:CondFilter(), CondFilterList(), CondGain(), CondGainList(),

CondGet(), CondOffset(), CondOffsetLimit(), CondRevision$(),
CondSet(), CondSourceList(), CondType()

This sets or gets the frequency of low-pass or high-pass filter of the signal conditioner.
See CondXXX() and CondSet()for further details of conditioner operation.

Func CondFilter(port%, high% {,freq});

port% The waveform port number that the conditioner channel is connected to.
high% This selects which filter to set or get: 0 for low-pass, 1 for high-pass.
freq If present, this sets the desired cut-off frequency of the selected filter. See the

CondSet() description for more information. Set 0 for no filtering. If omitted,
the frequency is not changed. The high-pass frequency must be set lower than
the frequency of the low-pass filter, if not the function returns a negative code.

Returns The cut-off frequency of the selected filter at the time of call, or a negative error
code. A return value of 0 means that there is no filtering of the type selected.

See also:CondFilterList(), CondSet(), CondXXX()

This function gets a list of the possible filter frequencies of the conditioner. See
CondXXX() and CondSet()for further details of conditioner operation.

Func CondFilterList(port%, high%, freq[]);

port% The waveform port number that the conditioner channel is connected to.
high% Selects which filter to get: 0 for low-pass, 1 for high-pass.
freq[] an array of reals holding the cut-off frequencies of the selected filter. A value of

0 means no filtering of the type selected.
Returns The number of filtering frequencies of the conditioner or a negative error code.
See also:CondFilter(), CondSet(), CondXXX()

CondXXX()
Conditioner
commands

CondFilter()

CondFilterList()

CondGain() Alphabetical command reference CondGet()

5-32

This sets and gets the gain of the signal passing through the signal conditioner. See
CondXXX() and CondSet()for further details of conditioner operation.

Func CondGain(port% {,gain});

port% The waveform port number that the conditioner channel is connected to.
gain If present this sets the ratio of output signal to the input signal. If this argument

is omitted, the current gain is returned. The conditioner will set the nearest gain
it can to the requested value.

Returns the gain at the time of call, or a negative error code.
See also:CondSet(), CondXXX()

This function gets a list of the possible gains of the conditioner. for the selected signal
source. See CondXXX() and CondSet()for further details of conditioner operation.

Func CondGainList(port%, gain[]);

port% The waveform port number that the conditioner channel is connected to.
gain[] An array of reals holding the conditioner gains for the selected signal source. If

a conditioner (for example, 1902) has a fixed set of gains, this is the set of gain
values. If the conditioner supports continuously variable gain, the first two
elements of this array hold the minimum and the maximum values of the gain.

Returns The number of gain values of the conditioner which has a fixed set of gains or 2
if the conditioner has continuously variable gain. In the case of an error, a
negative error code is returned.

See also:CondGain(), CondSet(), CondXXX()

This function gets the input signal source of the signal conditioner, and the conditioner
settings for gain, offset, filters and coupling. The settings are returned in arguments
which must all be variables. See CondXXX() and CondSet()for further details of
conditioner operation.

Func CondGet(port%, &in%, &gain, &offs, &low, &hi, ¬ch%, &ac%);

port% The waveform port number that the conditioner channel is connected to.
in% Returned as a zero-based index number of the input signal source of the

conditioner.
gain Returned as the ratio of output signal amplitude to the input signal amplitude

(ignoring effects due to filtering).
offs a value added to the input waveform to move it into a more useful range. Offset

is specified in user units and is only meaningful when DC coupling is used.
low Returned as the cut-off frequency of the low-pass filter. A value of 0 means that

there is no low-pass filtering enabled on this channel.
hi Returned as the cut-off frequency of the high-pass filter. A value of 0 means

that there is no high-pass filtering enabled on this channel.
notch% returned as 0 if the mains notch filter is off, and 1 if it is on.
ac% Returned as 1 for AC or 0 for DC coupling.
Returns 0 if all well or a negative error code.
See also:CondSet(), CondXXX()

CondGain()

CondGainList()

CondGet()

CondOffset() The Signal script language CondRevision$()

5-33

This sets or gets the offset added to the input signal of the signal conditioner. See
CondXXX() and CondSet()for further details of conditioner operation.

Func CondOffset(port% {,offs});

port% The waveform port number that the conditioner channel is connected to.
offs The value to add to the input waveform of the conditioner to move it into a more

useful range. If this argument is omitted, the current offset is returned. The
conditioner will set the nearest value it can to the requested value.

Returns the offset at the time of call, or a negative error code.
See also:CondOffsetLimit(), CondSet(), CondXXX()

This function gets the maximum and minimum values of the offset range of the
conditioner for the currently selected signal source. See CondXXX() and CondSet()for
further details of conditioner operation.

Func CondOffsetLimit(port%, offs[]);

port% The waveform port number that the conditioner channel is connected to.
offs[] This is an array of real numbers returned holding the minimum (offs[0]) and

the maximum (offs[1]) values of the offset range of the conditioner for the
currently selected signal source.

Returns 2 or a negative error code.
See also:CondOffsetLimit(), CondSet(), CondXXX()

This function returns the name and version of the signal conditioner as a string or a blank
string if there is no conditioner for the port.

Func CondRevision$(port%);

port% The waveform port number that the conditioner channel is connected to.
Returns This returns a string describing the signal conditioner. The strings defined so far

are: “1902ssh”, where ss is the 1902 ROM software version number and h is
the hardware revision level; and “CYBERAMP 3n0 REV x.y.z” where n is 2 or
8. If there is no conditioner attached to the port it returns an empty string.

See also:CondType(), CondXXX()

CondOffset()

CondOffsetLimit()

CondRevision$()

CondSet() Alphabetical command reference CondSet()

5-34

This sets the input signal source, gain, offset, filters and coupling of the conditioner. All
values are requests. The actual values set will depend on the capabilities of the
conditioner. In all cases, the command sets the nearest value to the that requested. If it is
important to know what has actually been set you should read back the values with
CondGet()after setting them, or use the functions for reading specific values. See
CondXXX()for further details of conditioner operation.

Func CondSet(port%, in%, gain, offs {,low, high, notch%, ac%});

port% The waveform port number that the conditioner is connected to.
in% This is a zero-based index of the input signal source. A conditioner can have

several different signal sources, for example, the 1902 Mk III supports
Grounded, Single ended, Normal Diff, Inverted Diff, etc. Different
conditioners of the same type may have different sources. CondSourceList()
returns the whole list of the possible signal sources of your conditioner. You
select a signal source by setting in% to its index number in the list.

gain This is the desired ratio of output signal amplitude to the input signal amplitude
(ignoring the effect of any filtering). The actual gain depends on the capabilities
of the signal conditioner, see CondGainList(). The gain range may be altered
by the choice of signal source. For example, the 1902 Isolated Amp input has a
build-in gain of 100. The command sets the nearest gain to the requested value.

offs This is the desired value in user units to add to the input waveform to move it
into a more useful range. Offsets are only meaningful with DC coupling.
Different conditioners have different offset ranges, and the offset range may be
altered by the choice of signal source, see CondOffsetLimit(). The command
will set the nearest offset it can to the desired value.

low If present and greater than 0, it is the desired cut-off frequency of the low-pass
filter. Low-pass filters are used to reduce the high frequency content of the
signal, both to satisfy the sampling requirement, and in case where it is known
that no useful information is to be found in the signal above a certain frequency.
If omitted, or a value of 0, there is no low-pass filtering. The actual filter value
set depends on the capability of the signal conditioner.

high If present and greater than 0, it is a cut-off frequency of the high-pass filter.
High-pass filters are used to reduce the low-frequency content of the signal.
This frequency must be set lower than the frequency of the low-pass filter, if not
the function returns a negative code. If omitted, or set to 0, there is no high-pass
filtering.
Different signal conditioners have different ranges of frequency filtering. To
find out the currently set filter frequency, use CondFilter().
CondFilterList() returns the list of possible filter frequencies.

notch% Some signal conditioners have a mains-frequency notch filter (usually 50Hz or
60Hz) used to reduce the effect of mains interference on low level signals. This
filter will remove the fundamental 50Hz or 60Hz signal, it will not remove
higher harmonics (for example 150Hz). If notch% is present with a value
greater than 0, the notch filter is on. If omitted, or a value of 0, the notch filter is
off.

ac% The 1902 supports both AC and DC signal coupling. If you set AC coupling you
should probably set the offset to zero too. If ac% is present with a value greater
than 0, the signal conditioner is AC coupled. If omitted or 0, the signal
conditioner is DC coupled.

Returns 0 if all well or a negative error code.
See also:CondGet(), CondXXX()

CondSet()

CondSourceList() The Signal script language Cos()

5-35

This function gets a list of the possible signal source names of the conditioner, or the
specific signal source name with the given index number. See CondXXX() and
CondSet()for further details of conditioner operation.

Func CondSourceList(port%, src$[]|src$ {,in%});

port% The waveform port number that the conditioner channel is connected to.
src$ This is either a string variable or an array of strings that is returned holding the

name(s) of signal sources. Only one name is returned per string.
in% This argument lets you select an individual source or all sources. If present and

greater than or equal to 0, it is the zero-based index number of the signal source
to return. In this case, only one source is returned, even if src$ is an array.
If this argument is omitted and src$ is a string, then the first source is returned
in it. If src$[] is an array of strings, as many sources as will fit in the string
array are returned.

Returns If in% is greater than or equal to 0, it returns 1 or a negative error code. If in% is
omitted, it returns the number of available signal sources or a negative error
code.

See also:CondSet(), CondXXX()

This function returns the type of the signal conditioner.

Func CondType (port%);

port% The waveform port number that the conditioner channel is connected to.
Returns 0 for no conditioner or it is not the type set when installing, 1 for a CED 1902

and 2 for an Axon Instruments CyberAmp.
See also:CondRevision$(), CondXXX()

This calculates the cosine of one or an array of angles in radians.
Func Cos(x|x[]);

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2pi to 2pi.

Returns When the argument is an array, the function replaces the array by the cosines of
all the points and returns either a negative error code or 0 if all was well. When
the argument is not an array the function returns the cosine of the angle.

See also:ATan(), Sin(), Tan()

CondSourceList()

CondType()

Cos()

Cursor() Alphabetical command reference CursorActiveGet()

5-36

This function returns the x axis position of a vertical cursor, and can also move the cursor
to a new position.
Func Cursor(num% {,where})

num% The cursor number to use.
where If present, the new position of the cursor. If the new position is out of range of

the x axis, it is limited to the x axis.
Returns The old cursor position or 0 if the cursor doesn't exist.
Examples:
Cursor(1,2.0); 'Set cursor 1 at position 2.0
where := Cursor(1); 'Get cursor position

See also:ChanValue(), CursorDelete(), CursorLabel(),
CursorLabelPos(), CursorNew(), CursorRenumber(),
CursorSet(), HCursor()

This command returns the parameters used by an active cursor in searching for a feature
in the view data. Note that the use of some parameters varies according to the cursor
mode set.
Func CursorActiveGet(num%, chan%, start|start$, end|end$ {, thresh

{, hyst {, width{, def|def$}}}})

num% The cursor number.
chan% Returned holding the number of thr channel on which the cursor operates.
start Returned holding the start time for the feature search.
start$ Returned holding the start time for the search. If the string form of this

parameter is used, then search limits such as “XLow() + 0.2” can be correctly
returned.

end Returned holding the end time for the search.
end$ Returned holding the end time for the search as a string. If the string form of

start is used, the string form of end must also be used, and vice versa.
thresh Returned holding the threshold level used in the feature search.
hyst Returned holding the hysteresis value used in the feature search.
width Returned holding the slope width value used in the feature search.
def Returned holding the default position if the search fails
def$ Returned holding the default position as a string.
Returns Zero.
See also:Cursor(), CursorDelete(), CursorMode(), CursorNew(),

CursorActiveSet()

Cursor()

CursorActiveGet()

CursorActiveSet() The Signal script language CursorExists()

5-37

This command sets the parameters used by an active cursor in searching for a feature in
the view data. Note that the use of some parameters varies according to the cursor mode
set.
Func CursorActiveSet(num%, chan%, start|start$, end|end$ {, thresh

{, hyst {, width{, def|def$}}}})

num% The cursor number.
chan% The number of the channel on which the cursor operates.
start The start time for the feature search.
start$ The start time for the search expressed as a string. If the string form of this

parameter is used, then search limits such as “XLow() + 0.2” can be used.
end The end time for the search.
end$ The end time for the search as a string. If the string form of start is used, the

string form of end must also be used, and vice versa.
thresh The threshold level used in the feature search.
hyst The hysteresis value used in the feature search.
width The slope width value used in the feature search.
def The default position if the search fails
def$ The default position as a string.
Returns Zero.
See also:Cursor(), CursorDelete(), CursorMode(), CursorNew(),

CursorActiveGet()

Deletes a cursor. It is not an error to delete an unknown cursor (which has no effect).
Func CursorDelete({num%})

num% The cursor number to delete, or -1 to delete all cursors. If omitted, the highest
numbered cursor is deleted.

Returns the number of the cursor deleted or 0 if no cursor was deleted.
See also:Cursor(), CursorLabel(), CursorLabelPos(), CursorNew(),

CursorRenumber(), CursorSet(), HCursorDelete()

This function tests if a given vertical cursor exists at the time of the call.
Func CursorExists(num%)

num% The cursor number.
Returns 1 if the cursor exists, 0 if it does not.
See also:Cursor(), CursorDelete(), HCursorExists()

CursorActiveSet()

CursorDelete()

CursorExists()

CursorLabel() Alphabetical command reference CursorMode()

5-38

This command sets (or gets) the cursor label style for the current view. Cursors can be
annotated with a position and/or the cursor number, or with a user-defined string:
Func CursorLabel({style%{, num%{, form$}}})

style% Label styles are: 0=None, 1=Position, 2=Number, 3=Both, 4=User-defined.
Unknown styles cause no change. Style 4 is used with a format string.

num% Used with style 4 only. A value of 0 selects all cursors, 1 upwards selects one
cursor.

form$ A string to label the cursors. It has replaceable parameters %p, %n and
%v(chan) for position, number and channel value (replace chan with the
channel number whose value you require). %w.dp and %w.dv(chan) formats
are allowed where w and d are numbers that set the field width and number of
decimal places.

Returns The current style of cursor 1 before any change. If style% is omitted, the
current cursor style is not changed.

See also:Cursor(), CursorDelete(), CursorLabelPos(), CursorNew(),
CursorRenumber(), CursorSet(), HCursorLabel()

This lets you set and read the position of the cursor label.

Func CursorLabelPos(num% {,pos});

num% The cursor number. If the cursor does not exist the function does nothing and
returns -1.

pos If present, the command sets the label position as the percentage of the distance
from the top of the cursor. Out of range values are set to the appropriate limit.

Returns The cursor position before any change was made, or -1 if the cursor does not
exist.

See also:Cursor(), CursorDelete(), CursorLabel(), CursorNew(),
CursorRenumber(), CursorSet(), HCursorLabelPos()

This lets you set and read the a cursor mode.

Func CursorMode(num% {,mode%});

num% The cursor number. If the cursor does not exist the function does nothing and
returns -1.

Mode% If present, the command sets the new cursor mode. The possible values of
mode% are (see the main active cursor documentation for a description of the
modes):
0 Static 1 Maximum 2 Minimum
3 Maximum excursion 4 Peak 5 Trough
6 Threshold 7 +ve threshold 8 -ve threshold
9 Max slope 10 Min slope 11 Peak in slope
12 Trough in slope 13 Slope threshold 14 Slope +ve thresh.
15 Slope -ve thresh. 16 Abs max slope 17 Turning point
18 percentage slope 19 Repolarisation % 20 Expression

Returns The cursor mode before any change was made, or -1 if the cursor does not exist.
See also:Cursor(), CursorActiveGet(), CursorActiveSet(), CursorNew(),

CursorSet()

CursorLabel()

CursorLabelPos()

CursorMode()

CursorNew() The Signal script language CursorSet()

5-39

This command adds a new cursor to the view at the designated position. A new cursor is
created in Static mode (not active).
Func CursorNew({where{, num%}})

where Where to position the cursor. In a file or memory view it is a time in seconds. In
an XY view it is in x axis units. The position is limited to the x axis range. If the
position is omitted, the cursor is placed in the middle of the window.

num% If this is omitted, or set to -1, the lowest numbered free cursor is used. If this is a
cursor number, that cursor is created. This must be a legal cursor number or -1.

Returns It returns the cursor number as an integer, or 0 if all cursors are in use.

See also:Cursor(), CursorDelete(), CursorLabel(), CursorLabelPos(),
CursorRenumber(), CursorSet(), HCursorNew()

This command renumbers the cursors from left to right in the view. There are no
arguments.

Func CursorRenumber();

Returns The number of cursors found in the view.
See also:Cursor(), CursorDelete(), CursorLabel(), CursorLabelPos(),

CursorNew(), CursorSet(), HCursorRenumber()

This command deletes any existing vertical cursors, then positions a specified number of
new cursors, equally spaced in the view and numbered in order from left to right. If any
positions are given, they are applied. The cursor labelling style is not changed.

Proc CursorSet(num% {,where1 {,where2 {,where3 {,where4}}}})

num% The number of cursors in the range 0 to the maximum allowed. 0 turns off all
the cursors. It is a run-time error to ask for more than the maximum or less than
0 cursors.

where Optional cursor positions in x axis units. Positions that are out of range are set to
the nearest valid position.

Examples:
CursorSet(0); 'Delete all cursors
CursorSet(2,20,30); 'remove cursors, set 2 at 20 and 30 on x axis.

See also:BinToX(), Cursor(), CursorDelete(), CursorLabel(),
CursorLabelPos(), CursorNew(), CursorRenumber()

CursorNew()

CursorRenumber()

CursorSet()

Date$() Alphabetical command reference Date$()

5-40

This function creates a string containing the date. If no arguments are supplied, a string is
returned showing the day, month and year in a format specified by the operating system
settings. To obtain the date as numbers, use the TimeDate() function. For the purpose
of this description, we assume that today’s date is Wednesday 1 April 1998, the system
language is English and the system date separator is “/”. Warning: This command does
not exist in version 1.00.

Func Date$({dayF%, {monF%, {yearF%, {order%, {sep$}}}}});

dayF% This sets the format of the day field in the date. This can be written as a day of
the week or the day number in the month, or both. If this argument is omitted,
the value 2 is used. The options are:
1 Show day of week: “Wednesday”.
2 Show the number of the day in the month with leading zeros: “01”.
4 Show the day without leading zeros: “1”.
8 Show abbreviated day of week: “Wed”.
16 Show week day name first, regardless of the order% field.
Use 0 for no day field. Add the numbers for multiple options. For example, to
return “Wed 01”, we would enter 11 (1+2+8) as the dayF% argument.
If you add 4, 2 is ignored. If you add 8 or 16, 1 is added automatically. If you
request both the week day name and the number of the day, the name appears
before the number.

monF% The format of the month field. This can be returned as either a name or a
number. If this argument is omitted, the value 3 is used. The options are:
0 No month field.
1 Show name of the month: “April”.
2 Show number of month: “04”
3 Show an abbreviated name of month: “Apr”
4 Show number of month with no leading zeros: “4”

yearF% The format of the year field. This can be returned as a two or four digit year.
0 No year is shown
1 Year is shown in two digits: “98”.
2 Year is shown in two digits with an apostrophe before it: “’98”.
3 Year is shown in four digits: “1998”.

order% The order that the day, month and year appear in the string. If this argument of
omitted, the value 0 is used.
0 Operating system settings
1 month/day/year
2 day/month/year
3 year/month/day

sep$ This string appears between the day, month and year fields as a separator. If this
string is empty or omitted, Signal supplies a separator based on the system
settings.

For example, Date$(20, 1, 2, 1, " ") returns "Wednesday April 1 ’98". As
20 is 16+4, we have the day first, even through the order% argument places the day in
between the month and the year. Date$() returns "01/Apr/98".

See also:Seconds(), TimeDate(), Time$()

Date$()

Debug() The Signal script language DelStr$()

5-41

This function can be used to open the debug window so you can step through your script,
set breakpoints and display and edit variables. It can also be used to control access to the
debugger by the user.

Proc Debug({msg$|opt%});

msg$ When used with no arguments, or with a string argument, this function stops the
script as though the Esc key had been pressed or a break-point reached. The
debug toobar is shown if it was hidden and, if present, the msg$ string is
displayed in the debug window.

opt% When used with an integer argument, the function controls the ability of the user
to break into the debugger by pressing Esc. Set opt% to 0 to disable Esc, 1 to
enable it. Each time a script starts the Esc key is enabled, so you should use this
as the first instruction in your script if you want to be certain the user cannot
break out.

The opt% form of the command was included for use in situations such as student use,
where it is important that the user cannot break out of a script by accident. It is advisable
to test your script carefully and save it to disk before disabling user breaks; once disabled
you cannot stop a looping script except by forcing a fatal error.

See also:Eval()

This function deletes the current frame from the current data view. Frames can only be
deleted if they were appended and have not yet been saved to disk. It is not possible to
delete the last frame in a memory view.

Func DeleteFrame();

Returns Zero or a negative error code.
See also:AppendFrame(), FrameCount(), FrameFlag(), FrameTag()

This function removes a substring from a string.

Func DelStr$(text$, index%, count%);

text$ The string to remove characters from. This string is not changed.
index% The start point for the deletion. The first character is index 1. If this is greater

than the length of the string, no characters are deleted.
count% The number of characters to delete. If this would extend beyond the end of the

string, the remainder of the string is removed.
Returns DelStr$() returns the original string with the indicated section deleted.

See also:InStr(), LCase$(), Len(), Mid$(), Right$(), UCase$()

Debug()

DeleteFrame()

DelStr$()

DelStr$() Alphabetical command reference DelStr$()

5-42

You can define your own dialogs to get information from the user. You can define
dialogs in a simple way, where each item of information has a prompt, and the dialog is
laid out automatically, or you can build a dialog by specifying the position of every item.
A simple dialog has the structure shown in the diagram:

The exact appearance of the dialog depends on
the system. The dialog is arranged in terms of
items. Unless you specifically request
otherwise, the dialog items are stacked
vertically above each other.

The dialog has a title of your choosing at the
top. There are OK and Cancel buttons at the
bottom of the dialog. When the dialog is used,
pressing the Enter key is equivalent to clicking
on OK.

This form of dialog is very easy to program; there is no need to specify any position or
size information, the system works it all out. Some users require more complicated
dialogs, with control over the field positions. This is also possible, but more complicated
to program. You are allowed up to 256 fields in a dialog.

In the more complex case, you specify the position (and usually the width) of the box
used for user input. This allows you to arrange data items in the dialog in any way you
choose. It requires more work as you must calculate the positions of all the items.

Positions within a dialog are set in dialog units. In the x (horizontal) direction, these are
in multiples of the maximum width of the characters ‘0’ to ‘9’. In the y (vertical)
direction, these are in multiples of the line spacing used for simple dialogs. Unless you
intend to produce complex dialogs with user-defined positions, you need not be
concerned with dialog units at all.

An example script DlgMake automates the creation of your dialog commands.

The example dialog shown above could be created by this code:

var ok%, item1%, item2%, item3, item4$, item5;
DlgCreate ("Title for the dialog"); 'start new dialog
DlgInteger(1,"item 1 prompt",0,10); 'integer, range 0-10
DlgChan (2,"item 2 prompt",1); 'Waveform channel list
DlgReal (3,"item 3 prompt",1.0,5.0); 'real, range 1.0-5.0
DlgString (4,"More prompts...",6); 'string, any characters
DlgReal (5,"item n prompt",-10.0,0.0); 'real, range -10-0
item4$:= "more...";
ok% := DlgShow(item1%, item2%, item3, item4$, item5); 'show dialog

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgLabel(), DlgList(), DlgReal(), DlgShow(), DlgString(),
DlgText()

Dialogs

OKCancel

Title for the dialog

Item 1 prompt Item 1

Item 2 prompt ... Item 2

Item 3 prompt Item 3

More prompts... more...

Item n prompt Item n

Dialog units

Dialog building

Dialog example

DlgChan() The Signal script language DlgChan()

5-43

You often need to select a channel of a particular type from a view. This function defines
a dialog entry that lists channels that meet a specification. For simple dialogs, the wide,
x and y arguments are not used. Channel lists are checked or created when the
DlgShow() function runs. If the current view is not a data or XY view, the list will be
empty.

Proc DlgChan(item%, text$|wide, mask%|list%[]{, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display as a prompt.
wide This is an alternative to the prompt. It sets the width of the box in which the user

selects a channel. If the width is not given the number entry box has a default
width of the longest channel name in the list or 12, whichever is the smaller.

mask% This is an integer code that determines the channels to be displayed, it is ignored
for XY views. You can select channels of particular types by adding together
the following codes:

1 Waveform channels
2 Marker channels

If none of the above values are used, then the list includes all channels. The
following codes can be added to exclude channels from the list created above:

1024 Exclude visible channels
2048 Exclude hidden channels
4096 Exclude selected channels
8192 Exclude non-selected channels

Finally, adding the following codes allows special entries to be added to the list:

131072 Add None as an entry in the list (returns 0)
262144 Add All channels as an entry in the list (returns -1)
524288 Add All visible channels as an entry in the list (returns -2)

1048576 Add Selected as an entry in the list (returns -3)

list% As an alternative to a mask, you can pass in a channel list (as constructed by
ChanList()). This must be an array of channels, with the first element of the
array holding the number of channels in the list.

x If omitted or zero, the selection box is right justified in the dialog box, otherwise
this sets the position of the left end of the channel selection box.

y If omitted, this takes the value of item%. It is the position of the bottom of the
channel selection box.

The variable passed to DlgShow() for this field should be an integer. If the variable
passed in holds a channel number in the list, the field shows that channel, otherwise it
shows the first channel in the list (usually None). The result from this field in
DlgShow() is a channel number, or 0 if None is selected, -1 if All channels is
selected, -2 if All visible channels is selected or -3 if Selected is chosen.

See also:DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),
DlgList(), DlgReal(), DlgShow(), DlgString(), DlgText()

DlgChan()

DlgCheck() Alphabetical command reference DlgCreate()

5-44

This defines a dialog item that is a check box (on the left) with a text string to its right.
For simple dialogs, the x and y arguments are not used.

Proc DlgCheck(item%, text${, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display to the right of the check box.
x,y The position of the bottom left hand corner of the check box. If omitted, x is set

to 1 and y to item%. When used without these fields, this function behaves
exactly like the simple dialog functions, and can be mixed with them.

When DlgShow() is used, the box is checked if the variable passed in is non-zero and
unchecked if it is zero. The variable passed should be an integer and is returned as 0 for
unchecked or 1 for checked.

See also:DlgChan(),DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText()

This function starts the definition of a dialog. It also kills off any previous dialog that
might be partially defined. For simple dialogs, the optional arguments are not used.

Func DlgCreate(title$ {,x ,y ,wide ,high ,help%|help$});

title$ A string holding the title for the dialog.
x,y Optional, taken as 0 if omitted. The position of the top left hand corner of the

dialog. The positions are in percentages of the screen size. The value 0 means
centre the dialog. Values out of the range 0 to 95 are limited to the range 0 to
95.

wide The width of the dialog in dialog units. If this is omitted, or set to 0, Signal
works out the width for itself, based on the items in the dialog.

high The height of the dialog in dialog units. If omitted, or set to 0, Signal works it
out for itself, based on the dialog contents.

help This is a string or numeric identifier that identifies the help page to be displayed
if the user requests help when the dialog is displayed. This argument is ignored
if your version of Signal doesn't support help.

Returns This function returns 0 if all was well, or a negative error code.
For simple use, only the first argument is needed. The remainder are for use with more
complicated menus where precise control over menu items is required.

In the functions that set an item with a prompt, if you precede a character in the prompt
with an ampersand &, the following character is used by Windows as a short-cut key to
move to the field and the character is underlined. Ampersand characters are ignored on
systems that do not use this mechanism.

See also:DlgChan(), DlgCheck(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText()

DlgCheck()

DlgCreate()

Use of & in prompts

DlgInteger() The Signal script language DlgLabel()

5-45

This function defines a dialog entry that edits an integer. The numbers you enter may not
contain a decimal point. For simple dialogs, the wide, x and y arguments are not used.

Proc DlgInteger(item%, text$|wide, lo%, hi%{, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display as a prompt. Any text is always displayed left justified in the

dialog box.
wide This is an alternative to the prompt. It sets the width of the box in which the user

types the integer. If the width is not given the number entry box has a default
width of 11 digits.

lo% The start of the range of acceptable numbers.
hi% The end of the range of acceptable numbers.
x If omitted or zero, the number entry box is right justified in the dialog box,

otherwise this sets the position of the left end of the number entry box.
y If omitted, this takes the value of item%. It is the position of the bottom of the

number entry box.
The variable passed into DlgShow() can be an integer, or a real number. The field will
start with the value of the variable if it is in the range, otherwise the value is limited to
the nearest end of the range. A real number will be truncated.

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText()

This function sets an item that has no editable part, that is an item used as a label. For
simple dialogs, the wide, x and y arguments are not used. You can add text to a dialog
without using an item number with DlgText().

Proc DlgLabel(item%, text${, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display.
x If omitted, the text is left justified in the dialog box, otherwise this sets the

position of the left end of the text in the dialog.
y If omitted, this takes the value of item%. It is the position of the bottom of the

text in the dialog.
When you call DlgShow(), you must provide a dummy variable for this field. The
variable is not changed and can be of any type, but must be present.

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText()

DlgInteger()

DlgLabel()

DlgList() Alphabetical command reference DlgReal()

5-46

This defines a dialog item for a one of n selection. Each of the possible items to select is
identified by a string. For simple dialogs, the wide, x and y arguments are not used.

Proc DlgList(item%, text$|wide, list$[]|str${, n%{, x{, y}}});

item% This sets the item number in the dialog.
text$ The text to display as a prompt.
wide This is an alternative to the prompt. It sets the width of the box in which the user

selects an item. If the width is not given the number entry box has a default
width of the longest string in the list or 18, whichever is the smaller.

list$ An array of strings. These hold the items to be presented in the list. Each string
should not be over 18 characters long, or they will be truncated.

str$ An alternative way to define the items to be presented in the list. The single
string holds all of the items, items are separated by the vertical bar character (|).
Again, items should not be more than 18 characters long.

n% The number of entries in the list. If this is omitted, or if it is larger than the
array, then the size of the array is used. If the str$ form of the command is
used, the number of items in the string sets the maximum number.

x If omitted or zero, the selection box is right justified in the dialog, otherwise this
sets the position of the left end of the selection box.

y If omitted, this takes the value of item%. It is the position of the bottom of the
list selection box.

The result obtained from this is the index into the list of the list element chosen. The first
element is number 0. The variable passed to DlgShow() for this item should be an
integer. If the value of the variable is in the range 0 to n-1, this sets the item to be
displayed, otherwise the first item in the list is displayed.

The following example shows how to set a list:

var list$,ok%,which%:=0; 'string list, test for OK, result
list$:= "zero|one|two|three"; 'these are the choices
 DlgCreate("List example"); 'Start the dialog
DlgList(1,"Make your choice", list$);
ok% := DlgShow(which%); 'Display dialog, wait for user

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgLabel(), DlgReal(), DlgShow(), DlgString(), DlgText()

This function defines a dialog entry that edits a real number. For simple dialogs, the
wide, x and y arguments are not used.

Proc DlgReal(item%, text$|wide, lo, hi{, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display as a prompt. If present, the prompt is always left justified in

the dialog.
wide This is an alternative to the prompt. It sets the width of the box in which the user

types a real number. If the width is not given the number entry box has a default
width of 12 digits.

lo,hi The range of acceptable numbers.
x If omitted or zero, the number entry box is right justified in the dialog box,

otherwise this sets the position of the left end of the number entry box.

DlgList()

DlgReal()

DlgShow() The Signal script language DlgString()

5-47

y If omitted, this takes the value of item%. It is the position of the bottom of the
number entry box.

The variable passed into DlgShow() should be a real number. The field will start with
the value of the variable if it is in the range, otherwise the value is limited to the nearest
end of the range.

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgLabel(), DlgList(),DlgShow(), DlgString(), DlgText()

This function displays the dialog you have built and returns values from the fields
identified by item numbers, or makes no changes if the user kills the dialog with the
Cancel button. Once the dialog has been dismissed, all information about it is lost. You
must create a new dialog before you can use this function again.

Func DlgShow(&item1|item1[], &item2|item2[], &item3|item3[] ...);

Returns The function returns 0 if the user clicked on the Cancel button, or 1 if the user
clicked on OK.

For each item that you have defined, you must provide a variable of a suitable type to
receive the result. It is an error to pass the wrong type of variable, except in the case of
an integer field which you can return into a real or an integer variable. Items created with
DlgLabel() must have a variable too, even though it is not changed.

These variables also set the initial values of the fields for editing. If an initial value is out
of range or not allowed, the value is changed to the nearest legal value. In the case of a
string, illegal characters are deleted before display.

In addition to passing a simple variable, you can pass an array. An array with n elements
matches n items in the dialog. The array type must match the items.

If the user clicks on OK, all the variables are updated to their new values. If the user
clicks on Cancel, the variables are not changed.

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgLabel(), DlgList(), DlgReal(), DlgString(), DlgText()

This defines a dialog entry that edits a text string. You can limit the characters that you
will accept in the string. For simple dialogs, the wide, x and y arguments are not used.

Proc DlgString(item%, text$|wide, max%{, legal${, x{, y}}});

item% This sets the item number in the dialog.
text$ The text to display as a prompt.
wide This is an alternative to the prompt. It sets the width of the box in which the user

types the string. If the width is not given the number entry box has a default
width of max% or 20, whichever is the smaller.

max% The maximum number of characters allowed in the string.
legal$ A list of acceptable characters. See Input$() for a full description. If this is

omitted, or an empty string, all characters are allowed.
x If omitted or zero, the string entry box is right justified in the dialog box,

otherwise this sets the position of the left end of the string entry box.

DlgShow()

DlgString()

DlgText() Alphabetical command reference DrawAll()

5-48

y If omitted, this takes the value of item%. It is the position of the bottom of the
string entry box.

The result from this operation is a string of legal characters. The variable passed to
DlgShow() should be a string. If the initial string set in DlgShow() contains illegal
characters, they are deleted. If the initial string is too long, it is truncated.

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgLabel(), DlgList(), DlgReal(), DlgShow(), DlgText()

This function places non-editable text in the dialog box.

Proc DlgText(text$, x, y);

text$ A text string to place in the dialog.
x,y The position of the bottom left hand corner of the first character in the string, in

dialog units. Set x to 1 for the same label position as DlgLabel().
Note that this is different from DlgLabel() as it has no item number and so does not
require a variable in the DlgShow() function.

See also:DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgLabel(), DlgList(), DlgReal(), DlgShow(), DlgString()

This allows invalid regions in the current view to update. Draw() on a view that is up-to-
date should make no change. The view is not brought to the front.

Proc Draw({from {, size}});

from The left hand edge of the view in x axis units.
size The width of the view in x axis units.
With no arguments, Draw() updates invalid areas in the view. With one argument, the
view is scrolled to start at from. With two arguments, the width is set (unless it is
unchanged) and then it is drawn. If size is negative or omitted, the same size as last time
is used.

Data views run from Mintime() to Maxtime(). There are no limits set on the range of
values for an XY view axis. However, huge numbers cause ugly axis labels.

When Draw() makes a view scroll, it scrolls by an integral number of pixels (otherwise
the image would be disjointed). Thus, the requested start may not be the same as that
reported by XLow(). The requested value will be in the first pixel. With an x axis in
seconds the following code may not move the display at all if a pixel is more than a
second wide:
Draw(XLow()+1.0); 'This usually steps by just under 1 second

See also:DrawAll(), XRange(), XLow(), XHigh(), Maxtime(), Mintime()

This routine updates all views with invalid regions. This is equivalent to iterating through
all the views and performing a Draw() on each.

Proc DrawAll();

See also:Draw()

DlgText()

Draw()

Beware!

DrawAll()

DrawMode() The Signal script language DrawMode()

5-49

This sets and reads the display mode for the channel in a data view. You can set the
display mode for channels that are not displayed.

Func DrawMode(chan%|chan%[]|chan${, mode%{,dotSz%|binSz{,
err%}}});

chan% This is a channel number (1 to n). Setting a draw mode for a bad channel
number has no effect.
We also allow channel number -1 for all channels, -2 for all visible channels, -3
for all selected channels, -4 for waveform channels or -5 for marker channels, -6
for selected waveform channels or visible if none selected, -7 for visible
waveform channels or -8 for selected waveform channels..
This can also be an integer array. If it is, the first array element holds the
number of channels in the list, followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
mode% If present and positive, this sets the display mode, and returns the previous

mode. If an inappropriate mode is requested, no change is made. Some modes
require additional parameters (for example a bin size, a trigger channel, or the
edge to use for level event data). If additional parameters are omitted, the last
known value is used. The mode values for setting draw modes in the view are:
0 The standard mode for the channel
1 Dots for markers, using the dotSz% argument if it is provided
2 Lines for markers
3 Rate for markers
4 Histogram for waveform
5 Line for waveform
6 Dots for waveform, using the dotSz% argument if it is provided
7 Skyline for waveform
If present and negative, the function returns stored bin size or dot size. The
mode values for getting data are:
-1 Reserved, does nothing and returns –1
-2 Return the current dot size
-3 Return the current bin size for a histogram
-13 Return the current drawing style for errors

Values in the range –4 to –12 are reserved for future use. If mode% is absent no
changes are made.

dotSz% This sets the dot size to use on screen or the point size to use on a printer. 0 is
the smallest size available. The maximum size allowed is 10. Set to –1 for no
change.

binSz This sets the width of the rate histogram bins.
err% The drawing style for errors: 0=none, 1=1 SEM, 2=2 SEM, 3=SD.
Returns The draw mode before the call if a single channel is set or a value determined by

a negative mode% value. For multiple channels or an invalid call, it returns -1.
See also:Draw(), ViewStandard(), XYDrawMode(), ChanValue()

DrawMode()

Dup() Alphabetical command reference EditCopy()

5-50

This gets the view handle of a duplicate of the current view, or the number of duplicates,
including the original. Duplicated views are numbered from 1 (1 is the original). If a
duplicate is deleted, higher numbered duplicates are renumbered. For more information
on this see WindowDuplicate().

Func Dup({num%});

num% The number of the duplicate view to find, starting at 1. You can also pass 0 (or
omit num%) as an argument, to return the number of duplicates.

Returns If num% is greater than 0, this returns the view handle of the duplicate, or 0 if the
duplicate does not exist. If num% is 0 or omitted, this returns the number of
duplicates including the original. The following illustrates the use of Dup().

var maxDup%, i%, dvh%; 'declare variables
maxDup% := Dup(0); 'Get maximum numbered duplicate
for i% := 1 to maxDup% do 'loop round all possible duplicates
 dvh% := Dup(i%); 'get handle of this duplicate
 if (dvh% > 0) then 'does this duplicate exist?
 PrintLog(view(dvh%).WindowTitle$()+"\n");'print window title
 endif;
next;

See also:App(), View(), WindowDuplicate()

In a memory view, this command zeros the data in all channels. In a text view, it deletes
any selected text.

Func EditClear();

Returns The function returns 0 if nothing was deleted, otherwise it returns the number of
items deleted or 1 if the number is not known, or a negative error code.

See also:EditCopy(), EditCut()

This command copies data from the current view to the clipboard. The effect depends on
the type of the current view. Text views copy data as text. Data views copy as a bitmap,
as a scaleable image, as text in the format set by ExportTextFormat(),
ExportChanFormat() and ExportChanList() or as binary data in a private format.

Func EditCopy({as%});

as% This sets how to copy data when several formats are possible. If omitted, all
formats are used. When only one format is possible, the argument is ignored.
The format value is the sum of:
1 Copy as a bitmap
2 Copy as a scaleable image (Windows metafile)
4 Copy as text
8 Copy as binary data in the CED private format

Returns It returns the sum of the format specifiers for each format exported from a data
view, or the number of characters exported from a text view. It returns 0 if
nothing was placed on the clipboard.

See also:EditSelectAll(), ExportTextFormat(), ExportChanFormat(),
ExportChanList(), EditClear(), EditCut(), EditPaste()

Dup()

EditClear()

EditCopy()

EditCut() The Signal script language Eval()

5-51

This command cuts data from the current text or script view to the clipboard.

Func EditCut({as%});

as% This optional argument sets how data is copied to the clipboard in cases where
there are several formats possible. Currently it is ignored.
Returns Returns the number of characters placed on the clipboard.

See also:EditClear(), EditCopy(), EditPaste()

You may only paste into a text view when the clipboard contains text. The contents of
the clipboard are inserted at the current caret. If text is already selected, it is replaced by
the clipboard contents. If the clipboard contains binary data in the CED private format,
this data can be pasted into a data view.

Func EditPaste();

Returns The function returns the number of characters inserted.
See also:EditCopy(), EditCut()

This function selects all items in the current text view that can be copied to the clipboard.
This is the same as the Edit menu Select All option.

Func EditSelectAll();

Returns It returns the number of selected items that could be copied to the clipboard.
See also:EditCopy(), EditClear(), EditCut()

This function converts a negative error code returned by a function into a text string.

Func Error$(code%);

code% A negative error code returned from a Signal function.
Returns It returns a string that describes the error.

This evaluates the argument and converts the result into text. The text is displayed in the
Script view or the Evaluate window message area, as appropriate, when the script ends.
The argument can be the value returned by a function

Proc Eval(arg);

arg A real or integer number or a string.
If you use Eval() it will suppress any run-time error messages as it uses the same
mechanism as the error system. A common use of Eval() in a script is to report an error
condition during debugging, for example:
if val<0 then Eval("Negative value"); Halt; endif;

Another use of Eval() is in the Script menu Evaluate window to see the result returned
by a function or expression, as in these examples:
Eval(FileDelete(myfile$)); ' display 1 or a negative error code
Eval(Error$(-1531)); ' give string for error code if known

See also:Debug(), Error$(), Print(), PrintLog()

EditCut()

EditPaste()

EditSelectAll()

Error$()

Eval()

Exp() Alphabetical command reference ExportChanList()

5-52

This function calculates the exponential function (e to the power of x) for a single value,
or replaces a real array by its exponential. If a value is too large, overflow will occur,
causing the script to stop for single values, and a negative error code for arrays.

Func Exp(x|x[]);

x The argument for the exponential function or an array of real values.
Returns With an array, the function returns 0 if all was well, or a negative error code if a

problem was found (such as overflow).
With an expression, it returns the exponential of the number.

This command sets the channel text export format for use by FileExportAs() and
EditCopy(). It is equivalent to the data, time and headings settings for each channel
type in the Text Output Configuration dialog. Using ExportTextFormat() with no
arguments will reset these fields to enable the output of data, time and headings for the
waveform channel type only.

Proc ExportChanFormat(type%, data%, xval%, heads%)

type% The type of channel to set the format for:
0 Waveform 1 Marker

data% Set this non-zero to enable data output for this channel type.
xval% Set this non-zero to enable output of x axis values for this channel type. For a

waveform channel this is ignored when data% is disabled.
heads% Set this non-zero to enable output of column headings for this channel type.

This is ignored if neither data% nor xval% are enabled.
See also:EditCopy(), FileExportAs(), ExportChanList(),

ExportFrameList(), ExportTextFormat(), ExportTimeRange()

This command sets a channel list to export for use by FileExportAs() and
EditCopy() from a data view.

Proc ExportChanList(chan%|chan%[]|chan$);

chan% The channel to export. This can be the channel number, -1 for all channels, -2
for visible channels, -3 for selected channels, -4 for waveform channels or -5 for
marker channels, -6 for selected waveform channels or visible if none selected, -
7 for visible waveform channels or -8 for selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list. This is followed by a list of positive channel
numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
See also:EditCopy(), FileExportAs(), ExportChanFormat(),

ExportFrameList(), ExportTextFormat(), ExportTimeRange()

Exp()

ExportChanFormat()

ExportChanList()

ExportFrameList() The Signal script language ExportTextFormat()

5-53

This command sets a list of frames for use by FileExportAs() and EditCopy().

Proc ExportFrameList(sFrm%{, eFrm%{,mode%}});
Proc ExportFrameList(frm$|frm%[]{,mode%});

sFrm% First frame to export. This option processes a range of frames. sFrm% can also
be a negative code as follows:
-1 All frames in the file are included
-2 The current frame
-3 Frames must be tagged
-6 Frames must be untagged

eFrm% Last frame to export. If this is -1 the last frame is the last in the data view. This
argument is ignored if sFrm% is a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers to process. This option provides a list of frame
numbers. The first element holds the number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each
frame in the range, list or specification. If mode% is absent all frames are
included. The modes are:
0-n Frames must have a state matching the value of mode%
-1 All frames in the specification are processed
-2 Only the current frame, if it is in the main list, is processed
-3 Frames must also be tagged
-6 Frames must also be untagged

The following simple example exports all frames to fred.cfs.
ExportFrameList(-1); 'export from all frames in the view
FileExportAs ("fred.cfs", 1); 'export selected data as text

See also:EditCopy(), FileExportAs(), ExportChanList(),
ExportChanFormat(), ExportTextFormat(), ExportTimeRange()

This command sets the text export format for use by FileExportAs() and
EditCopy(). It is equivalent to setting decimal places, field width, string delimiter, item
separator and frame header in the Text Output Configuration dialog. The command
with no arguments resets everything in the dialog to default settings: decimal places to 5,
field width optional to 0, the string delimiter to double quotes, the separator to a tab
character, the header disabled, and enables the output of data, time and headings for the
waveform channel type only. See ExportChanFormat() to set these.

Proc ExportTextFormat({dDec%, tDec%, width%, lim$, sep$, {head%}})

dDec% Decimal places for data values.
tDec% Decimal places for time values.
width% Field width for all values, or zero for minimum width.
lim$ The delimiter, which is the character to place at the start and end of each text

string in the output. The normal character to use is a double-quote mark.
sep$ The separator character which is used to separate multiple data items on a line.

This should be one of tab, comma or space.
head% If this is present and non-zero, Signal will output the frame header information.
See also:EditCopy(), FileExportAs(), ExportChanList(),

ExportFrameList(), ExportChanFormat(), ExportTimeRange()

ExportFrameList()

ExportTextFormat()

ExportTimeRange() Alphabetical command reference FileComment$()

5-54

This command sets an x axis range for use by FileExportAs() and EditCopy() in a
data view. This is equivalent to setting start and end times in the export setup dialogs.

Proc ExportTimeRange(sRange, eRange);

sRange The start of the range of data to export, in x axis units.
eRange The end of the range of data to export, in x axis units.
See also:EditCopy(), FileExportAs(), ExportChanFormat(),

ExportChanList(), ExportFrameList(), ExportTextFormat()

This is used to close the current window or external file. You can supply an argument to
close all views associated with the current data view or to close all the views belonging
to the application.

Func FileClose({all% {,query%})

all% This argument determines the scope of the file closing. Possible values are:
-1 Close all views except loaded scripts and debug windows
0 Close the current view. This is the same as omitting all%
1 Close all windows associated with the current view

query% This determines what happens if a view holds unsaved data:
-1 Don't save the data or query the user
0 Query the user about each view that needs saving. If the user chooses

Cancel, the operation stops, leaving all unclosed windows behind. This is
the same as omitting query%.

Returns The number of views that have not been closed. This can occur if a view needs
saving and the user requests Cancel.

Note: A common fault in scripts is the use of the construct:
View(v%).FileClose(0);

This can cause problems because, if the current view is already View(v%) then, at the
end of the function the script will attempt to switch back to View(v%) again, but it is
now gone! This results in a “View is wrong type” error for no obvious reason. To
avoid the problem use:
View(v%);
FileClose(0);

See also:FileOpen(), FileSave(), FileSaveAs(), FileNew()

This function accesses the file comment in the file associated with the current file or
memory view. File comments for XY and text based views are always blank. The
comment string is up to 72 characters in length.

Func FileComment$({,new$});

new$ If present, the command replaces the existing comment with new$.
Returns The comment at the time of the call.
See also:FrameComment$()

ExportTimeRange()

FileClose()

FileComment$()

FileConvert$() The Signal script language FileCopy()

5-55

This function converts a data file from a “foreign” format into a Signal data file. The
range of foreign formats supported depends on the number of import filters in the
Signal\import folder.

Func FileConvert$(src${, dest${, flag%{ ,&err%}}});

src$ This is the name of the file to convert. The file extension is used to determine
the file type (unless flag% bit 0 is set). Known file extensions include: abf,
cfs, cnt, cut, dat, eeg, ewb, ibw, ibw, son and uff. We expect to add more.
If an empty string is used or one containing wild cards then a file selection
dialog will appear.

dest$ If this is present, it sets the destination file. If this is not a full path name, the
name is relative to the current directory. If you do not supply a file extension
then Signal appends ".cfs". If you set any other file extension, Signal cannot
open the file as a Signal data file. If you do not supply this argument, the
converted file will be written to the same folder as the source file using the
original file name with the file extension changed to .cfs.

flag% This argument is the sum of the flag values: 1=Ignore the file extension of the
source file and try all possible file converters, 2=Allow user interaction if
required (otherwise sensible, non-destructive defaults are used for all decisions).

err% Optional integer variable that is returned as 0 if the file was converted,
otherwise it is returned holding a negative error code.

Returns The full path name of the created file, or an empty string if the file was not
converted.

See also:FileOpen(), FilePath$(), FilePathSet(), FileList()

This function copies a source file to a destination file. File names can be specified in full
or relative to the current directory. Wildcards cannot be used.
Func FileCopy(src$, dest${, over%});

src$ The source file to copy to the destination. This file is not changed.
dest$ The destination file. If this file exists you must set over% to overwrite it.
over% If this optional argument is 0 or omitted, the copy will not overwrite an existing

destination file. Set to 1 to overwrite.
Returns The routine returns 1 if the file was copied, 0 if it was not. Reasons for failure

include: no source file, no destination path, insufficient disk space, destination
exists and insufficient rights.

See also:BRead(), BWrite(), FileDelete(), FileOpen(), ProgRun()

FileConvert$()

FileCopy()

FileDelete() Alphabetical command reference FileExportAs()

5-56

This function deletes one or more files. File names can be specified in full, or relative to
the current directory

Windows file names are of the form x:\folder1\folder2\foldern\file.ext or
\\machine\folder1\folder2\foldern\file.ext across a network. If a name
does not start with a \ or with x:\ (where x is a drive letter), the path is relative to the
current directory. Beware that \ must be written \\ in a string passed to the compiler.

Func FileDelete(name$[]|name${, opt%});

name$ This is either a string variable or an array of strings that holds the names of the
files to delete. Only one name per string and no wildcard characters are allowed.
If the names do not include a path they refer to files in the current directory.

opt% If this is present and non-zero, the user is asked before each file in the list is
deleted. You cannot delete protected or hidden or system files:

Returns The number of files deleted or a negative error code.
See also:FilePath$(), FilePathSet(), FileList()

This function saves the current data view or the sampling configuration as a file on disk.
A data view is saved either in its native format, or as text or as a picture. It is equivalent
to the two File menu commands Export As and Save configuration. This cannot be used
for external text or binary files as they are already on disk.

Func FileExportAs(name${, type% {,yes%, {text$}});

name$ The name to use for saving. If the string is empty or if the string holds wild card
characters * or ?, then the File menu Save As dialog opens, otherwise it is used
directly. In Windows, the wildcards select the initial list of files. If the string is
used directly, a default file extension is not provided, you must provide the
extension yourself.

type% The type to save the file as (if omitted, type -1 is used):
-1 Export in the native format for the data view. This is equivalent to using

type% 0 for file and memory views or 12 for XY views.
0 Export part of the data view as set by ExportFrameList(),

ExportTimeRange() and ExportChanList() to a new Signal data file.
The file extension should be .cfs.

1 Save the contents of the current data or XY view as a text file. Signal saves
the data as set by ExportFrameList(), ExportTimeRange(), and
ExportChanList() in the text format set by ExportChanFormat()
and ExportTextFormat(). The file extension should be .txt.

5 Save data or XY view as a picture file. The file extension should be .wmf.
6 Save the sampling configuration in a configuration file. The file extension

should be .sgc.
12 For XY views only, save as an XY data file. The file extension should be

.sxy.
yes% If this operation would overwrite an existing file you are asked if you wish to do

this unless yes% is present and non-zero. While an existing file is open in Signal
you will not be able to overwrite it.

text$ An optional prompt displayed as part of the file dialog to prompt the user.
Returns The function returns 0 if the operation was a success, or a negative error code.
See also:EditCopy(), ExportChanFormat(), ExportChanList(),

ExportFrameList(), ExportTimeRange(), ExportTextFormat()

FileDelete()

FileExportAs()

FileGetIntVar() The Signal script language FileGetStrVar$()

5-57

This function reads a CFS file variable of integer type from the file attached to the
current view, which must be a file view. The CFS supports the use of file and frame
variables of integer, floating point and string types. Software other than Signal may have
included these when creating a data file.

Func FileGetIntVar(name$ {&nVar%{, &units$, {nType%}}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
nType% If present this returns a code for the CFS type of an integer variable:

0: INT1, 1: WRD1, 2: INT 2, 3: WRD2, 4: INT4:
Returns The function returns the value of the variable if the operation was a success, and

otherwise zero.
See also:FileGetRealVar(), FileGetStrVar$(), FileVarCount(),

FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

This function reads a CFS file variable of real type from the file attached to the current
view, which must be a file view.

Func FileGetRealVar(name$ {&nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
Returns The function returns the value of the variable if the operation was a success, and

otherwise zero.
See also:FileGetIntVar(), FileGetStrVar$(), FileVarCount(),

FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(),FrameVarInfo()

This function reads a CFS file variable of string type from the file attached to the current
view, which must be a file view.

Func FileGetStrVar$(name$ {&nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
Returns The function returns a string contents of the variable if the operation was a

success, and otherwise an empty string.
See also:FileGetIntVar(), FileGetRealVar(), FileVarCount(),

FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(),FrameVarInfo()

FileGetIntVar()

FileGetRealVar()

FileGetStrVar$()

FileList() Alphabetical command reference FileName$()

5-58

This function gets lists of files and sub-directories (folders) in the current directory and
can also return the path to the parent directory of the current directory. This function can
be used to process all files of a particular type in a particular directory.

Func FileList(names$[]|&name$, type%{, mask$});

name$ This is either a string variable or an array of strings that is returned holding the
name(s) of files or directories. Only one name is returned per string.

type% This sets the type of the objects to return information on. Allowed values are:
-3 The parent directory of the current directory. The full path is returned.
-2 Sub-directories of the current directory. No path is returned.
-1 All files in the current directory
0 Signal data files
1 Text files
2 Output sequence files
3 Signal script files
5 Picture (Windows metafile) files.
6 Signal configuration files
12 XY view data file

mask$ This optional string limits the names returned to those that match it; * and ? in
the mask are wildcards. ? matches any character and * matches any 0 or more
characters. Matching is case insensitive and from left to right.

Returns The number of names that met the specification or a negative error code. This
can be used to set the size of the string array required to hold all the results.

See also:FilePath$(), FilePathSet(), FileDelete(), FileName$()

This returns the name of the data file associated with the current view (if any). You can
recall the entire file name, or any part of it. If there is no file the result is an empty string.

Func FileName$({mode%})

mode% If present, determines what to return, if omitted taken as 0.
0 Or omitted, returns the full file name including the path
1 The disk drive/volume name
2 The path section, excluding the volume/drive and the name of the file
3 The file name up to and not including the last . in the name, excluding any

trailing number
4 Any trailing numbers from 3
5 The end of the file name from the last dot

Returns A string holding the requested name, or a blank string if there is no file.

See also:FileList(), FilePath$(), FilePathSet(), FileDelete()

FileList()

FileName$()

FileNew() The Signal script language FileNew()

5-59

This is equivalent to the File menu New command. It creates a new window, also called a
view, and returns the handle. You can create visible or invisible windows. Creating an
invisible window lets you set the window position and properties before you draw it. The
new window is the current view and if visible, the front view. Use FileSaveAs() to
name created files.
Func FileNew(type%{, mode%);

type% The type of file to create:
0 A Signal data file based on the sampling configuration, ready for sampling.

This opens a new file view which is also referred to as the sampling
document view. It may also open other windows which will include the
sampling control panels.

1 A text file in a window
2 An output sequence file in a window. Not yet implemented in version 2.00
3 A Signal script file in a window
12 An XY view with one (empty) data channel. Use XYAddData() to add

more data and XYSetChan() to create new channels.

mode% This optional argument determines how the new window is opened. The value is
the sum of these flags. If the argument is omitted, its value is 0. The flags are:
1 Make the new window(s) visible immediately. If this flag is not set the

window is created, but is invisible.
2 For data files, if the sampling configuration holds information for creating

additional windows, use it. If this flag is not set, data files extract enough
information from the sampling configuration to set the sampling parameters
for the data channels.

Returns It returns the view handle (or the handle of the lowest numbered duplicate for a
data file with duplicate windows) or a negative error.

See also:FileOpen(), FileSave(), FileSaveAs(), FileClose(),
SetMemory(), SampleStart(), XYAddDAta(), XYSetChan()

FileNew()

FileOpen() Alphabetical command reference FileOpen()

5-60

This is the equivalent of the File Open... menu command. It opens an existing Signal data
file or a text file in a window, or an external text or binary file. If the file is already
opened, a handle for the existing view is returned. The window becomes the new current
view. You can create windows as visible or invisible. It is often more convenient to
create an invisible window so you can position it before making it visible.

Func FileOpen(name$, type% {,mode% {,text$}});

name$ The name of the file to open. This can include a path. The file name is operating
system dependent, see FileDelete(). If the name is blank or holds wild card
characters (Windows only), the file dialog opens for the user to select a file.

type% The type of the file to open. The types currently defined (see ViewKind()) are:
0 Open a Signal data file. A new file view is created.
1 Open a text file. A new text view is created.
2 Open an output sequence file. A new output sequence view is created. Not

yet supported in version 2.00.
3 Open a Signal script file. A new script view is created.
6 Load configuration file. No new view is created.
8 An external text file without a window. An invisible external text view is

created in which Read() or Print() can be used.
9 An external binary file without a window. An invisible external binary

view is created in which BRead(), BWrite(), BSeek() and other binary
routines can be used.

12 Open an XY data file. A new XY view is created.
mode% This optional argument determines how the window or file opens. If the

argument is omitted, its value is 0.
For file types 0 to 3 and 12 the value is the sum of:
1 Make the new window(s) visible immediately. If this flag is not set the

window is created, but is invisible.
2 Read resource information associated with the file. This may create more

than one window, depending on the file type. For data files, it restores the
file to the state as it was closed. If the flag is unset, resources are ignored.

4 Return an error if the file is already open in Signal. If this flag is not set and
the file is already in use, it is brought to the front and its handle is returned.

When used with file types 8 and 9 the following values of mode% are used. The
file pointer (which sets the next output or input operation position) is set to the
start of the file in modes 0 and 1 and to the end in modes 2 and 3.
0 Open an existing file for reading only
1 Open a new file (or replace an existing file) for writing (and reading)
2 Open an existing file for writing (and reading)
3 Open a file for writing (and reading). If the file doesn’t exist, create it.

text$ An optional prompt displayed as part of the file dialog, for all except type 6. If
this is supplied then the file dialog will appear even if a complete file name is
also supplied.

Returns If a file opens without any problem, the return value is the view handle for the
file (if multiple views open, it is the handle for the first file view created). For
configuration files (type% of 6), the return value is 0 if no error occurs. If the
file could not be opened, or the user pressed Cancel in the file open dialog, the
returned value is a negative error code.
If multiple windows are created for a data file, you can get a list of the
associated view handles using ViewList(list%[],64).

FileOpen()

FilePath$() The Signal script language FilePathSet()

5-61

See also:FileDelete(), FileNew(), FileSave(), FileSaveAs(),
FileClose(), BRead(), BReadSize(), BSeek(), BWrite(),
BWriteSize(), ViewFind(), ViewList(), ViewKind()

This function gets the “current directory”, the place on disk where file open and file save
dialogs start from. It can also get the path for created data files or the directory where the
Signal application is installed.

Func FilePath$({opt%});

opt% If 0 or omitted, this gets the current directory. If 1, it returns the path for
temporary sampled data files from the preferences dialog. If 2, it returns the path
to the directory where the Signal application is installed. If 3, it returns the path
for automatic file saving from the sampling configuration.

Returns A string holding the path or an empty string if an error is detected.
See also:FilePathSet(), FileList(), FileName$()

This function sets the “current directory” and the directory where Signal data files
created by FileNew() are stored until they are saved using FileSaveAs(). It can also
be used to create the directories.

Func FilePathSet(path${,opt%{, make%|text$}});

path$ A string holding the new path to the directory. The path must conform to the
rules for pathnames on the host system and be less than 255 characters long. If
the path is empty a dialog opens for the user to select an existing directory.

opt% If omitted or zero, this sets the current directory. If 1, it sets the path for
temporary sampled data files in the preferences dialog. If 3, it sets the path for
automatic file saving in the sampling configuration.

make% If this is present and non-zero, the command will create the directory if all
elements of the path exist except the last. You cannot use this option if path$ is
blank.

text$ Optional prompt for use with the dialog.
Returns Zero if the path was set, or a negative error code.
See also:FilePath$(), FileList()

FilePath$()

FilePathSet()

FilePrint() Alphabetical command reference FilePrintVisible()

5-62

This function is equivalent to the File menu Print command. It prints some, or all of the
current view to the printer that is currently set for Signal. If no printer has been set, the
current system printer is used. In a file or memory view, it prints a range of data with the
x axis scaling set by the display. In a text or log view, it prints a range of text lines. There
is currently no script mechanism to choose a printer; you must do it interactively.

Func FilePrint({from{, to{, flags%}}});

from The start point of the print. This is in seconds in a file or memory view and in
lines in a text view. If omitted, this is taken as the start of the view.

to The end point in the same units as from. If omitted or set beyond the end of the
view then the end of the view is used.

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.
Returns The function returns 0 if all went well; otherwise it returns a negative error.
The format of the printed output is based on the screen format of the current view.
Beware that for file and memory views the output could be many (very many) pages
long.

See also:FilePrintScreen(), FilePrintVisible()

This function is equivalent to the File menu Print screen command. It prints all visible
data, text, script, XY and log views on the screen to the current printer on one page. The
page positions are proportional to the view positions on the screen. Output sequence
views will be included when they are implemented; they are not supported in Version
2.00.

Func FilePrintScreen({pTtl${, vTtl%{, box%{, flags%}}}});

pTtl$ This sets the page title string to print at the top of a page. If omitted or an empty
string, there is no page title.

vTtl% Set 1 or higher to print a title above each view, omitted or 0 for no title.
box% Set 1 or higher for a box around each view. If omitted, or 0, no box is drawn.
flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.

Prior to version 2.13, the default was landscape mode.
Returns The function returns 0 if it all went well, or a negative error code.
See also:FilePrint(), FilePrintVisible()

This function prints the current view as it appears on the computer screen to the current
printer. In a text view, this prints the lines in the current selection. If there is no selection,
it prints the line containing the cursor. This function is equivalent to the File menu Print
visible command.

Func FilePrintVisible({flags%})

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.
Returns The function returns 0 if all went well, otherwise it returns a negative error.
See also:FilePrint(), FilePrintScreen()

FilePrint()

FilePrintScreen()

FilePrintVisible()

FileQuit() The Signal script language FileVarCount()

5-63

This is equivalent to the File menu Quit/Exit command. If there is any unsaved data you
are asked if you wish to save it before the application closes. If the user cancels the
operation (because there were files that needed saving), the script terminates, but the
Signal application is left running. Use FileClose(-1, -1) before FileQuit() to
guarantee to exit.

Proc FileQuit();

See also:FileClose()

This function saves the current view as a file on disk. It is equivalent to the File menu
Save command. You cannot use this command for a file view if it has just been sampled,
use FileSaveAs() instead. If the view has not been saved previously, the File menu
Save As dialog opens and the user must provide a file name. This cannot be used for
external text or binary files either as they are already on disk.

Func FileSave();

Returns The function returns 0 if the operation was a success, or a negative error code.

See also:FileOpen(), EditCopy(), FileExportAs(), FileSaveAs(),
FileClose()

This function is equivalent to the File menu SaveAs command. It can be used to save
the current view, with any changes, under a new name. Use this to save and name a
Signal data file immediately after it has been sampled. Use FileExportAs() to export
selected parts of a CFS data file to a new file, or to export from a view under a different
format.

Func FileSaveAs(name$ {,yes%, {text$}};

name$ The name to use for saving. If the string is empty or if the string holds wild card
characters * or ?, then the File menu Save As dialog opens. In Windows, the
wildcards select the initial list of files. A default extension is not provided in
circumstances when the dialog is not used.

yes% If this operation would overwrite an existing file you are asked if you wish to do
this unless yes% is present and non-zero. While an existing file is open in Signal
you will not be able to overwrite it.

text$ An optional prompt displayed as part of the file dialog to prompt the user.
Returns The function returns 0 if the operation was a success, or a negative error code.
See also:FileSave(), EditCopy(), FileExportAs()

This function counts CFS file variables in the data file.

Func FileVarCount();

Returns The number of file variables in the data file associated with this view.
See also:FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FileQuit()

FileSave()

FileSaveAs()

FileVarCount()

FileVarInfo() Alphabetical command reference FileVarInfo()

5-64

This function reads a description of a CFS file variable.

Func FileVarInfo(nVar%, &name$);

nVar% This is the variable number
name$ The name of the variable, which can be used in the commands for reading the

file variables.
Returns The function returns the type of the variable or -1 if the variable was not found

or is of unknown type. The type code is as follows:
0 An integer variable which can be read using FileGetIntVar()
1 A floating point variable which can be read using FileGetRealVar()
2 A string variable which can be read using FileGetStrVar$()

See also:FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),
FileVarCount(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FileVarInfo()

FiltApply() The Signal script language FiltAtten()

5-65

Applies a set of filter coefficients or a filter in the filter bank to a set of waveform
channels in the current file or memory view.

Each output point is generated from the same number of input points as there are filter
coefficients. Half these point are before the output point, and half are after. Where more
data is needed than exists in the source file (for example at the start and end of a file and
where there are gaps), extra points are made by duplicating the nearest valid point.

Func FiltApply(n%|coef[], chan%|chan%[]|chan$, frm%|frm%[]|frm$)

n% Index of the filter in the filter bank to apply in the range 0-11, or
coef[] An array holding a set of FIR filter coefficients to apply to the waveform.
chan% A channel from the current view to filter. Use a channel number (1 to n), or -1

for all channels, -2 for all visible channels, -3 for all selected, -6 for selected
waveform channels or visible if none selected, -7 for visible waveform
channels or -8 for selected waveform channels. Marker channels will be
ignored.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
chan%[] As an alternative to chan% or chan$, you can pass in a channel list (as

constructed by ChanList()). This must be an array of channels in the current
data view, with the first element of the array holding the number of channels
in the list.

frm% Frame number or a negative code as follows:
-1 All frames in the file
-2 The current frame
-3 Only tagged frames
-6 Only untagged frames

frm$ A frame specification string. This option specifies a list of frames using a
string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

Returns The number of the last channel to be filtered or a negative error code. A
negative error code is also returned if the user clicks Cancel from the progress
bar that may appear during a long filtering operation.

See also:FiltAtten(), FiltCalc(), FiltComment$(), FiltCreate(),
FiltInfo(), FiltName$(), FiltRange()

This set the desired attenuation for a filter in the filter bank. When FiltApply() or
FiltCalc() is used, the number of coefficients needed to achieve this attenuation (up to
a maximum of 255) will be generated. A value of zero sets the attenuation back to the
default (-65 dB).

Func FiltAtten(index%{, dB})

index% Index of the filter in the filter bank to use in the range 0-11.
dB If present and negative, this is the desired attenuation for stop bands in the filter.
Returns The desired attenuation for a filter at the time of the call.
See also:FiltApply(), FiltCalc(), FiltComment$(), FiltCreate(),

FiltInfo(), FiltName$(), FiltRange()

FiltApply()

FiltAtten()

FiltCalc() Alphabetical command reference FiltCalc()

5-66

The calculation of filter coefficients can take an appreciable time. This routine forces the
calculation of a filter for a particular sampling frequency if it has not already been done.
If you do not force the calculation, you can still use FiltApply() to apply a filter.
However, the coefficient calculation will then be done at the time of filter application,
which may not be desirable if the filtering operation is time critical.

Func FiltCalc(index%, sInt{, coeff[]{, &dBGot {, nCoef%}}})

index% Index of the filter in the filter bank to use in the range 0-11.
sInt% The sample interval of the waveform you are about to filter. This is the value

returned by BinSize() for a waveform channel.
coeff An array to be filled with the coefficients used for filtering. If the array is too

small, as many elements as will fit are set. The maximum size needed is 255.
dBGot If present, returns the attenuation attained by the filter coefficients.
nCoef% If present, sets the number of coefficients used in the calculation (use an even

number for a full differentiator and an odd number for all other filter types).
Returns The number of coefficients generated by the filter.

Suppose the first filter in the bank (index 0) is a low pass filter with the pass band edge at
50 Hz. If we know that we will need to filter a channel 4 (sampled at 200 Hz) with this
filter, we may want to calculate the coefficients needed in advance:
FiltCalc(0, BinSize(4));

This will calculate a filter corresponding to the specification of filter 0 for a sampling
frequency of 200 Hz with an attenuation in the stop band of at least the current desired
attenuation value for this filter.

The calculation of coefficients is a complex process and can produce silly results due to
floating point rounding errors in some situations. To ensure that you will always get a
useful result there is a limit to how small and how big a transition gap can be relative to
the sampling frequency. There is a similar limit on the width of a pass or stop band:
• The transition gap and the width of a pass or stop band cannot be smaller than 0.005

of the sampling frequency.
• The transition gap cannot be larger than 0.12 of the sampling frequency.

This function always calculates a set of coefficients, but may alter the filter specification
in order to do it (these changes are temporary, see later). This can happen in two cases :
1. If the sampling frequency is such that to produce the filter, the transition gap and/or

pass and stop band widths are outside their limits, the widths are set to the limits
before calculating the filter. In our 50 Hz low pass filter example, if we calculate it
with respect to a 12 kHz sampling frequency, the minimum pass band width is
12000*0.005 = 60 Hz. So, the filter would be changed to a 60 Hz low pass filter.

2. If half the sampling frequency (the Nyquist frequency) is less than an edge of a pass
or stop band, certain attributes of the filter are lost. In our 50 Hz low pass filter
example, if we tried to calculate with a sampling frequency of 80 Hz, we would see
that the Nyquist frequency is 40 Hz. No frequency above 40 Hz can be represented in
a waveform sampled at 80 Hz, so a 50 Hz low pass filter is equivalent to an “All
pass” filter. The filter specification will be altered to reflect this before calculating.

Any changes made to a filter specification to accommodate a particular calculation are
made with reference to the original specification, not the specification that was last used
for a calculation.

See also:FiltApply(), FiltAtten(), FiltComment$(), FiltCreate(),
FiltInfo(), FiltName$(), FiltRange()

FiltCalc()

An example

Constraints on filters

FiltComment$() The Signal script language FiltCreate()

5-67

This function gets and sets the comment associated with a filter in the filter bank.

Func FiltComment$(index% {, new$})

index% Index of the filter in the filter bank to use in the range 0-11.
new$ If present, sets the new comment.
Returns The previous comment for the filter at the index.
See also:FiltApply(), FiltAtten(), FiltCalc(), FiltCreate(), FiltInfo(),

FiltName$(), FiltRange()

This function creates a filter in the filter bank to the supplied specification and gives it a
standard name and comment.

Func FiltCreate(index%, type%{, trW{, edge1{, edge2{, ...}}}})

index% Index of the new filter in the filter bank in the range 0-11. This action replaces
any existing filter at this index.

type% The type of the filter desired (see table).
trW The transition width of the filter. This is the frequency interval between the edge

of a stop band and the edge of the adjacent pass band.
edgeN These are a list of edges of pass bands in Hz. (see table).
Returns 0 if there was no problem or a negative error code if the filter was not created.
This table shows the relationship between different filter types and the meaning of the
corresponding arguments. The numbers in brackets indicate the nth pass band when there
is more than 1. An empty space in the table means that the argument is not required.

type% Name trW edge1 edge2 edge3 edge4
0 All stop
1 All pass
2 Low pass Yes High
3 High pass Yes Low
4 Band pass Yes Low High
5 Band stop Yes High(1) Low(2)
6 Low pass differentiator Yes High
7 Differentiator
8 1.5 Band Low pass Yes High(1) Low(2) High(2)
9 1.5 Band High pass Yes Low(1) High(1) Low(2)

10 2 Band pass Yes Low(1) High(1) Low(2)
High(2

)
11 2 Band stop Yes High(1) Low(2) High(2) Low(3)

The values entered correspond to the text fields shown in the Filter edit dialog box.

See also:FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),
FiltInfo(),FiltName$(), FiltRange()

FiltComment$()

FiltCreate()

FiltInfo() Alphabetical command reference FIRMake()

5-68

Retrieves information about a filter in the bank.

Func FiltInfo(index%{, what%})

index% Index of the filter in the filter bank to use in the range 0-11.
what% Which bit of information about the filter to return:

-2 Maximum what% number allowed
-1 Desired attenuation
0 type (if you supply no value, 0 is assumed)
1 Transition width
2-5 edge1-edge4 given in FiltCreate()

Returns The information requested as float.
See also:FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltCreate(), FiltName$(), FiltRange()

This function gets and/or sets the name of a filter in the filter bank.

Func FiltName$(index% {, new$})

index% Index of the filter in the filter bank to use in the range 0-11.
new$ If present, sets the new name.
Returns The previous name of the filter at that index.
See also:FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltInfo(), FiltCreate(), FiltRange()

Retrieves the minimum and maximum sampling rates that this filter can be applied to
without the specification being altered. See the FiltCalc() command, Constraints on
filters for more information.

Proc FiltRange(index%, &minFr, &maxFr)

index% Index of the filter in the filter bank to use in the range 0-11.
minFr Returns the minimum sampling frequency you can calculate the filter with

respect to so that no transition width is greater than the maximum allowed and
that no attributes of the filter are lost.

maxFr Returns the maximum sampling frequency you can calculate the filter with
respect to without the transition (or band) widths being smaller than allowed.

It is possible to create a filter which cannot be applied to any sampling frequency without
being changed. This will be apparent because minFr will be larger than maxFr.

See also:FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),
FiltInfo(), FiltCreate(), FiltName$()

This function creates FIR filter coefficients and place them in an array ready for use by
ArrFilt(). This command is very similar in operation to the DOS program FIRMake
and has similar input requirements. Unless you need precise control over all aspects of
filter generation, you may find it easier to use FiltCalc() or FIRQuick(). You will
need to read the detailed information about FIR filters in the description of the Digital
Filter dialog to get the best results from this command.

FiltInfo()

FiltName$()

FiltRange()

FIRMake()

FIRMake() The Signal script language FIRMake()

5-69

Proc FIRMake(type%, param[][], coef[]{, nGrid{, extFr[]}});

type% The type of filter file to produce: 1=Multiband filter, 2=Differentiator, 3=Hilbert
transformer, 4=Multiband pink noise (Multiband with 3 dB per octave roll-off).

param This is a 2-dimensional array. The size of the first dimension must be 4 or 5.
The size of the second dimension (n) should be the number of bands in your
filter. You pass in 4 values for each band (indices 0 to 3) to describe your filter:
Indices 0 and 1 are the start and end frequency of each band. All frequencies are
given as fraction of a sampling frequency and so are in the range 0 to 0.5.
Index 2 is the function of the band. For all filter types except a differentiator,
this is the gain of the filter in the band in the range 0 to 1 (the most common
values are 0 for a stop band and 1 for a pass band). For a differentiator, this is
the slope of the filter in the band, normally not more than 2. The gain at any
frequency f in the band is given by f*function.
Index 3 is the relative weight to give the band The weight sets the relative
importance of the band in multiband filters. The program divides each band into
frequency points and optimises the filter such that the maximum ripple times the
weight in each band is the same for all bands. The weight is independent of
frequency, except in the case of the differentiator, where the weight used is
weight/frequency.
If there is an index 4 (the size of the first dimension was 5), this index is filled
in by the function with the ripple in the band in dB.

coef An array into which the FIR filter coefficients are placed. The size of this array
determines the number of filter coefficients which are calculated. It is important,
therefore, to make sure this array is exactly the size that you need. The
maximum number of coefficients is 256.

nGrid The grid density for the calculation. If omitted or set to 0, the default density of
16 is used. This sets the density of test points in internal tables used to search
for points of maximum deviation from the filter specification. The larger the
value, the longer it takes to compute the filter. There is seldom any point
changing this value unless you suspect that the program is missing the peak
points.

extFr An array to hold the list of extremal frequencies (the list of frequencies within
the bands which have the largest deviation from the desired filter). If there are
n% coefficients, there are (n%+1)/2 extremal frequencies.

The parameters passed in must be correct or a fatal error results. Errors include:
overlapping band edges, band edges outside the range 0 to 0.5, too many coefficients,
differentiator slope less than 0, if not a differentiator the band function must lie between
0 and 1, the band weight must be greater than 0.

For example, to create a low pass filter with a pass band from 0 to 0.3 and a stop band
from 0.35 to 0.5, and no return of the ripple, you would set up param as follows:

var param[4][2] 'No return of ripple, 2 bands
para[0][0] := 0; 'Starting frequency of pass band
para[1][0] := 0.3; 'Ending frequency of pass band
para[2][0] := 1; 'Desired gain (unity)
para[3][0] := 1; 'Give this band a weighting of 1

para[0][1] := 0.35; 'Starting frequency of stop band
para[1][1] := 0.5; 'Ending frequency of stop band
para[2][1] := 0; 'Desired gain of 0 (stop band)
para[3][1] := 10; 'Give this band a weighting of 10

See also:ArrFilt(), FiltApply(), FiltCalc(), FIRQuick(), FIRResponse()

FIRQuick() Alphabetical command reference FIRResponse()

5-70

This function creates a set of filter coefficients in the same way the FIRMake() does, but
many of the parameters are optional, allowing the most common filters to be created with
a minimal specification.

Func FIRQuick(coef[], type%, freq {, width {, atten}})

coef An array into which the FIR filter coefficients are placed. The size of this array
should be 256. This is the maximum number of coefficients that can be created
and this function reserves the right to return as many as it feels necessary up to
that value to create a decent filter.

type% This sets the type of filter to create. 0=Low pass, 1=High pass, 2=Band pass,
3=Band stop and 4=Differentiator.

freq This is a fraction of the sampling rate in the range 0 to 0.5 and means different
things depending on the type of filter.
For Low pass, High pass and Differentiator types, this represents the cut-off
frequency. This is the frequency of the higher edge of the first frequency band.
For Band pass and Band stop filters, this is the midpoint of the middle frequency
band; the pass band in a Band pass filter, the stop band in a Band stop filter.

width For Low pass, High pass and Differentiator filters, this is the width of the
transition gap between the stop band and the pass band. The default value is
0.02 and there is an upper limit of 0.1 on this argument.
For a band Pass, or Band stop filter, width is the width of the middle band. E.g.
if you ask for a Pass band filter with the freq parameter to be 0.25 and the
width to be 0.05, the middle pass band will be from 0.2 to 0.3. For these types of
filter, you still need a positive transition width. This transition width is 0.02 and
cannot be changed by the user.

atten The desired attenuation in the stop band in dB. The default is 50 dB. This is
analogous to the desired attenuation in the FiltAtten() command.

Returns The number of coefficients calculated. If the array is not large enough the
coefficient list is truncated (and the result is useless).

See also:ArrFilt(), FiltApply(), FiltCalc(), FIRMake(), FIRResponse()

This function retrieves the frequency response of a given filter as amplitude or in dB

Func FIRResponse(resp[], coef[]{, as%{, type%}});

resp The array to hold the frequency response. This array will be filled regardless of
its size. The first element is the amplitude response at 0 Hz and the last is the
amplitude response at the Nyquist frequency. The remaining elements are set to
the response at a frequency proportional to the element position in the array.

coef The coefficient array calculated by FIRMake(), FIRQuick() or FiltCalc()
as% If this is 0 or omitted, the response is in dB (0 dB is unchanged amplitude),

otherwise as linear amplitude (1.0 is unchanged).
type% If present, informs the command of the filter type. The types are the same as

those supplied for FIRQuick(). 0=Low pass, 1=High pass, 2=Band pass,
3=Band stop and 4=Differentiator. If a type is given , the time to calculate the
response is halved. If you are not sure what type of filter you have, or you have
type not covered by the FIRQuick() types, then do not supply a type to this
command.

See also:ArrFilt(), FiltCalc(), FIRMake(), FIRQuick()

FIRQuick()

FIRResponse()

Fitting The Signal script language Fitting

5-71

It frequently happens that you have a set of data values (x1,y1), (x2,y2) … (xn,yn) that you
wish to test against a theoretical model y = f(x, a0, a1, a2…) where the ai are coefficients
that are to be set to constant values which give the best fit of the model to the data values.

For example, if we were looking at the extension of a spring (y) as it is loaded by weights
(x), we might wish to fit the straight line y = a0 + a1x to some measured data points so
that we could measure a weight by the extension it caused. A careful experimenter might
also wish to know what the probable error was in a0 and a1 so that the probable error in
any weight deduced from an extension would be known. An even more cautious
experimenter might want to know if the straight line formula was likely to model the
measured data.

To avoid repeating definitions throughout the remainder of this chapter the following
will be taken as defined. We apologise to the statisticians who may read the following
and shudder.

Given a set of n values yj, the mean is Σj yj / n (the symbol Σj means form the sum over all
indices j of the expression that follows).

If the mean of a set of n data values yj is ym, then the variance σ2 (sigma squared) of this
set of values is:

σ2 = Σj (yj - ym)2 / n if ym is known independently of the data values yj

σ2 = Σj (yj - ym)2 / (n - 1) if ym is calculated from the data values yj

For a data set of any reasonable size, the use of n-1 or n in the denominator should make
little difference.

The standard deviation σ (sigma) of a data set is the square root of the variance. Both the
variance and the standard deviation are used as measures of the width of the distribution.

If you measure a data value in any real system, there is
always some error in the measurement. Once you have
made a (very) large number of measurements, you can
form a curve showing the probability of getting any
particular value. One would hope that this error
distribution would show a large peak at the “correct”
value of the measurement and the width of this
distribution would show the spread of likely errors.

There is a particular error distribution which often occurs, called the Normal distribution.
If a set of measurements are normally distributed, with a mean ym and standard deviation
σ, then the probability of measuring any particular value y is proportional to:

P(y) ∝ exp(-½(y-ym)2/σ2)

It is for this distribution of errors that we have the well-known result that 68% of the
values lie within one standard deviation of the mean, that 95% lie within two standard
deviations and that 99.7% lie within three standard deviations. Of course, if the error
distribution is not normal, these results do not apply.

The fitting routines given here define best fit as the values of ai (the coefficients) that
minimise the chi-squared value (χ2), defined as the sum over the measured data points of
the square of the difference between the measured and predicted values divided by the
variance of the data point:

χ2 = Σj ((yj - ƒ(xj, ai))2 / σj
2)

Fitting

mean

variance

standard deviation

Normal distribution

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
sigma

chi-squared

Fitting Alphabetical command reference Fitting

5-72

where (xj, yj) is a data point and σj
2 is the variance of the measured data at that point.

If the sigma of each data point is unknown, then the fitting routines can be used to
minimise Σj (yj - ƒ(xj, ai))2 which produces the same result as a chi-squared fit would
produce if the variance of the errors at all the data points was the same. This is
commonly called least-squares fitting (meaning that the fit minimises the sum of squares
of the errors between the fitted function and the data).

Chi-squared fitting is also a maximum likelihood fit if the errors in the data points are
normally distributed. This means that as well as minimising the chi-squared value, the fit
also selects the most probable set of coefficients that model your data. If your data
measurement errors are not normally distributed you can still use this method, but the fit
is not maximum likelihood.

If your errors are normally distributed and if you know the variance(s) of the data points,
you can form good estimates of the variance of the fitted coefficients, and you can also
test if the function you have fitted is likely to model the data.

If your errors are normally distributed but you do not know the variance of the errors at
the data points, you can make an estimate of the variance of the errors (based on the
assumption that the variance is the same for them all and that the model does fit the data),
by fitting your model and calculating the variance from the errors between the best fit
and the data. Having done this, you cannot then use this variance to test if the fit is likely
to model the data.

Once your fit is completed, it is a good idea to look at the graph of the errors between
your original data and the fitted data (the residuals or residual errors). If your errors are
normally distributed and are independent, you would expect this graph to be more or less
horizontal with no obvious trends. If this is not the case, you should consider if the
correct model function has been selected, or if the fitting function has found the true
minimum.

A linear fit is one in which the theoretical model y = ƒ(x, a0, a1, a2…) can be expressed
as y = a0ƒ0(x) + a1ƒ1(x) + a2ƒ2(x) … for example y = a0 + a1x + a2x2. Linear fits are
relatively quick as they are done in one step. Usually, the only thing that can cause a
problem is if the functions ƒi(x) are not linearly independent. The methods we use can
usually detect this problem, and can still give a useful result.

A non-linear fit means all other cases, for example, y = a0 exp(-a1 x) + a2. These types of
problem are solved by making an initial guess at the coefficients (and ideally providing a
range of values that the result is known to lie in) and then improving this guess. This
process repeats until some criterion is met. Each repeat is called an iteration, so we call
this an iterative process.

Several of the fitting routines return a covariance array. If you have n coefficients, this
array is of size n by n and is diagonally symmetric. If the errors in the original data points
are normally distributed, the diagonal elements of this array are the variances in the
values of the fitted coefficients. The remaining elements are the co-variances of pairs of
the fitting parameters and can be used to estimate errors in derived values that depend on
the product of two of the coefficients. If the errors are not normally distributed, the
further away from normal the errors are, the less useful is the covariance array as a direct
indication of the variances in the fitted coefficients.

Residuals

Linear fit
Non-linear fit

Covariance array

Fitting The Signal script language Fitting

5-73

For example, in the case of the linear fit y = a0 + a1x + a2x2 you might collect your three
coefficients in the array coef[], and the covariance in the array covar[][]. In this
case, the a0 value is returned in coef[0] and its variance in covar[0][0], the a1 value
is returned in coef[1] and its variance in covar[1][1], and the a2 value is returned in
coef[2] and its variance in covar[2][2].

Because the array is diagonally symmetric, covar[i][j] is equal to covar[j][i] and
the off diagonal elements are the expected variance in the product of pairs of the
coefficients, so covar[1][2] is the variance of a1a2.

If you have not supplied the standard deviations of the errors in the data points, the
covariance array is calculated on the assumption that all data points have a standard
deviation of 1.0, and the covariance array is incorrectly scaled. In this case, if inspection
of the residuals leads you to the conclusion that the function does indeed fit the data and
that the errors are more or less the same for all values and not too far from normally
distributed, then you can scale the covariance array to the correct values by multiplying
all the elements of the array by the sum of squares of the errors between the data and the
fitted values.

Having fitted our data, we would like some idea of how the errors in the original data
feed through to uncertainties in the values of the coefficients. The best way to do this is
to obtain many sets of (x,y) data and fit our coefficient to each set. Then we can inspect
the values of the coefficients and obtain a mean and standard deviation for each
coefficient. However, this is very time consuming.

If the errors in the data are normally distributed (or not too far from this ideal case) and
known, then the covariance array gives you some useful information. The square root of
the covariance for a particular coefficient is the expected standard deviation in that value
(given that the remaining coefficients remain fixed at optimum values). In script
language terms, the standard deviation of coef[i] is sqrt(covar[i][i]).

In this case you would expect the coefficient to be within one standard deviation of the
“correct” result 68% of the time, within 2 standard deviations 95% of the time and within
3 standard deviations 99.7% of the time.

If the errors in the original data are normally distributed and known (not calculated from
the fit), and you know the χ2 value for the fitted data, you can ask the question, “Given
the known errors in the original data, how likely is it that you would get a value of χ2 at
least this large?” The answer is (at least in terms of the script language) that the
probability is: GammaQ((nData% - nCoef%)/2.0, chiSq/2.0); where nData% is
the number of data points to be fitted, nCoef% is the number of coefficients that were
fitted and chiSq is the χ2 value for the fit. GammaQ() is the incomplete Gamma function.

If you want to follow this result up in a statistical textbook, you should look up chi-
squared distribution for n degrees of freedom. In our case, we have nData%-nCoef%
degrees of freedom.

If the fit is reasonable, you should expect a probability value between 0.1 and 1 (but be a
bit suspicious if you always get values close to 1.0, as you may have overestimated the
errors in the data). If the wrong function has been fitted or if the fit is poor you usually
get a very small probability. Intermediate values (0.0001 to 0.1) may indicate that the
errors in the original data were actually larger than you thought, or they may indicate that
the data just doesn't fit the model.

What does the covariance
mean?

Testing the fit

FitExp() Alphabetical command reference FitExp()

5-74

This command will fit multiple exponentials to arrays of x,y data points, with an optional
weight for each point. Fitting is by an iterative method. The data is fitted to the equation:

y = a0 exp(-a1 x) + a2 exp (-a3 x)… For an even number of coefficients
y = a0 exp(-a1 x) + a2 exp (-a3 x)… + an For an odd number of coefficients

The fitted parameters (coefficients) are the ai. You can fit up to 5 exponentials or 4
exponentials and an offset. However, experience shows that trying to fit more than two
exponentials requires a certain amount of skill, and that the fit from even two
exponentials should be viewed with caution, especially if the exponential coefficients are
similar. The odd numbered ai are assumed to be positive. The commands to implement
this are:

The first command sets the number of exponentials to fit and the data set to be fitted.
You must call this function before you call any of the others.

func FitExp(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit in the range 2 to 10. If this is even, the first
form of the function above is used. If it is odd, the final coefficient is an offset.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation,
then the error value returned when you iterate to find the best fit is the chi-
squared value and the fit is a chi-squared fit.

If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If
you omit this array, the fit is a least squares error fit, and the error value
returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the
script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple exponentials, you should try to limit the
range of each exponent so that they cannot overlap. If you can do this, the fit will
proceed quickly. If you do not give starting values, the command will make a simplistic
guess at the fitting values. As we expect that you know more about the "right" answer
than the command does, we suggest that you set the values you want.

func FitExp(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-
1.

val The initial value to assign to the coefficient. If you have set low and high limits,
and the value is outside these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this
coefficient. If omitted, or if both values are set to the same value, there is no

FitExp()

Set up the problem

Set coefficient values and
ranges

FitExp() The Signal script language FitExp()

5-75

limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

It is well worth limiting the exponent values so that they cannot be zero which leads to
degenerate cases. It is also worth limiting them so that they do not overlap as if two
exponents get the same value the fit is degenerate and can wander around for ever
without getting anywhere. However, setting too rigid a range may damage the fitting
process as sometimes the minimisation process has to follow a convoluted n-dimensional
path to reach the goal, and the path may need to wander quite a bit. Let experience be
your guide.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).

func FitExp(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first exponent in a[1], the
second amplitude in a[2], the second exponent in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2

if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used where yx[i]
is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed, but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Sometimes you will know the values of some of the coefficients, or you may wish to hold
some coefficients fixed while you fit others. Normally the command fits all the
coefficients, but you can use this command variant to select the coefficients to fit. You
can use this command at any time after you have set the problem until the iteration
variant returns 0 or -1.

func FitExp(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, then all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

Iterate to a solution

Select coefficients to fit

FitGauss() Alphabetical command reference FitGauss()

5-76

The following is a template for using this set of commands (assuming you don't want to
hold some parameters constant).
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var coef[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitExp(4, y[], x[]); 'fit two exponentials (no sigma array)
FitExp(0, 1.0, 0.2, 4); 'set first amplitude and limit range
FitExp(1, .01, .001, .03);'set first exponent and range
FitExp(2, 2.0, 0.1, 6); 'set second amplitude and limit range
FitExp(3, .08, .03, .15); 'set second exponent and range

repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitExp(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

See also:ShowFunc()

This command will fit multiple gaussians to arrays of x,y data points, with an optional
weight for each point. Fitting is by an iterative method. The input data is fitted to the
equation:

y = a0 exp(-½(x-a1)2/a2
2) + a3 exp(-½(x-a4)2/a5

2) + …

The fitted parameters (coefficients) are the ai. You can fit up to 3 gaussians. The
commands to implement this are:

The first command sets the number of gaussians to fit and the data set to be fitted. You
must call this function before you call any of the others.

func FitGauss(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit. The only legal values are 3, 6 and 9 for one,
two and three gaussians.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation,
then the error value returned when you iterate to find the best fit is the chi-
squared value and the fit is a chi-squared fit.

If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If
you omit this array, the fit is a least squares error fit, and the error value
returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the
script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

An example

FitGauss()

Set up the problem

FitGauss() The Signal script language FitGauss()

5-77

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple gaussians, it is usual that the centre of
each distribution is easy to determine. If you can set the centres and limit them so that
they cannot overlap, the fit usually will proceed without any problems, even for multiple
gaussians. If you do not give starting values, the command will make a simplistic guess
at the fitting values. As we expect that you know more about the “right” answer than the
command does, we suggest that you set the values you want.

func FitGauss(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-
1.

val The initial value to assign to the coefficient. If you have set low and high limits,
and the value is outside these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this
coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

As long as you make a reasonable estimate of the centre points, there should be no
problems fitting multiple gaussians.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).

func FitGauss(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first centre in a[1], the
first sigma in a[2], the second amplitude in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2

if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used where yx[i]
is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed, but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Remember that even when a minimum is found, there is no guarantee that this is the
minimum. It is the best minimum that this algorithm can find given the starting point.

Set coefficient values and
ranges

Iterate to a solution

FitLine() Alphabetical command reference FitLine()

5-78

Sometimes you will know the values of some of the coefficients, or you may wish to hold
some coefficients fixed while you vary others. Normally the command will fit all the
coefficients, but you can use this command variant to select the coefficient to fit. You can
use this command at any time after you have set the problem until the iteration variant
returns 0 or -1.
func FitGauss(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, then all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

The following is a template for using this set of commands (assuming you don't want to
hold some parameters constant).
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var coef[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitGauss(3, y[], x[], s[]); 'fit one gaussian
FitGauss(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitGauss(1, 2, 1.5, 2.5); 'set centre of the gaussian and range
FitGauss(2, 0.5, 0.3, 1.9); 'set width and limit range
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitGauss(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

See also:ShowFunc()

This function calculates the best fit line to a set of data points using the least squares
error method. This can be applied to any Waveform channel. It fits the expression: y = m
x + c through the data points (xi, yi) so as to minimise the error given by: Sumi(yi - m xi -
c)2. In this expression, m is the gradient of the line and c is the y axis intercept when x is
0.

Func FitLine(chan%, start, finish, &grad, &inter, &corr);

chan% A channel number (1 to n) holding waveform data.
start The start position for processing. Start and finish are given in x axis units.
finish The end position for processing. A data value at the finish position is included

in the calculation.
grad This is returned holding the gradient of the best fit line (m).
inter This is returned holding the intercept of the line with the y axis (c).
corr This is returned holding correlation coefficient indicating the “goodness of fit”

of the line. Values close to 1 or -1 indicate a good fit; values close to 0 indicate
a very poor fit. This parameter is often referred to as r in textbooks.

Returns 0 if all was OK, or -1 if there were not at least 2 data points.
The results are in user units, so in a view with a waveform measured in volts on an x axis
of seconds, the units of the gradient would be volts per second and the units of the
intercept would be volts.

Select coefficients to fit

An example

FitLine()

FitLinear() The Signal script language FitLinear()

5-79

This command fits y = a0ƒ0(x) + a1ƒ1(x) + a2ƒ2(x) … to a set of (x,y) data points. If you
can provide error estimates for each y value, you can use the covariance output from this
command to provide confidence limits on the calculated coefficients and you can use the
returned chi-square value to test if the model is likely to fit the data. The command is:

func FitLinear(coef[], y[], x[][]{, s{, covar[][]{, r[]{, mR}}}});

coef[] A real array which sets the number of coefficients to fit and which returned the
best fit set of coefficients. The array must be between 2 and 10 elements long.
The coefficient a0 is returned in coef[0], a1 in coef[1] and so on.

y[] A real array of y values.
x[][] This array specifies the values of the fitting functions at each data point. If there

are nc coefficients and nd data values, this array must be of size at least
[nc][nd]. If you think of this array as a rectangular grid with the data running
from left to right and the coefficients running from top to bottom, the values you
must fill in are:
ƒ0(x0) ƒ0(x1) ƒ0(x2) ƒ0(x3) … ƒ0(xn-1)
ƒ1(x0) ƒ1(x1) ƒ1(x2) ƒ1(x3) … ƒ1(xn-1)
ƒ2(x0) ƒ2(x1) ƒ2(x2) ƒ2(x3) … ƒ2(xn-1)
ƒ3(x0) ƒ3(x1) ƒ3(x2) ƒ3(x3) … ƒ3(xn-1)
… … … … … …

s This is an optional argument. It is either a real array holding the standard
deviations of each of the y[] data points, or it is a real value holding the
standard deviation of all of the data points. If the argument is omitted or set to
zero, a least squares error fit is performed, otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number
of coefficients fitted) that is returned holding the covariance matrix.

r[] An optional array of size at least [nc] (nc is the number of coefficients fitted)
that is returned holding diagnostic information about the fit. The less relevant a
fitting function ƒi(x) is to the fit, the smaller the value returned. The element of
the array that corresponds to the most relevant function is returned as 1.0,
smaller numbers indicate less relevance.
It can also sometimes happen that some of your base fitting functions are not
independent of each other, usually leading to huge coefficients that cancel each
other out. In this case, several coefficients may be marked as of low relevance.
The solution here is to remove one of the functions from the fit, or to set the
next optional argument to exclude one of the functions, then fit again. If the
remaining arguments become relevant, you have probably excluded a function
that could be generated by a linear combination of the other functions. If the
remaining arguments still are not relevant, you have eliminated a function that
did not contribute to the fit.

mR You can use this optional variable to set the minimum relevance for a function.
Functions that have less relevance than this are “edited” out of the fit and their
coefficient is returned as 0. If you do not provide this value, the minimum is set
to 10-15 which will probably not exclude any values.

Returns The function returns the chi-square value for the fit if s[] or s is given (and
non-zero), or the sum of squares of the errors between the data points and the
best fit line if s is omitted or is zero.

The smallest of the sizes of the y[] array (and s[] array, if provided) and the second
dimension of x[][] sets the number of data points. It is a fatal error for the number of
data points to be less than the number of coefficients.

FitLinear()

FitNLUser() Alphabetical command reference FitNLUser()

5-80

The following example shows how you could use these commands to fit a data set to the
function y = a*sin(x/10) + b*cos(x/20). The x values vary from 0 to 49 in steps
of 1. The function MakeFunc() calculates the a trial data set to which we add random
noise. We do not supply an array of sigma values for each data point; instead we give all
points a value of 1.0, which means that FitLinear() returns the sum of squares of the
errors between the fitted curve and the raw data values. If you run this example, you will
notice that the returned value is slightly less than the sum of squares of the added errors.

const noise := 0.01; ' controls how much noise we add
const NCOEF% := 2; ' number of coefficients
const NDATA%:=50; ' number of data values
var data[NDATA%]; ' space for our function
var x[NCOEF%][NDATA%]; ' array of function information
var err := 0.0; ' the sum of squares of error we add

' Generate raw data. Fit y = a*sin(x/10)+b*cos(x/20)
var coef[NCOEF%], i%, r; ' coefficients, index, random noise
coef[0]:=1.0; coef[1]:=2; ' set coefficients for generated data
MakeFunc(data[], coef[], x[][]);

' Now add noise to the raw data values in data[].
for i%:=0 to NDATA%-1 do
 r := (rand()-0.5)*noise;' the noise to add
 data[i%] += r; ' add noise to the data
 err := err + r*r; ' accumulate sum of squared noise
 next;

var covar[NCOEF%][NCOEF%]; ' covariance array
var sig2, a[NCOEF%]; ' sigma, fitted coefficients
var rel[NCOEF%]; ' array for "relevance" values
sig2 := FitLinear(a[], data[], x[][], 1, covar[][], rel[]);
Message("sig^2=%g, err=%g\ncoefs=%g\nrel=%g",sig2,err,a[],rel[]);
halt;

'y[] is the output array (x values are 0, 1, 2...)
'a[] is the array of coefficients
' y = a*sin(x/10)+b*cos(x/20)
proc MakeFunc(y[], a[], x[][])
var nd%,v; ' coefficient index, work space
for nd% := 0 to NDATA%-1 do

v := Sin(nd% / 10.0); ' first funcion
x[0][nd%] := v; ' save the value;
y[nd%] := a[0] * v; ' start to build the result
v := Cos(nd%/20.0); ' second function
x[1][nd%] := v; ' save it
y[nd%] += a[1]*v; ' full result

 next;
end;

This command will use a non-linear fitting algorithm to fit a user-defined function to a
set of data points. The function to be fitted must be of the form y = ƒ(x, a0, a1, a2…)
where the ai are constants to be determined. You must be able to calculate the differential
of the function f with respect to each of the coefficients. You can optionally supply an
array to weight each data point. The commands to implement this are:

An example

FitNLUser()

FitNLUser() The Signal script language FitNLUser()

5-81

The first command sets the user-defined function, the number of coefficients you want to
fit, the number of data points and optionally, you can set the weight to give each data
point. You must call this function before you call any of the others.
func FitNLUser(User(ind%, a[], dyda[]), nCoef%, nData%{, s[]|s});

User() A user-defined function which is called by the fitting routine. The function is
passed the current values of the coefficients and returns the error between the
function and the data point identified by ind% and the differentials of the
function with respect to each of the coefficients at that point. The return value
should be the y data value at the index minus the calculated value of the
function at the x value using the coefficients passed in.

ind% The index into the data points at which the error and differentials are to be
evaluated. If there are n data points, ind% will run from 0 to n-1. You can rely
on the function being called with the same coefficients as ind% increments from
0 to n-1, which may be useful if you have complex functions of the coefficients
to evaluate.

a An array of length nCoef% holding the current values of the coefficients. The
coefficients are refreshed for each call to the user-defined function, so it is not
an error to change them, however this is usually not done.

dyda An array of length nCoef% which your function should fill in with the values of
the partial differential of the function with respect to each of the coefficients.
For example, if you were fitting y = a0*exp(-a1*x) then set dyda[0] = δy/δa0

= exp(-a1*x) and dyda[1] = δy/δa1 = -a0 *a1*exp(-a1*x).
nCoef% The number of coefficients to fit in the range 1 to 10.
nData% The number of data points you will be fitting. If s[] is provided as an array,

the value of nData% used is the smaller of nData% and the length of the s[]
array. It is a fatal error for the number of data points used to be less than
nCoef%.

s This argument is optional. It is either an array of weights to be given to each
data point in the fit or a single weight to apply to all data points. If this value is
the expected standard deviation of the y value of the data points, then the error
value returned is the chi-squared value and the fit is a chi-squared fit. If this
value is proportional to the expected error at the data point, then the fit is still a
chi-squared fit, and the error returned is proportional to the chi-squared value. If
you omit this argument, the fit is a least squares error fit, and the error value
returned is the sum of the squares of the errors in the y values.

Returns The FitNLUser() function returns 0. There is no other return value as all
errors stop the script.

Unlike the other fitting routines, you will notice that the x and y data values are not
passed into the command. Instead, the user-defined function is passed an index to the
data values. It is assumed that the data is accessible by the user function.

Due to restrictions in the implementation of the script language, you cannot debug
through the user-defined function. If you set a break point in it, or attempt to step into it
you will get errors. We recommend that you check the returned values from the user-
defined function by calling it from your own script code.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

Set up the problem

Set coefficient values and
ranges

FitNLUser() Alphabetical command reference FitNLUser()

5-82

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. If you do not give starting values, the command will set them all to zero,
which is unlikely to be correct.
func FitNLUser(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-
1.

val The initial value to assign to the coefficient. If you have set low and high limits,
and the value is outside these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this
coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitNLUser(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2

if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used where yx[i]
is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed, but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Remember that even when a minimum is found, there is no guarantee that it is the
minimum. It is the best minimum that this algorithm can find given the starting point.

Normally the command will fit all the coefficients, but you can use this command variant
to select the coefficients to fit. You can use this command at any time after you have set
the problem until the iteration variant returns 0 or -1.
func FitNLUser(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

Iterate to a solution

Select coefficients to fit

FitPoly() The Signal script language FitPoly()

5-83

The following is an example of using this set of commands to fit the user-defined
function y = a * exp(-b*x). In this example we generate some test data and add to it
a random error. There are two coefficients to be fitted (a and b).
const NDATA%:=100; ' number of data points
const NCOEF% := 2; ' number of coefficients
var x[NDATA%],y[NDATA%],i%;

' generate data: a:=1, b:=0.05 and add some noise
for i% := 0 to NDATA%-1 do
 x[i%] := i%;
 y[i%] := exp(-0.05*i%)+(rand()-0.5)*0.01;
 next;

' Now link in user function and set coefficient ranges
FitNLUser(UserFnc, NCOEF%, NDATA%);
FitNLUser(0, 0.5, 0.01, 2); 'Set range of amplitude
FitNLUser(1, 0.01, 0.001, 1); 'Set range of exponent

var coefs[NCOEF%], err, iter%;
i% := FitNLUser(coefs[], err, 100, iter%);
Message("fit=%d, Err=%g, iter=%d, coefs=%g", i%, err, iter%,
coefs[]);
halt;

' The user-defined function: y = a * exp(-b*x);
' dy/da = exp(-b*x)
' dy/db = -x * a * exp(-b*x)
func UserFnc(ind%, a[], dyda[])
var xi,yi,r;
xi := x[ind%]; ' local copy of x value
yi := y[ind%]; ' local copy of y value
dyda[0] := exp(-a[1]*xi); ' differential of y with respect to a
r := dyda[0] * a[0]; ' intermediate value
dyda[1] := -xi * r; ' differential of y with respect to b
return yi-r;
end

This command fits y = a0 + a1x + a2x2 + a3x3 … to a set of (x,y) data points. If you can
provide error estimates for each y value, you can use the covariance output from this
command to provide confidence limits on the calculated coefficients and you can use the
returned χ2 value to test if the model is likely to fit the data. The command is:

func FitPoly(coef[], y[], x[]{, s[]|s{, covar[][]}});

coef[] A real array which sets the number of coefficients to fit and which returns the
best fit set of coefficients. The array must be between 2 and 10 elements long.
The coefficient a0 is returned in coef[0], a1 in coef[2] and so on.

y[] A real array of y values. The smaller of the sizes of the x[] and y[] arrays (and
s[] array, if provided), sets the number of data points. It is a fatal error for the
number of data points to be less than the number of coefficients.

x[] A real array of x values.
s This is an optional argument. It is either a real array holding the standard

deviations of each of the y[] data points, or it is a real value holding the
standard deviation of all of the data points. If the argument is omitted or set to
zero, a least squares error fit is performed, otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number
of coefficients fitted) that is returned holding the covariance matrix.

An example

FitPoly()

FitSin() Alphabetical command reference FitSin()

5-84

Returns The function returns the chi-squared value for the fit if s[] or s is given (and
non-zero), or the sum of squares of the errors between the data points and the
best fit line if s is omitted or is zero.

The following example generates a set of test data, adds random noise to it, then fits a
polynomial to the data.
const NCOEF% := 5; ' number of coefficients
const NDATA%:=50; ' number of data points
var y[NDATA%]; ' space for our function
var x[NDATA%]; ' x co-ordinates
const noise := 1; ' noise to add
var err := 0.0; ' will be sum of squares of added noise
var cf[NCOEF%], i%, r;
cf[0]:=1.0; cf[1]:=-80; cf[2]:=-2.0; cf[3]:=0.5; cf[4]:=-0.009;
MakePoly(cf[],x[],y[]); ' generate ideal data as polynomial
for i%:=0 to NDATA%-1 do ' now add some noise to it
 r := (rand()-0.5)*noise;
 y[i%] += r; ' add noise to the data
 err += r*r; ' sum of squares of added noise
 next;
var sig2, a[NCOEF%]; ' a[] will be the fitted coefficients
sig2 := FitPoly(a[], y[], x[]);
Message("sig2=%g, noise=%g\nfitted=%8.4f\nideal =%8.4f",
 sig2, err, a[], cf[]);
halt;

'a[] input array of coefficients
'x[] output x co-ordinates, y[] output data values
proc MakePoly(a[], x[], y[])
var i%,j%,xv,s;
for i% := 0 to Len(y[])-1 do
 s := 0.0;
 xv := 1;
 for j% := 0 to NCOEF%-1 do
 s += a[j%]*xv;
 xv *= i%;
 next;
 y[i%] := s;

x[i%] := i%;
 next;
end;

This command will fit multiple sinusoids to arrays of x,y data points, with an optional
weight for each point. Fitting is by an iterative method. The input data is fitted to the
equation:

y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + …

The fitted parameters (coefficients) are the ai. The angles are evaluated in radians. You
can fit up to 3 sinusoids. Although the function is given in terms of sine functions, you
can easily convert to cosines by subtracting π/2 from the phase angle (a2, a5, a8) after the
fit. The commands to implement this are:

An example

FitSin()

FitSin() The Signal script language FitSin()

5-85

The first command sets the number of sinusoids to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitSin(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit. The only legal values are 3, 6 and 9 for one,
two and three sinusoids.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation,
then the error value returned when you iterate to find the best fit is the chi-
squared value and the fit is a chi-squared fit.

If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If
you omit this array, the fit is a least squares error fit, and the error value
returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the
script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple sinusoids you will usually either know,
or have a good idea of the frequencies. You should limit the range of each frequency so
that they cannot overlap. If you can do this, the fit will proceed quickly. If you do not
give starting values, the command will make a simplistic guess at the fitting values. As
we expect that you know more about the "right" answer than the command does, we
suggest that you set the values you want.
func FitSin(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-
1.

val The initial value to assign to the coefficient. If you have set low and high limits,
and the value is outside these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this
coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitSin(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first frequency in a[1],
the first phase angle in a[2], the second amplitude in a[3] and so on.

Set up the problem

Set coefficient values and
ranges

Iterate to a solution

FitSin() Alphabetical command reference FitSin()

5-86

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2

if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used where yx[i]
is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed, but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Even when a minimum is found, there is no guarantee that this is the minimum, only that
it is the best minimum that this algorithm can find given the starting point.

Sometimes you may wish to hold some coefficients fixed while you fit others. Normally
the command will fit all the coefficients, but you can use this command variant to select
the coefficients to fit. You can use this command at any time after you have set the
problem until the iteration variant returns 0 or -1.
func FitSin(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, then all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again. For a sinusoidal fit it
is likely that you will know the frequency to fit, so you may well hold this constant.

The following is a template for using this set of commands (assuming you don't want to
fit the frequency which we assume you know).
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var fit%[3]; 'we want to hold the frequency
var coef[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitSin(3, y[], x[], s[]); 'fit one sinusoid

'Note that we let the phase take any value
FitSin(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitSin(1, .02, .01, .03); 'set frequency
FitSin(2, 0., 0.3, 1.9); 'set width and limit range

'Now we say that we don't want to fit the frequency
ArrConst(fit%[],1); 'set all elements to 1
fit%[1] := 0; 'but not element 1 (=frequency)
FitSin(fit%[]); 'so the frequency is fixed

repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitSin(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

Select coefficients to fit

An example

FontGet() The Signal script language Frac()

5-87

This function gets the name of the font, and its characteristics for the current view.

Func FontGet(&name$, &size, &style%);

name$ This string variable is returned holding the name of the font.
size The real number variable is returned holding the point size of the font.
style% This integer variable is returned holding the style:

0 Normal text
1 Italic text
2 Bold text
3 Bold and italic

Returns The function returns 0 if all was well or a negative error code. If an error occurs,
the variables are not changed.

See also:FontSet()

This function sets the font for the current view. This does not cause an immediate
redraw; use the Draw() command to force one.

Func FontSet(name$|code%, size, style%);

name$ This is a string holding the name of the font to use. Alternatively, you can
specify a font code:

code% This is an alternative (system independent) method of specifying a font. We
recognise these font codes:
0 The standard system font, whatever that might be
1 A non-proportionally spaced font, usually Courier-like
2 A proportionally spaced non-serifed font, such as Helvetica or Arial
3 A proportionally spaced serifed font, such as Times Roman
4 A symbol font
5 A decorative font, such as Zapf-Dingbats or TrueType Wingdings

size The point size required. Each system will set a minimum and maximum point
size. Values outside this range are limited to the extreme values.

style% This integer value sets the type style (if supported on your system):
0 Normal text
1 Italic text
2 Bold text
3 Bold and italic

Returns The function returns 0 if the font change succeeded, or a negative error code.
See also:FontGet()

Returns the fractional part of a real number or replaces an array of reals with its
fractional parts.

Func Frac(x|x[]);

x A real number or an array of reals.
Returns For arrays, it returns 0 or a negative error code. If x is not an array it returns a

real number equal to x-Trunc(x). Frac(4.7) is 0.7, Frac(-4.7) is -0.7.
See also:Trunc(), Round()

FontGet()

FontSet()

Frac()

Frame() Alphabetical command reference FrameFlag()

5-88

A function to get or set the current frame in a data view.

Func Frame({frame%});

frame% If this is present and in range the current frame changes to the new number.
Returns The frame number for the view at the time of the call.
See also:FrameComment$(), FrameCount(), FrameFlag(), FrameTag(),

FrameUserVar()

Obtains the absolute start time for the current frame in a data view. The absolute start
time for a frame is the time for time zero in a frame relative to the time at which sampling
was started.

Func FrameAbsStart();

Returns The absolute start time, in seconds, of the current frame in the current data view.
See also:Frame(), SampleStart()

Gets or sets the comment with the current frame. This is a string of up to 72 characters
that is stored with each frame.

Func FrameComment$({c$});

c$ If this is present it provides a new comment to store with the frame.
Returns The frame comment at the time of the call.
See also:FileComment$(), FrameState(), FrameTag(), FrameUserVar()

Obtains the number of frames in a document.

Func FrameCount();

Returns Number of frames (sweeps) in the file or memory view.
See also:Frame(), Sweeps()

This command turns a frame flag on or off or retrieves the current setting of a flag from
the specified frame.

Func FrameFlag(frm%|frm$|frm%[], flag%{, set%});

frm% Frame number or a negative code as follows:
-1 All frames in the file
-2 The current frame
-3 Only tagged frames
-6 Only untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

Frame()

FrameAbsStart()

FrameComment$()

FrameCount()

FrameFlag()

FrameGetIntVar() The Signal script language FrameGetRealVar()

5-89

flag% The flag number (1..32). For CFS files not created by Signal, only flags 1 to 4
and flag 16 are present, though the other flags can be used while the frame is
held in memory.

set% If non-zero this sets flag number flag% on in the current frame. If zero it turns
the flag off. In a file not created by Signal only flags 1,2,3,4 or 16 can be
permanently changed.

Returns 1 if the flag number flag% is set in the last frame specified when the function
was called or zero if not. Returns -1 if no frames are found to match the
specification.

See also:FrameComment$(), FrameState(), FrameTag(), FrameUserVar()

This function reads a CFS frame variable of integer type from the current frame.

Func FrameGetIntVar(name$ {&nVar%{, &units$, {nType%}}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
nType% If present this returns a code for the CFS type of an integer variable:

0: INT1, 1: WRD1, 2: INT2, 3: WRD2, 4: INT4:
Returns The function returns the value of the variable if the operation was a success, and

otherwise zero.
See also:FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(),FrameVarInfo()

This function reads a CFS frame variable of real type from the current frame.

Func FrameGetRealVar(name$ {&nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
Returns The function returns the value of the variable if the operation was a success, and

otherwise zero.
See also:FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FrameGetIntVar()

FrameGetRealVar()

FrameGetStrVar$() Alphabetical command reference FrameList()

5-90

This function reads a CFS frame variable of string type from the current frame.

Func FrameGetStrVar$(name$ {&nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
Returns The function returns the string contents of the variable if the operation was a

success, and otherwise an empty string.
See also:FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameVarCount(), FrameVarInfo()

This function generates an array of selected frame numbers from the current view.

Func FrameList(list%[], sFrm%{, eFrm%{,mode%}});

Func FrameList(list%[], frm$|frm%[]{,mode%});

list% An integer array to fill with frame numbers. The first element of the array,
list%[0], is set to the number of frames returned, and the remaining elements
in the array are frame numbers. If the array is too short, enough frames are
returned to fill the array.

sFrm% First frame to include. This option returns a range of frames. sFrm% can also be
a negative code as follows:
-1 All frames in the file are included
-2 The current frame
-3 Frames must be tagged
-6 Frames must be untagged

eFrm% Last frame to include. If this is -1 the last frame number in the data file is used.
This argument is ignored if sFrm% is a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each
frame in the range, list or specification. If mode% is absent all frames are
included. The modes are:
0-n Frames must have a state matching the value of mode%
-1 All frames in the range list are included
-2 Only the current frame in the view is included
-3 Frames must be tagged
-6 Frames must be untagged

Returns The number of frames that would be returned if the array was of unlimited
length or 0 if the view is not a data view.

See also:FrameState(), FrameTag(), FrameUserVar(), ExportFrameList(),
ProcessFrames()

FrameGetStrVar$()

FrameList()

FrameMean() The Signal script language FrameSave()

5-91

This command turns the frame mean flag on or off or gets the setting of the mean flag for
the specified frame or frame type.

Func FrameMean(frm%|frm$|frm%[]{, on%});

frm% One frame number or a negative code as follows:
-1 All frames in the file.
-2 The current frame
-3 All tagged frames
-6 All untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

on% A value of 1 marks the frame as a mean, zero marks it as a total.
Returns 1 if the last frame specified was a mean when the function was called or zero if

not. Returns -1 if no frames are found to match the specification.
See also:FrameComment$(), FrameFlag(), FrameState(), FrameUserVar(),

Sweeps()

This command saves changed frame data in a file view back into the file, bypassing the
usual interactive process controlled by the preferences dialog. It can also be used to
discard changes to ensure that the user is not promped to save them. This command can
only be used on frames already present on disk; appended frames and memory view
frames will be saved as part of FileSave or FileClose.

Func FrameSave({no%});

no% If present and non-zero, this causes changed data to be discarded by marking the
data as unchanged. If the parameter is not present or set to zero the function
causes the changed data to be written back to the disk file.

Returns Zero or a negative error code.
See also:FileExportAs(), FileSave(), FileClose(), Frame()

FrameMean()

FrameSave()

FrameState() Alphabetical command reference FrameUserVar()

5-92

This command sets or gets the value of the state variable for the specified frame or
frames.

Func FrameState(frm%|frm$|frm%[]{, new%});

frm% One frame number or a negative code as follows:
-1 All frames in the file
-2 The current frame
-3 All tagged frames
-6 All untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

new% If present this sets state stored with each frame specified. For values above 9
this is only effective in a file created by Signal.

Returns The state of the last frame specified when the function was called. Returns -1 if
no frames are found to match the specification.

See also:FrameComment$(), FrameFlag(), FrameTag(), FrameUserVar()

This command turns the tag on or off or gets the setting of the tag for the specified frame
or frame type.

Func FrameTag(frm%|frm$|frm%[]{, on%});

frm% One frame number or a negative code as follows:
-1 All frames in the file.
-2 The current frame
-3 All tagged frames
-6 All untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

on% A value of 1 tags the frame, zero untags it.
Returns 1 if the last frame specified was tagged when the function was called or zero if

not. Returns -1 if no frames are found to match the specification.
See also:FrameComment$(), FrameFlag(), FrameState(), FrameUserVar()

This command gets or sets one of the user variables stored with the current frame.

Func FrameUserVar(n%{,val});

n% The user variable number, between 1 and 16.
val If present this is the new value for user variable number n.
Returns The value of frame user variable number n before the call.
See also:FrameComment$(), FrameFlag(), FrameState(), FrameTag()

FrameState()

FrameTag()

FrameUserVar()

FrameVarCount() The Signal script language FrontView()

5-93

This function counts CFS frame variables in the data file.

Func FrameVarCount();

Returns The number of frame variables in the data file associated with this view.
See also:FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarInfo()

This function reads a description of a CFS frame (DS) variable.

Func FrameVarInfo(nVar%, &name$);

nVar% This is the variable number for which information is required. The first frame
variable is number zero.

name$ This is returned holding the name of the variable, which can be used in the
commands for reading the frame variable values.

Returns The function returns the type of the variable or -1 if the variable was not found
or is of unknown type. The variable type codes are as follows:
0 An integer variable which can be read using FrameGetIntVar().
1 A floating point variable which can be read using FrameGetRealVar().
2 A string variable which can be read using FrameGetStrVar$().

See also:FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),
FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount()

This command is used to set the view that is nearest to the top and makes it the current
view. It is the view that would have the focus if all dialogs were removed. You can use
this to find out the front view, or to set it. When a view becomes the front view, it is
moved to the front unless it is already there. If an invisible or iconised view is made the
front view, the view is made visible automatically, (equivalent to WindowVisible(1)).
Care should be taken if using this function in an idle routine for a toolbar as calling it
repeatedly will prevent the toolbar buttons from being pressed!

Func FrontView({vh%});

vh% Either 0 or omitted to return the front view handle, a view handle to be set, or
-n, meaning the nth duplicate of the data view associated with the current view.

Returns 0 if there are no visible views, -1 if the view handle passed is not a valid view
handle, otherwise it returns the view handle of the view that was at the front.

See also:View(), Window(), WindowVisible()

FrameVarCount()

FrameVarInfo()

FrontView()

GammaP() Alphabetical command reference Grid()

5-94

This is the incomplete gamma function P(a, x) and is defined mathematically as:

P(a, x) = 1/Γ(a) ∫
0

x

e-tt a-1dt

Γ(a) is the gamma function described under LnGamma(). From the incomplete gamma
function is obtained the error function, the cumulative Poisson probability function and
the Chi-squared probability function.

The error function erf(x) = 2/√π ∫
0

x

e-t2dt = GammaP(0.5, x*x)

The cumulative Poisson probability function relates to a Poisson process of random
events and is the probability that given an expected number of events r in a given time
period the actual number was greater than or equal to n. This turns out to be
GammaP(n,r). Also, the probability that there are less than n events is GammaQ(n,r)
(described below).

The Chi-squared probability function is useful where we are fitting a model to data.
Given a fitting function that fits the data with n degrees of freedom (if you have nData
data points and nCoef coefficients you usually have nData-nCoef degrees of freedom),
and given that the errors in the data points are normally distributed, the probability of a
Chi-squared value less than chisq is GammaP(n/2, chisq/2). Similarly, the
probability of a chisq value at least as large as chisq is GammaQ(n/2, chisq/2). So,
if you know the chi-squared value from a fitting exercise, you can ask "What is the
probability of getting this value (or a greater one) given that my model fits the data?". If
the probability is very small, it is likely that your model does not fit the data, or your fit
has not converged to the correct solution.

Func GammaP(a, x);

a This must be positive, it is a fatal error if it is not.

x This must be positive, it is a fatal error if it is not.
Returns The incomplete Gamma function.

The complement of GammaP(); GammaQ(a,x) is 1.0-GammaP(a,x).
Func GammaQ(a, x);

a This must be positive, it is a fatal error if it is not.

x This must be positive, it is a fatal error if it is not.
Returns The complement of the incomplete Gamma function.

This function turns the background grid on and off for the current data or XY view. It
also returns the state of the grid.

Func Grid({on%});

on% Optional argument that sets the grid state. If this is omitted, no change is made.
0 Turn the grid off.
1 Turn the grid on.

Returns The state of the grid at the time of the call, or a negative error code. Changes
made by this function do not cause an immediate redraw.

GammaP()

GammaQ()

Grid()

HCursor() The Signal script language HCursorExists()

5-95

This function returns the y axis position of a horizontal cursor, and optionally sets a new
position. You can get and set positions of cursors attached to invisible channels or
channels that have no y axis.

Func HCursor(num% {,where {,chan%}});

num% The cursor to use. It is an error to attempt this operation on an unknown cursor.
where If this parameter is given it sets the new y axis position of the cursor.
chan% If this parameter is given, it sets the channel number (1 to n).
Returns The function returns the y axis position of the cursor at the time of the call, or

zero for a non-existent cursor number.
See also:Cursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This function returns the channel number that a particular horizontal cursor is currently
attached to.

Func HCursorChan(num%);

num% The horizontal cursor number.
Returns It returns the channel number that the cursor is attached to, or 0 if this cursor is

not attached to any channel or if the channel number is out of the allowed range.
See also:HCursor(), HCursorDelete(), HCursorLabel(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This deletes the designated horizontal cursor. It is not an error to delete an unknown
cursor, it just has no effect.

Func HCursorDelete({num%});

num% The number of the cursor to delete, or -1 to delete all horizontal cursors. If this
is omitted, the highest numbered cursor is deleted.

Returns The number of the deleted cursor or 0 if no cursor was deleted.
See also:CursorDelete(), HCursor(), HCursorChan(), HCursorLabel(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This function tests if a given horizontal cursor exists at the time of the call.
Func HCursorExists(num%)

num% The cursor number, between 1 and 4.
Returns 1 if the cursor exists, 0 if it does not.
See also:HCursor(), HCursorDelete(), CursorExists()

HCursor()

HCursorChan()

HCursorDelete()

HCursorExists()

HCursorLabel() Alphabetical command reference HCursorRenumber()

5-96

This command sets (or gets) the horizontal cursor label style for the current view.

Func HCursorLabel({style%{, num%{, form$}}})

style% The cursor style. Cursors can be annotated with a position or the cursor number
or a user-defined style. The styles are: 0=Neither, 1=Position, 2=Number,
3=Both, 4=User-defined. Unknown styles cause no change.

num% The cursor number for style 4. 0 means all cursors, 1-4 for a single cursor.
form$ The label string for style 4. The string has replaceable parameters %p, and %n for

position and number. We also allow %w.dp where w and d are numbers that set
the field width and decimal places. You cannot read back a label format string.

Returns The previous cursor style. If you omit style%, the style does not change.
See also:CursorLabel(), HCursor(), HCursorChan(), HCursorDelete(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This lets you set and read the position of the horizontal cursor label.

Func HCursorLabelPos(num% {,pos});

num% The cursor number, between 1 and 4. If the cursor does not exist the function
does nothing and returns -1.

pos If present, the command sets the position. The position is a percentage of the
distance from the left of the cursor at which to position the value. Out of range
values are set to the appropriate limit.

Returns The cursor position before any change was made, or -1 if the cursor does not
exist.

See also:CursorLabelPos(), HCursor(), HCursorChan(), HCursorDelete(),
HCursorLabel(), HCursorNew(), HCursorRenumber()

This function creates a new horizontal cursor and assigns it to a channel. You can create
up to 4 horizontal cursors, which can subsequently be moved to any channel.

Func HCursorNew(chan% {,where});

chan% A channel number (1 to n) for the new cursor. If the channel is hidden the cursor
is hidden.

where An optional argument setting the cursor position. If this is omitted, the cursor is
placed in the middle of the y axis or at zero if there is no y axis.

Returns It returns the horizontal cursor number or 0 if all cursors are in use.
See also:CursorNew(), HCursor(), HCursorChan(), HCursorDelete(),

HCursorLabel(), HCursorLabelPos(), HCursorRenumber()

This command renumbers the cursors starting with channel 1, cursors in each channel are
numbered from bottom to top. There are no arguments.

Func HCursorRenumber();

Returns The number of cursors found in the view.
See also:CursorRenumber(), HCursor(), HCursorChan(), HCursorDelete(),

HCursorLabel(), HCursorLabelPos(), HCursorNew()

HCursorLabel()

HCursorLabelPos()

HCursorNew()

HCursorRenumber()

Help() The Signal script language Input$()

5-97

Signal uses the standard Windows help system.
Func Help(topic%|topic$ {,file$});

topic% A numeric code for the help topic. These codes are assigned by the help system
author. Code 0 changes the default help file to file$.

topic$ A string holding a help topic keyword or phrase to look-up.
file$ If this is omitted, or the string is empty, the standard Signal help file is used. If

this holds a filename, this filename is used as the help file.
Returns 1 if the help topic was found, 0 if it was not, -1 if the help file was not found.
The Windows SDK has some help authoring tools, and third party tools are available.

This function reads a number from the user. It opens a window with a message, and
displays the initial value of a variable. You can limit the range of the result.
Func Input(text$, val {,low {,high}});

text$ A string holding a prompt for the user. If the string contains a vertical bar
character (|), the string before the bar will be used to set the title of the window.

val The initial value to be displayed for editing. If limits are given, and the initial
value is outside the limits, it is set to the nearer limit.

low An optional low limit for the result. If low>=high, the limits are ignored.
high An optional high limit for the result.
Returns The value typed in. The function always returns a value. If an out of range value

is entered, the function warns the user and a correct value must be given. When
parsing the input, leading white space is ignored and the number interpretation
stops at the first non-numeric character or the end of the string.

See also:DlgReal(), DlgInteger(), Input$()

This function reads user input into a string variable. It opens a window with a message,
and displays a string. You can also limit the range of acceptable characters.
Func Input$(text$, edit${, maxSz%{, legal$}});

text$ A string holding a prompt for the user. If the string contains a vertical bar
character (|), the string before the | sets the title of the window.

edit$ The starting value for the text to edit.
maxSz% Optional, maximum size of the response string.
legal$ A string holding the characters that are acceptable. The starting string is filtered

before display. A hyphen indicates a range of characters. To include a hyphen in
the list, place it first or last in the string. Upper and lower case characters are
distinct. For alphanumeic characters use: "a-zA-Z0-9".
If this string is omitted, all printing characters are allowed, equivalent to " -~"
(space to tilde). For simple use, the sequence of printing characters is:
space !"#$%&'()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

If you use extended or accented characters, the order depends on the system.
Returns The result is the edited string. A blank string is a possible result.
See also:DlgString() ,Input()

Help()

Input()

Input$()

InStr() Alphabetical command reference Interact()

5-98

This function searches for a string within another string. This function is case sensitive.

Func InStr(text$, find$ {,index%});

text$ The string to be searched.
find$ The string to look for.
index% If present, the start character index for the search. The first character is index 1.
Returns The index of the first matched character, or 0 if the string is not found.
See also:DelStr$(), LCase$(), Left$(), Mid$(), Right$(), UCase$()

This function provides a quick and easy way to interact with a user. Cursors can always
be dragged as we assume that they are one of the main ways of interacting with the data.
You can restrict the user to a single view and limit the menu commands that can be used.

Func Interact(msg$, allow% {,help {, lb1$ {,lb2$ {,lb3$...}}}});

msg$ The prompt to display in the tool bar during the operation. If there is not enough
space to display the message and buttons, the message is truncated.

allow% A code that specifies the actions that the user can and cannot take while
interacting with Signal. The code is the sum of possible activities:
1 User may swap to other applications
2 User may change the current window
4 User may move and resize windows
8 User may use the File menu
16 User may use the Edit menu
32 User may use the View menu
64 User may use the Analysis menu
128 User may use the Cursor menu and add cursors
256 User may use the Window menu
512 User may use the Sample menu
1024 User may not double click y axis
2048 User may not double click the x axis or scroll it
4096 User may not change channel of horizontal cursors
8192 User may not change to another frame

A value of 0 would restrict the user to inspecting data and positioning cursors in
a single, unmoveable window, but able to switch frames. A value of 8192 is the
same but without changing frames.

help This can be either a number or a string. If it is a number, it is the number of a
help item (if help is supported). If it is a string, it is a help context string. This is
used to set the help information that is presented when the user requests help in
the manner supported on the host machine. Set 0 to accept the default help.

lb1$ These label strings create buttons, from right to left, in the tool bar. If no labels
are given, one label is displayed with the text "OK". The maximum number of
buttons is 10.

Returns The number of the button that was pressed. Buttons are numbered in order, so
lb1$ is button 1, lb2$ is button 2 and so on.

With allow% set to 0, all the user could do would be to press a button on the tool bar.
The tool bar would be displayed (if it was not present) when Interact() was called.
When the user presses a button to exit, the tool bar is returned to the state it was in before
Interact was used.

See also:Toolbar()

InStr()

Interact()

LastTime() The Signal script language Len()

5-99

This function finds the first item on a channel before a particular x axis position.

Func LastTime(chan%, &pos{, &val|code%[]});

chan% The channel number (1 to n) to use for the search.
pos The x axis value to search before. Items at the position are ignored. To start a

backward search that guarantees to iterate through all items, start at
Maxtime(chan%)+1.
pos is updated to contain the x axis position of the previous item. It is left
unchanged if no more items are found or there is an error.

val This optional parameter returns the waveform value for waveform channels.
code% This optional parameter is only used if the channel is a marker type. This is an

array with at least four elements that is filled in with the marker codes.
Returns The function returns 1 if a data item is found, 0 if there are no more items to be

found or a negative error code.
See also:Maxtime(), Mintime(), NextTime()

This function converts a string into lower case.

Func LCase$(text$);

text$ The string to convert.
Returns A lower cased version of the original string.
See also:UCase$()

This function returns the first n characters of a string.

Func Left$(text$, n);

text$ A string of text.
n The number of characters to extract.
Returns The first n characters, or all the string if it is less than n characters long.
See also:DelStr$(), Mid$(), InStr(), Len(), Right$()

This function returns the length of a string or the size of a one dimensional array.

Func Len(text$);
Func Len(arr[]);

text$ The text string.
arr[] A one dimensional array. It is an error to pass in a two dimensional array.
Returns The length of the string or the array as an integer.
You can find out the size of each dimension of a two dimensional array as follows:
proc something(arr[][]) 'function passed a 2-d array
var n%, m%;
n% := Len(arr[][0]); 'get size of first dimension
m% := Len(arr[0][]); 'get size of second dimension
return;
end;

LastTime()

LCase$()

Left$()

Len()

Ln() Alphabetical command reference LogHandle()

5-100

This function calculates the natural logarithm (inverse of Exp()) of an expression, or
replaces the elements of an array with their natural logarithms.

Func Ln(x|x[])

x A real number or a real array. Zero or negative numbers cause the script to halt
with an error unless the argument is an array, when an error code is returned.

Returns When used with an array, it returns 0 if all was well, or a negative error code.
When used with an expression, it returns the natural logarithm of the argument.

The natural logarithm of the gamma function Γ(x) is available from the script language
for real values of x > 0.0. The gamma function has the useful property that Γ(n+1) is the
same as n! (n factorial) for integral values of n. However, the gamma function becomes
inconveniently large (reaching floating point infinity as far as the script language is
concerned when x is 172.62). As this is a rather restricted range, the script returns the
natural logarithm of the gamma function. The mathematical definition of the gamma
function is:

Γ(a) = ∫
0

∞

e-tt a-1dt

Func LnGamma(a);

a A positive value. The script stops with a fatal error if this is negative.
Returns The natural logarithm of the Gamma function of a.

Takes the logarithm to the base 10 of the argument.

Func Log(x|x[]);

x A real number or a real array. Zero or negative numbers cause the script to halt
with an error unless the argument is an array, when an error code is returned.

Returns With an array, this returns 0 if all was well or a negative error code. With an
expression, this returns the logarithm of the number to the base 10.

The log window, also called the log view, is a text view created by the application and is
the destination for PrintLog(). This function returns the view handle of the log
window. You need this if you are to size or hide the log window, or make it the current
or front window, or use the editing commands to clear it.

Func LogHandle()

Returns The view handle of the log window.
See also:EditClear(), EditSelectAll(), View(), FrontView(),

Window(), WindowGetPos(), WindowSize(), WindowVisible()

Ln()

LnGamma()

Log()

LogHandle()

MarkCode() The Signal script language Max()

5-101

This returns the data stored in a marker at a particular x axis position.

Func MarkCode(chan%, pos{, co%|co%[]});

chan% The marker channel to read.
pos The position of the marker. This must match to within ± half the time interval

returned by BinSize() for the channel.
co% Optional integer to return the first 8 bit marker code (0 to 255).
co%[] Optional array in which to return the marker codes. Up to 4 of these are returned

depending on the size of the array.
Returns The first code if a marker was found, or -1 if no marker exists at pos.
See also:BinSize(), MarkEdit(), MarkTime()

This changes the data stored in a marker at a particular x axis position.

Func MarkEdit(chan%, pos, co%|co%[]);

chan% The marker channel to edit.
pos The position of the marker. This must match to within ± half the time interval

returned by BinSize() for the channel.
co% A value from 0 to 255 to replace the first code for the marker.
co%[] Array of up to 4 values (0 to 255) to replace codes for the marker. If the array

size is smaller than 4 the other codes are left untouched.
Returns 0 if a marker was edited, or -1 if no marker exists at pos.
See also:BinSize(), MarkCode(), MarkTime()

This reads and changes the time for a marker.

Func MarkTime(chan%, pos, {new});

chan% The channel number holding markers to move.
pos The position of the marker. This must match to within ± half the time interval

returned by BinSize() for the marker channel.
new If supplied, the new position (x axis value) for the marker. Note that marker

times must be in order, so this time will be truncated to prevent the marker time
reaching or going past adjacent markers.

Returns The exact marker time before any changes or 0 if no marker exists at pos.
See also:BinSize(), MarkCode(), MarkEdit(), View(v,c).[]

This function returns the maximum of several real and/or integer variables or the index of
the maximum value in an array if an array argument is provided. See Min() for example.

Func Max(arr[]|arr%[]|val1 {,val2 {,val3...}})

arr A real or integer array.
valn A list of real and/or integer values to scan for a maximum.
Returns The maximum value or index of the maximum in an array argument.
See also:Min(), MinMax(), XYRange

MarkCode()

MarkEdit()

MarkTime()

Max()

Maxtime() Alphabetical command reference Mid$()

5-102

This returns the maximum x axis value in the frame or a specified channel, or the latest
time reached within the frame or the specified channel in a sampling document view. For
the end of the visible x axis use XHigh().

Func MaxTime({chan%})

chan% An optional channel number (1 to n). If present, and if the channel exists, the
function gets the x axis value for the last item sampled in the channel or the
minimum x axis value in the frame if no items are found on the channel.

Returns The value returned is the maximum x axis value for the frame or a specified
channel. If the current view is of the wrong type, or if a specified channel
number does not exist, the script stops with an error.

See also:Len(), LastTime(), NextTime(), Mintime(), Seconds(), XHigh()

This function displays a message in a box with an OK button that the user must click to
remove the message. Alternatively, the user can press the Enter key.

Proc Message(form$ {,arg1 {,arg2...}})

form$ A string that defines the output format as for Print(). If the string contains a
vertical bar character (|) then that portion of the string before the | will be used
to set the title of the dialog box.

arg1,2 The arguments used to replace %d %f and %s type formats.
The output string will be presented as one line if it is short enough, otherwise it will be
split into multiple lines. Messages longer than 70 characters are truncated.
See also:Print(), Input(), Query(), DlgCreate()

This function returns a substring of a string.

Func Mid$(text$, index% {,count%});

text$ A text string.
index% The starting character in the string. The first character is index 1.
count% The maximum characters to return. If omitted, all the characters to the end of the

string are returned.
Returns The specified string. If index% is larger than the original string length, the

result is an empty string.
See also:DelStr$(), InStr(), Left$(), Len(), Right$(),

Maxtime()

Message()

Mid$()

Min() The Signal script language Minmax()

5-103

This function returns the minimum of several real and/or integer variables or the index of
the minimum value in an array if an array argument is provided.

Func Min(arr[]|arr%[]|val1 {,val2 {,val3...}})

arr A real or integer array.
valn A list of real and/or integer values to scan for a minimum.
Returns The minimum value or index of the minimum in an array argument.

An example finding the minimum in a sub-array holding 10 items of the original data:
var data[70], minPos%, minVal;
...
minPos:=Min(data[40:10]); ' returns a position between 0 and 9
minVal:=data[40+minPos]; ' value of minimum

See also:Max(), Minmax(), XYRange

Minmax() finds the minimum and maximum values for data view channels with a y axis,
or the minimum and maximum intervals for a marker channel handled as dots or lines.
The values returned for marker channels as a rate histogram are measured from the
histogram with partial bins included.

Func Minmax(chan%, start, finish, &min, &max {,&minP{,&maxP
{,mode% {,binsz}}}});

chan% The channel number (1 to n) on which to find the maximum and minimum.
start The start position in x axis units.
finish The end position in x axis units.
min The minimum value is returned in this variable or zero if no data found.
max The maximum value is returned in this variable or zero if no data found.
minP The position of the minimum is returned in this variable or zero if no data

found.
maxP The position of the maximum is returned in this variable or zero if no data

found.
mode% This will have no effect for a waveform channel. If present for a marker

channel, this sets the effective drawing mode in which to find the minimum and
maximum. If mode% is absent or inappropriate, the current display mode is used.
The modes are:
0 The current mode for the channel. Any additional arguments are ignored.
1 Dots mode for markers, returns the position of the marker at or after pos.
2 Lines mode for markers, result is the same as mode 1.
3 Rate mode for markers. The binSz argument sets the width of each bin.

binSz This sets the width of the rate histogram bins when specifying rate mode.
Returns 1 if data points were found, 0 if no data was found or a negative error code.

See also:Min(), Max(), View(v,c).[], XYRange()

Min()

Minmax()

Mintime() Alphabetical command reference MoveTo()

5-104

In a data view, this returns the minimum x axis value in the frame or in a channel. For the
end of the visible x axis use XLow().

Func MinTime({chan%})

chan% An optional channel number (1 to n). If present, and if the channel exists, the
function gets the x axis value for the earliest item in the channel or the minimum
x axis value in the frame if no items are found on the channel.

Returns The value returned is the minimum x axis value in the frame or channel. If the
current view is of the wrong type, or if the channel number is illegal the script
stops with an error.

See also:Len(), BinZero(), ChanRange(), LastTime(), NextTime(),
Maxtime(), Seconds(), XLow()

This moves the text caret in a text view relative to the current position. You move the
caret by lines and/or a character offset. You can extend or cancel the current selection.
Func MoveBy(sel%, char%{, line%});

sel% If zero, all selections are cleared. If non-zero the selection is extended to the
destination of the move and the new position is the start of the selection.

char% This is a character offset. If line% is absent, the new position is obtained by
adding char% to the current position. If this is beyond the start or end of the text
it is limited to the start or end.

line% If present it specifies a line offset to apply. To find the new position add line%
to the current line number and char% to the current character position in the
line. If the new line number is beyond the start or end of the text it is limited to
the start and end. If the new character position is beyond the start or end of the
line it is limited to the start or end of the line.

Returns The function returns the new position in the file of the start of the selection.
MoveBy(1,0)finds the current position without changing the selection.

See also:MoveTo(), Selection$()

This moves the text caret in a text view. You position the caret by lines and/or a character
offset. You can extend or cancel the current selection.

Func MoveTo(sel%, char%{, line%});

sel% If zero, all selections are cleared. If non-zero the selection is extended to the
destination of the move and the new current position is the start of the selection.

char% This is a character offset. If line% is absent, this sets the new position in the
file. If this is beyond the start or end of the text it is limited to the start or end. A
position of 0 places the caret before the first character of the first line.

line% If present it specifies the new line number. If it is beyond the start or end of the
text it is limited to the start and end. If the new character position is beyond the
start or end of the line it is limited to the start or end of the line.

Returns The function returns the new position in the file of the start of the selection.
See also:MoveBy(), Selection$()

Mintime()

MoveBy()

MoveTo()

NextTime() The Signal script language Optimise()

5-105

This function is used to find the next item on a channel after a particular x axis position.

Func NextTime(chan%, &pos{,&val|code%[]});

chan% The channel number (1 to n) to use for the search.
pos The x axis position to start the search after. Items at the position are ignored. To

ensure that items at the Mintime() are found, set position to Mintime()-1.
pos is updated to contain the x axis position of the next item. It is left
unchanged if no more items are found or there is an error.

val This optional argument is used with waveform channels. It is returned holding
the waveform value.

code% This optional parameter is only used if the channel is a marker type. This is an
array with at least four elements that is filled in with the marker codes.

Returns The function returns 1 if a data item is found, 0 if there are no more items to be
found, or a negative error code.

See also:LastTime(), MaxTime(), MinTime()

This has the same effect as the optimise button in the YAxis dialog and can be used in a
data or XY view. Optimising a channel that is not displayed is not an error. If you give a
channel number that is not displayed, we assume that you know what you are doing, so it
is optimised in the display mode that would be used if the channel were turned on.

Proc Optimise(chan%|chan%[]|chan${, start{, finish}});

chan% The channel to optimise. Use a channel number (1 to n). We also allow -1 for all
channels, -2 for all visible channels, -3 for all selected channels, -4 for
waveform channels or -5 for marker channels, -6 for selected waveform
channels or visible if none selected, -7 for visible waveform channels or -8 for
selected waveform channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list. This is followed by a list of positive channel
numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
start The start of the region to optimise. If omitted, this is the start of the window.
finish The end of the region to optimise. If omitted, this is the end of the window.

See also:YRange(), YLow(), YHigh(), MinMax(), XYRange()

NextTime()

Optimise()

Overdraw() Alphabetical command reference OverdrawFrames()

5-106

This function turns overdraw mode on and off for the current view. It also returns the
current overdraw mode. With overdraw mode on, a view will display not only the current
frame, but also all of the other frames in the overdraw frame list.

Func Overdraw({on% {, cycle%}});

on% Optional argument that sets overdraw mode. If this is omitted, no change is
made.
0 Turn overdraw off.
1 Turn overdraw on.

cycle% Optional argument that turns on colour cycling if present and non-zero. If
omitted or zero, colour cycling is turned off.

Returns The state of overdraw mode at the time of the call, or a negative error code.
Changes made by this function do not cause an immediate redraw.

See also:OverdrawFrames(), OverdrawGetFrames()

This function is used to set or modify the list of frames to overdraw in the data view.
You can specify a range of frame numbers or a list of frames. If the function is used with
no arguments it clears the overdraw frame list.

Func OverdrawFrames({sFrm% {, eFrm%{,mode%{,add%}}}});
Func OverdrawFrames(frm$|frm%[]{,mode%{,add%}});

sFrm% First frame to include. This option processes a range of frames. sFrm% can also
be a negative code as follows:
-1 All frames in the file are included
-2 The current frame
-3 Frames must be tagged
-6 Frames must be untagged

eFrm% Last frame to include. If this is -1 the last frame is the last in the data view. This
argument is ignored if sFrm% is a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers in an
array, the first array element holds the number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each
frame in the range, list or specification. If mode% is absent all frames are
included. The modes are:
0-n Frames must have a state matching the value of mode%
-1 All frames in the range, list are included
-2 Only the current frame, if in the list, is included
-3 Frames must be tagged
-6 Frames must be untagged

add% If add% is present and non-zero it specifies whether the specified frames are to
be added to or removed from the existing display list for the view, as follows:
-1 Remove the frames from the existing display list
0 Clear the display list before adding these frames
1 Add the frames to the existing display list (the default)
If add% is absent the new frame list will be added to the existing display list

Returns The number of frames in the new overdraw list or a negative error code.
See also:Overdraw(), OverdrawGetFrames()

Overdraw()

OverdrawFrames()

OverdrawGetFrames() The Signal script language PaletteSet()

5-107

This function is get the list of frames overdrawn in the data view.

Func OverdrawGetFrames({list%[]});

list% An optional array of frame numbers to hold the list of frame numbers. If the
array is too short, enough frames are returned to fill the array. Element zero
holds the number of frames returned in the array.

Returns The number of frames that would be returned if the array was of unlimited
length, or zero if the view is not a data view.

See also:Overdraw(), OverdrawFrames()

This reads back the percentages of red, green and blue in a colour in the palette.

Proc PaletteGet(col%, &red, &green, &blue);

col% The colour index in the palette in the range 0 to 39. Items 0 and 1 are
permanently fixed as white and black.

red The percentage of red in the colour.
green The percentage of green in the colour.
blue The percentage of blue in the colour.
See also:Colour(), PaletteSet()

This call sets the colour of one of the palette items. There are 40 palette colours,
numbered 0 to 39. Colours 0 to 6 in the palette are fixed, providing grey scales from
black to white, and the rest can be specified. This command is the equivalent of mixing
the colour by hand from the colour menu.

Colours are specified using the RGB (Red Green Blue) colour model. For example,
bright blue is achieved by 0% red, 0% green and 100% blue. Bright yellow is 100% red,
100% green and 0% blue. Black is 0% of all three colours, white is 100% of all three
colours. All screen pixels of a “solid” colour are the same hue. Systems with limited
colour capabilities generate non-solid colours by mixing pixels of different hues.

Proc PaletteSet(col%, red, green, blue {,solid%});

col% The colour index in the palette in the range 0 to 39. Attempting to change a
fixed colour, or a non-existent colour has no effect.

red The percentage of red in the colour.
green The percentage of green in the colour.
blue The percentage of blue in the colour.
solid% If present and non-zero, the system sets the nearest solid colour to the colour

requested. Systems that cannot or don't need to do this ignore the argument.
See also:Colour(), PaletteGet()

OverdrawGetFrames()

PaletteGet()

PaletteSet()

Pow() Alphabetical command reference Print()

5-108

This is the power function that raises x to the power of y.

Func Pow(x|x[], y);

x A real number or a real array to be raised to the power of y.
y The exponent. If the expression underflows, the result is 0. If x is negative, y

must be integral.
Returns If x is an array, it returns 0 if all was well, or a negative error code.

If x is a number, it returns x to the power of y unless an error is detected, when
the script halts.

This command prints to the current view, which must be a text view. The output is
inserted at the position of the caret. For the commands equivalent to File menu Print
options refer to FilePrint().

If the first argument is a string (not an array), it is assumed to hold format information for
the remaining arguments. If the first argument is an array or not a string or if there are
more arguments than format specifiers, Signal prints the arguments without a format
specifier in a standard format and adds a new line character at the end. If you provide a
format string and you require a new line character at the end of the output, include \n at
the end of the format string.

Func Print(form$|arg0 {,arg1 {,arg2...}});

form$ A string that specifies how to treat the arguments that follow. The string
contains two types of characters: ordinary text that is copied to the output
unchanged and format specifiers that determine how to convert each of the
following arguments to text. The format specifiers are introduced by a % and
terminated by one of the letters d, x, c, s, f, e or g in upper or lower case. To
place a literal % in the output, place %% in the format string.

arg1,2 The arguments used to replace %c, %d, %e, %f, %g, %s and %x type formats.
Returns 0 or a negative error code. Fields that cannot be printed are filled with asterisks.

The full format specifier is:
%{flags}{width}{.precision}format

The flags are optional and can be placed in any order. They are single characters that
modify the format specification as follows:

- Specifies that the converted argument is left justified in the output field.
+ Valid for numbers, and specifies that positive numbers have a + sign.
space If the first character of a field is not a sign, a space is added.
0 For numbers, causes the output to be padded to the field width on the left with 0.
For x format, 0x is prefixed to non-zero arguments. For e, f and g formats, the

output always has a decimal point. For g formats, trailing zeros are not removed.

If this is omitted, the output field will be as wide as is required to express the argument.
If this is present, the output field will be at least this wide. If this is present, it is a number
that sets the minimum width of the output field. If the output is narrower than this, the
field is padded on the left (on the right if the - flag was used) to this width with spaces
(zeros if the 0 flag was used). The maximum width for numbers is 100.

Pow()

Print()

Format specifiers

flags

width

Print() The Signal script language Print()

5-109

This number sets the maximum number of characters to be printed for a string, the
number of digits after the decimal point for e and f formats, the number of significant
figures for g format and the minimum number of digits for d format (leading zeros are
added if required). It is ignored for c format. There is no limit to the size of a string,
numeric fields have a maximum precision value of 100.

The format character determines how the argument is converted into text. Both upper or
lower cased version of the format character can be given. If the formatting contains
alphabetic characters (for example the e in an exponent, or hexadecimal digits a-f), if
the formatting character is given in upper case the output becomes upper case too (e+23
and 0x23ab become E+23 and 0X23AB). The formats are:

c The argument is printed as a single character. If the argument is a numeric type, it is
converted to an integer, then the low byte of the integer (this is equivalent to
integer mod 256) is converted to the equivalent ASCII character. You can use
this to insert control codes into the output. If the argument is a string, the first
character of the string is output. The following example prints two tab characters, the
first using the standard tab escape, the second with the ASCII code for tab (8).
Print("\t%c", 8);

d The argument must be a numeric type and is printed as a decimal integer with no
decimal point. If a string is passed as an argument the field is filled with asterisks.
The following prints “ 23,0002”:
Print("%4d,%.4d", 23, 2.3);

e The argument must be a numeric type, otherwise the field is filled with asterisks.
The argument is printed as {-}m.dddddde±xx{x} where the number of d’s is set
by the precision (which defaults to 6). A precision of 0 suppresses the decimal point
unless the # flag is used. The exponent has at least 2 digits (in some implementations
of Signal there may always be 3 digits, others use 2 digits unless 3 are required). The
following prints “2.300000e+01,2.3E+00”
Print("%4e,%.1E", 23, 2.3);

f The argument must be a numeric type, otherwise the field is filled with asterisks.
The argument is printed as {-}mmm.ddd with the number of d’s set by the precision
(which defaults to 6) and the number of m’s set by the size of the number. A
precision of 0 suppresses the decimal point unless the # flag is used. The following
prints “+23.000000,0002.3”:
Print("%+f,%06.1f", 23, 2.3);

g The argument must be a numeric type, otherwise the field is filled with asterisks.
This uses e format if the exponent is less than -4 or greater than or equal to the
precision, otherwise f format is used. Trailing zeros and a trailing decimal point are
not printed unless the # flag is used. The following prints “2.3e-06,2.300000”:
Print("%g,%#g", 0.0000023, 2.3);

s The argument must be a string, otherwise the field is filled with asterisks.

x The argument must be a numeric type and is printed as a hexadecimal integer with
no leading 0x unless the # flag is used. The following prints “1f,0X001F”:
Print("%x,%#.4X", 31, 31);

The d, e, f, g, s and x formats support arrays. One dimensional arrays have elements
separated by commas, two dimensional arrays use commas for columns and new lines for
rows. If there is a format string, the matching format specifier is applied to all elements.

See also:FilePrint(), Message(), ToolbarText(), Print$(), PrintLog()

precision

format

Arrays in the argument list

Print$() Alphabetical command reference Process()

5-110

This command prints formatted output into a string. The syntax is identical to the
Print() command, but the function returns the generated output as a string.

Func Print$(form$|arg0 {,arg1 {,arg2...}});

form$ An optional string that specifies how to format the arguments that follow. See
Print() for a full description.

arg1,2 The data to form into a string.
Returns It returns the string that is the result of the formatting operation. Fields that

cannot be printed are filled with asterisks.
See also:FilePrint(), Print(), PrintLog(), ReadStr()

This commands prints to the log window. The syntax is identical to the Print()
command, except that the output always goes to the log window and is always placed at
the end of the view contents.

Func PrintLog(form$|arg0 {,arg1 {,arg2...}});

form$ An optional string that specifies how to format the arguments that follow. See
Print() for a full description.

arg1,2 The data to print.
Returns 0 or a negative error code. Fields that cannot be printed filled with asterisks.
See also:Print(), Print$(), Message()

This function processes data into the current memory or XY view. The memory view
must have been derived using SetXXXX() from a source data view which must not have
been closed. This function takes data starting from a specified position in the current
frame in the source data view and processes it.

Func Process(start {,clear% {,opt% {,optx%}}});

start The source view x axis position from which to start processing. Positions less
than MinTime() are treated as MinTime(). Positions greater than Maxtime()
mean no processing is done. The offset from the start of frame in SetXXX()
will be ignored. If the start position specified plus the width of data required
goes past the end of the source data then no data is processed.

clear% If present, and non-zero, the memory view bins are cleared before the results of
the analysis are added to the view and Sweeps() result is reset.

opt% If present, and non-zero, the display of data in the memory view is optimised
after processing the data.

optx% For XY views only, if present, and non-zero, the X axis in the XY view is
optimised after processing the data.

Returns One if all is OK, zero if no data was processed or a negative error code.
A common mistake is to forget that the current view is not the source view and to use
View(0).xxx when View(ViewSource()).xxx was intended.

See also:SetXXX(), SetAverage(), SetPower(),ProcessAll(),
ProcessFrames(), ProcessOnline(), Sweeps(), Optimise()

Print$()

PrintLog()

Process()

ProcessAll() The Signal script language ProcessFrames()

5-111

This function is used in a data view to process all memory views derived from it.

Func ProcessAll(sFrm%{, eFrm%});

sFrm% The first frame to process.
eFrm% If this is present, a range of frames is processed, from sFrm% to eFrm%

inclusive. If omitted only sFrm% is processed.
For each derived memory view, the settings of the clear% and opt% arguments are
taken from the last call of Process() or ProcessFrames(). If a memory view had not
yet been processed clear% is zero and opt% is non-zero.
Returns Zero if no errors or a negative error code.
See also:Process(), ProcessFrames(), ProcessOnline()

This function is used in a derived memory view to process more than one frame from the
source view. You can process a range of frame numbers or specify a list of frames.

Func ProcessFrames(sF% {,eF% {,mode%{,clear% {,opt% {,optx%}}}}});
Func ProcessFrames(frm$|frm%[]{,mode%{,clear% {,opt% {,optx%}}}});

sF% First frame to process. This option processes a range of frames. sFrm% can also
be a negative code as follows:
-1 All frames in the file are included
-2 The current frame
-3 Frames must be tagged
-6 Frames must be untagged

eF% Last frame to process. If this is -1 the last frame in the data view is used. This
argument is ignored if sFrm% is a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”

frm%[] An array of frame numbers to process. This option provides a list of frame
numbers in an array. The first element in the array holds the number of frames
in the list

mode% If mode% is present it is used to supply an additional criterion for including each
frame in the range, list or specification. If mode% is absent all frames are
included. The modes are:
0-n Frames must have a state matching the value of mode%
-1 All frames in the specification are processed
-2 Only the current frame, if in the list, will be processed
-3 Frames must also be tagged
-6 Frames must also be untagged

clear% If present, and non-zero, the memory view bins are cleared before the results of
processing all the frames are added to the view and Sweeps() result is reset.

opt% If present, and non-zero, the display of data in the memory view is optimised
after processing the data.

optx% For XY views only, if present, and non-zero, the X axis in the XY view is
optimised after processing the data.

Returns Zero if no errors or a negative error code.
See also:Process(), ProcessAll(), ProcessOnline()

ProcessAll()

ProcessFrames()

ProcessOnline() Alphabetical command reference Profile()

5-112

This function is equivalent to the process dialog for a memory view derived from a
sampling document view. It does not cause any processing, but sets up processing so that
when the memory view for which the function is used is given a chance to update, the
parameters set by this command are used.

Func ProcessOnline(mode% {,val% {,up% {,opt% {,optx%}}}});

mode% The modes are:
0 All sampled sweeps are processed regardless of whether they are written to

disk. This mode will not work if you are using Fast triggers or Fast Fixed
int sampling modes.

-1 All sweeps saved to disk are processed.
-3 All tagged frames written to disk are processed.
-4 Sweeps with a state of val% are processed. A state of 0 is used if val% is

not provided.
-5 Processes the last val% sweeps including the latest. The result is cleared

and Sweeps() count is reset to 0 before each update.
-6 All untagged frames written to disk are processed.

val% In mode% -4 or -5 this provides the value for state or number of frames
respectively.

up% This provides the number of frames before the next process or zero for no gap.
opt% If present and non-zero, the memory view display is optimised after each

process.
optx% For XY views only, if present, and non-zero, the X axis in the XY view is

optimised after processing the data.
Returns 0 or a negative error code.
See also:Process(), ProcessAll(), ProcessFrames()

Signal stores information within the HKEY_CURRENT_USER\Software\CED\Signal
section of the system registry. The registry is organised as a tree of keys with lists of
values attached to each key. If you think of the registry as a filing system, the keys are
folders and the values are files. Keys and values are identified by case-insensitive text
strings. This command can create and delete keys and store and read integer and string
values, but only within the Signal section of the registry.

You can view and edit the registry with the regedt32 program, which is part of your
system. Select Run from the start menu and type regedt32 then click OK. Please read
the regedt32 help information before making any registry changes. It is a very powerful
program; careless use can severely damage your system.

Do not write vast quantities of data into the registry; it is a system resource and should be
treated with respect. If you must save a lot of data, write it to a text or binary file and
save the file name in the registry. If you think that you may have messed up the Signal
section of the registry, use regedt32 to locate the Signal section and delete it. The
next time you run Signal the section will be restored; you will lose any preferences you
had set.
Proc Profile(key${, name${, val%{, &read%}}});
Proc Profile(key${, name${, val${, &read$}}});

key$ This string sets the key to work on inside the Signal section of the registry. If
you use an empty string, the Signal key is used. You can use nested keys
separated by a backslash, for example "My bit\\stuff" to use the key stuff
inside the key My bit. The key name may not start with a backslash.
Remember that you must use two backslashes inside quote marks; a single

ProcessOnline()

Profile()

Profile() The Signal script language Profile()

5-113

backslash is an escape character. It is never an error to refer to a key that does
not exist; the system creates missing keys for you.

name$ This string identifies the data in the key to read or write. If you set an empty
name, this refers to the (default) data item for the key set by key$.

val This can be either a string or an integer value. If read is omitted, this is the
value to write to the registry. If read is present, this is the default value to return
if the registry item does not exist.

read If present, it must have the same type as val. This is a variable that is set to the
value held in the registry. If the value is not found in the registry, the variable is
set to the value of the val argument.

Profile() can be used with 1 to 4 arguments. It has a different function in each case:
1 The key identified by key$ is deleted. All sub-keys and data values attached to the

key and sub-keys are also deleted. Nothing is done if key$ is empty.
2 The value identified by name$ in the key key$ is deleted.
3 The value identified by name$ in the key key$ is set to val% or val$.
4 The value identified by name$ in the key key$ is returned in val% or val$.

The following script example collects values at the start, then saves them at the end:
var path$, count%;
Profile("My data", "path", "c:\\work", path$); 'get initial path
Profile("My data", "count", 0, count%); 'and initial count
... 'your script...
Profile("My data","path", path$); 'save final value
Profile("My data","count", count%); 'save final count

The HKEY_CURRENT_USER\Software\CED\Signal key contains the following keys
that are used by Signal:

This key holds the list of scripts to load into the script bar when Signal starts.

This key holds the editor settings for scripts, output sequences and general text editing.

This key holds the margins in units of 0.01 mm for printing data views, and the margins
in mm and header and footer text for text-based views.

The values in this key are mainly set by the Edit menu preferences. If you change any
Edit menu Preferences value in this key, Signal will use the changed information
immediately. The values are all integers except the file path, which is a string:

Assume Power 0=Do not assume Power1401 hardwre, 1=do assume.
Differ Optimise 0=Y-axis optimised on data aquired so far when requested on-

line, 1=Y-axis optimise differed to sweep end when requested
on-line.

Enhanced Metafile 0=Windows metafile, 1=enhanced metafile for clipboard.
File shorts 0=Waveform data to be written to CFS file as 16 bit integers,

1=to be written as floating point values. Add 256 if calibrated
zero is to be kept at zero volts.

File update 0=Discard changes to data,.1=query the user, values. 2=always
save changes.

Font Italic 0=Use non-italic font as default for file and memory views.
1=use italic font.

Font Name Name of font to use as default for file and memory views.
Font Pitch 0=Use default pitched font for the above, 1=use a fixed pitch font

(all characters the same width), 2=use a variable pitched font. To
this value you should add: 4=don’t care which family of font
used, 8=use a serifed, variable widthed font, 16=sans-serifed,
variable widthed font, 32=constant widthed font, 64=cursive

Registry use by Signal

BarList

Editor

PageSetup

Preferences

ProgKill() Alphabetical command reference ProgKill()

5-114

font, 128=decorative font.
Font Size Size of font to use as default for file and memory views.
Font Weight 400=Normal font, 700=bold font..
Line thickness codes Bits 0-3 = Axis code, bits 4-7 = Data code. The codes 0-15 map

onto the 16 values in the drop down list. Bit 7=1 to use lines not
rectangles to draw axes.

Low channels at top 0=Standard display shows low channel at bottom, 1=at top.
Metafile Scale 0-11 selects from the list of allowed scale factors.
New file path New data file directory or blank for current folder.
No save prompt 0=Prompt to save derived views, 1=no prompt.
Time mode 0=Display seconds, 1=display ms, 2=display us.
The keys with names starting "Bars-" are used by system code to restore dockable
toolbars. You can delete them all safely; any other change is likely to crash Signal.

This key holds the list of recently used files that appear at the bottom of the file menu.

This key holds the information to recover data from interrupted sampling sessions.

This is where the evaluate bar saves the last few evaluated lines.

The Tip of the Day dialog uses this key to remember the last tip position.

Signal uses this key to detect when a new version of the program is run for the first time.

In Windows NT derived systems, this key holds the desired working set sizes. The
working set sizes in use are displayed in the Help menu About Signal dialog. Click the
Help button in this dialog to read more about using these registry values.
Minimum working set Minimum size in kB (units of 1024 bytes), default is 800
Maximum working set Maximum size in kB, default is 4000 (4 MB)

See also:ViewUseColour()

This function terminates a program started using ProgRun(). This is a very powerful
function. It will terminate a program without giving it the opportunity to save data. Use
this command with care!
Func ProgKill(pHdl%);

pHdl% A program handle returned by ProgRun().
Returns Zero or a negative error code.

See also:ProgRun(), ProgStatus()

Recent file list

Recover

Settings

Tip

Version

Win32

ProgKill()

ProgRun() The Signal script language ProtocolClear()

5-115

This function runs a program using command line arguments as if from a DOS style
command prompt.

Func ProgRun(cmd$ {,code% {,xLow, yLow, xHigh, yHigh}});

cmd$ The command string as would be typed at a Dos style prompt.
code% If present, this sets the initial application window state: 0=Hidden, 1=Normal,

2=Iconised, 3=maximised. Some programs set their own window sizes and
styles so this may not work. The next 4 arguments set the Normal window
position.

xLow Position of the left window edge as a percentage of the screen width.
yLow Position of the top window edge as a percentage of the screen height.
xHigh The right hand edge as a percentage of the screen width.
yHigh The bottom edge position as a percentage of the screen height.
Returns A program handle or a negative error code.

See also:ProgKill(), ProgStatus()

This function is used to check if a program started with ProgRun() is still running. If it
finds that the program has terminated it will close the handle which will then become
invalid if used again.

Func ProgStatus(pHdl%);

pHdl% The program handle returned by ProgRun().
Returns 1 if the program is still running, 0 if it has terminated or a negative error code.

See also:ProgKill(), ProgRun()

This function adds a new protocol to the list of protocols defined in the sampling
configuration.
Func ProtocolAdd(name$);

name$ The name for the new protocol, which must not be blank.
Returns The number for the new protocol or a -ve error code.
See also:Protocols(), ProtocolDel(), ProtocolClear(), ProtocolName$()

This function initialises a protocol defined in the sampling configuration.
Func ProtocolClear(num|name$);

num The number of the protocol to clear, from 1 to the number returned by
Protocols().

name$ The name of the protocol to be cleared.
Returns Zero or a negative error code.
See also:Protocols(), ProtocolDel(), ProtocolAdd(), ProtocolName$()

ProgRun()

ProgStatus()

ProtocolAdd()

ProtocolClear()

ProtocolDel() Alphabetical command reference Protocols()

5-116

This function deletes a protocol from the list defined in the sampling configuration.
Func ProtocolDel(num|name$);

num The number of the protocol to delete, from 1 to the number returned by
Protocols().

name$ The name of the protocol to be deleted.
Returns Zero or a negative error code.
See also:Protocols(), ProtocolAdd(), ProtocolClear(), ProtocolName$()

This function gets the flags for a protocol defined in the sampling configuration and
optionally sets the flags to a new value.
Func ProtocolFlags(num|name$ {, new});

num The number of the protocol to use, from 1 to the number returned by
Protocols().

name$ The name of the protocol to use.
new If present, the new protocol flags value. This is the sum of values for each flag

option, the values are:
1 Initialise pulse variations when protocol starts.
2 Sampling switches to idling when protocol finishes.
4 Turn on writing to disk when protocol starts.

Returns The flags for this protocol before the call.
See also:Protocols(), ProtocolClear(), ProtocolName$()

This function gets the name for a protocol defined in the sampling configuration and
optionally sets a new name.
Func ProtocolName$(num|name$ {, new$});

num The protocol number to use, from 1 to the number returned by Protocols().
name$ The name of the protocol to use.
new$ If present, this sets the new protocol name.
Returns The name of the protocol before this call.
See also:Protocols(), ProtocolAdd(), ProtocolDel(), ProtocolClear()

This function gets the number of protocols defined in the sampling configuration.
Func Protocols();

Returns The number of protocols defined in the sampling configuration.
See also:ProtocolAdd(), ProtocolDel(), ProtocolClear(),

ProtocolName$()

ProtocolDel()

ProtocolFlags()

ProtocolName$()

Protocols()

ProtocolStepGet() The Signal script language ProtocolStepSet()

5-117

This function gets information about a specific step within a protocol from the list
defined in the sampling configuration.
Func ProtocolStepGet(num|name$, step, &state, &repeat, &next);

num The protocol number to use, from 1 to the number returned by Protocols().
name$ The name of the protocol to use.
step The step in the protocol, from 1 to 10.
state This parameter is updated with the state for this step.
repeat This parameter is updated with the repeat count for this step.
next This parameter is updated with the next step value for this step.
Returns Zero or a negative error code.
See also:Protocols(), ProtocolFlags(), SampleStates(),

ProtocolClear(), ProtocolName$()

This function sets up a specific step within a protocol from the list defined in the
sampling configuration.
Func ProtocolStepSet(num|name$, step, state, repeat, next);

num The number of the protocol to use, from 1 to the number returned by
Protocols().

name$ The name of the protocol to use.
step The step in the protocol, from 1 to 10.
state This parameter sets the state for this step, from 0 to 256.
repeat This parameter sets the repeat count for this step, from 1 to 1000.
next This parameter sets the next step value for this step, from 0 to 10. A value of

zero terminates protocol execution.
Returns Zero or a negative error code.
See also:Protocols(), ProtocolFlags(), SampleStates(),

ProtocolClear(), ProtocolName$()

ProtocolStepGet()

ProtocolStepSet()

PulseAdd() Alphabetical command reference PulseAdd()

5-118

The Pulse… family of commands can be used to control the pulse outputs generated
during sampling sweeps. Pulses can be generated on up to eight 1401 DACs and on 8
bits of dedicated digital output. For the micro1401 and Micro1401 mk II, only two DACs
are available.

As part of the Signal multiple states facilities, each state can have a separate set of pulse
outputs. Because of this, all script functions that access the pulses information have a
parameter to select the state. For single states, set this parameter to zero.

Individual pulses can be specified by their number or by name. For access by number the
pulses for a given output are kept in a sorted list in order of their start time. The (always
present) initial level is zero, subsequent pulses are 1 and upwards. Though access by
number seems straightforward, it does have some drawbacks. Firstly, when the start time
of a pulse is changed the ordering of the list can change and the pulse number will be
changed. Secondly, for complex reasons, the arbitrary waveform output item is always
attached to the DAC 0 outputs list, regardless of what DACs it uses, and does not appear
in any other output lists. This can make things very confusing! Therefore we recommend
that, for non-trivial pulse output arrangements, individual pulses are accessed by name.

See also:PulseAdd(), PulseDataGet(), PulseDataSet(), PulseDel(),
PulseFlags(), PulseName$(), Pulses(), PulseTimesGet(),
PulseTimesSet(), PulseType(), PulseVarGet(), PulseVarSet(),
PulseWaveformGet(), PulseWaveformSet(), PulseWaveGet(),
PulseWaveSet()

This function adds a new pulse to the output pulses for a given state and output. If this is
used to add an arbitrary waveform output to pulses that already contain such an item, the
pre-existing waveform output is deleted.
Func PulseAdd(state, out, type, name$, time, len {, flags});

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

type A code for the type of pulse. The legal codes are:
1 a simple square pulse
2 a square pulse with varying amplitude
3 a square pulse with varying duration
4 a ramp pulse
5 a cosine wave segment
6 an arbitrary waveform, the rate is initialised to 100Hz
7 a pulse train

name$ The name for the new pulse, this can be blank.
time The start time for the pulse in seconds from the start of the outputs.
len The length of the pulse, in seconds. For a pulse train, this is the length of the

individual pulses in the train, not the length of the entire train.
flags If present, this sets the flags for the pulse. Flag bit 0 is set for varying width

pulses to push following pulses back, bit 1 is set for pulses to stay up at the end.
If this parameter is omitted, the pulse flags are cleared.

Returns The number of the new pulse or a negative error code. The initial level item is
always present as pulse zero, so the smallest successful return value is 1.

See also:Pulses(), PulseDel(), SampleStates(), SampleOutLength(),
PulseName$()

PulseXXX()
Pulse output

commands

PulseAdd()

PulseClear() The Signal script language PulseDataSet()

5-119

This function deletes all the pulses for a given state and output.
Func PulseClear(state, out);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

Returns Zero or a negaitive error code.
See also:Pulses(), PulseAdd(), PulseDel(), SampleStates()

This function retrieves the amplitude and other values for a pulse in the outputs for a
given state and output. Up to four data values can be retrieved, the meaning of most of
these varies with the pulse type. A separate function, PulseWaveGet(), retrieves the
settings for waveform outputs.
Func PulseDataGet(state, out, num|name$, & {, &val1 {, &val2

 {, &val3}}});

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 0 to the number of pulses.
name$ The name of the pulse to use.
amp This is updated with the amplitude or level of the pulse, or the bit value for

digital pulses.
val1 This is updated with the end amplitude for ramps, the initial phase for cosines,

and the number of pulses for pulse trains.
val2 This is updated with the step mode for ramps, the centre value for sines and the

gap for pulse trains. The step mode value is 0 for both ends, 1 for start only and
2 for end only.

val3 This is updated with the cycle period for sines only.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseDataSet(), PulseName$()

This function sets the amplitude and other values for a pulse in the outputs for a given
state and output. Up to four data values can be set, the meaning of most of these varies
with the pulse type. A separate function, PulseWaveSet(), is used to change the settings
for arbitrary waveform output.
Func PulseDataSet(state, out, num|name$, amp {, val1 {, val2

 {, val3}}}});

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 0 to the number of pulses.
name$ The name of the pulse to use.
amp This sets the amplitude or level of the pulse, or the bit value for digital pulses.

PulseClear()

PulseDataGet()

PulseDataSet()

PulseDel() Alphabetical command reference PulseFlags()

5-120

val1 This sets the end amplitude for ramps, the initial phase for cosines, and the
number of pulses for pulse trains.

val2 This sets the step mode for ramps, the centre value for sines and the gap
between pulses for pulse trains. The step mode value is 0 for both ends, 1 for
start only and 2 for end only.

val3 This sets the cycle period for sines only.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseDataGet(), PulseName$()

This function deletes a pulse from the output pulses for a given state and output.
Func PulseDel(state, out, num|name$);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse to delete, from 1 to the number of pulses (you cannot
delete pulse zero; the initial level).

name$ The name of the pulse to delete, you cannot delete the initial level.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

This function retrieves, and optionally sets, the options flags for a pulse in the outputs for
a given state and output.
Func PulseFlags(state, out, num|name$ {, flags});

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 0 to the number of pulses.
name$ The current name of the pulse in question.
flags If present, this sets the new flags for the pulse. Flag bit 0 is set for varying width

pulses to push following pulses back, bit 1 is set for pulses to stay up at the end.
Returns The flags for the pulse at the time of the function call.
See also:Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

PulseDel()

PulseFlags()

PulseName$() The Signal script language PulseTimesGet()

5-121

This function retrieves, and optionally sets, the name of a pulse in the output pulses for a
given state and output.
Func PulseName$(state, out, num|name$ {, new$});

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 0 to the number of pulses.
name$ The current name of the pulse in question.
new$ The new name for the pulse. Blank pulse names are legal.
Returns The name of the pulse at the time of the function call.
See also:Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

This function returns the number of pulses for a given state and output. This number is
usually straightforward to use, but can be complicated by the fact that waveforn output
items always appear on the DAC 0 outputs, regardless of the DACs in use, and not on
any other DAC.
Func Pulses(state, out);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values from 0 upwrds select the corresponding
DAC, -1 selects the digital outputs.

Returns The number of pulses on this output. This value will be 1 or more as there is
always one pulse defined for an output; the initial level.

See also:PulseDel(), PulseAdd(), PulseWaveSet(), PulseName$()

This function retrieves the times for a pulse in the outputs for a given state and output.
Func PulseTimesGet(state, out, num|name$, &time, &len);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 1 to the number of pulses. Zero is not
meaningful because there are no times for the initial level.

name$ The name of the pulse to use.
time This is updated with the start time for the pulse, in seconds from the start of the

pulse outputs.
len This is updated with the length of the pulse, in seconds.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseTimesSet(), SampleOutMode()

PulseName$()

Pulses()

PulseTimesGet()

PulseTimesSet() Alphabetical command reference PulseType()

5-122

This function sets the times for a pulse in the outputs for a given state and output.
Func PulseTimesSet(state, out, num|name$, time, len);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 1 to the number of pulses. Zero is not
usable because there are no times for the initial level.

name$ The name of the pulse to use.
time This sets the start time for the pulse in seconds from the start of the pulse

outputs.
len This sets the length of the pulse in seconds. This does not affect arbitrary

waveform items, use PulseWaveSet().
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseTimesGet(), SampleOutMode()

This function returns a code for the type of a pulse in outputs for a given state and
output.
Func PulseType(state, out, num|name$);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 0 to the number of pulses.
name$ The name of the pulse in question.
Returns A code for the type of pulse, as follows:

0 the initial level for the output
1 a simple square pulse
2 a square pulse with varying amplitude
3 a square pulse with varying duration
4 a ramp pulse
5 a cosine wave segment
6 an arbitrary waveform
7 a pulse train

See also:Pulses(), PulseAdd(), PulseDataGet(), PulseDataSet()

PulseTimesSet()

PulseType()

PulseVarGet() The Signal script language PulseVarSet()

5-123

This function retrieves the values controlling the automatic variation of a pulse in the
outputs for a given state and output.
Func PulseDataGet(state, out, num|name$, &step{, &repeat

{, &steps}});

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 0 to the number of pulses.
name$ The name of the pulse in question.
step This is updated with the step value for the pulse.
repeat This, if present, is updated with the repeat count for each step in the variations.
steps This, if present, is updated with the total steps for the variation. Note that the

number of values for the variation is steps+1 as the initial value is also used.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseVarSet(), PulseName$()

This function sets values controlling the automatic variation of a pulse in the outputs for
a given state and output.
Func PulseVarSet(state, out, num|name$, step{, repeat

 {, steps}});

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs.

num The number of the pulse in question, from 0 to the number of pulses.
name$ The name of the pulse to use.
step This sets the step value for the pulse.
repeat This, if present, sets the repeat count for each step in the variations.
steps This, if present, sets the total steps for the variation. Note that the number of

values for the variation is steps+1 as the initial value is alsol used.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseVarGet(), PulseName$()

PulseVarGet()

PulseVarSet()

PulseWaveformGet() Alphabetical command reference PulseWaveformSet()

5-124

This function retrieves the waveform data values sent to a given DAC as part of the
arbitrary waveform item in the pulses for a given state.
Func PulseWaveformGet(state, dac, dat%[]|dat[]);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

dac The DAC number for which we want data. If the DAC is not used, no data will
be returned.

dat%[] An integer array that will be filled with the data for the DAC. The values are the
16-bit integer values that would be written to the DAC, a value of -32768
corresponds to an output of -5 volts, 32767 corresponds to +5 volts. If the array
is too short to hold all of the waveform, it will be filled. If the array is longer
than the waveform, all the points will be copied and the rest of the array left
unchanged.

dat[] A real array that will be filled with the data for the DAC. The values are
calibrated using the appropriate DAC scaling factors. If the array is too short to
hold all of the waveform, it will be filled. If the array is longer than the
waveform, all the points will be copied and the rest of the array left unchanged.

Returns The number of points copied or a negative error code.
See also:Pulses(), PulseAdd(), PulseWaveSet(), PulseWaveGet(),

PulseWaveformSet()

This function sets the waveform data values sent to a given DAC as part of the arbitrary
waveform item in the pulses for a given state.
Func PulseWaveformSet(state, dac, dat%[]|dat[]);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

dac The DAC number for the data. If the DAC is not used, the function will do
nothing.

dat%[] An integer array that holds the new data for the DAC. The values are the 16-bit
integer values that would be written to the DAC, a value of -32768 corresponds
to an output of -5 volts, 32767 corresponds to +5 volts. If the array is too short
to hold all the waveform points, only the earlier points in the waveform will be
changed. If the array is longer than the waveform, the extra data in the array is
unused.

dat[] A real array that holds the new data for the DAC. The values are converted into
DAC output values using the appropriate DAC scaling factors. If the array is too
short to hold all of the waveform points, only the earlier points in the waveform
will be changed. If the array is longer than the waveform, the extra data in the
array is unused.

Returns The number of waveform points changed or a negative error code.
See also:Pulses(), PulseAdd(), PulseWaveSet(), PulseWaveGet(),

PulseWaveformGet()

PulseWaveformGet()

PulseWaveformSet()

PulseWaveGet() The Signal script language Rand()

5-125

This function retrieves the values controlling the arbitrary waveform item in the pulses
for a given state.
Func PulseWaveGet(state, &mask, &rate, &points);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

mask This is updated with the DAC mask value for the output. This has one bit set for
each DAC used, bit 0 for DAC 0 and so forth.

rate This is updated with the output rate for the waveform data, in Hz.
points This is updated with the number of points of data for each DAC.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseWaveSet()

This function sets the values controlling the arbitrary waveform item in the pulses for a
given state.
Func PulseWaveSet(state, mask, rate, points);

state The state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

mask This sets the DAC mask value for the output, which controls which DACs are
used. This has one bit set for each DAC used, bit 0 for DAC 0 and so forth.

rate This sets the output rate for the waveform data, in Hz.
points This sets the number of points of data for each DAC in the mask.
Returns Zero or a negative error code.
See also:Pulses(), PulseAdd(), PulseWaveGet()

This function is used to ask the user a Yes/No question. It opens a window with a
message and two buttons. The window is removed when a button is pressed.

Func Query(text1$, {,Yes$ {,No$}});

text1$ This string forms the text in the window. If the string contains a vertical bar
character (|), the portion of the string before the | will be used to set the title of
the window. Up to 20 lines of text can be shown, each up to 60 characters long.

Yes$ This sets the text for the first button. If this argument is omitted, "Yes" is used.
No$ This sets the text for the second button. If this is omitted, "No" is used.
Returns 1 if the user selects Yes or presses Enter, 0 if the user selects the No button.
See also:Print(), Input(), Message(), DlgCreate()

This function returns pseudo-random numbers, and sets the seed for the random number
generator. Signal seeds the generator when it starts with a number derived from the time,
so if you require a repeatable sequence, you must set the seed. The sequence will not be
the same on different implementations of Signal.

Func Rand({seed});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside
this range, the fractional part of the number is used.

Returns A random number in the range 0 up to but not including 1. The numbers are
evenly distributed. If a seed is given, a random number is still returned.

PulseWaveGet()

PulseWaveSet()

Query()

Rand()

Read() Alphabetical command reference Read()

5-126

This function takes the next line read from the current view as the source of a text string
and converts the text into variables. The read starts at the current position of the text
cursor. The text cursor moves to the start of the next line after the read.

Func Read({&var1 {, &var2 {,&var3 ...}}});

varn Arguments must be variables. They can be any type. One dimensional arrays are
allowed. The variable type determines how the function extracts data from the
string. In a successful call, each variable will be matched with a field in the
string, and the value of the variable is changed to the value found in the field.
A call to Read() with no arguments skips a line.

Returns The function returns the number of fields in the text string that were
successfully extracted and returned in variables, or a negative error code.
Attempts to read past the end of the file produce the end of file error code.
It is not considered an error to run out of data before all the variables have been
updated. If this is a possibility you must check that the number of items returned
matches the number you expected. If an array is passed in, it is treated as though
it was the number of individual values held in the array.

The source string is expected to hold data values as real numbers, integer numbers and
strings. Strings can be delimited by quote marks, for example "This is a string", or
they can be just text. However, if a string is not delimited by quotes, it is deemed to run
to the end of the source string, so no other items can follow it.

The fields in the source string are separated by white space (tabs and spaces) and
commas. Space characters are “soft” separators. You can have any number of spaces
between fields. Tabs and commas are treated as “hard” separators. Two consecutive tabs
or commas, or a tab and a comma (with or without intervening spaces), imply a blank
field. When reading a field, the following rules are followed:

1. Space characters are skipped over
2. Characters that are legal for the variable into which data is to be read are extracted

until a non-legal character or a separator or end of data is found. The characters read
are converted into the variable type. If an error occurs in the translation, the function
returns the error. Blank fields assigned to numbers are treated as 0. Blank fields
assigned to strings produce empty strings.

3. Characters are then skipped until a separator character is found or end of data. If the
separator is a space, it and any further spaces are skipped. If the next character is a
hard separator it is also skipped.

4. If there are no more variables or no more data, the process stops, else back to step 1.

The following example shows a source line, followed by a Read() function, then the
assignment statements that would be equivalent to the Read().

"This is text" , 2 3 4,, 4.56 Text too 3 4 5 The source line
n := Read(fred$, jim[1:2], sam, dick%, tom%, sally$, a, b, c);
n := 7;
fred$:= "This is text";
jim[1] := 2; jim[2] := 3;
sam := 4;
dick% := 0;
tom% := 4;
sally$:= "Text too 3 4 5"
a, b and c are not changed

See also:FileOpen(), ReadStr()

Read()

Example

ReadStr() The Signal script language SampleAbort()

5-127

This function extracts data fields from a string and converts them into variables.

Func ReadStr(text$, &var1 {, &var2 {, &var3...}});

text$ The string used as a source of data.
var The arguments must all be variables. The variables can be of any type, and can

be one dimensional arrays. The type of each variable determines how the
function tries to extract data from the string. See Read() for details.

Returns The function returns the number of fields in the text string that were
successfully extracted and returned in variables, or a negative error code.
It is not an error to run out of data before all the variables have been updated. If
this is a possibility you must check the returned value. If an array is passed in, it
is treated as though it was the number of individual values held in the array.

See also:Read(), Print$(), Val()

This function returns the rightmost n characters of a string.

Func Right$(text$, n);

text$ A string of text.
n The number of characters to return.
Returns The last n characters of the string, or all the string if it is less than n characters.
See also:DelStr$(), InStr(), Left$(), Len(), Mid$()

Rounds a real number or an array of reals to the nearest whole number.

Func Round(x|x[]);

x A real number or an array of reals.
Returns If x is an array it returns 0. Otherwise it returns a real number with no fractional

part that is the nearest to the original number.
See also:Trunc(), Frac()

This cancels sampling and deletes the views that were being sampled and any associated
result and cursor views. If a memory view derived from the data has been saved, the
saved file remains. It is equivalent to the Abort button on the floating sampling control
window.

Func SampleAbort();

Returns 0 if sampling was aborted, or a negative error code.
See also:SampleReset(), SampleStart(), SampleStop(), SampleStatus()

ReadStr()

Right$()

Round()

SampleAbort()

SampleAbsLevel() Alphabetical command reference SampleArtefactGet()

5-128

This function sets and gets the absolute levels flag as seen in the sampling configuration
dialog Outputs page.

Func SampleAbsLevel({new});

new If present, this sets the new absolute levels flag if non-zero, clears the flag if
zero..

Returns The absolute levels flag from the configuration at the time of the call.
See also:SampleClear(), Pulses()

This tags the current frame as accepted or rejected.

Func SampleAccept({yes%});

yes% If this is zero the frame is rejected, otherwise the frame is written to disk and is
equivalent to the Accept check box in the sampling control dialog.

Returns 0 if sweep was written successfully or a negative error code.
See also:SamplePause(), SampleStatus(), SampleWrite()

This command returns the parameters used in automatic artefact rejection during
sampling . Artefact rejection consists of testing all points within a given time range and
rejecting or tagging frames where the points at the ADC limit exceed a set threshold.
Func SampleArtefactGet(mode%, start, end, per{, lev})

mode% Returned holding the artefact rejection mode: 0 for none, 1 for Tag and 2 for
Reject.

start Returned holding the start time for the search for out-of-range points.
end Returned holding the end time for the search for out-of-range points.
per Returned holding the percentage of out-of-range points that can be tolerated,

frames with more than this are deemed to contain artefacts.
lev The percentage of the ADC range (from zero to full scale) above or below

which will be considered an artefact.
Returns Zero or a negative error code.
See also:SampleArtefactSet(), SampleAccept(), FrameTag(),

SamplePortFull()

SampleAbsLevel()

SampleAccept()

SampleArtefactGet()

SampleArtefactSet() The Signal script language SampleAutoName$()

5-129

This command sets the parameters used in automatic artefact rejection during sampling .
Artefact rejection consists of testing all points within a given time range and rejecting or
tagging frames where the points at the ADC limit exceed a set threshold.
Func SampleArtefactSet(mode%, start, end, per{, lev})

mode% Sets the artefact rejection mode: 0 for none, 1 for Tag and 2 for Reject.
start The start time for the search for out-of-range points.
end The end time for the search for out-of-range points.
per The percentage of out-of-range points that can be tolerated, frames with more

than this are deemed to contain artefacts.
lev The percentage of the ADC range (from zero to full scale) above or below

which will be considered an artefact. The default is 100.
Returns Zero or a negative error code.
See also:SampleArtefactGet(), SampleAccept(), FrameTag(),

SamplePortFull()

This gets or sets the flag for file auto-filing as seen in the sampling configuration dialog.

Func SampleAutoFile({yes%});

yes% If present and non-zero, this turns on automatic filing of data when sampling
finishes. If zero or missing it turns automatic filing off.

Returns the automatic filing flag at the time of the function call.
See also:SampleAutoName$(), FileNew()

This gets or sets the template for file auto-naming as in the sampling configuration
dialog.

Func SampleAutoName$({name$});

name$ If present, this sets the new template string for file auto-naming, or turns off
auto-naming if it is a blank string. See the sampling configuration
documentation for details on the template string.

Returns the auto-naming template at the time of the function call.
See also:SampleAutoFile(), FileNew()

SampleArtefactSet()

SampleAutoFile()

SampleAutoName$()

SampleBar() Alphabetical command reference SampleDacFull()

5-130

This gives you access to the Sample toolbar. The format of strings passed by this
command is the button label (up to 8 characters), followed by a vertical bar, followed by
the full path name to a sampling configuration file, including the .sgc file extension,
followed by a vertical bar then a comment to display when the mouse pointer is over the
button. If you call the command with no arguments it returns the number of buttons in
the toolbar.
Func SampleBar({n% {, &get$}});
Func SampleBar(set$);

n% If set to -1, get$ must be omitted and all buttons are cleared and the function
returns 0. When set to the number of a button (the first button is 0), get$ is as
described above. In this case, the function returns -1 if the button does not exist,
0 if it exists and is the last button, and 1 if higher numbered buttons exist.

set$ The string passed in should have the format described above The function
returns the new number of buttons or -1 if all buttons are already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets two buttons:
SampleBar(-1); 'clear all buttons
SampleBar("Fast|C:\\Signal2\\Fast.sgc|Fast 4 channel sampling");
SampleBar("Faster|C:\\Signal2\\FastXX.sgc|Very fast sampling");

See also:App()

This gets or sets burst mode sampling as seen in the sampling configuration dialog.

Func SampleBurst({bMode%});

bMode% If present and non-zero this turns burst mode on in the sampling configuration.
Burst mode is often to be preferred, as the actual sampling rate used is more
likely to match the preferred rate set.

Returns 1 if burst mode is on, 0 if it is off.
See also:SampleClear(), SampleRate(), SamplePoints(),

SampleTrigger(), SamplePorts()

This procedure sets the contents shown in all the panes of the sampling configuration
dialog to a standard state. You can use the sampling configuration commands to get or
change values in the sampling configuration. There is a full list of the sampling
configuration commands in the Commands by function chapter.

Proc SampleClear();

This function gets the full-scale value used to scale values written to the DACs and
optionally sets it to a new value.
Func SampleDacFull(port {, new});

port The DAC number, from 0 to 3.
new If present, sets the value in the units for this DAC corresponding to a full-scale

value. This value is used throughout Signal to calibrate DAC values.
Returns The DAC full-scale value before the call.
See also:Pulses(), SampleDacMask(), SampleDacZero(),

SampleDacUnits$(), SampleStateDac()

SampleBar()

SampleBurst()

SampleClear()

SampleDacFull()

SampleDacMask() The Signal script language SampleDigIMask()

5-131

This function gets the mask value used to enable the DAC outputs and optionally sets it
to a new value.
Func SampleDacMask({new});

new If present, sets the mask enabling the DAC outputs. This mask has one bit for
each DAC, set bits enable the corresponding DAC output.

Returns The DAC outputs mask value before the call.
See also:SampleStatesMode(), SampleDigOMask(), SampleDigIMask(),

SampleStateDac()

This function gets the units string for a DAC and optionally sets it to a new value.
Func SampleDacUnits$(port {, new$});

port The DAC number, from 0 to 3.
new If present, sets the units string for this DAC. This value is used throughout

Signal to calibrate DAC values.
Returns The DAC units string before the call.
See also:Pulses(), SampleDacMask(), SampleDacFull(), SampleDacZero(),

SampleStateDac()

This function gets the zero value used to scale values written to the DACs and optionally
sets it to a new value.
Func SampleDacZero(port {, new});

port The DAC number, from 0 to 3.
new If present, sets the value in the units for this DAC corresponding to a zero value.

This value is used throughout Signal to calibrate DAC values.
Returns The DAC zero value before the call.
See also:Pulses(), SampleDacMask(), SampleDacFull(),

SampleDacUnits$(), SampleStateDac()

This function gets the mask value used to enable the digital inputs for the External
digital multiple states mode and optionally sets it to a new value.
Func SampleDigIMask({new});

new If present, sets the mask enabling the digital inputs. This mask has one bit for
each digital input, set bits enable the corresponding input. This value is only
used in External digital states mode.

Returns The digital inputs mask value before the call.
See also:SampleStatesMode(), SampleStateDig(), SampleDacMask(),

SampleDigOMask()

SampleDacMask()

SampleDacUnits$()

SampleDacZero()

SampleDigIMask()

SampleDigOMask() Alphabetical command reference SampleHandle()

5-132

This function gets the mask value used to enable the digital outputs and optionally sets it
to a new value.
Func SampleDigOMask({new});

new If present, sets the mask enabling the digital outputs. This mask has one bit for
each digital output, set bits enable the corresponding output.

Returns The digital outputs mask value before the call.
See also:SampleStatesMode(), SampleStateDig(), SampleDacMask(),

SampleDigIMask()

This function sets and gets the sweep interval for Fixed interval and Fast Fixed int
sweep modes, as stored in the pulses information. Note that this sets the interval after
frames with the specified state, not the interval before a frame.

Func SampleFixedInt(state {, period});

state This sets the state (pulses set) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

period If present, this argument sets the fixed interval period, in seconds.
Returns The fixed interval period at the time of the call.
See also:SampleOutMode(), SampleOutTrig(), SampleOutClock(),

SampleFixedVar(), Pulses(), SampleStates()

This function sets and gets the percentage variation of the sweep interval for Fixed
interval sweep mode, as stored in the pulses information.

Func SampleFixedVar(state {, vary});

state This sets the state (pulses set) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

vary If present, this argument sets the fixed interval variation, from 0 to 100 percent.
Returns The fixed interval variation percentage at the time of the call.
See also:SampleOutMode(), SampleOutTrig(), SampleOutClock(),

SampleFixedInt(), Pulses(), SampleStates()

This gets the handle of a view associated with sampling. This can be used to position,
show and hide the sampling control panel or the output control panel.
Func SampleHandle(which%);

which% Selects which view handle to return:
0 Main file view
1 Sampling control panel
2 Sequencer control panel. This is not implemented in Version 2.00.
3 Pulses configuration dialog
4 States control bar

Returns The view handle or 0 if the view does not exist.
See also:View(), ViewList(), Window(), WindowVisible()

SampleDigOMask()

SampleFixedInt()

SampleFixedVar()

SampleHandle()

SampleKey() The Signal script language SampleLimitSize()

5-133

This procedure adds events to the keyboard marker channel, exactly as if you had typed
them (with the sampling document view as the current view). If there is no sampling, the
procedure does nothing. If the output sequencer is running, and you add a key that
corresponds to a key linked to a sequencer step, the sequencer jumps to the step. The
output sequencer is not implemented in Version 2.00.

Proc SampleKey(key$);

key$ The first character of the string is added to the keyboard marker channel.
See also:SampleClear(), SampleKeyMark()

This function turns the keyboard marker channel on or off or gets the current setting of
this from the sampling configuration.

Func SampleKeyMark(on%);

on% If present and non-zero this turns keyboard markers on in the sampling
configuration.

Returns 1 if the keyboard channel is on in the sampling configuration, 0 if not.
See also:SampleKey(), SampleClear()

This function corresponds to the Number of Frames field on the Automation page of
the sampling configuration dialog.
Func SampleLimitFrames({limit%});

limit% The number of frames to set as a limit. A positive number sets the limit and
checks the box (enabling the limit). A negative number sets the limit to the
positive time, but clears the check box (so the limit is not used). A value of zero
or omitting the argument leaves the time limit unchanged.

Returns The function returns the frames limit as it was at the time of the call. If the limit
is disabled, the number of frames is returned negated.

See also:SampleClear(), SampleLimitSize(),SampleLimitTime(),
SampleWrite()

This function corresponds to the File size field on the Automation page of the sampling
configuration dialog.
Func SampleLimitSize({size});

size The size limit for the output file, in KB. A positive value sets the size and
enables the limit. A negative value sets the limit to the positive value of size, but
disables the limit. A zero value, or omitting the argument, means no change.

Returns The limit before the call. If the limit is disabled, the value is returned negated.
See also:SampleClear(), SampleLimitFrames(), SampleLimitTime(),

SampleWrite()

SampleKey()

SampleKeyMark()

SampleLimitFrames()

SampleLimitSize()

SampleLimitTime() Alphabetical command reference SampleOutClock()

5-134

This function corresponds to the Run time field on the Automation page of the
sampling configuration dialog.
Func SampleLimitTime({time});

time The time in seconds to set as a limit. A positive time sets the limit and checks
the box (enabling the limit). A negative time sets the limit to the positive time,
but clears the check box (so the limit is not used). A value of zero, or omitting
the argument, leaves the time limit unchanged.

Returns The function returns the time limit as it was in the sampling configuration at the
time of the call. If the limit is disabled, the time is returned negated.

See also:SampleClear(), SampleLimitFrames(), SampleLimitSize(),
SampleWrite()

This function sets and gets the sampling sweep mode as seen in the sampling
configuration dialog.

Func SampleMode({mode%});

mode% This argument determines the action of the command:
0 Sets basic post triggered mode
1 Sets peri triggered mode
2 Sets outputs frame mode
3 Sets fixed interval mode
4 Fast triggers mode
5 Fast fixed interval mode
6 For future expansion

Returns The sweep mode from the sampling configuration at the time of the call.
See also:SampleClear(), SamplePeriType(), SampleFixedInt(),

SampleOutLength(), SampleOutTrig()

This function sets and gets the outputs clock as seen in the sampling configuration dialog
Outputs page.

Func SampleOutClock({period {, synch%}});

period If present, this argument sets the outputs clock period, in seconds. This value
sets the time resolution for pulses and sequencer output, for measuring sweep
absolute start times, for timing sweeps in Fixed interval mode and for
measuring the time of marker data. For the standard 1401, this value should not
be less than 10 ms, for a 1401plus 3 ms, for a micro1401 0.1 ms, for a
Micro1401 mk II 25 microseconds and for a Power1401 10 microseconds.

synch% If present, this sets whether to synchronise pulse outputs to the sampling sweep.
A non-zero value is equivalent to checking the “Synchronise sampling”
box in the sampling configuration dialog.

Returns The outputs clock period from the configuration at the time of the call.
See also:SampleOutMode(), SampleFixedInt(), SampleOutTrig(), Pulses()

SampleLimitTime()

SampleMode()

SampleOutClock()

SampleOutLength() The Signal script language SamplePause()

5-135

This function sets and gets the length of the pulses output frame; the length of time that
pulses are generated, as stored in the pulses information for use in Outputs frame and
Fixed interval sweep modes.

Func SampleOutLength(state {, length});

state This sets the state (pulses set) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

length If present, this argument sets the length of the pulses output frame, in seconds.
Returns The pulses output frame length at the time of the call.
See also:SampleOutMode(), SampleOutTrig(), SampleOutClock(),

Pulses(), SampleStates()

This function sets and gets the outputs mode as seen in the sampling configuration dialog
Outputs page.

Func SampleOutMode({mode%});

mode% This argument determines the action of the command:
0 Sets None outputs mode
1 Sets Pulses outputs mode
2 Sets Sequencer outputs mode (not available in version 2.00)
3 For future expansion

Returns The outputs mode from the configuration at the time of the call.
See also:SampleClear(), Pulses()

This function sets and gets the sweep trigger time within the pulses frame as stored in the
pulses information for use in Outputs frame and Fixed interval sweep modes.

Func SampleOutTrig(state {, time});

state This sets the state (pulses set) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

time If present, this argument sets the sweep trigger time within the pulses output
frame, in seconds. The value should be from 0 to the pulses output frame length.

Returns The sweep trigger time at the time of the call.
See also:SampleOutLength(), SampleFixedInt(), SampleOutClock(),

Pulses(), SampleStates()

This function ascertains or sets whether the sampling mode is paused, which is the state
of the Pause at sweep end check boxes.
Func SamplePause({pause%});

pause% If present this is equivalent to changing the state the Pause at sweep end
check boxes. A non-zero value pauses sampling and zero enables sampling.

Returns If pause% is present it returns the new state as 1 or 0, or a negative error code.
If pause% is absent it returns the current state as 1 or 0.

See also:SampleSweep(), SampleStart(), SampleStop(), SampleStatus(),
SampleWrite(), SampleAbort()

SampleOutLength()

SampleOutMode()

SampleOutTrig()

SamplePause()

SamplePeriBitState() Alphabetical command reference SamplePeriLevel()

5-136

This function gets or selects the state of the digital input bit required to trigger sampling.
It is equivalent to the drop-down selection box in the digital peri-trigger sampling
configuration.

Func SamplePeriBitState({set%});

set% If present a value of 1 selects Trigger on bit high in the digital peri-trigger
sampling configuration. A value of 0 selects Trigger on bit low.

Returns The value for the setting at the time of the call.
See also:SamplePeriDigBit(), SamplePeriHyst(), SamplePeriLevel(),

SamplePeriLowLev(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the digital bit number in the digital peri-trigger sampling
configuration.

Func SamplePeriDigBit({bit%});

bit% If present and in the range 8-15 this sets the new digital bit number in the digital
peri-trigger sampling configuration.

Returns The value for the peri-trigger digital bit in the sampling configuration at the time
of the call.

See also:SamplePeriBitState(), SamplePeriHyst(), SamplePeriLevel(),
SamplePeriLowLev(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the hysteresis value for triggering from an analogue channel
level in the peri-trigger sampling configuration. If used while sampling is in progress,
this gets and sets the hysteresis value currently in use.

Func SamplePeriHyst({level});

level If present this sets the new hysteresis value in the peri-trigger sampling
configuration or sampling document.

Returns The value for hysteresis in the sampling configuration at the time of the call.
See also:SamplePeriDigBit(), SamplePeriBitState(), SamplePeriLevel(),

SamplePeriLowLev(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the threshold level for triggering from an analogue channel
level in peri-trigger mode. In the peri-trigger sampling configuration this is the threshold
level for +Analogue and -Analogue peri-trigger types and the upper threshold for
=Analogue peri-trigger type. If used while sampling is in progress, this gets and sets the
threshold level currently in use.

Func SamplePeriLevel({level});

level If present this sets the peri-trigger threshold level in the sampling configuration
or sampling document.

Returns The value for peri-trigger threshold level in the sampling configuration.
See also:SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),

SamplePeriLowLev(), SamplePeriType(), SamplePeriPoints()

SamplePeriBitState()

SamplePeriDigBit()

SamplePeriHyst()

SamplePeriLevel()

SamplePeriLowLev() The Signal script language SamplePoints()

5-137

This function gets or sets the peri-trigger Lower threshold for =Analogue peri-trigger
type in the peri-trigger sampling configuration. If used while sampling is in progress, this
gets and sets the lower threshold level currently in use.

Func SamplePeriLowLev({level});

level If present this sets the lower threshold for =Analogue peri-trigger type in the
peri-trigger sampling configuration or sampling document.

Returns The value for the lower threshold for =Analogue peri-trigger type in the peri-
trigger sampling configuration.

See also:SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),
SamplePeriLevel(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the type of peri-trigger in the peri-trigger sampling
configuration.

Func SamplePeriType({pts%});

pts% If present this sets the type of trigger in the sampling configuration as follows:
0 +Analogue
1 -Analogue
2 =Analogue
3 Digital
4 Event

Returns The trigger type in the sampling configuration at the time of the call.
See also:SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),

SamplePeriLevel(), SamplePeriLowLev(), SamplePeriPoints()

This function gets or sets the number of data points in the frame before the trigger as
given by Pre-trig. points in the Peri-trigger section of sampling configuration.

Func SamplePeriPoints({pts%});

pts% If present this sets the pre-trigger points in the peri-trigger sampling
configuration. This can be any negative number or a positive number less than
the points per sweep.

Returns The value for pre-trigger points in the peri-trigger sampling configuration.
See also:SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),

SamplePeriLevel(), SamplePeriLowLev(), SamplePeriType()

This function gets or sets the number of data points per ADC port per frame as given by
Frame points in the sampling configuration.

Func SamplePoints({pts%});

pts% If present this sets the number of frame points in the sampling configuration.
Returns The value for frame points in the sampling configuration.
See also:SampleClear(), SampleRate(), SamplePeriPoints(),

SampleTrigger()

SamplePeriLowLev()

SamplePeriType()

SamplePeriPoints()

SamplePoints()

SamplePortFull() Alphabetical command reference SamplePorts()

5-138

This function gets and sets the Full value for an input port, as shown in the sampling
configuration dialog. Complete calibration of a waveform channel requires Full, Zero
and Units to be set up correctly.
Func SamplePortFull(port% {,full});

port% The port number (0-79).
full The value of the data corresponding to the ADC full-scale level (+5 volts or +10

volts for a 10 volt system) at the input.
Returns The value for the port Full scale value at the time of the call, or zero for illegal

port numbers.
See also:SampleClear(), SamplePorts(), SamplePortOptions$(),

SamplePortUnits$(), SamplePortZero()

This function gets and sets the title attached to a port, as shown in the sampling
configuration dialog.

Func SamplePortName$(port% {,new$});

port% The port number (0-79).
new$ If present, the new title. If the title is too long, it is truncated.
Returns The title at the time of the call, or an empty string for illegal channel numbers.
See also:SampleClear(), SamplePorts(), SamplePortFull(),

SamplePortOptions$(), SamplePortUnits$(), SamplePortZero()

This function gets and sets the online processing options attached to a waveform input
port setup, as shown in the sampling configuration dialog.

Func SamplePortOptions$(port% {,new$});

port% The port number (0-79).
new$ If present, the new options string, up to seven characters long. If the string is too

long it will be truncated.
Returns The options string at the time of the call, or an empty string for illegal channel

numbers.
See also:SampleClear(),SamplePortFull(), SamplePorts(),

SamplePortName$(), SamplePortUnits$(), SamplePortZero()

This function gets or sets the ADC ports, as shown in the sampling configuration.

Func SamplePorts({get%[]|num%{,new%[]}});

num% If present this sets the number of ADC ports to take from the new% array. If
new% is not present the new ADC ports will be 0..num%-1.

get%[] If present as a single argument this is filled with ADC ports from the sampling
configuration up to the size of the array. If there are insufficient ports to fill the
array the unused entries are left unchanged.

new%[] If present this holds the new ADC ports for the sampling configuration. The
number of new ADC ports will be restricted by the size of num% or by the size
of this array whichever is the smaller.

Returns The number of ADC ports at the time of the call.
See also:SampleClear(), SamplePortFull(), SamplePortName$(),

SamplePortOptions$(), SamplePortUnits$(), SamplePortZero()

SamplePortFull()

SamplePortName$()

SamplePortOptions$()

SamplePorts()

SamplePortUnits$() The Signal script language SampleRate()

5-139

This function gets and sets the units for an input port, as shown in the sampling
configuration dialog. Complete calibration of a waveform channel requires Full, Zero
and Units to be set up correctly.

Func SamplePortUnits$(port% {,new$});

port% The port number (0-79).
new$ The units to use. If the string is longer than 7 characters only the first 7 are used.
Returns The units at the time of the call, or an empty string for illegal channel numbers.
See also:SampleClear(), SamplePorts(), SamplePortFull(),

SamplePortOptions$(), SamplePortZero()

This function gets and sets the Zero value for an input port, as shown in the sampling
configuration dialog.
Func SamplePortZero(port% {,zero});

port% The port number (0-79).
zero The value of the data corresponding to a zero-volt input at the ADC.
Returns The value for the port zero value at the time of the call, or zero for illegal port

numbers.
See also:SampleClear(), SamplePorts(), SamplePortFull(),

SamplePortUnits$(), SamplePortOptions$()

This function is used during sampling to select the protocol to use from the protocols
defined in the sampling configuration.
Func SampleProtocol(num|name$);

num The protocol number to use, from 1 to the number returned by Protocols().
name$ The name of the protocol to use.
Returns The number of the protocol in use before this call or a negative error code.
See also:Protocols(), ProtocolName$(), SampleState()

This function gets the sample rate in Hz from the sampling configuration and optionally
sets it to a new preferred value.
Func SampleRate({new});

new If present, the new preferred rate in Hz. The actual sampling rate used will be as
close as possible to new Rate, but it will not always match exactly.

Returns The sampling rate before the call. This is the actual sampling rate that will be
used, not the preferred rate.

See also:SampleClear(), SamplePoints(), SampleTrigger(),
SampleBurst(), BinSize()

SamplePortUnits$()

SamplePortZero()

SampleProtocol()

SampleRate()

SampleReset() Alphabetical command reference SampleStateDac()

5-140

This function can be used while sampling is in progress to abandon sampling, deleting
any data that has been written to disk, and return to the state as if FileNew() had just
been used to create a new data file.
Func SampleReset();

Returns 0 if the reset operation completed without a problem, or a negative error code.
See also:SampleAbort(), SampleStart(), SampleStop(), SampleStatus(),

SampleWrite(), SamplePause()

This function can be used after FileNew() has created a new file view based on the
current sampling configuration. It starts sampling immediately or on a 1401 event trigger.
Func SampleStart({trig%});

trig% If this is 0 or omitted, sampling starts immediately, otherwise sampling waits for
a trigger signal on the 1401 E1 input.

Returns 0 if all went well or a negative error code.
See also:SampleAbort(), SampleReset(), SampleStop(), SampleStatus(),

SampleWrite(), SamplePause()

This function is used during sampling to directly set the current state; it is the scripting
equivalent of controlling the state manually with the states control bar. The command
should be used with states sequencing set to Manual, or the values set will be overridden
by the sampling system.
Func SampleState(num);

num The state to use, from 0 to 256.
Returns The state in use before this call or a negative error code.
See also:SampleStatesOrder(), SampleStatesRun(), SampleStates()

This function gets the dac output value for a specific state from the sampling
configuration and optionally sets it to a new value.
Func SampleStateDac(state, port {, new});

state The state for which information is required, from 0 to 256.
port The DAC number, from 0 to 3.
new If present, sets the value to be output to the DAC for this state in Static outputs

states mode.
Returns The DAC output value before the call.
See also:SampleStatesMode(), SampleStates(), SampleState(),

SampleDacMask(), SampleDacFull(), SampleDacZero()

SampleReset()

SampleStart()

SampleState()

SampleStateDac()

SampleStateDig() The Signal script language SampleStatesIdle()

5-141

This function gets the value to be written to the digital outputs for a specific state or the
value read from the digital inputs to set a state and optionally sets it to a new value.
Func SampleStateDig(state {, new});

state The state for which information is required, from 0 to 256.
new If present, sets the value to be written to the digital outputs for this state in

Static outputs states mode, or the value used to test the digital input data in
External digital states mode..

Returns The digital output or input value before the call.
See also:SampleStatesMode(), SampleStates(), SampleState(),

SampleDigOMask(), SampleDigIMask()

This function gets the number of repeats for a specific state from the sampling
configuration and optionally sets it to a new value.
Func SampleStateRepeats(state {, new});

state The state for which information is required, from 0 to 256.
new If present, sets the number of times the state is repeated in Numeric and Random

ordering mode if individual repeats is enabled.
Returns The number of repeats before the call.
See also:SampleStateRepeats(), SampleStates(), SampleState()

This function gets the number of extra states from the sampling configuration and
optionally sets it to a new value.
Func SampleStates({new});

new If present, the new number of extra states. Values from 1 to 256 set the states
and turn on multiple states mode, a value of zero turns off multiple states.

Returns The number of extra states before the call, or zero if multiple states were
disabled.

See also:SampleStatesMode(), SampleStatesOrder(), SampleState()

This function gets the count of states ordering cycles before idling from the sampling
configuration and optionally sets it to a new value.
Func SampleStatesIdle({idle%});

idle% If present, this sets the number of cycles of states using Numeric or Random
state sequencing before idling, a zero value means keep cycling forever. This
parameter is ignored for protocol ordering.

Returns The states cycles before idling before the call.
See also:SampleStates(), SampleStatesMode(), SampleStatesOrder(),

SampleState(), SampleProtocol(), ProtocolFlags()

SampleStateDig()

SampleStateRepeats()

SampleStates()

SampleStatesIdle()

SampleStatesMode() Alphabetical command reference SampleStatesRun()

5-142

This function gets the mode for multiple states from the sampling configuration and
optionally sets it to a new value.
Func SampleStatesMode({new});

new If present, sets the new multiple states mode as follows:
0 External digital 1 Static outputs 2 Dynamic outputs

Returns The mode for multiple states before the call.
See also:SampleStates(), SampleStatesOrder(), SampleState()

This function gets the ordering mode for multiple states from the sampling configuration
and optionally sets it to a new value.
Func SampleStatesOrder({new%});

new% If present, this sets the new multiple states ordering mode as follows:
0 Numeric 1 Random 2 Protocol 3 Semi-random

Returns The states ordering mode before the call.
See also:SampleStates(), SampleStatesIdle(), SampleStatesMode(),

SampleState(), SampleProtocol(), ProtocolFlags()

This function gets the number of times each state is repeated from the sampling
configuration and optionally sets it to a new value, or selects individual repeats mode.
Func SampleStatesRepeats({new});

new If present and non-zero, disables individual repeats and sets the number of times
each state is repeated in Numeric and Random ordering mode, a value of zero
turns on individual repeats.

Returns The number of repeats before the call, or zero if individual repeats were
enabled.

See also:SampleStateRepeats(), SampleStatesOrder(), SampleState()

This function is used during sampling to reset the states sequencing system and the
pulses built-in varations; it is the scripting equivalent of pressing the Reset button on the
states control bar.
Func SampleStatesReset();

Returns zero or a negative error code.
See also:SampleStatesOrder(), SampleStatesRun(), SampleStates()

This function is used during sampling to set the seqencing execution mode; the scripting
equivalent of using the Manual, On write or Cycle buttons on the states control bar.
Func SampleStatesRun(mode);

mode The mode of sequencing to use, as follows:
0 Manual or direct script control of states
1 Sequencer runs, moves to next state if data written
2 Sequencer runs, moves to next state unconditionally

Returns The state sequencing mode in use before this call or a negative error code.

SampleStatesMode()

SampleStatesOrder()

SampleStatesRepeats()

SampleStatesReset()

SampleStatesRun()

SampleStatesRun() The Signal script language SampleStatesRun()

5-143

See also:SampleStatesOrder(), SampleStatesReset(), SampleState()

SampleStatus() Alphabetical command reference SampleTrigger()

5-144

This function enquires about the state of any sampling.
Func SampleStatus();

Returns A code indicating the sampling state or -1 if there is no sampling:
0 A file view is ready to sample, but it has not been told to start yet
1 Sampling is waiting for an Event 1 trigger
2 Sampling of a sweep is now in progress
3 Sampling is paused at the end of a sweep
4 Sampling is stopped but not finished (changes to -1 when it has finished)

See also:SampleAbort(), SampleReset(), SampleStart(), SampleStop(),
SampleWrite(), SamplePause()

This function stops sampling in progress and is equivalent to using the Stop and Finish
buttons of the sampling control panel. The default behaviour is that there is no
intermediate state between stopping and finishing when sampling is stopped by using this
function. The function does not return until sampling has stopped.
Func SampleStop({noFin%});

NoFin% If present and non zero then sampling will stop but not finish. SampleSweep()
may then be used to continue sampling.

Returns 0 if sampling stopped correctly or a negative error code.
See also:SampleAbort(),SamplePause(), SampleReset(),

SampleStart(),SampleStatus(), SampleSweep(), SampleWrite()

If sampling is paused at the end of a sweep, or stopped but not finished because a limit
was reached, this starts sampling of the next sweep. The current sweep will be lost if it is
unsaved. This function is the equivalent of the Continue button in the sampling control
panel (or More when sampling is stopped).

Func SampleSweep();

Returns 0, or a negative error code.
See also:SamplePause(), SampleReset(), SampleStart(), SampleStop(),

SampleWrite()

This function gets or sets the external trigger option in the sampling configuration.

Func SampleTrigger({trig%});

trig% If this is non-zero sampling of each frame waits for a trigger input. Zero turns
trigger mode off.

Returns 0 or 1, or a negative error code.
See also:SampleClear(), SampleRate(), SampleSweep(), SamplePoints(),

SampleStatus()

SampleStatus()

SampleStop()

SampleSweep()

SampleTrigger()

SampleWrite() The Signal script language ScriptRun()

5-145

This function controls the automatic writing of data to the file during sampling and is
equivalent to the Write to disk at sweep end check boxes.

Func SampleWrite({write%});

write% If present this sets the state of automatic writing of data at the end of each
sweep,
0 Disable writing to disk at the end of each sweep
1 Enable writing to disk at the end of each sweep

Returns The state of automatic writing to file at the end of each sweep: 0 for disabled, 1
for enabled

See also:SampleClear(), SamplePause(), SampleSweep(), SampleStatus()

This controls the Script toolbar. Call the command with no arguments to return the
number of toolbar buttons. The first button is numbered 0.
Func ScriptBar({nBut%{, &get$}});
Func ScriptBar(set$);

nBut% Set –1 and omit get$ to clear all buttons and return 0. Otherwise it is a button
number and returns -1 if the button does not exist, 0 if it is the last button, and 1
if higher numbered buttons exist. get$ returns the information as for set$.

set$ This holds up to 8 characters of button label, a vertical bar, the path to the script
file including .sgs, a vertical bar and a pop-up comment. The function returns
the new number of buttons or -1 if all buttons are already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets a button:
ScriptBar(-1); 'clear all buttons
ScriptBar("ToolMake|C:\\Scripts\\ToolMake.sgs|Build a toolbar");

See also:App()

This sets the name of a script to run when the current script terminates. You can pass
information to the new script using disk files or by using the Profile() command. You
can call this function as often as you like; only the last use has any effect.
Proc ScriptRun(name${, flags%});

name$ The script file to run. You can supply a path relative to the current folder or a
full path to the script file. If you supply a relative path, it must still be valid at
the end of the current script. Set name$ to "" to cancel running a script.

flags% Optional flags that control the new script. If omitted, 0 is used. The only flag
defined now is 1 = run new script even if the current script ends in an error.

If the file you name does not exist when Signal tries to run it, nothing happens. If the
nominated script is not already loaded, Signal will load it, run it and unload it.

See also:App(), Profile()

SampleWrite()

ScriptBar()

ScriptRun()

Seconds() Alphabetical command reference SerialCount()

5-146

This sets or gets the timer in seconds and is used for relative time measurements. If you
want the position reached in the current sweep, use the Maxtime() function.

Func Seconds({set});

set If present, this sets the time in seconds.
Returns The time in seconds. If you have not used the set call, the time is the time since

the Signal system was started. If the set argument is present in the call, the
value returned is the value before the new time was set.

See also:MaxTime()

This function returns the text in the current view that is currently selected, that is the text
that would be copied to the clipboard if the Edit menu Copy command was used.

Func Selection$();

Returns The current text selection. If there is no text selected, or if the view is
inappropriate for this action, an empty string is returned.

This function closes a serial port opened by SerialOpen(). Closing a port releases
memory and system resources. Ports are automatically closed when a script ends,
however it is good practice to close a port when your script has finished with it.
Func SerialClose(port%);

port% The serial port to close as defined for SerialOpen().
Returns 0 or a negative error code
See also:SerialOpen(), SerialWrite(), SerialRead(), SerialCount()

This counts the characters or items buffered in a serial port opened by SerialOpen().
Use this to detect input so your script can do other tasks while waiting for serial data.
There is an internal buffer (belonging to Signal) of 1024 characters per port that is filled
when you use SerialCount. The size of this buffer limits the number of characters that
this function can tell you about. To avoid character loss when you are not using a serial
line handshake, do not buffer up more than a few hundred characters with
SerialCount.
Func SerialCount(port% {,term$});

port% The serial port to use as defined for SerialOpen().
term$ An optional string holding the character(s) that terminate an input item.
Returns If term$ is absent or empty, this returns the number of characters that could be

read. If term$ is set, this returns the number of complete items that end with
term$ that could be read.

See also:SerialOpen(), SerialWrite(), SerialRead(), SerialClose()

Seconds()

Selection$()

SerialClose()

SerialCount()

SerialOpen() The Signal script language SerialOpen()

5-147

This function opens a serial port and configures it for use by the other serial line
functions. It is not an error to call SerialOpen more than once on the same port. The
serial routines use the host operating system serial line support. Consult your system
documentation for information on serial line connections and baud rates limit.
Func SerialOpen(port%{, baud%{, bits%{, par%{, stop%{, hsk%}}}}});

port% The serial port to use in the range 1 to 9. The number of ports depends on the
computer. Two ports (1 and 2) are common on both PC and Macintosh systems.

baud% This sets the serial line Baud rate (number of bits per second). The maximum
character transfer rate is of order one-tenth this figure. All standard rates from
50 to 115200 Baud are supported. If you do not supply a Baud rate, 9600 is
used.

bits% The number of data bits used to encode a character. Windows supports 4 to 8
bits, the Macintosh supports 7 or 8. If bits% is omitted, 8 is set. Apart from
very specialised use, standard values are 7 or 8 data bits. If you set 7 data bits,
character codes from 0 to 127 can be read. If you set 8 data bits, codes from 0 to
255 are possible.

par% Set this to 0 for no parity check, 1 for odd parity or 2 for even parity. If you do
not specify this argument, no parity is set.

stop% This sets the number of stop bits as 1 or 2. If omitted, 1 stop bit is set. If you
specify 5 data bits, a request for 2 stop bits results in 1.5 stop bits being used.

hsk% This sets the handshake mode, sometimes called “flow control”. 0 sets no
handshake, 1 sets a hardware handshake, 2 sets XON/XOFF protocol.

Returns 0 or a negative error code.
See also:SerialWrite(), SerialRead(), SerialCount(), SerialClose()

SerialOpen()

SerialRead() Alphabetical command reference SerialWrite()

5-148

This function reads characters, a string, an array of strings, or binary data from a
nominated serial port that was previously opened with SerialOpen(). Binary data can
include character code 0, string data never includes character 0.
Func SerialRead(port%, &in$|in$[]|&in%|in%[]{,term${, max%}});

port% The serial port to read from as defined for SerialOpen().
in$ A single string or an array of strings to fill with characters. There is no point

providing an array of strings unless you have set a terminator as without a
terminator all input goes to the first string in the array.

in% A single integer (term$ and max% are ignored) or an array of integers (term$
and max% can be used) to read binary data. Each integer can hold one character,
coded as 0 up to 255. The function returns the number of characters returned.

term$ If this is an empty string or omitted, all characters read are input to the string,
integer array or to the first string in the string array and the number of characters
read can be limited by max%. The function returns the number of characters
read.
If this is not empty, the contents are used to separate data items in the input
stream. Only complete items are returned and the terminator is not included. For
example, set the terminator to "\n" if lines end in line feed, or to "\r\n" if
input lines end with carriage return then line feed. If in$ is a string, one item at
most is returned. If in$[] is an array, one item is returned per array element.
The function returns the number of items read unless in is an integer when the
function returns the number of characters returned.

max% If present, it sets the maximum number of characters to read into each string or
into the integer array. If a terminator is set, but not found after this many
characters, the function breaks the input at this point as if a terminator had been
found. There is a maximum limit set by the size of the buffers used by Signal to
process data and by the size of the system buffers used outside Signal. This is
typically 1024 characters.

Returns The function returns the number of characters or items read or a negative error
code. If there is nothing to read, it waits 1 second for characters to arrive before
timing out and returning 0. Use SerialCount() to test for items to read to
avoid hanging up Signal.

See also:SerialOpen(), SerialWrite(), SerialCount(), SerialClose()

This writes one or more strings or binary data to a serial port opened by SerialOpen().
Func SerialWrite(port%, out$|out$[]|out%|out%[]{, term$});

port% The serial port to write to as defined for SerialOpen().
out$ A single string to write to the output or an array of strings to write.
out% A single integer or an array of integers to write as binary. The maximum value

writeable depends on the number of data bits set for the port; 7-bit data wriites
as out% band 127, 8-bit data writes as out% band 255.

out%[] An array of characters to write, stored one per integer.
term$ If present, it is written to the output port after the contents of out%, out%[] or

out$ or after each string in out$[].
Returns The number of strings or binary characters written or a negative error code. If

the output system becomes full, the function waits for one second before timing
out. If a time-out occurs, the function returns the number of strings sent before
the time-out.

See also:SerialOpen(), SerialRead(), SerialCount(), SerialClose()

SerialRead()

SerialWrite()

SetAmplitude() The Signal script language SetAmplitude()

5-149

This family of commands creates memory view windows. Memory views which require
processing are derived from and attached to the current data view, which should be a file
view. This does not apply to SetCopy() and SetMemory() which create memory views
that do not use a Process command. The SetTrend() function is special in that it
creates an XY view which will receive data points from processing a source view which
can be either a file or a memory view. The SetXXX() functions do not update the
display, for which you should use Draw() or DrawAll().

All these functions return a positive view handle if they succeed or a negative error code.
Possible errors are: Bad channel number, illegal number of bins and out of memory.

The new derived memory view will be empty until a processing command is executed for
it. The processing of a memory view takes data from the source data view and replaces or
adds to the data in the memory view.

When these functions create a new view, it is made the current view. The view is created
invisibly and must be made visible with WindowVisible(1) before it will appear.
See also:Process(), ProcessAll(), ProcessFrames(), SetAutoAv(),

SetAverage(), SetLeak(), SetPower(), SetTrend(), SetCopy(),
SetMemory()

This function creates a memory view to hold an amplitude histogram in each channel
when it is processed. Sweeps() reports the number of sweeps of waveform data
accumulated by processing into the memory view. The current view when
SetAmplitude() is called will be the source view for the data to be processed. In this
version of Signal the source view can not be a memory view.

Func SetAmplitude(ch%, bins% {, minAmp{, maxAmp{, sTime|sTime$
 {, eTime|eTime$}});

ch% A waveform channel to analyse from the current view. Use a channel number
(1 to n), or -1 for all channels, -2 for all visible channels, -3 for all selected
channels, -4 for waveform channels or -5 for marker channels, -6 for selected
waveform channels or visible if none selected, -7 for visible waveform
channels or -8 for selected waveform channels.

bins% The number of bins in the resulting histogram.
minAmp The smallest amplitude to be represented in the histogram.
maxAmp The largest amplitude to be representred in the histogram.
sTime The start time of the data to be included in the analysis.
sTime$ A sting giving the start time of the data to be included in the analysis eg

“Cursor(1)”.
eTime The end time of the data to be included in the analysis.
eTime$ A sting giving the end time of the data to be included in the analysis eg

“Cursor(2)”.
Returns The function returns a handle for the new view, or a negative error code.
See also:SetXXX(), Process(), ProcessAll(), ProcessFrames(),

Sweeps(), View()

SetXXX() commands

SetAmplitude()

SetAutoAv() Alphabetical command reference SetAutoAv()

5-150

This function creates a memory view to hold a sum or average in each channel when it is
processed. The memory view will hold multiple frames, with set numbers of source
frames being averaged into each destination frame. This allows you to set up averaging
with, for example, every ten source frames processed into a new average. The amount
moved-on between averages can be separately controlled for extra flexibility. The current
view when SetAutoAv() is called will be the source view for the data to be processed.
In this version of Signal the source view can not be a memory view. SetAutoAv() is
very similar to SetAverage().

Func SetAutoAv(ch%|list%[]|ch$, perAv%, betAv%{, width, offs
{, sum%{ ,xzero%{, cntExc%{, doErrs%}}}});

ch% A waveform channel to analyse from the current view. Use a channel number
(1 to n), or -1 for all channels, -2 for all visible channels, -3 for all selected
channels, -4 for waveform channels or -5 for marker channels, -6 for selected
waveform channels or visible if none selected, -7 for visible waveform
channels or -8 for selected waveform channels.

ch$ A string to specify channel numbers, such as "1,3..8,9,11..16".
list%[] As an alternative to ch% or ch$, you can pass in a channel list (as constructed

by ChanList()). This must be an array of waveform channels with the first
element of the array holding the number of channels in the list.

perAv% The number of source frames to use per average.
betAv% The number of source frames between the first frame for one average and the

first frame for the next. If perAv% is the same as betAv%, then each perAv%
frames processed make a new average frame. If betAv% is less than perAv%,
then some source frames are used for more than one average, if it is greater
than perAv% then some source frames will be unused.

width The width of the average in x axis units. If omitted the whole frame will be
used. The maximum is limited by available memory.

offs This sets the offset in x axis units from start of frame to the start of the data to
average. If omitted or zero, the data will be taken from the start of the frame.

sum% If present and non-zero, each channel in the memory view will hold the sum of
the data accumulated. If omitted or zero, the memory view channels will hold
the mean of the data accumulated.

xzero% If present and non-zero, this forces the x axis of the memory view to start at
zero. If omitted or zero, the start of the x axis will be the same as the start of
the data that is averaged.

cntExc% If present and non-zero, excluded frames will count as if they had been added
so Signal will not continue to search for enough frames to form each average
and remain in step with the sampling protocol.

doErrs% If present and set to 1 then error bar information will be generated.
Returns The function returns a handle for the new view, or a negative error code.
See also:SetXXX(), SetAverage(), Process(), ProcessAll(),

ProcessFrames(), Sweeps(), View(), MinTime()

SetAutoAv()

SetAverage() The Signal script language SetCopy()

5-151

This function creates a memory view to hold a sum or average in each channel when it is
processed. Sweeps() reports the number of sweeps of waveform data accumulated by
processing into the memory view. The current view when SetAverage() is called will
be the source view for the data to be processed. In this version of Signal the source view
can not be a memory view.

Func SetAverage(ch%|list%[]|ch${, width, offs{, sum%{, xzero%{,
doErrs%}}});

ch% A waveform channel to analyse from the current view. Use a channel number
(1 to n), or -1 for all channels, -2 for all visible channels, -3 for all selected
channels, -4 for waveform channels or -5 for marker channels, -6 for selected
waveform channels or visible if none selected, -7 for visible waveform
channels or -8 for selected waveform channels.

ch$ A string to specify channel numbers, such as "1,3..8,9,11..16".
list%[] As an alternative to ch% or ch$, you can pass in a channel list (as constructed

by ChanList()). This must be an array of waveform channels in the current
data view, with the first element of the array holding the number of channels
in the list.

width The width of the average in x axis units. If omitted the whole frame will be
used. The maximum is limited by available memory.

offs This sets the offset in x axis units from start of frame to the start of the data to
average. If omitted or zero, the data will be taken from the start of the frame.

sum% If present and non-zero, each channel in the memory view will hold the sum of
the data accumulated. If omitted or zero, the memory view channels will hold
the mean of the data accumulated.

xzero% If present and non-zero, this forces the x axis of the memory view to start at
zero. If omitted or zero, the start of the x axis will be the same as the start of
the data to average, as defined by offset offs from MinTime() in the current
frame.

doErrs% If present and set to 1 then error bar information will be generated.
Returns The function returns a handle for the new view, or a negative error code.
See also:SetXXX(), SetAutoAv(), Process(), ProcessAll(),

ProcessFrames(), Sweeps(), View(), MinTime()

This function creates a new memory view with channels selected from and identical to
those in the current view. The new view can be empty or contain data copied from the
current frame. It is attached to no source view and has no implied Process().

Func SetCopy(chan%|list%[]|chan$, title$, bcopy%);

chan% A channel from the current view to include in the new view. Use a channel
number (1 to n), or -1 for all channels, -2 for all visible channels, -3 for all
selected channels, -4 for waveform channels or -5 for marker channels, -6 for
selected waveform channels or visible if none selected, -7 for visible
waveform channels or -8 for selected waveform channels.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
list%[] As an alternative to chan% or chan$, you can pass in a channel list (as

constructed by ChanList()). This must be an array of channels in the current
data view, with the first element of the array holding the number of channels
in the list.

title$ The new window title.

SetAverage()

SetCopy()

SetLeak() Alphabetical command reference SetLeak()

5-152

bcopy% If this is not 0 the data values are copied into the new memory view. If this is 0
the waveform data values in the new view are zero and marker channels are
empty.

Returns Handle for the new view, or a negative error code.
See also:SetXXX(), SetMemory(), View()

This function creates a memory view to hold leak subtracted data when it is processed.
The current view when SetLeak() is called, which must be a file view, will be the
source view for the data to be processed.

Func SetLeak(mode%, chan%, stim%, base|base$, pulse|pulse$, width,
form%, sub%{, zero%{, cntExc%}});

mode% A value to set the leak subtraction mode: 0 for Basic, 1 for P/N or 2 for
States.

chan% A single waveform channel from the current view, this is the channel that will
be leak-subtracted, all other source channels are copied unchanged. Use a
channel number (1 to n).

stim% A single waveform channel from the current view, this is the channel that will
be used to measure the stimulus pulse size. Normally this will be a channel on
which the stimulus was recorded.

base A time at which the baseline level can be measured; a time outside the
stimulus pulse.

base$ The baseline level time expressed as a string, allowing constructs such as
“Cursor(1) - 10”.

pulse A time at which the pulse level can be measured; a time inside the stimulus
pulse.

pulse$ The pulse time expressed as a string.
width The width of the two level measurements, the measurement used is the average

of all waveform points within the specified width.
form% The first frame used to measure the leak in Basic mode, the number of frames

to use for the leak in P/N mode and the state code for leak frames in States
mode.

sub% The last frame used to measure the leak in Basic mode, the number of frames
to subtract the current leak from in P/N mode. This parameter is unused in
States mode.

zero% If present and non-zero, the baseline level will be maintained constant by the
leak subtraction process, otherwise this adjustment is not done.

cntExc% If present and non-zero, excluded frames will count as if they had been used
so Signal will not continue to search for enough frames to form each leak and
so remain in step with the sampling protocol.

Returns The function returns a handle for the new view, or a negative error code.
See also:SetXXX(), FrameState(), SetPower(), Process(), ProcessAll(),

ProcessFrames(), View()

SetLeak()

SetMemory() The Signal script language SetPower()

5-153

This function creates a memory view of user-defined type, attached to no source view
and with no implied Process().

Func SetMemory(chans%, pts%, binsz, offset, marks%, tmks%,
mkBns%, title$, xU${, yU${, xT${, yT$}}});

chans% The number of waveform channels in the view.
pts% The number of data points in each waveform channel.
binsz The x axis increment per point in the waveform channels, this is equivalent to

the sample interval for sampled data. This value should be positive and non-
zero.

offset The x axis value at the first point of the waveform channels.
marks% The number of marker channels in the view, not including text markers.
tmks% The number of text marker channels in the view. Not implemented yet.
mkBns% The number of marker items in each marker channel.
title$ The new window title.
xU$ The x axis units.
yU$ Optional, y axis units, blank if omitted.
xT$ Optional, x axis title (otherwise blank).
yT$ Optional, y axis title (otherwise blank).
Returns The function returns a handle for the new view, or a negative error code.
See also:SetXXX(), SetCopy(), View()

This function creates a memory view to hold a power spectrum in each channel when it is
processed. Sweeps() reports the number of sweeps accumulated by processing into the
memory view. The current view when SetPower() is called will be the source view for
the data to be processed. In this version of Signal the source view cannot be a memory
view.
Func SetPower(chan%|list%[]|chan$, fftsz%{, offset});

chan% A waveform channel to analyse from the current view. Use a channel number
(1 to n), or -1 for all channels, -2 for all visible channels, -3 for all selected
channels, -4 for waveform channels or -5 for marker channels, -6 for selected
waveform channels or visible if none selected, -7 for visible waveform
channels or -8 for selected waveform channels.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
list%[] As an alternative to chan% or chan$, you can pass in a channel list (as

constructed by ChanList()). This must be an array of waveform channels in
the current data view, with the first element of the array holding the number of
channels in the list.

fftsz% The size of the transform used in the FFT. This must be a power of 2 in the
range 16 to 4096. The memory view has half this number of bins. The width
of each bin is the sampling rate of the channel divided by fftsz%. Each block
of fftsz% data points processed increments the value for Sweeps().

offset This sets the offset in x axis units from start of frame to the start of the data to
analyse. If omitted or zero, the data will be taken from the start of the frame.

Returns The function returns a handle for the new view, or a negative error code.
See also:SetXXX(), SetAverage(), ArrFFT(), Process(), Sweeps(),

View()

SetMemory()

SetPower()

SetTrend() Alphabetical command reference SetTrend()

5-154

This function creates an XY view to hold XY points calculated by processing. The
current view when SetTrend() is called, which can be a file or memory view, will be
the source view for the data to be processed. The SetTrend function creates an XY view
with a single channel, more channels can be added using SetTrendChan().

Func SetTrend(name$, xtyp%, xc%, xp|xp$, xb|xb$, xw, ytyp%, yc%,
yp|yp$, yb|yb$, yw {, pts%});

name$ The name of the channel. The channel name is shown in the XY key area.
xtyp% The type of measurement to take for the X part of each point. The possible

values are:
0 Value at a point
1 Value difference between points
2 Time at a point
3 Time difference between points
4 Frame number
5 Absolute time of frame
6 Frame state value
7 Fit coefficient
8 User entered value
9 Curve area between points
10 Mean between points
11 Slope between points
12 Area between points
13 Sum between points
14 Modulus between points
15 Maximum value between points
16 Minimum value between points
17 Amplitude value between points
18 RMS Amplitude value between points
19 Standard dev. value between points
20 Absolute maximum value between points
21 Peak found between points
22 Trough found between points

xc% A single waveform channel from the current view, this is the channel that will
be used to take the X measurement. Use a channel number (1 to n). For type 7
this is the coefficient index.

xp The time for single-point X measurements and difference measurements. For
measurements between points, this is the end time.

xp$ The time for single-point X measurements and difference measurements
expressed as a string. This allows constructs such as “Cursor(1) - 10”. To be
used.

xb The reference time for difference measurements, for measurements between
points, this is the start time.

xb$ The reference time for difference measurements expressed as a string.
xw The width used for some measurements, particularly value at point and value

difference.
ytyp% The type of measurement to take for the Y part of each point. The possible

values are the same as for xtyp%.
yc% A single waveform channel from the current view, this is the channel that will

be used to take the Y measurement. Use a channel number (1 to n). For type 7
this is the coefficient index.

yp The time for single-point Y measurements and difference measurements. For
measurements between points, this is the end time.

yp$ The time for single-point Y measurements and difference measurements
expressed as a string. This allows constructs such as “Cursor(1) - 10”. To be
used.

SetTrend()

SetTrendChan() The Signal script language ShowFunc()

5-155

yb The reference time for difference measurements, for measurements between
points, this is the start time.

xb$ The reference time for difference measurements expressed as a string.
yw The width used for some measurements, particularly value at point and value

difference.
pts% The number of points for this channel before they are recycled. If this is

omitted or set to zero, all points are simply added.
Returns The function returns a handle for the new view, or a negative error code.
See also:SetXXX(), FrameState(), FrameAbsStart(), ChanMeasure(),

SetTrendChan(), Process(), ProcessAll(), ProcessFrames()

This function adds another channel to an XY view created using SetTrend(). The
current view when SetTrendChan() is called must be the XY view to be modified. The
SetTrendChan function can be used to create XY views with up to 32 channels.

Func SetTrendChan(name$, xtyp%, xc%, xp|xp$, xb|xb$, xw, ytyp%,
yc%, yp|yp$, yb|yb$, yw {, pts%});

All of the parameters to SetTrendChan() are exactly the same as for SetTrend().
Returns The function returns zero or a negative error code.
See also:SetXXX(), FrameState(), FrameAbsStart(), ChanMeasure(),

SetTrend(), Process(), ProcessAll(), ProcessFrames()

This function gets or sets the show frame buffer flag from the current view.

Func ShowBuffer({yes%});

yes% If this is non-zero the frame buffer is shown otherwise the current frame data is
shown. If this is omitted, no change is made.

Returns The buffer show flag at the time of the call.
See also:BuffXXX(), Frame()

This function draws a function over a data channel.

Func ShowFunc(func%, chan% {, start, coefs[]});

func% The type of the function to show:
0 Don’t show a function
1 Single exponential
2 Double exponential
3 Single gaussian
4 Double gaussian

chan% The channel on which to show the function.
start The time to start drawing from.
coefs The coefficients to use in drawing the function.
Returns The function returns zero or a negative error code.
See also:FitExp(), FitGauss()

SetTrendChan()

ShowBuffer()

ShowFunc()

Sin() Alphabetical command reference Sound()

5-156

This function calculates the sine of an angle in radians, or converts an array of angles
into an array of sines.
Func Sin(x|x[]);

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2pi to 2pi.

Returns When the argument is an array, the function replaces the array data with the
sines of the data points and returns either a negative error code or 0 if all was
well.
When the argument is not an array the function returns the sine of the angle.

See also:ATan(), Cos(), Tan()

This has two variants. The first plays a tone of set pitch and duration in Windows NT and
a short “beep” in Windows 95. The second plays a .WAV file or system sound if your
system has multimedia support. The .WAV output was added at version 2.05.

Func Sound(freq%, dur{, midi%}); Tone output
Func Sound(name${, flags%); Multimedia sound output

freq% If midi% is 0 or omitted this holds the sound frequency in Hz. If midi% is non-
zero this is a MIDI value in the range 1-127. A MIDI value of 60 is middle C,
61 is C# and so on. Add or subtract 12 to change the note by one octave.

dur The sound duration, in seconds. The script stops during output.
midi% If this is present and non-zero, the frequency is interpreted as a MIDI value,

otherwise it is a frequency in Hz.
name$ Either the name of .wav file or the name of a system sound. You can either

supply the full path to the file or just a file name and the system will search for
the file in the current directory, the Windows directory, the Windows system
directory, directories listed in the PATH environmental variable and the list of
directories mapped in a network. If no file extension is given, .wav is assumed.
The file must be short enough to fit in available physical memory, so this
function is suitable for files of a few seconds duration only.
A blank name halts sound output. If name$ is any of the following (case is
important), a standard system sound plays:
"S*" Asterisk "SS" System start "SE" System exit
"S?" Query "SW" System welcome "SD" System default
"SH" Hand "S!" System exclamation

flags% This optional argument controls how the data is played. It is the sum of the
following values (given in hexadecimal and decimal):
0x0001 1 Play asynchronously (start output and return). Without this flag,

Signal does nothing (including sampling) until replay ends.
0x0002 2 Silence when sound not found. Normally Sound() plays the

system default sound if the nominated sound cannot be found.
0x0008 8 Loop sound until stopped by another Sound command. You

must also supply the asynchronous flag if you use loop mode.
0x0010 16 Don’t stop a playing sound. Normally, unless the “No wait” flag

is set, each command cancels any playing sound.
0x2000 8192 No wait if sound is already playing. Sound("",0x2010) can be

used to detect if a previous asynchronous sound has finished.
If you don’t supply this argument, the flag value is set to 0x2000.

Returns The tone output returns 0 or a negative error code. The multimedia output
returns non-zero if the function succeeded and zero if it failed.

Sin()

Sound()

Sqrt() The Signal script language System()

5-157

Forms the square root of a real number or an array of real numbers. Negative numbers
cause the script to halt with an error when x is not an array. With an array, negative
numbers are set to 0 and an error is returned.
Func Sqrt(x|x[]);

x A real number or a real array to replace with an array of square roots.
Returns With an array, this returns 0 if all was well, or a negative error code. With an

expression, it returns the square root of the expression.

This converts a number to a string.

Func Str$(x {,width% {,decs%}});

x A number to be converted.
width% Optional minimum field width. The number is right justified in this width.
decs% Optional number of decimal places.
Returns A string holding a representation of the number.
See also:Print$(), Print(), Val()

This function returns the number of sweeps accumulated into the frame data. If the
memory view is saved and reloaded as a file view, the sweeps value is preserved. What
each item or sweep is depends on the type of the analysis.

Func Sweeps();

Returns The number of sweeps accumulated to produce the frame data.
See also:SetAverage(), SetPower(), View()

This function returns the name and version of the operating system as a string.

Func System$()

Returns This returns a string describing the operating system. The strings defined so far
are: " Windows 95 x.yy ", “Windows 98 x.yy” and "Windows NT
x.yy". x is the major revision number and yy is the minor revision number.

See also:System()

This function returns the version of the operating system as a number.

Func System()

Returns This returns the revision level of the operating system times 100. Windows 98
returns 410. Windows 95 returns 400, Windows NT will return 350, 351 or 400.
NT 2000 returns 500.

See also:System$()

Sqrt()

Str$()

Sweeps()

System$()

System()

Tan() Alphabetical command reference Time$()

5-158

This calculates the tangent of an angle in radians or converts an array of angles into
tangents. Tangents of odd multiples of pi/2 are infinite, so cause computational overflow.
There are 2pi radians in 360°. The value of pi is 3.14159265359 (4.0*ATan(1)).

Func Tan(x|x[]);

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2pi to 2pi.

Returns For an array, it returns a negative error code (for overflow) or 0. When the
argument is not an array the function returns the tangent of the angle.

See also:ATan(), Cos(), Sin()

This function returns the current system time of day as a string. If no arguments are
supplied, the returned string shows hours, minutes and seconds in a format determined by
the operating system settings. To obtain the time as numbers, use the TimeDate()
function. To obtain relative time (and fractions of a second), use Seconds(). Warning:
this command does not exist in version 1.00.
Func Time$({tBase%, {show%, {amPm%, {sep$}}}});

tBase% Specifies the time base to show the time in. You can choose between 24 hour
clock or 12 hour clock mode. If this argument is omitted, a value of 0 is used.
0 Operating system settings
1 24 hour format
2 12 hour format

show% Specifies which time fields to show. Add the values of the required options
together and enter that number as the argument. If this argument is omitted or a
value of 0 is used, 7 (1+2+4) is used for 24 hour format and 15 (1+2+4+8) for
12 hour format.
1 Show hours
2 Show minutes
4 Show seconds
8 Remove leading zeros from hours

amPm% This sets the position of the “AM” or “PM” string in 12 hour format. This
parameter has no effect in 24 hour format. If this argument is omitted, a value of
zero is used. The actual string which gets printed (“AM” or “PM”) is specified by
the operating system.
0 Operating system settings
1 Show to the right of the time
2 Show to the left of the time
3 Hide the “AM” or “PM” string

sep$ This string appears between adjacent time fields. If sep$ = “:” then the time
will appear as 12:04:45. If an empty string is entered or sep$ is omitted, the
operating system settings are used.

See also:Date$(), Seconds(), TimeDate()

Tan()

Time$()

TimeDate() The Signal script language TimeUnits$()

5-159

This procedure returns the time and date in seconds, minutes, hours, days, months, and
years. It can also return the day of the week. You can either enter a separate variable for
each field to be returned, or alternatively, an integer array of the desired size. This
procedure returns numerical values. If you wish to have a formatted string containing
either the date or the time you should use Date$() and Time$(). If you want to
measure relative times, or times to a fraction of a second, see the Seconds() command.
To get the current sampling time, see MaxTime(). Warning: this command is not in
version 1.00.

Proc TimeDate(&s%, {&m%, {&h%, {&d%, {&mon%, {&y%, {&wDay%}}}}}});
Proc TimeDate(now%[])

s% If this is the only argument is passed, the number of seconds since midnight is
returned in this variable. If the min% argument is present, the number of seconds
since the beginning of the present minute is returned.

m% If this is the last argument, then the number of minutes since midnight is
returned in this variable. If hour% is present, then the number of full minutes
since the beginning of the present hour is returned

h% If present, the number of hours since Midnight is returned in this variable.
d% If present, the day of the month is returned as an integer in the range 1 to 31.
mon% If present, the month number is returned as an integer in the range 1 to 12.
y% If present. the year number is returned here. It will be an integer such as 1998

(the year 2000 is returned as 2000, not 0).
wDay% If present, the day of the week will be returned here. This will be an integer in

the range 0 (Monday) to 6 (Sunday).
now%[] If an array is passed as the first and only arguments, array elements are filled

with time and date data. Elements beyond the seventh are not changed. The
array can be less than seven elements long. Element 0 is set to the seconds, 1 to
the minutes, 2 to the hours, and so on.

See also:Date$(), MaxTime(), Seconds(), Time$()

This function returns the ratio between the current view X axis units and seconds, for
example in milliseconds mode it returns 1000. Use of this value allows script output to
use the preferred time units, as the script functions always see time values in seconds,
regardless of the time units preferred.
Func TimeRatio();

Returns The current time ratio.
See also: TimeUnits$()

This function returns the current view time units, for example in milliseconds mode it
returns “ms”. Use of this allows script output to show the preferred time units.
Func TimeUnits$();

Returns The current time units.
See also:TimeRatio()

TimeDate()

TimeRatio()

TimeUnits$()

Toolbar() Alphabetical command reference Toolbar()

5-160

The toolbar is at the top of the screen, below the menu. The bar has a message area and
can hold buttons that are used in the Interact() and Toolbar() commands.

Message area OK CancelFilt er Zero
File Ed it View Analysis Sam p le Scr ip t Wind ow
Help

It is possible to link user-defined functions and procedures to the toolbar buttons. This is
done through a set of functions that define buttons and optionally link the buttons to the
toolbar. You can define up to 17 buttons in your toolbar, but you will probably be limited
by the available space to a maximum of around 10. Buttons are numbered from 1 to 17.
There is an invisible button, numbered 0, that is used to set a function that is called when
the toolbar is waiting for a button to be pressed.

When you start a script, the toolbar is invisible and contains no buttons. When a script
stops running, the toolbar becomes invisible (if it was visible).

There is an example script Toolmake.s2s which automates the writing of toolbar
commands to generate your desired toolbar.

See also:Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarSet(), ToolbarText(), ToolbarVisible()

This function displays the toolbar and waits for the user to click on a button. If button 0
has been defined with an associated function, that function is called repeatedly while no
button is pressed. If no buttons are defined or enabled, or if all buttons become undefined
or disabled, the toolbar is in an illegal state and an error is returned. If the toolbar was not
visible, it becomes visible when this command is given.

If the user presses the “escape” key (Esc) with the toolbar active, the script will stop
unless an “escape button” has been set by ToolbarSet() in which case the action
associated with that button is performed.

Func Toolbar(text$, allow% {,help%|help$});

text$ A message to display in the message area of the toolbar. The area available for
messages competes with the area for buttons. If there are too many buttons, the
message may not be visible.

allow% A code that defines what the user can do (apart from pressing toolbar buttons).
The code is the sum of possible activities:
1 User may swap to other applications
2 User may change the current window
4 User may move and resize windows
8 User may use the File menu
16 User may use the Edit menu
32 User may use the View menu
64 User may use the Analysis menu
128 User may use the Cursor menu and add cursors
256 User may use the Window menu
512 User may use the Sample menu
1024 User may not double click y axis
2048 User may not double click the x axis or scroll it
4096 User may not change channel of horizontal cursors
8192 User may not change to another frame

The toolbar

Toolbar building

Toolbar()

ToolbarClear() The Signal script language ToolbarEnable()

5-161

A value of 0 would restrict the user to the current view in a fixed window and,
in a data view, the user would be able to scroll data and switch frames. A value
of 9216 is the same as 0 but without being able to change y axes or frame.

help This is either a numeric code or a string that defines the help to be presented if
the user asks for it while using the toolbar. A code of 0 means use standard help.

Returns The function returns the number of the button that was pressed to leave the
toolbar, or a negative code returned by an associated function.

The buttons are displayed in order of their item number. Undefined items leave a gap
between the buttons. This effect can be used to group related buttons together.
See also:Interact(), ToolbarClear(), ToolbarEnable(), ToolbarSet(),

ToolbarText(), ToolbarVisible()

This function is used to remove all, or some of the buttons from the toolbar. If you delete
all the buttons the Toolbar() function will insert a button labelled OK so you can get
out of the Toolbar() function. Use ToolbarText("") to clear the toolbar message.

Proc ToolbarClear({item%});

item% If present, this is the number of the button in the toolbar to clear. Buttons are
numbered starting at 0. If omitted, all buttons in the toolbar are cleared.

See also:Interact(), Toolbar(), ToolbarEnable(), ToolbarSet(),
ToolbarText(), ToolbarVisible()

This function enables and disables toolbar buttons, and reports on the state of a button.
Enabling an undefined button has no effect. If you disable all the buttons and then use
the Toolbar() function or if you disable all the buttons in a function linked to the
toolbar, and there is no idle function set, a single OK button is displayed.
Func ToolbarEnable(item% {,state%});

item% The number of the button or -1 for all buttons. You must enable and disable
button 0 with ToolbarSet() and ToolbarClear().

state% If present this sets the button state. A value of 0 disables a button, a value of 1
enables a button.

Returns The function returns the state of the button prior to the call as 0 for disabled and
1 for enabled. If all buttons were selected the function returns 0. If an undefined
button, or button 0 is selected, the function returns -1.

See also:Interact(), Toolbar(), ToolbarClear(), ToolbarSet(),
ToolbarText(), ToolbarVisible()

ToolbarClear()

ToolbarEnable()

ToolbarSet() Alphabetical command reference ToolbarSet()

5-162

This function adds a button to the toolbar and optionally associates a function with it.
When a button is added, it is added in the enabled state.
Proc ToolbarSet(item%, label$ {,func ff%()});

item% The button number to add or replace. Buttons are numbered from 1-17. You can
use an item number of 0 to set or clear a function that is called repeatedly while
the toolbar waits for a button press. If you leave out a button this creates a gap
between the adjacent buttons.
You can set an “escape” key as described in Toolbar(), by negating item%.
For example ToolbarSet(-2,"Quit"); sets button 2 as the escape key.

label$ The label for the button. Labels compete for space with each other, so it is a
good idea to keep the labels fairly short. The label is ignored for button 0.
You can link a key to a button by placing & before a character in the label, or by
adding a vertical bar and a key code in hexadecimal (e.g. 0x30), octal (e.g. 060)
or decimal (e.g. 48) to the end of the label. Characters set by & are case
insensitive. For example "a&Maze" generates the label aMaze and responds to
m or M; the label "F1:Go|0x70" generates the label F1:Go and responds to the
F1 key. Useful key codes include (nk = numeric keypad):
0x08 Backspace 0x09 Tab 0x0d Enter 0x1b Escape
0x20 Spacebar 0x21 Page up 0x22 Page down 0x23 End
0x24 Home 0x25 Left arrow 0x26 Up arrow 0x27 Right arrow
0x28 Down arrow 0x2e Del 0x30-0x39 0-9 0x41-0x5a A-Z
0x60-0x69 nk 0-9 0x6a nk * 0x6b nk + 0x6c nk separator
0x6d nk - 0x62 nk . 0x6f nk / 0x70-0x87 F1-F24
Use of other keys codes or use of & before characters other than a-z, A-Z or 0-9
may cause unpredictable and undesirable effects.
Beware: When the toolbar is active, it owns all keys linked to it. If A is linked,
you cannot type a or A into a text window with the toolbar active.

ff%() This is the name of a function. This function should have no arguments and the
name with no brackets is given, for example ToolbarSet(1,"Go",DoIt%);
where func DoIt%() is defined somewhere in the script. When the
Toolbar() function is used and the user clicks on the button, the linked
function is run (or if the item% 0 function is set, the function runs while no
button is pressed). The function return value controls the action of Toolbar()
after a button is pressed.
If it returns 0, the Toolbar() function returns to the caller, passing back the
button number. If it returns a negative number, the Toolbar() call returns the
negative number. If it returns a number greater than 0, the Toolbar() function
does not return, but waits for the next button. An item 0 function must return a
value greater than 0, otherwise Toolbar() will return immediately.
If this argument is omitted, there is no function linked to the button. When the
user clicks on the button, the Toolbar() function returns the button number.

See also:Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarText(), ToolbarVisible()

ToolbarSet()

ToolbarText() The Signal script language UCase$()

5-163

This function replaces any message in the toolbar, and makes the toolbar visible if it is
invisible. This function can be used to give a progress report on the state of a script that
takes a while to run.
Proc ToolbarText(msg$);

msg$ A string to be displayed in the message area of the toolbar.
See also:Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),

ToolbarSet(), ToolbarVisible()

This function reports on the visibility of the toolbar, and can also show and hide it. You
cannot hide the toolbar if the Toolbar() function is in use.
Func ToolbarVisible({show%});

show% If present and non-zero, the toolbar is made visible. If zero and the Toolbar()
function is not active, the toolbar is made invisible.

Returns The state of the toolbar at the time of the call. The state is returned as 2 if the
toolbar is active, 1 if it is visible but inactive and 0 if it is invisible.

See also:Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarSet(), ToolbarText()

Removes the fractional part of a real number or truncates an array. To truncate a real
number and return an integer value, just assign the real to the integer. To copy a real
array to an integer array, use ArrConst().
Func Trunc(x|x[]);

x A real number or a real array.
Returns With an array this returns 0 or a negative error code (most unlikely). With an

expression as argument it returns the expression with the fractional part
removed. Trunc(4.7) is 4.0, Trunc(-4.7) is -4.0.

See also:Frac(), Round(), ArrConst()

This function converts a string into upper case. The upper-case operation may be system
dependent. Some systems may provide localised uppercasing, others may only provide
the minimum translation of the ASCII characters a-z to A-Z.
Func UCase$(text$);

text$ The string to convert.
Returns An upper cased version of the original string.
See also:LCase$()

ToolbarText()

ToolbarVisible()

Trunc()

UCase$()

Val() Alphabetical command reference View(v,c).[]

5-164

This converts a string to a number. The converter allows the same number format as the
script compiler and leading white space is ignored.

Func Val(text${, &nCh%});

text$ The string to convert to a number. The expected format is:
 {white space}{-}{digits}{.digits}{e|E{+|-}digits}

nCh% If present, it is set to the number of characters used to construct the number.
Returns It returns the extracted number, or zero if no number was present.
See also:Str$(), ReadStr()

The View() function sets the current view and returns the last view handle, or a negative
error. A view handle is a positive integer > 0. Changing the current view does not change
the focus or bring the view to the front, use FrontView() to do that.

Func View({vh%});

vh% An integer argument being:
>0 A valid view handle that is to be made the current view. An invalid view

handle will stop the script with a fatal error.
0 (or omitted) no change of the current view is required
<0 If the argument is -n, this selects the nth duplicate of the current data view.

This is equivalent to Dup(n). Use ViewSource() to get the data view
from which a memory view is derived.

Returns 0 if there are no views at all, -1 if the duplicate requested does not exist,
otherwise it returns the view handle of the view that was current.

See also:FrontView(), ViewFind(), ViewKind(), ViewSource(), Window(),
WindowTitle$(), View().x(), View(v,c).[]

The View(vh%,c).[] construction accesses view data for channel c. The [] refers to
the whole array unless it encloses an expression to define a range of array elements. For
waveform channels, the array holds the waveform values as expected. Marker channels
appear as an array holding the marker times, but this array is read-only and a script error
will be caused by attempting to assign to it. Use the MarkTime() function to change the
times of markers.

View(vh%, c%).[{aExp}]

vh% A view handle of an existing view, 0 for the current view, or -n for the nth

duplicate view associated with the current view.

c% A channel number from the view.

aExp An optional array indexing expression. If omitted, the whole array is accessed.

Here are three examples, to work on data from bin b% in channel c% of view v%:
val:=View(v%,c%).[b%] 'get one data value
sum:=ArrSum(View(v%,c%).[b%:100])'sum 100 data values
ArrDiff(View(v%,c%).[]) 'replace data by differences

See also:View(), View().x(), ViewSource(), ArrXXX(), MarkTime()

Val()

View()

View(v,c).[]

View().x() The Signal script language ViewKind()

5-165

The View().x() construction overrides the current view for the evaluation of the
function that follows the dot. It is an error if the selected view does not exist, and the
script stops. Don’t use this contruct for functions which close the view.

View(vh%).x()

vh% A view handle of an existing view, 0 for the current view (a waste of time), or -
n for the nth duplicate view associated with the current view.

x() A function or procedure.

For example, View(vh%).Draw() draws the view indicated by vh%. The equivalent
code to View(vh%).x() is:
var temp%;
temp% := View(vh%);
x();
View(temp%);

See also:View(), View(v,c).[], ViewSource()

This function searches for a window with a given title and returns its view handle.

Func ViewFind(title$);

title$ A string holding the view title to search for. Note that, in Window 95 or 98,
system settings in Windows Explorer can cause the file extension to be removed
from the view title, so you may have to search both with and without the “.cfs”.

Returns The view handle of a view with a title that matches the string, or 0 if no view
matches the title.

See also:FileOpen(), Window(), WindowTitle$(), View()

This function returns the type of a view or of the current view. Types 5-7 are reserved.

Func ViewKind({vh%});

vh% The handle of the view for which the type is required. If omitted the function
returns information about the current view.

Returns The type of the view, view types are:
0 File view A data view showing one frame at a time from a CFS data file.

Access to any frame in the file is possible for analysis etc.
1 Text view A view holding a text file for editing.
2 Output sequence Not available in Version 2.x.
3 Script view A view holding a script file.
4 Memory view A data view created by a SetXXX() command, similar to a

file view but wholly held in memory.
8 External text file An invisible view for use with routines Read() and Print().
9 External binary file An invisible view for use by BRead(), BWrite() etc.
10 Application window The Signal program window.
11 Other types Other views with handles, such as the Status bar, and Toolbar,

which can be made visible or invisible.
12 XY view An XY view showing sets of XY data points.
-1 Unknown type These include the cursor windows.
-2 Invalid handle The return value if the vh% parameter value is invalid.
See also: App(), ChanKind(), FileOpen(), View(), ViewList()

View().x()

ViewFind()

ViewKind()

ViewList() Alphabetical command reference ViewUseColour()

5-166

This function fills an integer array with a list of view handles. It never returns the view
handle of the running script, use the App() command to get this.
Func ViewList({list%[] {,types%}});

list% An integer array that is returned holding view handles. The first element of the
array, list%[0], is set to the number of handles returned, and the remaining
elements in the array are view handles. If the array is too small to hold the full
number, the number that will fit are returned.

types% The types of view to include. This is a code that can be used to filter the view
handles. The filter is formed by adding the types from the list below. If this is
omitted or if no types are specified for inclusion, all view handles are returned.
1 File views 8 Script views 512 External binary 4096 XY views
2 Text views 16 Memory views 1024 Application view
4 Sequencer 256 External text 2048 Other view types

You can also exclude views otherwise included by adding:
8192 Exclude views not directly related to the current view

16384 Exclude visible windows
32768 Exclude hidden windows
65536 Exclude duplicates

Returns The total number of windows that satisfy the types%. This can be used to find a
suitable array size.

See also:App(), SampleHandle(), ViewKind()

This function returns the handle of the source view for a memory view.
Func ViewSource();

Returns The handle of the data view from which this memory view was derived, and
from which it obtains its data. Note that memory views created using
SetCopy() or SetMemory() do not have a data view attached and return 0.

See also:View(), SetXXX(), SetAverage(), SetCopy(), SetMemory(),
SetPower()

This returns the current data or XY view to a standard state by making all channels and
axes visible in their standard drawing mode, axis range and colour. In an XY view the
key is hidden and the axes are optimised. For other window types it is undefined. If you
use this without a current window, nothing happens.
Proc ViewStandard();

See also:ChanOrder(), ChanWeight(), DrawMode(), XYDrawMode()

This function can be used to force the display to use black and white only, or to use the
colours set in the colour dialog or by the Colour() command.
Func ViewUseColour({use%});

use% If present, a value of 0 forces Signal to display all windows in black and white.
Any other value allows the use of colour. If omitted, no change is made.

Returns The current state as 1 if colour is in use, 0 if black and white is used.

See also:Colour()

ViewList()

ViewSource()

ViewStandard()

ViewUseColour()

Window() The Signal script language WindowGetPos()

5-167

This sets the window position (and size) of the current view. Positions are given as
percentages of the available area, measured from the top left hand corner. When this is
used to position the Signal application window the available area is the whole screen,
otherwise the available area is Signal application area.
Proc Window(xLow, yLow{,xHigh{,yHigh}})

xLow Position of the left hand edge of the window, as a percentage of the area.
yLow Position of the top edge of the window, as a percentage of the area.
xHigh If present, the right hand edge. If omitted the previous width is maintained. If

the window is made too small, the minimum allowed size is used.
yHigh If present, the bottom edge position. If omitted the previous height is

maintained. If the window is made too small, the minimum allowed size is used.
In this example the Signal window will be sized to the maximum possible screen area,
before positioning the data window within the Signal area.
var vdata%;
view(App()).Window(0,0,100,100); 'set largest application size
vdata%:=ViewFind("mydata.cfs"); 'view handle for data
FrontView(vdata%); 'focus on the data window
Window(15,15,85,85); 'data window in middle with 15% around

See also:App(), FrontView(), View(), ViewFind()
WindowDuplicate(), WindowGetPos(), WindowSize(),
WindowTitle$(), WindowVisible()

This duplicates the current data view, creating a new window that has all the settings of
the current view. It does not duplicate channels; these are shared with the existing
window. The new window becomes the current view and is created invisibly.
Func WindowDuplicate()

Returns This command returns the view handle of the new window or a negative error
code or 0 if no free duplicates (there is a limit of 9 duplicates per data view).

See also:Dup(), Window(), WindowGetPos(), WindowSize(),
WindowTitle$(), WindowVisible(), View()

This gets the position of the current view. Positions are given as percentages of the
available area, measured from the top left hand corner. Positions for the Signal
application window are measured with respect to the whole screen, otherwise the
positions are measured with respect to the Signal application area.
Proc WindowGetPos(&xLow, &yLow ,&xHigh ,&yHigh)

xLow A real variable that is set to the position of the left hand edge of the window.
yLow A real variable that is set to the position of the top edge of the window.
xHigh A real variable that is set to the position of the right hand edge of the window.
yHigh A real variable that is set to the position of the bottom edge of the window.
See also:App(), Window(), WindowDuplicate(),WindowSize(),

WindowTitle$(), WindowVisible()

Window()

WindowDuplicate()

WindowGetPos()

WindowSize() Alphabetical command reference WindowVisible()

5-168

This procedure is used to resize the current window without changing the position of the
top left-hand corner. Setting a window dimension less than zero leaves the dimension
unchanged. Setting a dimension smaller than the minimum allowed sets the minimum
value. Setting a size greater than the maximum allowed sets the maximum size. There are
no errors from this function. When this is used to size Signal application window the
available area is the whole screen, otherwise the available area is Signal application area.
Proc WindowSize(width, height);

width The width of the window as a percentage of the available area.
height The height of the window as a percentage of the available area.
See also:App(), Window(), WindowDuplicate(), WindowGetPos(),

WindowTitle$(), WindowVisible()

This function gets and sets the title of the current window. There may be windows that
are resistant to having their title changed. For these, the routine has no effect. Most
windows can return a title. If you change a title, dependent window titles change, for
example, cursor windows belonging to data views track the title of the data view.
Func WindowTitle$({new$});

new$ If present, this sets the new window title. Window titles must follow any system
rules for length or content. Illegal titles (for example titles containing control
characters) are mangled or ignored at the discretion of the system.

Returns The window title as it was prior to this call.
See also:Window(), WindowDuplicate(), WindowGetPos(), WindowSize(),

WindowVisible()

This function is used to get and set the visible state of the current view. This function can
also be used on the application window, however the effect will vary with the system and
on some, there may be no effect at all.

Func WindowVisible({code%});

code% If present, this sets the window state. The possible states are:
0 Hidden, the window becomes invisible. A hidden window can be sent data,

sized and so on, the result is just not visible.
1 Normal, the window assumes its last normal size and position and is made

visible if it was invisible or iconised.
2 Iconised. An iconised window can be sent data, sized and so on, the result is

not visible.
3 Maximised. The window is made as large as possible.

Returns The window state prior to this call.
See also:FrontView(), Window(), WindowDuplicate(), WindowGetPos(),

WindowSize(), WindowTitle$()

WindowSize()

WindowTitle$()

WindowVisible()

XAxis() The Signal script language XAxisStyle()

5-169

This function can be used to turn on and off the x axis of the current view, or to find the
state of the x axis:

Func XAxis({on%});

on% Optional, set the axis state. If omitted, no change is made. Possible values are:
0 Hide the axis
1 Show the axis with units in seconds
2 Show with units of hh:mm:ss relative to start of file (not implemented yet)
3 Show with time of day (not implemented yet)

Returns The axis state at the time of the call (0 to 3, as above) or a negative error code. It
is an error to use this function on a view that has no concept of an x axis.

Changes made by this function do not cause a redraw immediately. The affected view is
drawn at the next opportunity.
See also:XHigh(), XLow(), XRange(), XTitle$(), XUnits$()

This function controls what is drawn in an x axis.
Func XAxisMode({mode%});

mode% Optional argument that controls how the axis is displayed. If omitted, no change
is made. Possible values are the sum of the following. Values not included in the
sum will be restored to their default states:

1 Hide all the title information.
2 Hide all the unit information.
4 Hide small ticks on the x axis. Small ticks are hidden if big ticks are hidden.
8 Hide numbers on the x axis. Number are hidden if big ticks are hidden.
16 Hide the big ticks and the horizontal line that joins them.
32 Scale bar axis. If selected add 4 to remove the end caps.

Returns The x axis mode value at the time of the call or a negative error code.
See also:XAxis(), XHigh(), XLow(), XRange(), YAxisMode()

This function controls the major and minor tick spacing for all views that have an x axis.
If you set values that would cause illegible or unintelligible axes, they are stored but not
used unless the axis range or scaling changes to make the values useful.

Func XAxisStyle({style%{, nTick%{, major}}});

style% A value of –1 returns the number of minor divisions set or 0 for automatic. A
value of –2 returns the major tick spacing or 0 for automatic spacing.

nTick% The number of minor tick subdivisions or 0 for automatic spacing. Omit
nTick% or set it to –1 for no change.

major If present, values greater than 0 set the major tick spacing. Values less than or
equal to 0 select automatic major tick spacing.

Returns See the description of style% for return values.

See also:XAxis(), XAxisMode(), XHigh(), XLow(), XRange(), YAxisStyle()

XAxis()

XAxisMode()

XAxisStyle()

XHigh() Alphabetical command reference XTitle$()

5-170

This returns the value of the right end of the x axis of the current data or XY view. To
find the frame limit use Maxtime().

Func XHigh()

Returns The x axis upper limit in x axis units. It is a fatal error to use this function in an
inappropriate view.

See also:Draw(), XRange(), BinToX(), XToBin(), XLow(), Maxtime()

This returns the value that corresponds to the left end of the x axis of the current data or
XY view. To find the frame limit use Mintime().

Func XLow()

Returns The x axis lower limit in x axis units. It is a fatal error to use this function in an
inappropriate view.

See also:Draw(), XRange(), BinToX(), XToBin(), XHigh(), Mintime()

This function sets the start and end of the x axis in a data or XY view in x axis units.
Unlike Draw(), it does not update the view immediately, updates must wait for the next
Draw(), DrawAll() or some interactive activity.

Proc XRange(low {,high});

low The left hand edge of the view in x axis units.
high The right hand edge of the view. If omitted, the view stays the same width.
Values are limited to the axis range. Without high, it preserves the width, adjusting low
if required. If the resulting width is less than the minimum allowed, no change is made.

See also:Draw(), XLow(), XHigh()

This function gets and optionally sets the visibility of the x axis scroller.

Func XScroller({show%});

show% If present, 0 hides the scroll bar and buttons, non-zero shows it.
Returns 0 if the scroll bar was hidden, 1 if it was visible.

This function gets the title of the x axis. In a memory or XY view, or in a sampling
document view, you can also set the title. The window will update with a new title at the
next opportunity, but, in Version 2.00, the x axis title is not written to CFS data files.

Func XTitle$({new$});

new$ If present this sets the new x axis title in a sampling document or memory view.
Returns The x axis title at the time of the call.
See also:ChanTitle$(), XUnits$()

XHigh()

XLow()

XRange()

XScroller()

XTitle$()

XToBin() The Signal script language XYColour()

5-171

This converts between x axis units and bin numbers in a data view.

Func XToBin(chan%, x);

chan% A channel number (1 to n)
x An x axis value. If it exceeds the x axis range it is limited to the nearer end.
Returns In a data view it returns the bin position that corresponds to x. In general, this

will not be an integral number of bins, however, when used to access a bin, it
will be truncated to an integer, and will refer to the bin that contains the x value.

See also:BinToX(), BinSize(), BinZero()

This function gets the units of the x axis in the current view. In a memory, XY, or
sampling document view, you can also set the units. The window will update with the
new units at the next opportunity and they will become part of the new file if it is saved.

Func XUnits$({new$});

new$ If present this sets the new x axis units in a new file or memory view.
Returns The x axis units at the time of the call.
See also:ChanUnits$(), XTitle$()

This adds one or more data points to a channel in an XY view. If the axes are set to
automatic expanding mode by XYDrawMode(), they will change when you add a new
data point that is out of the current axis range. If the channel is set to a fixed size (see
XYSize()), adding new points causes older points to be deleted once the channel is full.
Func XYAddData(chan%, x|x[]|x%[], y|y[]|y%[]);

chan% A channel number in the current XY view.
x The x co-ordinate(s) of the added data point(s). Both x and y must be either

single variables or arrays. If they are arrays, the number of data points added is
equal to the size of the smaller array.

y The y co-ordinate(s) of the added data point(s).
Returns The number of data points which have been added successfully.

See also:XYColour(), XYCount(), XYDelete(), XYDrawMode(),
XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize(), XYSort()

This gets or sets the colour of a channel in the current XY view. The default channel
colour is the same as for an ADC channel in a time window.
Func XYColour(chan% {,col%});

chan% A channel number in the current XY view.
col% The index of the colour in the colour palette. There are 40 colours in the palette,

their indexes are numbered from 0 to 39. If omitted, there is no change of colour
for the channel.

Returns The index of the colour in the colour palette or a negative error code.
See also:Colour(), XYAddData(), XYCount(), XYDelete(), XYDrawMode(),

XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize(), XYSort()

XToBin()

XUnits$()

XYAddData()

XYColour()

XYCount() Alphabetical command reference XYDrawMode()

5-172

This gets the number of data points in a channel in the current XY view. To find the
maximum number of data points, see the XYSize() command.
Func XYCount(chan%)

chan% A channel number in the current XY view.
Returns The number of data points in the channel or a negative error code.
See also:XYAddData(), XYColour(), XYCount(), XYDelete(),

XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize(),
XYSort()

This command deletes a range of data points or all data points from one channel of the
current XY view. Use ChanDelete() to delete the entire channel.
Func XYDelete(chan% {,first% {,last%}});

chan% A channel number in the current XY view.
first% The zero-based index of the first data point to delete. If omitted, all data points

are deleted.
last% The zero-based index of the last data point to delete. If omitted, data points from

first% to the last point in the channel are deleted. If last% is less than
first% no data points are deleted.

Returns The function returns the number of deleted data points.

The index number of a data point depends on the current sorting method of the channel
set by XYSort(). For different sorting methods, a data point may have different index
numbers. The data points in a channel have continuous index numbers. When a point has
been deleted the remaining points re-index themselves automatically.

See also:ChanDelete(), XYAddData(), XYColour(), XYCount(),
XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize()

This gets and sets the drawing and automatic axis expansion modes of a channel in the
current XY view. It is an error to use this command with any other view type.
Func XYDrawMode(chan%, which% {,new%});

chan% A channel number in the current XY view. This is ignored when which% = 5,
as all the channels in a XY view share the same axes.

which% Which drawing parameter to get or set in the range 1 to 5. When setting
parameters, the new value is held in the new% argument. The values are:
1 Get or set the data point draw mode. The drawing modes are:

0 dots (default) 1 boxes 2 plus signs +
3 crosses x 4 circles (NT only) 5 triangles
6 diamonds 7 horizontal line 8 vertical line

2 Get or set the size of the data points. The sizes allowed are 0 to 100 (0 is
invisible). The default size is 5.

3 Get or set the line style. If the line thickness is greater than 1 all lines are
drawn as style 0. Styles are:
0 solid (default) 1 dotted 2 dashed

4 Get or set the line thickness. Thickness values range from 0 (invisible) to
10. The default is 1.

XYCount()

XYDelete()

XYDrawMode()

XYGetData() The Signal script language XYGetData()

5-173

5 Get or set automatic axis range mode. This applies to the entire view, so
the chan% argument is ignored. Values are:
0 The axes do not change automatically when new data points are added.
1 When new data points are added that lie outside the current x or y axis

range, the data and axes screen area update at the next opportunity to
display all the data.

new% New channel draw or axis expanding mode. If omitted, no change is made.
Returns The value of relevant channel draw mode or axis expanding mode at time of call

if succeeds or a negative error code if fails.
See also:XYAddData(), XYColour(), XYCount(), XYDelete(), XYGetData(),

XYInCircle(), XYInRect(), XYJoin(), XYKey(), XYRange(),
XYSetChan(), XYSize(), XYSort()

This gets data points between two indices from a channel in the current XY view. It is an
error to use this command with any other view type.
Func XYGetData(chan%, &x|x[], &y|y[] {,first% {,last%}});

chan% A channel number in the current XY view.
x|x[] The returned x co-ordinate(s) of data point(s). When arrays are used, either both

x and y must be arrays or neither can be. The smaller of the two arrays sets the
maximum number of data points that can be returned.

y|y[] The returned y co-ordinate(s) of data point(s)
first% The zero-based index of the first data point to return. If omitted, the first data

point is index 0.
last% The zero-based index of the last data point returned. last% is only meaningful

when x and y are array names. If omitted or if last% is greater than or equal to
the number of data points, the final data point is the last one in the channel. If
last% is less than first%, no data points are returned.

Returns The number of data points copied. This can be less than the number of data
points between the requested indices. For example, if the size of x or y array is
not big enough to hold all the data points from first% to last%, the number of
data points returned is equal to the size of array. If x and y are simple variables,
1 is returned if the data point with index number first% exists.

The index number of a data point depends on the current sorting method (see
XYSort()).

See also:XYAddData(), XYColour(), XYCount(), XYDelete(),
XYDrawMode(), XYInCircle(), XYInRect(), XYJoin(), XYRange(),
XYKey(), XYSetChan(), XYSize(), XYSort()

XYGetData()

XYInCircle() Alphabetical command reference XYJoin()

5-174

This gets the number of data points inside a circle defined by xc, yc, and r in the
current XY view. A general point (x,y) is considered to be inside the circle if:

(x-xc)^2 + (y-yc)^2 <= r^2

Points lying on the circumference are considered inside, but due to floating point
rounding effects they may be indeterminate.

Func XYInCircle(chan%, xc, yc, r);

chan% A channel number in the current XY view.
xc,yc These are the x and y co-ordinates of the centre of the circle.
r This is the radius of the circle. r must be >= 0.
Returns the number of data points inside the circle or a negative error code.

See also:XYAddData(), XYColour(), XYCount(), XYDrawMode(),
XYGetData(), XYInRect(), XYJoin(), XYRange(), XYKey(),
XYSetChan(), XYSize(), XYSort()

This function returns the number of data points in a channel of the current XY view that
lie inside a rectangle. Data points on the boundaries of the rectangle are considered to be
inside, but due to floating point rounding they may be indeterminate.
Func XYInRect(chan%, xl, yl, xh, yh);

chan% A channel number in the current XY view.
xl,xh The x co-ordinates of the left and right hand edges of the rectangle. xh must be

greater than or equal to xl.
yl,yh The y co-ordinates of the bottom and top edges of the rectangle. yh must be

greater than or equal to yl.
Returns The number of data points inside the rectangle or a negative error code.
See also:XYInCircle(), XYDelete(), XYDrawMode(), XYGetData(),

XYJoin(), XYRange(), XYSetChan(), XYSize(), XYSort()

This function gets or sets the data point joining method of a channel in the current XY
view. Data points can be separated, joined by lines, or joined by lines with the last point
connected to the first point (making a closed loop).
Func XYJoin(chan% {,join%});

chan% A channel number in the current XY view.
join% If present, this is the new joining method of the channel. If this is omitted, no

change is made. The data point joining methods are:
0 Not joined by lines (this is the default joining method)
1 Joined by lines. The line styles are set by XYDrawMode().
2 Joined by lines and the last data point is connected to the first data point to

form a closed loop.
Returns the joining method at time of call if succeeds or a negative error code if fails.
See also:XYAddData(), XYColour(), XYDrawMode(), XYRange(), XYKey(),

XYSetChan(), XYSize(), XYSort()

XYInCircle()

XYInRect()

XYJoin()

XYKey() The Signal script language XYSetChan()

5-175

This gets and sets the display mode and positions of the channel key for the current view,
which must be an XY view. The key displays channel titles (set by ChanTitle$()) and
drawing symbols for all visible channels. It can be positioned anywhere within the data
area. The key can be framed or unframed, transparent or opaque and visible or invisible.

Func XYKey(which%, {new});

which% This determines which property of the key we are interested in. Properties are :
1 Visibility of the key. 0 if the key is hidden (default), 1 if it is visible.
2 Background state. 0 for opaque (default), 1 for transparent.
3 Draw border. 0 for no border, 1 to draw a border (default)
4 Key left hand edge x position. It is measured from the left-hand edge of the x

axis and is a percentage of the drawn x axis width in the range 0 to 100. The
default value is 0.

5 Key top edge y position. It is measured from the top of the XY view as a
percentage of the drawn y axis height in the range 0 to 100. The default is 0.

new If present it changes the selected property. If it is omitted, no change is made.
Returns The value selected by which% at the time of call, or a negative error code.
See also:ChanTitle$(), XYAddData(), XYColour(), XYDrawMode(),

XYJoin(), XYRange(), XYSetChan(), XYSize(), XYSort()

This function gets the range of data values of a channel or channels in the current XY
view. This is equivalent to the smallest rectangle that encloses the points.

Func XYRange(chan%, &xLow, &yLow, &xHigh, &yHigh);

chan% A channel number in the current XY view or -1 for all channels or -2 for all
visible channels.

xLow A variable returned with the smallest x value found in the channel(s).
yLow A variable returned with the smallest y value found in the channel(s).
xHigh A variable returned with the biggest x value found in the channel(s).
yHigh A variable returned with the biggest y value found in the channel(s).
Returns 0 if there are no data points, or the channel does not exist, 1 if values found.
See also:XYAddData(), XYColour(), XYCount(), XYDelete(),

XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYKey(), XYSetChan(), XYSize(), XYSort()

This function creates a new channel or modifies an existing channel in the current XY
view. It is an error to use this function if the current view is not an XY view. This
function can be used as a short-cut method for modifying all properties of an existing
channel without calling the XYSize(), XYSort(), XYJoin() and XYColour()
commands individually.

Func XYSetChan(chan% {,size% {,sort% {,join% {,col%}}}});

chan% A channel number in the current XY view. If chan% is 0, a new channel is
created. Each XY view can have maximum of 256 channels, numbered from 1
upwards. The first channel is created automatically by Signal when you open a
new XY view with FileNew(). If chan% is not 0, it must be the channel
number of an existing channel which will be modified.

XYKey()

XYRange()

XYSetChan()

XYSetChan() Alphabetical command reference XYSetChan()

5-176

size% This sets the number of data points in the channel and how and if the number of
data points can extend. The only limits on the number of data points is the
available memory and the time taken to draw the view.
 A value of zero (the default) sets no limit on the number of points and the size
of the channel expands as required to hold data added to it.
If a negative size is given, for example -n, this limits the number of points in
the channel to n. If more than n points are added, the oldest points added are
deleted to make space for the newer points. If you set a negative size for an
existing channel that is smaller than the points in the channel, points are deleted.
If a positive value is set, for example n, this allocates storage space for n data
points, but the storage will grow as required to accommodate further points.
Using a positive number rather than 0 can save time if you know in advance the
likely number of data points as it costs time to grow the data storage.

sort% This sets the sorting method of data points. The sorting method is only
important if the points are joined. If they are not joined, it is much more
efficient to leave them unsorted as sorting a large list of points takes time. The
sort methods are:
0 Unsorted (default). Data is drawn and sorted in the order that it was added.

The most recently added point has the highest sort index.
1 Sorted by x value. The index runs from points with the most negative x

value to points with the most positive x value.
2 Sorted by y value. The index runs from points with the most negative y value

to points with the most positive y value.
If this is omitted, the default value 0 is used for a new channel. For an existing
channel, there is no change in sorting method.

join% If present, this is the new joining method of the channel. If this is omitted, no
change is made to an existing channel, a new channel is given mode 0. The data
point joining methods are:
0 Not joined by lines (this is the default joining method)
1 Joined by lines. The line styles are set by XYDrawMode().
2 Joined by lines and the last data point is connected to the first data point to

form a closed loop.
col% If present, this sets the index of the colour in the colour palette to use for this

channel. There are 40 colours in the palette, their index numbered 0 to 39. If
omitted, the colour of an existing channel is not changed. The default colour for
a new channel is the colour that an user has chosen for an ADC channel in a
time window.

Returns The number of channels (including any created channel) or a negative error
code. When you create a new channel, the value returned is the number of the
new channel.

See also:XYAddData(), XYColour(), XYCount(), XYDelete(),
XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSize(), XYSort()

XYSize() The Signal script language XYSort()

5-177

This function gets and sets the limits on the number of data points of a channel in the
current XY view. Channels can be set to have a fixed size, or to expand as more data is
added. The only limit on the number of data points is the available memory and the time
taken to draw data.

Func XYSize(chan% {,size});

chan% A channel number in the current XY view.
size% This sets the number of data points in the channel and how and if the number of

data points can extend. A value of zero sets no limit on the number of points and
the size of the channel expands as required to hold data added to it.
If a negative size is given, for example -n, this limits the number of points in
the channel to n. If more than n points are added, the oldest points added are
deleted to make space for the newer points. If you set a negative size for an
existing channel that is smaller than the points in the channel, points are deleted.
If a positive value is set, for example n, this allocates storage space for n data
points, but the storage will grow as required to accommodate further points.
Using a positive number rather than 0 can save time if you know in advance the
likely number of data points as it costs time to grow the data storage.
If this is omitted, there is no change to the size.

Returns If the number of points for the channel is fixed at n points, the function returns
-n. Otherwise, the function returns the maximum number of points that could be
stored in the channel without allocating additional storage space.

See also:XYAddData(), XYColour(), XYCount(), XYDelete(),
XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSort()

In the current XY view, gets or sets the sorting method of the channel.

Func XYSort(chan% {,sort%});

chan% The channel number.
sort% This sets the sorting method of data points. The sorting method is only

important if the points are joined. If they are not joined, it is much more
efficient to leave them unsorted as sorting a large list of points takes time. The
sort methods are:
0 Unsorted (default). Data is drawn and sorted in the order that it was added.

The most recently added point has the highest sort index.
1 Sorted by x value. The index runs from points with the most negative x

value to points with the most positive x value.
2 Sorted by y value. The index runs from points with the most negative y value

to points with the most positive y value.
If this is omitted, there is no change in sorting method.

Returns The function returns the sorting method at time of call or a negative error code.
See also:XYAddData(), XYColour(), XYCount(), XYDelete(),

XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize()

XYSize()

XYSort()

YAxis() Alphabetical command reference YAxisStyle()

5-178

This function is used to turn the y axes on and off in the current view and to find the state
of the y axes in a view.

Func YAxis({on%});

on% Optional argument that sets the state of the axes. If omitted, no change is made.
Possible values are:
0 Hide all y axes in the view.
1 Show all y axes in the view.

Returns The state of the y axes at the time of the call (0 or 1) or a negative error code.

See also:ChanTitle$(), ChanUnits$(), YHigh(), YLow(), YRange(),
Optimise()

This function controls what is drawn in a y axis and where the y axis is placed with
respect to the data.

Func YAxisMode({mode%});

mode% Optional argument that controls how the axis is displayed. If omitted, no change
is made. Possible values are the sum of the following values. Values not
included in the sum will be restored to their default states:
1 Hide all the title information.
2 Hide all the unit information.
4 Hide y axis small ticks. They are also hidden when big ticks are

hidden.
8 Hide y axis numbers. They are also hidden when big ticks are hidden.
16 Hide the big ticks and the vertical line that joins them.
32 Scale bar axis. If selected add 4 to remove the end caps.
4096 Place the y axis on the right of the data

Returns The state of the y axis mode at the time of the call or a negative error code.

See also:ChanNumbers(), YAxis(), YAxisStyle(), YHigh(), YLow(), YRange()

This function controls the y axis major and minor tick spacing. If you set values that
would cause illegible or unintelligible axes, they are stored but not used unless the axis
range or scaling changes to make the values useful.

Func YAxisStyle(cSpc, opt%{, major});

cSpc A channel specifier or -1 for all, -2 for visible and -3 for selected channels.
When multiple channels are specified, returned values are for the first channel.

opt% Values greater than 0 set the number of subdivisions between major ticks. 0 sets
automatic small tick calculation. Use –1 for no change. Values less than -1
return information, but do not change the axis style

major If present and opt% is greater than -2, values greater than 0 sets the major tick
spacing. Values less than or equal to 0 select automatic major tick spacing.

Returns If opt% is –2 this returns the current number of forced subdivisions or 0 if they
are not forced. If opt% is –3 this returns the current major tick spacing if forced
or 0 if not forced. Otherwise the return value is 0 or a negative error code.

See also:YAxis(), YAxisMode(), YHigh(), YLow(), YRange(), XAxisStyle()

YAxis()

YAxisMode()

YAxisStyle()

Yield() The Signal script language YLow()

5-179

This function suspends script operation for a user defined time and allows the system to
idle. During the idle time, invalid screen areas update, you can interact with the program
and the system has the opportunity to do housekeeping. If your script runs for long
periods without using Interact() or Toolbar(), adding an occasional Yield() can
make it feel more responsive and stop the operating system marking Signal as "not
responding".
Func Yield({wait{, allow%}});

wait An optional time period, in seconds, to wait. If omitted or set to 0, the program
will give the system one idle cycle and continue to run. If set negative, there is
no idle cycle but the allow% argument is applied.

allow% This defines what the user can do during the wait period. See Interact() for
the allowed values. The allow% value is cancelled after the command unless
wait is 0 or negative.

Returns The function returns 1. We may add more return codes in future versions.
See also:Interact(), Seconds(), TimeDate(), Toolbar()

This function returns the current upper limit of the y axis in a data or XY view.

Func YHigh(chan%);

chan% A channel number (1 to n). The channel number is ignored for an XY view.
Returns The value at the appropriate end of the axis.
See also:ChanTitle$(), ChanUnits$(), YLow(), YRange(), Optimise()

This function returns the current lower limit of the y axis in a data or XY view.

Func YLow(chan%);

chan% A channel number (1 to n). The channel number is ignored for an XY view.
Returns The value at the appropriate end of the axis.
See also:ChanTitle$(), ChanUnits$(), YHigh(), YRange(), Optimise()

Yield()

YHigh()

YLow()

YRange() Alphabetical command reference YRange()

5-180

This sets the y axis range for a channel or XY view. Attempting to set the range for a
display mode that doesn't have a y axis is not an error, but has no effect. If the y range
changes, the display is invalidated, but waits for the next Draw().

Proc YRange(chan%|chan%[]|chan$, low, high)

chan% A channel number (1 to n) or you can also use -1 for all channels, -2 for all
visible channels, -3 for all selected channels, -4 for waveform channels or -5 for
marker channels, -6 for selected waveform channels or visible if none selected, -
7 for visible waveform channels or -8 for selected waveform channels. The
channel number is ignored in an XY view as there is only one axis for all
channels.
This can also be an integer array. If it is, the first array element holds the
number of channels in the list. This is followed by a list of positive channel
numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
low The value for the bottom of the y axis.
high The value for the top of the y axis. If low and high are the same, or stupidly

close, the range is not changed.
See also:YHigh(), YLow(), ChanScale(), ChanOffset(), Optimise()

YRange()

Index

Index-1

—Symbol—
\ string literal escape character, 3-2
$ string variable designator, 3-2
& reference parameter designator, 3-9
& in Windows dialog prompts, 5-44
{} optional syntax, 1-4
| vertical bar, 1-4
= equality test operator, 3-6
+ arithmetic add, 3-5
+= add and assign, 3-4
+= Append string, 3-4
+ Concatenate strings, 3-6
:= assignment, 3-4, 3-6
: array range designator, 3-3
; Statement separator, 3-4
< <= > >= arithmetic comparison, 3-5
< <= > >= String comparisons, 3-6
/ arithmetic divide, 3-5
/= divide and assign, 3-4
= arithmetic equality, 3-5
= String equality, 3-6
% Integer variable designator, 3-2
* multiply, 3-5
*= multiply and assign, 3-4
<> arithmetic inequality, 3-5
<> String inequality, 3-6
' Comment designator, 3-4
-= subtract and assign, 3-4
- Unary minus and subtract, 3-5

—1—
1902. See also Signal conditioner

Get revision, 5-33
script support, 5-31

—A—
Abandon sampling, 5-127, 5-140
Abort sampling, 5-127
Abs(), 5-1
Absolute pulse levels, 5-128
Absolute time for frame, 5-88
Absolute value of expression or array,

5-1
Accept sweep, 5-128
Active cursor

Get parameters, 5-36
Set parameters, 5-37

ADC data
Units, 5-139

ADC port
Calibration, 5-138, 5-139
Name, 5-138
Number, 5-138
Options, 5-138
Setup, 5-138
Units, 5-139

Add cursor, 5-39
Add protocol, 5-115

Add pulse, 5-118
Add to array or view, 5-3
Amplitude histogram, 5-148
Amplitude of waveform, 5-28
Analysis

Amplitude histogram, 5-148
Command synopsis, 4-7
Create arbitrary memory view, 5-

152
Leak subtraction, 5-151
Multiple waveform averages, 5-149
New memory view, 5-148
Number of sweeps, 5-156
Online, 5-112
Power spectrum, 5-152
Process all linked views, 5-111
Process data, 5-110
Process multiple frames, 5-111
Summary of script commands, 4-7
Trend plot, 5-153
Trend plot channel, 5-154
Waveform average and accumulate,

5-150
and operator, 3-5
App(), 5-1
Append frame, 5-1, 5-41
AppendFrame(), 5-1
Application close, 5-63
Application directory, 5-61
Application window, 5-1
Arc tangent function, 5-11
Argument lists, 3-9
ArrAdd(), 5-3
Array arithmetic functions, 4-8
Arrays, 3-3

Absolute value, 5-1
Add constant or array, 5-3
Arc tangent function, 5-11
Copy, 5-3
Cosine of array, 5-35
Data view as an array, 3-3
Difference of two arrays, 5-10
Differences between elements, 5-4
Division, 5-4, 5-5
Dot product, 5-5
Examples, 5-2
Exponential function, 5-52
FFT analysis, 5-5
FIR filter, 5-8
Fractional part of real number, 5-87
Gain and phase, 5-5
Integer overflow, 5-2
Integrate, 5-9
Inverse FFT, 5-6
Length of array, 5-99
Logarithm to base 10, 5-100
Logarithm to base e, 5-100
Maximum value, 5-101
Mean and standard deviation, 5-11
Minimum value, 5-103
Multiplication, 5-9

Natural logarithm, 5-100
Negate, 5-9
Power function, 5-108
Power spectrum, 5-5
Set to constant, 5-3
Sine of array elements, 5-155
Smoothing and filtering, 5-8
Square root of array elements, 5-156
Subtract array from value or array,

5-10
Subtract value or array from array,

5-10
Sum of product, 5-5
Sum of values, 5-11
Summary of script commands, 5-2
Summary of script commands, 4-8
Tangent of the array elements, 5-157
Total of array elements, 5-11
Truncate real array elements, 5-162

ArrConst(), 5-3
ArrDiff(), 5-4
ArrDiv(), 5-4
ArrDivR(), 5-5
ArrDot(), 5-5
ArrFFT(), 5-5
ArrFilt(), 5-8
ArrIntgl(), 5-9
ArrMul(), 5-9
ArrSub(), 5-10
ArrSubR(), 5-10
ArrSum(), 5-11
ArrXXX(), 5-2
Artefact rejection

Get parameters, 5-128
Set parameters, 5-129

Asc(), 5-11
ASCII code of character, 5-11
ASCII to string conversion, 5-30
Assignment, 3-4, 3-6
ATan(), 5-11
Automatic file naming, 5-129
Automatic file saving, 5-129
Automatic processing while sampling,

5-112
Average waveform data, 5-149, 5-150
Axis controls

XY view data tracking, 5-171
Axis grid display control, 5-94

—B—
band, binary and operator, 3-5
Basic sampling mode, 5-134
Beep or tone output, 5-155
Best fit, 5-74, 5-76, 5-78, 5-79, 5-80, 5-

84
Bin access in data view, 3-3
Bin number, convert to x axis unit, 5-

13
Binary data copy, 5-50
Binary files

Index

Index-2

Close, 5-54
Move current position, 5-14
Open, 5-60
Read data, 5-13, 5-14
Summary of script commands, 4-11
Write data, 5-18, 5-19

BinError(), 5-12
BinSize(), 5-12
BinToX(), 5-13
BinZero(), 5-13
Bitmap copy, 5-50
Black and White display, 5-165
bor, binary logical or operator, 3-5
BRead(), 5-13
BReadSize(), 5-14
Break points, 2-1

Clear all, 2-1
Breaking out of a script, 2-2
BSeek(), 5-14
BuffAcc(), 5-16
BuffAdd(), 5-15
BuffAddTo(), 5-15
BuffClear(), 5-16
BuffCopy(), 5-16
BuffCopyTo(), 5-16
BuffDiv(), 5-16
BuffDivBy(), 5-17
Buffer, 4-4, 5-15

Add frame data, 5-15
Add to frame data, 5-15
Average frame data, 5-16, 5-18
Clear, 5-16
Copy frame data, 5-16
Copy to frame, 5-16
Divide by frame data, 5-16
Divide frame data by, 5-17
Exchange with frame data, 5-17
Multiply by frame data, 5-17
Multiply frame data by, 5-17
Show or hide, 5-154
Subtract frame data, 5-17
Subtract from frame data, 5-18

BuffExchange(), 5-17
BuffMul(), 5-17
BuffMulBy(), 5-17
BuffSub(), 5-17
BuffSubFrom(), 5-18
BuffUnAcc(), 5-18
BuffXXX() Buffer commands, 5-15
Burst mode, 5-130
Buttons. see toolbar and Interact()
BWrite(), 5-18
BWriteSize(), 5-19
bxor, binary exclusive or operator, 3-

5

—C—
Calibration, 5-138, 5-139

Full scale, 5-138
Zero value, 5-139

Call stack in debug, 2-4
case. see docase

CED 1902 signal conditioner, 5-31
CFS file

Variables commands summary, 4-11
CFS File

Export As, 5-56
Open, 5-60

ChanCount(), 5-19
ChanDelete(), 5-19
ChanDiff(), 5-20
ChanIntgl(), 5-20
ChanItems(), 5-20
ChanKind(), 5-21
ChanList(), 5-21
ChanMean(), 5-21
ChanMeasure(), 5-22
ChanNegate(), 5-22
Channel

ADC inputs, 5-138
Add new XY view channel, 5-174
Arithmetic operations, 5-2
Attach horizontal cursor, 5-95
Channel array, 5-21
Channel list, 5-21
Channel numbers, 5-21
Copy data from XY view, 5-172
Data as array, 5-163
Delete, 5-19
Differentiate, 5-20
Drawing mode, 5-49
First item in channel, 5-104
Groups, 5-23
Hide, 5-26
Integrate, 5-20
Items in range, 5-24
Keyboard marker, 5-133
Last item in channel, 5-102
Marker count, 5-20
Maximum time in channel, 5-102
Minimum and maximum data, 5-103
Minimum time in channel, 5-104
Modify XY view channel settings,

5-174
Negate, 5-22
Next item in channel, 5-105
Number show and hide, 5-22
Offset data, 5-23
Order, 5-23
Ports, 5-138
Previous item in channel, 5-99
Rectify, 5-24
Sample ports, 5-138
Scale data, 5-24
Selected, get or set, 5-25
Selecting, 5-25
Selecting in a dialog, 5-43
Shift data, 5-26
Show, 5-26
Smooth data, 5-27
Subtract DC offset, 5-27
Summary of script commands, 4-3
Time of next item, 5-105
Time of previous item, 5-99
Title, get or set, 5-28, 5-138

Type of a channel, 5-21
Units, get or set, 5-28
Units, get or set, 5-139
Value at given position, 5-28
Vertical space, 5-29
Visible, get or set, 5-29
Weight, 5-29
Zero data, 5-30

Channel number
Show and hide, 5-22

Channels, 4-3
ChanNumbers(), 5-22
ChanOffset(), 5-23
ChanOrder(), 5-23
ChanPoints(), 5-23
ChanRange(), 5-24
ChanRectify(), 5-24
ChanScale(), 5-24
ChanSearch(), 5-25
ChanSelect(), 5-25
ChanShift(), 5-26
ChanShow(), 5-26
ChanSmooth(), 5-27
ChanSubDC(), 5-27
ChanTitle$(), 5-28
ChanUnits$(), 5-28
ChanValue(), 5-28
ChanVisible(), 5-29
ChanWeight(), 5-29
ChanZero(), 5-30
Character code, 5-30
Character code (ASCII), 5-11
Check box in a dialog, 5-44
chi squared, 5-71
Chr$(), 5-30
Clear protocol, 5-115
Clear sampling configuration, 5-130
Clipboard

Copy and Cut data, 5-50
Cut current selection to the

clipboard, 5-51
Paste, 5-51

Close file, 5-54
Close Signal application, 5-63
Close view, 5-54
Close window, 5-54
Coefficients, 5-8
Colon, array range designator, 3-3
Colour palette, 5-107
Colour(), 5-30
Colours of screen items, 5-30

Force Black and White, 5-165
XY view, 5-170

Command line, 5-115
Comment

Get and set file comment, 5-54
In script language, 3-4

Comparison operators, 3-5
Compile script, 2-1
CondFilter(), 5-31
CondFilterList(), 5-31
CondGain(), 5-32
CondGainList(), 5-32

The Signal script language

Index-3

CondGet(), 5-32
CondOffset(), 5-33
CondOffsetLimit(), 5-33
CondRevision$(), 5-33
CondSet(), 5-34
CondSourceList(), 5-35
CondType(), 5-35
CondXXX() Conditioner commands, 5-

31
Configuration. see Sampling

configuration
Configuration file

Load sampling configuration, 5-60
Save sampling configuration, 5-56

Constant delarations, 3-5
Continue sampling, 5-143
Control panel. See Sampling control

panel
Convert

A number to a string, 5-156
A string to a number, 5-127, 5-163
A string to upper case, 5-162
Data view bin to x axis units, 5-13
Data view bin zero to x axis units, 5-

13
Number to a character, 5-30
Parse string into variables, 5-127
String to lower case, 5-99
Time to points, 5-170
X axis units to bins, 5-170

Convert foreign file format, 5-55
Converting between data types, 3-2
Copy

Array data, 5-3
Copy as binary data, 5-50
Copy as bitmap, 5-50
Copy as metafile, 5-50
Copy as text, 5-50
Current selection to clipboard, 5-50
External file, 5-55
Make duplicate view, 5-166
Text format, 5-56
View data, 5-3
View to new view, 5-150

Cos(), 5-35
Cosine of expression, 5-35
Count

points inside XY view circle, 5-173
points inside XY view rectangle, 5-

173
Count channels in data view, 5-19
Count markers in time range, 5-20
Count of frames, 5-88
Count points in time range, 5-20
Covariance array, 5-72
Create directory, 5-61
Create memory view, 5-148, 5-152
Curly brackets, 1-4
Current directory, 5-61
Current frame. see Frame
Current view, 1-1, 2-3, 5-163
Cursor

Horizontal cursor

Delete cursor, 5-95
Label position, 5-96
Label style, 5-96
New cursor, 5-96
Renumber cursors, 5-96

Horizontal cursor
Cursor channel, 5-95
Get and set cursor position, 5-95
Summary of script commands, 4-

3
Test if exists, 5-95

Vertical cursor
Cursor label style, 5-38
Cursor position, 5-36
Delete cursor, 5-37
Get active cursor parameters, 5-

36
Label position, 5-38
Mode, 5-38
Renumber cursors, 5-39
Set active cursor parameters, 5-37
Set number, 5-39
Summary of script commands, 4-

2
Test if exists, 5-37

Cursor regions measurements, 5-22
Cursor(), 5-36
CursorActiveGet(), 5-36
CursorActiveSet(), 5-37
CursorDelete(), 5-37
CursorExists(), 5-37
CursorLabel(), 5-38
CursorLabelPos(), 5-38
CursorMode(), 5-38
CursorNew(), 5-39
CursorRenumber(), 5-39
Cursors

Create new cursor, 5-39
CursorSet(), 5-39
Curve fitting

Polynomial, 5-83
Customise memory view, 5-152
Cut

Current selection to clipboard, 5-51
CyberAmp. See also Signal conditioner

Get revision, 5-33
script support, 5-31

—D—
DAC enables, 5-131
DAC full scale, 5-130
DAC units, 5-131
DAC zero, 5-131
Data for pulse, 5-119
Data types, 3-1

Compatibility, 3-2
Data values

Value at given x axis position, 5-28
Data view

Access to contents, 3-3
Array access, 3-3
Bin width, 5-12

Convert x axis units to bin number,
5-170

Copy data, 5-3
Count of channels, 5-19
Count of markers, 5-20
Draw, 5-48
Drawing mode, 5-49
Minimum and maximum data, 5-103
Overdraw frames, 5-106, 5-107
Overdraw mode, 5-106
Process data, 5-110, 5-111
Process multiple frames, 5-111
Summary of script commands, 4-2
Time of next item, 5-105
Time of previous item, 5-99
Value at given x axis position, 5-28

Data views, 4-2
Date

as a string, 5-40
as numbers, 5-158

Date$(), 5-40
Debug

Call stack, 2-4
Enter debugger, 5-41
Enter debugger, 2-2
Globals window, 2-4
Locals window, 2-4
Operations, 4-12
Summary of script commands, 4-12
Using Script Evaluate window, 5-51

Debug script, 2-2
Debug(), 2-2, 5-41
Delay in script. See Yield()
Delete

Channel, 5-19
Cursor, 5-37
File, 5-56
Horizontal cursor, 5-95
Selection, 5-50
Substring, 5-41
XY view data, 5-171

Delete all pulses, 5-119
Delete protocol, 5-116
Delete pulse, 5-120
DeleteFrame(), 5-41
DelStr$(), 5-41
Dialogs

Check box, 5-44
Create new dialog, 5-44
Dialog units, 5-42
Display and collect responses, 5-47
Integer number input, 5-45
Real number input, 5-46
Selecting a channel, 5-43
Selecting one value from a list, 5-46
Set label, 5-45, 5-48
Simple format, 5-42
Text string input, 5-47
User interaction commands, 4-10
User-defined, 4-10, 5-42

Differences between array elements, 5-
4

Differentiate channels, 5-20

Index

Index-4

Digital filter bank
Apply from script, 5-65
Create digital filter from script, 5-67
Filter name from script, 5-68
Force filter calculation, 5-66
Get filter bank information, 5-68
Sampling frequency range, 5-68
Set attenuation of filter bank filter,

5-65
Set comment in filter bank, 5-67

Digital filtering, 4-9
Digital inputs enable, 5-131
Digital outputs enable, 5-132
Directory

Create, 5-61
Directory for files, 5-61
Display channel, 5-26
Divide operator with integer

arguments, 3-5
Division of arrays, 5-4, 5-5
DlgChan(), 5-42, 5-43
DlgCheck(), 5-44
DlgCreate(), 5-42, 5-44
DlgInteger(), 5-42, 5-45
DlgLabel(), 5-45
DlgList(), 5-46
DlgReal(), 5-42, 5-46
DlgShow(), 5-42, 5-47
DlgString(), 5-42, 5-47
DlgText(), 5-48
docase, 3-7
DOS command line, 5-115
Dot product of arrays, 5-5
Dots draw mode, 5-49
Draw a view, 5-48
Draw mode

Markers, 5-49
Waveform, 5-49

Draw(), 5-48
DrawAll(), 5-48
Drawing modes

Join XY view points, 5-173
XY view, 5-171

DrawMode(), 5-49
Dup(), 5-50
Duplicate view

Create, 5-166
Exclude from list, 5-165
Front view, 5-93
Handle, 5-163

—E—
e, Mathematical constant, 3-6
Edit marker codes, 5-101
Edit marker time, 5-101
Edit menu

Copy, Copy As, 5-50
Summary of script commands, 4-8

EditClear(), 5-50
EditCopy(), 5-50
EditCut(), 5-51
Editing

Commands summary, 4-8
EditPaste(), 5-51
EditSelectAll(), 5-51
else. see if and docase. see if and

docase
endcase. see docase
endif. see if
Erase file, 5-56
Error codes, 5-51
Error$(), 5-51
Esc key in a script, 2-2
Escape character backslash, 3-2
Eval(), 5-51
Evaluate argument, 5-51
Execute program, 5-115
Existance of cursor, 5-37
Existance of horizontal cursor, 5-95
Exit from Signal, 5-63
Exp(), 5-52
Exponential fit, 5-74
Exponential function, 5-52
Export

Channel list, 5-52
Data file, 5-56
Export As, 5-56
Format for text, 5-52
Format for text output, 5-53
Frame list, 5-53
Summary of script commands, 4-2
Time range, 5-54
X axis range, 5-54

ExportChanFormat(), 5-52
ExportChanList(), 5-52
ExportFrameList(), 5-53
ExportTextFormat(), 5-53
ExportTimeRange(), 5-54
Expressions, 3-5
External files, 5-60
External program

Kill, 5-114
Run, 5-115
Status of, 5-115

Extra states, 5-141

—F—
Feature search, 5-25
FFT analysis

Of arrays, 5-5
Of waveform data, 5-152

File
CFS file variables, 5-57, 5-63, 5-64
CFS frame variables, 5-89, 5-90, 5-

92, 5-93
Close file, 5-54
Comment, 5-54
Convert foreign format, 5-55
Copy external file, 5-55
Delete list of files, 5-56
Dump as text, 5-52, 5-53
Export As, 5-56
Export channel list, 5-52
Export frame list, 5-53

List of files, 5-58
Name, 5-58
Open window or external file, 5-60
Parent and child directories/folders,

5-58
Save As, 5-63
Save new file, 5-63

File menu
Export As, 5-56
Load configuration, 5-60
New, 5-59
Open..., 5-60
Print screen, 5-62
Print visible, 5-62
Save As, 5-63
Save configuration, 5-56
Summary of script commands, 4-1

File menu commands, 4-1
File system commands, 4-11
File view

New, 5-59
Open, 5-60

FileClose(), 5-54
FileComment$(), 5-54
FileConvert$(), 5-55
FileCopy(), 5-55
FileDelete(), 5-56
FileExportAs(), 5-56
FileGetIntVar(), 5-57
FileGetRealVar(), 5-57
FileGetStrVar$(), 5-57
FileList(), 5-58
FileName$(), 5-58
FileNew(), 5-59
FileOpen(), 5-60
FilePath$(), 5-61
FilePathSet(), 5-61
FilePrint(), 5-62
FilePrintScreen(), 5-62
FilePrintVisible(), 5-62
FileQuit(), 5-63
FileSave(), 5-63
FileSaveAs(), 5-63
FileVarCount(), 5-63
FileVarInfo(), 5-64
FiltApply(), 5-65
FiltAtten(), 5-65
FiltCalc(), 5-66
FiltComment$(), 5-67
FiltCreate(), 5-67
Filter bank. See Digital filter bank
Filter coefficients, 5-8
Filtering of arrays, 5-8
FiltInfo(), 5-68
FiltName$(), 5-68
FiltRange(), 5-68
Find feature, 5-25
Find func or proc, 2-1
Find view, 5-164
Finish sampling, 5-143
FIR filter

Apply from script, 5-65
Frequency response, 5-70

The Signal script language

Index-5

Make coefficients, 5-68
Make coefficients (simplified), 5-70
Script functions, 4-9

FIR filter of array, 5-8
FIRMake(), 5-68
FIRQuick(), 5-70
FIRResponse(), 5-70
First time in frame, 5-104
FitExp(), 5-74
FitGauss(), 5-76
FitLine(), 5-78
FitLinear(), 5-79
FitNLUser(), 5-80
FitPoly(), 5-83
FitSin(), 5-84
Fitting functions, 4-10
Fixed interval period, 5-132
Fixed interval variation, 5-132
Flag frame, 5-88
Flow of control statements, 3-7
Folder for files, 5-61
Font

Get font characteristics, 5-87
Set font, 5-87

FontGet(), 5-87
FontSet(), 5-87
for, 3-8
Formatted text output, 5-108, 5-110
Frac(), 5-87
Fractional part of real number or array,

5-87
Frame

Absolute start time, 5-88
Accept, 5-128
Analyse, 5-110
Append, 5-1
Append, 5-41
Comment, 5-88
Count, 5-88
Discard changes, 5-91
Flag, 5-88
Frame list, 5-90
Frame numbers array, 5-90
Number, 5-88
On line processing, 5-112
Overdraw, 5-106, 5-107
Points to sample, 5-137
Process multiple frames, 5-111
Reject, 5-128
Save changes, 5-91
State, 5-92
Tag, 5-92
User Variable, 5-92

Frame buffer
Summary of script commands, 4-4

Frame buffer commands, 5-15
Frame list, 5-90
Frame(), 5-88
FrameAbsStart(), 5-88
FrameComment$(), 5-88
FrameCount(), 5-88
FrameFlag(), 5-88
FrameGetIntVar(), 5-89

FrameGetRealVar(), 5-89
FrameGetStrVar$(), 5-90
FrameList(), 5-90
FrameMean(), 5-91
FrameSave(), 5-91
FrameState(), 5-92
FrameTag(), 5-92
FrameUserVar(), 5-92
FrameVarCount(), 5-93
FrameVarInfo(), 5-93
Front view, 5-93
Front window, 5-93
FrontView(), 5-93
func, 3-9
Function argument lists, 3-9
Functions and procedures, 3-9
Functions as arguments, 3-11

—G—
GammaP(), 5-94
GammaQ(), 5-94
Gaussian fit, 5-76
Get protocol step, 5-117
Globals window, 2-4
Grid(), 5-94
Groups of channels, 5-23

—H—
Halt, 3-9
HCursor(), 5-95
HCursorChan(), 5-95
HCursorDelete(), 5-95
HCursorExists(), 5-95
HCursorLabel(), 5-96
HCursorLabelPos(), 5-96
HCursorNew(), 5-96
HCursorRenumber(), 5-96
Help(), 5-97
Hexadecimal number format, 3-2, 5-

109
Hide

Channel (list), 5-26
Frame buffer, 5-154
Log window, 5-100
Running script, 5-1
Sampling control panel, 5-132
Script toolbar, 5-162
Signal toolbar, 5-1
Status bar, 5-1
View/Window, 5-167
X axis, 5-168
X axis scroll bar, 5-169
Y axis, 5-177

Hide sampling controls, 5-132
Histogram draw mode, 5-49
Horizontal cursor. see Cursor
Horizontal cursor commands, 4-3
Host operating system, 5-156
Hysteresis, 5-136

—I—
Iconise view, 5-167
if statement, 3-7
Import foreign data file, 5-55
Impulse response, 5-8
Indent text, 2-2
Initialise protocol, 5-115
Input a single number, 5-97
Input a string, 5-97
Input$(), 5-97
Input(), 5-97
InStr(), 5-98
Integer data type, 3-2
Integer overflow, 5-2
Integrate array, 5-9
Integrate channels, 5-20
Interact(), 5-98
Inverse FFT, 5-6
Invert channels, 5-22

—J—
Join data points in XY view, 5-173

—K—
Key window, 5-165

Control of, 5-174
Keyboard channel

Add marker, 5-133
Turn on/off, 5-133

Keywords, 3-1
Kind of channel, 5-21

—L—
Label

Buttons in script toolbar, 5-98
Colour, 5-30
Label style of cursor, 5-38, 5-96
Position label on cursor, 5-38, 5-96
X axis, 5-169
Y axis, 5-28

LastTime(), 5-99
LCase$(), 5-99
Leak subtraction, 5-151
Least-squares linear fit, 5-78
Left$(), 5-99
Legal characters in string input, 5-97
Len(), 3-10, 5-99
Length of array or string, 5-99
Length of pulse outputs, 5-135
Limit file size, 5-133
Limit frames, 5-133
Limit recording time, 5-134
Line length in script, 3-1
Linear fit, 5-79
Linear least-squares fit, 5-78
List

Channel numbers, 5-21
Files, 5-58

Index

Index-6

Frames, 5-90
Views, 5-165

literal string delimiter, 3-2
Ln(), 5-100
LnGamma(), 5-100
Load configuration, 5-60
Locals window, 2-4
Log amplitude of the power spectrum

in dB, 5-6
Log view, 5-100
Log window, 5-100
Log(), 5-100
Logarithm to base 10, 5-100
Logarithm to base e, 5-100
LogHandle(), 5-100
Lower case version of a string, 5-99

—M—
MarkCode(), 5-101
MarkEdit(), 5-101
Marker

Codes, 5-101
Count in time range, 5-20
Edit marker codes, 5-101
Edit marker time, 5-101
Time, 5-101
Time resolution, 5-12
X axis resolution, 5-12

MarkTime(), 5-101
Mathematical constants, 3-6
Mathematical functions, 4-9
Max(), 5-101
Maximise view, 5-167
Maximum

Of several values, 5-101
Value in array, 5-101

Maximum
Time in channel, 5-102
Value in channel, 5-103
X axis in current frame, 5-102

Maximum and minimum of XY
channel, 5-174

Maxtime(), 5-102
mean, 5-71
Mean

Mean of array, 5-11
Mean value in channel, 5-21
Mean value in time range, 5-21
Option for memory view, 5-149, 5-

150
Measure value in channel, 5-22
Memory view

Amplitude histogram, 5-148
Auto Average, 5-149
Average waveform, 5-150
Count sweeps accumulated, 5-156
Create copy, 5-150
Create user-defined view, 5-152
Get source data view, 5-165
Leak subtraction, 5-151
New memory view, 5-148
Power spectrum, 5-152

View Info., 5-156
Message(), 5-102
Metafile output, 5-50
Mid$(), 5-102
Min(), 5-103
Minimum

Of several values, 5-103
Value in array, 5-103

Minimum
Time in channel, 5-104
Value in channel, 5-103
X axis in current frame, 5-104

Minmax(), 5-103
Mintime(), 5-104
mod, remainder operator, 3-5
Mode

Drawing channel, 5-49
Mode of cursor, 5-38
Monochrome display, 5-165
Move in text and cursor windows, 5-

104
MoveBy(), 5-104
MoveTo(), 5-104
Multimedia sound output, 5-155
Multiple frames

Export, 5-53
List, 5-90
Online analysis, 5-112
Overdraw, 5-106
Processing, 5-111, 5-112

Multiple states
DAC enables, 5-131
DAC value, 5-140
Digital data, 5-141
Digital inputs enable, 5-131
Digital outputs enable, 5-132
Idling after cycles, 5-141
Individual repeats, 5-141
Mode, 5-142
Number, 5-141
Ordering, 5-142
Repeats, 5-142

Multiplication of arrays, 5-9

—N—
Name format, 3-1
Name of protocol, 5-116
Name pulse, 5-120, 5-121
Natural logarithm, 5-100
Negate array, 5-9
Negate channels, 5-22
New cursor, 5-39
New horizontal cursor, 5-96
New memory view, 5-148
New XY view, 5-148
next, 3-8
Next

Item, 5-105
NextTime(), 5-105
Non-linear fit, 5-80
Normal distribution, 5-71
Normal settings for a view, 5-165

not, logical operator, 3-5
Number input with prompt, 5-97
Number of protocols, 5-116
Number of pulses, 5-121
Numeric input, 5-97

—O—
Offset channel data, 5-23
Online

Analysis, 5-112
Processing, 5-112

Open
File view, 5-60
Script file, 5-60
Text file, 5-60

Open file, 5-60
Operating system, 5-156
Operators, 3-5

Order of precedence, 3-5
Optimise the display, 5-105
Optimise(), 5-105
or operator, 3-5
Order of channels, 5-23
Outdent text, 2-2
Outputs

DAC full scale, 5-130
DAC units, 5-131
DAC zero, 5-131

Outputs clock, 5-134
Outputs frame length, 5-135
Outputs mode, 5-135
Outputs trigger, 5-135
Overdraw frame list, 5-106
Overdraw(), 5-106
OverdrawFrames(), 5-106
OverdrawGetFrames(), 5-107

—P—
Palette for colour, 5-107
PaletteGet(), 5-107
PaletteSet(), 5-107
Passing arguments

by reference, 3-9
by value, 3-9
functions and procedures, 3-11

Paste from clipboard, 5-51
Path for application, 5-61
Path for file operations, 5-61
Pause at sweep end, 5-135
Pause sampling, 5-135
Period for fixed interval, 5-132
Peri-trigger

Sampling mode, 5-134
Peri-trigger

Digital bit, 5-136
Digital bit, 5-136
Hysteresis, 5-136
Level, 5-136
Pre-trigger points, 5-137
Threshold, 5-137
Trigger type, 5-137

The Signal script language

Index-7

Type, 5-137
Phase of power spectrum, 5-6
pi, Mathematical constant, 3-6, 5-157
Polynomial fitting, 5-83
Pop-up

Message window, 5-102
Number input with prompt, 5-97
Query user in pop-up window, 5-125
String input with prompt, 5-97
User-defined dialogs, 5-42

Port
Calibration, 5-138, 5-139
Full value, 5-138
Name, 5-138
Options, 5-138
Units, 5-139
Zero value, 5-139

Position of cursor, 5-36
Position of window, 5-166
Pow(), 5-108
Power function, 5-108
Power spectra

Of arrays, 5-5
Of waveform channels, 5-152

Precedence of operators, 3-5
Preferences

Script access, 5-112
Pre-trigger points, 5-137
Print

All views on screen, 5-62
Formatted text output, 5-108, 5-110
Print visible region, 5-62
To log window, 5-110
To string, 5-110

Print$(), 5-110
Print(), 5-108
PrintLog(), 5-110
proc, 3-9
Procedures as arguments, 3-11
Process file view data to memory view,

5-110
Process(), 5-110
ProcessAll(), 5-111
ProcessFrames(), 5-111
ProcessOnline(), 5-112
Profile(), 5-112
ProgKill(), 5-114
ProgRun(), 5-115
ProgStatus(), 5-115
ProtocolAdd(), 5-115
ProtocolClear(), 5-115
ProtocolDel(), 5-116
ProtocolFlags(), 5-116
ProtocolName$(), 5-116
Protocols

Add, 5-115
Clear, 5-115
Delete, 5-116
Flags, 5-116
Get step, 5-117
Name, 5-116
Number, 5-116
Select while sampling, 5-139

Set step, 5-117
Protocols(), 5-116
ProtocolStepGet(), 5-117
ProtocolStepSet(), 5-117
Pulse outputs, 5-118
PulseAdd(), 5-118
PulseClear(), 5-119
PulseDataGet(), 5-119
PulseDataSet(), 5-119
PulseDel(), 5-120
PulseFlags(), 5-120
PulseName$(), 5-121
Pulses

Absolute levels, 5-128
Add pulse, 5-118
Delete all pulses, 5-119
Delete pulse, 5-120
Get data, 5-119
Get times, 5-121
Get type, 5-122
Get variation, 5-123
Get waveform data, 5-124
Get waveform settings, 5-125
Name pulse, 5-120, 5-121
Number, 5-121
Set data, 5-119
Set times, 5-122
Set variation, 5-123
Set wavefom data, 5-124
Set wavefom settings, 5-125

Pulses(), 5-121
PulseTimesGet(), 5-121
PulseTimesSet(), 5-122
PulseType(), 5-122
PulseVarGet(), 5-123
PulseVarSet(), 5-123
PulseWaveformGet(), 5-124
PulseWaveformSet(), 5-124
PulseWaveGet(), 5-125
PulseWaveSet(), 5-125
PulseXXX()Pulse output commands, 5-

118

—Q—
Query user in pop-up window, 5-125
Query(), 5-125
Quit Signal, 5-63

—R—
Radians, 5-11, 5-35, 5-155

Convert to degrees, 5-157
Rand(), 5-125
Random number generator, 5-125
Range of data points in XY view, 5-

174
Read binary data, 5-13, 5-14
Read text file

Input from a text file into
variable(s), 5-126

Open file, 5-60
Read(), 5-126

ReadStr(), 5-127
Real data type, 3-1
Reciprocal of array, 5-5
Rectify channels, 5-24
Reference parameters, 3-9
Registry access, 5-112
Reject sweep, 5-128
Renumber cursors, 5-39
Renumber horizontal cursors, 5-96
repeat, 3-8
Reset sampling, 5-140
Reset states, 5-142
Residuals, 5-72
Resource information suppression, 5-

60
Restart sampling, 5-140
Restore view, 5-167
Result view

Array access, 3-3
return, 3-10
return, 3-9
Right$(), 5-127
Rightmost characters from a string, 5-

127
Round a real to nearest whole number,

5-127
Round(), 5-127
RS232 Summary of script commands,

4-12
Run external program, 5-115
Run script, 2-1

—S—
Sample menu. Topics indexed by name
Sample toolbar

Control from script language, 5-130
SampleAbort(), 5-127
SampleAbsLevel(), 5-128
SampleAccept(), 5-128
SampleArtefactGet(), 5-128
SampleArtefactSet(), 5-129
SampleAutoFile(), 5-129
SampleAutoName$(), 5-129
SampleBar(), 5-130
SampleBurst(), 5-130
SampleClear(), 5-130
SampleDacFull(), 5-130
SampleDacMask(), 5-131
SampleDacUnits$(), 5-131
SampleDacZero(), 5-131
SampleDigIMask(), 5-131
SampleDigOMask(), 5-132
SampleFixedInt(), 5-132
SampleFixedVar(), 5-132
SampleHandle(), 5-132
SampleKey(), 5-133
SampleKeyMark(), 5-133
SampleLimitFrames(), 5-133
SampleLimitSize(), 5-133
SampleLimitTime(), 5-134
SampleMode(), 5-134
SampleOutClock(), 5-134

Index

Index-8

SampleOutLength(), 5-135
SampleOutMode(), 5-135
SampleOutTrig(), 5-135
SamplePause(), 5-135
SamplePeriBitState(), 5-136
SamplePeriDigBit(), 5-136
SamplePeriHyst(), 5-136
SamplePeriLevel(), 5-136
SamplePeriLowLev(), 5-137
SamplePeriPoints(), 5-137
SamplePeriType(), 5-137
SamplePoints(), 5-137
SamplePortFull(), 5-138
SamplePortName$(), 5-138
SamplePortOptions$(), 5-138
SamplePorts(), 5-138
SamplePortUnits$(), 5-139
SamplePortZero(), 5-139
SampleProtocol(), 5-139
SampleRate(), 5-139
SampleReset(), 5-140
SampleStart(), 5-140
SampleState(), 5-140
SampleStateDac(), 5-140
SampleStateDig(), 5-141
SampleStateRepeats(), 5-141
SampleStates(), 5-141
SampleStatesIdle(), 5-141
SampleStatesMode(), 5-142
SampleStatesOrder(), 5-142
SampleStatesRepeats(), 5-142
SampleStatesReset(), 5-142
SampleStatesRun(), 5-142
SampleStatus(), 5-143
SampleStop(), 5-143
SampleSweep(), 5-143
SampleTrigger(), 5-143
SampleWrite(), 5-144
Sampling

Automatic processing, 5-112
Current state, 5-143
Reset states, 5-142
Run states sequencing, 5-142
Runtime control functions, 4-7
Select protocol, 5-139
Select state, 5-140
View handle, 5-132

Sampling configuration
Absolute pulse levels, 5-128
ADC ports, 5-138
Add protocol, 5-115
Add pulse, 5-118
Artefact rejection, 5-128, 5-129
automatic filing, 5-129
automatic naming, 5-129
Burst mode, 5-130
Clear protocol, 5-115
Count pulses, 5-121
DAC full scale value, 5-130
DAC outputs enable, 5-131
DAC units, 5-131
DAC zero value, 5-131
Data points per sweep, 5-137

Delete all pulses, 5-119
Delete protocol, 5-116
Delete pulse, 5-120
Digital inputs enable, 5-131
Digital outputs enable, 5-132
Extra states, 5-141
Fixed interval period, 5-132
Fixed interval variation, 5-132
Get protocol step, 5-117
Get pulse data, 5-119
Get pulse times, 5-121
Get pulse variation, 5-123
Get waveform data, 5-124
Get waveform settings, 5-125
Individual state repeats, 5-141
Keyboard marker channel, 5-133
Limit file size, 5-133
Limit frames, 5-133
Limit sample time, 5-133, 5-134
Load, 5-60
Name of protocol, 5-116
Name pulse, 5-120, 5-121
Number of protocols, 5-116
Outputs clock, 5-134
Outputs frame length, 5-135
Outputs mode, 5-135
Outputs trigger, 5-135
Peri-trigger

Analogue level, 5-136
Analogue threshold, 5-136, 5-137
Digital bit level, 5-136
Digital bit number, 5-136
Hysteresis, 5-136
Trigger type, 5-137

Peri-trigger:, 5-137
Port setup

Name, 5-138
Options, 5-138

Port Setup
Full, 5-138
Units, 5-139
Zero, 5-139

Protocol flags, 5-116
Pulse outputs, 5-118
Pulse type, 5-122
Reset configuration, 5-130
Sample mode, 5-134
Sample rate, 5-139
Save, 5-56
Set protocol step, 5-117
Set pulse data, 5-119
Set pulse times, 5-122
Set pulse variation, 5-123
Set wavefom data, 5-124
Set wavefom settings, 5-125
Signal conditioner (CED 1902), 5-

31
Standard settings, 5-130
State DAC value, 5-140
State digital data, 5-141
States idling, 5-141
States mode, 5-142
States ordering, 5-142

States repeats, 5-142
Summary of script commands, 4-5
Suppress extra windows, 5-59
Sweep length, 5-137
Trigger, 5-143
Using it, 5-59

Sampling control panel
Window handle, 5-132

Sampling control panel
Continue, 5-143
Summary of script commands, 4-7
Sweep trigger, 5-143

Sampling parameters. See Sampling
configuration

Sampling rate, 5-139
Sampling window

Handle, 5-132
Save configuration, 5-56
Save file, 5-63
Save file As, 5-63
Save frame data, 5-91
Save sweeps while sampling, 5-132, 5-

144
Scale

Array data, 5-9
X axis, 5-12, 5-139
Y axis, 5-138

Scale channel data, 5-24
Scope of variables and user-defined

functions, 3-11
Screen dump to printer, 5-62
Script

Call stack, 2-4
Clear all break points, 2-1
Commands by function

Analysis, 4-7
Array arithmetic, 4-8
Binary files, 4-11
CED 1902, 4-7
CFS variables, 4-11
Channels in data view, 4-3
CyberAmp, 4-7
Data views, 4-2
Edit menu, 4-8
File menu, 4-1
Filing system, 4-11
Fitting functions, 4-10
Horizontal cursors, 4-3
Mathematical functions, 4-9
New memory views, 4-7
Sampling configuration, 4-5
Sampling control at runtime, 4-7
Script debugging, 4-12
Serial line, 4-12
Signal conditioner, 4-7
String handling, 4-8
System, 4-12
Text files, 4-11
User interaction and pop-up

windows, 4-10
Vertical cursors, 4-2
Windows and Views, 4-1

Compile, 2-1

The Signal script language

Index-9

Debug, 2-2
Find func or proc, 2-1
Run, 2-1
Set and clear break points, 2-1
Split text window, 2-1
Start new script, 1-1

Script Bar
Control from script language, 5-144

Script view
New, 1-1
Open, 5-60

ScriptBar(), 5-144
ScriptRun(), 5-144
Scroll bar, show and hide, 5-169
Scroll display, 5-48
Search data

For feature, 5-25
Seconds(), 5-145
Select a channel, 5-25
Select all copyable items, 5-51
Select protocol, 5-139
Selection$(), 5-145
Semicolon, statement separator, 3-4
Serial line

Serial port
Summary of script commands, 4-

12
Signal conditioner

Summary of script commands, 4-
7

SerialClose(), 5-145
SerialCount(), 5-145
SerialOpen(), 5-146
SerialRead(), 5-147
SerialWrite(), 5-147
Set commands, 5-148
Set protocol step, 5-117
Set up processing, 5-148
SetAmplitude(), 5-148
SetAutoAv(), 5-149
SetAverage(), 5-150
SetCopy(), 5-150
SetLeak(), 5-151
SetMemory(), 5-152
SetPower(), 5-152
SetTrend(), 5-153
SetTrendChan(), 5-154
SetXXX(), 5-148
Shift channel data, 5-26
Show

Channel (list), 5-26
Frame buffer, 5-154
Running script, 5-1
Script toolbar, 5-162
Signal toolbar, 5-1
Status bar, 5-1
View/Window, 5-167
X axis, 5-168
X axis scroll bar, 5-169
Y axis, 5-177

ShowBuffer(), 5-154
ShowFunc(), 5-154
Signal conditioner, 5-31

Get and set gain, 5-32
Get and set offset, 5-33
Get list of gains, 5-32
Get list of sources, 5-35
Get offset range, 5-33
Get revision, 5-33
Get type, 5-35
List filter frequencies, 5-31
Low-pass and high-pass filters, 5-31
Read all port settings, 5-32
Set all parameters, 5-34
Summary of script commands, 4-7

Signal directory, 5-61
Sin fit, 5-84
Sin(), 5-155
Sine of an angle in radians, 5-155
Single step a script, 2-3
Size of window, 5-166, 5-167
Skyline draw mode, 5-49
Smooth channel data, 5-27
Smoothing of arrays, 5-8
Sort channels, 5-23
Sound output, 5-155
Sound(), 5-155
Spawn program, 5-115
Splitter control, 2-1
Sqrt(), 5-156
Square root, 5-156
standard deviation, 5-71
Standard deviation of array, 5-11
Standard settings for a view, 5-165
Start sampling, 5-140
State frame, 5-92
State select, 5-140
State sequencing, 5-142
Statements, 3-4
States

DAC enables, 5-131
DAC value, 5-140
Digital data, 5-141
Digital inputs enable, 5-131
Digital outputs enable, 5-132
Idling after cycles, 5-141
Individual repeats, 5-141
Mode, 5-142
Number, 5-141
Ordering, 5-142
Repeats, 5-142
Reset sequencing, 5-142
Select while sampling, 5-140
Set sequencing mode, 5-142

Status bar
Show and hide, 5-1

Stop sampling, 5-143
Str$(), 5-156
Straight line fit, 5-78
String functions, 4-8
Strings, 3-2

ASCII code, 5-11
Comparison operators, 3-6
Conversions, 4-8
Convert a number to a string, 5-156
Convert ASCII to string, 5-30

Convert to a number, 5-163
Convert to lower case, 5-99
Convert to numbers, 5-127
Convert to upper case, 5-162
Currently selected text, 5-145
Delete substring, 5-41
Extract fields from, 5-127
Extract middle of a string, 5-102
Find string within another string, 5-

98
Get rightmost characters, 5-127
Input with prompt, 5-97
Leftmost characters of string, 5-99
Length of a string, 5-99
Printing into, 5-110
Read from binary file, 5-14
Read string from user, 5-97
Reading using a dialog, 5-47
Specifying legal characters in input,

5-97
Write to binary file, 5-19

Substring of a string, 5-102
Subtract DC offset from channel, 5-27
Subtraction of arrays and values, 5-10
Sum of array, 5-11
Sum of array product, 5-5
Sweep

Points, 5-137
Sweep count

Analysis, 5-156
Sweep length, 5-137
Sweeps(), 5-156
Syntax colouring, 2-2
System$(), 5-156
System(), 5-156

—T—
Tag frame, 5-92
Tan(), 5-157
Tangent of an angle in radians, 5-157
Text copy, 5-50
Text dump, 5-56

Channel list, 5-52
Configuration, 5-52
Format, 5-53
Frame list, 5-53
Marker, 5-52
Waveform, 5-52
X axis range, 5-54

Text editing
Summary of script commands, 4-8

Text file script commands summary, 4-
11

Text view
Move absolute, 5-104
Move relative, 5-104
New, 5-59
Open, 5-60

Time
Maximum time in the current frame,

5-102
Measure elapsed time, 5-145

Index

Index-10

Minimum time in the current frame,
5-104

Of next item on a channel, 5-105
Of previous item on a channel, 5-99
Resolution for channels, 5-12

Time of day
as a string, 5-157
as numbers, 5-158

Time ratio, 5-158
Time shift, 5-8
Time units, 5-158
Time$(), 5-157
TimeDate(), 5-158
Timer, 5-145
TimeRatio(), 5-158
Times for pulse, 5-121, 5-122
TimeUnits$(), 5-158
Title

Channel, 5-28
View or Window, 5-167

Toolbar building, 5-159
Toolbar for script

Clear all buttons, 5-160
Toolbar for script, 5-159

Add buttons, 5-161
Change text, 5-162
Display, 5-159
Enable and disable buttons, 5-160
Show and hide, 5-162
User interaction, 5-159

Toolbar for Signal
Show and hide, 5-1

Toolbar(), 5-159
ToolbarClear(), 5-160
ToolbarEnable(), 5-160
ToolbarSet(), 5-161
ToolbarText(), 5-162
ToolbarVisible(), 5-162
Trace through a script, 2-3
Trend plot

Add channel, 5-154
Trend plot, 5-153
Trigger from outputs, 5-135
Trigger mode

Set on/off, 5-143
Triggered sweeps, 5-143
Trunc(), 5-162
Truncate real number, 5-162
Type compatibility, 3-2
Type of pulse, 5-122
Types of data, 3-1

—U—
UCase$(), 5-162
Units for waveform channel, 5-28
until, 3-8
Update all views, 5-48
Update invalid regions in a view, 5-48
Upper case a string, 5-162
User interaction

Ask user a Yes/No question, 5-125
Command summary, 4-10

Dialogs, 5-42
Let user interact with data, 5-98
Message in pop-up window, 5-102
Print formatted text, 5-108, 5-110
Read a number in a pop-up window,

5-97
Read a string in a pop-up window,

5-97
The toolbar, 5-159

User variables, 5-92
User-defined functions and procedures,

3-9

—V—
Val(), 5-163
Value parameters, 3-9
var keyword, 3-4
Variable

Inspecting value, 2-4
Names, 3-1
Types, 3-1

Variable declarations, 3-4
variance, 5-71
Variation for fixed interval, 5-132
Variation of pulse, 5-123
Vertical bar notation, 1-4
Vertical cursor commands, 4-2
Vertical space for channels, 5-29
View

Application view handle, 5-1
Bring to the front, 5-93
Close view, 5-54
Colour/Monochrome, 5-165
Count of channels, 5-19
Count of markers, 5-20
Create duplicate, 5-166
Current view, 5-163
Data array, 5-163
Duplication, 5-166
Find by title, 5-164
Generate frame list, 5-90
Iconise, 5-167
Info., 5-156
List view handles, 5-165
Maximise, 5-167
Minimum, maximum, and positions,

5-103
Normal settings, 5-165
Overdraw frame list, 5-106
Overdraw frames, 5-107
Overdraw mode, 5-106
Override current view, 1-4, 5-164
Position and size, 5-166
Process data, 5-111
Restore, 5-167
Sampling view handle, 5-132
Set position and size, 5-166
Set size, 5-167
Show, 5-167
Show and hide, 5-167
Size, 5-167
Standard settings, 5-165

Summary of script commands, 4-1
Time of previous item, 5-99
Title, 5-167
Type, 5-164
View handle, 5-163
View handle for another view, 1-4,

5-164
View data

Add constant or array, 5-3
Copy, 5-3
Set to constant, 5-3

View handle, 1-1
Application window, 5-1
Create memory view, 5-148
Get list of views, 5-165
Other than current view, 1-4, 5-164
Sampling window, 5-132
Set or get current view, 5-163
Update the view, 5-48

View(), 5-163
View().x(), 5-164
View(v,c).[], 5-163
ViewFind(), 5-164
ViewKind(), 5-164
ViewList(), 5-165
ViewSource(), 5-165
ViewStandard(), 5-165
ViewUseColour(), 5-165
Visible state of a window, 5-167
Visible state of channel, 5-29

—W—
Wait in script. See Yield()
WAVE file output, 5-155
Waveform data, 5-124

Amplitude, 5-28
Amplitude histogram to memory

view, 5-148
Average to multiple frames, 5-149
Average, accumulate to memory

view, 5-150
Count of points, 5-20
Count points, 5-23
Drawing mode, 5-49
Leak subtraction, 5-151
Mean level, 5-21
Measure values, 5-22
Power spectrum, 5-152
Sampling interval, 5-12
Units, 5-28

Waveform settings, 5-125
Waveform settings, 5-125
Weighting of channel space, 5-29
wend, 3-8
while, 3-8
Window. See view
Window(), 5-166
WindowDuplicate(), 5-166
WindowGetPos(), 5-166
Windows version name, 5-156
Windows version number, 5-156
WindowSize(), 5-167

The Signal script language

Index-11

WindowTitle$(), 5-167
WindowVisible(), 5-167
Working Set, 5-114
Write binary data, 5-18, 5-19
Write data automatically, 5-144
Write to disk at sweep end, 5-144

—X—
X axis

Bin number conversions, 5-13
Display set region, 5-48
Drawing mode, 5-168
Drawing style, 5-168
Increment per bin in data view, 5-12
Maximum in the current frame, 5-

102
Minimum in the current frame, 5-

104
Offset, 5-13
Range, 5-169
Scaling factor, 5-12, 5-139
seconds, hms and time of day, 5-168
Show and hide, 5-168
Show and hide features, 5-168
Show and hide scroll bar, 5-169
Tick spacing, 5-168
Title, 5-169
Units, 5-170
Value at given position, 5-28

XAxis(), 5-168
XAxisMode(), 5-168
XAxisStyle(), 5-168
XHigh(), 5-169
XLow(), 5-169
xor, exclusive logical or, 3-5
XRange(), 5-169

XScroller(), 5-169
XTitle$(), 5-169
XToBin(), 5-170
XUnits$(), 5-170
XY view

Add data, 5-170
Add trend plot channel, 5-154
Automatic axis expansion, 5-171
Count points, 5-171
Create a new channel, 5-174
Data joining method, 5-173
Data range, 5-174
Delete data points, 5-171
Drawing styles, 5-171
Get data points, 5-172
Modify all channel settings, 5-174
Open file from script, 5-60
Points inside a circle, 5-173
Points inside a rectangle, 5-173
Set channel colour, 5-170
Set Key properties, 5-174
Size of channel, 5-176
Sorting method, 5-176
Trend plot, 5-153

XY views
Summary of script commands, 4-4

XYAddData(), 5-170
XYColour(), 5-170
XYCount(), 5-171
XYDelete(), 5-171
XYDrawMode(), 5-171
XYGetData(), 5-172
XYInCircle(), 5-173
XYInRect(), 5-173
XYJoin(), 5-173
XYKey(), 5-174
XYRange(), 5-174

XYSetChan(), 5-174
XYSize(), 5-176
XYSort(), 5-176

—Y—
Y axis

Channel number show and hide, 5-
22

Drawing mode, 5-177
Drawing style, 5-177
Get current limits, 5-178
Range optimising, 5-105
Right and left, 5-177
Scaling factor, 5-138
Set limits, 5-179
Show and hide, 5-177
Show and hide features, 5-177
Tick spacing, 5-177
Title, 5-28
Units, 5-28

YAxis(), 5-177
YAxisMode(), 5-177
YAxisStyle(), 5-177
Yes/No pop-up window, 5-125
YHigh(), 5-178
Yield time to the system, 5-178
Yield(), 5-178
YLow(), 5-178
YRange(), 5-179

—Z—
Zero

X axis, 5-13
Zero channel data, 5-30

	The Signal script language
	Table of Contents
	Introduction
	What is a script?
	Views and view handles
	Writing scripts by example
	Using recorded actions
	Derived views
	Notation conventions

	The script window and debugging
	Script window
	Syntax colouring
	Editing features for scripts
	Debug overview
	Preparing to debug
	Inspecting variables
	Call stack

	Script language syntax
	Script format
	Keywords and names
	Data types
	Arrays of data
	Data views as arrays
	Statement types
	Comments in a script
	Variable declarations
	Constant declarations
	Expressions and operators
	Flow of control statements
	Functions and procedures

	Commands by function
	Functional command groups
	Windows and views
	Data views
	Vertical cursors
	Horizontal cursors
	Channels
	Buffer
	XY views
	Sampling configuration commands
	Runtime sampling commands
	Analysis
	Signal conditioner control
	Editing operations
	String functions
	Array arithmetic functions
	Mathematical functions
	Digital filtering
	Fitting functions
	User interaction commands
	File system
	Text files
	CFS variables
	Binary files
	Serial line control
	Debugging operations
	Environment

	Alphabetical command reference
	Alphabetical command reference
	Abs()
	App()
	AppendFrame()
	ArrXXX() commands
	ArrAdd()
	ArrConst()
	ArrDiff()
	ArrDiv()
	ArrDivR()
	ArrDot()
	ArrFFT()
	ArrFilt()
	ArrIntgl()
	ArrMul()
	ArrSub()
	ArrSubR()
	ArrSum()
	Asc()
	ATan()
	BinError()
	BinSize()
	BinToX()
	BinZero()
	BRead()
	BReadSize()
	BSeek()
	BuffXXX() Buffer commands
	BuffAdd()
	BuffAddTo()
	BuffAcc()
	BuffClear()
	BuffCopy()
	BuffCopyTo()
	BuffDiv()
	BuffDivBy()
	BuffExchange()
	BuffMul()
	BuffMulBy()
	BuffSub()
	BuffSubFrom()
	BuffUnAcc()

	BWrite()
	BWriteSize()
	ChanCount()
	ChanDelete()
	ChanDiff()
	ChanIntgl()
	ChanItems()
	ChanKind()
	ChanList()
	ChanMean()
	ChanMeasure()
	ChanNegate()
	ChanNumbers()
	ChanOffset()
	ChanOrder()
	ChanPoints()
	ChanRange()
	ChanRectify()
	ChanScale()
	ChanSearch()
	ChanSelect()
	ChanShift()
	ChanShow()
	ChanSmooth()
	ChanSubDC()
	ChanTitle$()
	ChanUnits$()
	ChanValue()
	ChanVisible()
	ChanWeight()
	ChanZero()
	Chr$()
	Colour()
	CondXXX() Conditioner commands
	CondFilter()
	CondFilterList()
	CondGain()
	CondGainList()
	CondGet()
	CondOffset()
	CondOffsetLimit()
	CondRevision$()
	CondSet()
	CondSourceList()
	CondType()

	Cos()
	Cursor()
	CursorActiveGet()
	CursorActiveSet()
	CursorDelete()
	CursorExists()
	CursorLabel()
	CursorLabelPos()
	CursorMode()
	CursorNew()
	CursorRenumber()
	CursorSet()
	Date$()
	Debug()
	DeleteFrame()
	DelStr$()
	Dialogs
	DlgChan()
	DlgCheck()
	DlgCreate()
	DlgInteger()
	DlgLabel()
	DlgList()
	DlgReal()
	DlgShow()
	DlgString()
	DlgText()

	Draw()
	DrawAll()
	DrawMode()
	Dup()
	EditClear()
	EditCopy()
	EditCut()
	EditPaste()
	EditSelectAll()
	Error$()
	Eval()
	Exp()
	ExportChanFormat()
	ExportChanList()
	ExportFrameList()
	ExportTextFormat()
	ExportTimeRange()
	FileClose()
	FileComment$()
	FileConvert$()
	FileCopy()
	FileDelete()
	FileExportAs()
	FileGetIntVar()
	FileGetRealVar()
	FileGetStrVar$()
	FileList()
	FileName$()
	FileNew()
	FileOpen()
	FilePath$()
	FilePathSet()
	FilePrint()
	FilePrintScreen()
	FilePrintVisible()
	FileQuit()
	FileSave()
	FileSaveAs()
	FileVarCount()
	FileVarInfo()
	FiltApply()
	FiltAtten()
	FiltCalc()
	FiltComment$()
	FiltCreate()
	FiltInfo()
	FiltName$()
	FiltRange()
	FIRMake()
	FIRQuick()
	FIRResponse()
	Fitting
	Testing the fit
	FitExp()
	FitGauss()
	FitLine()
	FitLinear()
	FitNLUser()
	FitPoly()
	FitSin()

	FontGet()
	FontSet()
	Frac()
	Frame()
	FrameAbsStart()
	FrameComment$()
	FrameCount()
	FrameFlag()
	FrameGetIntVar()
	FrameGetRealVar()
	FrameGetStrVar$()
	FrameList()
	FrameMean()
	FrameSave()
	FrameState()
	FrameTag()
	FrameUserVar()
	FrameVarCount()
	FrameVarInfo()
	FrontView()
	GammaP()
	GammaQ()
	Grid()
	HCursor()
	HCursorChan()
	HCursorDelete()
	HCursorExists()
	HCursorLabel()
	HCursorLabelPos()
	HCursorNew()
	HCursorRenumber()
	Help()
	Input()
	Input$()
	InStr()
	Interact()
	LastTime()
	LCase$()
	Left$()
	Len()
	Ln()
	LnGamma()
	Log()
	LogHandle()
	MarkCode()
	MarkEdit()
	MarkTime()
	Max()
	Maxtime()
	Message()
	Mid$()
	Min()
	Minmax()
	Mintime()
	MoveBy()
	MoveTo()
	NextTime()
	Optimise()
	Overdraw()
	OverdrawFrames()
	OverdrawGetFrames()
	PaletteGet()
	PaletteSet()
	Pow()
	Print()
	Print$()
	PrintLog()
	Process()
	ProcessAll()
	ProcessFrames()
	ProcessOnline()
	Profile()
	ProgKill()
	ProgRun()
	ProgStatus()
	ProtocolAdd()
	ProtocolClear()
	ProtocolDel()
	ProtocolFlags()
	ProtocolName$()
	Protocols()
	ProtocolStepGet()
	ProtocolStepSet()
	PulseXXX()�Pulse output commands
	PulseAdd()
	PulseClear()
	PulseDataGet()
	PulseDataSet()
	PulseDel()
	PulseFlags()
	PulseName$()
	Pulses()
	PulseTimesGet()
	PulseTimesSet()
	PulseType()
	PulseVarGet()
	PulseVarSet()
	PulseWaveformGet()
	PulseWaveformSet()
	PulseWaveGet()
	PulseWaveSet()

	Query()
	Rand()
	Read()
	ReadStr()
	Right$()
	Round()
	SampleAbort()
	SampleAbsLevel()
	SampleAccept()
	SampleArtefactGet()
	SampleArtefactSet()
	SampleAutoFile()
	SampleAutoName$()
	SampleBar()
	SampleBurst()
	SampleClear()
	SampleDacFull()
	SampleDacMask()
	SampleDacUnits$()
	SampleDacZero()
	SampleDigIMask()
	SampleDigOMask()
	SampleFixedInt()
	SampleFixedVar()
	SampleHandle()
	SampleKey()
	SampleKeyMark()
	SampleLimitFrames()
	SampleLimitSize()
	SampleLimitTime()
	SampleMode()
	SampleOutClock()
	SampleOutLength()
	SampleOutMode()
	SampleOutTrig()
	SamplePause()
	SamplePeriBitState()
	SamplePeriDigBit()
	SamplePeriHyst()
	SamplePeriLevel()
	SamplePeriLowLev()
	SamplePeriType()
	SamplePeriPoints()
	SamplePoints()
	SamplePortFull()
	SamplePortName$()
	SamplePortOptions$()
	SamplePorts()
	SamplePortUnits$()
	SamplePortZero()
	SampleProtocol()
	SampleRate()
	SampleReset()
	SampleStart()
	SampleState()
	SampleStateDac()
	SampleStateDig()
	SampleStateRepeats()
	SampleStates()
	SampleStatesIdle()
	SampleStatesMode()
	SampleStatesOrder()
	SampleStatesRepeats()
	SampleStatesReset()
	SampleStatesRun()
	SampleStatus()
	SampleStop()
	SampleSweep()
	SampleTrigger()
	SampleWrite()
	ScriptBar()
	ScriptRun()
	Seconds()
	Selection$()
	SerialClose()
	SerialCount()
	SerialOpen()
	SerialRead()
	SerialWrite()
	SetXXX() commands
	SetAmplitude()
	SetAutoAv()
	SetAverage()
	SetCopy()
	SetLeak()
	SetMemory()
	SetPower()
	SetTrend()
	SetTrendChan()

	ShowBuffer()
	ShowFunc()
	Sin()
	Sound()
	Sqrt()
	Str$()
	Sweeps()
	System$()
	System()
	Tan()
	Time$()
	TimeDate()
	TimeRatio()
	TimeUnits$()
	The toolbar
	Toolbar()
	ToolbarClear()
	ToolbarEnable()
	ToolbarSet()
	ToolbarText()
	ToolbarVisible()

	Trunc()
	UCase$()
	Val()
	View()
	View(v,c).[]
	View().x()
	ViewFind()
	ViewKind()
	ViewList()
	ViewSource()
	ViewStandard()
	ViewUseColour()
	Window()
	WindowDuplicate()
	WindowGetPos()
	WindowSize()
	WindowTitle$()
	WindowVisible()
	XAxis()
	XAxisMode()
	XAxisStyle()
	XHigh()
	XLow()
	XRange()
	XScroller()
	XTitle$()
	XToBin()
	XUnits$()
	XYAddData()
	XYColour()
	XYCount()
	XYDelete()
	XYDrawMode()
	XYGetData()
	XYInCircle()
	XYInRect()
	XYJoin()
	XYKey()
	XYRange()
	XYSetChan()
	XYSize()
	XYSort()
	YAxis()
	YAxisMode()
	YAxisStyle()
	Yield()
	YHigh()
	YLow()
	YRange()

	Index

