

The Signal

script language
Version 5

ii

Copyright © Cambridge Electronic Design Limited 1997-2012

Neither the whole nor any part of the information contained in, or the product described
in, this guide may be adapted or reproduced in any material form except with the prior
written approval of Cambridge Electronic Design Limited.

Version 5.00 October 2010
Version 5.01 February 2011
Version 5.02 May 2011
Version 5.03 September 2011
Version 5.04 October 2011
Version 5.05 January 2012
Version 5.06 April 2012
Version 5.08 November 2012

Published by:

Cambridge Electronic Design Limited
Science Park
Milton Road
Cambridge
CB4 0FE
UK

Telephone: Cambridge (01223) 420186
 International +44 1223 420186
Fax: Cambridge (01223) 420488
 International +44 1223 420488
Email: info@ced.co.uk
Web site: http://www.ced.co.uk

Curve fitting procedures are based on routines in Numerical Recipes: The Art of
Scientific Computing, published by Cambridge University Press, and are used by
permission.

Trademarks and Tradenames used in this guide are acknowledged to be the Trademarks
and Tradenames of their respective Companies and Corporations.

 Table of Contents

iii

Introduction..1-1
What is a script?.. 1-1
Hello world ... 1-1
Views and view handles ... 1-2
Writing scripts by example ... 1-2
Using recorded actions.. 1-3
Derived views ... 1-5
Notation conventions .. 1-5
Sources of script information.. 1-6

The script window and debugging...2-1
Syntax colouring ... 2-2
Editing features for scripts .. 2-2
Debug overview.. 2-2
Preparing to debug .. 2-3
Inspecting variables .. 2-4
Call stack... 2-5

Script language syntax ...3-1
Keywords and names .. 3-1
Data types ... 3-1
Variable declarations .. 3-3
Constant delarations.. 3-3
Arrays ... 3-3
Resize array... 3-5
Data views as arrays.. 3-6
Statement types ... 3-7
Comments ... 3-7
Expressions and operators .. 3-7
Flow of control statements.. 3-9
Functions and procedures ... 3-12
Channel specifiers... 3-14
Include files... 3-15
Include files and debugging.. 3-16
Program size limits ... 3-16

Commands by function...4-1
Windows and views .. 4-1
Data views... 4-2
Vertical cursors ... 4-3
Horizontal cursors... 4-3
Channels.. 4-3
Buffer .. 4-5
XY view.. 4-5
Sampling configuration commands .. 4-6
Runtime sampling commands ... 4-8
Analysis .. 4-9
Signal conditioner control... 4-9
1401 access ... 4-9
Editing operations ... 4-10
Digital filtering ... 4-10
String functions... 4-11
Array and matrix arithmetic.. 4-11
Fitting functions.. 4-12

 The Signal script language

iv

Mathematical functions .. 4-12
User interaction commands .. 4-13
File system.. 4-14
Text files ... 4-14
CFS variables.. 4-14
Binary files ... 4-14
Serial line control.. 4-15
Debugging operations... 4-15
Environment ... 4-15
Multiple monitor support.. 4-15

Alphabetical command reference .. 5-1

 Introduction 1

For many users, the interactive nature of Signal may provide all the functionality
required. This is often the case where the basic problem to be addressed is to present the
data in a variety of formats for visual inspection with, perhaps, a few numbers to extract
by cursor analysis and a picture to cut and paste into another application. However, some
users need analysis of the form:

What is a script?

1. Find the first peak in the frame after a cursor.
2. Find the trough after that.
3. Compute the time difference between these two points and the slope of the line.
4. Print the results.
5. If not at the end of the file, move to the next frame and go back to step 1.

This could all be done manually, but it would be very tedious. A script can automate this
process, however it requires more effort initially to write it. A script is a list of
instructions (which can include loops, branches and calls to user-defined and built-in
functions) that control the Signal environment. You can create scripts by example, or
type them in by hand. If you are new to script writing it would be a good idea to work
through the relevant chapters in the Training Manual before referring to this manual for
more detailed information.

Traditionally, the first thing written in every computer language prints “Hello world” to
the output device. Here is our version that does it twice! To run this, use the File menu
New command to create a new, empty script window. Type the following:

Hello world

Message("Hello world");
PrintLog("Hello world");

Click the Run button to check and run your first script. If you have made any typing
errors, Signal will tell you and you must correct them before the script will run. The first
line displays “Hello world” in a box and you must click on OK to close it. The second
line writes the text to the Log view. Open the Log view to see the result (if the Log
window is hidden you should use the Window menu Show command to make it visible).

So, how does this work? Signal recognises names followed by round brackets as a
request to perform an operation (called a function in computer-speak). Signal has around
400 built-in functions, and you can add more with the script language. You pass the
function extra information inside the round brackets. The additional information passed
to a function is called the function arguments.

Signal interprets the first line as a request to use the function Message() with the
argument "Hello world". The message is enclosed in double quotation marks to flag
that it is to be interpreted as text, and not as a function name or a variable name.

An argument containing text is called a string. A string is one of the three basic data
types in Signal. The other two are integer numbers (like 2, -6 and 0) and real numbers
(like 3.14159, -27.6 and 3.0e+8). These data types can be stored in variables.

Signal runs your script in much the same way as you would read it. Operations are
performed in reading order (left to right, top to bottom). There are also special commands
you can insert in the script to make the it run round loops or do one operation rather than
another. These are described in the script language syntax chapter.

Signal can give you a lot of help when writing a script. Move the text caret to the middle
of the word Message and press the F1 key. Help for the Message() command appears,
and at the bottom of the help entry you will find a list of related commands that you
might also find useful.

1-1

 The Signal script language

The most basic concept in a script is that of a view and the view handle that identifies it.
A view is a window in Signal that the script language can manipulate

Views and view
handles

There is always a current view. Even if you close all windows the Log view, used for text
output by the PrintLog() command, remains. Whenever you use a built-in function
that creates a new view, the function returns a view handle. The view handle is simply an
integer number that identifies the view. It is used with the View() and FrontView()
functions to specify the current view and the view that should be on top of all windows.

The running script is hidden from most commands, however you can obtain its handle
using App() so you can show and hide it.

Whenever a script creates a new view, the view becomes the current view. However,
views are created invisibly so that they can be configured before appearing. You can use
WindowVisible(1) to display a new window.

To help you write scripts Signal can monitor your actions and write the equivalent script.
This is often a great way to get going writing scripts, but it has limitations. Scripts
generated this way only repeat actions that you have already made. The good point of
recording your actions is that Signal shows you the correct function to use for each
activity.

Writing scripts by
example

For example, let us suppose that you have opened a data file. Use the Turn Recording
On option of the Script menu. Click on the data file view, then select Analysis, New
memory view, Waveform average, and with the default settings, process all the frames in
the file. Finally you use the Stop recording command in the Script menu. Signal opens
a new window holding the equivalent script:

var v3%;
var v4%;
v3%:=ViewFind("Example.cfs");
FrontView(v3%);
v4%:=SetAverage(-1,0.04,0,0,0);
WindowVisible(1);
ProcessFrames(1,-1,-1,0,1);

The ViewFind(), FrontView(), SetAverage(), and ProcessFrames() functions
are described in this manual and they reflect the actions that you performed. The v3% and
v4% variables hold view handles. The script needs to save these handles in unique
variables. To do this it generates variable names based on the internal view number.

The WindowVisible(1) command is present because new windows are hidden when
they are created by the script. Signal creates invisible windows so that you can size and
position them before display to prevent excessive screen repainting.

1-2

 Introduction

The script recorder produces all the optional arguments for ProcessFrames(), to
process all the frames from 1 to the last frame in the file, and to optimise the y axes after
processing. The memory view is not cleared before processing, which in this case makes
no difference as the new memory view is created with zero data.

Now do the same again, using the Turn Recording On option of the Script menu,
clicking on the data file view, selecting Analysis, New memory view, Waveform
average, as before, but this time change the settings to select channel 3, width 0.02 and
start offset of 0.01, then process. When you use the Stop recording command you will
see a similar script, but with different arguments for SetAverage(). In this example we
did not change the options in the Process dialog.

var v5%;
var v8%;
v5%:=ViewFind("Example.cfs");
FrontView(v8%);
v4%:=SetAverage(-1,0.02,0.01,0,0);
WindowVisible(1);
ProcessFrames(1,-1,-1,0,1);

You can use the Turn Recording On option of the Script menu before any small
sequence of operations. Then use the Stop recording command in the Script menu to
see the script commands generated.

You can now run the recorded script, using the control buttons at the upper right of the
script window. The script runs and generates a new memory view, repeating your
actions. Now suppose we want to run this for several files, each one selected by the user.
You must edit the script a bit more and add in some looping control. The following script
suggests a solution. Notice that we have now changed the view handle variables to names
that are a little easier to remember.

Using recorded
actions

We simplify the ProcessFrames() command to replace start frame by -1 for all frames
in the data file. Without the optional arguments, the y axis will not be optimised after the
processing. SetAverage(1) also needs no extra arguments to average data in channel 1
for the whole frame.

var fileH%, aveH%; 'view handle variables
fileH% := FileOpen("", 0, 1); 'blank for dialog, single window
while fileH% > 0 do 'FileOpen returns -ve if no file
 aveH% := SetAverage(1);
 WindowVisible(1); 'Average channel 1
 ProcessFrames(-1); 'Process all frames in the file
 Draw(); 'Update the average display
 fileH% := FileOpen("", 0, 1); 'ask for the next file, or cancel
wend;

This time, Signal prompts you for the file to open. The file identifier is negative if
anything goes wrong opening the file, or if you press the Cancel button. We have also
included a Draw() statement to force Signal to draw the data after it calculates the
average. There is a problem with this script if you open a file that does not contain a
channel 1 that holds waveform data although this is unlikely in Signal. We will deal with
this a little later.

1-3

 The Signal script language

1-4

However, you will find that the screen gets rather cluttered up with windows. We do not
want the original window once we have calculated the average, so the next step is to
delete it, adding the line
View(fileH%).FileClose(); 'Shut the old window

The View(). syntax allows a function to access data belonging to a view other than the
current view. The fileH% argument, and the dot after the command, tell the script
system that we want to change the current view to the data file view temporarily, for the
duration of the FileClose() function.

We have also added a line to close down all the windows at the start, to reduce the clutter
when the script starts.

var fileH%, aveH%;
FileClose(-1); 'close all windows to tidy up
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 aveH% := SetAverage(1); 'set up average on selected chan
 WindowVisible(1); 'make average visible
 ProcessFrames(-1); 'do the average
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the average display
 fileH% := FileOpen("", 0, 1); 'ask for the next file, or cancel
wend;

This seems somewhat better, but we still have the problem that there will be an error if
the file does not hold a channel 1, or it is of the wrong type. The solution to this is to ask
the user to choose a channel using a dialog. We will have a dialog with a single field that
asks us to select a suitable channel:
var fileH%, aveH%, chan%; 'Add a new variable for channel
FileClose(-1); 'close all windows to tidy up
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 DlgCreate("Channel selection"); 'Start a dialog
 DlgChan(1, "Choose channel to average", 1); 'all waveform
 if (DlgShow(chan%) > 0) and 'User pressed OK and...
 (chan% > 0) then '...selected a channel?
 aveH% := SetAverage(chan%); 'set up average on selected chan
 WindowVisible(1); 'make average visible
 ProcessFrames(-1); 'average all the frames
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the display
 endif
 fileH% := FileOpen("", 0, 1); 'ask for the next file
wend;

The DlgCreate() function has started the definition of a dialog with one field that the
user can control. The DlgChan() function sets a prompt for the field, and declares it to
be a channel list from which we must select a channel (or we can select the No channel
entry). The DlgShow() function opens the dialog and waits for you to select a channel
and press OK or Cancel. The if statement checks that all is well before making the
histogram.

 Introduction

The current view when the ProcessFrames() command is used is the memory view
and we may want to access information about the data file, such as the maximum frame
number in the original time view. The View(). syntax allows a function to access data
belonging to a view other than the current view.

Derived views

var fileV%;
var aveV%;
fileV%:=ViewFind("Example.cfs");
FrontView(fileV%);
aveV%:=SetAverage(-1,0.04,0,0,0);
WindowVisible(1);
ProcessFrames(1, View(fileV%).FrameCount(),-1,0,1);

In this example we replaced -1 for last frame in file with the actual frame number
returned by the FrameCount() function. The fileV% argument, and the dot after the
command, tell the script system that we want to change the current view to the data file
view temporarily, for the duration of the FrameCount() function.

In many scripts we will have a variable such as fileV% holding the data view handle,
but you can also use the function ViewSource() to access it directly. The following
script shows how you would ensure that when you present this message you are counting
frames in the data view associated with the current memory view.

var fileV%, aveV%;
fileV%:=ViewFind("Example.cfs"); 'view data file
if fileV%>0 then
 FrontView(fileV%);
 aveV%:=SetAverage(3); 'set up average of channel 3
 WindowVisible(1);
 ProcessFrames(-1); 'process all frames in the file
 Message("We averaged %d frames",View(ViewSource()).FrameCount());
endif

In this example the Message() command displays a string in which %d is replaced by
the value for the frame count.

Throughout this manual we use the font of this sentence to signify descriptive text.
Function declarations, variables and code examples print in a monospaced font, for
example a% := View(0). We show optional keywords and arguments to functions in
curly braces:

Notation conventions

func Example(needed1, needed2 {,opt1 {,opt2}});

In this example, the first two arguments are always required; the last two are optional.
Any of the following would be acceptable uses of the function:

a := Example(1,2); 'Call omitting the optional arguments
a := Example(1,2,3); 'Call omitting one argument
a := Example(1,2,3,4); 'Call using all arguments

A vertical bar between arguments means that there is a choice of argument type:

func Choice(i%|r|str$);

In this case, the function takes a single argument that could be an integer, a real or a
string. The function will detect the type that you have passed and may perform a different
action depending upon the type.

1-5

 The Signal script language

Three dots (...) stand for a list of further, similar items. It is also used when a function
can accept an array with any number of dimensions:
Func Sin(x|x[]{[]...});

This means that the function Sin() will accept a real value or an array with one or more
dimensions.

You will find that the rest of this manual is a reference to the script language and to the
built-in script functions. Once you are familiar with the scripting system it will be your
most useful documentation. There are example and utility script provided with Signal.
These are copied to the scripts folder within the folder that contains Signal.

Sources of script
information

There is a separate manual provided with Signal that has been used for our user training
day courses, held at CED and around the world. This manual contains many annotated
examples and tutorials. Some of the scripts in this manual are useful in their own right;
others provide skeletons upon which you can build your own applications.

Our web site at www.ced.co.uk has example scripts and script updates that you can
download.

1-6

 The script window and debugging 2

Script window You use the script window when you write and debug a script. Once you are satisfied that
your script runs correctly you would normally run a script from the script menu without
displaying the source code. You can have several scripts loaded at a time and select one
to run with the Script menu Run Script command. If a script is opened from a read-only
medium, or the script file is write protected, you will not be allowed to edit it.

The script window is a text
window with a few extra
controls including a folding
margin that allows you to fold
away inner loops, functions
and procedures. The folding
margin can be hidden; see the
Edit menu Preferences for
details of configuring the
script folding margin.

 Margin (breakpoints and bookmarks)

 Folding margin

To the left of the text area is a margin where you can set break points (one is shown
already set), bookmarks, and where the current line of the script is indicated during
debugging. Above the text area is a message bar and several controls. The controls have
the following functions:

Functions

This control is a quick way to find any func or proc in your script. Click on this to
display a list, in alphabetical order, of the names of all user-defined routines. Select one,
and the window will scroll to it. To be located, the keywords func and proc must be at
the start of a line and the name of the routine must be on the same line.

The script compiler checks the syntax of the script and if no errors are found it creates the
compiled version, ready to run. If the script has not been changed since the last compile
and no other script has been compiled, the button is disabled, as there is no need to
compile again. Signal can have one compiled script in memory at a time.

Compile

If the script has not been compiled it is compiled first. If no errors are found, Signal runs
the compiled version, starting from the beginning. Signal skips over proc ... end;
and func ... end; statements, so the initial code can come before, between or after
any user-defined procedures and functions. This button is disabled once the script has
started to run.

Run

This button sets a break point on the line containing the text caret, or clears a break if one
is already set. A break point stops a running script when it reaches the start of the line
containing the break point. You can also set and clear break points by moving the mouse
pointer over the margin on the left of the script and double clicking.

Set break point

Not all statements can have break points set on them. Some statements, such as var,
const, func and proc compile to entries in a symbol table; they generate no code. If
you set a break point on one of them the break point will appear at the next statement that
is breakable. If you set break points before you compile your script, you may find that
some break points move to the next “breakable” line when you compile.

This button is enabled if there are any break points set in the script. Click this button to
remove all break points from the script. Break points can be set and cleared at any time,
even before your script has been compiled.

Clear all break points

This button provides help on the script language. It takes you to an alphabetic list of all
the built-in script functions. If you scroll to the bottom of this list you can also find links
to the script language syntax and to the script language commands grouped by function.

Help

2-1

 The Signal script language

Within a script, you can get help on keywords and built in commands by clicking on the
keyword or command and pressing the F1 key.

Syntax colouring Signal supports syntax colouring for both the script language and also for the output
sequence editor. You can customise the colouring (or disable it) from the Script files
settings section of the Edit menu Preferences dialog, Display tab. The language
keywords have the standard colour blue, quoted text strings have the standard colour red,
and comments have the standard colour green. You can also set the colour for normal text
(standard is black) and for the text background (standard colour white).

The syntax colouring options are saved in the Windows registry. If several users share the
same computer, they can each have their own colour preferences as long as they log in as
different users.

Editing features for
scripts

There are some extra editing features that can help you when writing scripts. These
include automatic formatting, commenting and un-commenting of selected lines, code
folding, auto-complete of typed words and pop-up help for built-in and user-defined
functions. These are described in the documentation for the Edit menu.

Debug overview Despite all our attempts to make writing a script easy, and all your attempts to get things
right, sooner or later (usually sooner), a script will refuse to do what you expect. Rather
than admit to human error, programmers attribute such failures to “bugs”, hence the act
of removing such effects is “debugging”. The term dates back to times when an insect in
the high voltage supply to a thermionic valve really could cause hardware problems.

To make bug extermination a relatively simple task, Signal has a “debugger” built into
the script system. With the debugger you can:

● Step one statement at a time
● Step into or over procedures and functions
● Step out of a procedure or function
● Step to a particular line
● Enter the debugger on a script error to view variable values
● View local and global variables
● Watch selected local and global variables
● Edit variable values
● See how you reached a particular function or procedure
● Set and clear break points

With these tools at your disposal, most bugs are easy to track down.

2-2

 The script window and debugging

Preparing to debug Unlike most languages, the Signal script language does not need any special preparation
for debugging except that you must set a break point or include the Debug(); command
at the point in your script at which you want to enter the debugger.

Alternatively, you can also enter the debugger by pressing the Esc key (you may need to
hold it down for a second or two, depending on what the script is doing). If the
Toolbar() or Interact() commands are active, hold down the Esc key and click on a
button. This is a very useful way to break out of programs that are running round in a
loop with no exit! You can stop the user entering debug with the Debug(0) command,
but we suggest that this feature is added after the script has been tested! Once you have
disabled debugging, there is no way out of a loop.

You can also choose to enter debug on a script error by checking the Enter debug on
script error box in the preferences dialog (accessed from the Edit menu). Depending upon
the error, this may let you check the values of variables to help you fix the problem.

When your script enters the
debugger, the debug toolbar opens
if it was not already visible. The
picture shows the toolbar as a
floating window, but you can dock it to any side of the Signal window by dragging it
over the window edge.

Stop running the script. There is no check that you really meant to do this, as we
assume that if you know enough to get into the debugger, you know what you are

doing! You can use the Debug() command to disable the debugger.

Display the current line in the script. If the script window is not visible, this will
make it visible, then bring it to the top and scroll the text to the current line.

If the current statement contains a call to a user-defined Proc or a Func, step into
it, otherwise just step. This does not work with the Toolbar() command which

is not user-defined, but which can cause user-defined routines to be called. To step into a
user-defined Func that is linked to a Toolbar() command, set a break point in the
Func.

Step over this statement to the next statement. If you have more than one
statement on a line you will have to click this button once for each statement, not

once per line.

If you are in a procedure or function, step until you return from it. This does not
work if you are in a function run from the Toolbar() command as there is

nowhere to return to. In this case, the button behaves as if you had pressed the run button.

Run until the script reaches the start of the line containing the text caret. This is
slightly quicker than setting a break point, running to it, then clearing it (which is

what this does).

Run the script. This disables the buttons on the debug toolbar and the script runs
until it reaches a break point or the end of the script.

Show the local variables for the current user-defined func or proc in a window.
If there is no current routine, the window is empty. You can edit a value by double

clicking on the variable. Elements of arrays are displayed for the width of the text
window. If an array is longer than the space in the window, the text display for the array
ends with … to show that there is more data.

2-3

 The Signal script language

Show the global variable values in a window. You can edit a global variable by
double clicking on it. The very first entry in this window lists the current view by

handle, type and window name.

Display the call stack (list of calls to user-defined functions with their arguments)
on the way to the current line in a window. If the Toolbar() function has been
used, the arguments for it appear, but the function name is blank.

Open the Watch window. This displays global and local variables that were
selected in the global or local variables windows. Local variables are displayed

with values when the user-defined Proc or Func in which they are defined is active.

The debug toolbar and the locals, globals, watch and call windows close at the end of a
script. Buttons are disabled if they cannot be used. Hover the mouse pointer over a button
to display a Tool tip; if the Status bar is visible a longer description can be seen there.

The example above shows a script that prompts the user to select a data file, then
generates a list of internal and extra information available from the file. The user set a
breakpoint, ran the script, then clicked on the Step button a few times and clicked the
Locals button, to look at the local variables

Inspecting variables If the locals, globals or watch windows are open, they display a list of variables. If there
are more variables than can fit in the window you can scroll the list up and down to show
them all. Simple variables are followed by their values, a line is highlighted if the
variable value was changed by the last step. If you double click on one a new window
opens in which you can edit the value of the variable.

If you double click on an array, a new window opens that lists the values of the elements
of the array and allows you to change them. You choose the element by editing the index
fields, one for each dimension.

2-4

 The script window and debugging

The variable windows contain a menu with the following commands:

File Close

Menu commands

Closes the debug window
Edit Copy Copy selected text to the

clipboard
 Log Copy selected text to the

Log view
 Select All Select all windows text
 Find... Open the Find text window
 Find Again Repeat the last find

operation
 Find Last Repeat last find operation

searching backwards
 Toggle Bookmark Set/clear bookmark in

Global variable window
 Next Bookmark Jump to the next bookmark

in the Global variable
window

 Previous Bookmark Jump to previous bookmark
in the Global variable
window

 Clear All Bookmarks Remove all bookmarks
from the Global variable
window

View Font Open the Font dialog to
change the window settings

Watch Add to the Watch window Globals and Locals only:
add selected items to the
end of the Watch window

 Delete from the Watch
window

Watch window only:
remove selected item from
the window

 Delete all watched
variables

Watch window only:
remove all items from the
window

 Delete 'Not found' variables Watch window only:
remove all items that are
not in the current script

 Sort variables into
alphabetic order

Watch window only: sort
items into alphabetic order

Most commands have keyboard shortcuts listed in the menu. The Watch menu items are
also available on a right-click context menu, where appropriate.

You can add variables to the watch window by right-clicking on them in the locals or
globals window and choose the option to copy the selected variables to the watch
window. In the watch window, right-click to see available options to control the watched
variables. The watch window remembers the watched variables between debugging
sessions. If a variable does not exist in the current script, it is still remembered, but is
marked as not existing.

Watch window

2-5

 The Signal script language

Call stack The call stack can
sometimes be useful to
figure out how your
script arrived at a
position in your code.
This is particularly true if
your script makes
recursive use of
functions. A function is
recursive when it calls
itself, either directly, or
indirectly through other functions. A common fault with scripts is to have mutually
recursive user options. This leads to users burrowing deeper and deeper into the call stack
until they run out of memory. The call stack can help to detect such problems.

2-6

 Script language syntax 3
A script consists of lines of text. Each line can be up to 240 characters long, however we
suggest a maximum line length of 78 characters as experience shows that this makes
printing and transfer of scripts to other systems simple.

Script format

The script compiler treats consecutive white space as a single space except within a literal
string. White space characters are end of line, carriage return, space and tab. The
compiler treats comments as white space.

The maximum size of a script is limited by the number of instructions that it compiles
into. This number is displayed in the status bar of the script window when you compile.
The limit is currently 1,000,000 instructions, which is a very large script, probably
around 160,000 lines of typical script code.

Keywords and names All keywords, user-defined functions and variable names in the script language start with
one of the letters a to z followed by the characters a to z and 0 to 9. Keywords and
names are not case sensitive, however users are encouraged to be consistent in their use
of case as it makes scripts easier to read. Variables and user-defined functions use the
characters % and $ at the end of the name to indicate integer and string type.

User-defined names can extend up to a line in length. Most users will restrict themselves
to a maximum of 20 or so characters.

The following keywords are reserved and cannot be used for variables or function names:
and band bor bxor break
case const continue diag do
docase else end endcase endif
for func halt if mod
next not or proc repeat
resize return step then to
trans until var view wend
while xor

Further, names used by Signal built-in functions cannot be redefined as user functions or
global variables. They can be redefined as local variables (not recommended).

There are three basic data types in the script language: real, integer and string. The real
and integer types store numbers; the string type stores characters. Integer numbers have
no fractional part, and are useful for indexing arrays or for describing objects for which
fractions have no meaning. Integers have a limited (but large) range of allowed values.

Data types

Real numbers span a very large range of number and can have fractional parts. They are
often used to describe real-world quantities, for example the weight of an object.

Strings hold text and automatically grow and shrink in length to suit the number of text
characters stored within them.

This type is a double precision floating point number. Numbers are stored to an accuracy
of at least 16 decimal digits and can have a magnitude in the range 10-308 to 10308.
Variables of this type have no special character to identify them. Real constants have a
decimal point or the letter e or E to differentiate from integers. White space is not
allowed in a sequence of characters that define a real number. Real number constants
have one of the following formats where digit is a decimal digit in the range 0 to 9:

Real data type

3-1

 The Signal script language

3-2

{-}{digit(s)}digit.{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}.digit{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}digitE|e{+|-}digit(s)

A number must fit on a line, but apart from this, there is no limit on the number of digits.
The following are legal real numbers:
1.2345 -3.14159 .1 1. 1e6 23e-6 -43e+03

E or e followed by a power of 10 introduces exponential format. The last three numbers
above are: 1000000 0.000023 -43000.0. The following are not legal real numbers:

1 e6 White space is not allowed 1E3.5 Fractional powers are not allowed
2.0E Missing exponent digits 1e500 The number is too large

Integer data type The integer type is identified by a % at the end of the variable name and stores 32-bit
signed integer (whole) numbers in the range -2,147,483,648 to 2,147,483,647. There is
no decimal point in an integer number. An integer number has the following formats
(where digit is a decimal digit 0 to 9, and hexadecimal-digit is 0 to 9 or a to f or A
to F, with a standing for decimal 10 to f standing for decimal 15):
{-}{digit(s)}digit
{-}0x|X{hexadecimal-digit(s)}hexadecimal-digit

You may assign real numbers to an integer, but it is an error to assign numbers beyond
the integer range. Non-integral real numbers are truncated (towards zero) to the next
integral number before assignment. Integer numbers are written as a list of decimal digits
with no intervening spaces or decimal points. They can optionally be preceded by a
minus sign. The following are examples of integers:
 1 -1 -2147483647 0 0x6789abcd 0X100 -0xced

Integers use less storage space than real numbers and are slightly faster to work with. If
you do not need fractional numbers or huge numeric ranges, use integers.

String data type Strings are lists of characters. String variable names end in a $. String variables can hold
strings up to 65534 characters long. Literal strings in the body of a program are enclosed
in double quotation marks, for example:
 "This is a string"

A string literal may not extend over more than one line. Consecutive strings with only
white space between them are concatenated, so the following:
 "This string starts on one lin"
 "e and ends on another"

is interpreted as "This string starts on one line and ends on another".
Strings can hold special characters, introduced by the escape character backslash:

 \" The double quote character (this would normally terminate the string)
\\ The Backslash character itself (beware DOS paths)
\t The Tab character
\n The New Line character (or characters, depending on the system)
\r The Carriage Return character (ASCII code 13)

You can assign integer numbers to real variables and real numbers to integer variables
(unless the real number is out of the integer range when a run-time error will occur).
When a real number is converted to an integer, it is truncated. The Asc(), Chr$(),
Str$() and Val() functions convert between strings and numbers.

Conversion between data
types

 Script language syntax

Variable declarations Variables are created by the var keyword. This is followed by a list of variable names.
You must declare all variable names before you can use them. Arrays are declared as
variables with the size of each dimension in square brackets. The first item in an array is
at index 0. If an array is declared as being of size n, the last element is indexed n-1.
var myInt%,myReal,myString$; 'an integer, a real and a string
var aInt%[20],arl[100],aStr$[3] 'integer, real and string vectors
var a2d[10][4]; '10 rows of 4 columns of reals
var square$[3][3]; '3 rows of 3 columns of strings

You can define variables in the main program, or in user-defined functions. Those
defined in the main program are global and can be accessed from anywhere in the script
after their definition. Variables defined in user-defined functions exist from the point of
definition to the end of the function and are deleted when the function ends. If you have a
recursive function, each time you enter the function you get a fresh set of variables.

The dimensions of global arrays must be constant expressions. The dimensions of local
arrays can be set by variables or calculated expressions. Simple variables (not arrays) can
be initialised to constants when they are declared, but not by expressions using variables
or function calls. Uninitialised numeric variables are set to 0, strings are set empty.

var Sam%:=3+2, jim := 2.3214, sally$:= "My name is \"Sally\"";

Constant declarations Constants are created by the const keyword. A constant can be of any of the three basic
data types, and must be initialised as part of the constant declaration. Constants cannot be
arrays. The syntax and use of constants is the same as for variables, except that you
cannot assign to them or pass them to a function or procedure as a reference parameter.
const Sam%:=3+2, jim := 2.3214, sally$:= "My name is \"Sally\"";

Arrays of data The three basic types (integers, reals and strings) can be made into arrays with from 1 to
5 dimensions. Before Signal version 3.07, the maximum number of dimensions allowed
was 2). We call a one-dimensional array a vector and a two-dimensional array a matrix to
match common usage. Declare arrays with the var statement:
var v[20], M[10][1000], nd[2][3][4][5][6];

This declares a vector with 10 elements, a matrix with 10 rows and 1000 columns and a
5-dimensional array with 720 elements. To reference array elements, enclose the element
number in square brackets (the first element in each dimension is number 0):
v[6] := 1; x := M[8][997]; nd[1][0][0][0][2] := 4.5;

You can declare an array with one or more dimensions set to 0! However, such an array
cannot be used in this state. All dimensions must have non-zero size before you can refer
to an array in anything other than a var or resize statement. You can resize an array
with the resize statement.

There is a maximum number of elements (product of the sizes of the dimensions) that
you are allowed in an array. This is currently set to 100,000,000 in an attempt to prevent
operations that would likely take a very long time.

The dimension sizes for an array declared outside a Proc or Func (a global array) must
all be constant; inside a Proc or Func they can be variables. For example:

Proc VariableSizeArray(n%)
var x[n%];

3-3

 The Signal script language

You cannot have two var statements that refer to the same variable in the same context.
That is, you cannot have code like:

var fred[23][32];
...
var fred[23[48]; 'This line will generate an error

as this will generate a "Name multiply defined or redefined" error. In a Proc or Func,
you can declare an array inside a loop, and change the size of the dimensions each time
around the loop. However, version 4.06 provides the resize statement, and we urge you
to declare arrays outside loops and use resize to do any required size changes.

Proc BadStyle() Proc BetterStyle()
var i%; var arr[0], i%;
for i% := 1 to 100 do for i% := 1 to 100 do
 var arr[i%]; resize arr[i%];

next; next;
end; end;

We may make resizing an array using var illegal in the future. Note that before Signal
version 4.06, resizing with var preserved the original data when the last dimension was
changed, but changes to any other dimension would not preserve the data.

Vector subsets Use v[start:size] to pass a vector or a subset of a vector v to a function. start is
the index of the first element to pass, size is the number of elements. Both start and
size are optional. If you omit start, 0 is used. If you omit size, the sub-set extends to
the end of the vector. To pass the entire vector use v[0:], v[:], v[] or just v.

For example, consider the vector of real numbers declared as var data[15]. This has
15 elements numbered 0 to 14. To pass it to a function as a vector, you could specify:

data or data[] This is the entire vector. This is the same as data[:] or data[0:15].
data[3:9] This is a vector of length 9, being elements 3 to 11.
data[:8] This is a vector of length 8, being elements 0 to 7.

 var data[15]0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

data[3:9]

With a matrix you have more options. You can pass a single element, a vector sub-set, or
a matrix sub-set. Consider the matrix of real numbers defined as var sq[6][7]. You
can pass this as a vector or a matrix to a function as (a, b, c and d are integer numbers):

Matrix subsets

sq[a][b:c] a vector of length c

var sq[6][7];

0 1 2 3 4 5

0

1

2

3

4

5

6
sq[a][] a vector of length 7
sq[a:b][c] a vector of length b
sq[][c] a vector of length 6

s
q
[
1
:
4
]
[
0
]

sq[a:b][c:d] a matrix of size [b][d]
sq or sq[][] a matrix of size [6][7] sq[2:2][2:4]

This diagram shows how sub-sets are constructed.
sq[1:4][0] is a 4 element vector. This could be
passed to a function that expects a vector as an
argument. sq[5][1:6] is a vector with 6 elements.
sq[2:2][2:4] is a matrix, of size [2][4].

sq[5][1:6]

3-4

 Script language syntax

With more than 2 dimensions, you can make a subset of any number of dimensions up to
the size of the original array. These examples show some of the possibilities for passing a
source array with 5 dimensions defined as var nd[4][5][6][7][8];

N-Dimensional array
subsets

nd or nd[][][][][] The entire 5 dimensional array
nd[0][][][][] A 4 dimensional array of size [5][6][7][8]
nd[1:2][][2][][] A 4 dimensional array of size [2][5][7][8]
nd[1][2][3][4][] A vector of size [8]
nd[][][0][0][0] A matrix of size [4][5]

Transpose of an array You can pass the transpose of a vector or matrix to a function with the trans() operator,
or by adding ` (back-quote) after the array or matrix name. The transpose of a matrix
swaps the rows and columns. To be consistent with normal matrix mathematics, a one-
dimensional array is treated as a column vector and is transposed into a matrix with 1
row. That is given var data[15], trans(data) is a matrix of size [1][15].
var M[5][3], v[5], W[5][5];
PrintLog(M, M`); 'Print M and its transpose
PrintLog(M[][], trans(M[][])); 'Exactly the same as last line
MatMul(W, M, M[][]`); 'set W to M times its transpose
MatMul(W, v, v`); 'set W to v times its transpose

From Signal version 3.07 onwards you can apply the trans() operator to arrays of higher
dimensions. The result is an array with the dimensions and indexing reversed. That is, the
transpose of x[2][3][4] is an array of size [4][3][2]. The element x[i][j][k] in
the original becomes the element at index [k][j][i] in the transposed array.

Diagonal of a matrix or
array

You can pass the diagonal of a matrix to a function using the diag() operator. This
expects a matrix as an argument and produces a vector whose length is the smaller of the
dimensions of the matrix. Given a matrix M[10][10], diag(M) is a 10 element vector.

From version 3.07 of Signal you can take the diagonal of any array with more than 1
dimension. The result is a vector with the length of the smallest dimension of the array.
For example, given var a[4][5][6], diag(a) is a vector of length 4 holding the
elements: a[0][0][0], a[1][1][1], a[2][2][2] and a[3][3][3].

You cannot change the number of dimensions of an array, but you can change the size of
the dimensions. This is done with the resize statement (added at version Signal version
4.06), which has a syntax that is very similar to var:

Resize array

resize v[24], M[2][3000], nd[6][5][4][3][2], text$[923];

When used in this way, the values in the square brackets, which can be expressions or
constants, set the new size for each dimension. However, if you want to leave a
dimension at the current size, you can use:

resize nd[][][][][n%]; 'change last dimension only

A pair of empty square brackets means that you want to preserve the current size of the
corresponding dimension. The resize statement preserves data in the array (unless you
make one or more dimensions smaller, when data is omitted). When you make
dimensions larger, new numeric array elements are set to 0; new string elements are set to
an empty string ("").

In most cases, you will only want to change one dimension to cope with adding more
items to an array. It is more efficient to increase the last dimension as in this case it is
often possible to extend (or reduce) the memory allocated to the array without physically

3-5

 The Signal script language

moving it in memory. If you change any other dimension than the last, the resize
statement allocates a new array of the required size, copies data into it, replaces the
original array with the new one and releases the memory used by the original array.

You can always resize a global or local array unless a sub-array, transpose or diagonal of
it has been passed to a Proc or Func and is currently in use. You will get the error
message: "Attempt to index non-array or resize sub-array or data view" if you break this
rule. Here are some examples to make this clearer:

var global[2][3];
Level1(global); 'pass entire global array
resize global[3][3]; 'OK

proc Level1(g[][]) 'g is entire global array
var local[3][4];
TryResize(local); 'this is OK, passing entire array
TryResize(g); 'this is OK, passing entire array
TryResize(global); 'this is OK, passing entire array
TryResize(local[:2][]); 'will fail as is a sub-array
ObscureError(local[:2][]); 'pass sub-array of local, OK
ObscureError(g[:1][:1]); 'pass sub-array of global, not OK
end;

Proc TryResize(arr[][])
resize arr[][2];
end;

Proc ObscureError(h[][]) 'will fail in the resize...
resize global[4][]; '...if h is a sub-array of global
end;

When you create a sub-array, transpose or diagonal of an existing array, a temporary
array construct is created that depends on the original. If you were to resize the original,
all the dependant arrays that referred to it would become invalid, so we do not allow you
to make such a change. You cannot resize an array derived from a data view.

Efficiency If you are adding items to an array, it is very inefficient to increase the array size for each
item added. Apart from being very slow, this will cause a pattern of memory allocation
that is about the worst possible for the performance of the system. The standard solution
in this case is to start with a reasonable size, one that will be big enough for most
situations, then when you need more, to allocate a sensible extra portion of space. If you
have no idea how big the target is, the best algorithm (best in terms of reducing the
number of reallocations and memory fragmentation) is to double the size each time you
run out. However, this is also the most wasteful of memory. Increasing by a fixed amount
or a fixed proportion of the existing size may work. Do NOT increase by one each time
unless the array is very small and is never going to get very big.

The script language treats a data view as vectors of real numbers, one vector per channel.
To access a vector element use View(v%,ch%).[index] where v% is the view, ch% is
the channel and index is the bin number, starting from 0. You can pass a channel as an
array to a function using View(v%, ch%).[], or View(v%, ch%).[a:b] to pass a
vector subset starting at element a of length b. You can omit ch%, in which case channel
1 is used. You can also omit View(v%,ch%), in which case channel 1 in the current view
is used. See the View() command for more information.

Data views as arrays

If you change a visible data view, the modified area is marked as invalid and will update
at the next opportunity.

3-6

 Script language syntax

The script language is composed of statements. Statements are separated by a semicolon.
Semicolons are not required before else, endif, case, endcase, until, next, end
and wend, or after end, endif, endcase, next and wend. White space is allowed
between items in statements, and statements can be spread over several lines. Statements
may include comments. Statements are of one of the following types:

Statement types

• A variable or constant declaration
• An assignment statement of the form:

 variable := expression; Set the variable to the value of the expression
 variable += expression; Add the expression value to the variable
 variable -= expression; Subtract the expression value from the variable
 variable *= expression; Multiply the variable by the expression value
 variable /= expression; Divide the variable by the expression value
The +=, -=, *= and /= assignments were added at version 3.02. += can also be used
with strings (a$+=b$ is the same as a$:=a$+b$, but is more efficient).

• A flow of control statement, described below
• A procedure call or a function with the result ignored, for example View(vh%);

Comments in a script A comment is introduced by a single quotation mark. All text after the quotation mark is
ignored up to the end of the line.
View(vh%); 'This is a comment, and extends to the end of the line

Anywhere in the script where a numeric value can be used, so can a numeric expression.
Anywhere a string constant can be used, so can a string expression. Expressions are
formed from functions, variables, constants, brackets and operators. In numerical
expressions, the following operators are allowed, listed in order of precedence:

Expressions and
operators

Numeric operators Operators Names
Highest `, [], () Matrix transpose, subscript, round brackets
 -, not Unary minus, logical not
 *, /, mod Multiply, divide and modulus (remainder)
 +, - Add and subtract
 <, <=, >, >= Less, less or equal, greater, greater or equal
 =, <> Equal and not equal
 and, band Logical and, bitwise and
 or, xor, bor, bxor Logical or, exclusive or and bitwise versions
Lowest ?: Ternary operator

The order of precedence determines the order in which operators are applied within an
expression. Without rules on the order of precedence, 4+2*3 could be interpreted as 18
or 10 depending on whether the add or the multiply was done first. Our rules say that
multiply has a higher precedence, so the result is 10. If in doubt, use round brackets, as in
4+(2*3) to make your meaning clear. Extra brackets do not slow down the script.

The divide operator returns an integer result if both the divisor and the dividend are
integers. If either is a real value, the result is a real. So 1/3 evaluates to 0, while 1.0/3,
1/3.0 and 1.0/3.0 all evaluate to 0.333333…

The minus sign occurs twice in the list because minus is used in two distinct ways: to
form the difference of two values (as in fred:=23-jim) and to negate a single value
(fred :=-jim). Operators that work with two values are called binary, operators that

3-7

 The Signal script language

work with a single value are called unary. There are four unary operators, [], (), - and
not, the remainder are binary.

There is no explicit TRUE or FALSE keyword in the language. The value zero is treated as
false, and any non-zero value is treated as true. Logical comparisons have the value 1 for
true. So not 0 has the value 1, and the not of any other value is 0. If you use a real
number for a logical test, remember that the only way to guarantee that a real number is
zero is by assigning zero to it. For example, the following loop may never end:
var add:=1.0;
repeat
 add := add - 1.0/3.0; ' beware, 1/3 would have the value 0!
until add = 0.0; ' beware, add may never be exactly 0

Even changing the final test to add<=0.0 leads to a loop that could cycle 3 or 4 times
depending on the implementation of floating point numbers.

The result of the comparison operators is integer 0 if the comparison is false and integer 1
if the comparison is true. The result of the binary arithmetic operators is integer if both
operands are integers, otherwise the result is a real number. The result of the logical
operators is integer 0 or 1. The result of the exclusive or operator is true if one operand is
true and the other is false.

The bitwise operators band, bor and bxor treat their operands as integers, and produce
an integer result on a bit by bit basis. They are not allowed with real number operands.

String operators Operators Names
Highest + Concatenate
 <, <=, >, >= Less, less or equal, greater, greater or equal
 =, <> Equal and not equal
Lowest ?: Ternary operator

The comparison operators can be applied to strings. Strings are compared character by
character, from left to right. The comparison is case sensitive. To be equal, two strings
must be identical. You can also use the + operator with strings to concatenate them (join
them together). The character order for comparisons (lowest to highest) is:
 space !"#$%&'()*+,-./0123456789:;<=>?@

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

Do not confuse assignment := with the equality comparison operator, =. They are entirely
different. The result of an assignment does not have a value, so you cannot write
statements like a:=b:=c;.

The ternary operator The ternary operator ?: was added at Signal version 3.08 and has the following format:
numeric expression ? expression1 : expression2

The result of the ternary operator is expression1 if numeric expression evaluates
to a non-zero result otherwise it is expression2. You can use this anywhere that an
expression would be acceptable, including when passing arrays as arguments to
functions. However, expression1 and expression2 must be type compatible in the context
of their use. For example, if one is a string, then the other must also be a string. If they
are arrays passed as arguments, they must have the same type and the same number of
dimensions. If they are arguments passed by reference, they must have identical type. In
an expression, one can be integer and the other real, in which case the combined type is
treated as real.

You are not allowed to use this operator to choose between function or procedure names
passed as arguments into functions or procedures.

3-8

 Script language syntax

The following (meaningless) code gives examples of expressions. Examples of expressions
var jim,fred,sam,sue%,pip%,alf$,jane$;
jim := Sin(0.25) + Cos(0.25);
fred := 2 + 3 * 4; 'Result is 14.0 as * has higher precedence
fred := (2 + 3)* 4; 'Result is 20.0
fred += 1; 'Add 1 to fred
sue% := 49.734; 'Result is 49
sue% := -49.734; 'Result is -49
pip% := 1 + fred > 9; 'Result is 1 as 21.0 is greater than 9
jane$:= pip% > 0 ? "Jane" : "John"; 'Result is "Jane"
alf$:= "alf";
sam := jane$ > alf$; 'Result is 0.0 (a is greater than J)
sam := UCase$(jane$)>UCase$(alf$); 'Result is 1.0 (A < J)
sam := "same" > "sam"; 'Result is 1.0
pip% := 23 mod 7; 'Result is 2
jim := 23 mod 6.5; 'Result is 3.5
jim := -32 mod 6; 'Result is -2.0
sue% := jim and not sam;'Result is 0 (jim = -2.0 and sam = 1.0)
pip% := 1 and 0 or 2>1; 'Result is 1
sue% := 9 band 8; 'Result is 8 (9=1001 in binary, 8=1000)
sue% := 9 bxor 8; 'Result is 1
sue% := 9 bor 8; 'Result is 9

We don't provide maths constants as built-in symbols, but the two most common ones, e
and π are easily generated within a script; e is Exp(1.0) and π is 4.0*ATan(1.0).

Mathematical constants

If scripts were simply a list of commands to be executed in order, their usefulness would
be severely limited. The flow of control statements let scripts loop and branch. It is
considered good practice to keep flow of control statements on separate lines, but the
script syntax does not require this. There are two branching statements, if...endif and
docase...endcase, and three looping statements, repeat...until, while...wend
and for...next. You can also use user-defined functions and procedures with the Func
and Proc statements.

Flow of control
statements

if...endif The if statement can be used in two ways. When used without an else, a single section
of code can be executed conditionally. When used with an else, one of two sections of
code is executed. If you need more than two alternative branches, the docase statement
is usually more compact than nesting many if statements.

if expression then 'The simple form of an if
 zero or more statements;
endif;

if expression then 'Using an else
 zero or more statements;
else
 zero or more statements;
endif;

If the expression is non-zero, the statements after the then are executed. If the expression
is zero, only the statements after the else are executed. The following code adds 1 or 2
to a number, depending on it being odd or even:
if num% mod 2 then
 num%:=num%+2; 'note that the semicolons before...
else '...the else and endif are optional.
 num%:=num%+1;
endif;

3-9

 The Signal script language

3-10

 'The following is equivalent
if num% mod 2 then num%:=num%+2 else num%:=num%+1 endif;

docase...endcase These keywords enclose a list of case statements forming a multiway branch. Each case
is scanned until one is found with a non-zero expression, or the else is found. If the
else is omitted, control passes to the statement after the endcase if no case expression
is non-zero. Only the first non-zero case is executed (or the else if no case is non-zero).

docase
 case exp1 then
 statement list;
 case exp2 then
 statement list;
 ...
 else
 statement list;
endcase;

The following example sets a string value depending on the value of a number:
var base%:=8,msg$;
docase
 case base%=2 then msg$:= "Binary";
 case base%=8 then msg$:= "Octal";
 case base%=10 then msg$:= "Decimal";
 case base%=16 then msg$:= "Hexadecimal";
 else msg$:= "Pardon?";
endcase;

repeat...until The statements between repeat and until are repeated until the expression after the
until keyword evaluates to non-zero. The body of a repeat loop is always executed at
least once. If you need the possibility of zero executions, use a while loop. The syntax of
the statement is:

repeat
 zero or more statements;
until expression;

For example, the following code prints the times of all data items on channel 3 (plus an
extra -1 at the end):

var time := -1; 'start time of search
repeat
 time := NextTime(3, time); 'find next item time
 PrintLog("%f\n", time); 'display the time to the log
until time<0; 'until no data found

The statements between the keywords are repeated while an expression is not zero. If the
expression is zero the first time, the statements in between are not executed. The while
loop can be executed zero times, unlike the repeat loop, which is always executed at
least once.

while...wend

while expression do
 zero or more statements;
wend;

The following code fragment, finds the first number that is a power of two that is greater
than or equal to some number:

 Script language syntax

3-11

var test%:=437, try%:=1;
while try%<test% do 'if try% is too small...
 try% := try% * 2; '...double it
wend;

for...next A for loop executes a group of statements a number of times with a variable changed by
a fixed amount on each iteration. The loop can be executed zero times. The syntax is:

for v := exp1 to exp2 {step exp3} do
 zero or more statements;
next;

v This is the loop variable and may be a real number, or an integer. It must be a
simple variable, not an array element.

exp1 This expression sets the initial variable value before the looping begins.
exp2 This expression is evaluated once, before the loop starts, and is used to test for

the end of the loop. If step is positive or omitted (when it is 1), the loop stops
when the variable is greater than exp2. If step is negative, the loop stops when
the variable is less than exp2.

exp3 This expression is evaluated once, before the loop starts, and sets the increment
added to the variable when the next statement is reached. If there is no step
exp3 in the code, the increment is 1. The value of exp3 can be positive or
negative.

The following example prints the squares of all the integers between 10 and 1:
var num%;
for num% := 10 to 1 step -1 do
 PrintLog("%d squared is %d\n", num%, num% * num%);
next;

If you want a for loop where the end value and/or the step size are evaluated each time
round the loop you should use a while…wend or repeat…until construction.

continue, break Within the three looping statements (for...next, repeat...until and
while...do) you can use the break and continue statements. The break statement
jumps out of the enclosing looping statement; the continue statement jumps to the
evaluation of the expression that determines if a repeat or while will run again and to
the next in a for loop. For example:

var i%;
for i% := 0 to 1000 do
 if StopEarly() then break endif;
 if SkipToNext() then continue endif;
 DoSomething(i%);
next; 'continue jumps here

DoSomethingElse(); 'break jumps to this statement

It is an error to use either of these statements outside a loop. If you need to jump out of
more than one level of looping statements, put the code in a Proc or Func and use the
return statement to jump out.

The break and continue statements are new in Signal version 4.06; if you use them your
script will not compile in older versions of Signal.

 The Signal script language

Halt The Halt keyword terminates a script. A script also terminates if the path of execution
reaches the end of the script. When a script halts, any open external files associated with
the Read() or Print() functions are closed and any windows with invalid regions are
updated. Control then returns to the user.

Functions and
procedures

A user-defined function is a named block of code. It can access global variables and
create its own local variables. Information is passed into user-defined functions through
arguments. Information can be returned by giving the function a value, by altering the
values of arguments passed by reference or by changing global variables.

User-defined functions that return a value are introduced by the func keyword, those that
do not are introduced by the proc keyword. The end keyword marks the end of a
function. The return keyword returns from a function. If return is omitted, the
function returns to the caller when it reaches the end statement. Arguments can be passed
to functions by enclosing them in brackets after the function. Functions that return a
value or a string have names that specify the type of the returned value. A function is
defined as:

func name({argument list}) or proc name({argument list})
{var local-variable-list;} {var local-variable-list;}
statements including return x; statements including return;
end; end;

There is no semicolon at the end of the argument list because the argument list is not the
end of the func or proc statement; the end keyword terminates the statement. Functions
may not be nested within each other.

The argument list is a list of variable names separated by commas. There are two ways to
pass arguments to a function: by value and by reference:

Argument lists

Value Arguments passed by value are local variables in the function. Their initial
values are passed from the calling context. Changes made in the function to a
variable passed by value do not affect the calling context.

Reference Arguments passed by reference are the same variables (by a different name)
as the variables passed from the calling context. Changes made to arguments
passed by reference do affect the calling context. Because of this, reference
arguments must be passed as variables (not expressions or constants) and the
variable must match the type of the argument (except we allow you to pass a
real variable where an integer variable is expected).

Simple (non-array) variables are passed by value. Simple variables can be passed by
reference by placing the & character before the name in the argument list declaration.

Arrays and sub-arrays are always passed by reference. Array arguments have empty
square brackets in the function declaration, for example one[] for a vector and two[][]
for a matrix. The number of dimensions of the passed array must match the declaration.
The array passed in sets the size of each dimension. You can find the size of an array
with the Len() function. An individual array element is a treated as a simple variable.

If you use the trans() or diag() operators to pass the transpose or diagonal of an array
to a function, the array is still passed by reference and changes made in the function to
array elements will change the corresponding elements in the original data.

3-12

 Script language syntax

return The return keyword is used in a user-defined function to return control to the calling
context. In a proc, the return must not be followed by a value. In a func, the return
should be followed by a value of the correct type to match the function name. If no return
value is specified, a func that returns a real or integer value returns 0, and a func that
returns a string value returns a string of zero length.

3-13

proc PrintInfo() 'no return value, no arguments
PrintLog(ChanTitle$(1)); 'Show the channel title
return; 'return is optional in this case as...
end; '...end forces a return for a proc

Examples of user-defined
functions

func sumsq(a, b) 'sum the square of the arguments
return a*a + b*b;
end;

func removeExt$(name$) 'remove text after last . in a string
var n := 0, k := 1;
 repeat
 k:=InStr(name$,".",k); 'find position of next dot
 if (k > 0) then 'if found a new dot...
 n := k; '...remember where
 endif
 until k=0; 'until all found
if n=0 then
 return name$; 'no extension
else
 return Left$(name$,n-1);
end;

proc sumdiff(&arg1, &arg2) 'returns sum and difference of args
arg1 := arg1 + arg2; 'sum of arguments
arg2 := arg1 - 2*arg2; 'original arg1-arg2
return; 'results returned via arguments
end;

func sumArr(data[]) 'sum all elements of a vector
var sum:=0.0; 'initialise the total
var i%; 'index
for i%:=0 to Len(data[])-1 do
 sum := sum + data[i%]; 'of course, ArrSum() is much faster!
 next;
return sum;
end;

Func SumArr2(data[][]) 'Sum of all matrix elements
var rows%,cols%,i%,sum; 'sizes, index and sum, all set to 0
rows% := Len(data[0][]) 'get sizes of dimensions...
cols% := Len(data[][0]); '...so we can see which is bigger
if rows%>cols% then 'choose more efficient method
 for i%:=0 to cols%-1 do sum += ArrSum(data[i%][]) next;
else
 for i%:=0 to rows%-1 do sum += ArrSum(data[][i%]) next;
endif;
return sum;
end;

Variables declared within a function exist only within the body of the function. They
cannot be used from elsewhere. You can use the same name for variables in different
functions. Each variable is separate. In addition, if you call a function recursively (that is
it calls itself), each time you enter the function, you have a fresh set of variables.

 The Signal script language

Unlike global variables, which are only visible from the point in the script in which they
are declared onwards, and local variables, which are visible within a user-defined
function only, user-defined functions are visible from all points in the script. You may
define two functions that call each other, if you wish.

Scope of user-defined
functions

The script language allows a function or procedure to be passed as an argument. The
function declaration includes the declaration of the function type to be passed. Functions
and procedures can occur before or after the line in which they are used as an argument.

Functions as arguments

proc Sam(a,b$,c%)
...
end;

func Calc(va)
return 3*va*va-2.0*va;
end;

func PassFunc(x, func ff(realarg))
return ff(x);
end;

func PassProc(proc jim(realarg, strArg$, son%))
jim(1.0,”hello”,3);
end;

val := PassFunc(1.0, Calc); ’pass function
PassProc(Sam); ’pass procedure

The declaration of the procedure or function argument is exactly the same as for
declaring a user-defined function or procedure. When passing the function or procedure
as an argument, just give the name of the function or procedure; no brackets or arguments
are required. The compiler checks that the argument types of a function passed as an
argument match those declared in the function header. See the ToolbarSet() function
for an example.

Although user-defined functions and built-in functions are very similar, you are not
allowed to pass a built-in function as an argument to a built-in function. Further, you
cannot pass a built-in function to a user-defined function if it has one or more arguments
that can be of more than one type. For example, the built-in Sin() function can accept a
real argument, or a real array argument, and so cannot be passed.

Channel specifiers Many script commands use a channel specifier to define a set of 1 or more channels. This
argument is always called cSpc in the documentation. This argument stands for a string,
an integer array or a single integer.

cSpc$ A string channel specifier holds a list of channel numbers and channel ranges,
separated by commas. A channel range is a start channel number followed by
an end channel number separated by two dots. The end channel number can be
less that the start channel number. For example "1,3,5..7,12..9" is a list
of channels 1, 3, 5, 6, 7, 9, 10, 11 and 12. Virtual channels can be specified
using the vn channel numbers shown by Signal, for example "v1,v3-v5".

cSpc%[] An array channel specifier uses the first element of the array to hold the
number of channels, the remaining elements are channel numbers. It is an
error for the array to be shorter than the number of channels+1. This matches
the data that is returned by ChanList().

cSpc% An integer channel specifier is either a channel number from 1 upwards, or –1
for all channels, -2 for visible channels, –3 for selected channels , -4 for
waveform channels, -5 for all marker channels, -6 for all selected (or visible if

3-14

 Script language syntax

none are selected) waveform channels, -7 for all visible waveform channels, -
8 for all selected waveform channels, -9 for all idealised trace channels and -
10 for all selected (or visible if no selection) channels of any type.

Some commands expect channels of specific types; channels that do not meet the type
requirements are removed from the list. It is usually an error for a channel specification to
generate an empty list.

There are times when you will want to reuse definitions or user-defined procedures and
functions in multiple projects. You can do this by pasting the text into your script, but it
can be more convenient to use the #include command to include script files into a
script. A file that is included can also include further files. We call these nested include
files. Only the first #include of a file has any effect. Subsequent #include commands
that refer to the same file are ignored. This prevents problems with script files that
include each other and stops multiple definitions when two files include a common file.
A #include command must be the first non-white space item on a line. There are two
forms of the command:

Include files

#include "filename" 'optional comment
#include <filename> 'optional comment

where filename is either an absolute path name (starting with a \ or / or containing a
:), for example C:\Scripts\MyInclude.sgs, or is a relative path name, for example
include.s2s. The difference between the two command forms lies in how relative path
names are treated. The search order for the first form starts at item 1 in the following list.
The search for the second form starts at item 3.

1. Search the folder where the file with the #include command lives. If this fails...
2. Search the folder of the file that included that file until we reach the top of the list of

nested include files. If this fails...
3. Search any \include folder in the folder in which Signal is installed. If this fails...
4. Search the current folder.

Included files are always read from disk, even if they are already open. If you have an
included file open and have modified it, but not saved it, the script compiler will detect
this and stop the compilation with an error. You must save the included file to compile
your script.

There are no restrictions on what can be in an included file. However, they will normally
contain constant and variable definitions and user-defined procedures and functions. It is
usually a good idea to have all your #include commands at the start of a script so that
anyone reading the source is aware of the scope of the script.

The #include command was added to Signal at version 4.00 and is not recognised by
any version before this. A typical file using #include might start with:

'$Example|Example of use if include files
#include <sysinc.s2s> 'my system specific includes
#include "include\proginc.s2s" 'search script relative folder
var myvar; 'start of my code...

Opening included files If you right-click on a line that holds an include command, and Signal can locate the
included file, the context menu will hold an entry to open the file. The search for the file
follows that described above, except that it omits step 2.

3-15

 The Signal script language

You can debug a script that uses included files in exactly the same way as one that does
not. If you step into a user-defined function or procedure that is in an included file, the
included file will open and the stepping marker will show where you have reached. If you
want to set a break point in an included file before you run the script, open the included
file, set the break point and then run the script (leaving the included file open).

Include files and
debugging

Included files that are open within Signal are hidden from the script ViewList()
command in the same way that the running script is not visible. However, unlike the
running script, whose view handle can be obtained with the App() command, there is
currently no mechanism built into the system to let you find the handles of included files.

Program size limits The use of #include makes it much easier to construct very large scripts. However,
there are some limits on the size of a script that you should bear in mind before trying to
amalgamate every script you have ever written into one “superscript”:

1. The maximum instructions in a compiled script is currently set at 1000000. The
number of instructions your script uses is displayed when you compile a script.

2. A script file can contain up to 1000000 lines and you can have up to 4095 included
files. However, you will almost certainly run out of instruction space before you hit
these limits.

3. Every variable, constant, procedure and function you declare generates a script
object. The maximum number of objects is currently around 65000.

4. The maximum number of characters in distinct literal strings is around 1000000.
Before version 4.00 the limit was around 65000 characters.

3-16

 Commands by function 4
This section of the manual lists commands by function. The next section lists the
command alphabetically with a description of the command arguments and operation.

Functional command
groups

These commands are used to manipulate windows (views) to position them, display and
size them, colour them and create them.

Windows and views

App Get the application window view handle
ChanNumbers Show or hide channel numbers
Colour Get or set the palette entry associated with a screen item
ColourGet Get the colour associated with a screen item
ColourSet Set the colour associated with a screen item
Dup Get the view handle of one of the duplicates of the current
view
Draw Draw invalid regions of the view (and set x axis range)
DrawAll Update all invalid regions in all views
FileClose Closes a window or windows
FileComment$ Gets and sets the file comment for time views
FileConvert$ Convert a foreign file to a Signal file and open it
FileName$ Gets the file name associated with a window
FileNew Opens an output file or a new text or data window
FileOpen Opens an existing file (in a window)
FilePrint Prints a range of data from the current view
FilePrintVisible Prints the current view
FilePrintScreen Prints all text-based and data views
FileQuit Closes the Signal application
FileExportAs Export from a data view in a variety of formats
FileSave Save a view with same name
FileSaveAs Save a view with specified new name
FocusHandle Get the view handle of the window which has the input focus
FontGet Read back information about the font
FontSet Set the font for the current window
FrontView Get or set the front window on screen
Grid Get or set the visibility of the axis grids
LogHandle Gets the view handle of the log window
PaletteGet Get the RGB colour of a palette entry
PaletteSet Set the RGB colour of a palette entry
SampleHandle Gets the view handle of sampling windows and controls
ViewColour Override application colours for a view
View Change or override current view and get view handle
ViewFind Get a view handle from a view title
ViewKind Get the type of the current view or other view
ViewLineNumbers Enable or disable line number display in text view
ViewLink Get the view that owns this view
ViewList Form a list of handles of views that meet a specification
ViewMaxLines Sets the maximum lines for a text view
ViewStandard Returns a window to a standard state
ViewUseColour Get and set monochrome/colour use for view
ViewZoom Increases and decreases text view font size
Window Sets the window size and position
WindowDuplicate Duplicate a time view
WindowGetPos Get window position
WindowSize Changes the window size
WindowTitle$ Gets or changes the window title
WindowVisible Sets or gets the visibility of the window (hide/show)

4-1

 The Signal script language

XAxis Get or set the visibility of the x axis
XAxisAttrib Get or set x axis attributes such as logarithmic
XAxisMode Get or set the visibility of the x axis’ features (eg large ticks)
XAxisStyle Get or set the x axis major and minor tick spacing
YAxis Get or set the visibility of the y axis
YAxisAttrib Get or set y axis attributes such as logarithmic
YAxisMode Get or set the visibility of the y axis’ features (eg large ticks)
YAxisStyle Get or set the y axis major and minor tick spacing

These commands operate on any data view, whether a file view, memory view or
sampling document view.

Data views

AppendFrame Add a new data frame to end of data
DeleteFrame Delete a data frame if not on disk
ExportChanFormat Set channel format for export
ExportChanList Set list of channels for export
ExportFrameList Set a list of frames for export
ExportTextFormat Set format for text output of channels
ExportTimeRange Set x axis range for export of data
FileExportAs Export from a data view in a variety of formats
FileApplyResource Apply a resource file to the current time view
FileGlobalResource Set a global resource file
FileSaveResource Create a resource file matching the current time view
Frame Get or set the current frame
FrameAbsStart Get or set the current frame absolute start time
FrameComment$ Get or set the comment with the current frame
FrameCount The number of frames in the file or memory view
FrameFlag Gets or sets a frame flag
FrameList Fills an array with frame numbers according to a frame spec
FrameMean Gets or sets the flag saying if the frame shows a mean or a
total
FrameSave Saves changed frame data or discards changes
FrameState Gets or sets the frame state value
FrameTag Gets or sets the frame tag
FrameUserVar Gets or sets a frame user variable
Maxtime Maximum x axis value in the current frame
Mintime Minimum x axis value in the current frame
Modified Retrieve and optionally set the data modified flag
Overdraw Enables or disables drawing the frame display list
Overdraw3D Controls the 3D overdrawing the frame display list
OverdrawFrames Sets a frame display list for the view
OverdrawGetFrames Gets the frame numbers from the display list for the view
ShowBuffer Get or set the frame buffer display state
Sweeps Number of items processed into memory view
TimeRatio Get the scaling factor from X units to seconds
TimeUnits$ Get the current time units
XLow The start of the displayed area in x axis units
XHigh The end of the displayed area in x axis units
XRange Set the x axis range for next draw
XScroller Show or hide the x axis scroll bar and controls
XTitle$ X axis title. Can be set in a memory or sampling data view
XUnits$ X axis units. Can be set in a memory or sampling data view

4-2

 Commands by function

The following commands control the vertical cursors. Where possible, changes to cursors
cause immediate screen changes; changes do not wait for the next Draw command. This
is unlike almost all other commands, which save up changes until the next draw.

Vertical cursors

Cursor Set or get the position of a cursor
CursorActiveGet Get the active cursor parameters
CursorActiveSet Set the active cursor parameters
CursorDelete Delete a designated cursor
CursorExists Test if a cursor exists
CursorLabel Set or get the cursor label style
CursorLabelPos Set or get the cursor label position
CursorMode Set or get the cursor mode
CursorNew Add a new cursor (at a given position)
CursorOpen Open the cursor value or cursor region dialogs
CursorRenumber Renumber the cursors in ascending position order
CursorSearch Cause active cursors to execute a search
CursorSet Set the number (and position) of vertical cursors
CursorValid Test if an active cursor search succeeded
CursorVisible Get or set cursor visibility

Horizontal cursors belong to a channel, but can be dragged to different channels within a
view by the user. Horizontal cursors have a value and are drawn at the y axis position
corresponding to the value. If the value is beyond the range of the y axis, the cursor is
invisible. If you delete a channel with horizontal cursors, the cursors are deleted.

Horizontal cursors

HCursor Set or get the position of a horizontal cursor
HCursorChan Gets the channel that a horizontal cursor belongs to
HCursorDelete Delete a designated horizontal cursor
HCursorExists Test if a horizontal cursor exists
HCursorLabel Gets or sets the horizontal cursor style
HCursorLabelPos Gets or sets the horizontal cursor position
HCursorNew Add a new horizontal cursor on a channel (at a given position)
HCursorRenumber Renumbers the cursors from bottom to the top of the view

These commands operate on channels in a data or XY view. Channel data can also be
treated as an array, so you can use all the array arithmetic commands. In a memory view,
you can use the commands BinSize and BinZero to get or set x axis scale and offset,
but in any other data view you can use these commands only to get x axis values.

Channels

BinError Error value for a given bin
BinSize X axis interval for waveforms or resolution for markers
BinToX Bin or item number at x axis position
BinZero X axis position of the first bin on the channel
Chan$ Converts a channel number or list into a string
ChanColour Override channel colours
ChanColourGet Get channel colour override settings
ChanColourSet Set channel colour overrides
ChanCount Count channels of a given type
ChanDelete Delete a channel from an XY view or an idealised trace
ChanDiff Differentiate data in specified channels
ChanImage Set a bitmap file to be used as the channel background

4-3

 The Signal script language

4-4

ChanIntgl Integrate data in specified channels
ChanItems Count items in a channel within an x axis range
ChanKind Get the type of a channel
ChanList Get a list of channels meeting a specification
ChanMean Mean of waveform level within an x axis range
ChanMeasure Take a variety of measurements on channel data
ChanNegate Negate (invert) data in specified channels
ChanOffset Offset data in specified channels by a constant value
ChanOrder Modify the channel order and y axis grouping
ChanPenWidth Set the pen width for a data view channel
ChanPixel Get pixel size in channel units
ChanPoints Number of data items in the channel in the frame
ChanRectify Rectify data in specified channels
ChanScale Scale data in specified channels by a constant value
ChanSearch Scan a channel of data for a particular feature
ChanSelect Select and report on selected state of channels
ChanShift Shift data in specified channels left or right
ChanShow Make a channel visible or invisible
ChanSmooth Smooth (3 or 5 point) data in specified channels
ChanSubDC Remove DC offset from data in specified channels
ChanRange Get start and count of items in an x axis range
ChanTitle$ Get or set the channel title string
ChanUnits$ Get or set the channel units
ChanValue Get channel data at a particular time or x axis position
ChanVisible Get the visibility state of a channel
ChanWeight Change the relative vertical space of a channel
ChanZero Clear data in specified channels
DrawMode Get or set display mode for a channel
LastTime Find the previous item in a channel (and return values)
MarkCode Get a marker code(s)
MarkEdit Edit a marker code(s)
MarkTime Change position of a marker
Maxtime Time of last item on the channel
Minmax Find minimum and maximum values (and positions)
Mintime Time of first item on the channel
NextTime Find the next item in a channel (and return values)
Optimise Set reasonable y range for channels with axes
VirtualChan Create virtual channel using expression
XToBin Convert x axis value to bin number
YLow Get lower limit of y axis for a channel
YHigh Get upper limit of y axis for a channel
YRange Set y axis range for a channel

 Commands by function

These commands operate on the frame buffer that is attached to each file or memory
view. The buffer can be shown or hidden using the ShowBuffer function. These
commands perform arithmetic between the buffer and a frame in the data view. These
functions operate on all points in all waveform channels in the buffer. The functions that
modify a frame in the data document have names such as BuffAddTo or BuffMulBy,
while functions that change the frame buffer are called BuffAdd or BuffMul. Note that
you can use the channel data manipulation commands to change buffer data, as well as
accessing the buffer data directly.

Buffer

BuffAdd Add data to the frame buffer
BuffAddTo Add frame buffer to a data framer
BuffAcc Add data to average in frame buffer
BuffClear Clear all channels in the frame buffer
BuffCopy Copy data to the frame buffer
BuffCopyTo Copy frame buffer to the data frame
BuffDiv Divide frame buffer by data
BuffDivBy Divide data frame by the frame buffer
BuffExchange Exchange data in the frame buffer and data frame
BuffMul Multiply frame buffer by data
BuffMulBy Multiply data frame by frame buffer
BuffSub Subtract data from frame buffer
BuffSubFrom Subtract frame buffer from a data frame
BuffUnAcc Remove data from average in frame buffer

These commands specifically manipulate XY views. XY views have from 1 to 100
channels of data. Each channel holds a list of (x, y) co-ordinate pairs that can be
displayed in a variety of styles. Most functions that work on views in general will also
work on an XY view.

XY views

MeasureToXY Create an XY view and associated measurement process
XYAddData Add data points to a channel of an XY view
XYColour Set the colour of a channel
XYCount Return the number of XY data points in a channel
XYDelete Delete one or more data points from a channel
XYDrawMode Control how a channel is drawn
XYGetData Read data back from an XY channel
XYInChan Count XY points inside polygon defined by a channel
XYInCircle Count the number of XY points within a circle
XYInRect Count the number of XY points inside a rectangle
XYJoin Get or set the point joining method
XYKey Control the display of the XY view channel key
XYOffset Set a drawing offset for an XY channel
XYRange Get rectangle containing one or more channels
XYSetChan Create or modify an XY channel
XYSize Get or set maximum size of an XY channel
XYSort Change the sort (and draw) order of a channel

4-5

 The Signal script language

These commands correspond to actions on the Sampling configuration dialog. They get
or change the sampling configuration settings that will be used the next time you create a
new Signal data file for sampling.

Sampling
configuration

commands
These commands correspond to the General page of the configuration, or are general-
purpose in intent. A few of these can also interact with sampling in progress.

SampleBurst Set or get the burst mode flag
SampleClear Set the Sampling configuration to a known state
SampleDigMark Add or remove the digital marker channel
SampleKeyMark Add or remove the keyboard marker channel
SampleMode Set or get the sweep mode for sampling
SamplePause Set or get pause at sweep end flag
SamplePoints Set or get the number of data points per ADC port
SamplePorts Set or get which ADC ports to sample from
SampleRate Set or get the ADC sample rate per channel in Hz
SampleTrigger Set or get the triggered sweeps flag
SampleVaryPoints Set or get the variable sweep points flag
SampleWrite Control writing data to sampling file
SampleZeroOffset Set or get the x-axis zero offset.

These commands correspond to the Ports page of the sampling configuration.

SamplePortFull Set ADC port value for full input
SamplePortName$ Set ADC port title
SamplePortOptions$ Set ADC port online processing options
SamplePortUnits$ Set ADC port units
SamplePortZero Set ADC port value for zero on the input
SampleTel Set up of telegraph gains for an amplifier

These commands correspond to the Outputs page of the sampling configuration.

SampleDacFull Set or get a DAC full-scale value
SampleDacMask Set or get the DAC output enable mask
SampleDacUnits$ Set or get a DAC units string
SampleDacZero Set or get a DAC zero value
SampleDigOMask Set or get the digital outputs enable mask
SampleOutClock Set or get the outputs clock period
SampleOutMode Set or get the outputs mode

These commands correspond to the States page of the sampling configuration.

SampleAuxStateParam Set or get parameters for the auxiliary states device
SampleAuxStateValue Set or get auxiliary states device settings
SampleDigIMask Set or get digital inputs enable mask
SampleStates Set or get states enable and number of extra states
SampleStatesIdle Set or get states ordering cycles before idling
SampleStatesMode Set or get multiple states mode
SampleStatesOrder Set or get multiple states ordering mode
SampleStatesOptions Set or get the multiple states options flag.
SampleStatesRepeats Set or get multiple states repeats count
SampleStateDac Set or get DAC data for individual state
SampleStateDig Set or get digital bits for individual state
SampleStateRepeats Set or get repeats for individual state

4-6

 Commands by function

4-7

These correspond to the Protocols dialog available from the States page.

Protocols Get number of protocols set up
ProtocolAdd Add a new protocol to list
ProtocolClear Initialise a protocol
ProtocolDel Delete a protocol from list
ProtocolEnd Set or get what happens when the end of a protocol is reached
ProtocolFlags Set or get protocol flags
ProtocolName$ Set or get protocol name
ProtocolStepGet Get information on protocol step
ProtocolStepSet Set protocol step values

These commands correspond to the Automation page of the sampling configuration.

SampleArtefactGet Get the artefact rejection settings
SampleArtefactSet Set the artefact rejection settings
SampleAutoFile Set or get the automatic file save flag
SampleAutoName$ Set or get the template for automatic file naming
SampleLimitFrames Set or clear the limit on the number of frames in the new file
SampleLimitSize Set or clear the size limit of the new file
SampleLimitTime Set or clear the limit on the overall sampling time

These commands correspond to the Peri-trigger page of the sampling configuration.

SamplePeriDigBit Set digital bit for peri-trigger digital type
SamplePeriBitState Set digital triggering to be on bit high or low
SamplePeriHyst Set hysteresis value for peri-trigger + or - analog type
SamplePeriLevel Set threshold level for peri-trigger analog types
SamplePeriLowLev Set lower threshold level for peri-trigger =analog type
SamplePeriType Set type of peri-trigger
SamplePeriPoints Set peri-trigger pre-trigger points

These commands correspond to the pulse dialog or to outputs page items that specifically
interact with the pulses output. The pulse functions can all be used while sampling is in
progress to alter the pulses in use.

SampleAbsLevel Set or get the pulses absolute levels flag (in outputs page)
SampleFixedInt Set or get the fixed interval sweep mode interval
SampleFixedVar Set or get the fixed interval percentage variation
SampleOutLength Set or get the pulses output frame length
SampleOutTrig Set or get the pulses sampling sweep trigger time
SampleSweepPoints Set or get the number of points for a state.
Pulses Get the number of pulses for an output port
PulseAdd Add a new pulse to the outputs for a port
PulseClear Remove all pulses from the outputs for a port
PulseDel Remove a pulse from the outputs for a port
PulseFlags Set or get the options flags for a pulse
PulseName$ Set or get a pulse name
PulseType Get a pulse type code
PulseDataSet Set the amplitude and other values for a pulse
PulseDataGet Get the amplitude and other values for a pulse
PulseVarSet Set the variation parameters for a pulse
PulseVarSet Get the variation parameters for a pulse
PulseTimesSet Set the times for a pulse
PulseTimesGet Get the times for a pulse

 The Signal script language

PulseWaveSet Set the waveform output parameters
PulseWaveGet Get the waveform output parameters
PulseWaveformSet Set the waveform output data for a DAC
PulseWaveformGet Get the waveform output data for a DAC

These commands correspond to the outputs sequencer.

SampleSeqCtrl Sets where a sequencer can be controlled from
SampleSeqStep Gets the current sequencer step
SampleSeqTable Gets the size of any table set in the sequencer
SampleSequencer Sets the sequencer file to use
SampleSequencer$ Gets the sequencer file name in use
SampleSeqVar Sets variable values used in the sequencer
SampleSeqWave Sets up waveform output for use from the sequencer

These commands control and interact with the data sampling process. Signal samples into
one data file at a time, and these commands refer to it, regardless of the current view. The
commands can also be used to retrieve the current settings.

Runtime sampling
commands

SampleAbort Exit from sampling and throw data away
SampleAccept Accept or reject the current sweep
SampleHandle Gets the view handle of sampling windows and controls
SampleKey Adds to the keyboard marker channel, controls output
sequencer
SamplePeriHyst Alter hysteresis for peri-trigger + or - analog types
SamplePeriLevel Alter threshold level for peri-trigger analog types
SamplePeriLowLev Alter lower threshold level for peri-trigger =analog type
SampleProtocol Set protocol to be used for state sequencing
SampleReset Clear all data from the new file and get ready to start again
SampleStart Start sampling after creating a new time view
SampleState Set state for next frame to be sampled a new time view
SampleStatesPause Set or get the current sample state sequencer pausing
SampleStatesReset Reset states sequencing and pulse variations
SampleStatesRun Set state sequencing run mode or manual
SampleStatesStep Get the current states sequencing step counter.
SampleStatus Get the current sampling state
SampleStop Stop sampling and keep the data
SampleSweep Start another sampling sweep

4-8

 Commands by function

These functions create new memory or XY views and define an analysis process for
them.

Analysis

MeasureToXY Create an XY view and associated measurement process
SetAmplitude Set up an amplitude histogram view derived from a file view
SetAutoAv Set up auto-average multi-frame view derived from a file view
SetAverage Set up a waveform average view derived from a file view
SetLeak Set up a leak-subtracted view produced from a file view
SetOpCl Set up an idealised trace using threshold crossings
SetOpClScan Set up an idealised trace using the SCAN method
SetOpClAmp Set up an amplitude histogram formed from an idealised trace
SetOpClBurst Set up a burst time histogram formed from an idealised trace
SetOpClHist Set up a dwell time histogram from an idealised trace
SetPower Set up a power spectrum view derived from a file view

These functions create new memory views without an attached analysis process.

SetCopy Set up a memory view copied from a file view
SetMemory Set up a memory view for user-defined data

The Process commands work with views with an attached analysis process. They carry
out the analysis process defined when setting up the memory view, processing data from
the source view into the memory or XY view attached to it.

Process Carry out the analysis process on the current frame from file
ProcessAll Process all memory views attached to a file view
ProcessFrames Carry out the analysis process on multiple frames from file
ProcessOnline Carry out the analysis process during sampling
OpClFitRange Fits an idealised patch clamp trace to observed data
Sweeps Number of items processed into memory view

These functions control serial-line controlled signal conditioners. Signal conditioner
control CondFeature Get and set special signal conditioner features

CondFilter Get or set the conditioner low-pass or high-pass filter
CondFilterList Get a list of possible low-pass or high-pass filter settings
CondFilterType Get the list of low-pass or high-pass filter types available
CondGain Get or set the conditioner gain
CondGainList Get a list of the possible gains for the conditioner
CondGet Get all the settings for one channel of the conditioner
CondOffset Get or set the conditioner offset for a channel
CondOffsetLimit Get or set the conditioner offset range for a channel
CondRevision$ Get or set the conditioner offset for a channel
CondSet Single call to set all channel parameters
CondSourceList Get names of the signal sources available on the conditioner
CondType Get the type of signal conditioner

These functions communicate with a 1401 when Signal is not sampling. 1401 access functions
U1401Open Opens the 1401 for direct access
U1401Close Closes the 4101
U1401Ld Load a command into the 1401
U1401Read Read a string or values from the 1401
U1401Write Write a command string to the 1401
U1401To1401 Transfer memory data to the 1401
U1401ToHost Transfer memory data from the 1401 to the PC

4-9

 The Signal script language

These functions mimic the Edit menu commands and provide additional functionality. Editing operations
EditClear Delete text from a text window at the caret
EditCopy Copy the current selection to the clipboard
EditCut Delete the current selection to the clipboard
EditFind Find text
EditPaste Paste the clipboard into the current text field
EditReplace Find and replace text
EditSelectAll Select the entire text or cursor window contents
MoveBy Move relative to current position
MoveTo Move to a particular place
OpClEventChop Splits an event from an idealised trace in two
OpClEventDelete Deletes an event from an idealised trace
OpClEventGet Gets the details of an event in an idealised trace
OpClEventMerge Merges two events from an idealised trace
OpClEventSet Sets the details of an event in an idealised trace
OpClEventSplit Splits an event in an idealised trace into three
Selection$ This function returns the text that is currently selected

These can be used to make use of MatLab aas a mathematical engine. Matlab interaction
MatLabOpen Open a copy of MatLab for use
MatLabClose Close a previously opened copy of MatLab
MatLabPut Copy script data into a MatLab workspace
MatLabGet Copy MatLab workspace data into script variable
MatLabEval Cause MatLab to evaluate a command line or function
MatLabShow Show and hide an open copy of MatLab

These functions create and apply digital filters and manipulate the filter bank. Digital filtering
ArrFilt Array arithmetic routine to apply FIR coefficients to an array
FiltApply Apply a set of coefficients or a filter bank filter to a waveform
FiltAtten Set the desired attenuation of a filter in the filter bank
FiltCalc Force coefficient calculation of a filter in the filter bank
FiltComment$ Get or set comment for a filter in the filter bank
FiltCreate Create a new filter definition in the filter bank
FiltInfo Retrieve information about a filter in the filter bank
FiltName$ Get or set the name of a filter in the filter bank
FiltRange Get the useful sampling rate range for a filter bank filter
FIRMake Generate FIR filter coefficients in an array
FIRQuick Generate FIR filter coefficients with desired attenuation
FIRResponse Calculate frequency response of array of coefficients
IIRApply Apply an IIR filter bank filter to a waveform channel.
IIRBp Create and/or apply an IIR bandpass filter
IIRBs Create and/or apply an IIR bandstop filter
IIRComment$ Get or set the comment for an IIR filter in the filter bank
IIRCreate Create a new IIF filter definition in the filter bank
IIRHp Create and/or apply an IIR highpass filter
IIRLp Create and/or apply an IIR lowpass filter
IIRName$ Get or set the name of an IIR filter in the filter bank
IIRNotch Create and/or apply an IIR notch filter
IIRReson Create and/or apply an IIR resonator filter

4-10

 Commands by function

The following functions are used to manipulate strings and to convert between strings
and other variable types.

String functions

Asc ASCII code of first character of a string
Chr$ Converts a code to a one character string
DelStr$ Returns a string minus a substring
InStr Searches for a string in another string
LCase$ Returns lower case version of a string
Left$ Returns the leftmost characters of a string
Len Returns the length of a string or array
Mid$ Returns a substring of a string
Print$ Produce formatted string from variables
ReadStr Extract variables from a string
ReadSetup Set separators and delimiters for ReadStr and Read
Right$ Returns the rightmost characters of a string
Str$ Converts a number to a string
Trim Remove leading and trailing white space
TrimLeft Remove leading white space
TrimRight Remove trailing white space
UCase$ Returns upper case version of a string
Val Converts a string to number

These functions can be used with arrays and channel data to speed up data manipulation.
In this section, the word “array” can be applied to an array declared with the var or proc
or func statements, or to channel data in a file or memory view. Integer arrays can be
used where indicated, but beware of overflow.

Array and matrix
arithmetic

The functions all return a negative error code if there is a problem or zero if the function
completes without error. The array arithmetic attempts to fix problems by setting the
result element to a (possibly) useful value.
You can apply built-in mathematical functions directly on an array. For example, to form
the square root of all the elements of array fred[] use Sqrt(fred[]). To access data
in channel c of view v use View(v,c).[{aExp}] in place of fred[{aExp}] where
aExp is an optional expression to specify elements as described in the script language
syntax. For example, to subtract channel 2 from channel 1 in view v1%, use
ArrSub(View(v1%,1)[],View(v1%,2).[]).

ArrAdd Adds an array or constant to an array
ArrConst Copies an array, or sets an array to a constant value
ArrDiff Replaces an array with an array of simple differences
ArrDiv Divides an array by another array or a constant
ArrDivR Divides array into another array or constant
ArrDot Forms the dot product (sum of products) of two arrays
ArrFFT Fourier transform and related operations
ArrFilt Applies a FIR filter to an array
ArrIntgl Integrates array; inverse of ArrDiff()
ArrMul Multiples an array by another array or constant
ArrSort Sort an array and optionally order others in the same way
ArrSpline Uses cubic splining to change the sample interval of an array
ArrSub Subtract constant from array, or difference of two arrays
ArrSubR Subtract array from constant, or reversed difference of arrays
ArrSum Sum, mean and standard deviation of an array
Len Returns the length of a string or array
MATInv Inverts a matrix
MATMul Matrix multiplication
MATSolve Solves a matrix equation

4-11

 The Signal script language

MATTrans Transposes a matrix matrix (also see the trans() operator)
PCA Principal component analysis

The following fitting functions are built into Signal. Fitting functions
ChanFit A higher level fitting routine to emulate the fit dialog
ChanFitCoef Get or set a fit coefficient
ChanFitShow Show or hide a fit to a particular channel
ChanFitValue Get the value of a fitted function
FitData Fit a selected function to arrays of x,y data points
FitExp Fit to multiple exponentials
FitGauss Fit to multiple gaussians
FitLine Fit a straight line to waveform channel data
FitLinear Fit to linear combination of user-defined functions
FitNLUser Fit to non-linear user-defined function
OpClFitRange Fits an idealised trace using the filter characteristics
FitPoly Fit to a polynomial
FitSigmoid Fit to a sigmoid
FitSin Fit to multiple sinisoids

The following mathematical functions are built into Signal. You can apply most of the
arithmetic functions to real arrays by passing an array or channel data to the function.

Mathematical
functions

Abs Absolute value of a number or array
ATan Arc tangent of number or array
BetaI Calculate the beta and incomplete beta function.
BinomialC Calculate the binomial coefficient.
Ceil Ceiling of a number or array (next highest integral value)
Cos Cosine of a number or array
Cosh Hyperbolic cosine of a number or array
Exp Exponential function of a number or array
Floor Floor of a number or array (next lowest integral value)
Frac Remove integral part of a number or array
GammaP Incomplete gamma function, used to calculate probabilities
LinPred Use linear prediction to predict values or estimate spectra
Ln Natural logarithm of a number or array
LnGamma Natural logarithm of the gamma function (for big factorials)
Log Logarithm to base 10 of a number or array
Max Finds maximum of array or variables
Min Finds minimum of array or variables
Pow Raise a number or an array to a power
Rand Generate pseudo-random numbers with uniform density
RandExp Generate random numbers with exponential density
RandNorm Generate random numbers with normal density
Round Round a real number to the nearest integral value
Sin Sine of a number or array
Sinh Hyperbolic sine of a number or array
Sqrt Square root of a number or an array
Tan Tangent of a number or array
Tanh Hyperbolic tangent of a number or array
Trunc Remove fractional part of number or array
ZeroFind Find a zero (root) of a user-defined continuous function

4-12

 Commands by function

These commands allow you to give information to, or get information from the user.
They also let the user interact with the data.

User interaction
commands

Input Prompt user for a number in a defined range
Input$ Prompt user for a string with a list of acceptable characters
Interact Allow user to interact with data
Message Display a message in a box, wait for OK
MousePointer Control the mouse pointer that is in use
Print Formatted text output to a file or window
PrintLog Formatted text output to the Log window
Print$ Formatted text output to a string
Query Ask a user a question, wait for response
Sound Play a tone or a .wav file
Speak Convert text to speech on systems that support this
Yield Give idle time to the system; delay for a time
YieldSystem Surrender current time slice and sleep Signal

You can build simple dialogs, with a set of fields stacked vertically or you can build free-
format dialogs (but with more work to define the positions of all the dialog fields):
DlgAllow Set allowed actions and change and idle functions
DlgButton Add buttons to the dialog and modify existing buttons
DlgChan Define a dialog entry as prompt and channel selection
DlgCheck Define a dialog item as a check box
DlgCreate Start a dialog definition
DlgEnable Enable and disable dialog items in change or idle functions
DlgGroup Position a group box in the dialog
DlgInteger Define a dialog entry as prompt and integer number input
DlgLabel Define a dialog entry as prompt only
DlgList Define a dialog entry as prompt and selection from a list
DlgMouse Set the mouse position, link user functions to mouse actions
DlgReal Define a dialog entry as prompt and real number input
DlgShow Display the dialog, get values of fields
DlgSlider Define a dialog entry as a slider with optional prompt
DlgString Define a dialog entry as prompt and string input
DlgText Define a fixed text string for the dialog
DlgValue Gives access to dialog fields in change and idle functions
DlgVisible Show and hide dialog items in change or idle functions
DlgXValue Define a dialog entry to collect an x axis value

These commands control the various toolbars and link script functions to the toolbar.
App Get the view handle of the toolbars
Toolbar Let the user interact with the toolbar
ToolbarClear Remove all defined buttons from the toolbar
ToolbarEnable Get or set the enable state of a toolbar button
ToolbarMouse Link user functions to mouse actions
ToolbarSet Add a button (and associate a function with it)
ToolbarText Display a message using the toolbar
ToolbarVisible Get or set the visibility of the toolbar
SampleBar Controls the sample bar buttons
ScriptBar Controls the script bar buttons

4-13

 The Signal script language

Signal can read information about files and directories and also change the current
directory and delete or copy files.

File system

FileConvert$ Convert a foreign file to a Signal CFS file and open it
FileCopy Copies a file from one place to another
FileDate$ Retrieve the creation date of a Signal data file
FileDelete Delete one or more files
FileList Get a list of files or directories
FilePath$ Get the current directory or other special directores
FilePathSet Change the current directory or directory for new data files
FileSize Retrieve the size of a data file associated with a view
FileTime$ Retrieve the time of creation of a Signal data file
FileTimeDate Retrieve the time and date of creation of a data file as numbers

Signal can create text files and read from them. You can also open a text file into a
window.

Text files

FileNew Open a new text file in a window
FileOpen Open a text file in a window or for reading and writing
FileSaveAs Save a view in a variety of formats, including text
Modified Retrieve and optionally set the data modified flag
Print Write formatted output to a file or log window
Read Extract data from a text file
ReadSetup Specify what characters will delimit read text
TabSettings Get or set the tab and indent settings for a text view

The following script commands read file and frame variables from CFS files written by
other software. For those familiar with the CFS library for programming in DOS, the
frames were referred to as data sections (DS).

CFS variables

FileGetIntVar Read the value of an integer file variable
FileGetRealVar Read the value of a floating point file variable
FileGetStrVar$ Read a string file variable
FileVarCount Get the number of file variables in the file
FileVarInfo Get the type and name of a numbered file variable
FrameGetIntVar Read the value of an integer frame variable
FrameGetRealVar Read the value of a floating point frame variable
FrameGetStrVar$ Read a string frame variable
FrameVarCount Get the number of frame variables in the file
FrameVarInfo Get the type and name of a numbered frame variable

Signal can read and write binary files. These provide links to other software and are
generally more efficient than text for passing large quantities of data between programs.

Binary files

FileClose Close a file opened in binary mode
FileOpen Open an external file in binary mode
BRead Extract 32-bit integer, 64-bit real and string data from a file
BReadSize Extract 8 and 16-bit integer and 32-bit real data from a file
BRWEndian Change the byte order for data in the file
BSeek Change the current file position for next read or write
BWrite Write 32-bit integer and 64-bit real data to a file
BWriteSize Write 8 and 16-bit integer, 32-bit real and string data to a file

4-14

 Commands by function

These functions let the script writer read to and write from serial line ports on their
computer. This feature can be used to control equipment during data capture, although
they are not needed for controlling the signal conditioners for which the CondXXX
family of commands are provided.

Serial line control

SerialOpen Open a serial port and configure it (set Baud rate, parity etc.)
SerialWrite Write characters to the serial port
SerialRead Read characters from the serial port
SerialCount Count the number of data items available to read
SerialClose Release a previously opened serial port

These functions can be used when debugging a script. Debugging operations
App(-4) Get the number of system handles held by Signal
Debug Set a permanent break point and disable/enable debugging
DebugHeap() Get information about Signal memory usage
DebugList List internal Signal script objects
DebugOpts Gets and optionally sets system level debugging options
Eval Convert the argument to text and display

These functions don't fit well into any of the other categories! Environment
Date$ Get system date in a string in a variety of formats
Error$ Convert a runtime error code to a message string
Profile Read or write the registry entries used by Signal
ProgKill Kill an application started with ProgRun()
ProgRun Start another application running
ProgStatus Check on a program started using ProgRun()
ScriptRun Set the next script to run automatically
Seconds Get or set current relative time in seconds
Sound Play a tone or a .wav file
Speak Convert text into speech
System Get system revision as number
System$ Get system name as a string
Time$ Get system time in a string in a variety of formats
TimeDate Get system date and time as numbers

These functions give the script writer control over positioning the Signal application and
Signal windows in a multiple monitor environment.

Multiple monitor
support

DlgCreate Position a script-controllable dialog relative to monitors.
DlgMouse Set mouse position relative to dialog
System Get monitor count, positions and identify the primary monitor.
Window Position a script-controllable window relative to monitors.
WindowVisible Maximise the application over the entire desktop.

4-15

 The Signal script language

4-16

 Alphabetical command reference

5-1

This section of the manual lists commands alphabetically. If you are not sure which
command you require, look in the Commands by function chapter. You might also find
the index useful as it cross-references commands and common keywords.

This evaluates the absolute value of an expression as a real number. This can also replace
the elements of a real or integer array with their absolute values.
Func Abs(x|x[]{[]...});

x A real number, or a real or integer array
Returns If x is an array, this returns 0 if all was well, or a negative error code if integer

overflow was detected. Otherwise it returns x if x is positive, otherwise -x.
See also: ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),

Round(), Sin(), Sqrt(), Tan(), Trunc()

This function returns special view handles and a number of other values.
Func App({type%});

type% This specifies the window handle to return, or a negative value for special
purposes. If type% is omitted a value of 0 is assumed.
-1 100 times the program revision.
-2 The highest value of type% that returns a value.
-3 The Signal program serial number.
-4 The number of system handles held by the application (for debugging) or 0 if

this is not supported. Added at 4.02.
-5 The number of GDI (graphic) objects used by the application (for debugging)

or 0 if this is not supported. Added at 4.02.
0 The application window, so users can resize the application.
1 The Signal system toolbar, so it can be hidden and shown.
2 The Signal status bar handle, so it can be hidden and shown.
3 The window handle of the running script (so you can hide it).
4 The Signal edit bar handle, so it can be hidden and shown.
5 The Signal script bar handle, so it can be moved, hidden and shown.
6 The Signal sample configurations bar handle, so it can be hidden and shown.
7 The Signal sample control panel, so it can be moved, hidden and shown.
8 The Signal sequencer control panel, so it can be hidden and shown.
9 The multiple states control bar, so it can be moved, hidden and shown.
10 The clamping bar, so it can be moved, hidden and shown.

Returns A handle for the selected window. If the requested window does not exist the
return value is 0.

For example:
View(App(3)); 'make script window the current view
WindowVisible(0); 'hide script window
View(App(0)); 'application window is the current view
WindowVisible(3); 'resize the Signal window to mid screen

See also: View(), Dup(), ViewFind(), Window(), WindowVisible()

5

Abs()

App()

AppendFrame() The Signal script language AppendFrame()

5-2

This function appends a new frame to the current data view, which should not be an
online sampling view. The new frame can optionally be initialised with a copy of the
current frame’s data. The current frame in the view is not changed.
Func AppendFrame({copy%});

copy% If this is present and non-zero the new frame will hold a copy of the current
frame’s data, othewise it will hold zeroes.

Returns Zero or a negative error code.
See also: DeleteFrame(), FrameCount(), FrameFlag(), FrameTag()

These functions operate on one dimensional arrays of data, allowing you to use one script
step to replace code that would otherwise need a loop such as repeat...until,
while...wend or for...next. A loop with the equivalent operations on every item of
data takes a lot longer to execute than a Signal array command that does the same thing.
You can declare an array variable in your script, or an array can be the items in a channel
of a data view which you access using the View(v,c).[] construction in place of
fred[]. The source or destination in the following functions can be data in a view or an
array variable declared with the var or proc or func statements.

An array argument can be an array or part of an array as described in detail in the Arrays
of data section in the Script language syntax chapter. The following is a list of the array
commands, followed by some examples of how they might appear in a script.

The array commands are:

Func ArrAdd(dest[]{[]...}, source[]{[]...}|value);
Func ArrConst(dest[]{[]...}, source[]{[]...}|value);
Proc ArrDiff(dest[]);
Func ArrDiv(dest[]{[]...}, source[]{[]...}|value);
Func ArrDivR(dest[]{[]...}, source[]{[]...}|value);
Func ArrDot(source1[],source2[]);
Func ArrFFT(dest[], mode%);
Func ArrFilt(dest[], coef[]);
Func ArrIntgl(dest[]);
Func ArrMul(dest[]{[]...}, source[]{[]...}|value);
Proc ArrSort(sort[]{, opt%{, arr1[]{, arr2[]{, ...}}});
Proc ArrSpline(dest[], source[]{, ratio{, start}});
Func ArrSub(dest[]{[]...}, source[]{[]...}|value);
Func Func ArrSubR(dest[]{[]...}, source[]{[]...}|value);
Func ArrSum(source[]{, &mean{, &stDev}});

dest A real or integer array, or a view, that holds the result.
source A real or integer array, or a view.
value A real or integer value
Integer overflow can be detected with integer destination arrays when the source or value
is a real. ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(), ArrFilt(),
ArrMul(), ArrSub(), ArrSubR(), ArrSum() can all return a negative error code
to indicate integer overflow.
The following are examples of what the function calls can look like in action. These are
examples of using all or part of single dimension arrays.
var fred[100], tom[100], jim%[200];
var val:=0.5;

AppendFrame()

ArrXXX() commands

ArrAdd() Alphabetical command reference ArrAdd()

5-3

ArrAdd(fred[],jim%[]); 'Add elements 0-99 of jim% to fred
ArrSub(fred[],tom[]); 'Subtract each tom from each fred
ArrSubR(fred[]),tom[]); 'The negative of the above result
ArrSub(jim%[],val); 'Subract val from all elements of jim%

ArrAdd(jim%[2:8],10); 'Add value 10 to elements 2-9 of jim%

These are examples of using all or part of two dimension arrays.
var chans[2][100]; 'Array of 2 rows and 100 columns
var data[3][30]; 'Array of 3 rows and 30 columns
var jim%[200]

ArrDot(chans[0][],chans[1][]); 'form the dot product of two rows

This would set first two elements of column one to the first two elements of jim%
ArrConst(data[0:2][1],jim%[]); 'copy jim% to one column of data

and this would do exactly the same
data[0][1]:=jim%[0];
data[1][1]:=jim%[1];

These are examples of using array arithmetic functions on data view channel data.
If vm% is a data view handle, and ch% is a channel number, the following will add the
value of the single element fred[10] to all elements of channel ch% in data view
ArrAdd(View(vm%,ch%).[], fred[10]);

This will subtract data in channel 2 from channel 1 in data view vm%
ArrSub(View(vm%,1).[],View(vm%, 2).[]);

See also: ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(),
ArrDot(), ArrFFT(), ArrFilt(), ArrIntgl(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), Len(), View(v,c).[]

This function adds a constant or an array to a real or integer array.

Func ArrAdd(dest[]{[]...}, source[]{[]...}|value);

dest The destination array (1 to 5 dimensions).
source An array of reals or integers with the same number of dimensions as dest. If the

dimensions have different sizes, the smaller size is used for each dimension.
value A value to be added to all elements of the destination array.
Returns The function returns 0 if all was well, or a negative error code for integer

overflow. Overflow is detected when adding a real array to an integer array and
the result is set to the nearest valid integer.

In the following examples we assume that the current view is a memory view:
var fred[100], jim%[200], two[3][30], add[3][30];
ArrAdd(fred[],1.0); 'Add 1.0 to all elements of fred
ArrAdd(fred[], jim%[]); 'Add elements 0-99 of jim% to fred
ArrAdd(view(0, 1).[],fred[10]); 'Add fred[10] to memory channel 1
ArrAdd(two[][], add[][]); 'Add corresponding elements

See also: ArrXXX(), ArrConst(), ArrDiv(), ArrDivR(), ArrDot(),
ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len(), BuffAdd(),
BuffAddTo(), View(v,c).[]

ArrAdd()

ArrConst() The Signal script language ArrDiff()

5-4

This function sets an array or result view to a constant value, or copies the elements of an
array or result view to another array or result view. You can copy number or strings. It is
an error to attempt to copy numbers to a string array, or strings to a numeric array.
Func ArrConst(dest[]{[]...}, source[]{[]...}|value);

dest The destination array of 1 to 5 dimensions of any type (real, integer, string).
source An array with same number of dimensions as dest. If the arrays have different

sizes, the smaller size is used for each dimension.
value A value to be copied to all elements of the destination array.
Returns The function returns 0, or a negative error code. If an integer overflows, the

element is set to the nearest integer value to the result.

In the examples below the indices j and i mean repeat the operation for all values of the
indices. a1d and b1d are vectors, a2d and b2d are matrices. The arrays and value must
either both be numeric, or both be strings.

Function Operation
ArrConst(a1d[], value); a1d[i] := value
ArrConst(a1d[], b1d[]); a1d[i] := b1d[i]
ArrConst(a2d[][], value); a2d[j][i] := value
ArrConst(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i]

See also: ArrXXX(), ArrAdd(), ArrDiv(), ArrDivR(), ArrDot(),
ArrMul(), ArrSub(), ArrSubR(), ArrSum(), BuffCopy(),
BuffCopyTo(), BuffExchange(), Len(), View(v,c).[]

This procedure replaces an array with an array of differences. You can use this as a crude
form of differentiation, however ArrFilt() provides a better method. See ArrXXX()
for examples of using arrays as arguments.
Proc ArrDiff(dest[]);

dest[] A real or integer array that is to be replaced by an array of differences. The first
element of the array is left unchanged.

The effect of the ArrDiff() function can be undone by ArrIntgl(). The following
two blocks of code perform the same function:

var work[100],i%;
...
ArrDiff(work[]); 'Form differences
...
for i%:=99 to 1 step -1 do 'Form differences the hard way
 work[i%] := work[i%] - work[i%-1];
 next;

See also: ArrXXX(), ArrFilt(), ArrIntgl(), ChanDiff(), Len(),
View(v,c).[]

ArrConst()

ArrDiff()

ArrDiv() Alphabetical command reference ArrDivR()

5-5

This function divides a real or integer array by an array or a constant. Use ArrDivR() to
form the reciprocal of an array. Division by zero and integer overflow are detected.
Func ArrDiv(dest[]{[]...}, source[]{[]...}|value)

dest An array of real or integer values.
source An array of reals or integers with the same number of dimensions as dest, used

as the denominator of the division. If the arrays have different sizes, the smaller
size is used for each dimension.

value A value used as the denominator of the division.
Returns 0 or a negative error code if integer overflow or division by zero occurs.
If there was integer overflow when assigning the result to an integer array the result is set
to the nearest allowed integer value. If division by zero occurs, the associated destination
element is not changed.

The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrDiv(a1d[], value); a1d[i] := a1d[i] / value
ArrDiv(a1d[], b1d[]); a1d[i] := a1d[i] / b1d[i]
ArrDiv(a2d[][], value); a2d[j][i] := a2d[j][i] / value
ArrDiv(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] / a2d[j][i]

See also: ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDivR(),
ArrDot(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), BuffDiv,
BuffDivBy(), Len(), View(v,c).[]

This function divides a real or integer array into an array or a constant.
Func ArrDivR(dest[]{[]...}, source[]{[]...}|value);

dest An array of reals or integers used as the denominator of the division and for
storage of the result.

source A real or integer array with the same number of dimensions as dest used as the
numerator of the division. If the arrays have different sizes, the smaller size is
used for each dimension.

value A value used as the numerator of the division.
Returns 0 or a negative error code if integer overflow or division by zero occurs.
If there was integer overflow when assigning the result to an integer array the result is set
to the nearest allowed integer value. If division by zero occurs, the associated destination
element is not changed.

The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrDivR(a1d[], value); a1d[i] := value / a1d[i]
ArrDivR(a1d[], b1d[]); a1d[i] := b1d[i] / a1d[i]
ArrDivR(a2d[][], value); a2d[j][i] := value / a2d[j][i]
ArrDivR(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] / a2d[j][i]

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiv(), ArrDot(),
ArrMul(), ArrSub(), ArrSubR(), ArrSum(), BuffDiv(),
BuffDivBy(), Len(), View(v,c).[]

ArrDiv()

ArrDivR()

ArrDot() The Signal script language ArrFFT()

5-6

This function multiplies one array by another and returns the sum of the products
(sometimes called the dot product of two arrays). The arrays are not changed. See
ArrXXX() for examples of using arrays as arguments.
Func ArrDot(arr1[], arr2[]);

arr1 An array of reals or integers.
arr2 An array of reals or integers.
Returns The function returns the sum of the products of the corresponding elements of

arr1 and arr2.
See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),

ArrDivR(), ArrFFT(), ArrFilt(), ArrIntgl(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), Len(), View(v,c).[]

This command performs spectral analysis on an array of data. Variants of this command
produce log amplitude, linear amplitude, power and relative phase as well as an option to
window the original data. See ArrXXX() for examples of using arrays as arguments.
Func ArrFFT(dest[], mode%);

dest An array of real numbers to process. The array should be a power of two and at
least eight points long. If the number of points is not a power of two, the size is
reduced to the next lower power of two points.

mode% The mode of the command, in the range 0 to 5. Modes are defined below.
Returns The function returns 0 or a negative error code.
Modes 1 and 3-5 take an array of data that is a set of equally spaced samples in some unit
(usually time). If this unit is xin, the output is equally spaced in units of 1/xin. In the
normal case of input equally spaced in seconds, the output is equally spaced in 1/seconds,
or Hz. If there are n input points, and the interval between the input points is t, the
spacing between the output points is 1/(n*t). The transform assumes that the sampled
waveform is composed of sine and cosine waves of frequencies: 0, 1/(n*t), 2/(n*t),
3/(n*t) up to (n/2)/(n*t) or 1/(2*t).

The phase information sits rather uncomfortably in a data view. When it is drawn, the x
axis has the correct increment per bin, but starts at the wrong frequency. If you need to
draw it, the simplest solution is to copy the phase information to bin 1 from bin n/2+1
and set bins 0 and n/2 to 0 (this destroys any amplitude information):

ArrConst(View(0,1).[1:], View(0,1).[n/2+1:]); 'Copy phase to start
View(0,1).[0]:=0; View(0,1).[n/2]:=0; 'Clear DC and Nyquist points
View(0).Draw(0, MaxTime()/2); 'Display the phase

This mode is used to apply a raised cosine window to the data array. See SetPower()
for an explanation of windows. The selected data is multiplied by a raised cosine window
of maximum amplitude 1.0, minimum amplitude 0.0. This window causes a power loss in
the result of a factor of 3/8.

You can supply your own window to taper the data, using the array arithmetic
commands. The raised cosine is supplied as a general purpose window.

This mode replaces the data with its forward Fast Fourier Transform. You could use this
to remove frequency components, then perform the inverse transform. The output of this
mode is in two parts, representing the real and imaginary result of the transform (or the
cosine and sine components). The first n/2+1 points of the result hold the amplitudes of

ArrDot()

ArrFFT()

Display of phase in data
views

Mode 0: Window the data

Mode 1: Forward FFT

ArrFFT() Alphabetical command reference ArrFFT()

5-7

the cosine components of the result, the remaining n/2-1 points hold the amplitudes of the
sine components. In the case of an 8 point transform, the output has the format:

 point frequency contents point frequency contents

 0 DC(0) amplitude 4 4/(n*t) cosine amplitude
 1 1/(n*t) cosine amplitude 5 1/(n*t) sine amplitude
 2 2/(n*t) cosine amplitude 6 2/(n*t) sine amplitude
 3 3/(n*t) cosine amplitude 7 3/(n*t) sine amplitude

There is no sine amplitude at a frequency of 4/(n*t) as this sine wave has amplitude 0 at
all sampled points.

This mode takes data in the format produced by the forward transform and converts it
back into a time series. In theory, the result of mode 1 followed by mode 2, or mode 2
followed by mode 1, would be the original data. However, each transform adds some
noise due to rounding effects in the arithmetic, so the transforms do not invert exactly.

One use of modes 1 and 2 is to filter data. For example, to remove high frequency noise
use mode 1, set unwanted frequency bins to 0, and use mode 2 to reconstruct the data.

This mode produces an output with the first n/2+1 points holding the log amplitude of the
power spectrum in dB, and the second n/2-1 points holding the phase (in radians) of the
data. In the case of our 8 point transform the output format would be:

 point frequency contents point frequency contents
 0 DC log amplitude in dB 4 4/(n*t) log amplitude in dB
 1 1/(n*t) log amplitude 5 1/(n*t) phase in radians
 2 2/(n*t) log amplitude 6 2/(n*t) phase in radians
 3 3/(n*t) log amplitude 7 3/(n*t) phase in radians

There is no phase information for DC or for the point at 4/(n*t) because the phase for
both of these is zero. If you want phase in degrees, multiply by 57.3968 . The log
amplitude is calculated by taking the result of a forward FFT (same as mode 1 above) and
forming:

dB = 10.0 Log(power) Power as defined for mode 5

This mode produces the same output format as mode 3, but with amplitude in place of log
amplitude. The amplitude is calculated by taking the result of a forward FFT (same as
mode 1 above), and forming:

amplitude = (cos2+sin2) 0.5

This mode produces the same output format as modes 2 and 3, but with the result in terms
of RMS power. The power is calculated by taking the result of a forward FFT (same as
mode 1 above), and forming:

power = (cos2+sin2) * 0.5 for all components except the DC and Nyquist
power = DC2 or Nyquist2 for the DC and Nyquist components

You can compare the output of this mode with the result of SetPower(). If you have a
waveform channel on channel 2 in view 1, with at least 1024 data points, do the
following:

Mode 2: Inverse FFT

Mode 3: dB and phase

Mode 4: Amplitude and
phase

Mode 5: Power and phase

ArrFilt() The Signal script language ArrFilt()

5-8

var dView%,spView%, m%; 'assume we are in a file view
var ch%:=2; 'use data from channel 2
var xRes; 'x resolution to apply to result

dView%:=View(0); 'store handle for data view
spView% := SetPower(ch%,1024); 'select power spectrum channel 1
Process(0); 'process first 1024 data points
WindowVisible(1); 'make new memory view visible
xRes:=BinSize(1); 'get spectrum resolution in Hz
m%:=SetMemory(1,1024,xRes,0,0,0,0,"FFT","Hz","Volt^2","","Power");
' created memory view ready to hold 1024 points for transformation
WindowVisible(1); 'make new memory view visible
ArrConst(View(m%,1).[],View(dView%,ch%).[]); 'copy channel data
ArrFFT(View(m%,1).[], 0); 'apply raised cosine window to it
ArrFFT(View(m%,1).[], 5); 'take power
spectrum
ArrMul(View(m%,1).[0:513], 4.0/3.0); 'adjust amplitude
Draw(0,500*BinSize(1)); Optimise(1); 'show 500 bins of power
View(spView%); 'look at SetPower() result
Draw(0,500*BinSize(1)); Optimise(1); 'show same bins of power

The two results are identical. The view generated by ArrFFT() would be 3/8 of the
amplitude of the view generated by SetPower(). The reason for the difference is that
the SetPower() command compensates for the effect of the window it uses internally by
multiplying the result by 8/3. To produce the same numeric result, multiply by 8/3.

Note: The behaviour of the ArrFFT function in mode 5 (Power and Phase) was altered in
version 1.60 of Signal. Previous versions produced a result which was 3/4 of the
SetPower() result.

See also: ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),
ArrDivR(), ArrDot(), ArrFilt(), ArrIntgl(), ArrMul(),
ArrSub(), ArrSubR(), ArrSum(), Len(), SetPower(),
View(v,c).[]

This function filters a real array by replacing each element by the product of a coefficient
array and the surrounding elements of the original array. This implements a FIR (Finite
Impulse Response) filter. See ArrXXX() for examples of using arrays as arguments.
Func ArrFilt(dest[], coef[]);

dest[] A real array holding the data to be filtered. It is replaced by the filtered data.
coef[] A real array of filter coefficients. This array is usually an odd number of data

points long so that the result is not phase shifted.
Returns The function returns 0 if there was no error, or a negative error code.

dest[]

Coefficients

Output

ArrFilt()

ArrFilt() Alphabetical command reference ArrFilt()

5-9

This diagram shows the general principle of the FIR filter. The hollow circles represent
the filter coefficients, and the solid circles are the input and output waveforms. Each
output point is generated by multiplying the waveform by the coefficients and summing
the result. The coefficients are then moved one step to the right and the process repeats.

From this description, you can see that the filter coefficients (from right to left) are the
impulse response of the filter. The impulse response is the output of a filter when the
input signal is all zero except for one sample of unit amplitude.

In the example above with seven coefficients, there is no time shift caused by the filter. If
the filter uses an even number of coefficients, there is a time shift in the output of half a
sample period.

The filter operation is applied to every element of the array. To do this at the start and
end of the array there is a problem as some of the coefficients have no corresponding data
element.

? ?

The simple solution is to take these missing points as copies of the first and last points.
This is usually better that taking these points as 0. You should remember that the first and
last (nc+1)/2 points are unreliable, where nc is the number of coefficients.

A simple use of this command is to produce three point smoothing of data, replacing each
point by the mean of itself and the two points on either side:

var data[1000],coef[3]; 'arrays of data and the coefficients
... 'fill data[] with values
ArrConst(coef[],0.33333); 'set all three coefficients to 0.33333
ArrFilt(data[],coef[]); 'smooth the data.

A more complicated example would be to implement a differentiator to calculate the
slope or gradient of an array. The simplest case is to use two points:

coef[0]:=-1; coef[1]:=1; 'simple difference
ArrFilt(data[], coef[0:1]); 'for differences, equivalent to...
ArrDiff(data[]); '... just using the differences

A simple difference produces a very crude differentiator. A slightly better one, with three
coefficients is:

coef[0] := -0.5; coef[1] := 0.0; coef[2] := 0.5;
ArrFilt(data[], coef[]);

You can improve the result with more points, for example for 4 points, the coefficients
are -0.3, -0.1, 0.1, 0.3 and for five points try -0.2, -0.1, 0.0, 0.1, 0.2. It is more usual to
use an odd number of points as this does not cause a shift of the result by half a point.

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(),
ArrDot(), ArrFFT(), ArrMul(), ArrSub(), ArrSubR(),
ArrSum(), ChanSmooth(), Len(), View(v,c).[]

ArrIntgl() The Signal script language ArrMul()

5-10

This procedure is the inverse of ArrDiff(), replacing each point by the sum of the
points from the start of the array up to the element. See ArrXXX() for examples of using
arrays as arguments.
Proc ArrIntgl(dest[]);

dest An array or real or integer data.
Each element of the array is replaced by the sum of all the elements up to and including
that element. The function is equivalent to the following:

for i%:=1 to Len(dest[])-1 do
 dest[i%] := dest[i%] + dest[i%-1];

See also: ArrXXX(),ArrDiff(), ChanIntgl(), Len(), View(v,c).[]

This command is used to form the product of a pair of arrays, or to scale an array by a
constant. A less obvious use is to negate an array by multiplying by -1.
Func ArrMul(dest[]{[]...}, source[]{[]...}|value);

dest An array of real or integer numbers. If dest is integer, the multiplication is done
as reals and truncated to integer.

source A real or integer array with the same number of dimensions as dest. If the
arrays have different sizes, the smaller size is used for each dimension.

value A value to multiply the data in dest.
Returns The function returns 0 if all was well, or a negative error code.
The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrMul(a1d[], value); a1d[i] := a1d[i] * value
ArrMul(a1d[],b1d[]); a1d[i] := a1d[i] * b1d[i]
ArrMul(a2d[][],value); a2d[j][i] := a2d[j][i] * value
ArrMul(a2d[][],b2d[][]); a2d[j][i] := a2d[j][i] * a2d[j][i]

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(),
ArrDot(), ArrSub(), ArrSubR(), ArrSum(), BuffMul(),
BuffMulBy(), Len(), View(v,c).[]

ArrIntgl()

ArrMul()

ArrSort() Alphabetical command reference ArrSpline()

5-11

This function sorts an array of any data type and optionally orders additional arrays to
match the sorted array.
Proc ArrSort(sort[]{, opt%{, arr1[]{, arr2[]{, ...}}});

sort[] An array of integer, real or string data to sort.
opt% This optional argument holds the sorting options. If omitted, the value 0 is used.

It is the sum of the following flag values:
1 Sort in descending order. If omitted, the data is sorted in ascending order.
2 Case sensitive sort when sort[] is an array of strings. String sorts are

usually case insensitive. If omitted, the sort is case insensitive.
arrn[] If present, these arrays are sorted in the same order as

the sort[] array. The arrays can be of any type. You can
sort up to 18 additional arrays.

 See also: ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),
ArrDivR(), ArrDot(), ArrMul(), ArrSubR(), ArrSum(),
BuffSub(), BuffSubFrom(), Len(), View(v,c).[]

This function interpolates an array of real or integer data sampled at one rate into another
array sampled at a different rate using cubic splines. It can also interpolate a matrix of
(x,y) value pairs to an array sampled at a constant rate. This assumes that the source data
has continuous first and second derivatives and that the second derivatives vary linearly
from point to point. The second derivatives at the first and last point of the source data
are set to zero. We interpolate from up to one input sampling interval before the first
source point to up to one sampling interval after the last source point.
Proc ArrSpline(dest[], source[]{, xInc{, xStart}});

Func ArrSpline(dest[], srcXY[][]{, xInc{, xStart}});

dest A real or integer vector that holds the interpolated result.
source A vector that is integer if dest is integer or real if dest is real.
srcXY A matrix of (x,y) source points. srcXY[][0] holds x values and srcXY[][1] holds

y values. The x values must increase with the index, otherwise the return value
is -1.

xInc If present, this is the x value change between dest values. If omitted, we assume
that the points in source or scrXY and dest span the same time range. There are
no restrictions on xInc, it can even be negative (in which case the output is
backwards relative to the input). If the source variant is in use, xInc is the ratio
of the dest sample interval to the source sample interval..

xStart If present, this is the x position of the first point of dest. If omitted, the first
points of both arrays are at the same x position.

Returns 0 if all was OK or -1 if the scrXY variant is used and the x values do not
increase monotonically.

You will get the best results if you can supply source data before and after the output
time range. The effect of a source point on the interpolation of an interval n points away
falls by a factor of approximately 4 each time n increases by 1. There is rarely the need to
supply more than 15 data points before and after the interpolation range.

Suppose we have a source vector of 100 points sampled at 100 Hz, with the first point
sampled at 5.02 seconds, and we want to generate an array sampled at 1000 Hz that starts
at 5.335 and lasts 0.5 seconds. In this case, the value of ratio is 0.001/0.01, which is
0.1. The value of start is 31.5, which is the time difference (5.335 - 5.02) divided by
0.01, the sample interval of the source channel.

See also: DrawMode()

ArrSort()

ArrSpline()

An example

ArrSub() The Signal script language ArrSubR()

5-12

This function forms the difference of two arrays or subtracts a constant from an array. If
the destination is an integer array, overflow is detected when subtracting real values.
Func ArrSub(dest[]{[]...}, source[]{[]...}|value);

dest A real or integer array that holds the result.
source A real or integer array with the same number of dimensions as dest. If the

arrays have different sizes, the smaller size is used for each dimension.
value A real or integer value.
Returns 0 if all is well or a negative error code if integer overflow is detected.
The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors; a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrSub(a1d[], value); a1d[i] := a1d[i] - value
ArrSub(a1d[],b1d[]); a1d[i] := a1d[i] - b1d[i]
ArrSub(a2d[][],value); a2d[j][i] := a2d[j][i] - value
ArrSub(a2d[][],b2d[][]); a2d[j][i] := a2d[j][i] - a2d[j][i]

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),
ArrDivR(), ArrDot(), ArrMul(), ArrSubR(), ArrSum(),
BuffSub(), BuffSubFrom(), Len(), View(v,c).[]

This function forms the difference of two arrays or subtracts an array from a constant. If
the destination is an integer array, overflow is detected when subtracting real values.
Func ArrSubR(dest[]{[]...}, source[]{[]...}|value);

dest A real or integer array.
source A real or integer array with the same number of dimensions as dest. If the

arrays have different sizes, the smaller size is used for each dimension.
value A real or integer value.
Returns 0 if all is well or a negative error code if integer overflow is detected.
The function performs the operations listed below. The indices j and i mean repeat the
operation for all values of the indices. Both a1d and b1d are vectors, a2d and b2d are
matrices. The arrays and value may be integer or real.

Function Operation
ArrSubR(a1d[], value); a1d[i] := value - a1d[i]
ArrSubR(a1d[],b1d[]); a1d[i] := b1d[i] - a1d[i]
ArrSubR(a2d[][],value); a2d[j][i] := value - a2d[j][i]
ArrSubR(a2d[][],b2d[][]); a2d[j][i] := a2d[j][i] - a2d[j][i]

See also: ArrXXX(),ArrSub(), ArrSum(), BuffSub(), BuffSubFrom(),
Len(), View(v,c).[]

ArrSub()

ArrSubR()

ArrSum() Alphabetical command reference ATan()

5-13

This function forms the sum of the values in an array, and optionally forms the mean and
standard deviation. See ArrXXX() for examples of using arrays as arguments.

Func ArrSum(arr[]|arr%[]{, &mean{, &stDev}});
Func ArrSum(arr[][]|arr%[][]{, mean[], stDev[]});

arr A real or integer vector or matrix to process.
mean If present it is returned holding the mean of the values in the array. The mean is

the sum of the values divided by the number of array elements. If arr is an m by
n matrix, mean must be a vector of at least n elements and is returned holding
the mean of each column of arr.

stDev If present, this returns the standard deviation of the array elements around the
mean. If the array has only one element the result is 0. If arr is a m by n matrix,
stDev must be a vector with at least n elements and is returned holding the
standard deviation of each column of arr.

Returns The function returns the sum of all the array elements as a real number.

See also: ArrXXX(),ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(),
ArrDivR(), ArrDot(), ArrFFT(), ArrFilt(), ArrIntgl(),
ArrMul(), ArrSub(), ArrSubR(), Len(), View(v,c).[]

This function returns the ASCII code of the first character in the string as an integer.
Func Asc(text$);

text$ The string to process.
See also: Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(),

Print$(), Right$(), Str$(), UCase$(), Val()

This function returns the arc tangent of an expression, or the arc tangent of an array:
Func ATan(s|s[]{[]...}{, c});

s If the only argument, the function uses this for the arc tangent calculation. s can
also be a real array (in which case c must not be present).

c If this is present, the function uses s/c for the calculation.
Returns If s is an array, each element of s is replaced by its arc tangent in the range -π/2

to π/2 radians. The function returns 0 if all was well or a negative error code.
 When s is not an array, if s is the only argument, the function returns the arc

tangent of s in the range -π/2 to π/2. If c is present, the function calculates the
result of ATan(s/c) and uses the signs of s and c to decide the quadrant of the
result. With the second argument, the result is in the range -π to π.

Arc sine of a single value s can be calculated as: ATan(s/Sqrt(1-s*s)).

Arc cosine can be calculated as: ATan(Sqrt(1-s*s)/s).

See also: Cos(), Cosh(), Ln(), Log(), Pow(), Sin(), Sinh(),
Sqrt(),Tan()

ArrSum()

Asc()

ATan()

BetaI() The Signal script language BinError()

5-14

This function calculates both the beta function and the incomplete beta function. The beta
function and incomplete beta functions are defined as:

() dtttbaBeta ba∫ −− −=
1

0

11 1),(
()

),(

1
),(0

11

baBeta

dttt
baBetaI

x ba

x
∫ −− −

=

These functions are not usually directly of interest, but they are used in generating
distribution functions, for example Student's distribution, the F-Distribution and the
Binomial distribution. The on-line help has script examples to implement these.
Func BetaI(a, b{, x});

a, b These values must be greater than zero.
x Optional. If present, the result is the incomplete beta function. If omitted, the

result is the beta function. x must be in the range 0 to 1.
Returns If x is present, the result is the incomplete beta function in the range 0 to 1.

Otherwise, the result is the beta function.
See also: GammaP(), GammaQ()

This function is used in a memory or file view, with error bins enabled, to access the
error information. Error bins are created for a memory view created with SetAverage()
or SetAutoAv() with the last argument set to 1 and are subsequently stored in the cfs
file if the memory view is saved. If you are setting the error information you must set the
sweep count with Sweeps() first, as the sweep count is used to convert the standard
deviation into the internal storage format. There are two command variants: the first
transfers data for a single bin, the second for an array of bins:
Func BinError(chan%, bin%{, newSD});
Func BinError(chan%, bin%, sd[]{, set%});

chan% The channel number in the file or memory view.
bin% The first bin number for which to get or set the error information.
newSD If present, this sets the standard deviation for a single bin.
sd[] An array used to hold standard deviation values. Values are transferred starting

at bin bin% in the file or memory view. If the array is too long, extra bins are
ignored.

set% If present and non-zero, the values in sd[] are copied to the memory view. If
omitted or zero, values are copied from the file or memory view into sd[].

Returns The first command variant returns the standard deviation at the time of the call.
The second variant returns the number of bins copied. If there are 0 or 1 sweeps
of data or errors are not enabled, the result is 0.

To illustrate how errors are calculated, we will assume that we are dealing with an
average that is set to display the mean of the data in each bin. In terms of the script
language, if the array s[] holds the contribution of each sweep to a particular bin, the
mean, standard deviation and standard error of the mean are calculated as follows:

BetaI()

BinError()

BinomialC() Alphabetical command reference BinSize()

5-15

var mean, sd:=0, i%, diff, sem;
for i%:= 0 to Sweeps()-1 do
 mean += s[i%]; 'form sum of data
 next;
mean /= Sweeps(); 'form mean data value
for i%:= 0 to Sweeps()-1 do
 diff := s[i%]-mean; 'difference from mean
 sd += diff*diff; 'sum squares of differences
 next;
sd := Sqrt(sd/(Sweeps()-1)); 'the standard deviation
sem := sd/Sqrt(Sweeps()); 'the standard error of the mean

We divide by Sweeps()-1 to form the standard deviation because we have lost one
degree of freedom through calculating the mean from the data.

See also: BinSize(), BinToX(), SetAutoAv(), SetAverage(), Sweeps(),
XToBin()

This function calculates the binomial coefficient nCk, which is the number of ways to
choose a set of k items from a set of n. The number can be very large as it is given by:

)!(!
!

knk
n
−

 which can be tricky to compute efficiently, even for a moderate n.

func BinomialC(n%, k%);

n% The number of items to choose from. n% must be greater than 0.
k% The number of items to choose, in the range 0 to n%.
Returns The result, which can be floating point infinity once n% exceeds 1029.
See also: BetaI(), LnGamma()

The value returned by this function is normally the x axis increment per point but
depends upon the channel type. You can set the bin size in a memory view only.
Func BinSize(chan%, {nSize});

chan% The channel number (1 to n) for which to return information.
nSize If this is present it sets a new x axis resolution in a memory view. For log-

binned data this value must be greater than one.
Returns The returned value is negative if the channel doesn't exist. Otherwise the value

returned depends on the channel type:
Waveform This is the x axis interval between data points on the channel. For

normal data this is the sample interval. For log-binned data this is
the ratio of each bin width to the next (always greater than one).

Marker The underlying x axis resolution of the channel.
See also: BinToX(), XToBin(), SampleRate()

BinomialC()

BinSize()

BinToX() The Signal script language BRead()

5-16

This function converts between bin numbers and x axis units in the current view.
Func BinToX(chan%, bin);

chan% The channel (1 to n) for which to return information.
bin A bin number in the view. You can give a non-integer bin number without error.

If you give a bin number outside the range of the view, it will be limited to the
range of the view.

Returns Zero if the channel doesn't exist, otherwise the equivalent x axis value.
See also: BinSize(), XToBin(), BinZero()

This function returns the x axis position for the first value in the frame on the given
channel. In a memory view you can also set this.
Func BinZero(chan% {,offset});

chan% The channel (1 to n) for which to return information.
offset If this is provided it sets a new x axis value for the first data point for channels

in a memory view.
Returns Zero if the channel doesn't exist, otherwise the x axis value of the first data

point.
See also: BinSize(), BinToX(), XToBin()

This reads data into variables and arrays from a binary file opened by FileOpen(). The
function reads 32-bit integers, 64-bit IEEE real numbers and zero-terminated strings.
Func BRead(&arg1|arg1[]|&arg1%|arg1%[]|&arg1$|arg1$[]{, ...});

arg Up to 20 arguments of any type. Signal reads a block of memory equal in size to
the combined size of the arguments and copies it into the arguments. Strings or
string arrays are read a byte at a time until a zero byte is read.

Returns It returns the number of data items for which complete data was read. This will
be less than the number of items in the list if end of file was reached. If an error
occurred during the read, a negative code is returned.

See also: FileOpen(), BReadSize(), BRWEndian(), BSeek(), BWrite()

BinToX()

BinZero()

BRead()

BReadSize() Alphabetical command reference BSeek()

5-17

This converts data into variables and arrays from a binary file opened by FileOpen().
The function reads 8, 16 and 32-bit integers and converts them to 32-bit integers, and 32
and 64-bit IEEE real numbers and converts them to 64-bit reals. It also reads strings from
fixed-size regions in the file (zeros are ignored during the read). The read is from the
current file position. The current position after the read is the byte after the last byte read.
Func BReadSize(size%, &arg|arg[]|&arg%|arg%[]|&arg$|arg$[]{,...});

size% The bytes to read for each argument. Legal values depend on the argument type:
 Integer 1, 2 or 4 Read 1, 2 or 4 bytes and sign extend to 32-bit integer.
 -1, -2 Read 1 or 2 bytes and zero extend to 32-bit integer.
 Real 4 Read 4 bytes as 32-bit real, convert to 64-bit real.
 8 Read 8 bytes as 64-bit real.
 String n Read n bytes into a string. Null characters end the string.
arg Up to 19 target variable(s) to be filled with data. size% applies to all targets.
Returns It returns the number of data items for which complete data was read. This will

be less than the number of items in the list if end of file was reached. If an error
occurred during the read, a negative code is returned.

See also: FileOpen(), BRead(), BRWEndian(), BSeek(), BWrite()

This function gets and sets the "endianism" of binary data files. This affects numeric data
used with BRead(), BReadSize(), BWrite() and BWriteSize(). PC programs
normally use little-endian data (least significant byte at lowest address). Some systems,
including the Macintosh, use big-endian data (most significant byte at lowest address).
Binary files are little-endian by default.

Most users do not need to use this routine. Only use it if you are writing binary files for
use on a big-endian computer or reading binary files that were generated with a big-
endian system.
Func BRWEndian({new%});

new% Omit or set –1 for no change. Set 0 for little-endian and 1 for big-endian.
Returns The current endianism as 0 for little, 1 for big or a negative error code.
See also: FileOpen(), BRead(), BReadSize(), BSeek(), BWrite(),

BWriteSize()

This function moves and reports the current position in a binary file opened by
FileOpen(). The next binary read or write operation to the file starts from the position
returned by this function.
Func BSeek({pos%{, rel%}});

pos% The new file position. Positions are measured in terms of the byte offset in the
file from the start, the current position, or from the end. If a new position is not
given, the position is not changed and the function returns the current position.

rel% This determines to what the new position is relative.
0 Relative to the start of the file (same as omitting the argument).
1 Relative to the current position in the file.
2 Relative to the end of the file.

Returns The new file position relative to the start of the file or a negative error code.
See also: FileOpen(), BReadSize(), BRead(), BWrite()

BReadSize()

BRWEndian()

BSeek()

BuffAdd() The Signal script language BuffAddTo()

5-18

The Buff… family of commands can be used to carry out arithmetic on sets of data
frames using the built-in frame buffer. The frame buffer is an extra frame of data attached
to a data document that is provided automatically by Signal. This can be used to hold the
results of arithmetic on frames, or to modify the document data. To help to avoid
confusion, commands that modify buffer data all have a simple name such as BuffSub,
or BuffCopy, while commands that modify the document frame data have qualified
names such as BuffSubFrom or BuffCopyTo.

Nearly all of the BuffXXX commands require a frame% argument. This specifies the
frame in the data document that is to be used, if omitted, the current frame is used. The
current frame in the view is not changed.

The buffer commands do not have channel specification arguments as they operate on all
channels. If you require more precise control over frame arithmetic operations, this can
be achieved by creating an invisible view to act as a buffer using SetCopy() or
SetMemory(), and then manipulating the frame data directly.

You can access the built-in interactive support for using the frame buffer from the
analysis menu or by using the multiple frame dialog.

See also: ShowBuffer(), BuffAdd(), BuffAddTo(), BuffAcc(),
BuffClear(), BuffCopy(), BuffCopyTo(), BuffDiv(),
BuffDivBy(), BuffExchange(), BuffMul(), BuffMulBy(),
BuffSub(), BuffSubFrom(), BuffUnAcc(), SetCopy(),
SetMemory()

This adds the specified frame data to the frame buffer for the current view document.
Func BuffAdd({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrAdd(), View(v,c).[], BuffXXX()

This adds the frame buffer for the current view document to the specified frame data.
Func BuffAddTo({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrAdd(), View(v,c).[], BuffXXX()

BuffXXX() Buffer
commands

BuffAdd()

BuffAddTo()

BuffAcc() Alphabetical command reference BuffDiv()

5-19

This adds the specified frame data to an average in the frame buffer for the current view
document. The addition is carried out in such a way as to maintain the data as an average,
which can be e.g. subtracted from data frames. If you mix BuffAcc() and BuffAdd()
operations, the overall effect will probably be rather messy.
Func BuffAcc({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrAdd(), BuffUnAcc(), View(v,c).[], BuffXXX()

This clears the data in the frame buffer for the current view document.
Func BuffClear();

Returns Zero or a negative error code.
See also: ArrConst(), View(v,c).[], BuffXXX()

This copies the specified frame data to the frame buffer for the current view document.
Func BuffCopy({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrConst(), View(v,c).[], BuffXXX()

This copies the frame buffer data for the current view document into the specified data
frame.
Func BuffCopyTo({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrConst(), View(v,c).[], BuffXXX()

This divides the frame buffer for the current view document by the specified frame data.
Func BuffDiv({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrDiv(), View(v,c).[], BuffXXX()

BuffAcc()

BuffClear()

BuffCopy()

BuffCopyTo()

BuffDiv()

BuffDivBy() The Signal script language BuffSub()

5-20

This divides the specified frame data by the frame buffer for the current view document.
Func BuffDivBy({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrDiv(), View(v,c).[], BuffXXX()

This exchanges the specified frame data with the frame buffer data for the current view
document.
Func BuffExchange({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrConst(), View(v,c).[], BuffXXX()

This multiplies the frame buffer for the current view document by the data in the
specified frame.
Func BuffMul({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrMul(), View(v,c).[], BuffXXX()

This multiplies the specified frame data by the frame buffer for the current view
document.
Func BuffMulBy({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrMul(), View(v,c).[], BuffXXX()

This subtracts the specified frame data from the frame buffer for the current view
document.
Func BuffSub({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrSub(), View(v,c).[], BuffXXX()

BuffDivBy()

BuffExchange()

BuffMul()

BuffMulBy()

BuffSub()

BuffSubFrom() Alphabetical command reference BWrite()

5-21

This subtracts the frame buffer for the current view document from the specified frame
data.
Func BuffSubFrom({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrSub(), View(v,c).[], BuffXXX()

This removes the specified frame data from an average accumulated in the frame buffer
for the current view document. The arithmetic is carried out in such a way as to maintain
the data as an average with the specified frame now not included. If the frame was never
included in the average, or if you mix BuffUnAcc() and BuffSub() operations, the
overall effect will probably be rather messy.
Func BuffUnAcc({frame%});

frame% The frame number in the data document for the current view. If omitted, the
current frame in the view is used.

Returns Zero or a negative error code.
See also: ArrSub(), BuffAcc(), View(v,c).[], BuffXXX()

This function writes binary data values and arrays into a binary file opened or created by
FileOpen(). The function can write 32-bit integers, 64-bit IEEE real numbers and
strings. The output is at the current position in the file. The current position after the write
is the byte after the last byte written.
Func BWrite(arg1{, arg2{, ...}});

arg Up to 20 arguments of any type, including arrays. Signal fills a block of memory
equal in size to the combined size of the arguments with the data held in the
arguments and copies it to the file.

 An integer uses 4 bytes and a real uses 8 bytes. A string is written as the bytes in
the string and plus an extra zero byte to mark the end. Use BWriteSize() to
write a fixed number of bytes.

Returns It returns the number of arguments for which complete data was written. If an
error occurred during the write, a negative code is returned.

See also: FileOpen(), BRead(), BReadSize(), BRWEndian(), BWriteSize()

BuffSubFrom()

BuffUnAcc()

BWrite()

BWriteSize() The Signal script language Chan$()

5-22

This writes variables or arrays as binary data into a file opened or created by
FileOpen(). The function can write 8, 16 and 32-bit integers, 32 and 64-bit reals and
strings. This allows you to write formats other than the 32-bit integer and 64-bit real used
internally by Signal and to write variable-length strings into fixed size fields in a binary
file.
Func BWriteSize(size%, arg1{, arg2{, ...}});

size% Bytes to write for each argument (or array element if the argument is an array).
Legal values depend on the argument type:

 Integer 1, 2 Write least significant 1 or 2 bytes.
 4 Write all 4 bytes of the integer.
 Real 4 Convert to 32-bit real and write 4 bytes.
 8 Write 8 bytes as 64-bit real.
 String n Write n bytes. Pad with zeros if the string is too short.
arg Up to 19 target variable(s) to be filled with data. size% applies to all targets.
Returns It returns the number of data items for which complete data was written or a

negative error code.
See also: FileOpen(), BRead(), BReadSize(), BRWEndian(), BWrite()

Returns the next higher integral number of the real number or array. Ceil(4.7) is 5.0,
Ceil(4) is 4. Ceil(-4.7) is -4.
Func Ceil(x|x[] {[]…});

x A real number or a real array.
Returns When the argument is an array, the function replaces the array with the next

higher integral number of all the points and returns either a negative error code
or 0 if all was well.

 When the argument is not an array the next higher integral number.

See also: Abs(),ATan(),Cos(),Exp(),Floor(),Frac(),Ln(),Log(),Max(),
Min(),Pow(),Rand(),Round(),Sin(),Sqrt(),Tan(),Trunc()

This function converts a channel number or a list of channel numbers into a string. Future
versions of Signal may have channels types that appear not just as a number on the
screen. If a channel does not exist in the current view, it is represented as a number.
Func Chan$(chan%|chan%[]);

chan% Either a channel number or an array of integers in the same format as a channel
specification (the first element holds the number of items, followed by the
channel numbers).

Returns A channel specification string, for example "1,3,5..8".
See also: ChanList()

BWriteSize()

Ceil()

Chan$()

ChanAdd() Alphabetical command reference ChanColourSet()

5-23

This will add the data from a specified channel to one or more other channel’s data.
Func ChanAdd(cSpc, src%);

cSpc A channel specifier for the channels to add data to. See the Script language
syntax chapter for a definition of channel specifiers.

src% The number of the channel containing the data to add.
Returns Zero.
See also: ChanSub(), ChanMult(), ChanDiv()

This returns and optionally sets the colour of a channel in a file or memory view. This
colour overrides the application colour set for the drawing mode of the channel.
Deprecated, use ChanColourSet() and ChanColourGet().
Func ChanColour(chan%, item%{, col%});

chan% A channel in the file or memory view.
item% The colour item to get and optionally set; 0=background, 1=primary,

2=secondary colour.
col% If present, the new colour index for the item. There are 40 colours in the palette,

indexed 0 to 39. Use -1 to revert to the application colour for the drawing mode.
Returns The palette colour index at the time of the call, –1 if no colour is set or a

negative error code if the channel does not exist.
See also: Colour(), PaletteGet(), PaletteSet(), XYColour()

Returns a channel item RGB colour in a data or XY view. Added at version 5.02.
Func ChanColourGet(chan%, item%{, &r, &g, &b});

chan% A channel in the time, result or XY view.
item% The colour item to get; 0=background, 1=primary, 2=secondary/fill colour. XY

channels do not have individual background colours, use ViewColourGet() to
get the background colour for all XY channels.

r g b If present, get the colour as red, green and blue values in the range 0 to 1.0.
Returns 1 if the channel colour is overridden, 0 if not, negative for no channel.
See also: ColourGet(), ViewColourGet()

Sets a channel item RGB colour in a data or XY view. Added at version 5.02.
Func ChanColourSet(chan%, item%{, r, g, b});

chan% A channel in the time, result or XY view.
item% The colour item to set; 0=background, 1=primary, 2=secondary/fill colour. XY

channels do not have individual background colours, use ViewColourSet() to
set the background colour for all XY channels.

r g b If present, set the item colour as a red, green and blue value limited to the range
0 to 1.0. If omitted, the item colour is no longer overridden.

Returns 0 or a negative error code if the channel does not exist.
See also: ColourSet(), ViewColourSet()

ChanAdd()

ChanColour()

ChanColourGet()

ChanColourSet()

ChanCount() The Signal script language ChanDiv()

5-24

This counts channels in a data or XY view.
Func ChanCount({chan%});

chan% If present, this specifies the channels to count (this is ignored for XY views). If
omitted, the total channel count is returned. It can be -1 for all channels, -2 for
all visible channels, -3 for all selected channels, -4 for waveform channels or -5
for marker channels, -6 for selected waveform channels or visible if none
selected, -7 for visible waveform channels, -8 for selected waveform channels or
–9 for idealised traces.

Returns The returned value is the number of channels of the specified type.
See also: ChanList()

This function deletes a channel from an XY view, a virtual channel or an idealised trace
from a file or memory view. You have the option of having the user confirm the deletion.
You cannot delete the last XY channel as XY views must always have at least one
channel. Channels in XY views are always numbered consecutively, so if you delete a
channel, the channel numbers of any higher numbered channels will change. Changes to
the XY data will not become permanent until the XY view is saved. It is not possible
however, to recover data deleted from an idealised trace channel.
Func ChanDelete(chan%{, query%});

chan% The channel to delete.
query% If present and non-zero, the user is asked to confirm the channel deletion if the

channel is part of a saved XY data file or virtual channel or an idealised trace.
Returns 0 if the channel was deleted or a negative error code if the user cancelled the

operation or tried to delete the last XY channel or for other problems.
See also: XYDelete(), XYSetChan()

This differentiates the data in specified waveform channels of the current frame in the
current view. If the specified channel is not a waveform then the command has no effect.
If the frame buffer is being shown, the frame buffer data is used instead. All data points
in the channels used are modified. It is an error to use this command on log-binned data.
Func ChanDiff(cSpc);

cSpc A channel specifier for the channels to differentiate. See the Script language
syntax chapter for a definition of channel specifiers.

Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanZero(), ArrDiff()

This will divide the data in one or more channels by the data from another channel.
Func ChanDiv(cSpc, src%);

cSpc A channel specifier for the channels to divide the source channel into. See the
Script language syntax chapter for a definition of channel specifiers.

src% The number of the channel containing the data to divide into the other channels.
Returns Zero.
See also: ChanAdd(), ChanSub(), ChanMult()

ChanCount()

ChanDelete()

ChanDiff()

ChanDiv()

ChanFit() Alphabetical command reference ChanFit()

5-25

ChanFit() has three variants; to initialise ready for a new fit, to perform a fit and to
return information about the last fit. This function together with ChanFitCoef() and
ChanFitShow() incorporates the functionality of the Analysis menu Fit Data dialog.
The current window must be a file, memory or XY view to use these functions.

This command associates a fit with a channel. The fit parameters and the coefficient
limits are reset to their default values, the coefficient hold flags are cleared and any
existing fit for this channel is removed.
Func ChanFit(chan%, type%, order%);

chan% The channel number to work on. Each channel in a file, memory or XY view
can have one fit associated with it.

type% The fit type. 0=Clear any fit, 1=Exponential, 2=Polynomial, 3=Gaussian,
4=Sine, 5=Sigmoid.

order% The order of the fit. This can be 1 to 3 for a Sine or Gaussian fit, 1 for a Sigmoid
fit, 1 to 5 for an exponential fit and 1 to 10 for a polynomial fit. If type% is 0
this should also be 0.

Returns 0 if the command succeeded.

This variant of the command does the fit set by the previous variant.
Func ChanFit(chan%, opt%, frm%|frm%[]|frm$, start|start$,
 end|end${, ref|ref${, &err{, maxI%{, &iTer%{, covar[][]}}}}});

chan% A channel number in the current view that has had a fit initialised.
opt% This is the sum of:

1 Estimate the coefficients before fitting, else use current values.
2 Draw the fit over the user-defined range, not the fit range.
4 Use maximum likelihood fitting – obeyed for exponential fits only, and then

only when fitting open/closed time and burst duration histograms where the
original idealised trace data is still accessible.

frm% Frame number or a negative code as follows:
-1 All frames in the file.
-2 The current frame.
-3 Only tagged frames.
-6 Only untagged frames.

frm$ A frame specification string. This option specifies a list of frames using a string
such as "1..32,40,50".

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

start This is the start of the fit range, as a value or as a dialog expression string that is
to be evaluated.

end The end of the fit range in x axis units, as a value or a string to evaluate.
ref The reference time as a value or a string to evaluate. If omitted start is used.
err If present, this optional variable is updated with the chi-squared or least squares

error between the fit and the data.
maxI% If present, this sets the maximum number of iterations. If omitted, the current

number set for the channel is used. The system default number is 100.
iTer% If present, this integer variable is updated with the count of iterations done.
covar An optional two dimensional array of size at least [nCoef][nCoef] that is

returned holding the covariance matrix when the fit is complete. It is changed if
the return value is –1, 0 or 1. However, the values it contains are probably not
useful unless the return value is 0.

ChanFit()

Initialise fit information

Perform the fit

ChanFitCoef() The Signal script language ChanFitCoef()

5-26

Returns 0 if the fit is complete, 1 if max iterations done, or a negative error code: -1=the
fit is not making progress (results may be OK), -2=the fit failed due to a singular
matrix, -5=the fit caused a floating point error, -6=too little data for the number
of coefficients, -7=unknown fitting function, -8=ran out of memory during the
fit (too many data points), -9=the fit was set up with bad parameters.

This variant of the command returns information about the current fit set for a channel.
Func ChanFit(chan%{, opt%});

chan% The channel number of the fit to return information about.
opt% This determines what information to return. If omitted, the default value is 0.

Positive values return information about the fit that is set-up to be done next.
Negative value return information about the last fit that was done and that can be
displayed. The returned information for each value of opt% is:
opt% Returns opt% Returns

0 Fit type of next fit 1 Fit order of next fit
-1 1=a fit exists, 0=no fit exists -9 User-defined x draw start
-2 Type of existing fit or 0 -10 User-defined x draw end
-3 Order of existing fit -11 1=chi-square, 0=least-square
-4 Chi or least-squares error -12 Last fit result code
-5 Fit probability (estimated) -13 Number of fitted points
-6 X axis value at fit start -14 Number of fit iterations used
-7 X axis value at fit end -15 R-Square value for fit
-8 Reference x value -16 Adjusted R-Square value

Returns The information requested by the opt% argument or 0 if opt% is out of range.
See also: ChanFitCoef(), ChanFitShow(), ChanFitValue(), FitExp(),

FitPoly()

This command gives you access to the fit coefficients for a channel in the current file,
memory or XY view. You can return the values from any type of fit and set the initial
values and limits and hold values fixed for iterative fits. There are two command
variants:

This command variant lets you read back the current coefficient values and set the
coefficient values and limits for iterative fitting:
Func ChanFitCoef(chan%{, num%{, new{, lower{, upper}}}});

chan% The channel number of the fit to access.
num% If this is omitted, the return value is the number of coefficients in the current fit.

If present, it is a coefficient number. The first coefficient is number 0. If num% is
present, the return value is the coefficient value for the existing fit; if there is no
fit, the coefficient value that would be used as the starting point for the next
iterative fit is returned.

new If present, this sets the value of coefficient num% for the next iterative fit on this
channel.

lower If present, this sets the lower limit for coefficient num% for the next iterative fit
on this channel. There is currently no way to read back the coefficient limits.
There is also no check made that the limits are set to sensible values.

upper If present, this sets the upper limit for coefficient num% for the next iterative fit
on this channel.

Returns The number of coefficients or the value of coefficient num%.

Get fit information

ChanFitCoef()

Set and get coefficients

ChanFitShow() Alphabetical command reference ChanFitValue()

5-27

This command variant sets the hold flags (equivalent to the Hold checkboxes in the Fit
Data dialog Coefficients tab).
Func ChanFitCoef(chan%, hold%[]);

chan% The channel number of the fit to access.
hold% An array of integers to correspond with the coefficients. If the array is too long,

extra elements are ignored. If it is too short, extra coefficients are not affected.
Set hold%[i%] to 1 to hold coefficient i% and to 0 to fit it. If hold%[i%] is
less than 0, the hold state is not changed, but hold%[i%] is set to 1 if the
corresponding coefficient is held and to 0 if it is not held.

Returns This always returns 0.
See also: ChanFit(), ChanFitShow(), ChanFitValue(), FitExp(),

FitPoly()

This controls the display of data fitted to a channel in the current file, memory or XY
view.
Func ChanFitShow(chan%{, opt%{, start|start${, end|end$}});

chan% The channel number of the fit to access.
opt% If present and positive, this is the sum of:

1 Display the fitted data.
2 Use the user-defined display range rather than the fitting range.
If opt% is omitted or positive, the return value is the current option value. Use
negative values to return the user-defined display range: -1=return the start,
-2=return the end.

start If present, this is an x axis value or a string holding a dialog expression to be
interpreted as an x axis value that sets the start of the user-defined display range.

end If present, this is an x axis value or a string holding a dialog expression to be
interpreted as an x axis value that sets the end of the user-defined display range

Returns The current opt% value or the information requested by opt%. If there is no fit
defined for the channel, the return value is 0.

See also: ChanFit(), ChanFitShow(), ChanFitCoef(), FitExp(),
FitPoly()

This function returns the value at a particular x axis value of the fitted function to a
channel in the current file, memory or XY view.
Func ChanFitValue(chan%, x);

chan% The channel number of the fit to access.
x The x axis value at which to evaluate the current fit. You should be aware that

some of the fitting fuctions can overflow the floating point range if you ask for x
values beyond the fitted range of the function.

Returns The value of the fitted function at x. If the result is out of floating point range,
the function may return a floating point infinity or a NaN (Not a Number) value
or a 0. If there is no fit, the result is always 0.

See also: ChanFit(), ChanFitShow(), ChanFitCoef(), FitExp(),
FitPoly()

Get and set the hold flags

ChanFitShow()

ChanFitValue()

ChanImage() The Signal script language ChanIntgl()

5-28

You can set a background image behind each channel in a data or XY view. Images are
read from .bmp files on disk. See the View menu Channel Image command for details.
There are three command variants:
Func ChanImage(chan%, path$);
Func ChanImage(chan%, mode%, opac{, xl, yl, xh, yh});
Func ChanImage(chan%, get%{, &path$});

chan% A channel number in the current view. In an XY view, all channels share the
same bitmap.

path$ The file name that holds the image. The first command variant sets the image,
the third variant reads back the name of the file. If you set an empty name, this
releases any memory used to cache the bitmap within the program. Setting an
image does not change the display mode; use the second variant to make sure
that the image is visible . Set the path to "<CB>" to use whatever image happens
to be on the clipboard at the time of the function call.

mode% There are three display modes that you can set in the second command variant:
0=no display, 1=fill background, 2=fill rectangle. You can also set mode -1,
meaning no mode change.

opac You can control the image opacity in the range 0.0 (transparent) to 1.0 (opaque).
You can also set the value -1 for no change.

xl-yh When mode% is 2, these four arguments set the rectangle, in x and y axis units,
that contains the bitmap image.

get% This is used in the third command variant to read back the current settings. You
can set -1 to read the mode, -2 to read the opacity, and -3 to -6 to read the xl,
yl, xh and yh values.

Returns The first variant returns 1 if a bitmap was read, 0 if it was not (either file not
found, or no image was set) or a negative error code. The second variant returns
0 and the third variant returns the requested information.

See also: ChanColour()

This integrates the data in specified waveform channels of the current frame in the
current view. If the specified channel is not a waveform then the command has no effect.
If the frame buffer is being shown, the frame buffer data is used instead. All data points
in the channels used are modified. It is an error to use this command on log-binned data.
Func ChanIntgl(cSpc);

cSpc A channel specifier for the channels to integrate. See the Script language syntax
chapter for a definition of channel specifiers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanZero(), ArrIntgl()

ChanImage()

ChanIntgl()

ChanItems() Alphabetical command reference ChanList()

5-29

This counts waveform points, or markers, in a data view over an x axis range.
Func ChanItems(chan%, start, finish);

chan% The channel number (1 to n) for which to return information.
start The start position in x axis units. If start is greater than finish, the result is 0.
finish The last position in x axis units. If start equals finish, only items that fall exactly

at the position count towards the result.
Returns The returned value is negative if the channel doesn't exist. Otherwise it is the

number of data items in the range. This will be a count of markers or waveform
points depending on the channel type.

See also: ChanRange(), ChanPoints(), View(v,c).[], XYRange()

This returns the type of a channel in the current data or XY view.
Func ChanKind(chan%);

chan% The channel number (1 to n) for which to return information.
Returns -1 for a bad channel number, -2 if not a data or XY view, or:
 0 Waveform 1 Marker

3 XY channel 5 Idealised trace
See also: ViewKind()

This function generates an array of channel numbers from the current data or XY view.
The channels can be filtered to show only a subset of the available channels.
Func ChanList(list%[]{, types%});
Func ChanList(list%[], str${, types%});

list% An integer array to fill with channel numbers. Element 0 is set to the number of
channels returned. The remaining elements are channel numbers. If the array is
too short, enough channels are returned to fill the array. You will not need to list
the channel numbers for an XY view, since they are numbered contiguously.

types% This argument specifies which channels to return. If omitted or set to zero, all
channels are returned. The values are as follows:
1 0x1 Waveform or result view channel
2 0x2 Marker channels
4 0x4 Idealised traces
If none of the above values are used, then the list includes all channels. The
following codes can be added to exclude channels from the list created above:
128 0x080 Exclude CFS disk file channels
256 0x100 Exclude virtual channels
1024 0x400 Exclude visible channels
2048 0x800 Exclude hidden channels
4096 0x1000 Exclude selected channels
8192 0x2000 Exclude non-selected channels

 This argument is ignored in an XY view where all channels are the same type.
str$ A channel specification such as "1..10,13,20". Only channels that exist in

the current view are returned in list%. If types% is provided, only channels
that match both the string and types% are returned in list%.

Returns The number of channels that would be returned if the array was of unlimited
length or 0 if the view is not a data or XY view.

See also: ChanShow(), ChanCount(), ChanDelete(), DlgChan()

ChanItems()

ChanKind()

ChanList()

ChanMean() The Signal script language ChanMult()

5-30

This function returns the mean level of a waveform channel in an x axis range.
Func ChanMean(chan%, start, finish{, stDev});

chan% The channel number (1 to n) for which to form the mean.
start The start position in x axis units. If start is greater than finish, the result is 0.
finish The last position in x axis units.
stDev If present, this is returns the standard deviation of the data values in the range. If

there is only one item the result is 0.
Returns It returns the sum of the data values in the range divided by the number of items.

If the channel is not a waveform channel the script will fail.
See also: ArrSum(), ChanMeasure()

This performs any of the cursor regions measurements on a channel.
Func ChanMeasure(chan%, type%, start|start$, end|end$);

chan% The channel number (1 to n) on which to perform the measurement.
type% The type of measurement to take, see the documentation of the Cursor Regions

window for details of these measurements. The possible values are:
 1 Curve area 2 Mean 3 Slope

4 Area 5 Sum 6 Modulus
7 Maximum 8 Minimum 9 Amplitude
10 RMS Amplitude 11 Standard dev. 12 Absolute maximum
13 Peak 14 Trough 15 Point count

start The start position for the measurement in x axis units. If start is greater than
finish, the result is 0.

start$ The start position for the measurement expressed as a string. This allows
constructs such as "Cursor(1)" to be used.

end The end position in x axis units.
end$ The end position as a string. If the start value is a string, the end value must be a

string as well.
Returns The function returns the requested measurement value. Trying to use Curve area

on log-binned data will halt the script.
See also: ArrSum(), ChanMean(), ChanValue()

This will multiply the data in one or more channels by the data from another channel.
Func ChanMult(cSpc, src%);

cSpc A channel specifier for the channels to multiply. See the Script language syntax
chapter for a definition of channel specifiers.

src% The number of the channel containing the data to multiply the other channels by.
Returns Zero.

See also: ChanAdd(),ChanDiv(), ChanSub()

ChanMean()

ChanMeasure()

ChanMult()

ChanNegate() Alphabetical command reference ChanOrder()

5-31

This negates (inverts) the data in specified waveform channels of the current frame in the
current view. If the frame buffer is being shown, the frame buffer data is used instead. All
data points in the channels used are modified.
Func ChanNegate(cSpc);

cSpc A channel specifier for the channels to negate. See the Script language syntax
chapter for a definition of channel specifiers.

Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanZero(), ArrMul()

You can show and hide channel numbers in the current view and get the channel number
state with this function. It is not an error to use this with data views that do not support
channel number display, but the command has no effect.
Func ChanNumbers({show%});

show% If present, 0 hides the channel number, and 1 shows it. Other values are reserved
(and currently have the same effect as 1).

Returns The channel number display state at the time of the call.
See also: YAxis(), YAxisMode()

This offsets the data in specified waveform channels of the current frame in the current
view by adding a constant value. If the frame buffer is being shown, the frame buffer data
is used instead. All data points in the channels used are modified.
Func ChanOffset(cSpc, val);

cSpc A channel specifier for the channels to offset. See the Script language syntax
chapter for a definition of channel specifiers.

val The value to add to the data, which can be negative for offsetting down.
Returns 0 or a negative error code.
See also: ShowBuffer(), ChanScale(), ChanShift(), ChanZero(),

ArrAdd()

You can change the order of channels in a data or memory view or group channels with a
y axis so that they share a common axis with this command. This is equivalent to clicking
and dragging the channel number. You can change individual channels, sort all channels
into numerical order, or get a list of visible channels in screen order from top to bottom:
Func ChanOrder(dest%, pos%, cSpc);
Func ChanOrder(dest%, opt%);
Func ChanOrder(order%);
Func ChanOrder(list%[]{, sel%})

dest% The destination channel number.
pos% The position to drop the moved channels relative to the destination channel. Use

–1 to drop before, 0 to drop on top and 1 to drop after. If you drop channels
between grouped channels, then the dropped channels becomes members of the
group (as long as they have a y axis).

cSpc A channel specifier for the channels to move.
opt% 0=returns the number of channels in the group that dest% belongs to or

0 if not grouped. 1-n returns the channel number of the nth channel in the

ChanNegate()

ChanNumbers()

ChanOffset()

ChanOrder()

ChanPenWidth() The Signal script language ChanPixel()

5-32

group or 0 if no channel. -1 ungroups the group and returns the number of
changed channels.

order% In this form of the command, all the channels are sorted into numerical order.
Set –1 for low numbered channels at the top, 1 for High numbered channels at
the top and 0 to use the default channel ordering set by the Signal Preferences.

list% An array that is returned with a channel list. list%[0] holds the number of items
that follow in the list, so if list%[0] holds n, there are valid channel numbers in
list%[1] through list%[n]. The returned channel numbers are always in the order
of the channels on the screen, with channels at the top of the screen first.

sel% Optional, taken as 0 if omitted. If 0, the list contains all the visible channels in
the view. If -1, the list contains the first channels of each group, so if there are
no groups, list%[0] holds 0. If sel% is greater than 0, say n, the list is returned
holding all the channels in the nth group.

Returns When used with a list of channels, the command returns the number of channels
that were moved. When used to set the order of all channels, the return value is
-1 if low numbered channels were placed at the top and 1 if high numbered
channels were at the top. When used to get a list of channels, the number of
channels that match the option. This can be greater than list%[0] if the list%
array is too small.

See also: ChanWeight(), ViewStandard()

This command sets and gets the pen width for a channel in a Data view. The pen width
for channels in an XY view is handled by the XYDrawMode() command. This script
command was added in Signal version 5.00.
Func ChanPenWidth(cSpc{, new});

cSpc A channel specification for one or more channels or -1 for all, -2 for visible and
-3 for selected channels.

new If present, the new width of the pen to use for the specified channels, in points.
A point is 1/72 of an inch, which is approximately 1 pixel (on most displays in
2010). If you set a negative width, the channel will use the pen width set in the
Edit menu Preferences for data. A width of zero will set the thinnest pen (1
pixel) possible.

Returns The command returns the current pen width setting for the first channel that
exists in the channel specification, or 0 if no channel exists.

See also: Channel specifiers, XYDrawMode()

This gets the x and y axis units that correspond to one pixel on the screen. Normally the x
and y axes are in linear mode, but they can be set to logarithmic mode, in which case the
returned values are the log increment that corresponds to one pixel on the screen.
Func ChanPixel(chan%, &x, &y);

chan% The channel in the current Time, Result or XY view.
x Set to the x axis units equivalent to moving one pixel to the right.
y Set to the y axis units equivalent to moving one pixel up or 0 if there is no y

axis.
Returns A set of flags indicating which values were returned and if the units were

modified. The flag values are: 1 if the x axis is set, 2 if the y axis is set, 4 if the x
axis is in log mode, 8 if the y axis is in log mode.

See also: DlgMouse(), ToolbarMouse()

ChanPenWidth()

ChanPixel()

ChanPoints() Alphabetical command reference ChanScale()

5-33

This function returns the total number of data items in the frame on the specified channel
in a data or XY view.
Func ChanPoints(chan%);

chan% The channel number (1 to n) for which to return the number of items.
Returns The number of data points in a frame.
See also: ChanRange(), ChanItems(), View(v,c).[], XYCount()

This function finds the number of data items within a given x axis range.
Func ChanRange(chan%, &start, finish, &item);

chan% The channel number, from 1 to n.
start The start position in x axis units. This returns the start position of the first data

point in the range, or it is left unchanged if no data is found.
finish The end position in x axis units.
item The index in the view of the data item found at the start position.
Returns The number of data items found in the range defined by start and finish.
See also: ChanPoints(), ChanItems(), View(v,c).[]

This rectifies the data in specified waveform channels of the current frame in the current
view. If the frame buffer is being shown, the frame buffer data is used instead. All data
points in the channels used are modified.
Func ChanRectify(cSpc);

cSpc A channel specifier for the channels to rectify. See the Script language syntax
chapter for a definition of channel specifiers.

Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanVisible(), ChanZero()

This scales the data in specifed waveform channels of the current frame in the current
view by multiplying by a constant value. If the frame buffer is being shown, the frame
buffer data is used instead. All data points in the channels used are modified.
Func ChanScale(cSpc, val);

cSpc A channel specifier for the channels to scale. See the Script language syntax
chapter for a definition of channel specifiers.

val The value to multiply by.
Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanZero(), ArrMul()

ChanPoints()

ChanRange()

ChanRectify()

ChanScale()

ChanSearch() The Signal script language ChanSelect()

5-34

This function searches a channel in file or memory view for a user-defined feature within
a time range. It is exactly the same as an active cursor search, but does not use or move
cursors. By avoiding the need to draw and move cursors, this function should be more
efficient than using the active cursors, but there is no visual feedback.
Func ChanSearch(chan% ,mode%, &sT, eT{, sp1{, sp2{, wid{, sp3}}}};

chan% The number of a channel in the file or memory view to search.
mode% This sets the search mode, as for the active cursors. See the cursor mode dialog

documentation for details of each mode. Only the first three modes can be used
for log-binned data.
1 Maximum value 7 Rising threshold 13 Slope threshold
2 Minimum value 8 Falling threshold 14 Rising slope threshold
3 Maximum excursion 9 Steepest rising 15 Falling slope threshold
4 Peak find 10 Steepest falling 16 Absolute max slope
5 Trough find 11 Slope peak 17 Turning point
6 Threshold 12 Slope trough 18 Slope percentage
21 Outside dual levels 22 Within dual levels 23 Data points

sT The start time for the search, which will be returned containing the result (the
position of the feature) of a successful search. Note that as this argument is a
reference parameter it has to be an actual real variable (so that it can be
updated), values such as 0 or MinTime() will not be accepted by the script
compiler.

eT The end time for the search. If eT is less than sT, the search is backwards.
sp1 This is the threshold level for threshold crossings and baseline level for

maximum excursion. For data points mode it is the number of points. It is in the
y axis units of the search channel (y axis units per second for slopes). If omitted,
the value 0.0 is used. Set it to 0 if sp1 is not required for the mode.

sp2 This is the minimum required amplitude for peak and trough searches, the
hysteresis for threshold crossings, and the percentage for slope percentage
searches. If omitted, the value 0.0 is used. Set it to 0 if sp2 is not required for
the mode.

wid This is the width in seconds for all slope measurements, the maximum peak
width for peak and trough searches, and the post-transition delay for threshold
crossings. If omitted, the value 0.0 is used. Set it to 0 if width is not required
for the mode.

sp3 This is the second level for dual-level searches.
Returns 0 if the search succeeds or -1 if the search fails or a negative error code.
See also: ChanMeasure(), ChanValue(), CursorActiveGet(),

CursorActiveSet()

This function is used to report on the selected/unselected state of a channel in a data
view, and to change the selected state of a channel.
Func ChanSelect(cSpc{, new%});

cSpc A channel specifier for the channels to select. See the Script language syntax
chapter for a definition of channel specifiers.

new% If present it sets the state: 0 for unselected, not 0 for selected. If omitted, the
state is unchanged. Attempts to change invisible channels are ignored.

Returns If you set chan% to a positive channel number the function returns the channel
state at the time of the call, 0 for unselected, 1 for selected. Otherwise the
function returns the number of selected channels at the time of the call.

See also: ChanList(), ChanOrder(), ChanVisible(), ChanWeight()

ChanSearch()

ChanSelect()

ChanShift() Alphabetical command reference ChanSub()

5-35

This shifts the data in specified waveform channels of the current frame in the current
view a specified number of points right or left. The data is actually rotated so that points
that ‘fall off’ one end are shifted back in at the other. If the frame buffer is being shown,
the frame buffer data is used instead. All data points in the channels used are modified.
Func ChanShift(cSpc, shift%);

cSpc A channel specifier for the channels to shift.
shift% The number of point to shift the data. A negative value shifts points left, a

positive value shifts points right.
Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanZero(), ArrAdd()

This function displays or hides a channel, or a list of channels, in a data or XY view.
Showing a channel that is on or doesn’t exist has no effect.
Func ChanShow(cSpc{, yes%});

cSpc A channel specifier for the channels to display or hide. See the Script language
syntax chapter for a definition of channel specifiers.

yes% If this is non-zero it turns the specified channels on and if it is zero it turns them
off. If yes% is omitted no changes are made.

Returns If you set chan% to a positive channel number the function returns the channel
state at the time of the call, 1 for visible, 0 for invisible. Otherwise it returns -1.

See also: ChanList(), ChanVisible()

This function smooths the data in specified waveform channels of the current frame in the
current view by replacing each point by the average of n adjacent points, where n can be
3 or 5. If the frame buffer is being shown, the frame buffer data is used instead. All data
points in the channels used are modified.
Func ChanSmooth(cSpc, width);

cSpc A channel specifier for the channels to smooth. See the Script language syntax
chapter for a definition of channel specifiers.

width This sets the width to smooth over, either 3 or 5.
Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanZero(), ArrFilt()

This function subtracts the data in one channel from the data in one or more other
channels.
Func ChanSub(cSpc, src%);

cSpc A channel specifier for the channels to subtract from. See the Script language
syntax chapter for a definition of channel specifiers.

src% The number of the channel containing the data to subtract.
Returns Zero.

See also: ChanAdd(),ChanDiv(), ChanMult()

ChanShift()

ChanShow()

ChanSmooth()

ChanSub()

ChanSubDC() The Signal script language ChanUnits$()

5-36

This function subtracts any DC offset present in the data in specifed waveform channels
of the current frame in the current view. The DC offset is measured over the time range
specified, all data points in the channels are modified. If the frame buffer is being shown,
the frame buffer data is used instead.
Func ChanSubDC(cSpc, start, finish);

cSpc A channel specifier for the channels to subtract from. See the Script language
syntax chapter for a definition of channel specifiers.

start The start position for measurement of the DC level.
finish The end position for measurement of the DC level.
Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ChanZero(), ArrSum()

This function returns the title for a channel in a data or XY view. In a memory or XY
views, or in a sampling document view, it can also set the channel title. For XY views
only, it can also be used to get or set the Y axis title. In an XY view the channel titles are
visible in the Key window.
Func ChanTitle$(chan%{, new$});

chan% The channel number (1 to n). For an XY view only, a channel number of zero
can be used to access the Y axis title.

new$ If present, in a sampling document or memory view, this string holds the new
channel title. If the string is too long, it is truncated.

Returns The original title for the channel. If the channel does not exist, the function does
nothing and returns an empty string

See also: ChanUnits$(), XTitle$(), XYKey(), YAxis()

This returns the units for a waveform channel in a data view or the Y axis units in an XY
view. In a memory, XY, or sampling document view, it can also set the units.
Func ChanUnits$(chan%{, new$});

chan% A channel number (1 to n). This is ignored in an XY, where it operates on the Y
axis units only.

new$ If present, in a sampling document, XY or memory view, this string holds the
new channel title. If the string is too long, it is truncated.

Returns It returns the original units for the channel. If the channel does not exist or is not
of a suitable type, the function does nothing and returns an empty string.

See also: ChanTitle$(), XUnits$(), YAxis()

ChanSubDC()

ChanTitle$()

ChanUnits$()

ChanValue() Alphabetical command reference ChanVisible()

5-37

This returns the value on a given channel at a given position. It returns a value in the y
axis units of the channel display mode. If the display mode has no y axis the value is the
x axis position of the next item on the channel.

This returns the value corresponding to an x axis value. Use the View(v,c).[bin]
notation or BinToX(bin) to access view data by bin number.
Func ChanValue(chan%, pos{, &data%{, mode%{, binsz}}});

chan% A channel number (1 to n).
pos The x axis position for which the value is needed.
data% This is returned as 1 if there was data at the position, 0 if there was not. For

example on a waveform channel with time on the x axis, if there was no
waveform point within BinSize(chan%) of the time set by pos, this would be
set to 0.

mode% This will have no effect for a waveform channel. If present for a marker channel,
this sets the display mode to use for extracting a value from a view. If an
inappropriate mode is requested or if mode% is absent, the actual display mode
is used. The modes are:
0 The current mode for the channel. Any additional arguments are ignored.
1 Dots mode for markers, returns the position of the marker at or after pos.
2 Lines mode for markers, result is the same as mode 1.
3 Rate mode for markers. If the binSz argument is present it sets the width of

each bin, otherwise the bin width is set to 1.0.
binSz If present, when mode% specifies rate mode for markers, this sets the width of

the rate histogram bins in x axis units.
Returns It returns the value or zero if no data is found. For display modes with a y axis,

if there is no data within BinSize(chan%) of the position, the value is zero.
This is the same value returned by the Cursor Values menu for the channel.

If data% is not provided, any error stops the script. Errors include: no current window,
current window not a data view, no data at pos, and pos beyond range of x axis. If
data% is present, errors cause data% to be set to 0.

For example, to get data value on channel 1 at the position of the cursor number 1 in the
view on data file, mydata.cfs:
vdata%:=ViewFind("mydata.cfs"); 'view handle for data
FrontView(vdata%); 'focus on the data window
ampl:=ChanValue(1,Cursor(1)); 'get data value at cursor

See also: BinToX(), Cursor(), ChanMeasure(), DrawMode(), Interact(),
View(v,c).[]

This returns the shown state of the channel as 1 if the channel is visible and 0 if it is
hidden. If you use a silly or non-existant channel number, the result is 0 (not displayed).
Func ChanVisible(chan%);

chan% The channel number (1 to n) to report on.
Returns 1 if the channel is displayed, 0 if it is not.
See also: ChanShow()

ChanValue()

ChanVisible()

ChanWeight() The Signal script language Chr$()

5-38

This function sets the relative vertical space to give a channel or a list of channels. The
standard vertical space corresponds to a weight of 1. When Signal allocates vertical
space, channels are of two types: channels with a y axis and channels without a y axis.
Signal calculates how much space to give each channel type assuming all channels have a
weight of 1. Then the actual space allocated is proportional to the standard space
multiplied by the weight factor. This means that if you increase the weight of one
channel, all other channels get less space in proportion to their original space.
Func ChanWeight(cSpc{, new});

cSpc The specification for the list of channels to process. See the Script language
syntax chapter for a definition of channel specifiers.

new If present, a value between 0.001 and 1000.0 that sets the weight for all the
channels in the list. Values outside this range are limited to the range.

Returns The command returns the channel weight of the first channel in the list.
See also: ChanOrder(), ViewStandard()

This sets to zero all the data in specified waveform channels of the current frame in the
current view. If the frame buffer is being shown, the frame buffer data is used instead. All
data points in the channels used are modified.
Func ChanZero(cSpc);

cSpc A channel specifier for the channels to zero. See the Script language syntax
chapter for a definition of channel specifiers.

Returns 0 or a negative error code.
See also: ShowBuffer(), ChanShow(), ArrConst()

This function converts a code to a character and returns it as a single character string.
Func Chr$(code%);

code% The code to convert. Codes that have no character representation will produce
unpredictable results when printed or displayed.

See also: Asc(), DelStr$(), LCase$(), Left$(), Len(), Mid$(),
Print$(), Right$(), Str$(), UCase$(), Val()

ChanWeight()

ChanZero()

Chr$()

Colour() Alphabetical command reference ColourGet()

5-39

This function gets and/or sets the colours of items. Colours are set in terms of the colour
palette displayed in the Colour menu, not directly in terms of colours. Deprecated. This
function is provided for backwards compatibility with old scripts. Use ColourGet() and
ColourSet() in new scripts
Func Colour(item%{, col%});

item% This is the item number, being the position of the item in the Colour menu, as
follows:
0 Channel numbers 16 Axis markings and text labels
1 Data view background 17 Tagged frames background
2 Waveform as line 18 Frame list traces
3 Waveform as dots 19 XY view background
4 Waveform as skyline 20 Error bars
5 Waveform as histogram 21 Fitted data
6 Waveform histogram fill 22 Convoluted trace
7 Makers as lines 23 Closed state
8 Markers as dots 24 XY channels
9 Marker text 25 XY fill
10 Rate histogram outline 26 XY key labels
11 Rate histogram fill 27 Convoluted trace (fitted)
12 Text labels 28 Open state
13 Cursors & cursor labels
14 Controls (not used)
15 Data display grid

col% If present, this sets the index of the colour in the colour palette to be applied to
the item. There are 40 colours in the palette, numbered 0 to 39. The first 7
colours in the palette are set to grey scales from black to white, and the rest can
be selected or mixed from basic colours.

Returns The index into the colour palette of the colour of the item at the time of the call.
See also: PaletteGet(), PaletteSet(), XYColour(), ChanColour()

Get the RGB colour for an item in the palette, the main colour table or the marker colour
table. Added at version 5.02.
Func ColourGet(table%{, item%, &r, &g, &b});

table% -1 to select the colour palette, 0 for the main colour table, 1 for the marker table.
item% The item number in the table selected by table%. See ColourSet().
r g b Returned holding the red, green and blue colour values (in the range 0.0 to 1.0)

for the selected item in the selected table.
Returns If only the table number is supplied, returns the length of the table, or 0.

See also: ChanColourGet(), ColourSet(), ViewColourGet()

Colour()

ColourGet()

ColourSet() The Signal script language ColourSet()

5-40

Set the RGB colour for an item in the palette, the main colour table or the marker colour
table. Added at version 5.02.
Func ColourSet(table%, size%);
Func ColourSet(table%, item%, r, g, b);

table% -1 to select the colour palette, 0 for the main colour table, 1 for the overdraw
cycling colours table.

size% Used to set the size of the overdraw cycling colours table (table% = 1) in the
range 8 to 100. The initial, default value is 8 for colours 0 to 7. If you increase
the size, the new table elements are set to black. Setting a size of 0 resets the
table to the default size. Setting a size of -1 resets the table size and sets default
colours. You can use -1 with any table; setting the table size only works for the
overdraw cycling colours table.

item% The item number in the table selected by table%. This is an index from 0 to 39
for the colour palette. It is one of the following for the main colour table:
0 Channel numbers 16 Axis markings and text labels
1 Data view background 17 Tagged frames background
2 Waveform as line 18 Frame list traces
3 Waveform as dots 19 XY view background
4 Waveform as skyline 20 Error bars
5 Waveform as histogram 21 Fitted data
6 Waveform histogram fill 22 Convoluted trace
7 Makers as lines 23 Closed state
8 Markers as dots 24 XY channels
9 Marker text 25 XY fill
10 Rate histogram outline 26 XY key labels
11 Rate histogram fill 27 Convoluted trace (fitted)
12 Text labels 28 Open state
13 Cursors & cursor labels
14 Controls (not used)
15 Data display grid

 For the overdraw cycling colours table it is an index from 0 up to the table
size-1.

r g b Sets the red, green and blue values in the range 0 to 1.0 for the selected item in
the selected table.

Returns If only the table number is supplied, returns the length of the table, or 0.

See also: ChanColourSet(), ColourGet(), ViewColourSet()

ColourSet()

CondFeature() Alphabetical command reference CondFeature()

5-41

The Cond… family of commands control external signal conditioners. At the time of
writing, these commands support the CED 1902 programmable signal conditioner, the
Power1401 programmable gain option and the Axon Instruments CyberAmp. Other
conditioners may be added in the future.

These commands do not define which serial port is used by the conditioner nor the type
of conditioner supported. When you install Signal you must choose the conditioner type
and set the serial port. All these commands require a port% argument. This is the
physical waveform input port number that the conditioner channel is attached to. It is not
a channel number in a view.

You can access the built-in interactive support for the conditioner from the sampling
configuration channel setup dialog. This can be a useful short-cut to getting the lists of
gains and signal sources available on your conditioner(s).

See also: CondFilter(), CondFilterList(), CondGain(), CondGainList(),
CondGet(), CondOffset(), CondOffsetLimit(),
CondRevision$(), CondSet(), CondSourceList(), CondType()

This command gets and sets special signal conditioner features that are not general
enough to have dedicated commands to support them. See the CondSet() command for
more details of conditioner operation. There are four command variants:
Func CondFeature(port%);

port% The waveform port number that the conditioner is connected to.
Returns The number of special features supported by the signal conditioner.

The command supports two types of features: those that have a set of discrete values such
as ["None", "Rectify"], and those that support a continuous range of floating point values,
such as 10.0 to 25.6, for example. To determine if the feature is continuous or discrete,
call the function with only the first 3 or 4 arguments.
Func CondFeature(port%, feat%, &name${, &flgs%{, list$[]}});
Func CondFeature(port%, feat%, &name${, &flgs%{, &low{, &high}}});

feat% The feature number, from 1 to the number of features available
name$ Returned set to the name of the feature.
flgs% Returned set to the feature flags. Currently, none are defined, so this will be 0.
list$ Returned set to an array of the possible settings (strings) for discrete type.
low Returned as the low limit for a feature with continuous values.
high Returned as the upper limit for a feature with continuous values
Returns The number of discrete feature values, or 0 if the feature supports continuous

values over the range returned in low and high.

Func CondFeature(port%, feat%{, val});

val If present, it sets the value for the feature set by feat% and port%. If this is a
continuous feature, val sets the new value. If the feature has n discrete setting,
val should be 0 to n-1 to select the feature corresponding to the feature
description in list$[val]. If val exceeds the allowed range, a continuous
feature is set to the nearest allowed value and a discrete feature is unchanged.

Returns The feature value at the time of the call (before any change). This is an integer
index for features with discrete values otherwise it is the feature value.

See also: CondFilterList(), CondGain(), CondGainList(), CondGet(),
CondSet(), CondSourceList(), CondType()

CondXXX()
Conditioner
commands

CondFeature()

Get feature count

Get feature information

Set feature value

CondFilter() The Signal script language CondFilterType()

5-42

This sets or gets the frequency of the low-pass or high-pass filter of the signal
conditioner. See the CondSet() command for more details of conditioner operation.
Func CondFilter(port%, high%{, freq{, type%}});

port% The waveform port number that the conditioner is connected to.
high% This selects which filter to set or get: 0 for low-pass, 1 for high-pass.
freq If present, this sets the desired corner frequency of the selected filter. See the

CondSet() description for more information. Set 0 for no filtering. If omitted,
the frequency is not changed. The high-pass frequency must be set lower than
the frequency of the low-pass filter, if not the function returns a negative code.

type% Optional, taken as 1 if omitted. The filter type to use when setting the filter. The
filter type in the range 1 to the number of types (as returned by
CondFilterType()).

Returns The cut-off frequency of the selected filter at the time of call, or a negative error
code. A return value of 0 means that there is no filtering of the type selected.

See also: CondFilterList(),CondFilterType(), CondGain(), CondGainList(),
CondGet(), CondOffset(), CondOffsetLimit(), CondRevision$(),
CondSet(), CondSourceList(), CondType()

This function gets a list of the possible filter frequencies of the conditioner. Conditioners
that support continuous frequency ranges also supply a list of frequencies to match the
list of frequencies shown in the conditioner control panel. See the CondSet() command
for more details of conditioner operation.
Func CondFilterList(port%, high%, freq[]{, type%});

port% The waveform port number that the conditioner is connected to.
high% Selects which filter to get: 0 for low-pass, 1 for high-pass.
freq[] An array of reals holding the cut-off frequencies of the selected filter. There is

always a value of 0 meaning no filtering.
type% Optional, taken as 1 if omitted. The filter type in the range 1 to the number of

types (as returned by CondFilterType()).
Returns The number of filter frequencies (including 0) or a negative error code.
See also: CondFilter(), CondFilterType(), CondGet(), CondOffset(),

CondOffsetLimit(), CondSet(), CondSourceList(), CondType()

This function returns information about the filter types supported by the conditioner for
the low pass and high pass filters. For example, the CED 1902 mk IV supports a choice
of filter types. There are three command variants:
Func CondFilterType(port%, high%);

port% The waveform port number that the conditioner is connected to.
high% Selects which filter to return information for: 0 for low-pass, 1 for high-pass.
Returns The number of filter types.

Func CondFilterType(port%, high%, 0);

Returns The currently selected filter type, from 1 to the number of filter types.

Func CondFilterType(port%,high%,type%{,&name${,&lower{,&upper}}});

type% The filter number, from 1 to the number of available filters.

CondFilter()

CondFilterList()

CondFilterType()

Get number of filter types

Get filter type in use

Get filter type information

CondGain() Alphabetical command reference CondGet()

5-43

name$ If present, returned holding the name of the filter selected by type%.
lower If present, returned as the lowest filter frequency (excluding 0, meaning ‘off’).
upper If present, returned as the highest supported filter frequency.
Returns The number of frequency values the filter can be set to (including 0) or 0 if the

filter corner frequency can be set to any value in the range lower to upper.
See also:CondFilter(), CondGain(), CondGainList(), CondGet(),

CondSet(), CondSourceList(), CondType()

This sets and gets the gain of the signal passing through the signal conditioner See the
CondSet() command for more details of conditioner operation.
Func CondGain(port%{, gain});

port% The waveform port number that the conditioner is connected to.
gain If present this sets the ratio of output signal to the input signal. If this argument

is omitted, the current gain is returned. The conditioner will set the nearest gain
it can to the requested value.

Returns The gain at the time of call, or a negative error code.
See also: CondFilter(), CondFilterList(), CondGainList(), CondGet(),

CondOffset(), CondOffsetLimit(), CondSet()

This function gets a list of the possible gains of the conditioner for the selected signal
source. See the CondSet() command for more details of conditioner operation.
Func CondGainList(port%, gain[]);

port% The waveform port number that the conditioner is connected to.
gain[] An array of reals holding the conditioner gains for the selected signal source. If

a conditioner (for example, 1902) has a fixed set of gains, this is the set of gain
values. If the conditioner supports continuously variable gain, the first two
elements of this array hold the minimum and the maximum values of the gain.

Returns The number of gain values if the conditioner has a fixed set of gains or 2 if the
conditioner has continuously variable gain. In the case of an error, a negative
error code is returned.

See also: CondFilter(), CondFilterList(), CondGain(), CondOffset(),
CondOffsetLimit(), CondSet(), CondSourceList()

This function gets the input signal source of the signal conditioner, and the conditioner
settings for gain, offset, filters and coupling. The settings are returned in arguments
which must all be variables. See CondSet() for details of conditioner operation.
Func CondGet(port%, &in%, &gain, &offs, &low, &hi, ¬ch%, &ac%
 {, &typeL%{, &typeH%}});

port% The waveform port number that the conditioner is connected to.
in% Returned as the zero-based index of the input signal source (see CondSet()).
gain Returned as the ratio of output to input signal amplitude (ignoring filtering).
offs A value added to the input waveform to move it into a more useful range. Offset

is specified in user units and is only meaningful when DC coupling is used.

CondGain()

CondGainList()

CondGet()

CondOffset() The Signal script language CondRevision$()

5-44

low Returned as the cut-off frequency of the low-pass filter. A value of 0 means that
there is no low-pass filtering enabled on this channel.

hi Returned as the cut-off frequency of the high-pass filter. A value of 0 means that
there is no high-pass filtering enabled on this channel.

notch% Returned as 0 if the mains notch filter is off, and 1 if it is on.
ac% Returned as 1 for AC or 0 for DC coupling.
typeL% Optional integer variable returned holding the low-pass filter type number as

described for CondFilterType().
typeH% Optional integer variable returned holding the high-pass filter type number.
Returns 0 if all well or a negative error code.
See also: CondFilter(), CondFilterType(), CondFilterList(), CondGain(),

CondGainList(), CondOffset(), CondSet(), CondSourceList()

This sets or gets the offset added to the input signal of the signal conditioner. See the
CondSet() command for more details of conditioner operation.
Func CondOffset(port%{, offs});

port% The waveform port number that the conditioner is connected to.
offs The value to add to the input waveform of the conditioner to move it into a more

useful range. If this argument is omitted, the current offset is returned. The
conditioner will set the nearest value it can to the requested value.

Returns The offset at the time of call, or a negative error code.
See also: CondGain(), CondGainList(), CondGet(), CondOffsetLimit(),

CondRevision$(), CondSet(), CondSourceList(), CondType()

This function gets the maximum and minimum values of the offset range of the
conditioner for the currently selected signal source.
Func CondOffsetLimit(port%, offs[]);

port% The waveform port number that the conditioner is connected to.
offs[] This is an array of real numbers returned holding the minimum (offs[0]) and

the maximum (offs[1]) values of the offset range of the conditioner for the
currently selected signal source.

Returns 2 or a negative error code.
See also: CondGain(), CondGainList(), CondGet(), CondOffset(),

CondRevision$(), CondSet(), CondSourceList(), CondType()

This function returns the name and version of the signal conditioner as a string or an
empty string if there is no conditioner for the port.
Func CondRevision$(port%);

port% The waveform port number that the conditioner is connected to.
Returns A string describing the conditioner. Strings defined so far include: “1902ssh”,

where ss is the 1902 ROM software version number and h is the hardware
revision level; and “CYBERAMP 3n0 REV x.y.z” where n is 2 or 8.

See also: CondFeature(), CondFilter(), CondType()

CondOffset()

CondOffsetLimit()

CondRevision$()

CondSet() Alphabetical command reference CondSet()

5-45

This sets the input signal source, gain, offset, filters and coupling of the conditioner. All
values are requests; the command sets the closest possible value to that requested. If it is
important to know what has actually been set you should read back the values with
CondGet() after setting them, or use the functions for reading specific values.
Func CondSet(port%, in%, gain, offs{, low, high, notch%, ac%
 {, typeL%{, typeH%}}});

port% The waveform port number that the conditioner is connected to.
in% A conditioner has one or more signal sources. For example, the CED 1902

supports Grounded, Single ended, Normal Diff, Inverted Diff, etc.
Conditioners of the same type may have different sources. To select a source, set
in% to its zero-based index in the list returned by CondSourceList().

gain This is the desired ratio of output to the input signal amplitude (ignoring the
effect of any filtering). The actual gain depends on the capabilities of the signal
conditioner, see CondGainList(). The gain range may be altered by the choice
of signal source. For example, the 1902 Isolated Amp input has a build-in gain
of 100. This command sets the nearest gain to the requested value.

offs This is the desired value in user units to add to the input waveform to move it
into a more useful range. Offsets are only meaningful with DC coupling.
Different conditioners have different offset ranges, and the offset range may be
altered by the choice of signal source, see CondOffsetLimit(). The command
will set the nearest offset it can to the desired value.

low If present and greater than 0, it is the desired corner frequency of the low-pass
filter. Low-pass filters are used to reduce the high frequency content of the
signal, both to satisfy the sampling requirement, and in case where it is known
that no useful information is to be found in the signal above a certain frequency.
If omitted, or 0, there is no low-pass filtering. The actual filter value set depends
on the capabilities of the signal conditioner.

high If present and greater than 0, it is the high-pass filter corner frequency. High-
pass filters reduce the low-frequency content of the signal. This must be set
lower than the frequency of the low-pass filter; if not, the function returns a
negative code. If omitted, or set to 0, there is no high-pass filtering.

 Different signal conditioners have different ranges of frequency filtering. To
find out the real filter frequency set, use CondFilter(). CondFilterList()
returns the list of possible filter frequencies.

notch% Some signal conditioners have a mains-frequency notch filter (usually 50 Hz or
60 Hz) used to reduce the effect of mains interference on low level signals. This
filter will remove the fundamental 50 Hz or 60 Hz signal; it will not remove
higher harmonics (for example 150 Hz). If notch% is present with a value
greater than 0, the notch filter is on. If omitted, or 0, the notch filter is off.

ac% The 1902 supports both AC and DC signal coupling. If you set AC coupling you
should probably set the offset to zero. If ac% is greater than 0, the signal
conditioner is AC coupled. If omitted or 0, the signal conditioner is DC coupled.

typeL% Optional value, taken as 1 if omitted, that sets the low-pass filter type as
described for CondFilterType() in the range 1 to the number of filter types.

typeH% Optional value, taken as 1 if omitted, that sets the high-pass filter type.
Returns 0 if all well or a negative error code.
See also: CondFilter(), CondFilterType(), CondGain(), CondGet(),

CondOffset(), CondSourceList()

CondSet()

CondSourceList() The Signal script language Cosh()

5-46

This function gets a list of the possible signal source names of the conditioner, or the
specific signal source name with the given index number.
Func CondSourceList(port%, src$[]|src${, in%});

port% The waveform port number that the conditioner is connected to.
src$ This is either a string variable or an array of strings that is returned holding the

name(s) of signal sources. Only one name is returned per string.
in% This argument lets you select an individual source or all sources. If present and

greater than or equal to 0, it is the zero-based index number of the signal source
to return. In this case, only one source is returned, even if src$ is an array.
If omitted and src$ is a string, the first source is returned in src$. If src$[] is
an array of strings, as many sources as will fit in the string array are returned.

Returns If in% is greater than or equal to 0, it returns 1 or a negative error code. If in% is
omitted, it returns the number of signal sources or a negative error code.

See also: CondFilterList(), CondGainList(), CondGet(), CondOffsetLimit(),
CondRevision$(), CondType()

This function returns the type of the signal conditioner.
Func CondType(port%);

port% The waveform port number that the conditioner is connected to.
Returns 0 for no conditioner or it is not the type set when installing, 1 for a CED 1902, 2

for an Axon Instruments CyberAmp and 3 for Power1401 with gain controls.
See also: CondFilterList(), CondGainList(), CondRevision$(),

CondSourceList()

This calculates the cosine of one or an array of angles in radians.
Func Cos(x|x[]{[]...});

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2π to 2π.

Returns When the argument is an array, the function replaces the array with the cosines
of all the points and returns either a negative error code or 0 if all was well.
When the argument is not an array the function returns the cosine of the angle.

See also: ATan(), Cosh(), Ln(), Log(), Pow(), Sin(), Sinh(),
Sqrt(),Tan()

This calculates the hyperbolic cosine of one value or an array of values.
Func Cosh(x|x[]{[]...});

x The value, or a real array of values.
Returns When the argument is an array, the function replaces each value with its

hyperbolic cosine and returns 0. When the argument is not an array the function
returns the cosh of the argument.

See also: ATan(), Cos(), Exp(), Ln(), Log(), Pow(), Sinh(), Sqrt(),
Tanh()

CondSourceList()

CondType()

Cos()

Cosh()

Cursor() Alphabetical command reference CursorActiveGet()

5-47

This function returns the x axis position of a vertical cursor, and can also move the cursor
to a new position.
Func Cursor(num%{, where});

num% The cursor number to use, cursor numbers run from 0 to 10.
where If present, the new position of the cursor. If the new position is out of range of

the x axis, it is limited to the x axis.
Returns The old cursor position or 0 if the cursor doesn't exist.
Examples:
Cursor(1,2.0); 'Set cursor 1 at position 2.0
where := Cursor(1); 'Get cursor position

See also: ChanValue(), CursorDelete(), CursorLabel(),
CursorLabelPos(), CursorNew(), CursorRenumber(),
CursorSet(), CursorValid(), HCursor()

This function returns the parameters used by an active cursor in searching for a feature in
the view data. Note that the use of some parameters varies according to the cursor mode
set. You should check the cursor mode first since if it is Repolarisation % then the fifth
argument should be a string and not a real variable.
Func CursorActiveGet(num%, chan%, start|start$, end|end$
{, n%|thresh|expr$|ref${, hyst{, width{, def|def$|min{, thresh2}}}}});

num% The cursor number from 0 to 10.
chan% Returned holding the number of the channel on which the cursor operates.
start Returned holding the start time for the feature search.
start$ Returned holding the start time for the search as a string. Search limits such as

"XLow() + 0.2" can be correctly returned.
end Returned holding the end time for the search.
end$ Returned holding the end time for the search as a string. If the string form of

start is used, the string form of end must also be used, and vice versa.
n% The point count when the cursor mode is 23.
thresh Returned holding the threshold level used in the feature search.
expr$ Returned holding the expression string for expression mode.
ref$ Returned holding the expression used in Repolarisation % searches to define the

time at which the 100% value is measured.
hyst Returned holding the hysteresis value used in the feature search or the % value

for modes 18 (percentage slope) and 19 (Repolarisation %)
width Returned holding the slope width value used, this also holds the width for

measurements, allowed peak width and delay after crossing.
def Returned holding the default position if the search fails
def$ Returned holding the default position as a string.
min Returned holding the minimum step for cursor 0 searches.
thresh2 Returned holding the second threshold level for dual-level searches.
Returns Zero.
See also: Cursor(), CursorDelete(), CursorMode(), CursorNew(),

CursorActiveSet()

Cursor()

CursorActiveGet()

CursorActiveSet() The Signal script language CursorDelete()

5-48

This function sets the parameters used by an active cursor in searching for a feature in the
view data. Note that the use of parameters varies according to the cursor mode set, which
means that you should take care to set the active mode first using CursorMode() and
then use this function to set the active mode parameters. All time values, whether as a
number or a string, are in seconds regardless of the X axis units that are in use.
Func CursorActiveSet(num%, chan%, start|start$, end|end$

{, n%|thresh|expr$|ref${, hyst{, width{, def|def$|min
{, thresh2}}}}});

num% The cursor number, from 0 to 10.
chan% The waveform channel number on which the cursor searches for features.
start The start time for the feature search in seconds.
start$ The start time for the search as a string, again in seconds. Expressions such as

"XLow() + 0.2" can be used.
end The end time for the feature search in seconds.
end$ The end time for the search as a string.
n% The point count when in Data points mode (23).
thresh The threshold level for feature searches. This can also be given as a string.
expr$ The expression string for Expression mode (mode 20).
ref$ The expression used in Repolarisation % searches (mode 19) to define the time

at which the 100% value is measured, this can also be given as a number. The
0% value is measured at the start time for the search.

hyst The hysteresis for threshold crossing searches or the minimum amplitude
value for peak and trough searches, for Percentage slope (mode 18) and
Repolarisation % (mode 19) searches this is the percentage value.

width The measurement or slope width value used in the feature search. For peak and
trough searches, this sets the maximum width for the peak while for threshold
crossings it is the delay after crossing parameter.

def The default position for the cursor - this is the position the cursor moves to if the
search fails. If you do not set a default position and the search fails, the cursor
will become invalid (which prevents it being used for measurements), so you
can use the default position to ensure that measurements are taken even if the
active mode cursor search fails.

def$ The default position as a string.
min The minimum step if this is cursor 0.
thresh2 The second threshold for Outside dual levels and Within dual levels (modes

21 and 22) searches. This can also be given as a string.
Returns Zero.
See also: Cursor(), CursorDelete(), CursorMode(), CursorNew(),

CursorActiveGet()

Deletes a cursor. It is not an error to delete an unknown cursor (which has no effect).
Func CursorDelete({num%});

num% The cursor number to delete, or -1 to delete all cursors. If omitted, the highest-
numbered cursor is deleted.

Returns The number of the cursor deleted or 0 if no cursor was deleted.
See also: Cursor(), CursorLabel(), CursorLabelPos(), CursorNew(),

CursorRenumber(), CursorSet(), HCursorDelete()

CursorActiveSet()

CursorDelete()

CursorExists() Alphabetical command reference CursorLabelPos()

5-49

This function tests if a given vertical cursor exists at the time of the call.
Func CursorExists(num%);

num% The cursor number from 0 to 10. For cursor zero, which can only be hidden not
deleted, this will always return 1.

Returns 1 if the cursor exists, 0 if it does not.
See also: Cursor(), CursorDelete(), HCursorExists()

This command sets (or gets) the cursor label style for the current view. Cursors can be
annotated with a position and/or the cursor number, or with a user-defined string:
Func CursorLabel({style%{, num%{, form$}}});

style% Label styles are: 0=None, 1=Position, 2=Number, 3=Both, 4=User-defined.
Unknown styles cause no change. Style 4 is used with a format string.

num% The cursor number to use. Set to -1 or omit to select all cursors, 0 upwards
selects one cursor.

form$ A string to label the cursors.It has replaceable parameters %p, %u, %g, %n,
%v(chan)and %w(chan) for position, units, position & units, number and
channel value without and with units (replace chan with the channel number
whose value you require). %w.dp and %w.dv(chan) formats are allowed where
w and d are numbers that set the field width and number of decimal places.

Returns The current style of cursor 1 before any change. If style% is omitted, the
current cursor style is not changed.

See also: Cursor(), CursorDelete(), CursorLabelPos(), CursorNew(),
CursorRenumber(), CursorSet(), HCursorLabel()

This function lets you set and read the position of the cursor label.
Func CursorLabelPos(num%{, pos});

num% The cursor number. If the cursor does not exist the function does nothing and
returns -1.

pos If present, the command sets the label position as the percentage of the distance
from the top of the cursor. Out-of-range values are set to the appropriate limit.

Returns The cursor position before any change was made, or -1 if the cursor does not
exist.

See also: Cursor(), CursorDelete(), CursorLabel(), CursorNew(),
CursorRenumber(), CursorSet(), HCursorLabelPos()

CursorExists()

CursorLabel()

CursorLabelPos()

CursorMode() The Signal script language CursorNew()

5-50

This function lets you set and read the active cursor mode for a cursor.
Func CursorMode(num%{, mode%});

num% The cursor number. If the cursor does not exist the function does nothing and
returns -1.

Mode% If present, the command sets the new cursor mode (see the main active cursor
documentation for a description of the modes). The possible values of mode%
are:

 0 Static 1 Maximum 2 Minimum
3 Maximum excursion 4 Peak 5 Trough
6 Threshold 7 +ve threshold 8 -ve threshold
9 Maximum slope 10 Minimum slope 11 Peak in slope
12 Trough in slope 13 Slope threshold 14 Slope +ve thresh.
15 Slope -ve thresh. 16 Abs max slope 17 Turning point
18 Percentage slope 19 Repolarisation % 20 Expression
21 Outside dual levels 22 Within dual levels 23 Point count

 Modes shown in italics are not available for use with cursor zero. Modes above
3 are not allowed for log-binned data.

Returns The cursor mode before any change was made, or -1 if the cursor does not exist.
See also: Cursor(), CursorActiveGet(), CursorActiveSet(),

CursorNew(), CursorSet()

This command adds a new cursor to the view at the designated position. A new cursor is
created in Static mode (not active).
Func CursorNew({where{, num%}});

where Where to position the cursor. In a file or memory view it is a time in seconds. In
an XY view it is in x axis units. The position is limited to the x axis range. If the
position is omitted, the cursor is placed in the middle of the window.

num% If this is omitted, or set to -1, the lowest numbered free cursor is used. If this is a
cursor number, that cursor is created. This must be a legal cursor number or -1.

Returns It returns the cursor number as an integer, or 0 if all cursors are in use.
See also: Cursor(), CursorDelete(), CursorLabel(), CursorLabelPos(),

CursorRenumber(), CursorVisible(), CursorSet(),
HCursorNew()

CursorMode()

CursorNew()

CursorOpen() Alphabetical command reference CursorSearch()

5-51

This command reports on the open state or opens the cursor values and cursor regions
dialogs for the current data or memory view. These dialogs open in the last used position
unless not usefully on a monitor, when they open centred on the application window. If
the dialog is open you can use this command to get the dialog handle and change settings.
Use FileClose() to close an opened dialog. This function was added in Signal version
5.00.
Func CursorOpen({opt%{, mode%{, xZero%{, yZero%|type%}}}});

opt% Set 0 to open the cursor values dialog and 1 to open the cursor regions dialog.
Omit or set -1 as the only argument to report on the open state of the cursor
dialogs.

mode% Set 1 to open the dialog and show it, 0 or omitted to open and hide it. You may
wish to open a window invisible so that you can position it before display.

xZero% This sets the state of the Time Zero or Zero Region check boxes and the
associated cursor column selection. Set -2 for unchecked, -1 or omit for no
change or set 0 to 9 for the values or 0 to 8 for the regions dialog to check the
box and select a column. 0 selects the first column, 1 the second, and so on.

yZero% This sets the state of the Y Zero check box and associated column selection for
the cursor values dialog. Set -2 for unchecked, -1 or omit for no change and 0-9
to check the box and select a column. 0 selects the first column, 1 the second,
and so on.

type% This sets the measurement type for the cursor regions dialog. Set 1-15 to set a
measurement as for ChanMeasure(). Omit or set -1 or 0 for no change. See the
documentation of the Cursor Regions window for details of these
measurements.The possible values are:

 1 Curve area 2 Mean 3 Slope
4 Area 5 Sum 6 Modulus
7 Maximum 8 Minimum 9 Amplitude
10 RMS Amplitude 11 Standard dev. 12 Absolute maximum
13 Peak 14 Trough 15 Point count

Returns If opt% is -1 or omitted the return value is the sum of 1 if the values dialog is
open and 2 if the regions dialog is open. Otherwise the return value is the handle of the
opened dialog, or 0 if the dialog failed to open for some reason.

See also: ChanMeasure(), ChanValue(), FileClose(), Window()

This command renumbers the cursors from left to right in the view. There are no
arguments.
Func CursorRenumber();

Returns The number of cursors found in the view.
See also: Cursor(), CursorDelete(), CursorLabel(), CursorLabelPos(),

CursorNew(), CursorSet(), HCursorRenumber()

This function causes active cursors in a data view to search according to the current
cursor mode. You can cause all cursors to search, or a restricted range of cursor numbers.
Moving cursor 0 with CursorSearch causes all other vertical cursors to search if active.
Func CursorSearch(num%{, stop%});

num% This is the first cursor number to run the search defined by the active cursor
mode. Set this to 0 to cause cursor 0 to search forwards and to -1 for cursor 0 to

CursorOpen()

CursorRenumber()

CursorSearch()

CursorSet() The Signal script language CursorVisible()

5-52

search backwards. CursorSearch(0) and CursorSearch(-1) are equivalent
to the Ctrl+Shift+Right and Ctrl+Shift+Left key combinations.

stop% This optional argument sets number of the last cursor to try to reposition. If you
omit this argument, all cursors from num% upward will search according to their
active mode. To reposition a single cursor set stop% the same as num%.

Returns The X position that cursor num% moved to or -1 if didn’t move. You can also use
CursorValid() to test if searches have succeeded.

See also: Cursor(), CursorActiveSet(), CursorActiveGet(),
CursorNew(), CursorValid(), MeasureChan(), MeasureX()

This command deletes any existing vertical cursors, then positions a specified number of
new cursors, equally spaced in the view and numbered in order from left to right. If any
positions are given, they are applied. The cursor labelling style is not changed.
Proc CursorSet(num%{, where1{, where2...}});

num% The number of cursors in the range 0 to the maximum allowed. 0 turns off all
the cursors.

where Optional cursor positions in x axis units. Positions that are out of range are set to
the nearest valid position.

Examples:
CursorSet(0); 'Delete all cursors
CursorSet(2,20,30); 'remove cursors, set 2 at 20 and 30 on x axis.

See also: BinToX(), Cursor(), CursorDelete(), CursorLabel(),
CursorVisible(), CursorLabelPos(), CursorNew(),
CursorRenumber()

Use this function to test if the last search of a cursor succeeded. Cursor positions are valid
if a search succeeds or if the cursor is positioned manually or by a script command. The
position of a newly created cursor is valid.
Func CursorValid(num%);

num% The cursor number to test for a valid search result.
Returns The result is 1 if the position of the nominated cursor is valid or 0 if it is invalid

or the cursor does not exist.
See also: CursorActiveSet(), CursorActiveGet(), CursorNew(),

CursorSearch(), CursorVisible(), MeasureChan(), MeasureX()

Vertical cursors can be hidden without deleting them. Interactively you can hide cursor 0,
but from a script you can show and hide any vertical cursor. Cursors are always made
visible by the Ctrl+n key combination.
Func CursorVisible(num%{, show%});

num% The cursor number or -1 for all vertical cursors.
show% If present set this to 0 to hide the cursor and non-zero to show it.
Returns The state of the cursor at the time of the call (0=hidden, 1=visible) or -1 if the

cursor does not exist. If num% is -1, the result is the number of vertical cursors.
See also: CursorExists(), CursorNew(), CursorSearch(), CursorValid()

CursorSet()

CursorValid()

CursorVisible()

Date$() Alphabetical command reference Date$()

5-53

This function creates a string containing the date. If no arguments are supplied, a string is
returned showing the day, month and year in a format specified by the operating system
settings. To obtain the date as numbers, use the TimeDate() function. For the purpose of
this description, we assume that today’s date is Wednesday 4 August 2004, the system
language is English and the system date separator is “/”.
Func Date$({dayF%, {monF%, {yearF%, {order%, {sep$}}}}});

dayF% This sets the format of the day field in the date. This can be written as a day of
the week or the day number in the month, or both. If this argument is omitted,
the value 2 is used. The options are:
1 Show day of week: “Wednesday”.
2 Show the number of the day in the month with leading zeros: “04”.
4 Show the day without leading zeros: “4”.
8 Show abbreviated day of week: “Wed”.
16 Show week day name first, regardless of the order% field.
Use 0 for no day field. Add the numbers for multiple options. For example, to
return “Wed 04”, we would enter 11 (1+2+8) as the dayF% argument.
If you add 4, 2 is ignored. If you add 8 or 16, 1 is added automatically. If you
request both the week day name and the number of the day, the name appears
before the number.

monF% The format of the month field. This can be returned as either a name or a
number. If this argument is omitted, the value 3 is used. The options are:
0 No month field.
1 Show name of the month: “August”.
2 Show number of month: “08”.
3 Show an abbreviated name of month: “Aug”.
4 Show number of month with no leading zeros: “8”.

yearF% The format of the year field. This can be returned as a two or four digit year.
0 No year is shown
1 Year is shown in two digits: “98”.
2 Year is shown in two digits with an apostrophe before it: “’98”.
3 Year is shown in four digits: “1998”.

order% The order that the day, month and year appear in the string. If this argument is
omitted, the value 0 is used.
0 Operating system settings
1 month/day/year
2 day/month/year
3 year/month/day

sep$ This string appears between the day, month and year fields as a separator. If this
string is empty or omitted, Signal supplies a separator based on the system
settings.

For example, Date$(20, 1, 2, 1, " ") returns "Wednesday April 1 ’98". As
20 is 16+4, we have the day first, even through the order% argument places the day in
between the month and the year. Date$() returns "01/Apr/98".

See also: Seconds(), TimeDate(), Time$()

Date$()

Debug() The Signal script language DebugHeap()

5-54

This function can be used to open the debug window so you can step through your script,
set break-points and display and edit variables. It can also be used to control access to the
debugger by the user.
Proc Debug({msg$|opt%});

msg$ When used with no arguments, or with a string argument, this function stops the
script as though the Esc key had been pressed or a break-point reached. The
debug toobar is shown if it was hidden and, if present, the msg$ string is
displayed in the debug window.

opt% When used with an integer argument, the function controls the ability of the user
to break into the debugger by pressing Esc. Set opt% to 0 to disable Esc, 1 to
enable it. Each time a script starts the Esc key is enabled, so you should use this
as the first instruction in your script if you want to be certain the user cannot
break out.

The opt% form of the command was included for use in situations such as student use,
where it is important that the user cannot break out of a script by accident. It is advisable
to test your script carefully and save it to disk before disabling user breaks; once disabled
you cannot stop a looping script except by forcing a fatal error.

See also: Eval()

This script command is provided for use by CED engineers to help to debug system
problems. It reports on the state of the application heap, used to dynamically allocate
memory. The heap is a list of memory sections. Each section is described by its start
address, its size, and if it is in use by the application or is free (available for use). When
the application wants more memory, it asks the heap for it. If there is no suitable memory
in the heap, the heap requests more memory from the system and uses this to create more
heap sections. The command has the following variants:

When called with no arguments, the command tests the integrity of the heap (all
command variants do this first). The return values indicate problems in the heap. The
error return values apply to all calls to the DebugHeap() function.
Func DebugHeap();

Returns The function returns 0 if no error is detected, otherwise a negative error code:
-1 Initial header information is bad or cannot be found.
-2 Bad node or the heap is damaged.
-3 A pointer into the heap is invalid.
-4 The heap has not been initialised (should never occur)
-5 Unknown error

When called with a single argument of -1 (or any value less than 0), the heap will return
unused memory back to the operating system. However, I have never seen this make any
difference to the data held by the heap.
Func DebugHeap(-1);

Returns The same values as the call with no arguments.

When called with a single argument that is a positive number, all unused memory that is
owned by the heap is set to this value.
Func DebugHeap(fill%);

fill% All unused bytes in the heap are set to the low byte of this value. This can
sometimes be useful when you suspect that unused memory is being used by the
program.

Debug()

DebugHeap()

Test heap integrity

Release unused memory

Set unused heap memory to
known value

DebugList() Alphabetical command reference DebugList()

5-55

Returns The same values as the call with no arguments.

The heap is a list of used an unused sections of memory. This call gets information on the
number of used an unused sections and the total size of the used sections and the total
heap size.
Func DebugHeap(info%[]{, stats%[]});

info% An integer array of at least 4 elements. The first four array elements are returned
holding:
0 The total number of memory sections in the heap.
1 The number of used memory sections in the heap.
2 The total size of memory controlled by the heap.
4 The total size of memory that is in used and controlled by the heap.

stats% This optional argument is an integer array of at least 32 elements. The elements
are returns with heap information. The nth element is returned holding the
number of heap sections of a size between 2n and 2n+1-1 bytes. The very first
element, which should hold the count of sections that are 1 byte in size actually
holds the count of sections that are 0 or 1 byte long.

Returns The same values as the call with no arguments.

The last call variant returns the entire heap information, and can optionally return the first
few bytes of data held in the heap.
Func DebugHeap(walk%[][]);

walk% This is an integer matrix with at least 3 columns. Ideally it would have at least as
many rows as there are memory sections (both used and free) in the heap. If
there are more than 3 columns, the additional columns are returned holding the
heap data. Each row of the matrix returns information for one section. The
columns hold:
0 0 if the section is unused, 1 if it is used.
1 The start address of the section.
2 The size of the section, in bytes.
3 If present, returns the first 4 bytes of data in this section.
4 If present, returns the next 4 bytes of data in this section.
n Returns further data (if it exists) in the section.

Returns If there is no error, the function returns the number of sections in the heap. This
can be more than the number of rows in the matrix. If there is an error, the
function returns a negative value as described for the call with no arguments.

This command is used for debugging problems in the system. It writes information to the
Log view about the internal list of “objects” used to implement the script language.
Proc DebugList(list%{, opt%});

list% This determines what to list and also controls the accumulation of timing
information.
-3 Disable the accumulation of timing information (the normal state) for calls

to built-in functions.
-2 Enable the accumulation of timing information. This is normally used as a

diagnostic of slow script performance when we need to figure out where the
time is being spent.

-1 Reset accumulated times and call counts to 0.
0 List a summary of the DebugList() options in the Log view.

Get heap information

Get heap entries

DebugList()

DebugOpts() The Signal script language DelStr$()

5-56

1 List the names of fixed objects (constants and operators). This is usually
only of interest to CED programmers.

2 List the names of permanent objects (constants, operators and built-in
commands).

3 List built-in commands (things like NextTime()).
>3 List information for the object with the index list%.

opt% This optional argument (default value 0) sets the additional object information to
list and is the sum of: 1= list the index number, 2= list the type, 4= list timing
information for the built-in script commands. The timing information is three
numbers: the number of times the command was called, the total time in seconds
used and the time per call in microseconds.

The timing information is normally used by CED programmers to check that functions
are working with a reasonable efficiency. If you should discover that a particular function
is using a lot of time, you may be able to optimise your use of the function to improve
matters. If you think that a particular function is slow, let us know; we may be able to
improve it.

See also: Debug(), Eval(), DebugOpts()

This command is used for debugging problems in the system. It controls internal options
used for debugging at the system level.
Func DebugOpts(opt%{, val%});

opt% This selects the option to return (and optionally to change). A value of 0 prints a
synopsis of available options to the Log view and the current value of each
option. Values greater than 0 return the value of that option, and print the option
information to the Log view. At the time of writing, only option 1, dump
compiled script to the file default.cod is implemented.

Val% If present, this sets the new value of the option.
See also: Debug(), Eval(), DebugList()

This function deletes the current frame from the current data view. Frames can only be
deleted if they were appended and have not yet been saved to disk. It is not possible to
delete the last frame in a memory view.
Func DeleteFrame();

Returns Zero or a negative error code.
See also: AppendFrame(), FrameCount(), FrameFlag(), FrameTag()

This function removes a substring from a string.
Func DelStr$(text$, index%, count%);

text$ The string to remove characters from. This string is not changed.
index% The start point for the deletion. The first character is index 1. If this is greater

than the length of the string, no characters are deleted.
count% The number of characters to delete. If this would extend beyond the end of the

string, the remainder of the string is removed.
Returns DelStr$() returns the original string with the indicated section deleted.
See also: InStr(), LCase$(), Len(), Mid$(), Right$(), UCase$()

DebugOpts()

DeleteFrame()

DelStr$()

DelStr$() Alphabetical command reference DelStr$()

5-57

You can define your own dialogs to get information from the user. You can define
dialogs in a simple way, where each item of information has a prompt and the dialog is
laid out automatically, or you can build a dialog by specifying the position of every item.
A simple dialog has the structure shown in the diagram:

The dialog is arranged in terms of items. Unless
you specifically request otherwise, the dialog
items are stacked vertically above each other
with buttons arranged at the bottom.

The dialog has a title of your choosing at the
top. There are OK and Cancel buttons at the
bottom of the dialog. When the dialog is used,
pressing the Enter key is equivalent to clicking
on OK.

This form of dialog is very easy to program. There is no need to specify any position or
size information, the system works it all out. Some users require more complicated
dialogs, with control over the field positions. This is also possible, but more involved to
program. You are allowed up to 1000 fields in a dialog.

In more complex cases, you specify the position (and usually the width) of the box used
for user input. This allows you to arrange data items in the dialog in any way you choose.
It requires more work as you must calculate the positions of all the items.

There are new script functions to add and manipulate buttons, to collect a time or x axis
value (including using cursor values) and to add a group box. You can also define script
functions that are called in response to button presses and user changes to the dialog and
an idle-time function that is called repeatedly whilst the dialog is waiting for user actions.
All these functions can enable and disable, hide and show and modify dialog items. You
can now use DlgChan() to get a channel from an XY view. Finally, there are extensions
to the integer, real and string fields that allow you to define a drop down list of selectable
items to copy into the fields and you can add a spin control to both integer and real
numeric fields. All dialogs created in previous versions of Signal should work without
any change.

Positions within a dialog are set in dialog units. In the x (horizontal) direction, these are
in multiples of the maximum width of the characters ‘0’ to ‘9’. In the y (vertical)
direction, these are in multiples of the line spacing used for simple dialogs. Unless you
intend to produce complex dialogs with user-defined positions, you need not be
concerned with dialog units at all.

The simple example dialog shown above can be created by this code:
var ok%, item1%, item2%, item3, item4$:= "more...", item5;
DlgCreate ("Title for the dialog"); 'start new dialog
DlgInteger(1,"Item &1 prompt",0,10,0,0,1); 'range 0-10,spinner
DlgChan (2, "Item &2 prompt", 1); 'Waveform channel list
DlgReal (3, "Item &3 prompt", 1.0, 5.0); 'real, range 1.0-5.0
DlgString (4, "&More prompts...", 6); 'string, any characters
DlgCheck (5, "A &checkbox with a prompt");'a checkbox item
DlgButton (2, "&Extra"); 'extra button, number 2

ok% := DlgShow(item1%, item2%, item3, item4$, item5); 'show dialog

Dialogs

Version 3 extensions

Dialog units

Simple dialog example

DelStr$() The Signal script language DelStr$()

5-58

In the functions that set an item with a prompt, if you precede a character in the prompt
with an ampersand (&), the following character is underlined and is used by Windows as
a short-cut key to move to the field or activate the button. All static dialog items except a
group box allow you define a tooltip by appending a vertical bar followed by the tooltip
text to the text$ argument. For example:
DlgReal(3, "Rate|Enter the sample rate in Hz", 100, 500);

Buttons allow you to specify an additional activation key and an optional tooltip by
adding a vertical bar followed by the key code and then another vertical bar followed by
the tooltip. See the label$ argument of ToolbarSet() for details of key codes.

This example shows how to respond to user
actions within a dialog. In this case we use a
checkbox to enable and disable a group of items
and a button that displays the current values of
dialog items. The numbered fields are:

1 An integer, range 0-10 with a spinner
2 A drop list of 4 items
3 A checkbox, used to enable items 4 and 5
4 A real number with a spinner
5 A string with a drop down list of items

We have added button 2 (buttons 0 and 1 are
Cancel and OK) and a group box around items 4 and 5. To make room for the group box,
the y positions of items 4 and 5 are set explicitly.

With DlgAllow() we have set Func Change%(item%) to be called whenever the user
changes a selection or checkbox or when an editable field loses the input focus. The
item% argument is set to the item number that changed or to 0 if the dialog is appearing
for the first time. We are interested in item 3, the checkbox, and we use the state to
enable or disable the group box and the items inside it.

Func Current%() is linked to the "Current" button. In this case it is used to display a
message box that lists the current values of items in the dialog.

var ok%, item1%, item2%, item3%, item4, item5$:= "Text", gp%;
DlgCreate("Dialog with user placement",0,0,40,7.5);
DlgInteger(1,"Integer 0 to 10",0,10,0,1,1); 'Int with spinner
DlgList(2,"List item","List 0|List 1|List 2|List 3", 4, 0, 2);
DlgCheck(3, "Checkbox enabling items",0,3); 'checkbox item
DlgReal(4, "Real 1 to 5",1.0,5.0,0,4.5,0.5); 'Real with spinner
DlgString(5, "String length 10",10,"",0,5.5, 'String item with
 "String 1|String 2|String 3"); 'drop down list
DlgButton(2, "Current", Current%); 'button+function
DlgAllow(0x3ff, 0, Change%); 'Allow all, no idle, change function
gp% := DlgGroup("Extra items",1,3.8,-1,2.9); 'Group box
ok% := DlgShow(item1%,item2%,item3%,item4,item5$);
Halt;

Func Change%(item%)
var v%;
docase
 case ((item% = 3) or (item% = 0)) then '0 is initial setup
 v% := DlgValue(3); 'get checkbox state
 DlgEnable(v%, gp%, 4, 5); 'enable groupbox+items 4, 5
endcase;
return 1; 'Return 1 to keep dialog running
end;

Prompts, & and tooltips

More complex example

DlgAllow() Alphabetical command reference DlgAllow()

5-59

Func Current%()
var v1%, v2%, v3%, v4, v5$;
v1% := DlgValue(1); 'Retrieve the current values
v2% := DlgValue(2); v3% := DlgValue(3);
v4 := DlgValue(4); v5$:= DlgValue$(5);
Message("Values are %d, %d, %d, %g and %s",v1%,v2%,v3%,v4,v5$);
return 1; 'Return 1 to keep the dialog running
end;

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgCreate(), DlgEnable(), DlgGroup(), DlgInteger(),
DlgLabel(), DlgList(), DlgReal(), DlgShow(), DlgString(),
DlgText(), DlgValue(), DlgVisible(), DlgXValue()

Call this function after DlgCreate() and before DlgShow() to enable dialog idle time
processing, advanced call-back features and dynamic access to the dialog fields. There
are no restrictions on what call-back functions can do. However, it is not sensible to place
time-consuming code in an idle call-back function or to do anything other than check
dialog fields and possible display a warning message in a dialog-item-change function.
Call-back functions use DlgValue(), DlgEnable() and DlgVisible() to manipulate
the dialog fields. You can also call DlgAllow() after DlgShow() in which case it will
operate on the most recently created dialog. DlgAllow() is new in version 3.
Proc DlgAllow(allow%{, func id%(){, func ch%()}});

allow% A number that specifies the actions that the user can and cannot take while
interacting with Signal. See Interact() for a full description.

id%() This is an integer function with no arguments. Use the name with no brackets,
for example DlgAllow(0,Idle%); where Func Idle%() is a script function.
When DlgShow() executes, the function is called repeatedly in system idle
time, as for the ToolbarSet() idle function.

 If the function return value is greater than 0, the dialog remains open. A zero or
negative return value closes the dialog and DlgShow() returns the same value.

 If this argument is omitted or 0, there is no idle time function.
ch%() This is an integer function with one integer argument, for example Func

Changed%(item%). You would use DlgAllow(0,0,Changed%); to link this
function to a dialog. Each time the user changes a dialog item, Signal calls the
function with the argument set to the changed item number. There is an initial
call with the argument set to 0 when the dialog is about to be displayed.

 A field is deemed to change when the user clicks a checkbox or changes a
selection in a list or moves the focus from an editable item after changing the
text (for real and integer values, the new value must be in range.)

 If the change function returns greater than 0, the change is accepted. If the return
value is zero, the change is resisted and the focus set back to the changed item.
If the return value is negative, the dialog closes and DlgShow() returns this
value and the arguments are not updated.

See also: DlgButton(), DlgCreate(), DlgEnable(), DlgShow(),
DlgValue(), DlgVisible(), Interact(), ToolbarSet()

DlgAllow()

DlgButton() The Signal script language DlgButton()

5-60

Dialogs created by DlgCreate() have Cancel and OK buttons; this function adds,
deletes and changes buttons. You can link a script function to a button and use the
function return value to decide if the dialog should close. Use this function after
DlgCreate() and before DlgShow(). There are two variants:

Func DlgButton(but%, text${, func ff% {, x, y}}); 'Set a button
Func DlgButton(); 'Get the last used button while the dialog is active

but% The button number from 0 to 199. Button 0 is the cancel button, 1 is the OK
button. Button numbers higher than 1 create new buttons.

text$ This sets the button label. Set an empty string to delete a button. You cannot
delete button 1; the label is set back to OK if you try. The label text can be
followed by an optional key code and an optional tooltip separated by vertical
bars. See the label$ argument of ToolbarSet() for details of the format.

 A button with a key code can be activated even when the dialog does not have
the input focus as long as it is the topmost user dialog and you have not created
a toolbar or interact bar from a function linked to the dialog. This allows you to
drag cursors in a window and use the key code without clicking in the dialog.

ff%() This integer function with no arguments is called when the button is used. Set
the argument to zero or omit it if you don't want a button function, in which case
clicking the button closes the dialog, DlgShow() returns the button number and
the DlgShow() arguments are updated for all buttons except 0.

 If you supply a function, it is called each time the button is used and the function
return value determines what happens next:
<0 The button acts as Cancel. The dialog closes, DlgShow() returns this value

and its arguments are not updated.
0 The button acts as OK. The dialog closes and the DlgShow() return value

is the button number and its arguments are updated.
>0 The dialog continues to display.

 The button function can use DlgEnable(), DlgValue() and DlgVisible().
x,y Set the button position in dialog units, both or neither of these must be supplied.

If x is positive it sets the position of the left edge of the button relative to the left
side of the dialog, if negative it sets the position of the right edge of the button
relative to the right side of the dialog. If the button position is not supplied it
will be automatically positioned at the bottom of the dialog in rows based on the
button numbers.

Returns 0 unless called with 0 arguments when it returns the last used button number.
See also: DlgEnable(), DlgShow(), DlgValue(), DlgVisible(),

ToolbarSet()

DlgButton()

DlgChan() Alphabetical command reference DlgChan()

5-61

This function defines a dialog entry that lists channels that meet a specification to use for
selection of a channel of a particular type. For simple dialogs, the wide, x and y
arguments are not used. Channel lists are checked or created when the DlgShow()
function runs. If the current view is not a data or XY view, the list will be empty.
Proc DlgChan(item%, text$|wide, mask%|list%[]{, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display as a prompt. If the prompt contains a vertical bar, “|” any

following text will be used as a tooltip and displayed when the mouse pointer is
held over the item.

wide This is an alternative to the prompt. It sets the width of the box in which the user
selects a channel. If the width is not given the number entry box has a default
width of the longest channel name in the list or 12, whichever is the smaller.

mask% This is an integer code that determines the channels to be displayed. It is ignored
for XY views. You can select channels of particular types by adding together the
following codes:
 1 Waveform channels
 2 Marker channels
 4 Idealised traces
If none of the above values are used, then the list includes all channels. The
following codes can be added to exclude channels from the list created above:
 128 Exclude CFS disk file channels
 256 Exclude virtual channels
 1024 Exclude visible channels
 2048 Exclude hidden channels
 4096 Exclude selected channels
 8192 Exclude non-selected channels
Finally, adding the following codes allows special entries to be added to the list:
 131072 Add None as an entry in the list (returns 0)
 262144 Add All channels as an entry in the list (returns -1)
 524288 Add All visible channels as an entry in the list (returns -2)
 1048576 Add Selected as an entry in the list (returns -3)

list% As an alternative to a mask, you can pass in a channel list (as constructed by
ChanList()). This must be an array of channels, with the first element of the
array holding the number of channels in the list.

x If omitted or zero, the selection box is right justified in the dialog box, otherwise
positive values set the position of the left end of the channel selection box in
dialog units and negative values set the position of the right hand end relative to
the right edge of the dialog..

y If omitted, this takes the value of item%. It is the position of the bottom of the
channel selection box.

The variable passed to DlgShow() for this field should be an integer. If the variable
passed in holds a channel number in the list, the field shows that channel, otherwise it
shows the first channel in the list (usually None). The result from this field in
DlgShow() is a channel number, or 0 if None is selected, -1 if All channels is
selected, -2 if All visible channels is selected or -3 if Selected is chosen.

See also: DlgAllow(), DlgButton(), DlgCheck(), DlgCreate(),
DlgInteger(), DlgLabel(), DlgList(), DlgReal(), DlgShow(),
DlgString(), DlgText()

DlgChan()

DlgCheck() The Signal script language DlgCreate()

5-62

This defines a dialog item that is a check box (on the left) with a text string to its right.
For simple dialogs, the x and y arguments are not used.
Proc DlgCheck(item%, text${, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display to the right of the check box. If the prompt contains a vertical

bar, “|” any following text will be used as a tooltip and displayed when the
mouse pointer is held over the item.

x,y The position of the check box in dialog units. If omitted, x is set to 2 and y to
item% and the check box behaves exactly like other dialog items. If x is positive
is sets the position of the left side of the check box and if negative it sets the
position of the right hand end of the prompt text relative to the right edge of the
dialog.

When DlgShow() is used, the box is checked if the variable passed in is non-zero and
unchecked if it is zero. The variable passed should be an integer and is returned as 0 for
unchecked or 1 for checked.

See also: DlgAllow(), DlgButton(), DlgChan(),DlgCreate(),
DlgInteger(), DlgLabel(), DlgList(), DlgReal(), DlgShow(),
DlgString(), DlgText()

This function starts the definition of a dialog, it also kills off any previous dialog that
might be partially defined. For simple dialogs, the optional arguments are not used.
Func DlgCreate(title${,x,y,wide,high,help%|help${,scr%{,rel%}}});

title$ A string holding the title for the dialog.
x,y Optional, taken as 0 if omitted. The position of the top left hand corner of the

dialog. The positions are in percentages of the screen size. The value 0 means
centre the dialog. Values out of the range 0 to 95 are limited to the range 0 to 95.

wide The width of the dialog in dialog units. If this is omitted, or set to 0, Signal
works out the width for itself, based on the items in the dialog.

high The height of the dialog in dialog units. If omitted, or set to 0, Signal works it
out for itself, based on the dialog contents.

help This is a string or numeric identifier that identifies the help page to be displayed
if the user requests help when the dialog is displayed. This argument is ignored
if your version of Signal doesn't support help.

scr% Optional screen selector. See Window() command for details.
rel% Omit or set 0 for application window relative, 1 for screen or desktop relative.
Returns This function returns 0 if all was well, or a negative error code.
For simple use, only the first argument is needed. The remainder are for use with more
complicated menus where precise control over menu items is required.

In the functions that set an item with a prompt, if you precede a character in the prompt
with an ampersand “&”, the following character is used by Windows as a short-cut key to
move to the field and the character is underlined. Ampersand characters are ignored on
systems that do not use this mechanism.

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgInteger(), DlgLabel(), DlgList(), DlgReal(), DlgShow(),
DlgString(), DlgText(), Window()

DlgCheck()

DlgCreate()

Use of & in prompts

DlgEnable() Alphabetical command reference DlgGetPos()

5-63

This function is used from a dialog call-back function to enable or disable dialog items, it
cannot be used in other circumstances. There are two versions of this command. With a
single argument, it returns the enabled state of an item; with two or more arguments it
sets the enabled state of one or more dialog items. When you enable or disable an item,
any prompt or spin controls associated with the item are also enabled or disabled.
Func DlgEnable(en%, item%|item%[]{, item%|item%[]...});
Func DlgEnable(item%);

en% Set 0 to disable list items, 1 to enable them and 2 to enable and give the first
item the input focus. Input focus changes should be used sparingly to avoid user
confusion; they can cause button clicks to be missed.

item% An item number or an array of item numbers of dialog elements. The item
number is either the number you set, or the number returned by DlgText() or
DlgGroup(), or –button, where button is the button number. You cannot
access prompts separately from their items as this makes no sense.

Returns When called with a single argument it returns the enabled state of the item,
otherwise it returns 0.

See also: DlgAllow(), DlgButton(), DlgCreate(), DlgShow(),
DlgValue(), DlgVisible()

This rourine can only be used from a dialog call-back function to get the position of the
top left corner of the dialog. The call-back functions are set by DlgAllow() and
DlgButton(). To get the final dialog position you need to have call-backs for any button
press that would close the dialog, or in an idle routine. This function was added at Signal
version 4.01.
Func DlgGetPos(&x, &y{, scr%{, rel%}});

x,y Returned holding the position of the top left hand corner of the dialog relative to
the rectangle defined by scr% and rel%.

scr% Optional screen selector for views, dialogs and the application window. If
omitted or -1, positions are relative to the application window. Otherwise, 0
selects the entire desktop rectangle and greater values select a particular screen
rectangle (but see rel%). See System() for more screen information.

rel% Ignored unless scr% is 0 or greater. Set 0 or omit for positions relative to the
intersection of the rectangle set by scr% and the application window, 1 for
positions relative to the scr% rectangle. If there is no intersection, x and y are
both returned holding zero.

Returns 1 if the position was returned, or -1 if the rectangle set by scr% and rel% is of
zero size.

See also: DlgCreate(), DlgButton(), DlgEnable(), DlgShow(),
DlgValue(), DlgVisible()

DlgEnable()

DlgGetPos()

DlgGroup() The Signal script language DlgInteger()

5-64

This routine creates a group box with a dialog; a rectangular frame with a text label at the
top left corner. You can use this between calls to DlgCreate() and DlgShow(). There
is nothing for the user to edit in this item, so you do not supply an item number and there
is no matching argument in DlgShow(). However, the returned number is an item
number (above the values used to match items to DlgShow() arguments) that you can
use in call-back functions to identify the group box.
Func DlgGroup(text$, x, y, width, height);

text$ The text to display at the top left of the group box.
x,y The position of the top left corner of the group box.
width If positive, the width of the group box. If negative, this is the offset of the right

hand side of the group box from the right hand edge of the dialog.
height The height of the group box.
Returns The routine returns an item number so that you can refer to this in call-back

functions to use DlgVisible() and DlgEnable().

See also: DlgCreate(), DlgEnable(), DlgShow(), DlgVisible()

This function defines a dialog entry that edits an integer with an optional spin control or
drop down list of selectable items. The numbers you enter may not contain a decimal
point. For simple dialogs, the wide, x, y, sp% and li$ arguments are not used.
Proc DlgInteger(item%, text$|wide, lo%, hi%{, x{, y{, sp%|li$}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the box in

which the user types the integer. If the width is not given the number entry box
has a default width of 11 digits (or width needed for the number range?).

lo% The start of the range of acceptable numbers.
hi% The end of the range of acceptable numbers.
x If omitted or zero, the number edit is right justified in the dialog box, otherwise

positive values set the position of the left end of the number edit in dialog units
and negative values set the position of the right hand end relative to the right
edge of the dialog.

y If omitted or zero, this takes the value of item%. It is the position of the bottom
of the number entry box in dialog units.

sp% If present and non-zero, this adds a spin box with a click increment of sp%.
li$ If present, this argument is a list of items separated by vertical bars that can be

selected into the integer field, for example "1|10|100".
The variable passed into DlgShow() should be an integer. The field starts with the value
of the variable if it is in the range. Otherwise, it is limited to the nearer end of the range.

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgCreate(), DlgLabel(), DlgList(), DlgReal(), DlgShow(),
DlgString(), DlgText()

DlgGroup()

DlgInteger()

DlgLabel() Alphabetical command reference DlgList()

5-65

This function sets an item that has no editable part, that is an item used as a label. For
simple dialogs, the wide, x and y arguments are not used. You can add text to a dialog
without using an item number with DlgText().
Proc DlgLabel(item%, text${, x{, y}});

item% This sets the item number in the dialog.
text$ The text to display. If the label contains a vertical bar, “|” any following text will

be used as a tooltip and displayed when the mouse pointer is held over the item.
x If omitted or zero, the label is right justified in the dialog box, otherwise positive

values set the position of the left end of the label in dialog units and negative
values set the position of the right hand end relative to the right edge of the
dialog.

y If omitted, this takes the value of item%. It is the position of the bottom of the
text in the dialog.

When you call DlgShow(), you must provide a dummy variable for this field. The
variable is not changed and can be of any type, but must be present.

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgCreate(), DlgInteger(),DlgList(), DlgReal(), DlgShow(),
DlgString(), DlgText()

This defines a dialog item that is a one of n selection, each of the possible items to select
is identified by a string. For simple dialogs, the wide, x and y arguments are not used.
Proc DlgList(item%, text$|wide, list$[]|str${, n%{, x{, y}}});

item% This sets the item number in the dialog.
text$ The text to display as a prompt. If the prompt contains a vertical bar, “|” any

following text will be used as a tooltip and displayed when the mouse pointer is
held over the item.

wide This is an alternative to the prompt. It sets the width of the box in which the user
selects an item. If the width is not given the number entry box has a default
width of the longest string in the list or 18, whichever is the smaller.

list$ An array of strings. These hold the items to be presented in the list. Each string
should not be over 18 characters long, or it will be truncated.

str$ An alternative way to define the items to be presented in the list. The single
string holds all of the items, items are separated by the vertical bar character (|).
Again, items should not be more than 18 characters long.

n% The number of entries in the list. If this is omitted, or if it is larger than the
array, then the size of the array is used. If the str$ form of the command is
used, the number of items in the string sets the maximum number.

x If omitted or zero, the selection box is right justified in the dialog box, otherwise
positive values set the position of the left edge of the selection box in dialog
units and negative values set the position of the right edge relative to the right
edge of the dialog.

y If omitted, this takes the value of item%. It is the position of the bottom of the
list selection box.

The result obtained from this is the index into the list of the list element chosen. The first
element is number 0. The variable passed to DlgShow() for this item should be an
integer. If the value of the variable is in the range 0 to n%-1, this sets the item to be
displayed, otherwise the first item in the list is displayed.

DlgLabel()

DlgList()

DlgMouse() The Signal script language DlgReal()

5-66

The following example shows how to set a list:

var list$,ok%,which%:=0; 'string list, test for OK, result
list$:= "zero|one|two|three"; 'these are the choices
DlgCreate("List example"); 'Start the dialog
DlgList(1,"Make your choice", list$);
ok% := DlgShow(which%); 'Display dialog, wait for user

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgCreate(), DlgInteger(), DlgLabel(), DlgReal(),
DlgShow(), DlgString(), DlgText()

Use after DlgCreate() and before DlgShow(). There are two variants of the command.
The first sets the initial mouse pointer position when the dialog opens; this is very useful
if you are using multiple screens.
Proc DlgMouse(item%);

item% The dialog item where the mouse pointer should move when the dialog opens.
This is either the number you set for the dialog item, or the number returned by
DlgText() or DlgGroup(), or -button, where button is the button number.

The second variant gives you access to the mouse position and left button clicks in Time,
Result and XY views when the mouse is over a data channel while a dialog is active. See
ToolbarMouse() for details, as the command is identical. The arguments are:
Proc DlgMouse(vh%, ch%, mask%, want%, Down%{, Up%{, Move%}});

See also: DlgButton(), DlgGroup(), DlgShow(), DlgText(), ToolbarMouse()

This function defines a dialog entry that edits a real number. For simple dialogs, the
wide, x and y arguments are not used.
Proc DlgReal(item%, text$|wide, lo, hi{, x{, y{, sp|li${,

pre%}}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the box in

which the user types a real number. If wide is not given the box has a default
width of 12 digits.

lo,hi The range of acceptable numbers.
x If omitted or zero, the edit is right justified in the dialog box, otherwise positive

values set the position of the left end of the edit in dialog units and negative
values set the position of the right edge relative to the right edge of the dialog.

y Bottom of the number edit box position. If omitted, the value of item% is used.
sp If present and non-zero, this adds a spin box with a click increment of sp.
li$ If present, this argument is a list of items separated by vertical bars that can be

selected into the editing field, for example "1.0|10.0|100.0".
pre% If present this sets the number of significant figures to use to represent the

number, in the range 6 (the default) to 15.
The variable passed into DlgShow() should be a real number. The field will start with
the value of the variable if it is in the range, otherwise the value is limited to lo or hi.

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgLabel(), DlgList(), DlgShow(), DlgSlider(), DlgString(),
DlgText(), DlgXValue()

DlgMouse()

DlgReal()

DlgShow() Alphabetical command reference DlgSlider()

5-67

This function displays the dialog you have built and returns values from the fields
identified by item numbers, or makes no changes if the user kills the dialog with the
Cancel button. Once the dialog has been dismissed, all information about it is lost. You
must create a new dialog before you can use this function again.
Func DlgShow(&item1|item1[], &item2|item2[], &item3|item3[] ...);

For each item that you have defined, you must provide a variable of a suitable type to
receive the result. It is an error to pass the wrong type of variable, except in the case of an
integer field which you can return into a real or an integer variable. Items created with
DlgLabel() must have a variable too, even though it is not changed.

These variables also set the initial values of the fields for editing. If an initial value is out
of range or not allowed, the value is changed to the nearest legal value. In the case of a
string, illegal characters are deleted before display.

In addition to passing a simple variable, you can pass an array. An array with n elements
matches n items in the dialog. The array type must match the items.

If the user clicks on OK, all the variables are updated to their new values. If the user
clicks on Cancel, the variables are not changed.

Returns The function returns 0 if the user clicked on the Cancel button, or 1 if the user
clicked on OK.

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgString(), DlgText()

This command adds a slider control that sets an integer value between two user-defined
limits. The slider is horizontally orientated for simple use but can be vertically orientated.

Proc DlgSlider(item%, text$|wide, lb, rt{,tick{,flags%{,x{,y}}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ A left-justified prompt to display, optionally followed by a vertical bar and

tooltip text. If text$ is used, the slider will be horizontal and fill the space from
the end of the prompt to the right hand side of the dialog.

wide This is an alternative to the prompt. If positive, the slider is horizontal and the
value sets the slider width in dialog units; a zero value uses the entire dialog
width. A negative value sets the height of a vertical slider and you will need to
provide the x and y values to complete the positioning.

lb,rt Sets the values corresponding to the left/bottom and right/top end of the slider.
lb can be greater than rt but must not be the same.

tick Optional, defaults to 0. Enables ticks if not zero, values greater than 0 set the
tick spacing and negative values set tick auto-scaling in a 1, 2, 5 sequence.

flags% This sets slider options and is the sum of: 1=tooltip value readout during drag,
2=change notifications during drag operation.

x If omitted or zero, the slider edit is right justified in the dialog box, otherwise
positive values set the position of the left end of the slider in dialog units and
negative values set the position of the right hand end relative to the right edge of
the dialog.

y If omitted or zero, this takes the value of item%. It is the position of the top of
the slider in dialog units.

DlgShow()

DlgSlider()

DlgString() The Signal script language DlgString()

5-68

The variable passed into DlgShow() as argument number item% should be a real. The
slider starts with the value of the variable if it is in the range. Otherwise, it is limited to
the nearer end of the range. Note that the range of values that a slider can return is
quantised by the pixel positions that the slider can occupy.

If you enable the tooltip value readout option in flags%, the slider value appears in any
tip when the mouse is over the slider. If you have set a tip with the text$ argument, this
tip appears when the mouse is over the prompt.

If you have used DlgAllow() to set a change function, you can choose if this is called
every time the slider position changes during a drag operation, or only when the drag
operation ends.

See also: DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(),
DlgList(), DlgReal(), DlgShow(), DlgString(), DlgText(),
DlgXValue()

This defines a dialog entry that edits a text string. You can limit the characters that you
will accept in the string. For simple dialogs, the wide, x and y arguments are not used.
Proc DlgString(item%, text$|wide, max%{, legal${, x{,y{,sel$}}}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
wide This is an alternative to the prompt. It sets the width in dialog units of the box in

which the user types the string. If the width is not given the number entry box
has a default width of max% or 60, whichever is the smaller.

max% The maximum number of characters allowed in the string.
legal$ A list of acceptable characters. See Input$() for a full description. If this is

omitted, or an empty string, all characters are allowed.
x If omitted or zero, the string edit is right justified in the dialog box, otherwise

positive values set the position of the left end of the string edit in dialog units
and negative values set the position of the right hand end relative to the right
edge of the dialog.

y If omitted or zero, this takes the value of item%. It is the position of the bottom
of the string entry box in dialog units.

sel$ If this string is present, it should hold a list of items separated by vertical bars,
for example "one|two|three". The field becomes an editable combo box with
the items in the drop down list.

The result from this operation is a string of legal characters. The variable passed to
DlgShow() should be a string. If the initial string set in DlgShow() contains illegal
characters, they are deleted. If the initial string is too long, it is truncated.

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgText()

Tooltips

Change function

DlgString()

DlgText() Alphabetical command reference DlgValue() and DlgValue$()

5-69

This places non-editable text in the dialog box. This is different from DlgLabel() as
you do not supply an item number and it does not require a variable in the DlgShow()
function. It returns an item number (higher than item numbers for matching arguments in
DlgShow()) that you can use to identify this field in call-back functions, for example
DlgVisible().
Func DlgText(text$, x, y{, wide});

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.
x,y The position of the bottom left hand corner of the first character in the string, in

dialog units. Set x to 0 for the default label position (the same as DlgLabel()).
Otherwise positive x values set the position of the left side of the text relative to
the left-hand side of the dialog and and negative values set the right side position
relative to the right-hand side of the dialog.

wide Normally, the width of the field is set based on text$. This optional argument
sets the width in dialog units. This allows you to replace the text with a longer
string from a call-back function.

Returns An item number to identify this field for call-back functions.
See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),

DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString()

These functions are used from a dialog call-back function to get and optionally set the
value of an item, spinner increment, item prompt or button text, they cannot be used in
other circumstances.
Func DlgValue(item%{, val});
Func DlgValue$(item%{, val$});

item% This identifies the dialog item. For items with arguments in DlgShow(), use the
item% value you set to create the field. For items created with DlgText() and
DlgGroup(), use the returned item number. For buttons use minus the button
number to access the button label. To access the prompt for an item add 1000 to
the item number you set. Add 2000 to access the step value of a spin control
linked to a numeric field.

val This optional argument holds the new item value. If you omit this argument the
item is not changed. You can use numeric values on numeric fields or to set a
checkbox or a list. You can use a text value to change a prompt or button label
or to change the text of an editable control or to select the first matching item in
a list box. It is up to you to make sure the text is acceptable for editable items.

Returns The returned value is the current value of the item. You can use DlgValue$()
on any item to get the current contents of the field, checkbox text, button or
prompt as a text string. Use DlgValue() to collect numeric or checkbox values.

If there is a problem running the command, for example if the item does not exist, or an
argument type is not appropriate for an item, the result is an empty string or the value 0.

See also: DlgCreate(), DlgEnable(), DlgShow(), DlgVisible()

DlgText()

DlgValue() and
DlgValue$()

DlgVisible() The Signal script language DlgXValue()

5-70

This function is used from a dialog call-back function to show or hide dialog items, it
cannot be used in other circumstances. There are two versions of this command. The
version with a single argument returns the visible state of an item; the version with two or
more arguments sets the visible state of one or more dialog items. When you show or
hide an item, any prompt or spin control associated with the item is also shown or hidden.
Func DlgVisible(show%, item%|item%[]{, item%|item%[]...});
Func DlgVisible(item%);

show% Set this to 1 to show the items in the list and to 0 to hide them.
item% An item number of an element of the dialog or an integer array containing a list

of item numbers. The item numbers are either the number you set, or the number
returned by DlgText() or DlgGroup(), or –button, where button is the
button number. You cannot access prompts separately from their items as this
makes no sense.

Returns When called with a single argument it returns the visible state of the item,
otherwise the return value is 0.

See also: DlgAllow(), DlgCreate(), DlgEnable(), DlgShow(), DlgValue()

This creates an editable combo box to collect an x axis value for the current file, memory
or XY view. The combo box drop down list is populated with cursor positions and other
window values when DlgShow() runs. If the current view is not suitable, the list is
empty. This control accepts expressions, for example: (Cursor(1)+Cursor(2))/2.
The matching DlgShow() argument is a real number to hold a time in seconds for a file
view, or an x axis value for other views. This procedure is new in version 3.
Proc DlgXValue(item%, text$|wide{, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.
text$ The text to display as a prompt. If the prompt contains a vertical bar, “|” any

following text will be used as a tooltip and displayed when the mouse pointer is
held over the item.

wide This is an alternative to the prompt. It sets the width in dialog units of the combo
box. If the width is not given the combo box has a default width of 18 numbers.

x If omitted or zero, the combo box is right justified in the dialog box, otherwise
positive values set the position of the left end of the combo box in dialog units
and negative values set the position of the right hand end relative to the right
edge of the dialog.

y If omitted or zero, this takes the value of item%. It is the position of the bottom
of the string entry box in dialog units.

See also: DlgAllow(), DlgButton(), DlgChan(), DlgCheck(),
DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText()

DlgVisible()

DlgXValue()

Draw() Alphabetical command reference DrawAll()

5-71

This allows invalid regions in the current view to update and optionally sets the drawn X
axis range. Draw() on a view that is up-to-date should make no change. The view is not
brought to the front.
Proc Draw({from{, size}});

from The left hand edge of the view in x axis units. For a text view, this sets the top
line to display in the view (or as close to the top line as is possible) and scrolls
the view horizontally so that the first character position is at the left of the view.

size The width of the view in x axis units. A negative size is ignored. This argument
must be omitted in a text view.

With no arguments, Draw() updates invalid areas in the view. With one argument, the
view is scrolled to start at from. With two arguments, the width is set (unless it is
unchanged) and then it is drawn. If size is negative or omitted, the same size as last time
is used.

Data views run from Mintime() to Maxtime(). There are no limits set on the range of
values for an XY view axis. However, huge numbers cause ugly axis labels.

See also: DrawAll(), XRange(), XLow(), XHigh(), Maxtime(), Mintime()

This routine updates all views that require redrawing. This is equivalent to iterating
through all the views and performing a Draw() on each.
Proc DrawAll();

See also: Draw()

Draw()

DrawAll()

DrawMode() The Signal script language DrawMode()

5-72

This sets and reads the display mode for the channel in a data view. You can set the
display mode for channels that are not displayed.
Func DrawMode(cSpc{, mode%{,dotSz%|binSz|offset{, err%|flags%}}});

cSpc A channel specifier for the channels to use. See the Script language syntax
chapter for a definition of channel specifiers.

mode% If present and positive, this sets the display mode, and returns the previous
mode. If an inappropriate mode is requested, no change is made. Some modes
require additional parameters (for example a dot size). If additional parameters
are omitted, the last known values are used. The mode values for setting draw
modes in the view are:
0 The standard mode for the channel.
1 Dots for markers, using the dotSz% argument if it is provided.
2 Lines for markers.
3 Rate for markers.
4 Histogram for waveform.
5 Line for waveform.
6 Dots for waveform, using the dotSz% argument if it is provided.
7 Skyline for waveform.
8 Cubic spline for waveform.
9 to 14 Reserved.
15 Basic for idealised trace.
16 Convolution for idealised trace.
17 Both basic and convolution of idealised trace.

 If present and negative, the function returns stored bin size or dot size. The
mode values for getting data are:
-1 Reserved, does nothing and returns -1
-2 Return the current dot size
-3 Return the current bin size for a histogram
-4 Return the offset of the basic idealised trace
-5 Return the draw mode flags
-13 Return the current drawing style for errors

Values in the range -4 to -12 are reserved for future use. If mode% is absent no
changes are made.

dotSz% This sets the dot size to use on screen or the point size to use on a printer. 0 is
the smallest size available. The maximum size allowed is 10. Set to -1 for no
change.

binSz This sets the width of the rate histogram bins.
Offset The y-offset of the idealised trace from the raw data.
err% The drawing style for errors: 0=none, 1=1 SEM, 2=2 SEM, 3=SD.
flags% Set to 1 to show baseline otherwise 0.
Returns The draw mode before the call if a single channel is set or a value determined by

a negative mode% value. For multiple channels or an invalid call, it returns -1.
See also: Draw(), ViewStandard(), XYDrawMode(), ChanValue()

DrawMode()

Dup() Alphabetical command reference EditCopy()

5-73

This gets the view handle of a duplicate of the current view, or the number of duplicates,
including the original. Duplicated views are numbered from 1 (1 is the original). If a
duplicate is deleted, higher numbered duplicates are renumbered. For more information
on this see WindowDuplicate().
Func Dup({num%});

num% The number of the duplicate view to find, starting at 1. You can also pass 0 (or
omit num%) as an argument, to return the number of duplicates.

Returns If num% is greater than 0, this returns the view handle of the duplicate, or 0 if the
duplicate does not exist. If num% is 0 or omitted, this returns the number of
duplicates including the original. The following illustrates the use of Dup().

var maxDup%, i%, dvh%; 'declare variables
maxDup% := Dup(0); 'Get maximum numbered duplicate
for i% := 1 to maxDup% do 'loop round all possible duplicates
 dvh% := Dup(i%); 'get handle of this duplicate
 if (dvh% > 0) then 'does this duplicate exist?
 PrintLog(view(dvh%).WindowTitle$()+"\n");'print window title
 endif;
next;

See also: App(), View(), WindowDuplicate()

In a memory view, this command zeros the data in all channels, in a text view it deletes
any selected text.
Func EditClear();

Returns The function returns 0 if nothing was deleted, otherwise it returns the number of
items deleted or 1 if the number is not known, or a negative error code.

See also: EditCopy(), EditCut()

This command copies data from the current view to the clipboard. The effect depends on
the type of the current view. Text views copy data as text. Data views copy as a bitmap,
as a scaleable image, as text in the format set by ExportTextFormat(),
ExportChanFormat() and ExportChanList() or as binary data in a private format.
You can also copy a string to the clipboard.
Func EditCopy({as%|text$});

as% Sets how to copy data when several formats are possible. If omitted, all formats
are used. It is the sum of: 1=Copy as a bitmap, 2=Copy as a scaleable image
(Windows metafile), 4=Copy as text

text$ A string to place on the clipboard as text. The return value is 4.
Returns It returns 0 if nothing was placed on the clipboard, or the sum of the format

specifiers for each format used.
See also: EditSelectAll(), ExportTextFormat(), ExportChanFormat(),

ExportRectFormat(), ExportChanList(), EditCut(),
EditPaste()

Dup()

EditClear()

EditCopy()

EditCut() The Signal script language EditReplace()

5-74

This command cuts data from the current text or script view to the clipboard.
Func EditCut({as%});

as% This optional argument sets how data is copied to the clipboard in cases where
there are several formats possible. Currently it is ignored.

Returns Returns the number of characters placed on the clipboard.
See also: EditClear(), EditCopy(), EditPaste()

In a text view, this command searches from the selection point for the next occurrence of
the specified text and selects it if found. This is the same as the Find Text dialog.
Func EditFind(find${, dir%{, flags%}});

find$ The text to search for. May include regular expressions if 4 is added to flags%.
dir% Optional. 0=search backwards, 1=search forwards (default), 2=wrap around.
flags% Optional, taken as 0 if omitted. The sum of: 1=case sensitive, 2=find complete

words only, 4=regular expression search (dir% may not be 0).
Returns 1 if found, 0 if not found.
See also: EditReplace()

This command attempt to paste data from the clipboard into the current view. You may
only paste into a text view when the clipboard contains text. The contents of the clipboard
are inserted at the current caret. If text is already selected, it is replaced by the clipboard
contents. If the clipboard contains binary data in the CED private format, this data can be
pasted into a data view.
Func EditPaste({text$});

text$ If present, any text in the clipboard in returned in this string. If absent, clipboard
text is pasted to the current text view.

Returns The number of characters pasted into the view unless text$ is present when the
return value is 1 if the clipboard holds text, 0 if it does not.

See also: EditCopy(), EditCut()

In a text view, this command checks if the selection matches a pattern and replaces it if it
does, then it searches for the pattern again. This is the same as the Replace Text dialog.
Func EditReplace(find${, repl${, dir%{, flags%}}});

find$ The text to search for. May include regular expressions if 4 is added to flags%.
repl$ Optional replacement text, taken as an empty string if omitted.
dir% Optional. 0=search backwards, 1=search forwards (default), 2=wrap around.
flags% Optional, taken as 0 if omitted. The sum of: 1=case sensitive, 2=find complete

words only, 4=regular expression search (dir% may not be 0).
Returns The sum of: 1 if found a new match, 2 if replaced the original selection.
See also: EditFind()

EditCut()

EditFind()

EditPaste()

EditReplace()

EditSelectAll() Alphabetical command reference Exp()

5-75

This function selects all items in the current text view that can be copied to the clipboard.
This is the same as the Edit menu Select All option.
Func EditSelectAll();

Returns It returns the number of selected items that could be copied to the clipboard.
See also: EditCopy(), EditClear(), EditCut(), MoveTo(), MoveBy(),

Selection$()

This function converts a negative error code returned by a function into a text string.
Func Error$(code%);

code% A negative error code returned from a Signal function.
Returns It returns a string that describes the error.
See also: Debug(), Eval(), Print(), PrintLog()

This evaluates the argument and converts the result into text. The text is displayed in the
Script view or the Evaluate window message area, as appropriate, when the script ends.
The argument can be the value returned by a function.
Proc Eval(arg);

arg A real or integer number or a string.
If you use Eval() it will suppress any run-time error messages as it uses the same
mechanism as the error system. A common use of Eval() in a script is to report an error
condition during debugging, for example:
if val<0 then Eval("Negative value"); Halt; endif;

Another use of Eval() is in the Script menu Evaluate window to see the result returned
by a function or expression, as in these examples:
Eval(FileDelete(myfile$)); ' display 1 or a negative error code
Eval(Error$(-1531)); ' give string for error code if known

See also: Debug(), Error$(), Print(), PrintLog()

This function calculates the exponential function (e to the power of x) for a single value,
or replaces the elements of a real array by their exponentials. If a value is too large,
overflow will occur, causing the script to stop for single values, and a negative error code
for arrays.
Func Exp(x|x[]{[]...});

x The argument for the exponential function or an array of real values.
Returns With an array, the function returns 0 if all was well, or a negative error code if a

problem was found (such as overflow). With an expression, it returns the
exponential of the number.

EditSelectAll()

Error$()

Eval()

Exp()

ExportChanFormat() The Signal script language ExportFrameList()

5-76

This command sets the channel text export format for use by FileExportAs() and
EditCopy(). It is equivalent to the data, time and headings settings for each channel
type in the Text Output Configuration dialog. Using ExportTextFormat() with no
arguments will reset these fields to enable the output of data, time and headings for the
waveform channel type only.
Proc ExportChanFormat(type%, data%, xval%, heads%);

type% The type of data to set the format for:
 0 Waveform 1 Marker 4 Fitted 5 Idealised

data% Set this non-zero to enable data output for this channel type.
xval% Set this non-zero to enable output of x axis values for this channel type. For a

waveform channel this is ignored when data% is disabled.
heads% Set this non-zero to enable output of column headings for this channel type. This

is ignored if neither data% nor xval% are enabled.
See also: EditCopy(), FileExportAs(), ExportChanList(),

ExportFrameList(), ExportTextFormat(), ExportTimeRange()

This command sets a channel list to export for use by FileExportAs() and
EditCopy() from a data view.
Proc ExportChanList(cSpc);

cSpc A channel specifier for the channels to export. See the Script language syntax
chapter for a definition of channel specifiers.

See also: EditCopy(), FileExportAs(), ExportChanFormat(),
ExportFrameList(), ExportTextFormat(), ExportTimeRange()

This command sets a list of frames for use by FileExportAs() and EditCopy().
Proc ExportFrameList(sFrm%{, eFrm%{,mode%}});
Proc ExportFrameList(frm$|frm%[]{,mode%});

sFrm% First frame to export. This option processes a range of frames. sFrm% can also
be a negative code as follows:
-1 All frames in the file are included
-2 The current frame
-3 Frames must be tagged
-6 Frames must be untagged

eFrm% Last frame to export. If this is -1 the last frame is the last in the data view. This
argument is ignored if sFrm% is a negative code.

frm$ This option specifies a list of frames using a string such as “1..32,40,50”.
frm%[] An array of frame numbers to process. This option provides a list of frame

numbers. The first element holds the number of frames in the list.
mode% If mode% is present it is used to supply an additional criterion for including each

frame in the range, list or specification. If mode% is absent all frames are
included. The modes are:
0-n Frames must have a state matching the value of mode%
-1 All frames in the specification are processed
-2 Only the current frame, if it is in the main list, is processed
-3 Frames must also be tagged
-6 Frames must also be untagged

ExportChanFormat()

ExportChanList()

ExportFrameList()

ExportTextFormat() Alphabetical command reference ExportTimeRange()

5-77

The following simple example exports all frames to fred.cfs.
ExportFrameList(-1); 'export from all frames in the view
FileExportAs ("fred.cfs", 1); 'export selected data as text

See also: EditCopy(), FileExportAs(), ExportChanList(),
ExportChanFormat(), ExportTextFormat(), ExportTimeRange()

This command sets the text export format for use by FileExportAs() and
EditCopy(). It is equivalent to setting decimal places, field width, string delimiter, item
separator and frame header in the Text Output Configuration dialog. The command
with no arguments resets everything in the dialog to default settings: decimal places to 5,
field width to 0, the string delimiter to double quotes, the separator to a tab character, the
header disabled. It also enables the output of data, time and headings for the waveform
channel type only. See ExportChanFormat() to set these.
Proc ExportTextFormat({dDec%, tDec%, width%, lim$, sep${, head%{,
intp%}}});

dDec% Decimal places for data values.
tDec% Decimal places for time values.
width% Field width for all values, or zero for minimum width.
lim$ The delimiter, which is the character to place at the start and end of each text

string in the output. The normal character to use is a double-quote mark.
sep$ The separator character which is used to separate multiple data items on a line.

This should be one of tab, comma or space.
head% If this is present and non-zero, Signal will output the frame header information.
intp% The interpolation method to use for waveform output. The default value is 0.

0 None 1 Linear 2 Cubic Spline.
See also: EditCopy(), FileExportAs(), ExportChanList(),

ExportFrameList(), ExportChanFormat(), ExportTimeRange()

This command sets an x axis range for use by FileExportAs() and EditCopy() in a
data view. This is equivalent to setting start and end times in the export setup dialogs.
Proc ExportTimeRange(sRange, eRange{, flags%});

sRange The start of the range of data to export, in x axis units.
eRange The end of the range of data to export, in x axis units.
flags% This affects CFS data written by FileExportAs() and is the sum of:
1 Time shift data so that it starts at zero in the output file.
See also: EditCopy(), FileExportAs(), ExportChanFormat(),

ExportChanList(), ExportFrameList(), ExportTextFormat()

ExportTextFormat()

ExportTimeRange()

FileApplyResource() The Signal script language FileComment$()

5-78

This applies a resource file to the current data or XY view. If a data view is duplicated,
all other duplicates are deleted, then the resource file is applied, which may create
duplicates. The current view handle is not changed. Handles of duplicate views are not
preserved, even if the resource file creates the same number of duplicates.
Func FileApplyResource(name$);

name$ The resource file to apply. You must include the .sgr file extension and
required path. Remember that \ in a string must be entered as \\ or use /. If the
name is "" or contains a "*" or a "?", the user is prompted for a file.

Returns The number of modified windows (usually 1 unless the resource file generates
duplicates), 0 if the resource file did not contain suitable information, -1 if the
user cancelled the file dialog, -2 if the file could not be found or -3 if there is
any other problem.

See also: FileGlobalResource(), FileOpen(), FileSaveResource()

This is used to close the current window or external file. You can supply an argument to
close all views associated with the current data view or to close all the views belonging to
the application.
Func FileClose({all%{, query%});

all% This argument determines the scope of the file closing. Possible values are:
-1 Close all views except loaded scripts and debug windows
0 Close the current view. This is the same as omitting all%
1 Close all windows associated with the current view

query% This determines what happens if a view holds unsaved data:
-1 Don't save the data or query the user
0 Query the user about each view that needs saving. If the user chooses

Cancel, the operation stops, leaving all unclosed windows behind. This is
the same as omitting query%.

Returns The number of views that have not been closed. This can occur if a view needs
saving and the user requests Cancel.

Note: A common fault in scripts is the use of the construct:
View(v%).FileClose(0);
This can cause problems because, if the current view is already View(v%), then at the
end of the function the script will attempt to switch back to View(v%) again, but it is
now gone! This results in a “View is wrong type” error for no obvious reason. To
avoid the problem use:
View(v%);
FileClose(0);

See also: FileOpen(), FileSave(), FileSaveAs(), FileNew()

This function accesses the file comment in the file associated with the current file or
memory view. File comments for XY and text based views are always blank. The
comment string is up to 72 characters in length.
Func FileComment$({new$});

new$ If present, the command replaces the existing comment with new$.
Returns The comment at the time of the call.
See also: FrameComment$()

FileApplyResource()

FileClose()

FileComment$()

FileConvert$() Alphabetical command reference FileDate$()

5-79

This function converts a data file from a “foreign” format into a Signal data file. The
range of foreign formats supported depends on the number of import filters in the
Signal3\import folder.
Func FileConvert$(src${, dest${, flag%{, &err%}}});

src$ This is the name of the file to convert. The file extension is used to determine
the file type (unless flag% bit 0 is set). Known file extensions include: abf,
cfs, cnt, cut, dat, eeg, ewb, ibw, son and uff. We expect to add more. If
an empty string is used or one containing wild cards then a file selection dialog
will appear.

dest$ If this is present, it sets the destination file. If this is not a full path name, the
name is relative to the current directory. If you do not supply a file extension
then Signal appends ".cfs". If you set any other file extension, Signal cannot
open the file as a Signal data file. If you do not supply this argument, the
converted file will be written to the same folder as the source file, using the
original file name with the file extension changed to .cfs.

flag% This argument is the sum of the flag values: 1=Ignore the file extension of the
source file and try all possible file converters & if all else fails try the binary
importer, 2=Allow user interaction if required (otherwise sensible, non-
destructive defaults are used for all decisions).

err% Optional integer variable that is returned as 0 if the file was converted, otherwise
it is returned holding a negative error code.

Returns The full path name of the created file, or an empty string if the file was not
converted.

See also: FileOpen(), FilePath$(), FilePathSet(), FileList()

This function copies a source file to a destination file. File names can be specified in full
or relative to the current directory. Wildcards cannot be used.
Func FileCopy(src$, dest${, over%});

src$ The source file to copy to the destination. This file is not changed.
dest$ The destination file. If this file exists you must set over% to overwrite it.
over% If this optional argument is 0 or omitted, the copy will not overwrite an existing

destination file. Set to 1 to overwrite.
Returns The routine returns 1 if the file was copied, 0 if it was not. Reasons for failure

include: no source file, no destination path, insufficient disk space, destination
exists and insufficient rights.

See also: BRead(), BWrite(), FileDelete(), FileOpen(), ProgRun()

This function returns a string holding the date when the data file was sampled. Use
FileTimeDate() to get the date as numbers. The current view must be a time view. The
arguments are exactly the same as for the Date$() command. This function was added
to Signal at version 4.07.
Func FileDate$({dayF%, {monF%, {yearF%, {order%, {sep$}}}}});

See also: Date$(), FileTimeDate(), FileTime$()

FileConvert$()

FileCopy()

FileDate$()

FileDelete() The Signal script language FileExportAs()

5-80

This function deletes one or more files. File names can be specified in full, or relative to
the current directory.

Windows file names are of the form x:\folder1\folder2\foldern\file.ext or
\\machine\folder1\folder2\foldern\file.ext across a network. If a name
does not start with a \ or with x:\ (where x is a drive letter), the path is relative to the
current directory. Beware that \ must be written \\ in a string passed to the compiler.
Func FileDelete(name$[]|name${, opt%});

name$ This is either a string variable or an array of strings that holds the names of the
files to delete. Only one name per string and no wildcard characters are allowed.
If the names do not include a path they refer to files in the current directory.

opt% If this is present and non-zero, the user is asked before each file in the list is
deleted. You cannot delete protected or hidden or system files.

Returns The number of files deleted or a negative error code.
See also: FilePath$(), FilePathSet(), FileList()

This function saves the current data view or the sampling configuration as a file on disk.
A data view is saved either in its native format, or as text or as a picture. It is equivalent
to the two File menu commands Export As and Save configuration. This cannot be used
for external text or binary files as they are already on disk.
Func FileExportAs(name${,type%{,yes%{, text${, flag%{, exp$}}}}});

name$ The name to use for saving. If the string is empty or if the string holds wild card
characters * or ?, then the File menu Save As dialog opens, otherwise it is used
directly. In Windows, the wildcards select the initial list of files. If the string is
used directly, a default file extension is not provided; you must provide the
extension yourself.

type% The type to save the file as (if omitted, type -1 is used):
-1 Export in the native format for the data view. This is equivalent to using

type% 0 for file and memory views or 12 for XY views.
0 Export part of the data view as set by ExportFrameList(),

ExportTimeRange() and ExportChanList() to a new Signal data file.
The file extension should be .cfs.

1 Save the contents of the current data or XY view as a text file. Signal saves
the data as set by ExportFrameList(), ExportTimeRange() and
ExportChanList() in the text format set by ExportChanFormat()
and ExportTextFormat(). The file extension should be .txt.

5 Save data or XY view as a picture file. The file extension should be .wmf.
6 Save the sampling configuration in a configuration file. . The file extension

should be .sgcx. The function will only save sampling configuration data
using the new-style .sgcx file extension and will force the file extension
used to be .sgcx. Old-style sampling configuration files can only be
converted to new-style XML by using them for sampling, the function fails
and returns an error if it is used to try to save an old-style sampling
configuration that has not been converted to new-style.

12 For XY views only, save as an XY data file. The file extension should be
.sxy.

13 Save as a bitmap file. The file extension should be .bmp.
100 Types 100 upwards identify external exporters installed in the export folder

(where you will find additional documentation). Data views export the
channels, frames and time range set by ExportChanList(),
ExportFrameList() and ExportTimeRange(). XY views export the
data set by flag%.

FileDelete()

FileExportAs()

FileGetIntVar() Alphabetical command reference FileGetRealVar()

5-81

yes% If this operation would overwrite an existing file you are asked if you wish to do
this unless yes% is present and non-zero. While an existing file is open in Signal
you will not be able to overwrite it.

text$ An optional prompt displayed as part of the file dialog to prompt the user.
flag% Used when saving XY views as text or to an external exporter to override the

normal behaviour, which is to save all visible channels and all data points. This
optional argument has a default value of 1 and is the sum of:
1 Output only visible channels, otherwise all XY channels.
2 Output only data that is in the visible range (use 3 for visible data).

exp$ External exporter settings as a string (see the export folder for argument name
documentation) of the form: "name1=value|name2=value|name3=value".

Returns The function returns 0 if the operation was a success, or a negative error code.
See also: EditCopy(), ExportChanFormat(), ExportChanList(),

ExportFrameList(), ExportTimeRange(), ExportTextFormat()

This function reads a CFS file variable of integer type from the file attached to the current
view, which must be a file view. The CFS supports the use of file and frame variables of
integer, floating point and string types. Software other than Signal may have included
these when creating a data file.
Func FileGetIntVar(name${, &nVar%{, &units${, &nType%}}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
nType% If present this returns a code for the CFS type of an integer variable:
 0: INT1, 1: WRD1, 2: INT2, 3: WRD2, 4: INT4:
Returns The function returns the value of the variable if the operation was a success,

otherwise zero.
See also: FileGetRealVar(), FileGetStrVar$(), FileVarCount(),

FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

This function reads a CFS file variable of real type from the file attached to the current
view, which must be a file view.
Func FileGetRealVar(name${, &nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
Returns The function returns the value of the variable if the operation was a success,

otherwise zero.
See also: FileGetIntVar(), FileGetStrVar$(), FileVarCount(),

FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(),FrameVarInfo()

FileGetIntVar()

FileGetRealVar()

FileGetStrVar$() The Signal script language FileGlobalResource()

5-82

This function reads a CFS file variable of string type from the file attached to the current
view, which must be a file view.
Func FileGetStrVar$(name${, &nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number or -1 if not found.
units$ If present this returns the units for the variable.
Returns The function returns a string contents of the variable if the operation was a

success, otherwise an empty string.

See also: FileGetIntVar(), FileGetRealVar(), FileVarCount(),
FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(),FrameVarInfo()

This function is equivalent to the Global Resources dialog. Please see the documentation
for the dialog for a full explanation. The function has two forms:

Func FileGlobalResource(flags%, loc%, name${, path$}); Set values
Func FileGlobalResource(&loc%, &name$, &path$); Get values
flags% This is the sum of the following values:

1 Enable the use of global resources. If unset, no global resources are used.
2 Only use global resources if a data file has no associated resource file.
4 Only use if the data file is within the path set by path$.

loc% The location of the global resource file. 0=the folder that Signal was run from,
1=search the data file folder, then the Signal folder, 2=the data file folder only.

name$ The name of the global resource file excluding the path and .sgr file extension.
path$ The file path within which to use the global resources. If you omit this argument

when setting values, the current path does not change.
Returns When setting values, the return value is 0 or a negative error code. When

reading back values, the return value is the flags% argument.
See also: FileApplyResource(), FileOpen(), FileSaveResource()

FileGetStrVar$()

FileGlobalResource()

FileList() Alphabetical command reference FileName$()

5-83

This function gets lists of files and sub-directories (folders) in the current directory and
can also return the path to the parent directory of the current directory. This function can
be used to process all files of a particular type in a particular directory.
Func FileList(names$[]|&name$, type%{, mask$});

name$ This is either a string variable or an array of strings that is returned holding the
name(s) of files or directories. Only one name is returned per string.

type% This sets the type of the objects to return information on. Allowed values are:
-3 The parent directory of the current directory. The full path is returned.
-2 Sub-directories of the current directory. No path is returned.
-1 All files in the current directory.
0 Signal data files (*.cfs).
1 Text files (*.txt).
2 Output sequence files (*.pls).
3 Signal script files (*.sgc).
6 Signal sampling configuration files (*.sgc).
12 XY view data file (*.sxy).

mask$ This optional string limits the names returned to those that match it; * and ? in
the mask are wildcards. ? matches any character and * matches any 0 or more
characters. Matching is case insensitive and from left to right.

Returns The number of names that met the specification or a negative error code. This
can be used to set the size of the string array required to hold all the results.

See also: FilePath$(), FilePathSet(), FileDelete(), FileName$()

This returns the name of the data file associated with the current view (if any). You can
recall the entire file name, or any part of it. If there is no file the result is an empty string.
Func FileName$({mode%});

mode% If present, determines what to return, if omitted taken as 0.
0 Or omitted, returns the full file name including the path

1 The disk drive/volume name

2 The path section, excluding the volume/drive and the name of the file

3 The file name up to and not including the last dot in the name, excluding
any trailing number

4 Any trailing numbers from 3

5 The end of the file name from the last dot

Returns A string holding the requested name, or a blank string if there is no file.

See also: FileList(), FilePath$(), FilePathSet(), FileDelete()

FileList()

FileName$()

FileNew() The Signal script language FileNew()

5-84

This is equivalent to the File menu New command; it creates a new window, also called a
view, and returns the view handle. You can create visible or invisible windows. Creating
an invisible window lets you set the window position and properties before you draw it.
The new window is the current view and if visible, the front view. Use FileSaveAs()
to name created files.
Func FileNew(type%{, mode%);

type% The type of file to create:
0 A Signal data file based on the sampling configuration, ready for sampling.

This opens a new file view which is also referred to as the sampling
document view. It may also open other windows which will include the
sampling control panels.

1 A text file in a window.
2 An output sequence file in a window.
3 A Signal script file in a window.
12 An XY view with one (empty) data channel. Use XYAddData() to add

more data and XYSetChan() to create new channels.

mode% This optional argument determines how the new window is opened. The value is
the sum of these flags. If the argument is omitted, its value is 0. The flags are:
1 Make the new window(s) visible immediately. If this flag is not set the

window is created, but is invisible.
2 For data files, if the sampling configuration holds information for creating

additional windows, use it. If this flag is not set, data files extract enough
information from the sampling configuration to set the sampling parameters
for the data channels.

Returns It returns the view handle (or the handle of the lowest numbered duplicate for a
data file with duplicate windows) or a negative error.

See also: FileOpen(), FileSave(), FileSaveAs(), FileClose(),
SetMemory(), SampleStart(), XYAddDAta(), XYSetChan()

FileNew()

FileOpen() Alphabetical command reference FileOpen()

5-85

This is the equivalent of the File Open menu command; it opens an existing Signal data
file or a text file in a window, or an external text or binary file. If the file is already
opened, a handle for the existing view is returned. The window becomes the new current
view. You can create windows as visible or invisible. It is often more convenient to
create an invisible window so you can position it before making it visible.
Func FileOpen(name$, type%{, mode%{, text$}});

name$ The name of the file to open. This can include a path. The file name is operating
system dependent, see FileDelete(). If the name is blank or holds wild card
characters (Windows only), the file dialog opens for the user to select a file.

type% The type of the file to open. The types currently defined (see ViewKind()) are:
0 Open a Signal data file. A new file view is created.
1 Open a text file. A new text view is created.
2 Open an output sequence file. A new output sequence view is created.
3 Open a Signal script file. A new script view is created.
6 Load configuration file. No new view is created. If the a .sgc file extension is

given and the specified file does not exist the new-style .sgcx extension is
tried. Similarly the .sgc extension is tried if the specified file with a .sgcx
extension was not found.

8 An external text file without a window. An invisible external text view is
created in which Read() or Print() can be used.

9 An external binary file without a window. An invisible external binary view
is created in which BRead(), BWrite(), BSeek() and other binary
routines can be used.

12 Open an XY data file. A new XY view is created.
mode% This optional argument determines how the window or file opens. If the

argument is omitted, its value is 0.
 For file types 0 to 3 and 12 the value is the sum of:

1 Make the new window(s) visible immediately. If this flag is not set the
window is created, but is invisible.

2 Read resource information associated with the file. This may create more
than one window, depending on the file type. For data files, it restores the
file to the state as it was closed. If the flag is unset, resources are ignored.

4 Return an error if the file is already open in Signal. If this flag is not set and
the file is already in use, it is brought to the front and its handle is returned.

When used with file types 8 and 9 the following values of mode% are used. The
file pointer (which sets the next output or input operation position) is set to the
start of the file in modes 0 and 1 and to the end in modes 2 and 3.
0 Open an existing file for reading only.
1 Open a new file (or replace an existing file) for writing (and reading).
2 Open an existing file for writing (and reading) .
3 Open a file for writing (and reading). If the file doesn’t exist, create it.

text$ An optional prompt displayed as part of the file dialog, for all except type 6. If
this is supplied then the file dialog will always appear.

Returns If a file opens without any problem, the return value is the view handle for the
file (if multiple views open, it is the handle for the first file view created). For
configuration files (type% of 6), the return value is 0 if no error occurs. If the
file could not be opened, or the user pressed Cancel in the file open dialog, the
returned value is a negative error code.

 If multiple windows are created for a data file, you can get a list of the
associated view handles using ViewList(list%[],64).

See also: FileDelete(), FileNew(), FileSave(), FileSaveAs(),
FileClose(), BRead(), BReadSize(), BSeek(), BWrite(),
BWriteSize(), ViewFind(), ViewList(), ViewKind()

FileOpen()

FilePath$() The Signal script language FilePathSet()

This function gets the “current directory”, the place on disk where file open and file save
dialogs start from. It can also get the path for created data files or the directory where the
Signal application is installed.

FilePath$()

Func FilePath$({opt%});

opt% If omitted this is taken as zero. This determines which directory/folder to get:
 0 the current directory.

1 the path for temporary sampled data files from the preferences dialog.
2 the path to the directory where the Signal application is installed .
 Using this location for user data is strongly deprecated as Signal may
 be installed within the protected Program Files directory tree so please
 do not use this opt% value, use -4 instead if possible.
3 the path for automatic file saving from the sampling configuration.

 As an experiment, from version 5.00 we also support some negative values that
return the path to some special folders:

-1 the Desktop folder, for example: C:\Users\username\Desktop\
-2 the user's documents folder, for example:
 C:\Users\username\Documents\
-3 the system folder for Signal user and application data, for example:
 C:\Users\username\AppData\Local\CED\Signal\. You can use this
 location to save files that are specific to the current logged on user and
 Signal.
-4 The Signal5 folder inside the users documents folder (commonly
 called My Documents). It is recommended that you use this location
 for your data and files if possible.
-5 The Signal5Shared folder inside the documents folder for all users.

Returns A string holding the path or an empty string if an error is detected.
See also: FilePathSet(), FileList(), FileName$()

This function sets the current directory/folder, and where Signal data files created by
FileNew() are stored until they are sent to their final resting place by FileSaveAs().
There are two command variants:

FilePathSet()

Func FilePathSet(path${, opt%{, make%}}); 'Set path
Func FilePathSet(path${, opt%{, prmpt${, make%}}}); 'Open path dialog

path$ A string holding the new directory path. The path must conform to the rules for
path names on the host system and be less than 255 characters long. If the path
is empty or a prompt is set, a dialog opens for the user to select an existing
directory/folder or to create a new one.

opt% If omitted this is taken as zero. This determines which directory/folder to get:
 0 the current directory.

1 the path for temporary sampled data files from the preferences dialog.
2 the path to the Signal application (fixed so cannot be changed).
3 the path for automatic file saving from the sampling configuration.

make% If omitted or 0, only existing directories can be set. If 1, the first command
variant can create a directory/folder if all elements of path$ exist except the last
and the second variant allows the user to create a new directory/folder.

prmpt$ Optional prompt. If present a dialog opens for the user to select a directory.
Returns Zero if the path was set, or a negative error code.
See also: FileList(), FileName$(), FilePath$()

5-86

FilePrint() Alphabetical command reference FilePrintVisible()

5-87

This function is equivalent to the File menu Print command; it prints some or all of the
current view to the printer that is currently set. If no printer has been set, the current
system printer is used. In a file or memory view, it prints a range of data with the x axis
scaling set by the display. In a text or log view, it prints a range of text lines. There is
currently no script mechanism to choose a printer; you must do it interactively.
Func FilePrint({from{, to{, flags%}}});

from The start point of the print. This is in seconds in a file or memory view and in
lines in a text view. If omitted, this is taken as the start of the view.

to The end point in the same units as from. If omitted or set beyond the end of the
view then the end of the view is used.

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.
Returns The function returns 0 if all went well; otherwise it returns a negative error.
The format of the printed output is based on the screen format of the current view.
Beware that for file and memory views the output could be many (very many) pages
long.

See also: FilePrintScreen(), FilePrintVisible()

This function is equivalent to the File menu Print Screen command; it prints all visible
time, result, XY and text-based views to the current printer on one page. The page
positions are proportional to the view positions in the Signal application window.
Func FilePrintScreen({head${, vTtl%{, box%{, scTxt%{, flags%
 {, foot$}}}}}});

head$ The page header. If omitted or an empty string, there is no page header.
vTtl% Set 1 or higher to print a title above each view, omitted or 0 for no title.
box% Set 1 or higher for a box around each view. If omitted, or 0, no box is drawn.
scTxt% Set 1 or higher to scale text differently in the x and y directions to match the

original. If omitted or 0 scale both directions by the same scale factor.
flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.
foot$ The page footer. If omitted or an empty string, there is no page footer.
Returns The function returns 0 if it all went well, or a negative error code.
See also: FilePrint(), FilePrintVisible()

This function prints the current view as it appears on the computer screen to the current
printer. In a text view, this prints the lines in the current selection. If there is no selection,
it prints the line containing the cursor. This function is equivalent to the File menu Print
visible command.
Func FilePrintVisible({flags%});

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.
Returns The function returns 0 if all went well, otherwise it returns a negative error.
See also: FilePrint(), FilePrintScreen()

FilePrint()

FilePrintScreen()

FilePrintVisible()

FileQuit() The Signal script language FileSaveAs()

5-88

This is equivalent to the File menu Exit command. If there is any unsaved data you are
asked if you wish to save it before the application closes. If the user cancels the operation
(because there were files that needed saving), the script terminates, but the Signal
application is left running. Use FileClose(-1, -1) before FileQuit() to guarantee
to exit.
Proc FileQuit();

See also: FileClose()

This function saves the current view as a file on disk. It is equivalent to the File menu
Save command. You cannot use this command for a file view if it has just been sampled,
use FileSaveAs() instead. If the view has not been saved previously, the File menu
Save As dialog opens and the user must provide a file name. This cannot be used for
external text or binary files either as they are already on disk.
Func FileSave();

Returns The function returns 0 if the operation was a success, or a negative error code.

See also: FileOpen(), EditCopy(), FileExportAs(), FileSaveAs(),
FileClose()

This function is equivalent to the File menu SaveAs command, it is used to save the
current view, with any changes, under a new name. Use this to save and name a Signal
data file immediately after it has been sampled. Use FileExportAs() to export selected
parts of a CFS data file to a new file, or to export from a view under a different format.
Func FileSaveAs(name${, yes%{, text$}};

name$ The name to use for saving. If the string is empty or if the string holds wild card
characters * or ?, then the File menu Save As dialog opens. In Windows, the
wildcards select the initial list of files. A default extension is not provided in
circumstances when the dialog is not used.

yes% If this operation would overwrite an existing file you are asked if you wish to do
this unless yes% is present and non-zero. While an existing file is open in Signal
you will not be able to overwrite it.

text$ An optional prompt displayed as part of the file dialog to prompt the user.
Returns The function returns 0 if the operation was a success, or a negative error code.
See also: FileSave(), EditCopy(), FileExportAs()

FileQuit()

FileSave()

FileSaveAs()

FileSaveResource() Alphabetical command reference FileTime$()

5-89

This saves a resource file for the current data or XY view. If a data view is duplicated,
resources for all the duplicates are saved.
Func FileSaveResource({name$|glob%})

name$ The resource file to save to. If the name is "" or contains a "*" or a "?", the
user is prompted for a file. Any extension in the file name is ignored and the
extension is set to .sgr. If you omit name$ and glob%, glob% defaults to 1.

glob% An alternative to name$. 0=prompt for a file name, 1=save resources to the
resource file associated with the view (this may be a global resource file),
2=save to the global resource file (if enabled).

Returns 0 if all was OK, -1 if the user cancelled the File Save dialog, -2 if the file could
not be saved for any other reason.

See also: FileGlobalResource(), FileApplyResource(), FileSave()

This function returns the size of the data file associated with the current data view.
During sampling this allows for data that is buffered, but not yet written. If you use this
during sampling, you will see the file size increase each time a new frame is written, that
is, it will not increase by the size of data items but by the size of data frames. This
function did not exist before Signal version 4.07.
Func FileSize();

Returns The size of the file, in bytes, as a real number as it can exceed integer range.

This function returns a string holding the time at which sampling started. Use
FileTimeDate() to get the date as numbers. The current view must be a time view. The
arguments are exactly the same as for the Time$() command. This function was added
to Signal at version 4.07.
Func FileTime$({tBase%, {show%, {amPm%, {sep$}}}});

tBase% Specifies the time base to show the time in. You can choose between 24 hour
clock or 12 hour clock mode. If this argument is omitted, a value of 0 is used.
0 Operating system settings. 1 24 hour format.
2 12 hour format.

show% Specifies which time fields to show. Add the values of the required options
together and enter that number as the argument. If this argument is omitted or a
value of 0 is used, 7 (1+2+4) is used for 24 hour format and 15 (1+2+4+8) for
12 hour format.
1 Show hours. 2 Show minutes.
4 Show seconds. 8 Remove leading zeros from hours.

amPm% This sets the position of the “AM” or “PM” string in 12 hour format. This
parameter has no effect in 24 hour format. If this argument is omitted, a value of
zero is used. The actual string which gets printed (“AM” or “PM”) is specified by
the operating system.
0 Operating system settings. 1 Show to the right of the time.
2 Show to the left of the time. 3 Hide the “AM” or “PM” string.

sep$ This string appears between adjacent time fields. If sep$ = “:” then the time
will appear as 12:04:45. If an empty string is entered or sep$ is omitted, the
operating system settings are used.

See also: Time$(), FileDate$(), FileTimeDate()

FileSaveResource()

FileSize()

FileTime$()

FileTimeDate() The Signal script language FileVarInfo()

5-90

This function returns the time and date at which sampling started as numbers. Use
FileTime$() and FileDate$() to get the result as strings. The current view must be a
time view. The arguments are exactly the same as for the TimeDate() command. This
function was added to Signal at version 4.07.
Proc FileTimeDate(&s%, {&m%,{&h%,{&d%,{&mon%,{&y%,{&wDay%}}}}}});
Proc FileTimeDate(td%[])

s% If s% is the only argument, it is set to the number of seconds since midnight.
Otherwise it is set to the number of seconds since the start of the current minute.

m% If this is the last argument, it is set to the number of minutes since midnight.
Otherwise it is set to the number of full minutes since the start of the hour.

h% If present, the number of hours since Midnight is returned in this variable.
d% If present, the day of the month is returned as an integer in the range 1 to 31.
mon% If present, the month number is returned as an integer in the range 1 to 12.
y% If present, the year number is returned here. It will be an integer such as 2002.
wDay% If present, the day of the week will be returned here as 0=Monday to 6=Sunday.
td%[] If an array is the first and only argument, the first seven elements are filled with

time and date data. The array can be less than seven elements long. Element 0 is
set to the seconds, 1 to the minutes, 2 to the hours, and so on.

See also: Date$(), FileDate$(), MaxTime(), Seconds(), Time$(),
TimeDate()

This function counts CFS file variables in the data file. File variables are extra values
attached to a CFS data file that are used by Signal for various purposes. A Signal script
can read the values of these variables but is not allowed to change them.
Func FileVarCount();

Returns The number of file variables in the data file associated with this view.
See also: FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarInfo(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

This function reads the name and type of a CFS file variable. File variables are extra
values attached to a CFS data file that are used by Signal for various purposes. A Signal
script can read the values of these variables but is not allowed to change them.
Func FileVarInfo(nVar%, &name${, units$});

nVar% This is the variable number.
name$ Returned holding the name of the variable, which can be used in the commands

for reading the file variables.
units$ Optional, returned holding the units for the variable.
Returns The function returns the type of the variable or -1 if the variable was not found

or is of unknown type. The type code is as follows:
 0 An integer variable which can be read using FileGetIntVar()
 1 A floating point variable which can be read using FileGetRealVar()
 2 A string variable which can be read using FileGetStrVar$()
See also: FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FrameGetIntVar(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FileTimeDate()

FileVarCount()

FileVarInfo()

FiltApply() Alphabetical command reference FiltAtten()

5-91

This function applies a set of filter coefficients or a filter in the filter bank to a set of
waveform channels in the current file or memory view.

Each output point is generated from the same number of input points as there are filter
coefficients. Half these points are before the output point, and half are after. Where more
data is needed than exists in the source file (for example at the start and end of a file and
where there are gaps), extra points are made by duplicating the nearest valid point.
Func FiltApply(n%|coef[], cSpc, frm%|frm%[]|frm$);

n% Index of the filter in the filter bank to apply in the range -1 to 11, or
coef[] An array holding a set of FIR filter coefficients to apply to the waveform.
cSpc A channel specifier for the channels to filter. See the Script language syntax

chapter for a definition of channel specifiers.
frm% Frame number or a negative code as follows:

-1 All frames in the file
-2 The current frame
-3 Only tagged frames
-6 Only untagged frames

frm$ A frame specification string. This option specifies a list of frames using a
string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

Returns The number of the last channel to be filtered or a negative error code. A
negative error code is also returned if the user clicks Cancel from the progress
bar that may appear during a long filtering operation.

See also: FiltAtten(), FiltCalc(), FiltComment$(), FiltCreate(),
FiltInfo(), FiltName$(), FiltRange()

This set the desired attenuation for a filter in the filter bank. When FiltApply() or
FiltCalc() is used, the number of coefficients needed to achieve this attenuation (up to
a maximum of 255) will be generated. A value of zero sets the attenuation back to the
default (-65 dB).
Func FiltAtten(index%{, dB});

index% Index of the filter in the filter bank to use in the range -1 to 11.
dB If present and negative, this is the desired attenuation for stop bands in the filter.
Returns The desired attenuation for a filter at the time of the call.
See also: FiltApply(), FiltCalc(), FiltComment$(), FiltCreate(),

FiltInfo(), FiltName$(), FiltRange()

FiltApply()

FiltAtten()

FiltCalc() The Signal script language FiltCalc()

5-92

The calculation of filter coefficients can take an appreciable time, this function forces the
calculation of a filter for a particular sampling frequency if it has not already been done.
If you do not force the calculation, you can still use FiltApply() to apply a filter.
However, the coefficient calculation will then be done at the time of filter application,
which may not be desirable if the filtering operation is time critical.
Func FiltCalc(index%, sInt{, coeff[]{, &dBGot{, nCoef%}}});

index% Index of the filter in the filter bank to use in the range -1 to 11. The value of -1
means the special filter that is not in the bank.

sInt% The sample interval of the waveform you are about to filter. This is the value
returned by BinSize() for a waveform channel.

coeff An array to be filled with the coefficients used for filtering. If the array is too
small, as many elements as will fit are set. The maximum size needed is 2047.

dBGot If present, returns the attenuation attained by the filter coefficients.
nCoef% If present, sets the number of coefficients used in the calculation (use an even

number for a full differentiator and an odd number for all other filter types).
Returns The number of coefficients generated by the filter.

Suppose the first filter in the bank (index 0) is a low pass filter with the pass band edge at
50 Hz. If we know that we will need to filter a channel 4 (sampled at 200 Hz) with this
filter, we may want to calculate the coefficients needed in advance:
FiltCalc(0, BinSize(4));

This will calculate a filter corresponding to the specification of filter 0 for a sampling
frequency of 200 Hz with an attenuation in the stop band of at least the current desired
attenuation value for this filter.

The calculation of coefficients is a complex process and can produce silly results due to
floating point rounding errors in some situations. To ensure that you will always get a
useful result there is a limit to how small and how big a transition gap can be, relative to
the sampling frequency. There is a similar limit on the width of a pass or stop band:
• The transition gap and the width of a pass or stop band cannot be smaller than 0.005

of the sampling frequency.
• The transition gap cannot be larger than 0.12 of the sampling frequency.

This function always calculates a set of coefficients, but may alter the filter specification
in order to do it (these changes are temporary, see later.) This can happen in two cases :
1. If the sampling frequency is such that, to produce the filter, the transition gap and/or

pass and stop band widths are outside their limits, then the widths are set to the limits
before calculating the filter. In our 50 Hz low pass filter example, if we calculate it
with respect to a 12 kHz sampling frequency, the minimum pass band width is
12000*0.005 = 60 Hz. So, the filter would be changed to a 60 Hz low pass filter.

2. If half the sampling frequency (the Nyquist frequency) is less than an edge of a pass
or stop band, certain attributes of the filter are lost. In our 50 Hz low pass filter
example, if we tried to calculate with a sampling frequency of 80 Hz, we would see
that the Nyquist frequency is 40 Hz. No frequency above 40 Hz can be represented in
a waveform sampled at 80 Hz, so a 50 Hz low pass filter is equivalent to an “All pass”
filter. The filter specification will be altered to reflect this before calculating.

Any changes made to a filter specification to accommodate a particular calculation are
made with reference to the original specification, not the specification that was last used
for a calculation.
See also: FiltApply(), FiltAtten(), FiltComment$(), FiltCreate(),

FiltInfo(), FiltName$(), FiltRange()

FiltCalc()

An example

Constraints on filters

FiltComment$() Alphabetical command reference FiltCreate()

5-93

This function gets and sets the comment associated with a filter in the filter bank.
Func FiltComment$(index%{, new$});

index% Index of the filter in the filter bank to use, in the range -1 to 11.
new$ If present, sets the new comment.
Returns The previous comment for the filter at the index.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltCreate(),

FiltInfo(), FiltName$(), FiltRange()

This function creates a filter in the filter bank to the supplied specification and gives it a
standard name and comment.
Func FiltCreate(index%, type%{, trW{, edge1{, edge2{, ...}}}});

index% Index of the new filter in the filter bank in the range -1 to 11. This action
replaces any existing filter at this index. The value of -1 means the special filter
that is not in the bank.

type% The type of the filter desired (see table).
trW The transition width of the filter. This is the frequency interval between the edge

of a stop band and the edge of the adjacent pass band.
edgeN This is a list of edges of pass bands in Hz. (see table).
Returns 0 if there was no problem or a negative error code if the filter was not created.
This table shows the relationship between different filter types and the meaning of the
corresponding arguments. The numbers in brackets indicate the nth pass band when there
is more than 1. An empty space in the table means that the argument is not required.

type% Name trW edge1 edge2 edge3 edge4

0 All stop
1 All pass
2 Low pass Yes High
3 High pass Yes Low
4 Band pass Yes Low High
5 Band stop Yes High(1) Low(2)
6 Low pass differentiator Yes High
7 Differentiator
8 1.5 Band Low pass Yes High(1) Low(2) High(2)
9 1.5 Band High pass Yes Low(1) High(1) Low(2)

10 2 Band pass Yes Low(1) High(1) Low(2) High(2)
11 2 Band stop Yes High(1) Low(2) High(2) Low(3)

The values entered correspond to the text fields shown in the Filter edit dialog box.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltInfo(),FiltName$(), FiltRange()

FiltComment$()

FiltCreate()

FiltInfo() The Signal script language FiltRange()

5-94

This function retrieves information about a filter in the bank.
Func FiltInfo(index%{, what%});

index% Index of the filter in the filter bank to use in the range -1 to 11.
what% Which bit of information about the filter to return:

-2 Maximum what% number allowed
-1 Desired attenuation
0 type (if you supply no value, 0 is assumed)
1 Transition width
2-5 edge1-edge4 given in FiltCreate()

Returns The information requested as a real.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltCreate(), FiltName$(), FiltRange()

This function gets and/or sets the name of a filter in the filter bank.
Func FiltName$(index%{, new$});

index% Index of the filter in the filter bank to use in the range -1 to 11.
new$ If present, sets the new name.
Returns The previous name of the filter at that index.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltInfo(), FiltCreate(), FiltRange()

This function retrieves the minimum and maximum sampling rates that this filter can be
applied to without the specification being altered. See the FiltCalc() command,
Constraints on filters for more information.
Proc FiltRange(index%, &minFr, &maxFr);

index% Index of the filter in the filter bank to use in the range -1 to 11.
minFr Returns the minimum sampling frequency you can calculate the filter with

respect to, so that no transition width is greater than the maximum allowed and
no attributes of the filter are lost.

maxFr Returns the maximum sampling frequency you can calculate the filter with
respect to, without the transition (or band) widths being smaller than allowed.

It is possible to create a filter which cannot be applied to any sampling frequency without
being changed. This will be apparent because minFr will be larger than maxFr.
See also: FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(),

FiltInfo(), FiltCreate(), FiltName$()

FiltInfo()

FiltName$()

FiltRange()

FIRMake() Alphabetical command reference FIRMake()

5-95

This function creates FIR filter coefficients and places them in an array ready for use by
ArrFilt(). This command is very similar in operation to the DOS program FIRMake
and has similar input requirements. Unless you need precise control over all aspects of
filter generation, you may find it easier to use FiltCalc() or FIRQuick(). You will
need to read the detailed information about FIR filters in the description of the Digital
Filter dialog to get the best results from this command.
Proc FIRMake(type%, param[][], coef[]{, nGrid{, extFr[]}});

type% The type of filter file to produce: 1=Multiband filter, 2=Differentiator, 3=Hilbert
transformer, 4=Multiband pink noise (Multiband with 3 dB per octave roll-off).

param This is a 2-dimensional array. The size of the first dimension must be 4 or 5. The
size of the second dimension (n) should be the number of bands in your filter.
You pass in 4 values for each band (indices 0 to 3) to describe your filter:

 Indices 0 and 1 are the start and end frequency of each band. All frequencies are
given as fraction of a sampling frequency and so are in the range 0 to 0.5.

 Index 2 is the function of the band. For all filter types except a differentiator,
this is the gain of the filter in the band in the range 0 to 1 (the most common
values are 0 for a stop band and 1 for a pass band.) For a differentiator, this is
the slope of the filter in the band, normally not more than 2. The gain at any
frequency f in the band is given by f*function.

 Index 3 is the relative weight to give the band. The weight sets the relative
importance of the band in multiband filters. The program divides each band into
frequency points and optimises the filter such that the maximum ripple times the
weight in each band is the same for all bands. The weight is independent of
frequency, except in the case of the differentiator, where the weight used is
weight/frequency.

 If there is an index 4 (the size of the first dimension was 5), this index is filled in
by the function with the ripple in the band in dB.

coef An array into which the FIR filter coefficients are placed. The size of this array
determines the number of filter coefficients which are calculated. It is important,
therefore, to make sure this array is exactly the size that you need. The
maximum number of coefficients is 512.

nGrid The grid density for the calculation. If omitted or set to 0, the default density of
16 is used. This sets the density of test points in internal tables used to search for
points of maximum deviation from the filter specification. The larger the value,
the longer it takes to compute the filter. There is seldom any point changing this
value unless you suspect that the program is missing the peak points.

extFr An array to hold the list of extremal frequencies (the list of frequencies within
the bands which have the largest deviation from the desired filter). If there are
n% coefficients, there are (n%+1)/2 extremal frequencies.

The parameters passed in must be correct or a fatal error results. Errors include:
overlapping band edges, band edges outside the range 0 to 0.5, too many coefficients,
differentiator slope less than 0. If not a differentiator the band function must lie between
0 and 1, the band weight must be greater than 0.

FIRMake()

FIRQuick() The Signal script language FIRQuick()

5-96

For example, to create a low pass filter with a pass band from 0 to 0.3 and a stop band
from 0.35 to 0.5, and no return of the ripple, you would set up param as follows:

var param[4][2] 'No return of ripple, 2 bands
para[0][0] := 0; 'Starting frequency of pass band
para[1][0] := 0.3; 'Ending frequency of pass band
para[2][0] := 1; 'Desired gain (unity)
para[3][0] := 1; 'Give this band a weighting of 1

para[0][1] := 0.35; 'Starting frequency of stop band
para[1][1] := 0.5; 'Ending frequency of stop band
para[2][1] := 0; 'Desired gain of 0 (stop band)
para[3][1] := 10; 'Give this band a weighting of 10

See also: ArrFilt(), FiltApply(), FiltCalc(), FIRQuick(),
FIRResponse()

This function creates a set of filter coefficients in the same way the FIRMake() does, but
many of the parameters are optional, allowing the most common filters to be created with
a minimal specification.
Func FIRQuick(coef[], type%, freq{, width{, atten}});

coef An array into which the FIR filter coefficients are placed. The size of this array
should be 512. This is the maximum number of coefficients that can be created
and this function reserves the right to return as many as it feels necessary, up to
that value to create a decent filter.

type% This sets the type of filter to create. 0=Low pass, 1=High pass, 2=Band pass,
3=Band stop and 4=Differentiator.

freq This is a fraction of the sampling rate in the range 0 to 0.5 and means different
things depending on the type of filter.:

 For Low pass, High pass and Differentiator types, this represents the cut-off
frequency. This is the frequency of the higher edge of the first frequency band.

 For Band pass and Band stop filters, this is the midpoint of the middle frequency
band: the pass band in a Band pass filter, the stop band in a Band stop filter.

width For Low pass, High pass and Differentiator filters, this is the width of the
transition gap between the stop band and the pass band. The default value is 0.02
and there is an upper limit of 0.1 on this argument.

 For a band Pass or Band stop filter, width is the width of the middle band. E.g.
if you ask for a Pass band filter with the freq parameter to be 0.25 and the
width to be 0.05, the middle pass band will be from 0.2 to 0.3. For these types of
filter, you still need a positive transition width. This transition width is 0.02 and
cannot be changed by the user.

atten The desired attenuation in the stop band in dB. The default is 50 dB. This is
analogous to the desired attenuation in the FiltAtten() command.

Returns The number of coefficients calculated. If the array is not large enough the
coefficient list is truncated (and the result is useless).

See also: ArrFilt(), FiltApply(), FiltCalc(), FIRMake(),
FIRResponse()

FIRQuick()

FIRResponse() Alphabetical command reference FIRResponse()

5-97

This function retrieves the frequency response of a given filter as amplitude or in dB.
Proc FIRResponse(resp[], coef[]{, as%{, type%}});

resp The array to hold the frequency response. This array will be filled regardless of
its size. The first element is the amplitude response at 0 Hz and the last is the
amplitude response at the Nyquist frequency. The remaining elements are set to
the response at a frequency proportional to the element’s position in the array.

coef The coefficient array calculated by FIRMake(), FIRQuick() or FiltCalc().
as% If this is 0 or omitted, the response is in dB (0 dB is unchanged amplitude),

otherwise as linear amplitude (1.0 is unchanged).
type% If present, informs the command of the filter type. The types are the same as

those supplied for FIRQuick(): 0=Low pass, 1=High pass, 2=Band pass,
3=Band stop and 4=Differentiator. If a type is given , the time to calculate the
response is halved. If you are not sure what type of filter you have, or you have
type not covered by the FIRQuick() types, then do not supply a type to this
command.

See also: ArrFilt(), FiltCalc(), FIRMake(), FIRQuick()

FIRResponse()

FIRResponse() The Signal script language FIRResponse()

5-98

It frequently happens that you have a set of data values (x1,y1), (x2,y2) … (xn,yn) that you
wish to test against a theoretical model y = f(x, a0, a1, a2…) where the ai are coefficients
that are to be set to constant values which give the best fit of the model to the data values.

For example, if we were looking at the extension of a spring (y) as it is loaded by weights
(x), we might wish to fit the straight line y = a0 + a1x to some measured data points so
that we could measure a weight by the extension it caused. A careful experimenter might
also wish to know what the probable error was in a0 and a1 so that the probable error in
any weight deduced from an extension would be known. An even more cautious
experimenter might want to know if the straight line formula was likely to model the
measured data.

To avoid repeating definitions throughout the remainder of this chapter the following will
be taken as defined. We apologise to the statisticians who may read the following and
shudder:

Given a set of n values yj, the mean is Σj yj / n (the symbol Σj means, form the sum over
all indices j of the expression that follows).

If the mean of a set of n data values yj is ym, then the variance σ2 (sigma squared) of this
set of values is:

σ2 = Σj (yj - ym)2 / n if ym is known independently of the data values yj
σ2 = Σj (yj - ym)2 / (n - 1) if ym is calculated from the data values yj

For a data set of any reasonable size, the use of n-1 or n in the denominator should make
little difference.

The standard deviation σ (sigma) of a data set is the square root of the variance. Both the
variance and the standard deviation are used as measures of the width of the distribution.

If you measure a data value in any real system, there is
always some error in the measurement. Once you have
made a (very) large number of measurements, you can
form a curve showing the probability of getting any
particular value. One would hope that this error
distribution would show a large peak at the “correct”
value of the measurement and the width of this
distribution would show the spread of likely errors.

There is a particular error distribution which often
occurs, called the Normal distribution. If a set of measurements is normally distributed,
with a mean ym and standard deviation σ, then the probability of measuring any particular
value y is proportional to:

P(y) ∝ exp(-½(y-ym)2/σ2)

It is for this distribution of errors that we have the well-known result that 68% of the
values lie within one standard deviation of the mean, that 95% lie within two standard
deviations and that 99.7% lie within three standard deviations. Of course, if the error
distribution is not normal, these results do not apply.

Fitting

mean

variance

standard deviation

Normal distribution

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
sigma

FIRResponse() Alphabetical command reference FIRResponse()

5-99

The fitting routines given here define best fit as the values of ai (the coefficients) that
minimise the chi-squared value (χ2), defined as the sum over the measured data points of
the square of the difference between the measured and predicted values divided by the
variance of the data point:

χ2 = Σj ((yj - ƒ(xj, ai))2 / σj
2)

where (xj, yj) is a data point and σj
2 is the variance of the measured data at that point.

If the sigma of each data point is unknown, then the fitting routines can be used to
minimise Σj (yj - ƒ(xj, ai))2, which produces the same result as a chi-squared fit would
produce if the variance of the errors at all the data points was the same. This is commonly
called least-squares fitting, meaning that the fit minimises the sum of squares of the
errors between the fitted function and the data.

Chi-squared fitting is also a maximum-likelihood fit if the errors in the data points are
normally distributed. This means that as well as minimising the chi-squared value, the fit
also selects the most probable set of coefficients that model your data. If your data
measurement errors are not normally distributed you can still use this method, but the fit
is not maximum likelihood.

If your errors are normally distributed and if you know the variance(s) of the data points,
you can form good estimates of the variance of the fitted coefficients, and you can also
test whether the function you have fitted is likely to model the data.

If your errors are normally distributed but you do not know the variance of the errors at
the data points, you can make an estimate of the variance of the errors. (This is based on
the assumption that the variance is the same for all of them, and that the model does fit
the data.) First you fit your model, then you calculate the variance from the errors
between the best fit and the data. Having done this, you cannot then use this variance to
test if the fit is likely to model the data!

Once your fit is completed, it is a good idea to look at the graph of the errors between
your original data and the fitted data (the residuals or residual errors). If your errors are
normally distributed and are independent, you would expect this graph to be more or less
horizontal with no obvious trends. If this is not the case, you should consider whether the
correct model function has been selected, or whether the fitting function has found the
true minimum.

A linear fit is one in which the theoretical model y = ƒ(x, a0, a1, a2…) can be expressed
as y = a0ƒ0(x) + a1ƒ1(x) + a2ƒ2(x) … for example y = a0 + a1x + a2x2. Linear fits are
relatively quick as they are done in one step. Usually, the only thing that can cause a
problem is if the functions ƒi(x) are not linearly independent. The methods we use can
usually detect this problem, and can still give a useful result.

A non-linear fit means all other cases, for example, y = a0 exp(-a1 x) + a2. These types of
problem are solved by making an initial guess at the coefficients (and ideally providing a
range of values that the result is known to lie in) and then improving this guess. This
process repeats until some criterion is met. Each repeat is called an iteration, so we call
this an iterative process.

chi-squared

Residuals

Linear fit
Non-linear fit

FIRResponse() The Signal script language FIRResponse()

5-100

Several of the fitting routines return a covariance array. If you have n coefficients, this
array is of size n by n and is diagonally symmetric. If the errors in the original data points
are normally distributed, the diagonal elements of this array are the variances in the
values of the fitted coefficients. The remaining elements are the co-variances of pairs of
the fitting parameters and can be used to estimate errors in derived values that depend on
the product of two of the coefficients. If the errors are not normally distributed, the
further away from normal the errors are, the less useful is the covariance array as a direct
indication of the variances in the fitted coefficients.

For example, in the case of the linear fit y = a0 + a1x + a2x2 you might collect your three
coefficients in the array coef[], and the covariance in the array covar[][]. In this
case, the a0 value is returned in coef[0] and its variance in covar[0][0], the a1 value
is returned in coef[1] and its variance in covar[1][1], and the a2 value is returned in
coef[2] and its variance in covar[2][2].

Because the array is diagonally symmetric, covar[i][j] is equal to covar[j][i] and
the off-diagonal elements are the expected variance in the product of pairs of the
coefficients, so covar[1][2] is the variance of a1a2.

If you have not supplied the standard deviations of the errors in the data points, the
covariance array is calculated on the assumption that all data points have a standard
deviation of 1.0, and the covariance array is incorrectly scaled. In this case, if inspection
of the residuals leads you to the conclusion that the function does indeed fit the data and
that the errors are more or less the same for all values and not too far from normally
distributed, then you can scale the covariance array to the correct values. Multiply all the
elements of the array by the sum of squares of the errors between the data and the fitted
values divided by the number of data points. If there are nD% data points and the sum of
squares of the errors is errSq, then use ArrMul(cover[][], errSq/nD%) to rescale
the covariance.

Having fitted our data, we would like some idea of how the errors in the original data
feed through to uncertainties in the values of the coefficients. The best way to do this is to
obtain many sets of (x,y) data and fit our coefficients to each set. Then we can inspect the
values of the coefficients and obtain a mean and standard deviation for each coefficient.
However, this is very time consuming.

If the errors in the data are normally distributed (or not too far from this ideal case) and
known, then the covariance array gives you some useful information. The square root of
the covariance for a particular coefficient is the expected standard deviation in that value
(given that the remaining coefficients remain fixed at optimum values). In script language
terms, the standard deviation of coef[i] is sqrt(covar[i][i]).

In this case you would expect the coefficient to be within one standard deviation of the
“correct” result 68% of the time, within 2 standard deviations 95% of the time and within
3 standard deviations 99.7% of the time.

If the errors in the original data are normally distributed and known (not calculated from
the fit), and you know the χ2 value for the fitted data, you can ask the question, “Given
the known errors in the original data, how likely is it that you would get a value of χ2 at
least this large?” The answer is (at least in terms of the script language) that the
probability is: GammaQ((nData% - nCoef%)/2.0, chiSq/2.0); where nData% is
the number of data points to be fitted, nCoef% is the number of coefficients that were
fitted and chiSq is the χ2 value for the fit. GammaQ() is the incomplete Gamma function.

Covariance array

What does the covariance
mean?

Testing the fit

FitCoef() Alphabetical command reference FitCoef()

5-101

If you want to follow this result up in a statistical textbook, you should look up chi-
squared distribution for n degrees of freedom. In our case, we have nData%-nCoef%
degrees of freedom.

If the fit is reasonable, you should expect a probability value between 0.1 and 1 (but be a
bit suspicious if you always get values close to 1.0, as you may have overestimated the
errors in the data.) If the wrong function has been fitted or if the fit is poor you usually
get a very small probability. Intermediate values (0.0001 to 0.1) may indicate that the
errors in the original data were actually larger than you thought, or they may indicate that
the data just doesn't fit the model.

This command gives you access to the fit coefficients for the next FitData() fit. You
can return the values from any type of fit and set the initial values and limits and hold
values fixed for iterative fits. There are two command variants:

This command variant lets you read back the current coefficient values and set the
coefficient values and limits for iterative fitting:
Func FitCoef({num%{, new{, lower{, upper}}}});

num% If this is omitted, the return value is the number of coefficients in the current fit.
If present, it is a coefficient number. The first coefficient is number 0. If num% is
present, the return value is the coefficient value for the existing fit, or if there is
no fit, the coefficient value that would be used as the starting point for the next
iterative fit is returned.

new If present, this sets the value of coefficient num% for the next iterative fit.
lower If present, this sets the lower limit for coefficient num% for the next iterative fit.

There is currently no way to read back the coefficient limits. There is also no
check made that the limits are set to sensible values.

upper If present, this sets the upper limit for coefficient num% for the next iterative fit.
Returns The number of coefficients or the value of coefficient num%.

This command variant allows you to hold some coefficients at their current values during
the next fit.
Func FitCoef(hold%[]);

hold% An array of integers to correspond with the coefficients. If the array is too long,
extra elements are ignored. If it is too short, extra coefficients are not affected.
Set hold%[i%] to 1 to hold coefficient i% and to 0 to fit it. If hold%[i%] is
less than 0, the hold state is not changed, but hold%[i%] is set to 1 if the
corresponding coefficient is held and to 0 if it is not held.

Returns This always returns 0.
See also: FitData(), FitValue(), FitExp(), ChanFitCoef()

FitCoef()

Set and get coefficients

Get and set the hold flags

FitData() The Signal script language FitData()

5-102

This function, together with FitCoef() and FitValue(), lets you apply the same
fitting functions that are available for channel data to data in arrays. You supply arrays of
x and y data points and an optional array holding the standard deviation of the input data
point y values. There are three command variants:

The first variant sets the type of fit. If you select an iterative fit, the initial values of the
fitting coefficients are reset to standard values and any "hold" flags set by FitCoef()
are cleared. You can set your own initial values with the FitCoef() command or make
a guess at the initial values when performing the fit.
Func FitData(type%, order%);

type% The fit type. 0=Clear any fit, 1=Exponential, 2=Polynomial, 3=Gaussian,
4=Sine, 5=Sigmoid.

order% If positive, this is the order of the fit, if negative it is minus the number of fitted
coefficients. See the information about each fit for the allowed values for each
fit type. If type% is 0 this argument is ignored and should be 0.

Returns The number of fit coefficients for the fit or a negative error code.

This fits multiple exponentials by an iterative method. The data is fitted to the equation:

y = a0 exp(-x/a1) + a2 exp(-x/a3)… For an even number of coefficients
y = a0 exp(-x/a1) + a2 exp(-x/a3)… + an For an odd number of coefficients

You can set up to 10 coefficients or orders 1 to 5. If you use a fit order, the number of
coefficients is the order times 2. See the FitExp() command for more information.
Coefficient estimates are effective for orders 1 and 2.

This fits y = a0 + a1x + a2x2 + a3x3 … to a set of (x,y) data points. The fitting is by a direct
method; there is no iteration. The fit order is the highest power of x to fit in the range 1 to
10. The number of coefficients is the fit order plus 1.

This fits multiple Gaussians by an iterative method. The data is fitted to the equation:

y = a0 exp(-½(x-a1)2/a2
2) + a3 exp(-½(x-a4)2/a5

2) + …

The fitted parameters (coefficients) are the ai. You can fit up to 3 Gaussians (order 1 to
3). The number of coefficients is given by the fit order times 3. Coefficient estimates
become less useful as the order increases.

This fits multiple sinusoids by an iterative method. The data is fitted to the equation:

y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + … {+ a3n}

The fitted coefficients are the ai. Angles are evaluated in radians. You can fit up to 3
sinusoids (order 3) and an optional offset. Although the function is given in terms of sine
functions, you can easily convert to cosines by subtracting π/2 from the phase angle (a2,
a5, a8) after the fit. The coefficient count can be set to 3, 4, 6, 7, 9 or 10. If you use
orders, the number of coefficients is order times 3 and you cannot set an offset. A useful
coefficient estimate is made for a single sinusoid fit.

This fits a single Boltzmann sigmoid by an iterative method. The data is fitted to the
equation:

y = a0 + (a1 - a0)/(1 + exp((a2 – x)/ a3)

In terms of the fitted result, a0 and a1 are the low and high fitting limits, a2 is the X50
point and a3 is a measure of the slope at the X50 point. You can set order 1 only, or 4
coefficients.

FitData()

Initialise fit information

Exponential fit

Polynomial fit

Gaussian fit

Sine fit

Sigmoid fit

FitData() Alphabetical command reference FitData()

5-103

This variant of the command does the fit set by the previous variant. Use the FitCoef()
command to preset fit coefficients and to read back the result of the fit.
Func FitData(opt%, y[], x[]{, s[]|s{, &err{,
 maxI%{, &iTer%{, covar[][]}}}}});

opt% 1=Estimate the coefficients before fitting, 0=use current values. Note that the
estimates are usually only useful for a small number of coefficients.

y[] An array of y values to be fitted.
x[] A corresponding array of x values.
s[]|s A corresponding array of standard deviations for the data points defined by y[]

and x, or a single value, being the standard deviation of each point. If this value
is omitted or set to 1.0, the result is a least squares fit. If standard deviations are
supplied, the result is a chi-squared fit.

err If present, this optional variable is updated with the chi-squared or least-squares
error between the fit and the data.

maxI% If present, this changes the maximum number of iterations from 100.
iTer% If present, this integer variable is updated with the count of iterations done.
covar An optional two dimensional array of size at least [nCoef][nCoef] that is

returned holding the covariance matrix when the fit is complete. It is changed if
the return value is -1, 0 or 1. However, the values it contains are probably not
useful unless the return value is 0.

Returns 0 if the fit is complete, 1 if max iterations done, or a negative error code: -1=the
fit is not making progress (results may be OK), -2=the fit failed due to a singular
matrix, -5=the fit caused a floating point error, -6=too little data for the number
of coefficients, -7=unknown fitting function, -8=ran out of memory during the
fit (too many data points), -9=the fit was set up with bad parameters.

This variant of the command returns information about the current fit.
Func FitData({opt%});

opt% This determines what to return. opt% values match ChanFit(), where possible.
The returned information for each value of opt% is:
opt% Returns opt% Returns

0 Fit type of next fit 1 Fit order of next fit
-1 1=a fit exists, 0=no fit exists -8 s value used or 0 if an array
-2 Type of last fit or 0 -9 Not used
-3 Number of coefficients -10 Not used
-4 Chi or least-squares error -11 1=chi-square, 0=least-square
-5 Fit probability (estimated) -12 Last fit result code
-6 Lowest x value fitted -13 Number of fitted points
-7 Highest x value fitted -14 Number of fit iterations used

Returns The information requested by the opt% argument or 0 if opt% is out of range.
See also: ChanFit(), FitCoef(), FitValue()

Perform the fit

Get fit information

FitExp() The Signal script language FitExp()

5-104

This command will fit multiple exponentials to arrays of x,y data points, with an optional
weight for each point. Fitting is by an iterative method. The data is fitted to the equation:

y = a0 exp(-x/a1) + a2 exp (-x/a3)… For an even number of coefficients
y = a0 exp(-x/a1) + a2 exp (-x/a3)… + an For an odd number of coefficients

The fitted parameters (coefficients) are the ai. You can fit up to 5 exponentials or 4
exponentials and an offset. However, experience shows that trying to fit more than two
exponentials requires care. The fit from even two exponentials should be viewed with
caution, especially if the exponential coefficients are similar. The odd numbered ai are
assumed to be positive. The commands to implement this are:

The first command sets the number of exponentials to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitExp(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit in the range 2 to 10. If this is even, the first
form of the function above is used. If it is odd, the final coefficient is an offset.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation,
then the error value returned when you iterate to find the best fit is the chi-
squared value and the fit is a chi-squared fit.

 If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this array, the fit is a least squares error fit, and the error value returned is
the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple exponentials, you should try to limit the
range of each exponent so that they cannot overlap. If you can do this, the fit will proceed
quickly. If you do not give starting values, the command will make a simplistic guess at
the fitting values. As we expect that you know more about the "right" answer than the
command does, we suggest that you set the values you want.
func FitExp(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-1.
val The initial value to assign to the coefficient. If you have set low and high limits,

and the value is outside these limits, it is set to the nearer limit.
lo,hi If present, these two values set the acceptable range of values for this

coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

FitExp()

Set up the problem

Set coefficient values and
ranges

FitExp() Alphabetical command reference FitExp()

5-105

It is well worth limiting the exponent values so that they cannot be zero, which leads to
degenerate cases. It is also worth limiting them so that they do not overlap as if two
exponents get the same value the fit is degenerate and can wander around forever without
getting anywhere. However, setting too rigid a range may damage the fitting process as
sometimes the minimisation process has to follow a convoluted n-dimensional path to
reach the goal, and the path may need to wander quite a bit. Let experience be your guide.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitExp(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first exponent in a[1], the
second amplitude in a[2], the second exponent in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed, but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Sometimes you will know the values of some of the coefficients, or you may wish to hold
some coefficients fixed while you fit others. Normally the command fits all the
coefficients, but you can use this command variant to select the coefficients to fit. You
can use this command at any time after you have set the problem until the iteration
variant returns 0 or -1.
func FitExp(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, then all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

Iterate to a solution

Select coefficients to fit

FitGauss() The Signal script language FitGauss()

5-106

The following is a template for using this set of commands (assuming you don't want to
hold some parameters constant).
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var coef[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitExp(4, y[], x[]); 'fit two exponentials (no sigma array)
FitExp(0, 1.0, 0.2, 4); 'set first amplitude and limit range
FitExp(1, .01, .001, .03);'set first exponent and range
FitExp(2, 2.0, 0.1, 6); 'set second amplitude and limit range
FitExp(3, .08, .03, .15); 'set second exponent and range

repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitExp(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

See also: ShowFunc()

This command will fit multiple gaussians to arrays of x,y data points, with an optional
weight for each point. Fitting is by an iterative method. The input data is fitted to the
equation:

y = a0 exp(-½(x-a1)2/a2
2) + a3 exp(-½(x-a4)2/a5

2) + …

The fitted parameters (coefficients) are the ai. You can fit up to 3 gaussians. The
commands to implement this are:

The first command sets the number of gaussians to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitGauss(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit. The only legal values are 3, 6 and 9 for one,
two and three gaussians.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation,
then the error value returned when you iterate to find the best fit is the chi-
squared value and the fit is a chi-squared fit.

 If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this array, the fit is a least-squares error fit, and the error value returned is
the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

An example

FitGauss()

Set up the problem

FitGauss() Alphabetical command reference FitGauss()

5-107

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple gaussians, it is usual that the centre of
each distribution is easy to determine. If you can set the centres and limit them so that
they cannot overlap, the fit usually will proceed without any problems, even for multiple
gaussians. If you do not give starting values, the command will make a simplistic guess at
the fitting values. As we expect that you know more about the “right” answer than the
command does, we suggest that you set the values you want.
func FitGauss(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-
1.

val The initial value to assign to the coefficient. If you have set low and high limits,
and the value is outside these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this
coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

As long as you make a reasonable estimate of the centre points, there should be no
problems fitting multiple gaussians.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitGauss(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first centre in a[1], the
first sigma in a[2], the second amplitude in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed, but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Remember that even when a minimum is found, there is no guarantee that this is the
minimum. It is the best minimum that this algorithm can find given the starting point.

Set coefficient values and
ranges

Iterate to a solution

FitLine() The Signal script language FitLine()

5-108

Sometimes you will know the values of some of the coefficients, or you may wish to hold
some coefficients fixed while you vary others. Normally the command will fit all the
coefficients, but you can use this command variant to select the coefficient to fit. You can
use this command at any time after you have set the problem until the iteration variant
returns 0 or -1.
func FitGauss(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, then all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

The following is a template for using this set of commands (assuming you don't want to
hold some parameters constant).
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var coef[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitGauss(3, y[], x[], s[]); 'fit one gaussian
FitGauss(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitGauss(1, 2, 1.5, 2.5); 'set centre of the gaussian and range
FitGauss(2, 0.5, 0.3, 1.9); 'set width and limit range
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitGauss(coefs[], err, 1) < 1;
DrawMyData(coefs[], x[], y[]); 'Show the final state

See also: ShowFunc()

This function calculates the best fit line to a set of data points using the least squares error
method. This can be applied to any Waveform channel. It fits the expression:
y = m x + c through the data points (xi, yi) so as to minimise the error given by:
Sumi(yi - m xi -c)2. In this expression, m is the gradient of the line and c is the y axis
intercept when x is 0.
Func FitLine(chan%, start, finish, &grad, &inter, &corr);

chan% A channel number (1 to n) holding waveform data.
start The start position for processing. Start and finish are given in x axis units.
finish The end position for processing. A data value at the finish position is included

in the calculation.
grad This is returned holding the gradient of the best fit line (m).
inter This is returned holding the intercept of the line with the y axis (c).
corr This is returned holding correlation coefficient indicating the “goodness of fit”

of the line. Values close to 1 or -1 indicate a good fit; values close to 0 indicate a
very poor fit. This parameter is often referred to as r in textbooks.

Returns 0 if all was OK, or -1 if there were not at least 2 data points.
The results are in user units, so in a view with a waveform measured in volts on an x axis
of seconds, the units of the gradient would be volts per second and the units of the
intercept would be volts.

Select coefficients to fit

An example

FitLine()

FitLinear() Alphabetical command reference FitLinear()

5-109

This command fits y = a0ƒ0(x) + a1ƒ1(x) + a2ƒ2(x) … to a set of (x,y) data points. If you
can provide error estimates for each y value, you can use the covariance output from this
command to provide confidence limits on the calculated coefficients and you can use the
returned chi-square value to test if the model is likely to fit the data. The command is:
func FitLinear(coef[], y[], x[][]{, s{, covar[][]{, r[]{, mR}}}});

coef[] A real array which sets the number of coefficients to fit and which returns the
best fit set of coefficients. The array must be between 2 and 10 elements long.
The coefficient a0 is returned in coef[0], a1 in coef[1] and so on.

y[] A real array of y values.
x[][] This array specifies the values of the fitting functions at each data point. If there

are nc coefficients and nd data values, this array must be of size at least [nc][nd].
If you think of this array as a rectangular grid with the data running from left to
right and the coefficients running from top to bottom, the values you must fill in
are:

 ƒ0(x0) ƒ0(x1) ƒ0(x2) ƒ0(x3) … ƒ0(xn-1)
ƒ1(x0) ƒ1(x1) ƒ1(x2) ƒ1(x3) … ƒ1(xn-1)
ƒ2(x0) ƒ2(x1) ƒ2(x2) ƒ2(x3) … ƒ2(xn-1)
ƒ3(x0) ƒ3(x1) ƒ3(x2) ƒ3(x3) … ƒ3(xn-1)
… … … … … …

s This is an optional argument. It is either a real array holding the standard
deviations of each of the y[] data points, or it is a real value holding the
standard deviation of all of the data points. If the argument is omitted or set to
zero, a least squares error fit is performed, otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number of
coefficients fitted) that is returned holding the covariance matrix.

r[] An optional array of size at least [nc] (nc is the number of coefficients fitted)
that is returned holding diagnostic information about the fit. The less relevant a
fitting function ƒi(x) is to the fit, the smaller the value returned. The element of
the array that corresponds to the most relevant function is returned as 1.0,
smaller numbers indicate less relevance.

 It can also sometimes happen that some of your base fitting-functions are not
independent of each other, usually leading to huge coefficients that cancel each
other out. In this case, several coefficients may be marked as of low relevance.
The solution here is to remove one of the functions from the fit, or to set the next
optional argument to exclude one of the functions, then fit again. If the
remaining arguments become relevant, you have probably excluded a function
that could be generated by a linear combination of the other functions. If the
remaining arguments still are not relevant, you have eliminated a function that
did not contribute to the fit.

mR You can use this optional variable to set the minimum relevance for a function.
Functions that have less relevance than this are “edited” out of the fit and their
coefficient is returned as 0. If you do not provide this value, the minimum is set
to 10-15, which will probably not exclude any values.

Returns The function returns the chi-square value for the fit if s[] or s is given (and
non-zero), or the sum of squares of the errors between the data points and the
best fit line if s is omitted or is zero.

The smallest of the sizes of the y[] array (and s[] array, if provided) and the second
dimension of x[][] sets the number of data points. It is a fatal error for the number of
data points to be less than the number of coefficients.

FitLinear()

FitLinear() The Signal script language FitLinear()

5-110

The following example shows how you could use these commands to fit a data set to the
function y = a*sin(x/10) + b*cos(x/20). The x values vary from 0 to 49 in steps
of 1. The function MakeFunc() calculates the trial data set, to which we add random
noise. We do not supply an array of sigma values for each data point; instead we give all
points a value of 1.0, which means that FitLinear() returns the sum of squares of the
errors between the fitted curve and the raw data values. If you run this example, you will
notice that the returned value is slightly less than the sum of squares of the added errors.

const noise := 0.01; ' controls how much noise we add
const NCOEF% := 2; ' number of coefficients
const NDATA%:=50; ' number of data values
var data[NDATA%]; ' space for our function
var x[NCOEF%][NDATA%]; ' array of function information
var err := 0.0; ' the sum of squares of error we add

' Generate raw data. Fit y = a*sin(x/10)+b*cos(x/20)
var coef[NCOEF%], i%, r; ' coefficients, index, random noise
coef[0]:=1.0; coef[1]:=2; ' set coefficients for generated data
MakeFunc(data[], coef[], x[][]);

' Now add noise to the raw data values in data[]
for i%:=0 to NDATA%-1 do
 r := (rand()-0.5)*noise;' the noise to add
 data[i%] += r; ' add noise to the data
 err := err + r*r; ' accumulate sum of squared noise
 next;

var covar[NCOEF%][NCOEF%]; ' covariance array
var sig2, a[NCOEF%]; ' sigma, fitted coefficients
var rel[NCOEF%]; ' array for "relevance" values
sig2 := FitLinear(a[], data[], x[][], 1, covar[][], rel[]);

Message("sig^2=%g, err=%g\ncoefs=%g\nrel=%g",sig2,err,a[],rel[]);
halt;

'y[] is the output array (x values are 0, 1, 2...)
'a[] is the array of coefficients
' y = a*sin(x/10)+b*cos(x/20)
proc MakeFunc(y[], a[], x[][])
var nd%,v; ' coefficient index, work space
for nd% := 0 to NDATA%-1 do
 v := Sin(nd% / 10.0); ' first funcion
 x[0][nd%] := v; ' save the value;
 y[nd%] := a[0] * v; ' start to build the result
 v := Cos(nd%/20.0); ' second function
 x[1][nd%] := v; ' save it
 y[nd%] += a[1]*v; ' full result
 next;
end;

An example

FitNLUser() Alphabetical command reference FitNLUser()

5-111

This command uses a non-linear fitting algorithm to fit a user-defined function to a set of
data points. The function to be fitted must be of the form y = ƒ(x, a0, a1, a2…) where the
ai are constants to be determined. You must be able to calculate the differential of the
function f with respect to each of the coefficients. You can optionally supply an array to
weight each data point. The commands to implement this are:

The first command sets the user-defined function, the number of coefficients you want to
fit, the number of data points and optionally, you can set the weight to give each data
point. You must call this function before you call any of the others.
func FitNLUser(User(ind%, a[], dyda[]), nCoef%, nData%{, s[]|s});

User() A user-defined function which is called by the fitting routine. The function is
passed the current values of the coefficients and returns the error between the
function and the data point identified by ind% and the differentials of the
function with respect to each of the coefficients at that point. The return value
should be the y data value at the index minus the calculated value of the function
at the x value, using the coefficients passed in.

ind% The index into the data points at which the error and differentials are to be
evaluated. If there are n data points, ind% will run from 0 to n-1. You can rely
on the function being called with the same coefficients as ind% increments from
0 to n-1, which may be useful if you have complex functions of the coefficients
to evaluate.

a An array of length nCoef% holding the current values of the coefficients. The
coefficients are refreshed for each call to the user-defined function, so it is not
an error to change them; however this is usually not done.

dyda An array of length nCoef% which your function should fill in with the values of
the partial differential of the function with respect to each of the coefficients.
For example, if you were fitting y = a0*exp(-a1*x) then set dyda[0] = δy/δa0
= exp(-a1*x) and dyda[1] = δy/δa1 = -a0 *a1*exp(-a1*x).

nCoef% The number of coefficients to fit in the range 1 to 10.
nData% The number of data points you will be fitting. If s[] is provided as an array, the

value of nData% used is the smaller of nData% and the length of the s[] array.
It is a fatal error for the number of data points used to be less than nCoef%.

s This argument is optional. It is either an array of weights to be given to each
data point in the fit or a single weight to apply to all data points. If this value is
the expected standard deviation of the y value of the data points, then the error
value returned is the chi-squared value and the fit is a chi-squared fit. If this
value is proportional to the expected error at the data point, then the fit is still a
chi-squared fit, and the error returned is proportional to the chi-squared value. If
you omit this argument, the fit is a least-squares error fit, and the error value
returned is the sum of the squares of the errors in the y values.

Returns The FitNLUser() function returns 0. There is no other return value as all errors
stop the script.

Unlike the other fitting routines, you will notice that the x and y data values are not
passed into the command. Instead, the user-defined function is passed an index to the data
values. It is assumed that the data is accessible by the user function.

Due to restrictions in the implementation of the script language, you cannot debug
through the user-defined function. If you set a break point in it, or attempt to step into it,
you will get errors. We recommend that you check the returned values from the user-
defined function by calling it from your own script code.

FitNLUser()

Set up the problem

FitNLUser() The Signal script language FitNLUser()

5-112

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. If you do not give starting values, the command will set them all to zero,
which is unlikely to be correct.
func FitNLUser(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-
1.

val The initial value to assign to the coefficient. If you have set low and high limits,
and the value is outside these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this
coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitNLUser(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed, but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Remember that even when a minimum is found, there is no guarantee that it is the
minimum. It is the best minimum that this algorithm can find given the starting point.

Normally the command will fit all the coefficients, but you can use this command variant
to select the coefficients to fit. You can use this command at any time after you have set
the problem until the iteration variant returns 0 or -1.
func FitNLUser(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

Set coefficient values and
ranges

Iterate to a solution

Select coefficients to fit

FitPoly() Alphabetical command reference FitPoly()

5-113

The following is an example of using this set of commands to fit the user-defined
function y = a * exp(-b*x). In this example we generate some test data and add to it
a random error. There are two coefficients to be fitted (a and b).

const NDATA%:=100; ' number of data points
const NCOEF% := 2; ' number of coefficients
var x[NDATA%],y[NDATA%],i%;

' generate data: a:=1, b:=0.05 and add some noise
for i% := 0 to NDATA%-1 do
 x[i%] := i%;
 y[i%] := exp(-0.05*i%)+(rand()-0.5)*0.01;
 next;

' Now link in user function and set coefficient ranges
FitNLUser(UserFnc, NCOEF%, NDATA%);
FitNLUser(0, 0.5, 0.01, 2); 'Set range of amplitude
FitNLUser(1, 0.01, 0.001, 1); 'Set range of exponent

var coefs[NCOEF%], err, iter%;
i% := FitNLUser(coefs[], err, 100, iter%);
Message("fit=%d, Err=%g, iter=%d, coefs=%g", i%, err, iter%,
coefs[]);
halt;

' The user-defined function: y = a * exp(-b*x);
' dy/da = exp(-b*x)
' dy/db = -x * a * exp(-b*x)
func UserFnc(ind%, a[], dyda[])
var xi,yi,r;
xi := x[ind%]; ' local copy of x value
yi := y[ind%]; ' local copy of y value
dyda[0] := exp(-a[1]*xi); ' differential of y with respect to a
r := dyda[0] * a[0]; ' intermediate value
dyda[1] := -xi * r; ' differential of y with respect to b
return yi-r;
end

This command fits y = a0 + a1x + a2x2 + a3x3 … to a set of (x,y) data points. If you can
provide error estimates for each y value, you can use the covariance output from this
command to provide confidence limits on the calculated coefficients and you can use the
returned χ2 value to test if the model is likely to fit the data. The command is:
func FitPoly(coef[], y[], x[]{, s[]|s{, covar[][]}});

coef[] A real array which sets the number of coefficients to fit and which returns the
best fit set of coefficients. The array must be between 2 and 10 elements long.
The coefficient a0 is returned in coef[0], a1 in coef[1] and so on.

y[] A real array of y values. The smaller of the sizes of the x[] and y[] arrays (and
s[] array, if provided), sets the number of data points. It is a fatal error for the
number of data points to be less than the number of coefficients.

x[] A real array of x values.
s This is an optional argument. It is either a real array holding the standard

deviations of each of the y[] data points, or it is a real value holding the
standard deviation of all of the data points. If the argument is omitted or set to
zero, a least squares error fit is performed, otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number of
coefficients fitted) that is returned holding the covariance matrix.

An example

FitPoly()

FitPoly() The Signal script language FitPoly()

5-114

Returns The function returns the chi-squared value for the fit if s[] or s is given (and
non-zero), or the sum of squares of the errors between the data points and the
best fit line if s is omitted or is zero.

The following example generates a set of test data, adds random noise to it, then fits a
polynomial to the data.
const NCOEF% := 5; ' number of coefficients
const NDATA%:=50; ' number of data points
var y[NDATA%]; ' space for our function
var x[NDATA%]; ' x co-ordinates
const noise := 1; ' noise to add
var err := 0.0; ' will be sum of squares of added noise
var cf[NCOEF%], i%, r;
cf[0]:=1.0; cf[1]:=-80; cf[2]:=-2.0; cf[3]:=0.5; cf[4]:=-0.009;
MakePoly(cf[],x[],y[]); ' generate ideal data as polynomial
for i%:=0 to NDATA%-1 do ' now add some noise to it
 r := (rand()-0.5)*noise;
 y[i%] += r; ' add noise to the data
 err += r*r; ' sum of squares of added noise
 next;
var sig2, a[NCOEF%]; ' a[] will be the fitted coefficients
sig2 := FitPoly(a[], y[], x[]);
Message("sig2=%g, noise=%g\nfitted=%8.4f\nideal =%8.4f",
 sig2, err, a[], cf[]);
halt;

'a[] input array of coefficients
'x[] output x co-ordinates, y[] output data values
proc MakePoly(a[], x[], y[])
var i%,j%,xv,s;
for i% := 0 to Len(y[])-1 do
 s := 0.0;
 xv := 1;
 for j% := 0 to NCOEF%-1 do
 s += a[j%]*xv;
 xv *= i%;
 next;
 y[i%] := s;
 x[i%] := i%;
 next;
end;

An example

FitSigmoid() Alphabetical command reference FitSigmoid()

5-115

This command fits a single Sigmoid function to x,y data points with an optional weight
for each point. Fitting is by an iterative method. The input data is fitted to the equation:

y = a0 + (a1 - a0) / (1 + exp((a2 - x) / a3))

The fitted parameters (coefficients) are the ai. You can only fit 1 Sigmoid. The
commands to implement this are:

The first command sets the number of Sigmoids to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitSigmoid(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit. The only legal value is 4 for one Sigmoid.
y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation,
then the error value returned when you iterate to find the best fit is the chi-
squared value and the fit is a chi-squared fit.
If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this array, the fit is a least-squares error fit, and the error value returned is
the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not, you will get a fatal error, so check this before calling the function.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0 indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting a Sigmoid, it is usual that the two levels (a0 and
a1) are easy to determine. If you can set the levels and limit them so that they cannot
overlap, the fit usually will proceed without any problems. If you do not give starting
values, the command will make a simplistic guess at the fitting values. As we expect that
you know more about the “right” answer than the command does, we suggest that you set
the values you want.
func FitSigmoid(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.
val The initial value to assign to the coefficient. If you have set low and high limits,

and the value is outside these limits, it is set to the nearer limit.
lo,hi If present, these two values set the acceptable range of values for this

coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

As long as you make a reasonable estimate of the two levels, there should be no problems
fitting a Sigmoid.

FitSigmoid()

Set up the problem

Set coefficient values and
ranges

FitSigmoid() The Signal script language FitSigmoid()

5-116

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitSigmoid(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first centre in a[1], the
first sigma in a[2], the second amplitude in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])
^2/s[i] ^2 if s[] is used or holding the sum of (yx[i]-y[i]) ^2 if s[] is not
used, where yx[i] is the value predicted from the coefficients at the x value
x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the
fit has converged, -1 if the fit is not improving but the result may be OK. Other
negative numbers indicate failure.

Remember that even when a minimum is found, there is no guarantee that this is the
minimum. It is the best minimum that this algorithm can find given the starting point.

Normally the command fits all the coefficients, but you can use this variant to select the
coefficients to fit. You can use this command at any time after you have set the problem
until the iteration variant returns 0 or -1.
func FitSigmoid(fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held
constant, otherwise it is fitted. If all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again.

This is a template for using these commands to fit all the coefficients:
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var coefs[4], err; 'coefficients and error squared
... 'in here goes code to get the data
FitSigmoid(4, y[], x[], s[]); 'fit one gaussian
FitSigmoid(0, 1.0, 0.2, 4); 'set base level and limit range
FitSigmoid(1, 20, 15, 25); 'set end level and range
FitSigmoid(2, 8); 'initial 50% point in X units
FitSigmoid(3, 0.5); 'initial slope
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitSigmoid(coefs[], err, 1) < 1;
DrawMyData(coefs[], x[], y[]); 'Show the final state

Iterate to a solution

Select coefficients to fit

An example

FitSin() Alphabetical command reference FitSin()

5-117

This command will fit multiple sinusoids to arrays of x,y data points, with an optional
weight for each point. Fitting is carried out by an iterative method. The input data is fitted
to the equation:

y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + …

The fitted parameters (coefficients) are the ai. The angles are evaluated in radians. You
can fit up to 3 sinusoids. Although the function is given in terms of sine functions, you
can easily convert to cosines by subtracting π/2 from the phase angle (a2, a5, a8) after the
fit. The commands to implement this are:

The first command sets the number of sinusoids to fit and the data set to be fitted. You
must call this function before you call any of the others.
func FitSin(nCoef%, y[], x[]{, s[]|s});

nCoef% The number of coefficients to fit. The only legal values are 3, 6 and 9 for one,
two and three sinusoids.

y[] An array of y data values. The length of the array must be at least nCoef%.
x[] An array of x data values. The length of the array must be at least nCoef%.
s An optional argument which is either an array with one value for each y data

point or a single value for all data points. If the value is the standard deviation,
then the error value returned when you iterate to find the best fit is the chi-
squared value and the fit is a chi-squared fit.

 If this value is proportional to the error in the y values, then the fit is still a chi-
squared fit, and the error returned is proportional to the chi-squared value. If you
omit this array, the fit is a least squares error fit, and the error value returned is
the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if
present) arrays. The number of data points must be at least the number of coefficients. If
it is not you will get a fatal error, so check this before calling the function.

This variant of the function sets the initial value of each coefficient and optionally sets
the range of allowed values. You can call this function at any time after the setup call and
before the iterate call (below) has returned 0, indicating that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the
coefficients. In particular, when fitting multiple sinusoids you will usually either know,
or have a good idea of, the frequencies. You should limit the range of each frequency so
that they cannot overlap. If you can do this, the fit will proceed quickly. If you do not
give starting values, the command will make a simplistic guess at the fitting values. As
we expect that you know more about the "right" answer than the command does, we
suggest that you set the values you want.
func FitSin(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last one is nCoef%-
1.

val The initial value to assign to the coefficient. If you have set low and high limits,
and the value is outside these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this
coefficient. If omitted, or if both values are set to the same value, there is no
limit. The value of the coefficient is tested against these limits after each
iterative step, and if it exceeds a limit, it is set to that limit.

FitSin()

Set up the problem

Set coefficient values and
ranges

FitSin() The Signal script language FitSin()

5-118

Once you have set up the problem and given initial values to your coefficients, you can
start the iteration process that will move the coefficients from their starting values to new
values that minimise the error (optionally scaled by the s argument).
func FitSin(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of
coefficient values. The first amplitude is in a[0], the first frequency in a[1],
the first phase angle in a[2], the second amplitude in a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i])2/s[i]2
if s[] is used or holding the sum of (yx[i]-y[i])2 if s[] is not used, where
yx[i] is the value predicted from the coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the
function. If you omit this value, the function sets 1000. You can set any value
from 1 to 10000. If you set more than 10000, the number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations
done before the function returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is
returned holding the covariance matrix when the fit is complete. It is not
changed unless the function return value is 0 or -1.

Returns This call returns 1 if the number of iterations has been completed but the fitting
process has not yet converged, 0 if the fitting process has converged, and a
negative number if the fitting process is going nowhere.

Even when a minimum is found, there is no guarantee that this is the minimum, only that
it is the best minimum that this algorithm can find given the starting point.

Sometimes you may wish to hold some coefficients fixed while you fit others. Normally
the command will fit all the coefficients, but you can use this command variant to select
the coefficients to fit. You can use this command at any time after you have set the
problem until the iteration variant returns 0 or -1.
func FitSin(fit%[]);

fit%[] An integer array of length at least nCoef%. Each element specifies if the
corresponding coefficient is to be fitted (fit%[i] := 1) or held constant
(fit%[i] := 0). If all elements are 0, then all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less
than 1, or you set up a new problem, or you call this variant again. For a sinusoidal fit it
is likely that you will know the frequency to fit, so you may well hold this constant.

The following is a template for using this set of commands (assuming you don't want to
fit the frequency, which we assume you know).
const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var fit%[3]; 'we want to hold the frequency
var coef[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitSin(3, y[], x[], s[]); 'fit one sinusoid

'Note that we let the phase take any value
FitSin(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitSin(1, .02, .01, .03); 'set frequency
FitSin(2, 0., 0.3, 1.9); 'set width and limit range

'Now we say that we don't want to fit the frequency
ArrConst(fit%[],1); 'set all elements to 1

Iterate to a solution

Select coefficients to fit

An example

FitValue() Alphabetical command reference FontGet()

5-119

fit%[1] := 0; 'but not element 1 (=frequency)
FitSin(fit%[]); 'so the frequency is fixed

repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitSin(coefs[], err, 1) < 1;

DrawMyData(coefs[], x[], y[]); 'Show the final state

This function returns the value at a particular x axis point of the fitted function set by the
last FitData() command.
Func FitValue(x);

x The x axis value at which to evaluate the current fit. You should be aware that
some of the fitting fuctions can overflow the floating point range if you ask for x
values beyond the fitted range of the function.

Returns The value of the fitted function at x. If the result is out of floating point range,
the function may return a floating point infinity or a NaN (Not a Number) value
or a 0. If there is no fit, the result is always 0.

See also: FitCoef(), FitData(), FitExp(), ChanFitValue()

Returns the next lower integral number of the real number or array. Floor(4.7) is 4.0,
Floor(4) is 4. Floor(-4.7) is -5.
Func Floor(x|x[] {[]…});

x A real number or a real array.
Returns When the argument is an array, the function replaces the array with the next

lower integral number of all the points and returns either a negative error code or
0 if all was well.

 When the argument is not an array the next lower integral number.

See also: Abs(),ATan(),Ceil(),Cos(),Exp(),Frac(),Ln(),Log(),Max(),
Min(),Pow(),Rand(),Round(),Sin(),Sqrt(),Tan(),Trunc()

This function returns the view handle of the script-controllable window with the input
focus (the active window). Unlike FrontView(), it can return any type of window, for
example the toolbar.
Func FocusHandle();

Returns The handle of a window that the script can manipulate, or 0 if the focus is not in
such a window.

See also: FrontView()

This function gets the name of the font, and its characteristics for the current view.
Func FontGet(&name$,&size,&flags%{,style%{,&fore%{,&back%}}});

name$ This string variable is returned holding the name of the font.
size The real number variable is returned holding the point size of the font.

FitValue()

Floor()

FocusHandle()

FontGet()

FontSet() The Signal script language FontSet()

5-120

flags% Returned holding the sum of the style values: 1=Italic, 2=Bold, 4=Underline,
8=Force upper case, 16=force lower case. Only one of 8 or 16 will be returned.

style% Text-based views have all have default style (32) that is used as the basis of all
other styles, plus a number of additional styles that are used to highlight
keywords and the like in output sequencer and script windows. The style codes
for other styles start at 0 and run upwards. You can find a list of styles for each
view type in the Edit Preferences General tab in the Editor settings section. If
you omit style% the settings for the default style (32) are returned.

fore% This value returns the foreground colour of the style. Bits 0-7 hold the red
intensity, bits 8-15 hold the green and bits 16-23 hold the blue.

back% This value returns the background colour of the style.
Returns The function returns 0 if all was well or a negative error code. If an error occurs,

the variables are not changed.
The arguments from style% onwards and the flag% values 4, 8 and 16 only apply to

text-based views and are new in version 4.
See also: FontSet()

This function sets the font for the current view. This does not cause an immediate redraw;
use the Draw() command to force one. Text-based views (text, sequencer and script)
normally avoid proportionally spaced fonts as they did not display correctly before Signal
version 4. Arguments from style% onwards are for text-based views.
Func FontSet(name$|code%,size, flags%{,style%{, fore%{, back%}}});

name$ This is a string holding the name of the font to use. Alternatively, you can
specify a font code:

code% This is an alternative (system independent) method of specifying a font. We
recognise these font codes:
0 The standard system font, whatever that might be.
1 A non-proportionally spaced font, usually Courier-like.
2 A proportionally spaced non-serifed font, such as Helvetica or Arial.
3 A proportionally spaced serifed font, such as Times Roman.
4 A symbol font.
5 A decorative font, such as Zapf-Dingbats or TrueType Wingdings.

size The point size required. Your system may limit the allowed range.
flags% The sum of the style values to set: 1=Italic, 2=Bold, 4=Underline, 8=Force

upper case, 16=force lower case. If both 8 and 16 are set, 16 is ignored. Values
from 4 upwards are only supported by text-based views.

style% Text-based views have a default style (32) plus a number of additional styles
that are used to highlight keywords in output sequencer and script windows. The
style codes for other styles start at 0 and run upwards. You can find a list of
styles for each view type in the Edit Setup dialog. If you omit style%, the
default style is changed. Set the value -1 to set all styles to the values you give.

fore% This sets the style foreground colour or is set to -1 to make no change. Bits 0-7
hold the red intensity, bits 8-15 hold the green and bits 16-23 hold the blue. Bits
24-31 are 0. It is convenient to code this as a hexadecimal number, for example:

 const red%:=0x0000ff, green%:=0x00ff00, blue%:=0xff0000;
 const gray%:=0x808080, yellow% :=0x00ffff;

back% This sets the background colour of the style in the same format as fore%.
Returns The function returns 0 if the font change succeeded, or a negative error
code.

See also: FontGet()

FontSet()

Frac() Alphabetical command reference FrameCount()

5-121

Returns the fractional part of a real number or replaces an array of reals with its fractional
parts.
Func Frac(x|x[]{[]...});

x A real number or an array of reals.
Returns For arrays, it returns 0 or a negative error code. If x is not an array it returns a

real number equal to x-Trunc(x). E.g. Frac(4.7) is 0.7, Frac(-4.7) is -
0.7.

See also: Trunc(), Round()

This function gets or sets the current frame in a data view.
Func Frame({frame%});

frame% If this is present and in range, the current frame changes to the new number.
Returns The frame number for the view at the time of the call.
See also: FrameComment$(), FrameCount(), FrameFlag(), FrameTag(),

FrameUserVar()

This function obtains the absolute start time for the current frame in a data view, it can
also set the start time for frames in a memory view. The absolute start time for a frame is
the time for time zero in a frame relative to the time at which sampling was started.
Func FrameAbsStart({new});

new If this is present and the current view is a memory view not yet saved to disk, it
sets the new absolute start time for the current frame.

Returns The absolute start time, in seconds, of the current frame in the current data view.
See also: Frame(), SampleStart()

This function gets or sets the comment for the current frame. This is a string of up to 72
characters that is stored with each frame.
Func FrameComment$({c$});

c$ If this is present it provides a new comment to store with the frame.
Returns The frame comment at the time of the call.
See also: FileComment$(), FrameState(), FrameTag(), FrameUserVar()

This function returns the number of frames in a data document.
Func FrameCount();

Returns Number of frames (sweeps) in the file or memory view.
See also: Frame(), Sweeps()

Frac()

Frame()

FrameAbsStart()

FrameComment$()

FrameCount()

FrameFlag() The Signal script language FrameGetIntVar()

5-122

This command turns a frame flag on or off or retrieves the current setting of a flag from
the specified frame. This function will fail with a run-time error if used to change a user
variable with read-only data, you can check for read-only data using the Modified()
function.
Func FrameFlag(frm%|frm$|frm%[], flag%{, set%});

frm% Frame number or a negative code as follows:
-1 All frames in the file.
-2 The current frame.
-3 Only tagged frames.
-6 Only untagged frames.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

flag% The flag number (1..32). For CFS files not created by Signal, only flags 1 to 4
and flag 16 are present, though the other flags can be used while the frame is
held in memory.

set% If non-zero, this sets flag number flag% on in the current frame. If zero, it turns
the flag off. In a file not created by Signal only flags 1,2,3,4 or 16 can be
permanently changed.

Returns 1 if the flag number flag% is set in the last frame specified when the function
was called or zero if not. Returns -1 if no frames are found to match the
specification.

See also: FrameComment$(), FrameState(), FrameTag(), FrameUserVar()

This function reads a CFS frame variable of integer type from the current frame.
Func FrameGetIntVar(name$ {&nVar%{, &units${, &nType%}}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
nType% If present this returns a code for the CFS type of an integer variable:
 0: INT1, 1: WRD1, 2: INT2, 3: WRD2, 4: INT4:
Returns The function returns the value of the variable if the operation was a success,

otherwise zero.
See also: FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetRealVar(),
FrameGetStrVar$(), FrameVarCount(),FrameVarInfo()

FrameFlag()

FrameGetIntVar()

FrameGetRealVar() Alphabetical command reference FrameGetStrVar$()

5-123

This function reads a CFS frame variable of real type from the current frame.
Func FrameGetRealVar(name$ {&nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
Returns The function returns the value of the variable if the operation was a success,

otherwise zero.
See also: FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

This function reads a CFS frame variable of string type from the current frame.
Func FrameGetStrVar$(name$ {&nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every
character including spaces must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error
code.

units$ If present this returns the units for the variable.
Returns The function returns the string contents of the variable if the operation was a

success, otherwise an empty string.
See also: FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameVarCount(), FrameVarInfo()

FrameGetRealVar()

FrameGetStrVar$()

FrameList() The Signal script language FrameMean()

5-124

This function generates an array of selected frame numbers from the current view.
Func FrameList(list%[], sFrm%{, eFrm%{,mode%}});
Func FrameList(list%[], frm$|frm%[]{,mode%});

list% An integer array to fill with frame numbers. The first element of the array,
list%[0], is set to the number of frames returned, and the remaining elements
in the array are frame numbers. If the array is too short, enough frames are
returned to fill the array.

sFrm% First frame to include. This option returns a range of frames. sFrm% can also be
a negative code as follows:
-1 All frames in the file are included.
-2 The current frame.
-3 Frames must be tagged.
-6 Frames must be untagged.

eFrm% Last frame to include. If this is -1 the last frame number in the data file is used.
This argument is ignored if sFrm% is a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each
frame in the range, list or specification. If mode% is absent all frames are
included. The modes are:
0-n Frames must have a state matching the value of mode%.
-1 All frames in the range list are included.
-2 Only the current frame in the view is included.
-3 Frames must be tagged.
-6 Frames must be untagged.

Returns The number of frames that would be returned if the array was of unlimited
length or 0 if the view is not a data view.

See also: FrameState(), FrameTag(), FrameUserVar(),
ExportFrameList(), ProcessFrames()

This command turns the frame mean flag on or off or gets the setting of the mean flag for
the specified frame or frame type.
Func FrameMean(frm%|frm$|frm%[]{, on%});

frm% One frame number or a negative code as follows:
-1 All frames in the file.
-2 The current frame.
-3 All tagged frames.
-6 All untagged frames.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

on% A value of 1 marks the frame as a mean, zero marks it as a total.
Returns 1 if the last frame specified was a mean when the function was called or zero if

not. Returns -1 if no frames are found to match the specification.
See also: FrameComment$(), FrameFlag(), FrameState(), FrameUserVar(),

Sweeps()

FrameList()

FrameMean()

FrameSave() Alphabetical command reference FrameState()

5-125

This command saves changed frame data in a file view back into the file, bypassing the
usual interactive process controlled by the preferences dialog. It can also be used to
discard changes to ensure that the user is not promped to save them. This command can
only be used on frames already present on disk; appended frames and memory view
frames will be saved as part of FileSave or FileClose. This function will fail with a
run-time error if used to save changes with read-only data, you can check for read-only
data using the Modified() function.
Func FrameSave({no%});

no% If present and non-zero, this causes changed data to be discarded by marking the
data as unchanged. If the parameter is not present or set to zero the function
causes the changed data to be written back to the disk file.

Returns Zero or a negative error code.
See also: FileExportAs(), FileSave(), FileClose(), Frame()

This command sets or gets the state code value for the specified frame or frames. This
function will fail with a run-time error if used to change the state with read-only data, you
can check for read-only data using the Modified() function.
Func FrameState(frm%|frm$|frm%[]{, new%});

frm% One frame number or a negative code as follows:
-1 All frames in the file
-2 The current frame
-3 All tagged frames
-6 All untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

new% If present this sets the state stored with each frame specified. For values above 9
this is only effective in a file created by Signal.

Returns The state of the last frame specified when the function was called. Returns -1 if
no frames are found to match the specification.

See also: FrameComment$(), FrameFlag(), FrameTag(), FrameUserVar()

FrameSave()

FrameState()

FrameTag() The Signal script language FrameVarCount()

5-126

This command turns the frame tag on or off, or gets the setting of the tag, for the
specified frame or frame type. This function will fail with a run-time error if used to
change the tag with read-only data, you can check for read-only data using the
Modified() function.
Func FrameTag(frm%|frm$|frm%[]{, on%});

frm% One frame number or a negative code as follows:
-1 All frames in the file.
-2 The current frame
-3 All tagged frames
-6 All untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

on% A value of 1 tags the frame, zero untags it.
Returns 1 if the last frame specified was tagged when the function was called or zero if

not. Returns -1 if no frames are found to match the specification.
See also: FrameComment$(), FrameFlag(), FrameState(), FrameUserVar()

This command gets or sets the value one of the user variables stored with the current
frame. Frame user variables are a subset of the frame variables in a file that can be both
read and changed by the script language. There are sixteen of them, and they are all
floating point values. Signal makes use of the user frame variables for various purposes,
for example to store information about the setup of an auxiliary states device, so you
should be very cautious about changing any user frame variable values. In particular you
should check that the name of the user variable is ‘UserN’, where n is 1 to 16, to make
sure that Signal is not using it. The first user variable is frame variable 5. This function
will fail with a run-time error if used to change a user variable with read-only data, you
can check for read-only data using the Modified() function.
Func FrameUserVar(n%{, val});

n% The user variable number, between 1 and 16.
val If present this is the new value for user variable number n.
Returns The value of frame user variable number n before the call.
See also: FrameComment$(), FrameFlag(), FrameState(), FrameTag(),

FrameGetRealVar(), FrameGetIntVar(), FrameGetStrVar$()

This function counts CFS frame variables in the data file. Frame variables are extra
values attached to each frame in a CFS data file. These are used by Signal for various
purposes, for example to hold the frame state and absolute start time. Some of the frame
variable are user variables and can be both read and written-to. A Signal script can read
the values of the other frame variables but is not allowed to change them.
Func FrameVarCount();

Returns The number of frame variables in the data file associated with this view.
See also: FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarInfo()

FrameTag()

FrameUserVar()

FrameVarCount()

FrameVarInfo() Alphabetical command reference FrontView()

5-127

This function reads the name and type of a CFS frame variable. Frame variables are extra
values attached to each frame in a CFS data file. These are used by Signal for various
purposes, for example to hold the frame state and absolute start time. Some of the frame
variable are user variables and can be both read and written-to. A Signal script can read
the values of the other frame variables but is not allowed to change them.
Func FrameVarInfo(nVar%, &name${, units});

nVar% This is the variable number for which information is required. The first frame
variable is number zero, the first user variable is number 5.

name$ This is returned holding the name of the variable, which can be used in the
commands for reading the frame variable values.

units$ Optional, this is returned holding the units for the variable.
Returns The function returns the type of the variable or -1 if the variable was not found

or is of unknown type. The variable type codes are as follows:
 0 An integer variable which can be read using FrameGetIntVar().
 1 A floating point variable which can be read using FrameGetRealVar().
 2 A string variable which can be read using FrameGetStrVar$().
See also: FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(),

FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(),
FrameUserVar()

This command is used to set the view that is nearest to the top and also makes it the
current view. It is the view that would have the focus if all dialogs were removed. You
can use this to find out the front view, or to set it. When a view becomes the front view, it
is moved to the front unless it is already there. If an invisible or iconised view is made the
front view, the view is made visible automatically (equivalent to WindowVisible(1)).
Care should be taken if using this function in an idle routine for a toolbar, as calling it
repeatedly will prevent the toolbar buttons from being pressed!
Func FrontView({vh%});

vh% Either 0 or omitted to return the front view handle, the handle of the view to be
set, or -n, meaning the nth duplicate of the data view associated with the current
view.

Returns 0 if there are no visible views, -1 if the view handle passed is not a valid view
handle, otherwise it returns the view handle of the view that was at the front.

See also: View(), Window(), WindowVisible(), FocusHandle()

FrameVarInfo()

FrontView()

GammaP() The Signal script language GammaQ()

5-128

This is the incomplete gamma function P(a, x). It is defined mathematically as:

P(a, x) = 1/Γ(a) ∫
0

x

e-tt a-1dt

Γ(a) is the gamma function described under LnGamma(). From the incomplete gamma
function is obtained the error function, the cumulative Poisson probability function and
the Chi-squared probability function.

The error function erf(x) = 2/√π ∫
0

x

e-t2dt = GammaP(0.5, x*x)

The cumulative Poisson probability function relates to a Poisson process of random
events and is the probability that, given an expected number of events r in a given time
period, the actual number was greater than or equal to n. This turns out to be
GammaP(n,r). Also, the probability that there are less than n events is GammaQ(n,r)
(described below).

The Chi-squared probability function is useful where we are fitting a model to data.
Given a fitting function that fits the data with n degrees of freedom (if you have nData
data points and nCoef coefficients you usually have nData-nCoef degrees of freedom),
and given that the errors in the data points are normally distributed, the probability of a
Chi-squared value less than chisq is GammaP(n/2, chisq/2). Similarly, the
probability of a chisq value at least as large as chisq is GammaQ(n/2, chisq/2). So,
if you know the chi-squared value from a fitting exercise, you can ask "What is the
probability of getting this value (or a greater one) given that my model fits the data?" If
the probability is very small, it is likely that your model does not fit the data, or your fit
has not converged to the correct solution.
Func GammaP(a, x);

a This must be positive, it is a fatal error if it is not.

x This must be positive, it is a fatal error if it is not.
Returns The incomplete Gamma function.

The complement of GammaP(); GammaQ(a,x) is 1.0-GammaP(a,x).
Func GammaQ(a, x);

a This must be positive, it is a fatal error if it is not.

x This must be positive, it is a fatal error if it is not.
Returns The complement of the incomplete Gamma function.

GammaP()

GammaQ()

Grid() Alphabetical command reference HCursorChan()

5-129

This function turns the background grid on and off for the current time, result or XY view
and returns the state of the grid. The grid is a mesh of lines that follow the big and small
ticks on the x and y axes that is drawn on top of the data view background.
Func Grid({on%});

on% Optional, sets the grid state. Omit or set -1 for no change, 0 = no grid, 1 = both x
and y grid, 2=x grid only, 3=y grid only.

Returns The state of the grid at the time of the call as 0 to 3 or a negative error code.
Changes made by this function do not cause an immediate redraw.

This function returns and optionally sets the gutter visible state for text views; the gutter
is the area on the left of a window where bookmarks and script break points appear. If
you set a large font size you may wish to hide the gutter.
Func Gutter({show%});

show% Optional, sets the gutter state. 0 = hide, 1 = show, -1 or omitted for no change.
Returns The gutter state at the time of the call: 0 = hidden, 1=visible.

This function returns the y axis position of a horizontal cursor, and optionally sets a new
position. You can get and set positions of cursors attached to invisible channels or
channels that have no y axis.
Func HCursor(num%{, where{, chan%}});

num% The cursor to use. It is an error to attempt this operation on an unknown cursor.
where If this parameter is given it sets the new y axis position of the cursor.
chan% If this parameter is given, it sets the channel number (1 to n).
Returns The function returns the y axis position of the cursor at the time of the call, or

zero for a non-existent cursor number.
See also: Cursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This function returns the channel number that a particular horizontal cursor is currently
attached to.
Func HCursorChan(num%);

num% The horizontal cursor number from 1 to n.
Returns It returns the channel number that the cursor is attached to, or 0 if this cursor is

not attached to any channel or if the channel number is out of the allowed range.
See also: HCursor(), HCursorDelete(), HCursorLabel(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

Grid()

Gutter()

HCursor()

HCursorChan()

HCursorDelete() The Signal script language HCursorLabelPos()

5-130

This deletes the designated horizontal cursor. It is not an error to delete an unknown
cursor, it just has no effect.
Func HCursorDelete({num%});

num% The number of the cursor to delete from 1 to n or -1 to delete all horizontal
cursors. If this is omitted, the highest numbered cursor is deleted.

Returns The number of the deleted cursor or 0 if no cursor was deleted.
See also: CursorDelete(), HCursor(), HCursorChan(), HCursorLabel(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This function tests if a given horizontal cursor exists at the time of the call.
Func HCursorExists(num%)

num% The cursor number, from 1 to n.
Returns 1 if the cursor exists, 0 if it does not.
See also: HCursor(), HCursorDelete(), CursorExists()

This command sets (or gets) the horizontal cursor label style for the current view.
Func HCursorLabel({style%{, num%{, form$}}})

style% The cursor style. Cursors can be annotated with a position or the cursor number
or a user-defined style. The styles are: 0=Neither, 1=Position, 2=Number,
3=Both, 4=User-defined. Unknown styles cause no change.

num% The cursor to use, set to 0 or omit for all horizontal cursors, 1 to n for a single
cursor.

form$ The label string for style 4. The string has replaceable parameters %p, and %n for
position and number. We also allow %w.dp where w and d are numbers that set
the field width and decimal places. You cannot read back a label format string.

Returns The previous cursor style. If you omit style%, the style does not change.
See also: CursorLabel(), HCursor(), HCursorChan(), HCursorDelete(),

HCursorLabelPos(), HCursorNew(), HCursorRenumber()

This lets you set and read the position of the horizontal cursor label.
Func HCursorLabelPos(num%{, pos});

num% The cursor number from 1 to n. If the cursor does not exist the function does
nothing and returns -1.

pos If present, the command sets the position. The position is a percentage of the
distance from the left of the cursor at which to position the value. Out of range
values are set to the appropriate limit.

Returns The cursor position before any change was made, or -1 if the cursor does not
exist.

See also: CursorLabelPos(), HCursor(), HCursorChan(),
HCursorDelete(), HCursorLabel(), HCursorNew(),
HCursorRenumber()

HCursorDelete()

HCursorExists()

HCursorLabel()

HCursorLabelPos()

HCursorNew() Alphabetical command reference Help()

5-131

This function creates a new horizontal cursor and assigns it to a channel. You can create
up to 10 horizontal cursors, which can subsequently be moved to any channel.
Func HCursorNew(chan%{, where});

chan% A channel number (1 to n) for the new cursor. If the channel is hidden the cursor
is hidden.

where An optional argument setting the cursor position. If this is omitted, the cursor is
placed in the middle of the y axis or at zero if there is no y axis.

Returns It returns the horizontal cursor number or 0 if all cursors are in use.
See also: CursorNew(), HCursor(), HCursorChan(), HCursorDelete(),

HCursorLabel(), HCursorLabelPos(), HCursorRenumber()

This command renumbers the cursors starting with channel 1. Cursors in each channel are
numbered from bottom to top. There are no arguments.
Func HCursorRenumber();

Returns The number of cursors found in the view.
See also: CursorRenumber(), HCursor(), HCursorChan(),

HCursorDelete(), HCursorLabel(), HCursorLabelPos(),
HCursorNew()

This function displays a help file page. Signal uses the standard Windows help system.
Func Help(topic%|topic${, file$});

topic% A numeric code for the help topic. These codes are assigned by the help system
author. Code 0 changes the default help file to file$.

topic$ A string holding a help topic keyword or phrase to look-up.
file$ If this is omitted, or the string is empty, the standard Signal help file is used. If

this holds a filename, this filename is used as the help file.
Returns 1 if the help topic was found, 0 if it was not, -1 if the help file was not found.
The Windows SDK has some help-authoring tools, and third-party tools are available.

HCursorNew()

HCursorRenumber()

Help()

Help() The Signal script language Help()

5-132

The IIRxxxx() script commands make it easy for you to generate and apply IIR
(Infinite Impulse Response) filters to data held in arrays of real numbers. The data values
are assumed to be a sampled sequence, spaced at equal intervals. You can create digital
filters that are modelled on Butterworth, Bessel, Chebyshev type 1 and Chebyshev type 2
highpass, lowpass, bandstop and bandpass filters. You can also create digital resonators
and notch filters. The commands are:
IIRBp() Bandpass filter IIRHp() Highpass filter IIRNotch() Notch filter
IIRBs() Bandstop filter IIRLp() Lowpass filter IIRReson() Resonator

The algorithms used to create the filters are based on the mkfilter program, written by
Tony Fisher of York University. The basic idea is to position the s-plane poles and zeros
for a normalised low-pass filter of the desired characteristic and order, then to transform
the filter to the desired type.

The theory of IIR filters is beyond the scope of this manual; a classic reference work is
Theory and Application of Digital Signal Processing by Rabiner and Gold, published in
1975. The IIR filters generated by these commands can be modelled by:

 N M
y[n] = Σ ai x[n-i]/G + Σ bi y[n-i]
 i=0 i=1

where the x[n] are the sequence of input data values, the y[n] are the sequence of output
values, the ai and the bi are the filter coefficients (some of which may be zero) and G is
the filter gain. Although G could be incorporated into the ai, for computational reasons
we keep it separate. In the filters designed by the IIRxxxx() commands, N=M and is the
order of the filter for lowpass and highpass designs, twice the order for bandpass and
bandstop designs, and is 2 for resonators and notch filters. The order of these filters
determines the sharpness of the filter cut-off: the higher the order, the sharper the cut-off.

When compared to FIR filters, IIR filters have advantages:
• They can generate much steeper edges and narrower notches for the same

computational effort.
• The filters are causal, which means that the filter output is only affected by current

and previous data. If you run a step change through FIR filters you typically see
ringing before the step as well as after it.

However, they also have disadvantages:
• FIR filters are unconditionally stable. IIR filters are prone to stability problems if

very narrow features (<0.0001 of the sample rate) are used. Problems increase at
high filter orders. Filters report if they are likely to be unstable.

• They impose a group delay on the data that varies with frequency. This means that
they do not preserve the shape of a waveform, in particular, the positions of peaks
and troughs will change.

You can remedy the group delay problem by running a filter forwards, then backwards,
through the data. However, this makes the filter non-causal, removing one of the
advantages of using an IIR filter. The commands allow you to check the impulse, step,
frequency and phase response of the filters, and we recommend that you do so before
using a generated filter for a critical purpose.

The lowpass, highpass, bandpass and bandstop filters generate digital filters modelled on
four types of analogue filter: Butterworth, Bessel, Chebyshev type 1 and Chebyshev type
2. The resulting digital filters are not identical to the analogue filters as the mapping from
the analogue to the digital domain distorts the frequency scale. In many cases, this
improves the performance of the digital filter over the analogue counterpart.

IIR commands

IIR and FIR filters

Help() Alphabetical command reference Help()

5-133

You can generate notch and resonator filters plus lowpass, highpass, bandpass and
bandstop filters modelled on Butterworth, Bessel and Chebyshev analogue filters. The
examples for Butterworth, Bessel and Chebyshev filters show a fifth order lowpass filter
with the edge set to 0.2 with inset examples of high-pass, bandpass and bandstop filters.

These have a maximally flat pass band, but pay for
this by not having the steepest possible transition
between the pass band and the stop band. The
example shows a low pass fifth order Butterworth
filter with a cut-off frequency set to 0.2 of the sample
rate. The x axis is frequency, the y axis is the filter
gain. Both axes are linear.

An analogue Bessel filter has the property that the
group delay is maximally flat, which means that it
tends to preserve the shape of a signal passed through
it. This leads to filters with a gentle cut-off. When
digitised, the constant group delay property is
compromised; the higher the filter order, the worse
the group delay. The example shows a fifth order low
pass filter at 0.2 of the sample rate.

Filters of this type are based on Chebyshev
polynomials and have the fastest transition between
the pass band and the stop band for a given ripple in
the pass band and no ripples in the stop band. In the
example, the ripple has been set to 3 dB, to match the
other examples, though you would normally choose
less ripple than this.

Filters of this type are defined by the start of the stop
band and the stop band ripple. The filter has the
fastest transition between the pass and stop bands
given the stop band ripple and no ripple in the pass
band. The example shows a fifth order filter with a
40 dB stop band ripple and with the stop band
starting at 0.2 of the sample rate.

Notch filters are defined by a centre frequency and a
q factor. q is the width of the stop band at the –3 dB
point divided by the centre frequency: the higher the
q, the narrower the notch. Notch filters are often used
to remove mains hum, but if you do this you will
likely need to set notches at the first few odd
harmonics of the mains frequency. The example has
a centre frequency of 0.2 and a q of 10, so the width
the –3 dB point is 0.02 of the sample rate.

A resonator is the inverse of a notch. It is defined in
terms of a centre frequency and a q factor. q is the
width of the pass band at the –3 dB point divided by
the centre frequency: the higher the q, the narrower
the resonance. Resonators are sometimes used as
alternatives to a narrow bandpass filter. The example
shows a centre frequency of 0.2 of the sample rate
and a q of 10, so the width of the pass band at the –3
dB point is 0.02 of the sample rate.

Filter types

Butterworth

Bessel

Chebyshev type 1

Chebyshev type 2

Notch

Resonator

Help() The Signal script language Help()

5-134

The IIRBp(), IIRBs(), IIRLp(), IIRHp(), IIRReson() and IIRNotch()
commands are all independent and they each remember the last filter you created and the
filter state after the last filtering operation. They all support the following variants:

You can use a command variant of this form to return filter information:
Func IIRxxxx(get%{, arr[]{[]}});

get% The form of the command using this argument is used to read back information
about the last filter created with this command. The argument can be:
1 arr[] is set to the impulse response of the filter. The return value is the

magnitude of the largest value in arr[]. For example, if the impulse
response ranged in values from –0.5 to 0.3, 0.5 would be returned.

2 arr[] is set to the step response of the filter. The return value is the
magnitude of the largest value in arr[].

3 arr[][] is a matrix with 2 columns and r rows, arr[r][2]. The frequency
response is returned as complex numbers in the columns; arr[][0] holds
the real part and arr[][1] the imaginary part. The first row corresponds to
a frequency of 0; the final row corresponds to a frequency of half the
sampling rate. The frequencies are spaced as 0.5/(r-1). The return value is
the maximum magnitude of the returned frequency response.

4 The same as 3 except that the results are returned as the amplitude response
in arr[][0] and the phase response in arr[][1]. If the real and imaginary
parts of the response are r and i, arr[][0] holds sqrt(r*r+i*i) and
arr[][1] holds atan(i, r). The return value is the maximum returned
amplitude response.

5 Returns the number of filter coefficients (N+1) to apply to the filter input
values and fills in arr[] with these values. These correspond to the ai in the
filter expression. However, we return the values in reverse order as this
makes them easier to use as a dot product with old values. N is the filter
order for low pass and high pass, twice the order for band pass and band
stop, and 2 for resonators and notch filters.

6 Returns the number of filter coefficients (N+1) to apply to the filter output
values and fills in arr[] with these values. These correspond to the bi in the
filter expression. We return the values in reverse order to match the ai. The
final value is always –1.0 (corresponding to b0, which is not used when
implementing the filter).

7 Returns the filter gain G.
8 arr[][] is a matrix of N (see get% = 5) rows and 2 columns. The return

value is the number of poles in the s-plane. arr is filled in with the complex
poles with the real part in arr[][0] and the imaginary part in arr[][1].

9 The same as 8, but returning the s-plane zeros.
10 The same as 8, but returning the z-plane poles.
11 The same as 8, but returning the z-plane zeros.
12 Returns a measure of filter stability, being the distance of the nearest pole to

the unit circle. It is our experience that values greater than 1e-12 generate
plausible filters

This command applies the current filter to an array of equally spaced data. The variant
with a single argument applies the filter forward through the array. With two arguments,
and the second argument negative, the filter is applied backwards. Running the filter
forwards introduces a phase shift into the output. Running the filter a second time, but
backwards, cancels the phase shift at the expense of a non-causal filter.
Func IIRxxxx(data[]{, flags%{, save[]}});

data An array of data to filter.

Common command
variants

Get filter information

Apply existing filter

IIRApply() Alphabetical command reference IIRBp()

5-135

flags% Optional, taken as 0 if omitted. Add:
1 Filter backwards. IIR filters introduce phase shifts; running a filter forwards

then backwards cancels the phase shift at the expense of a non-causal filter.
2 To treat data[] as a continuation of the last filtering operation (only do this

if it really is a continuation, otherwise the results are nonsense). The filter
state is saved separately for each filter command, but if you want to interleave
use of the the same command between multiple data streams, you must use the
save argument. If you apply the filter backwards, you must present the data
blocks backwards.

save[] Optional. This is a real array that preserves the state of the IIR filter so that you
can interleave continuous filtering with the same filter between multiple data
streams. The minimum size of the array depends on the filter type and order. It
is 2*order+2 for IIRLp() and IIRHp(), 6 for IIRReson() and IIRNotch()
and 4*order+2 for IIRBp() and IIRBs().

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRLp(), IIRNotch(),
IIRReson()

Applies a filter in the IIR filter bank to a waveform channel in the current time view.
Func IIRApply(index%, cSpc, frm%|frm%[]|frm$);

index% Index of the filter in the filter bank to apply in the range -1 to 11
cSpc A channel specifier for the channels to filter. See the Script language syntax

chapter for a definition of channel specifiers.
frm% Frame number or a negative code as follows:

-1 All frames in the file
-2 The current frame
-3 Only tagged frames
-6 Only untagged frames

frm$ A frame specification string. This option specifies a list of frames using a
string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The
first element holds the number of frames in the list.

Returns Zero or a negative error code. A negative error code is also returned if the user
clicks Cancel from the progress bar during a long filtering operation.

See also: IIRComment$(), IIRCreate(), IIRInfo(), IIRName$()

This function creates and applies IIR (Infinite Impulse Response) band pass filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRBp(data[]|0, lo, hi{, order%{, type%{, ripple}}});
Func IIRBp(data[]{, flags%{, save[]}});
Func IIRBp(get%{, arr[]{[]}});

data An array of data to filter. If this is the only argument, or if there are 2 arguments
and the second is negative, the last created band pass filter is used. Otherwise,
the filter defined by the remaining arguments is used. Replace data with 0 to
create a filter. Filters run forward through data unless there are 2 arguments
and the second is negative, when the filter runs backwards.

lo The low corner frequency of the band stop filter. This is expressed as a fraction
of the sample rate and is limited to the range 0.000001 to 0.499998. For

IIRApply()

IIRBp()

IIRBs() The Signal script language IIRBs()

5-136

Chebyshev type 2 filters, this is the point at which the attenuation reaches the
ripple value, for all other filters this sets the –3 dB point.

hi The high corner frequency of the band pass filter. This is expressed as a fraction
of the sampling rate and is limited to the range lo+0.000001 to 0.499999. For
Chebyshev type 2 filters, this is the point at which the attenuation reaches the
ripple value, for all other filters this sets the –3 dB point.

order% The order of the lowpass filter used as the basis of the design, in the range 1 to
10. If omitted, 2 is used. The order of the filter implemented is order%*2. High
orders (order% > 7) and narrow bands may cause inaccuracy in the filter.
Narrow means that (hi-lo)/sqrt(lo*hi) is less than 0.2, for example.

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev
type 2. The default value is 0 for a Butterworth filter.

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or
the desired minimum cut in the stop bands for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success or 1 if a created filter has stability less
than 1e-12. The other command forms have their return values included in the
description of the get% argument or return 0.

See also: FIRMake(), IIRBs(), IIRHp(), IIRLp(), IIRNotch(), IIRReson()

This function creates and applies IIR (Infinite Impulse Response) band stop filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRBs(data[]|0, lo, hi{, order%{, type%{, ripple}}});
Func IIRBs(data[]{, flags%{, save[]}});
Func IIRBs(get%{, arr[]{[]}});

data An array of data to filter. If this is the only argument or if there are 2 arguments
and the second is negative, the last created filter is used. Otherwise, the filter
defined by the remaining arguments is used. Replace data with 0 to create a
filter. Filters run forward through data unless there are 2 arguments and the
second is negative, when the filter runs backwards.

lo The low corner frequency of the band pass filter. This is expressed as a fraction
of the sample rate and is limited to the range 0.000001 to 0.499998. For
Chebyshev filters, this is the point at which the attenuation reaches the ripple
value, for other filters this sets the –3 dB point.

hi The high corner frequency of the band pass filter. This is expressed as a fraction
of the sampling rate and is limited to the range lo+0.000001 to 0.499999. For
Chebyshev type 2 filters, this is the point at which the attenuation reaches the
ripple value, for all other filters this sets the –3 dB point.

order% The order of the lowpass filter used as the basis of the design, in the range 1 to
10. If omitted, 2 is used. The order of the filter implemented is order%*2. High
orders and narrow pass bands may lose numerical accuracy in the filter output.

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev
type 2. The default value is 0 for a Butterworth filter.

IIRBs()

IIRComment$() Alphabetical command reference IIRHp()

5-137

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or
the desired minimum cut in the stop band for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success or 1 if a created filter has stability less
than 1e-12. The other command forms have their return values included in the
description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRHp(), IIRLp(), IIRNotch(), IIRReson()

This function gets and sets the comment associated with an IIR filter in the filter bank.
Func IIRComment$(index%{, new$});

index% Index of the filter in the filter bank to use in the range -1 to 11.
new$ If present, sets the new comment.
Returns The previous comment for the filter at the index.
See also: IIRApply(), IIRInfo(), IIRName$()

This creates an IIR filter description and adds it to the filter bank.
Func IIRCreate(index%, type%, model%, order%, fr1{,fr2{,extra}});

index% Index of the filter in the filter bank in the range -1 to 11.
type% Sets the filter type as: 0=Low pass, 1=High pass, 2=Band pass, 3=Band stop.
model% Sets the filter model: 0=Butterworth, 1=Bessel, 2=Chebyshev type 1,

3=Chebyshev type 2, 4=Resonator.
order% Sets the filter order in the range 1-10. Resonators always set an order of 2.
fr1 Sets the corner frequency for low pass, high pass filters, the centre frequency for

resonators, and the low corner frequency for band pass and band stop filters.
fr2 Sets the upper corner frequency for band pass/stop filters, otherwise ignored.
extra Sets the ripple for Chebyshev filters in the range 0.01 to 1000 and the Q factor

for resonators in the range 1 to 10000.
Returns 0 if OK or a negative error code if the operation failed.
See also: IIRApply(), IIRComment$(), IIRCreate(), IIRName$()

This function creates and applies IIR (Infinite Impulse Response) high pass filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRHp(data[]|0, edge{, order%{, type%{, ripple}}});
Func IIRHp(data[]{, flags%{, save[]}});
Func IIRHp(get%{, arr[]{[]}});

data An array of data to filter. If this is the only argument, or if there are 2 arguments
and the second is negative, the last created high pass filter is used. Otherwise,
the filter defined by the remaining arguments is used. Replace data with 0 to

IIRComment$()

IIRCreate()

IIRHp()

IIRInfo() The Signal script language IIRLp()

5-138

create a filter. Filters run forward through data unless there are 2 arguments
and the second is negative, when the filter runs backwards.

edge The corner frequency of the high pass filter. This is expressed as a fraction of
the sample rate and is limited to the range 0.000001 to 0.499999. For Chebyshev
filters, this is the point at which the attenuation reaches the ripple value, for
other filters this sets the –3 dB point.

order% The order of the filter in the range 1 to 10. If omitted, 2 is used.
type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev

type 2. The default value is 0 for a Butterworth filter.
ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or

the desired minimum cut in the stop bands for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success or 1 if a created filter has stability less
than 1e-12. The other command forms have their return values included in the
description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRLp(), IIRNotch(), IIRReson()

Retrieves information about an IIR filter in the bank.
Func IIRInfo(index%, &model%, &order%, &fr1{, &fr2{, &extra}});

index% Index of the filter in the filter bank in the range -1 to 11.
model% Returned as the filter model: 0=Butterworth, 1=Bessel, 2=Chebyshev type 1,

3=Chebyshev type 2, 4=Resonator.
order% Returned as the filter order in the range 1-10. Resonators always return 2.
fr1 Returned as the corner frequency for low and high pass filters, as the low corner

for band pass and band stop filters and as the centre frequency for resonators.
fr2 Returned as the upper corner frequency for band pass and band stop filters,

otherwise set the same as fr1.
extra Returned as the ripple for Chebyshev filters and as the Q factor for resonators.
Returns The type of the filter as 0=Low pass, 1=High pass, 2=Band pass, 3=Band stop.
See also: IIRApply(), IIRComment$(), IIRCreate(), IIRName$()

This function creates and applies IIR (Infinite Impulse Response) low pass filters to
arrays of data. You can run the filter forwards or backwards through the data.
Func IIRLp(data[]|0, edge{, order%{, type%{, ripple}}});
Func IIRLp(data[]{, flags%{, save[]}});
Func IIRLp(get%{, arr[]{[]}});

data An array of data to filter. If this is the only argument, or if there are 2 arguments
and the second is negative, the last created low pass filter is used. Otherwise, the
filter defined by the remaining arguments is used. Replace data with 0 to create
a filter. Filters run forward through data unless there are 2 arguments and the
second is negative, when the filter runs backwards.

IIRInfo()

IIRLp()

IIRName$() Alphabetical command reference IIRNotch()

5-139

edge The corner frequency of the low pass filter. This is expressed as a fraction of the
sample rate and is limited to the range 0.000001 to 0.499999. For Chebyshev
filters, this is the point at which the attenuation reaches the ripple value, for
other filters this sets the –3 dB point.

order% The order of the filter in the range 1 to 10. If omitted, 2 is used.
type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev

type 2. The default value is 0 for a Butterworth filter.
ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or

the desired minimum cut in the stop bands for Chebyshev type 2 filters (default
40 dB). The value here must be greater than 0.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success or 1 if a created filter has stability less
than 1e-12. The other command forms have their return values included in the
description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRNotch(), IIRReson()

This function gets and/or sets the name of an IIR filter in the filter bank.
Func IIRName$(index%{, new$});

index% Index of the filter in the filter bank to use in the range -1 to 11.
new$ If present, sets the new name.
Returns The previous name of the filter at that index.
See also: IIRApply(), IIRComment$(), IIRInfo()

This function creates and applies IIR (Infinite Impulse Response) notch filters to arrays
of data. You can run the filter forwards or backwards through the data. The gain of the
notch filter is zero at the notch frequency and 1 at low and high frequencies.
Func IIRNotch(data[]|0, fr, q);
Func IIRNotch(data[]{, flags%{, save[]}});
Func IIRNotch(get%{, arr[]{[]}});

data An array of data to filter. If this is the only argument, or if there are 2 arguments
and the second is negative, the last created low pass filter is used. Otherwise, the
filter defined by the remaining arguments is used. Replace data with 0 to create
a filter. Filters run forward through data unless there are 2 arguments and the
second is negative, when the filter runs backwards.

fr The frequency of the notch. This is expressed as a fraction of the sample rate
and is limited to the range 0.000001 to 0.499999.

q The desired q factor for the notch filter. If the two –3 dB points either side of the
notch are at frequencies Flo and Fhi, q is given by fr/(Fhi-Flo). The higher
the q, the narrower the notch. Try 100 as a starting point.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

IIRName$()

IIRNotch()

IIRReson() The Signal script language Input()

5-140

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success or 1 if a created filter has stability less
than 1e-12. The other command forms have their return values included in the
description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRLp(), IIRReson()

This function creates and applies IIR (Infinite Impulse Response) resonator filters to
arrays of data. You can run the filter forwards or backwards through the data. The gain of
the filter is 1 at the resonator frequency and zero at low and high frequencies.
Func IIRReson(data[]|0, fr, q);
Func IIRReson(data[]{, flags%{, save[]}});
Func IIRReson(get%{, arr[]{[]}});

data An array of data to filter. If this is the only argument, or if there are 2 arguments
and the second is negative, the last created low pass filter is used. Otherwise, the
filter defined by the remaining arguments is used. Replace data with 0 to create
a filter. Filters run forward through data unless there are 2 arguments and the
second is negative, when the filter runs backwards.

fr The centre frequency of the resonator. This is expressed as a fraction of the
sample rate and is limited to the range 0.000001 to 0.499999.

q The desired q factor for the resonator. If the two –3 dB points either side of the
resonance are at frequencies Flo and Fhi, q is given by fr/(Fhi-Flo). The
higher the q, the narrower the resonance. Try 100 as a starting point.

get% The command variant with this argument returns information about the last filter
you created with this command. See the discussion of IIR commands for details.

arr This is an option vector or matrix used to return information about the last filter
you created with this command. See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that
apply or create filters return 0 for success or 1 if a created filter has stability less
than 1e-12. The other command forms have their return values included in the
description of the get% argument or return 0.

See also: FIRMake(), IIRBp(), IIRBs(), IIRHp(), IIRLp(), IIRNotch()

This function reads a number from the user. It opens a window with a message, and
displays the initial value of a variable. You can limit the range of the result.
Func Input(text$, val{, low{, high{, pre%}}});

text$ A string holding a prompt for the user. If the string contains a vertical bar
character (|), the string before the bar will be used to set the title of the window.

val The initial value to be displayed for editing. If limits are given, and the initial
value is outside the limits, it is set to the nearer limit.

low An optional low limit for the result. If low>=high, the limits are ignored.
high An optional high limit for the result.
pre% If present this sets the number of significant figures to use to represent the

number, in the range 6 (the default) to 15.
Returns The value typed in. The function always returns a value. If an out-of-range value

is entered, the function warns the user and a correct value must be given. When
parsing the input, leading white space is ignored and the number interpretation
stops at the first non-numeric character or the end of the string.

See also: DlgReal(), DlgInteger(), Input$()

IIRReson()

Input()

Input$() Alphabetical command reference InStr()

5-141

This function reads user input into a string variable. It opens a window with a message,
and displays a string. You can also limit the range of acceptable characters.
Func Input$(text$, edit${, maxSz%{, legal$}});

text$ A string holding a prompt for the user. If the string contains a vertical bar
character (|), the string before the | sets the title of the window.

edit$ The starting value for the text to edit.
maxSz% Optional, maximum size of the response string.
legal$ A string holding the characters that are acceptable. The starting string is filtered

before display. A hyphen indicates a range of characters. To include a hyphen in
the list, place it first or last in the string. Upper and lower case characters are
distinct. For alphanumeic characters use: "a-zA-Z0-9".

 If this string is omitted, all printing characters are allowed, equivalent to " -~"
(space to tilde). For simple use, the sequence of printing characters is:

 space !"#$%&'()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

 If you use extended or accented characters, the order depends on the system.
Returns The result is the edited string. A blank string is a possible result.
See also: DlgString() ,Input()

This function searches for a string within another string. This function is case sensitive.
Func InStr(text$, find${, index%});

text$ The string to be searched.
find$ The string to look for.
index% If present, the start character index for the search. The first character is index 1.
Returns The index of the first matched character, or 0 if the string is not found.
See also: DelStr$(), LCase$(), Left$(), Mid$(), Right$(), UCase$()

Input$()

InStr()

Interact() The Signal script language Interact()

5-142

This function provides a quick and easy way to interact with a user. Cursors can always
be dragged as we assume that they are one of the main ways of interacting with the data.
You can restrict the user to a single view and limit the menu commands that can be used.
Func Interact(msg$, allow%{, help{, lb1${, lb2${, lb3$...}}}});

msg$ The prompt to display in the tool bar during the operation. If there is not enough
space to display the message and buttons, the message is truncated.

allow% A code that specifies the actions that the user can and cannot take while
interacting with Signal. The code is the sum of possible activities:

 1 User may swap to other applications.
 2 User may change the current window.
 4 User may move and resize windows.
 8 User may use the File menu.
 16 User may use the Edit menu.
 32 User may use the View menu.
 64 User may use the Analysis menu.
 128 User may use the Cursor menu and add cursors.
 256 User may use the Window menu.
 512 User may use the Sample menu.
 1024 User may not double click y axis.
 2048 User may not double click the x axis or scroll it.
 4096 User may not change channel of horizontal cursors.
 8192 User may not change to another frame.

 A value of 0 would restrict the user to inspecting data and positioning cursors in
a single, unmoveable window, but being able to switch frames. A value of 8192
is the same but without changing frames.

help This can be either a number or a string. If it is a number, it is the number of a
help item (if help is supported). If it is a string, it is a help context string. This is
used to set the help information that is presented when the user requests help in
the manner supported on the host machine. Set 0 to accept the default help.

lb1$ These label strings create buttons, from right to left, in the tool bar. If no labels
are given, one label is displayed with the text "OK". The maximum number of
buttons is 17. Buttons can be linked to the keyboard using & and by adding a
vertical bar followed by a key code to the end of the label. You can also set a
tooltip. The format is "Label|code|tip". See the documentation for label$
in the ToolbarSet() command for details.

Returns The number of the button that was pressed. Buttons are numbered in order, so
lb1$ is button 1, lb2$ is button 2 and so on.

With allow% set to 0, all the user could do would be to press a button on the tool bar.
The tool bar would be displayed (if it was not present) when Interact() was called.
When the user presses a button to exit, the tool bar is returned to the state it was in before
Interact was used.

See also: Toolbar()

Interact()

LastTime() Alphabetical command reference Len()

5-143

This function finds the first item on a channel before a particular x axis position.
Func LastTime(chan%, &pos{, &val|code%[]);

chan% The channel number (1 to n) to use for the search.
pos The x axis value to search before. Items at the position are ignored. To start a

backward search that guarantees to iterate through all items, start at
Maxtime(chan%)+1.

 pos is updated to contain the x axis position of the previous item. It is left
unchanged if no more items are found or there is an error.

val This optional parameter returns the waveform value for waveform channels.
code% This optional parameter is only used if the channel is a marker type. This is an

array with at least four elements that is filled in with the marker codes.
Returns The function returns 1 if a data item is found, 0 if there are no more items to be

found or a negative error code.
See also: Maxtime(), Mintime(), NextTime()

This function converts a string into lower case.
Func LCase$(text$);

text$ The string to convert.
Returns A lower-case version of the original string.
See also: UCase$()

This function returns the first n characters of a string.
Func Left$(text$, n);

text$ A string of text.
n The number of characters to extract.
Returns The first n characters, or all the string if it is less than n characters long.
See also: DelStr$(), Mid$(), InStr(), Len(), Right$()

This function returns the length of a string or the size of a one dimensional array.
Func Len(text$);
Func Len(arr[]);

text$ The text string.
arr[] A one dimensional array. It is an error to pass in a two dimensional array.
Returns The length of the string or the array, as an integer.
You can find out the size of each dimension of a two dimensional array as follows:
proc something(arr[][]) 'function passed a 2-d array
var n%, m%;
n% := Len(arr[][0]); 'get size of first dimension
m% := Len(arr[0][]); 'get size of second dimension
return;
end;

LastTime()

LCase$()

Left$()

Len()

LinPred() The Signal script language LinPred()

5-144

Linear prediction can be used to predict future (or past) data values based on a sequence
of data. It can also be used to estimate power spectra using the Maximum Entropy or All
Poles method. The command generates a set of coefficients that when applied to the
previous m points, generate the next predicted point. Some of the explanation for this
command relies on technical knowledge; see the references for more information. The
command has the following variants:
Func LinPred(data[], mMax%{, limit{, out[]{, dir%{, stab%}}}});
Func LinPred(0, out[]{, data[]}); Predict forward
Func LinPred(1, out[]{, data[]}); Predict backwards
Func LinPred(2, stab%); Check stability
Func LinPred(3, coef[]); Get the coefficients
Func LinPred(4, refl[]); Get reflection coefficients
Func LinPred(5, power[], frLo, frHi); Get estimated power spectrum
Func LinPred(6, poles[][]{, fr[]}); Get poles and frequencies
data An array holding the data to be used to form the linear prediction coefficients or

to be used to initialise a prediction based on existing coefficient.
mMax% The maximum order of the prediction, which is the number of previous points to

use to predict each future point. The actual number may be less than this,
depending on the value of the limit argument. You will generally want to use the
smallest value of m that you can; values in the range 5-50 are common. The
value of m must be less than the number of data points and is generally much
less. We have set an upper bound of 1024 on mMax% (this is higher than you are
likely to need).

limit The algorithm to calculate the poles is an iterative procedure. The command
holds an array of residual values that is initialised to the raw data. Each iteration
subtracts data from the residual based on a normalised autocorrelation of the
residual (in the range -1 to 1) at increasing lags, aiming to reduce the residual
array to a list of zeros. We track a number that models the significance of the
remaining data. This number is 1.0 at the start, and is multiplied by (1-ac2) at
each iteration, where ac is the autocorrelation, so the value decreases at each
iteration unless ac is 0. If this value becomes less than limit, the iteration will
stop. So set limit to 0 for no early stopping, setting a small value greater than
1.0e-31 may stop it early. The actual value of m used is returned by the first
command variant.

out An array of output values predicted by the command. When predicting
backwards, the data values are written into the out array so that the first data
item in the array is the last predicted point (the oldest). When predicting
forwards, the first item in the out array is the first predicted point.

dir% Optional argument to the setup command that sets the prediction direction. Set 0
or omit for a forward prediction, 1 for reverse.

stab% The linear prediction coefficients that are generated form a characteristic
polynomial, and the roots of this polynomial are the positions of the poles in the
z-plane. For the resulting filter to be stable (have an output that does not
increase exponentially), the poles must lie inside (corresponding to decaying
sinusoids) or on (corresponding to constant amplitude sinusoids) the unit circle.
You can use this argument to check the stability of the result and to adjust the
pole positions and recompute the coefficients by setting the values:
0 Do nothing to the poles.
1 If a pole lies outside the unit circle, reflect it across the unit circle so that a

growing sinusoid becomes a decaying sinusoid.
2 If a pole lies outside the unit circle, move it onto the unit circle,

corresponding to a constant sinusoid.

LinPred()

LinPred() Alphabetical command reference LinPred()

5-145

3 Move all poles onto the unit circle. This produces an output that neither
grows nor decays with time.

coef An array to be filled in with coefficients. The array can be any size, but only the
points corresponding with coefficients will be set.

refl An array to be filled with reflection coefficients. These values represent the
proportion of the residual that was subtracted at each iteration.

power An array to be filled in with estimated power spectrum components.
frLo A value in the range -0.5 to 0.5, being the fraction of the sampling frequency

that the first bin of power will hold the estimated power spectrum for.
frHi A value in the range -0.5 to 0.5, being the fraction of the sampling frequency

that the last bin of power will hold the estimated power spectrum for.
poles A matrix with the second dimension of size at least 2. poles[n][0] is returned

holding the real component of the nth pole, and poles[n][1] holds the
imaginary component.

fr An array to be filled in with the frequencies that correspond to the pole
positions, in the range -0.5 to 0.5 (fraction of the sampling rate).

Returns The function variant return values are described with each variant, or are 0 if not
described.

Func LinPred(data[], mMax%{, limit{, out[]{, dir%{, stab%}}}});

This command must be used before any other as it calculates the initial set of coefficients.
The command returns the number of coefficients that have been generated (this will be
the same as mMax% if limit is 0). The command can be used to generate predicted data,
or to set up the system for further LinPred() commands. The following example takes
1000 data points from near the start of a waveform channel, predicts the next 100 points
and writes them to a memory channel.

const chan%:=1; 'a waveform channel
var data[1000], out[100], sTime, bsz := BinSize(chan%);
var n% := ChanData(chan%, data, 100*bsz, MaxTime(), sTime);
var m% := LinPred(data, 20, 0, out, 0, 0); 'predict forwards
var mc% := MemChan(9, 0, bsz); 'new RealWave channel
MemSetItem(mc%, 0, sTime + n%*bsz, out[]); 'save the data
ChanShow(mc%); 'display it

The predicted data will not be the same as the actual data that follows the first 1000
points unless the first 1100 points are composed of the sum of constant amplitude
sinusoids. The command forms a mathematical model of the data held in the data[]
array based on the assumption that the spectral components are not changing with time
(the signal is stationary) and that the data is modelled by a set of resonances. Unless you
set stab% to 3, the result will usually decay with time.

Func LinPred(0, out[]{, data[]}); Predict forward
Func LinPred(1, out[]{, data[]}); Predict backwards
These two command versions fill the out[] array with data predicted by the coefficients
established by the setup version of the command. The setup command dir% argument
will have set up the command to generate output that joins up with the original data array,
or with any output if the setup command generated output. You can choose to continue
generating output in the same direction, in which case you must NOT supply the data[]
array, or you can supply a data[] array of at least the size of the number of coefficients
to reset the prediction and you can then run forwards or backwards. By supplying a
data[] array, you are not recalculating the coefficients, these remain unchanged; you
are reloading the data points that are used with the coefficients to predict values. If you
have m coefficients, when going forwards, the last m data points of data[] are used;

Setup

Predict forwards and
backwards

LinPred() The Signal script language LinPred()

5-146

when going backwards, the first m data points. For example, if we wanted to extend the
previous example to predict the 100 data points that might have led up to the original
1000 points we could add the lines:

var back[100];
LinPred(1, back, data); 'predict back from start
MemSetItem(mc%, 0, sTime-100*bsz, back[]);'save the data

If we had just used LinPred(1, back); this would have caused an error as the
previous use of the command was to go forwards. These command variants return 0.

Func LinPred(2, stab%); Check stability
This command variant is used to check that the poles of the characteristic polynomial lie
within the unit circle. The command returns the distance of the pole furthest from the
origin of the z-plane. This should be less than or equal to 1.0 for a stable set of
coefficients. The stab% argument can be used to adjust the pole positions, as described
above. If you are using this command to replace a short stretch of damaged data (like
fixing a scratch in a record), you may want to predict both forwards and backwards
across the damaged data, then mix the two predictions together. If the data used to
generate the coefficients is not stationary, it will decay across the gap, in which case
using stab% set to 3 may do what you want.

Func LinPred(3, coef[]); Get the coefficients
This function returns the number of coefficients and returns them in the coef[] array.
Note that the first coefficient is the one that is multiplied with the most recent data point
(when going forward), that is the coefficients run backwards compared to the data.

Func LinPred(4, refl[]); Get reflection coefficients
This function returns the number of reflection values that are available (the same value as
the number of coefficients) and sets refl to the results of the auto-correlations done at
each lag as the original data was analysed. The results are normalised such that the results
lie in the range -1 to 1. The first value is the autocorrelation at a lag of 1 point, the next is
for a lag of 2 points, and so on. The term reflection comes from the use of this technique
in seismology.

Func LinPred(5, power[], frLo, frHi); Get estimated power spectrum
The variant generates an estimate of the
power spectrum based on the representation
of the original as the sum of a set of
resonances. You must leave stab% at 0
when using the command for this purpose.
This method is particularly effective if you
know that the data contains a small number
of constant frequency sinusoids and can
allow you to separate sharp peaks that
would merge into one using the FFT.
However, if your spectrum is not
representable as the sum of a set of resonances, the result may be misleading unless you
set mMax% large enough. Unlike the FFT, where the resolution of the result depends on
the number of points in the transform, here the resolution of the result is determined by
the number of bins and the frequency range that you set. Make sure you set the bin width
small enough so you do not miss a very narrow peak. The frequencies are defined in
terms of a fraction of the sampling rates from -0.5 to 0.5 (but note that -0.5 is the same
frequency as 0.5); you will find that the power at frequency f is equal to the power at
frequency -f.

Check stability

Get coefficients

Get reflection coefficients

Power spectrum

Ln() Alphabetical command reference Ln()

5-147

The result is scaled so that the integral of the power from -0.5 up to (but not including)
0.5 is equal to the mean square of the values in the original data[] array used in the
setup call. For example, we could extend the previous examples to display the power
with:

const bins% := 10001; 'Bins in spectrum
var power[bins%]; 'Array to hold power
LinPred(5, power, -0.5, 0.5);
var rv%:=SetResult(bins%,1/(bsz*(bins%-1)),-0.5/bsz,"Power","Hz");
ArrConst([], power);Optimise();WindowVisible(1); ' display result
var MeanSq := ArrDot(data,data)/Len(data); 'Mean square of data
var MemSum := ArrSum(power[:bins%-1])/(bins%-1); 'Power integral
Message("Mean sumSq = %g, SumPower = %g", MeanSq, MemSum);

If you try this with synthetic data constructed from sinusoids you will find that MemSum
< MeanSq. The reason is that the purer the sinusoid, the higher and narrow the peak in
the power spectrum, so the narrower the bins must be in the power spectrum to capture it.

Func LinPred(6, poles[][]{, fr[]}); Get poles and frequencies
In the z-plane, the coefficients are represented by a set of poles. You can use this variant
to read back the positions of the poles as complex numbers. The poles are sorted in order
by their real components, so the pole pairs for each imaginary root should be adjacent.
You can also read back the frequencies (as a fraction of the sample rate in the range -0.5
to 0.5) at which the poles are located.

Claerbout, Jon F. (1976). "Chapter 7 - Waveform Applications of Least-Squares."
Fundamentals of Geophysical Data Processing. Palo Alto: Blackwell Scientific
Publications. This has an explanation of the algorithm (due to John P Burg) that we
implement.

There is an overview of linear prediction and the Maximum Entropy (All Poles) method
of power spectrum estimation in Numerical Recipes, The Art of Scientific Computing, by
Press, Flannery, Teukolsky and Vettering.

This function calculates the natural logarithm (inverse of Exp()) of an expression, or
replaces the elements of an array with their natural logarithms.
Func Ln(x|x[]{[]...});

x A real number or a real array. Zero or negative numbers cause the script to halt
with an error unless the argument is an array, when an error code is returned.

Returns When used with an array, it returns 0 if all was well, or a negative error code.
When used with an expression, it returns the natural logarithm of the argument.

Get Poles and frequencies

References

Ln()

LnGamma() The Signal script language MarkCode()

5-148

This function returns the natural logarithm of the gamma function Γ(x) for real values of
x > 0.0. The gamma function has the useful property that Γ(n+1) is the same as n! (n
factorial) for integral values of n. However, the gamma function becomes inconveniently
large, reaching floating-point infinity as far as the script language is concerned when x is
172.62. As this is a rather restricted range, the script returns the natural logarithm of the
gamma function. The mathematical definition of the gamma function is:

Γ(a) = ∫
0

∞

e-tt a-1dt

Func LnGamma(a);

a A positive value. The script stops with a fatal error if this is negative.
Returns The natural logarithm of the Gamma function of a.
See also: BetaI(), BinomialC(), GammaP(), GammaQ()

Gives the logarithm to base 10 of the argument or replaces the elements of an array with
their logarithms to base 10.
Func Log(x|x[]{[]...});

x A real number or a real array. Zero or negative numbers cause the script to halt
with an error unless the argument is an array, when an error code is returned.

Returns With an array, this returns 0 if all was well or a negative error code. With an
expression, this returns the logarithm of the number to the base 10.

This function returns the view handle of the log window. The log window, also called the
log view, is a text view created by the application and is the destination for PrintLog().
You need this if you are to size or hide the log window, or make it the current or front
window, or use the editing commands to clear it.
Func LogHandle();

Returns The view handle of the log window.
See also: EditClear(), EditSelectAll(), View(), FrontView(),

Window(), WindowGetPos(), WindowSize(), WindowVisible()

This returns the data stored in a marker at a particular x axis position.
Func MarkCode(chan%, pos{, co%|co%[]});

chan% The marker channel to read.
pos The position of the marker. This must match to within ± half the time interval

returned by BinSize() for the channel.
co% Optional integer to return the first 8-bit marker code (0 to 255).
co%[] Optional array in which to return the marker codes. Up to 4 of these are returned

depending on the size of the array.
Returns The first code if a marker was found, or -1 if no marker exists at pos.
See also: BinSize(), MarkEdit(), MarkTime()

LnGamma()

Log()

LogHandle()

MarkCode()

MarkEdit() Alphabetical command reference MATInv()

5-149

This changes the data stored in a marker at a particular x axis position.
Func MarkEdit(chan%, pos, co%|co%[]);

chan% The marker channel to edit.
pos The position of the marker. This must match to within ± half the time interval

returned by BinSize() for the channel.
co% A value from 0 to 255 to replace the first code for the marker.
co%[] Array of up to 4 values (0 to 255) to replace codes for the marker. If the array

size is smaller than 4 the other codes are left untouched.
Returns 0 if a marker was edited, or -1 if no marker exists at pos.
See also: BinSize(), MarkCode(), MarkTime()

This reads and changes the time for a marker.
Func MarkTime(chan%, pos{, new});

chan% The channel number holding markers to move.
pos The position of the marker. This must match to within ± half the time interval

returned by BinSize() for the marker channel.
new If supplied, the new position (x axis value) for the marker. Note that marker

times must be in order, so this time will be truncated to prevent the marker time
reaching or going past adjacent markers.

Returns The exact marker time before any changes or 0 if no marker exists at pos.
See also: BinSize(), MarkCode(), MarkEdit(), View(v,c).[]

This calculates the determinant of a matrix (a two dimensional array).
Func MATDet(mat[][]);

mat A two dimensional array with the same number of rows and columns.
Returns The determinant of mat or 0.0 if the matrix is singular.

See also: ArrAdd(), MATInv(), MATMul(), MATTrans()

This inverts a matrix (a two dimensional array) and optionally returns the determinant.
Func MATInv(inv[][]{, src[][]{, &det}});

inv A two dimensional array to hold the result. If src is omitted, inv is replaced by
its own inverse. The number of rows and columns of inv must be the same.

src If present, the matrix to invert. The numbers of rows and columns of this two
dimensional array must be at least as large as inv.

det If present, returned holding the determinant of the inverted matrix.
Returns 0 if all was OK, -1 if the matrix was singular or very close to singular.

See also: ArrAdd(), MATMul()

MarkEdit()

MarkTime()

MATDet()

MATInv()

MATMul() The Signal script language Max()

5-150

This function multiplies matrices (two dimensional arrays) and stores the result in a third.
In matrix terms, this evaluates A = BC where A is an m rows by n columns matrix, B is
an m by p matrix and C is a p by n matrix.
Proc MATMul(a[][], b[][], c[][]);

a A m by n matrix of reals to hold the result.
b A m by p matrix.
c A p by n matrix.
See also: ArrMul(), MATInv()

This function solves the matrix equation Ax = y for x, given A and y. Both x and y are
vectors of length n and A is an n by n matrix.
Func MATSolve(x[], a[][], y[]);

x A one dimensional real array of length n to hold the result.
a A two dimensional (n by n) array of reals holding the matrix.
y A one dimensional real array of length n.
Returns The functions returns 0 if all is OK or -1 if a is a singular matrix.
See also: ArrMul(), MATInv()

This transposes a matrix (a two dimensional array), swapping the rows and columns.
Proc MATTrans(mat[][]{, src[][]});

mat A two dimensional n by m array returned holding the transpose of src. If src is
omitted, m must be equal to n and the rows and columns of mat are swapped.

src Optional, a two dimensional m by n array to transpose.
See also: ArrAdd(), MATMul()

This function returns the maximum of several real and/or integer variables or the index of
the maximum value in an array if an array argument is provided. See Min() for example.
Func Max(arr[]|arr%[]|val1{, val2{, val3...}});

arr A real or integer array.
valn A list of real and/or integer values to scan for a maximum.
Returns The maximum value or index of the maximum in an array argument.
See also: Min(), MinMax(), XYRange

MATMul()

MATSolve()

MATTrans()

Max()

Maxtime() Alphabetical command reference MeasureChan()

5-151

This returns the maximum x axis value in the frame or a specified channel, or the latest
time reached within the frame or the specified channel in a sampling document view. For
the end of the visible x axis use XHigh().
Func MaxTime({chan%});

chan% An optional channel number (1 to n). If present, and if the channel exists, the
function gets the x axis value for the last item sampled in the channel or the
maximum x axis value in the frame if no items are found on the channel, or if no
channel was specified. If chan% is zero, the value returned is the frame length
limit – the maximum X axis value for a frame regardless of the points that
happen to be currently stored – this is useful for frame 0 of a file being sampled.

Returns The value returned is the maximum x axis value for the frame or a specified
channel. If the current view is of the wrong type, or if a specified channel
number does not exist, the script stops with an error.

See also: Len(), LastTime(), NextTime(), Mintime(), Seconds(),
XHigh()

This function adds or changes a measurement channel in an XY view created with
MeasureToXY() using the settings previously defined by using MeasureX() and
MeasureY(). The XY view must be the current view. This command implements some
of the functionality of the XY measurements settings dialog.
Func MeasureChan(chan%, name${, pts%});

chan% This is 0 to add a new channel or the number of an existing channel to change
settings. MeasureToXY() creates an XY view with one channel, so you will
usually call this function with chan% set to 1. You can have up to 32
measurement channels in the XY view.

name$ This sets the name of the channel and can be up to 9 characters long.
pts% Sets the maximum number of points for this channel, if omitted or set to zero

then all points are used. When a points limit is set and more points are added,
the oldest points are deleted.

Returns The channel number these settings were applied to or a negative error code.
See also: CursorActiveSet(), MeasureToXY(), MeasureX(), MeasureY()

Maxtime()

MeasureChan()

MeasureToXY() The Signal script language MeasureToXY()

5-152

This creates a new XY view with a trend plot or measurement process and optional
cursor 0 iteration method. It creates one output channel in the XY view with a default
measurement method. Use MeasureX(), MeasureY() and MeasureChan() to edit the
method and add channels. Use Process() to generate the plot. The new XY view will
be the current view and is invisible. Use WindowVisible(1) to make it visible. These
commands implement the functionality of the Trend Plot and Measurements to XY view
dialogs.
Func MeasureToXY(iter%|tpf%{, chan%, st|st$, en|en$, min|exp$
 {, lv|lv$|pts%{ ,hy{, flgs%{, qu${, width{, lv2|lv2$}}}}}}});

iter% This is the cursor 0 iteration mode. Modes are the same as in CursorMode()
but not all active cursor modes can be used. Valid modes are:
4 Peak find 11 Slope peak 17 Turning point 23 Data points
5 Trough find 12 Slope trough 20 Expression
7 Rising threshold 14 Slope +ve thr 21 Outside levels
8 Falling threshold 15 Slope -ve thr 22 Inside levels

tpf% This is the only argument if you want trend-plot-style processing with one
measurement per frame and no cursor zero iteration. It is the sum of the option
flags for trend plot processing; add 1 for common X values, add 2 for user
checks on the cursor positions or leave it set to the default value of zero.

chan% This is the channel that is searched by the cursor 0 iterator. In expression mode
(20), this is ignored and should be set to 0.

st This is the start position within the frame for cursor 0 iteration, either as a
number or a string. In expression mode, this is the first iteration position, for
other modes the start position for the search.

en This is the end position within the frame for cursor 0 iteration, again either as a
number or a string.

min This is the minimum allowed step for cursor 0, it is used in all modes except
expression mode (20).

exp$ This is the string expression that is evaluated in expression mode (20).
lv This number or string expression sets the threshold level for threshold modes (7,

8, 14, 15, 21 and 22). It is in y axis units for data channel chan% or y axis units
per x axis unit for slope threshold modes (14 and 15). This argument is ignored
and should be set to 0 or omitted for modes that do not require it.

pts% The number of points to advance by in Data points mode.
hy This sets the hysteresis level for threshold search modes (7, 8, 14, 15, 21 and 22)

and the minimum amplitude for peak and trough modes (4, 5, 11 and 12). It is in
y axis units for data channel chan% for normal modes or y axis units per x axis
unit for slope modes. This argument is ignored and should be set to 0 or omitted
for modes that do not require it.

flgs% This is the sum of the measurement option flags. Add 1 to force common X
values, add 2 for user checks on the cursor positions and add 4 to generate one
averaged measurement per frame. The default value is zero.

qu$ This sets the qualification expression for the iteration. If left blank then all
iteration positions will be used. If not blank, and it evaluates to non-zero, then
the iteration is skipped.

width The width for measurements in X axis units; set to 0 or omit it in modes that do
not require it. For slopes it sets the time over which the slope is measured. For
peaks and troughs, it sets the maximum peak width (use 0 for no maximum). For
threshold modes 7, 8, 21 and 22 it sets the minimum crossing time (Delay in the
dialog).

lv2 This number or string expression together with lv sets the two threshold levels
for cursor iteration modes 21 and 22.

MeasureToXY()

MeasureX() Alphabetical command reference MeasureX()

5-153

Returns The function result is an XY view handle or a negative error code.

Arguments passed as strings are not evaluated until data is processed. Invalid strings
generate invalid measurements and no data points in the XY view.

This generates a plot of peak values in channel 1 of the current time view. Peaks must be
at least 0.1 seconds apart and the data must fall by at least 1 y axis unit after each peak.
var xy%; 'Handle of new xy view
xy%:=MeasureToXY(4, 1, 0.0, 1.0, 0.1, 1); 'Peak, chan 1
WindowVisible(1); 'Window is invisible, so show it
MeasureX(102, 0, "Cursor(0)"); 'x = Time, no channel, at cursor 0
MeasureY(100, 1, "Cursor(0)"); 'y = Value of chan 1 at cursor 0
MeasureChan(1, "Peaks", 0); 'Set the title, no point limit
ProcessFrames(-1); 'Process all the data

See also: CursorActiveSet(), MeasureChan(), MeasureX(), MeasureY(),
ProcessFrames()

MeasureX() and MeasureY() set the x and y part of a measurement. The settings are
saved but have no effect until MeasureChan() is used to change or create a channel.
This command implements some of the functionality of the XY measurements settings
dialog. The current view must be the target of the measurements.
Func MeasureX(type%{, chan%{, expr1|coef%{, expr2{, width}}}});

type% This sets the x or y measurement type. Types less than 100 are cursor regions
measurements matching the ChanMeasure() command:

 1 Curve area 2 Mean 3 Slope 4 Area
5 Sum 6 Modulus 7 Maximum 8 Minimum
9 Peak to Peak 10 RMS Amplitude 11 Standard deviation 12 Abs max.
13 Peak 14 Trough 15 Point count

 Types from 100 up are special values:
100 Value at point 101 Value difference 102 Time at point
103 Time difference 104 Frame number 105 Frame abs time
106 Frame state value 107 0-based fit coefficient 108 User entered value
109 Value ratio 110 Value product 111 Value above baseline
112 Iteration count 113 Expression
Types from 1000 up select frame variable values with the frame variable number
being type%-1000.

chan% This is the channel number for measurements. For time, user entered and frame-
based measurements it is ignored and should be set to 0 or omitted.

expr1 Either a real value or a string expression that sets the start time for
measurements over a time range, the position for time (102) and value
measurements and the expression used for measurement type 106.

coef% The zero-based fit coefficient number for measurement type 107.
expr2 Either a real value or a string expression that sets the end time for measurements

over a time range and the reference time for single-point measurements and
differences. Set an empty string when width is required and this is not.

width This is the measurement width for value and value difference measurements.
The default value is zero.

Returns The function return value is zero or a negative error code.
See also: CursorActiveSet(), MeasureChan(), MeasureToXY(), MeasureY()

Example

MeasureX()

MeasureY() The Signal script language Min()

5-154

This is identical to MeasureX() and sets the y part of a measurement for a measurement
channel. The settings are saved but have no effect until MeasureChan() is used to
change or create a channel. See the MeasureX() documentation for details.
Func MeasureY(type%, chan%, expr1${, expr2${, width}});

See also: MeasureX()

This function displays a message in a box with an OK button that the user must click to
remove the message. Alternatively, the user can press the Enter key.
Proc Message(form${, arg1{, arg2...}});

form$ A string that defines the output format as for Print(). If the string contains a
vertical bar character (|) then that portion of the string before the | will be used to
set the title of the dialog box.

arg1,2 The arguments used to replace %d %f and %s type formats.
The output string will be presented as one line if it is short enough, otherwise it will be
split into multiple lines. Messages longer than 70 characters are truncated.
See also: Print(), Input(), Query(), DlgCreate()

This function returns a substring of a string.
Func Mid$(text$, index%{, count%});

text$ A text string.
index% The starting character in the string. The first character is index 1.
count% The maximum characters to return. If omitted, all the characters to the end of the

string are returned.
Returns The specified string. If index% is larger than the original string length, the result

is an empty string.
See also: DelStr$(), InStr(), Left$(), Len(), Right$(),

This function returns the minimum of several real and/or integer variables or the index of
the minimum value in an array if an array argument is provided.
Func Min(arr[]|arr%[]|val1{, val2{, val3...}});

arr A real or integer array.
valn A list of real and/or integer values to scan for a minimum.
Returns The minimum value or index of the minimum in an array argument.

An example finding the minimum in a sub-array holding 10 items of the original data:
var data[70], minPos%, minVal;
...
minPos:=Min(data[40:10]); ' returns a position between 0 and 9
minVal:=data[40+minPos]; ' value of minimum

See also: Max(), Minmax(), XYRange

MeasureY()

Message()

Mid$()

Min()

Minmax() Alphabetical command reference Mintime()

5-155

Minmax() finds the minimum and maximum values for data view channels with a y axis,
or the minimum and maximum intervals for a marker channel handled as dots or lines.
The values returned for marker channels as a rate histogram are measured from the
histogram with partial bins included.
Func Minmax(chan%, start, finish, &min, &max{, &minP{,&maxP
 {,mode%{, binSz}}}});

chan% The channel number (1 to n) on which to find the maximum and minimum.
start The start position in x axis units.
finish The end position in x axis units.
min The minimum value is returned in this variable or zero if no data found.
max The maximum value is returned in this variable or zero if no data found.
minP The position of the minimum is returned in this variable or zero if no data found.
maxP The position of the maximum is returned in this variable or zero if no data

found.
mode% This will have no effect for a waveform channel. If present for a marker channel,

this sets the effective drawing mode in which to find the minimum and
maximum. If mode% is absent or inappropriate, the current display mode is used.
The modes are:
0 The current mode for the channel. Any additional arguments are ignored.
1 Dots mode for markers, returns the position of the marker at or after pos.
2 Lines mode for markers, result is the same as mode 1.
3 Rate mode for markers. The binSz argument sets the width of each bin.

binSz This sets the width of the rate histogram bins when specifying rate mode.
Returns 1 if data points were found, 0 if no data was found or a negative error code.

See also: Min(), Max(), View(v,c).[], XYRange()

In a data view, this returns the minimum x axis value in the frame or in a channel. For the
end of the visible x axis use XLow().
Func MinTime({chan%});

chan% An optional channel number (1 to n). If present, and if the channel exists, the
function gets the x axis value for the earliest item in the channel or the minimum
x axis value in the frame if no items are found on the channel or if no channel
was specified. If chan% is zero, the value returned is the frame length limit – the
minimum X axis value for a frame regardless of the points that happen to be
currently stored – this is useful for frame 0 of a file being sampled.

Returns The value returned is the minimum x axis value in the frame or channel. If the
current view is of the wrong type, or if the channel number is illegal the script
stops with an error.

See also: Len(), BinZero(), ChanRange(), LastTime(), NextTime(),
Maxtime(), Seconds(), XLow()

Minmax()

Mintime()

Modified() The Signal script language Modified()

5-156

This command lets you get (and in some cases, set) the modified state of a view and
detect if it is read only. Beware that clearing the modified flag for views that support this
will allow you to close the view without being prompted to save changes. This function
was added to Signal at version 4.07.
Func Modified({what%{, new%}});

what% 0 (or omitted) to get or set the modified state, 1 to get or set the read only state.
new% The new state. -1 (or omitted) for no change, 0 to clear the state, 1 to set the

state.
Returns The state at the time of the call, before any change.
The meaning and effect of this routine depends on the type of the current view.

Text view
A text view is considered modified if there are undoable changes since the last save
point; such changes will be interactive edits and typing. Changes made by a script do not
count as modifications and are not undoable. You can use Modified(0,0) to make the
current state the last save point without saving the file; you cannot set the modified flag
with this command.

Text views (but not the Log view) can be set read only with Modified(1,1) and the
read only state can be cleared with Modified(1,0). Note that output sequence and
script files open read only if they are marked read only on disk. This command does not
change the read only status of the file on disk.

Data view
A data view counts as modified if you make a change to it that would be written to the
underlying .cfs file. Changes made to duplicate or virtual channels do not count as
modifications, but changes made to the frame tag, flags, state or user variables do. Some
changes are written immediately, others are buffered up and are only written when the
file is closed.

You can force the file to commit changes held in buffers and to update the file header to
disk with Modified(0, 0). Committing changes does not clear the modified flag.

Modified(1) reports the read only state. You cannot change the read only state of a
time view; it depends on the read only state of the underlying .cfs file.

XY view
An XY view is modified if changed since the last save. You can set and clear the
modified flag using Modified(0, new%). There is currently no concept of a read only
state for an XY view and Modified(1) always returns 0.

Other view types
The command is not implemented for other view types and will return 0.

See also: FrameSave(), FileSave()

Modified()

MousePointer() Alphabetical command reference MousePointer()

5-157

This command loads permanent mouse pointers from external files, creates new
temporary mouse pointers and can delete temporary mouse pointers when they are no
longer needed. Signal maintains a list of standard mouse pointers (see ToolbarMouse()
for the list); any pointers added by this function are added to this list and are available for
use by the mouse down, move and up routines associated with ToolbarMouse().

Func MousePointer(text$|nDel%);

text$ This is a text string that defines a new mouse pointer. This is either the path to a
data file that holds a cursor or an animated cursor, ending in ".cur" or ".ani"
(not case sensitive) or it is a text string that defines a monochrome mouse
pointer, as described below. The function returns the number of the new mouse
pointer, or 0 if it was not created. Cursors loaded from a file are permanent and
exist until Signal closes. There is a limit on the number of cursors that Signal
will manage (currently set to 60); this should be more than enough for any
reasonable purpose.

nDel% The number of a mouse pointer to delete, or -1 to delete all user-defined mouse
pointers. You can only delete temporary mouse pointers, and you cannot delete a
mouse pointer that is currently in use.

Returns The number of a newly created mouse pointer or 0 if it was not created or the
number of mouse pointers that were deleted.

Mouse pointers defined by this function are a 32 x 32 pixel image. Inside this image is
the hot spot, being the actual position where the mouse is deemed to be pointing. Each
pixel in the image can be screen coloured, black, white or the inverse of the screen. In
addition, you can designate a pixel to be the hot spot. This is coded in text as follows:

Cursors are defined by pixel by pixel,
starting at the top left, moving
horizontally and starting a new row
every 32 characters. However, most
mouse pointers are much smaller than 32 x 32 pixels, so you can stop a line early by
adding a vertical bar character "|" or by a line feed character "\n". Any character that is
not a space, b, B, w, W, h, i, I, | or line feed is treated as a space.

You do not need to provide 32 rows; any undefined pixels are
treated as if they were filled with spaces. It is not an error to
include more than one hot-spot character; the hot-spot position is
set by the last hot-spot character in the string.

The example to the right creates a simple mouse pointer that has a
7 x 7 pixel black square around a 5 x 5 white square and the hot-
spot in the centre. Although the text could be written on a single
line, the form of the mouse pointer is much clearer when it is
shown in the code in the same format as it is displayed.

Cursors created with text strings are monochrome and not animated. You can also load
coloured (sometimes called 3D) cursors and animated cursors from files. if you want to
experiment with this, you can find suitable files in the WINDOWS\Cursors folder. On my
machine, the following loads an animated stopwatch cursor:
var ani% := MousePointer("c:\\WINDOWS\\Cursors\\stopwtch.ani");

See also: Toolbar(), ToolbarMouse()

MousePointer()

Text format to create a new
pointer

Character Screen Black White Inverse
Normal space b w i

Hot-spot h B W I

var mp% :=
MousePointer(
"bbbbbbb|"
"bwwwwwb|"
"bw wb|"
"bw h wb|"
"bw wb|"
"bwwwwwb|"
"bbbbbbb");

Loading mouse pointers
from files

MoveBy() The Signal script language NextTime()

5-158

This this gets and sets the position of the text caret. You can move the text caret in a text
window relative to the current position by lines and/or a character offset. You can extend
or cancel the current selection, and also get the text caret character position.
Func MoveBy(sel%, char%{, line%});

sel% If zero, all selections are cleared. If non-zero the selection is extended to the
destination of the move and the new position is the start of the selection.

char% This is a character offset. If line% is absent, the new position is obtained by
adding char% to the current position. If this is beyond the start or end of the text
it is limited to the start or end.

line% If present it specifies a line offset to apply. To find the new position add line%
to the current line number and char% to the current character position in the
line. If the new line number is beyond the start or end of the text it is limited to
the start and end. If the new character position is beyond the start or end of the
line it is limited to the start or end of the line.

Returns The function returns the new position in the file of the start of the selection.
MoveBy(1,0)finds the current position without changing the selection.

See also: MoveTo(), Selection$(), EditSelectAll()

This moves the text caret in a text view to a set position. You position the caret by lines
and/or a character offset, you can also extend or cancel the current selection.
Func MoveTo(sel%, char%{, line%});

sel% If zero, all selections are cleared. If non-zero the selection is extended to the
destination of the move and the new current position is the start of the selection.

char% This is a character offset. If line% is absent, this sets the new position in the
file. If this is beyond the start or end of the text it is limited to the start or end. A
position of 0 places the caret before the first character of the first line.

line% If present it specifies the new line number. If it is beyond the start or end of the
text it is limited to the start and end. If the new character position is beyond the
start or end of the line it is limited to the start or end of the line.

Returns The function returns the new position in the file of the start of the selection.
See also: MoveBy(), Selection$(), EditSelectAll()

This function is used to find the next item on a channel after a particular x axis position.
Func NextTime(chan%, &pos{, &val|code%[]});

chan% The channel number (1 to n) to use for the search.
pos The x axis position to start the search after. Items at the position are ignored. To

ensure that items at the Mintime() are found, set position to Mintime()-1.
pos is updated to contain the x axis position of the next item. It is left
unchanged if no more items are found or there is an error.

val This optional argument is used with waveform channels. It is returned holding
the waveform value.

code% This optional parameter is only used if the channel is a marker type. This is an
array with at least four elements that is filled in with the marker codes.

Returns The function returns 1 if a data item is found, 0 if there are no more items to be
found, or a negative error code.

See also: LastTime(), MaxTime(), MinTime()

MoveBy()

MoveTo()

NextTime()

OpClEventGet() Alphabetical command reference OpClEventChop()

5-159

This function gets the details of a particular event in an idealised trace.
Func OpClEventGet(chan%, meth%, &time{, &per{, &{, &flags%}}});

chan% The channel number of the idealised trace.
meth% The indexing method used to determine which event we are addessing. Possible

values are:
 0 Use the selected event and ignore the time parameter.
 1 Find the first event starting before the specified time or the first event

in the trace if none exist before time.
 2 Find the event with a start time closest to the specified time.
 3 Find the first event starting after the specified time.

time The time used to address the event, this will be set to the start time of the event
if an event is found.

per This will be set to the duration of the event if found.
amp This will be set to the amplitude of the event if found.
flags% This will contain the events flags if found. A full list of flags can be found in the

description of SetOpClHist().
Returns The function returns 1 if an event was found otherwise it returns 0.
See also: OpClEventSet(), OpClEventDelete(), OpClEventSplit(),

SetOpClHist()

This function splits the specified event in an idealised trace into two, each having a
period equal to half that of the original. If the event has an amplitude between those of
the preceding and following events then the amplitudes and flags of the first and second
new events will be taken from the following and preceding events respectively. In this
case the new events will also be flagged as having assumed amplitudes.
Func OpClEventChop(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.
meth% The indexing method used to determine which event we are addessing. This is

the same as for OpClEventGet().
time The time used to address the event (not used if meth% is 0).
opt% Omit this or set it to zero to split the entire event in half, set to 1 to split the

event half-way through the visible portion of the event (to match the interactive
behaviour).

Returns The function returns 1 if an event is found otherwise it returns 0.
See also: OpClEventDelete(), OpClEventGet(), OpClEventMerge(),

OpClEventSet(), OpClEventSplit()

OpClEventGet()

OpClEventChop()

OpClEventDelete() The Signal script language OpClEventSet()

5-160

This function deletes a specified event from an idealised trace and amalgamates its
neighbours to produce a single event covering the time range of all three events and an
amplitude taken from the average of the amplitudes of all three events weighted by their
durations. The flags for this new event will be taken from the earliest original event.
Func OpClEventDelete(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.
meth% The indexing method used to select the event as for OpClEventGet().
time The time used to address the event (not used if meth% is 0).
opt% Omit this or set it to zero to always delete the event, set it to 1 to only delete if

some portion of the event is visible (to match the interactive behaviour).
Returns The function returns 1 if an event was found and deleted, otherwise it returns 0.
See also: OpClEventGet(),OpClEventSet(),OpClEventSplit()

This function amalgamates the specified event with the event to the right to produce a
single event covering the time range of both events and an amplitude calculated as an
average of the amplitudes of both events weighted by their durations. The flags for this
event will be taken from the original specified event.
Func OpClEventMerge(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.
meth% The indexing method used to select the event as for OpClEventGet().
time The time used to address the event (not used if meth% is 0).
opt% Omit this or set it to zero to always merge the events, set it to 1 to only merge if

some portion of the event is visible (to match the interactive behaviour).
Returns The function returns 1 if an event was found and merged, otherwise it returns 0.
See also: OpClEventChop(), OpClEventDelete(), OpClEventGet(),

OpClEventSet(), OpClEventSplit()

This function sets the details of a particular event in an idealised trace. Neighbouring
events will be adjusted to accommodate the new values by altering the start time or
duration acordingly. If you attempt to modify an event beyond the time range of the
immediate neighbours then the function will fail and 0 will be returned.
Func OpClEventSet(chan%, meth%, time, start, period{, amp
 , flags%}});

chan% The channel number of the idealised trace.
meth% The indexing method used to select the event as for OpClEventGet().
time The time used to address the event (not used if meth% is 0).
start The new start time for the event being indexed.
period The new duration for the event.
amp The new amplitude for the event. If omited the amplitude will be left unchanged.
flags% The new flag values. If omitted the flags are left unchanged. A full list of flags

can be found in the description of SetOpClHist().
Returns The function returns 1 if an event was found and set, otherwise it returns 0.
See also: OpClEventGet(), OpClEventDelete(), SetOpClHist()

OpClEventDelete()

OpClEventMerge()

OpClEventSet()

OpClEventSplit() Alphabetical command reference OpClNoise

5-161

This function splits the specified event in an idealised trace into three, each having a
period equal to one third that of the original.
Func OpClEventSplit(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.
meth% The indexing method used to determine which event we are addessing. This is

the same as for OpClEventGet().
time The time used to address the event (not used if meth% is 0).
opt% Omit this or set it to zero to split the entire event into three, set it to 1 to split

only the visible portion of the event (to match the interactive behaviour).
Returns The function returns 1 if a data item is found, 0 if there are no more items to be

found, or a negative error code.
See also: OpClEventGet(),OpClEventSet(),OpClEventDelete()

This function fits an idealised trace so that the convolution with the step response
function of the filter used to sample the original data overlays the observed raw data
trace.
Func OpClFitRange(chan%, start, end);

chan% The channel number of the idealised trace.
start The start time of the range to fit.
end The end time of the range to fit
Returns The function returns 1 if a data item is found, 0 if there are no more items to be

found, or a negative error code.
See also: OpClEventChop(), OpClEventDelete(), OpClEventGet(),

OpClEventMerge(), OpClEventSet()

This function is used to measure an area of baseline and obtain measurements of the
RMS noise and RMS noise in the first derivative. You will need to call this function
before you use SetOpClScan(); in addition to returning these values it saves information
internally for use by the SCAN analysis.
Proc OpClNoise(chan%, st, end{, &base{, &rms {, &rmsDrv}}});

chan% The channel to measure
st The start time of the area to measure
end The end time of the area to measure
base Returned holding the mean data value within the time range
rms Returned holding the standard deviation of the data within the time range from

the mean
rmsDrv Returned holding the root mean square of the first derivative of the data within

the time range
See also: SetOpClScan()

OpClEventSplit()

OpClFitRange()

OpClNoise

Optimise() The Signal script language Overdraw()

5-162

This has the same effect as the optimise button in the YAxis dialog and can be used in a
data or XY view. Optimising a channel that is not displayed is not an error. If you give a
channel number that is not displayed, we assume that you know what you are doing, so it
is optimised in the display mode that would be used if the channel were turned on.
Proc Optimise(cSpc{, start{, finish}});

cSpc A channel specifier for the channels to optimise. See the Script language
syntax chapter for a definition of channel specifiers.

start The start of the region to optimise. If omitted, this is the start of the window.
finish The end of the region to optimise. If omitted, this is the end of the window.

See also: YRange(), YLow(), YHigh(), MinMax(), XYRange()

This function is used to set and read back the output reset settings . It allows you to
specify DAC and digital output levels to be set before and after sampling.
Func OutputReset(flags%, dacs%[], dacv[], dig%[]{, rt{, n14%}});
Func OutputReset(&dacs%[], &dacv[], &dig%[]{, &rt{, n14%}})

flags% When to apply the settings. This is the sum of: 1 = at configuration
load/program start, 2 = before sampling, 4 = after sampling.

dacs% An array of up to 8 elements. Element n corresponds to DAC n. When setting
values, set each element to 1 to apply the associated DAC value, 0 to not apply
the associated value. Values of 0 and 1 are returned when reading back values.

dacv An array of up to 8 DAC values in Volts to apply if the corresponding element
of dacs%[] is not zero.

dig% An array of up to 16 elements, element n corresponding to digital output bit n.
Set values as: 1=high, 0=low, -1 no change. Elements 0-7 correspond with the
output sequencer DIGLOW command, elements 8-15 correspond with the
DIGOUT command.

rt Ramp time in seconds, default 0. This relates to a currently unimplemented
feature. It will allow you to specify how long to take to ramp the DAC outputs
to their final values for use in situations where a sudden DAC change could
cause a problem.

n14% Currently, set this to 0 to set/get values in the Output Resets dialog (sampling
configuration) and 1024 for the Application Output Resets dialog (application
preferences). We have plans to allow sampling with multiple 1401s. When this
is enabled you will add the 1401 number to n1401%. If this is omitted, this value
is taken as 0, meaning set the value in the current sampling configuration.

Returns Both function versions return the flag% value at the time of the call.

This function turns overdraw mode on and off for the current view. It also returns the
current overdraw mode. With overdraw mode on, a view will display not only the current
frame, but also all of the other frames in the overdraw frame list.
Func Overdraw({mode%{, cols%{, maxf%{, maxt}}}});
Func Overdraw({get%});

mode% 0 for off, 1 for 2D, 3 for 3D (2 acts as 0).
cols% The colour selection - list starting at zero same as dialog.
maxf% The maximum number of frames to overdraw. Set to 0 or omit for no limit.
maxt The maximum time range. Set to 0 or omit for no limit.
get% Alters the meaning of the return value. Possible values are:

Optimise()

OutputReset()

Overdraw()

Overdraw() Alphabetical command reference Overdraw()

5-163

-1 or omitted to get current mode%
-2 to get current cols%
-3 to get current maxf%
-4 to get current maxt

Returns The state of overdraw mode at the time of the call or the value requested by
get%. Changes made by this function do not cause an immediate redraw.

See also: OverdrawFrames(), OverdrawGetFrames(), Overdraw3D()

Overdraw3D() The Signal script language Overdraw3D()

5-164

This command controls 3D overdrawing, it is the equivalent of the View menu Overdraw
settings dialog. This command may only be used in a data view. There are two command
variants. The first sets the overdraw values, the second reads back the current settings.

Func Overdraw3D(xProp, yProp{, xScale{, yScale{, zMode%}}});
Func Overdraw3D(get%);

xProp The proportion of the available x space (in the range 0 to 1.0) to use for the 3D
effect. Values outside the range 0 to 1 are limited to this range.

yProp The proportion of the available y space to use for the 3D effect.Values outside
the range 0 to 1 are limited to this range.

xScale This optional argument sets how much to shrink the display width when going
from the front to the back to give a perspective effect. Values are limited to the
range 0 (shrink to nothing) to 1 (no shrink). If omitted, no change is made.

yScale How much to shrink the display height when going from the front to the back to
give a perspective effect, in the range 0 to 1. Values are limited to the range 0
(shrink to nothing) to 1 (no shrink). If omitted, there is no change.

zMode% This optional argument sets the Z axis scaling, if it is omitted, no change is
made. It is one of:
0 Z position is set by the frame's position in the list of overdrawn frames
1 Z position set by the frame number
2 Z position set by the frame start time

get% The variant of the command with one argument uses this value to indicate the
value to read back:
-1 to get current xProp
-2 to get current yProp
-3 to get current xScale
-4 to get current yScale
-5 to get current zMode%

Returns 0 when setting a value or the value requested by get%.
See also: Overdraw(), OverdrawFrames(), OverdrawGetFrames()

Overdraw3D()

OverdrawFrames() Alphabetical command reference OverdrawFrames()

5-165

This function is used to set or modify the list of frames to overdraw in the data view. You
can specify a range of frame numbers or a list of frames. If the function is used with no
arguments it clears the overdraw frame list.
Func OverdrawFrames({sFrm%{, eFrm%{, mode%{, add%}}}});
Func OverdrawFrames(frm$|frm%[]{, mode%{, add%}});

sFrm% First frame to include. This option processes a range of frames. sFrm% can also
be a negative code as follows:
-101 The overdraw list is cleared and the frame buffer is added.
0 All sampled frames (on-line only).
-1 All frames in the file are included.
-2 The frame current at the time of this call.
-3 Frames must be tagged.
-5 Last N frames (on-line only).
-6 Frames must be untagged.
Choosing a negative code with add% set to 0 will allow Signal to modify the
overdraw status of individual frames as they are subsequently tagged/untagged.
etc If this command is used with add% absent or set to non-zero then this
dynamic behaviour will be lost.

eFrm% Last frame to include. If this is -1 the last frame is the last in the data view. This
argument is ignored if sFrm% is less than 1.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers in an
array, the first array element holding the number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each
frame in the range, list or specification. If mode% is absent all frames are
included. As with sFrm%, these modes will be applied dynamicaly if add% is 0.
If sFrm% is –5 then this is the value of N. If sFrm% is 0 then this value is
ignored, otherwise the modes are:
0-n Frames must have a state matching the value of mode%.
-1 All frames in the range, list are included.
-2 Only the frame current at the time of drawing, if in the list, is included.
-3 Frames must be tagged.
-6 Frames must be untagged.

add% If add% is present and non-zero it determines whether the specified frames are to
be added to or removed from the existing display list for the view, as follows:
-1 Remove the frames from the existing display list.
0 Clear the display list before adding these frames.
1 Add the frames to the existing display list (the default).
If add% is absent the new frame list will be added to the existing display list.

Returns The number of frames in the new overdraw list or a negative error code.
See also: Overdraw(), OverdrawGetFrames()

OverdrawFrames()

OverdrawGetFrames() The Signal script language PaletteSet()

5-166

This function is used to get the list of frames overdrawn in the data view.
Func OverdrawGetFrames({list%[]});

list% An optional array of frame numbers to hold the list of frame numbers. If the
array is too short, enough frames are returned to fill the array. Element zero
holds the number of frames returned in the array.

Returns The number of frames that would be returned if the array was of unlimited
length, or zero if the view is not a data view.

See also: Overdraw(), OverdrawFrames()

This reads back the percentages of red, green and blue in a colour in the palette.
Proc PaletteGet(col%, &red, &green, &blue);

col% The colour index in the palette in the range 0 to 39. Items 0 and 1 are
permanently fixed as white and black.

red The percentage of red in the colour.
green The percentage of green in the colour.
blue The percentage of blue in the colour.
See also: Colour(), PaletteSet()

This call sets the colour of one of the palette items. There are 40 palette colours,
numbered 0 to 39. Colours 0 to 6 in the palette are fixed, providing grey scales from
black to white, and the rest can be specified. This command is the equivalent of mixing
the colour by hand from the colour menu.

Colours are specified using the RGB (Red Green Blue) colour model. For example,
bright blue is achieved by 0% red, 0% green and 100% blue. Bright yellow is 100% red,
100% green and 0% blue. Black is 0% of all three colours, white is 100% of all three
colours. All screen pixels of a “solid” colour are the same hue. Systems with limited
colour capabilities generate non-solid colours by mixing pixels of different hues.
Proc PaletteSet(col%, red, green, blue{, solid%});

col% The colour index in the palette in the range 0 to 39. Attempting to change a
fixed colour, or a non-existent colour, has no effect.

red The percentage of red in the colour.
green The percentage of green in the colour.
blue The percentage of blue in the colour.
solid% If present and non-zero, the system sets the nearest solid colour to the colour

requested. Systems that cannot or don't need to do this ignore the argument.
See also: Colour(), PaletteGet()

OverdrawGetFrames()

PaletteGet()

PaletteSet()

PCA() Alphabetical command reference Pow()

5-167

This command performs Principal Component Analysis on a matrix of data. This can take
a long time if the input matrix is large.
Func PCA(flags%, x[][], w[]{, v[][]});

flags% Add the following values to control pre-processing of the input data:
1 Subtract the mean value of each row from each row.
2 Normalise each row to have mean 0.0 and variance 1.0.
4 Subtract the mean value of each column from each column.
8 Normalise each column to have mean 0.0 and variance 1.0.
You would normally pre-process the rows or the columns, not both. If you set
flags for both, the rows are processed first.

x[][] An m rows by n columns matrix of input data that is replaced by the output data.
The first array index is the rows; the second is the columns. There must be at
least as many rows as columns (m >= n). If you have insufficient data you can
use a square matrix and fill the missing rows with zeros. If you were computing
the principal components of spike data, on input each row would be a spike
waveform. On output, each row holds the proportion of each of the n principal
components scaled by the w[] array that, when added together, would best (in a
least-squares error sense) represent the input data.

w[] This is an array of length at least n that is returned holding the variance of the
input data that each component accounts for. The components are ordered such
that w[i] >= w[i+1].

v[][] This is an optional square matrix of size n by n that is returned holding the n
principal components in the rows.

Returns 0 if the function succeeded, -1 if m < n, -2 if w has less than n elements or v has
less than n rows or columns.

This is the power function that raises x to the power of y. If an array is used then each
element of the array is replaced with its value to the power of y.
Func Pow(x|x[]{[]...}, y);

x A real number or a real array to be raised to the power of y.
y The exponent. If x is negative, y must be integral.
Returns If x is an array, it returns 0 or a negative error code. If x is a number, it returns x

to the power of y unless an error is detected, when the script halts.

PCA()

Pow()

Print() The Signal script language Print()

5-168

This command prints to the current view, which must be a text view. The output is
inserted at the position of the caret. For the commands equivalent to File menu Print
options refer to FilePrint().

If the first argument is a string (not an array), it is assumed to hold format information for
the remaining arguments. If the first argument is an array or not a string or if there are
more arguments than format specifiers, Signal prints the arguments without a format
specifier in a standard format and adds a new line character at the end. If you provide a
format string and you require a new line character at the end of the output, include \n at
the end of the format string.
Func Print(form$|arg0{, arg1{, arg2...}});

form$ A string that specifies how to treat the arguments that follow. The string
contains two types of characters: ordinary text that is copied to the output
unchanged and format specifiers that determine how to convert each of the
following arguments to text. The format specifiers are introduced by a % and
terminated by one of the letters d, x, c, s, f, e or g in upper or lower case. To
place a literal % in the output, place %% in the format string.

arg1,2 The arguments used to replace %c, %d, %e, %f, %g, %s and %x type formats.
Returns 0 or a negative error code. Fields that cannot be printed are filled with asterisks.

The full format specifier is:
 %{flags}{width}{.precision}format

The flags are optional and can be placed in any order. They are single characters that
modify the format specification as follows:

- Specifies that the converted argument is left justified in the output field.
+ Valid for numbers, and specifies that positive numbers have a + sign.
space If the first character of a field is not a sign, a space is added.
0 For numbers, causes the output to be padded to the field width on the left with 0.
For x format, 0x is prefixed to non-zero arguments. For e, f and g formats, the

output always has a decimal point. For g formats, trailing zeros are not removed.

If this is omitted, the output field will be as wide as is required to express the argument. If
this is present, it is a number that sets the minimum width of the output field. If the output
is narrower than this, the field is padded on the left (on the right if the - flag was used) to
this width with spaces (zeros if the 0 flag was used). The maximum width for numbers is
100.

This number sets the maximum number of characters to be printed for a string, the
number of digits after the decimal point for e and f formats, the number of significant
figures for g format and the minimum number of digits for d format (leading zeros are
added if required). It is ignored for c format. There is no limit to the size of a string.
Numeric fields have a maximum precision value of 100.

The format character determines how the argument is converted into text. Both upper or
lower-case version of the format character can be given. If the formatting contains
alphabetic characters (for example the e in an exponent, or hexadecimal digits a-f), if
the formatting character is given in upper case the output becomes upper case too (e+23
and 0x23ab become E+23 and 0X23AB). The formats are:

c The argument is printed as a single character. If the argument is a numeric type, it is
converted to an integer, then the low byte of the integer (this is equivalent to
integer mod 256) is converted to the equivalent ASCII character. You can use
this to insert control codes into the output. If the argument is a string, the first

Print()

Format specifiers

flags

width

precision

format

Print$() Alphabetical command reference Print$()

5-169

character of the string is output. The following example prints two tab characters, the
first using the standard tab escape, the second with the ASCII code for tab (8):

 Print("\t%c", 8);

d The argument must be a numeric type and is printed as a decimal integer with no
decimal point. If a string is passed as an argument the field is filled with asterisks.
The following prints “ 23,0002”:

 Print("%4d,%.4d", 23, 2.3);

e The argument must be a numeric type, otherwise the field is filled with asterisks. The
argument is printed as {-}m.dddddde±xx{x} where the number of d’s is set by the
precision (which defaults to 6). A precision of 0 suppresses the decimal point unless
the # flag is used. The exponent has at least 2 digits (in some implementations of
Signal there may always be 3 digits, others use 2 digits unless 3 are required). The
following prints “2.300000e+01,2.3E+00”:

 Print("%4e,%.1E", 23, 2.3);

f The argument must be a numeric type, otherwise the field is filled with asterisks. The
argument is printed as {-}mmm.ddd with the number of d’s set by the precision
(which defaults to 6) and the number of m’s set by the size of the number. A
precision of 0 suppresses the decimal point unless the # flag is used. The following
prints “+23.000000,0002.3”:

 Print("%+f,%06.1f", 23, 2.3);

g The argument must be a numeric type, otherwise the field is filled with asterisks.
This uses e format if the exponent is less than -4 or greater than or equal to the
precision, otherwise f format is used. Trailing zeros and a trailing decimal point are
not printed unless the # flag is used. The following prints “2.3e-06,2.300000”:

 Print("%g,%#g", 0.0000023, 2.3);

s The argument must be a string, otherwise the field is filled with asterisks.

x The argument must be a numeric type and is printed as a hexadecimal integer with
no leading 0x unless the # flag is used. The following prints “1f,0X001F”:

 Print("%x,%#.4X", 31, 31);

The d, e, f, g, s and x formats support arrays. One dimensional arrays have elements
separated by commas; two dimensional arrays use commas for columns and new lines for
rows. Extra new lines separate higher dimensions. If there is a format string, the matching
format specifier is applied to all elements.

See also: FilePrint(), Message(), ToolbarText(), Print$(), PrintLog()

This command prints formatted output into a string. The syntax is identical to the
Print() command, but the function returns the generated output as a string.
Func Print$(form$|arg0{, arg1{, arg2...}});

form$ An optional string that specifies how to format the arguments that follow. See
Print() for a full description.

arg1,2 The data to form into a string.
Returns It returns the string that is the result of the formatting operation. Fields that

cannot be printed are filled with asterisks.
See also: FilePrint(), Print(), PrintLog(), ReadStr()

Arrays in the argument list

Print$()

PrintLog() The Signal script language ProcessAll()

5-170

This command prints to the log window. The syntax is identical to the Print()
command, except that the output always goes to the log window and is always placed at
the end of the view contents.
Func PrintLog(form$|arg0{, arg1{, arg2...}});

form$ An optional string that specifies how to format the arguments that follow. See
Print() for a full description.

arg1,2 The data to print.
Returns 0 or a negative error code. Fields that cannot be printed filled with asterisks.
See also: Print(), Print$(), Message()

This function processes data into the current memory or XY view or to an idealised trace
channel in the current data view. The view or channel must have been derived using
SetXXXX() from a source data view which must not have been closed. This function
takes data starting from a specified position in the current frame in the source data view
and processes it.
Func Process(start{, clear%{, opt%{, optx%{, chan%}}}});

start The source view x axis position from which to start processing. Positions less
than MinTime() are treated as MinTime(). If the start position specified plus
the width of data goes past the end of the source data then no data is processed.

clear% If present, and non-zero, the memory view bins are cleared before the results of
the analysis are added to the view and Sweeps() result is reset.

opt% If present, and non-zero, the display of data in the memory view is optimised
after processing the data.

optx% For XY views only, if present and non-zero, the X axis in the XY view is
optimised after processing the data.

chan% For idealised trace channels only, it is the channel number to process to.
Returns One if all is OK, zero if no data was processed or a negative error code.
A common mistake is to forget that the current view is not the source view and to use
View(0).xxx when View(ViewSource()).xxx was intended.

See also: SetXXX(), SetAverage(), SetPower(),ProcessAll(),
ProcessFrames(), ProcessOnline(), Sweeps(), Optimise()

This function is used in a data view to process all memory views or idealised trace
channels derived from it.
Func ProcessAll(sFrm%{, eFrm%{, chans%}});

sFrm% The first frame to process.
eFrm% If this is present, a range of frames is processed, from sFrm% to eFrm%

inclusive. If omitted only sFrm% is processed.
chans% If this is present and set to –1 then all idealised trace channels will be processed

otherwise all memory views will be processed.
For each derived memory view, the settings of the clear% and opt% arguments are taken
from the last call of Process() or ProcessFrames(). If a memory view had not yet
been processed clear% is zero and opt% is non-zero.
Returns Zero if no errors or a negative error code.
See also: Process(), ProcessFrames(), ProcessOnline()

PrintLog()

Process()

ProcessAll()

ProcessFrames() Alphabetical command reference ProcessFrames()

5-171

This function is used in a derived memory view to process specified frames from the
source data view. You can process a range of frame numbers or specify a list of frames.
Func ProcessFrames(sF%{, eF%{, mode%{, clear%{, opt%{, optx%
 {, chan%{, auto%}}}}}}});
Func ProcessFrames(frm$|frm%[]{, mode%{, clear%{, opt%{, optx%
 {, chan%{, auto%}}}}}});

sF% First frame to process. This option processes a range of frames. sFrm% can also
be a negative code as follows:
-1 All frames in the file are included.
-2 The current frame.
-3 Frames must be tagged.
-6 Frames must be untagged.

eF% Last frame to process. If this is -1 the last frame in the data view is used. This
argument is ignored if sF% is a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string
such as “1..32,40,50”.

frm%[] An array of frame numbers to process. This option provides a list of frame
numbers in an array. The first element in the array holds the number of frames in
the list.

mode% If mode% is present, it is used to supply an additional criterion for including each
frame in the range, list or specification. If mode% is absent all frames are
included. The modes are:
0-n Frames must have a state matching the value of mode%.
-1 All frames in the specification are processed.
-2 Only the current frame, if in the list, will be processed.
-3 Frames must also be tagged.
-6 Frames must also be untagged.

clear% If present and non-zero, the memory view bins are cleared before the results of
processing the frames are added to the view and Sweeps() result is reset.

opt% If present and non-zero, the display of data in the memory view is optimised
after processing the data.

optx% For XY views only, if present and non-zero, the X axis in the XY view is
optimised after processing the data.

chan% For idealised trace channels only, this is the channel number to process to. It is
ignored if the process is not generating an idealised trace.

auto% Set this to 1 for automatic reprocessing if the source data changes, otherwise
omit it or set it to zero.

Returns Zero if no errors or a negative error code.
See also: Process(), ProcessAll(), ProcessOnline()

ProcessFrames()

ProcessOnline() The Signal script language ProcessOnline()

5-172

This function is equivalent to the process dialog for a memory view derived from a
sampling document view. It does not cause any processing, but sets up processing so that
when the memory view for which the function is used is given a chance to update, the
parameters set by this command are used.
Func ProcessOnline(mode%{, val%{, up%{, opt%{, optx%{, chan%
(,clear%}}}}}});

mode% The modes are:
0 All sampled sweeps are processed regardless of whether they are written to

disk. This mode will not work if you are using Fast triggers or Fast Fixed int
sampling modes.

-1 All sweeps saved to disk are processed.
-3 All tagged frames written to disk are processed.
-4 Sweeps with a state of val% are processed. A state of 0 is used if val% is

not provided.
-5 Processes the last val% sweeps including the latest. The result is cleared

and Sweeps() count is reset to 0 before each update.
-6 All untagged frames written to disk are processed.

val% With mode% set to -4 or -5 this provides the value for the frame state or the
number of frames respectively. With other mode% values it sets a frame subset
value that qualifes the frames selected by mode%; positive val% values set a
frame state code while using -1, -3 or -6 selects all, tagged and untagged frames
respectively. Other negative values will give undefined results.

up% This provides the number of frames before the next process or zero for no gap.
opt% If present and non-zero, the memory view display is optimised after each

process.
optx% For XY views only, if present and non-zero, the X axis in the XY view is

optimised after processing the data.
chan% For idealised trace channels only. This is the channel number to process to.
clear% Set to 1 to clear bins before each process. Set to 0 or omit to leave bins

unchanged before each process.
Returns 0 or a negative error code.
See also: Process(), ProcessAll(), ProcessFrames()

ProcessOnline()

Profile() Alphabetical command reference Profile()

5-173

This command can create and delete keys and store and read integer and string values
within the Signal section of the registry. Signal stores information within the
HKEY_CURRENT_USER\Software\CED\Signal section of the system registry. The
registry is organised as a tree of keys with lists of values attached to each key. If you
think of the registry as a filing system, the keys are folders and the values are files. Keys
and values are identified by case-insensitive text strings.

You can view and edit the registry with the regedt32 program, which is part of your
system. Select Run from the start menu and type regedt32, then click OK. Please read
the regedt32 help information before making any registry changes. It is a very powerful
program; careless use can severely damage your system.

Do not write vast quantities of data into the registry; it is a system resource and should be
treated with respect. If you must save a lot of data, write it to a text or binary file and save
the file name in the registry. If you think that you may have messed up the Signal section
of the registry, use regedt32 to locate the Signal section and delete it. The next time
you run Signal the section will be restored; you will lose any preferences you had set.
Proc Profile(key${, name${, val%{, &read%}}});
Proc Profile(key${, name${, val${, &read$}}});

key$ This string sets the key to work on inside the Signal section of the registry. If
you use an empty string, the Signal key is used. You can use nested keys
separated by a backslash, for example "My bit\\stuff" to use the key stuff
inside the key My bit. The key name may not start with a backslash.
Remember that you must use two backslashes inside quote marks; a single
backslash is an escape character. It is never an error to refer to a key that does
not exist; the system creates missing keys for you.

name$ This string identifies the data in the key to read or write. If you set an empty
name, this refers to the (default) data item for the key set by key$.

val This can be either a string or an integer value. If read is omitted, this is the
value to write to the registry. If read is present, this is the default value to return
if the registry item does not exist.

read If present, it must have the same type as val. This is a variable that is set to the
value held in the registry. If the value is not found in the registry, the variable is
set to the value of the val argument.

Profile() can be used with 1 to 4 arguments. It has a different function in each case:
1 The key identified by key$ is deleted. All sub-keys and data values attached to the

key and sub-keys are also deleted. Nothing is done if key$ is empty.
2 The value identified by name$ in the key key$ is deleted.
3 The value identified by name$ in the key key$ is set to val% or val$.
4 The value identified by name$ in the key key$ is returned in val% or val$.

The following script example collects values at the start, then saves them at the end:
var path$, count%;
Profile("My data", "path", "c:\\work", path$); 'get initial path
Profile("My data", "count", 0, count%); 'and initial count
... 'your script...
Profile("My data","path", path$); 'save final value
Profile("My data","count", count%); 'save final count

The HKEY_CURRENT_USER\Software\CED\Signal key contains the following keys
that are used by Signal:

This key holds the list of scripts to load into the script bar when Signal starts.
This key holds the editor settings for scripts, output sequences and general text editing.

Profile()

Registry use by Signal

BarList
Editor

Profile() The Signal script language Profile()

5-174

This key holds the margins in units of 0.01 mm for printing data views, and the margins
in mm for text-based views. It also holds header and footer text for text-based views.
The values in this key are mainly set by the Edit menu preferences. If you change any
Edit menu Preferences value in this key, Signal will use the changed information
immediately. The values are all integers except the file path, which is a string:

Assume Power 0=Do not assume Power1401 hardware, 1=do assume.
Defer optimise 0=Y-axis optimised on data aquired so far when requested on-

line, 1=Y-axis optimise defered to sweep end when requested
on-line.

Enhanced Metafile 0=Windows metafile, 1=enhanced metafile for clipboard.
Enter debug on error 1=Enter the script debugger when an error occurs. 0=Do not.
File shorts 0=Waveform data to be written to CFS file as 16 bit integers,

1=to be written as floating point values. Add 256 if calibrated
zero is to be kept at zero volts.

File update 0=Discard changes to data, 1=query the user, 2=always save
changes.

Font Italic 0=Use non-italic font as default for file and memory views.
1=use italic font.

Font Name Name of font to use as default for file and memory views.
Font Pitch 0=Use default-pitch font for the above, 1=use a fixed-pitch font

(all characters the same width), 2=use a variable-pitch font. To
this value you should add: 4=don’t care which family of font
used, 8=use a serifed, variable-width font, 16=sans-serif,
variable width font, 32=constant-width font, 64=cursive font,
128=decorative font.

Font Size Size of font to use as default for file and memory views.
Font Weight 400=Normal font, 700=bold font.
Force idle cycles 0 – 65535 number of time a script idle is called before handing

time back to the System. 0=No limit.
Force idle time Number of ms to force Signal to idle for before giving time

back to System (0-200). 0=No limit.
Frame time mode 0=Seconds, 1=HH:MM:SS, 2=Time of day.
Line thickness codes Bits 0-3 = Axis code, bits 4-7 = Data code. The codes 0-15 map

onto the 16 values in the drop down list. Bit 7=1 to use lines, not
rectangles, to draw axes.

Low channels at top 0=Standard display shows low channel at bottom, 1=at top.
Metafile Scale 0-11 selects from the list of allowed scale factors.
New file path New data file directory or blank for current folder.
No flicker free drawing 0=Use flicker free drawing, 1=Do not.
No save prompt 0=Prompt to save derived views, 1=no prompt.
Online ADC range 0=Maintain always, 1=Keep showing full ADC range if already

doing so, 2=Maintain ADC range percentage.
Prompt comment 1=Prompt for File Comment when sampling stops. 0=Do not.
Save modified scripts 1=Save modified scripts before running them. 0=Do not save.
Time mode 0=Display seconds, 1=display ms, 2=display μs.
Update interval Number of ms between on-line updates or script idles.
Provide clamp features 0=No clamping, 1=clamping.
Frame 1 on sample
finish

0=Show last filed frame when sampling finishes, 1=show frame
1 when sampling finishes.

Decorated states text
online

0=Don't show extra states information in sampling window title,
1= show extra states information.

The keys with names starting "Bars-" are used by system code to restore dockable
toolbars. You can delete them all safely; any other change is likely to crash Signal.

This key holds the list of recently used files that appear at the bottom of the file menu.
This key holds the information to recover data from interrupted sampling sessions.

PageSetup

Preferences

Recent file list
Recover

ProgKill() Alphabetical command reference ProgStatus()

5-175

This is where the evaluate bar saves the last few evaluated lines.
The Tip of the Day dialog uses this key to remember the last tip position.
Signal uses this key to detect when a new version of the program is run for the first time.
In Windows NT derived systems, this key holds the desired working set sizes. The
working set sizes in use are displayed in the Help menu About Signal dialog. Click the
Help button in this dialog to read more about using these registry values. The values are
as follows:

See also: ViewUseColour()

This function terminates a program started using ProgRun(). This is a very powerful
function. It will terminate a program without giving it the opportunity to save data. Use
this command with care!
Func ProgKill(pHdl%);

pHdl% A program handle returned by ProgRun().
Returns Zero or a negative error code.

See also: ProgRun(), ProgStatus()

This function runs a program using command line arguments as if from a DOS-style
command prompt.
Func ProgRun(cmd${, code%{, xLow, yLow, xHigh, yHigh}});

cmd$ The command string as would be typed at a DOS-style prompt. Command lines
that consist of only the data file name will not work correctly; they must start
with the executable file name.

code% If present, this sets the initial application window state: 0=Hidden, 1=Normal,
2=Iconised, 3=Maximised. Some programs force their own window position so
this may not work. The last 4 arguments set the Normal window position:

xLow Position of the left window edge as a percentage of the screen width.
yLow Position of the top window edge as a percentage of the screen height.
xHigh The right hand edge as a percentage of the screen width.
yHigh The bottom edge position as a percentage of the screen height.
Returns A program handle or a negative error code.

See also: ProgKill(), ProgStatus(), System$()

This function is used to check if a program started with ProgRun() is still running. If it
finds that the program has terminated it will close the handle which will then become
invalid if used again.
Func ProgStatus(pHdl%);

pHdl% The program handle returned by ProgRun().
Returns 1 if the program is still running, 0 if it has terminated or a negative error code.

See also: ProgKill(), ProgRun()

Settings
Tip

Version
Win32

Minimum working set Minimum size in kB (units of 1024 bytes), default is 800.
Maximum working set Maximum size in kB, default is 4000 (4 MB).

ProgKill()

ProgRun()

ProgStatus()

ProtocolAdd() The Signal script language ProtocolEnd()

5-176

This function adds a new protocol to the list of protocols defined in the sampling
configuration. This function normally operates on the stored sampling configuration but
if used during sampling it operates upon the on-going sampling.
Func ProtocolAdd(name$);

name$ The name for the new protocol, which must not be blank.
Returns The number for the new protocol or a negative error code.
See also: Protocols(), ProtocolDel(), ProtocolClear(),

ProtocolName$()

This function initialises a protocol defined in the sampling configuration. This function
normally operates on the stored sampling configuration but if used during sampling it
operates upon the on-going sampling.
Func ProtocolClear(num%|name$);

num% The number of the protocol to clear, from 1 to the number returned by
Protocols().

name$ The name of the protocol to be cleared.
Returns Zero or a negative error code.
See also: Protocols(), ProtocolDel(), ProtocolAdd(), ProtocolName$()

This function deletes a protocol from the list defined in the sampling configuration. This
function normally operates on the stored sampling configuration but if used during
sampling it operates upon the on-going sampling.
Func ProtocolDel(num%|name$);

num% The number of the protocol to delete, from 1 to the number returned by
Protocols().

name$ The name of the protocol to be deleted.
Returns Zero or a negative error code.
See also: Protocols(), ProtocolAdd(), ProtocolClear(),

ProtocolName$()

This sets what happens when the end of a protocol is reached. This function normally
operates on the stored sampling configuration but if used during sampling it operates
upon the on-going sampling.
Func ProtocolEnd(num%|name${, atEnd%});

num% The number of the protocol to delete, from 1 to the number returned by
Protocols().

name$ The name of the protocol to be deleted.
atEnd% Set to 0 for the protocol finishing, or 1 to n to select chaining to protocol 1 to n.

No protocol is selected if next value is above current count of protocols.
Returns The previous value of atEnd%.
See also: Protocols(), ProtocolAdd(), ProtocolClear(),

ProtocolName$()

ProtocolAdd()

ProtocolClear()

ProtocolDel()

ProtocolEnd()

ProtocolFlags() Alphabetical command reference ProtocolRepeats()

5-177

This function gets the flags for a protocol defined in the sampling configuration and
optionally sets the flags to a new value. This function normally operates on the stored
sampling configuration but if used during sampling it operates upon the on-going
sampling.
Func ProtocolFlags(num%|name${, new%});

num% The number of the protocol to use, from 1 to the number returned by
Protocols().

name$ The name of the protocol to use.
new% If present, the new protocol flags value. This is the sum of values for each flag

option, the values are:
 1 Initialise pulse variations when protocol starts.
 2 Sampling switches to state 0 when protocol finishes.
 4 Turn on writing to disk when protocol starts.

8 Selects not turning off writing to disk on finishing.
16 Selects creation of a button in the control bar for this protocol.
32 Selects cycling protocol states only on writing, otherwise always.
64 Selects running this protocol automatically at the start of sampling.
128 Enables use of the per-step write flags in the protocol.

Returns The flags for this protocol before the call.
See also: Protocols(), ProtocolClear(), ProtocolName$(),

ProtocolRepeats()

This function gets the name for a protocol defined in the sampling configuration and
optionally sets a new name. This function normally operates on the stored sampling
configuration but if used during sampling it operates upon the on-going sampling.
Func ProtocolName$(num%|name${, new$});

num% The protocol number to use, from 1 to the number returned by Protocols().
name$ The name of the protocol to use.
new$ If present, this sets the new protocol name.
Returns The name of the protocol before this call.
See also: Protocols(), ProtocolAdd(), ProtocolDel(), ProtocolClear()

This function gets the name for a protocol defined in the sampling configuration and
optionally sets a new name. This function normally operates on the stored sampling
configuration but if used during sampling it operates upon the on-going sampling.
Func ProtocolRepeats(num%|name${, new%});

num% The protocol number to use, from 1 to the number returned by Protocols().
name$ The name of the protocol to use.
new% If present, sets the new repeat count. Any repeat count from 1 to 1000 can be

set, or zero for a protocol which repeats forever.
Returns The repeat count for the protocol before the call.
See also: Protocols(), ProtocolFlags(), ProtocolEnd()

ProtocolFlags()

ProtocolName$()

ProtocolRepeats()

Protocols() The Signal script language ProtocolStepSet()

5-178

This function returns the number of protocols defined in the sampling configuration. This
function normally operates on the stored sampling configuration but if used during
sampling it operates upon the on-going sampling.
Func Protocols();

Returns The number of protocols defined in the sampling configuration.
See also: ProtocolAdd(), ProtocolDel(), ProtocolClear(),

ProtocolName$()

This function gets information about a specific step within a protocol defined within the
sampling configuration. This function normally operates on the stored sampling
configuration but if used during sampling it operates upon the on-going sampling.
Func ProtocolStepGet(num%|name$, step, &sta, &rep, &nxt{, &wri});

num% The protocol number to use, from 1 to the number returned by Protocols().
name$ The name of the protocol to use.
step The step in the protocol, from 1 to 10.
sta This parameter is updated with the state for this step.
rep This parameter is updated with the repeat count for this step.
nxt This parameter is updated with the next step value for this step.
wri If present this is updated with the per-step write flag; 1 for writing and 0 for not

writing.
Returns Zero or a negative error code.
See also: Protocols(), ProtocolFlags(), SampleStates(),

ProtocolClear(), ProtocolName$()

This function sets up a specific step within a protocol defined within the sampling
configuration. This function normally operates on the stored sampling configuration but
if used during sampling it operates upon the on-going sampling.
Func ProtocolStepSet(num%|name$, step%, sta, rep, nxt{, wri});

num% The number of the protocol to use, from 1 to the number returned by
Protocols().

name$ The name of the protocol to use.
step% The step in the protocol, from 1 to 10.
sta This parameter sets the state for this step, from 0 to 256.
rep This parameter sets the repeat count for this step, from 1 to 1000.
nxt This parameter sets the next step value for this step, from 0 to 10. A value of

zero terminates protocol execution
wri If present this value sets the per-step write flag; use 1 for writing and 0 for not

writing. If write is omitted the per-step write flag is set to not writing. The per-
step write flags have no effect unless the appropriate enable bit is set in the
protocol flags.

Returns Zero or a negative error code.
See also: Protocols(), ProtocolFlags(), SampleStates(),

ProtocolClear(), ProtocolName$()

Protocols()

ProtocolStepGet()

ProtocolStepSet()

PulseAdd() Alphabetical command reference PulseAdd()

5-179

The PulseXXX family of commands can be used to control the pulse outputs generated
during sampling sweeps. Pulses can be generated on up to eight 1401 DACs and on 8 bits
of dedicated digital output. For the micro1401 and Micro1401 mk II, only two DACs are
available. These functions normally operate on the stored sampling configuration but if
used during sampling they operate upon the on-going sampling.

As part of the Signal multiple states facilities, each state can have a separate set of pulse
outputs. Because of this, all script functions that access the pulses information have a
parameter to select the state. For single states, set this parameter to zero.

Individual pulses can be specified by their number or by name. For access by number the
pulses for a given output are kept in a sorted list in order of their start time. The (always
present) initial level is zero, subsequent pulses are 1 and upwards. Though access by
number seems straightforward, it does have some drawbacks. Firstly, when the start time
of a pulse is changed the ordering of the list can change and the pulse number will be
changed. Secondly, for complex reasons, the arbitrary waveform output item is always
attached to the control track list, and does not appear in the output lists for the DACs to
which the waveform output is sent. This can make things very confusing! Therefore we
recommend that, for non-trivial pulse output arrangements with a lot of pulse movement
or manipulation, individual pulses are accessed by name.

See also: PulseAdd(), PulseDataGet(), PulseDataSet(), PulseDel(),
PulseFlags(), PulseName$(), Pulses(), PulseTimesGet(),
PulseTimesSet(), PulseType(), PulseVarGet(), PulseVarSet(),
PulseWaveformGet(), PulseWaveformSet(), PulseWaveGet(),
PulseWaveSet()

This function adds a new pulse to the output pulses for a given state and output. The
pulse created will use a default set of parameters depending upon the type of pulse and
the outputs used (for digital outputs the pulse is created on all enabled outputs, for DAC
output pulses the pulse created will have a default amplitude and other values), you will
need to use PulseDataSet() to change these parameters from the default values to
what is actually wanted. Note that, if you add a waveform output item to a set of pulses
that already contains another waveform output item, the output DACs and waveform rate
are set to match the existing waveform(s) as these cannot vary between the waveform
items. The ability to add multiple waveform items was added in Signal version 5.00.
Func PulseAdd(state%, out%, type%, name$, time, len{, flags%});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track,
though for items that can be added to the control track (waveform and marker
generation items) out% is ignored and the control track is always used.

type% A code for the type of pulse. The legal codes are:
 1 A simple square pulse.
 2 A square pulse with varying amplitude.
 3 A square pulse with varying duration.
 4 A ramp pulse.
 5 A cosine wave segment.
 6 An arbitrary waveform, rate is initialised to 100Hz (out% is ignored).
 7 A pulse train.
 8 A digital marker generation item (out% is ignored).
name$ The name for the new pulse. This can be blank.
time The start time for the pulse in seconds from the start of the outputs.

PulseXXX()
 Pulse output

commands

PulseAdd()

PulseClear() The Signal script language PulseDataGet()

5-180

len The length of the pulse, in seconds. For a pulse train, this is the length of the
individual pulses in the train, not the length of the entire train.

flags% If present, this sets the flags for the pulse. Flag bit 0 is set for varying-width
pulses to push following pulses back, bit 1 is set for pulses to stay up at the end,
bit 3 is set for a marker item to read the digital inputs to set the marker data. If
this parameter is omitted, the pulse flags are cleared.

Returns The number of the new pulse or a negative error code. The initial level item is
always present as pulse zero, so the smallest successful return value is 1.

See also: Pulses(), PulseDel(), SampleStates(), SampleOutLength(),
PulseName$()

This function deletes all the pulses for a given state and output (or all outputs) and sets
the initial levels of the outputs to zero.
Func PulseClear(state%{, out%});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track. If
this parameter is omitted, then all outputs for the selected state are cleared. Note
that to remove arbitrary waveform outputs you should clear the control track and
not the DACs on which the waveforms are output.

Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseDel(), SampleStates()

This function retrieves the amplitude and other values for a pulse in the outputs for a
given state and output. Up to four data values can be retrieved, the meaning of most of
these varies with the pulse type. A separate function, PulseWaveGet(), retrieves the

settings for waveform outputs.
Func PulseDataGet(state%, out%, num%|name$, &{, &val1{, &val2
{, &val3}}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.
name$ The name of the pulse to use.
amp This is updated with the amplitude or level of the pulse, or the bit value for

digital pulses.
val1 This is updated with the end amplitude for ramps, the initial phase for cosines,

the number of pulses for pulse trains and the marker code for digital marker
items.

val2 This is updated with the step mode for ramps, the centre value for sines and the
gap for pulse trains. The step mode value is 0 for both ends, 1 for start only and
2 for end only.

val3 This is updated with the cycle period for sines only.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseDataSet(), PulseName$()

PulseClear()

PulseDataGet()

PulseDataSet() Alphabetical command reference PulseDel()

5-181

This function sets the amplitude and other values for a pulse in the outputs for a given
state and output. Up to four data values can be set, the meaning of most of these varies
with the pulse type. A separate function, PulseWaveSet(), is used to change the
settings for arbitrary waveform output.
Func PulseDataSet(state%, out%, num%|name$, amp{, val1{, val2
{, val3}}}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.
name$ The name of the pulse to use.
amp This sets the amplitude or level of the pulse, or the bit value for digital pulses.
val1 This sets the end amplitude for ramps, the initial phase for cosines, the number

of pulses for pulse trains and the marker code for digital marker items.
val2 This sets the step mode for ramps, the centre value for sines and the gap between

pulses for pulse trains. The step mode value is 0 for both ends, 1 for start only
and 2 for end only.

val3 This sets the cycle period for sines only.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseDataGet(), PulseName$()

This function deletes a pulse from the output pulses for a given state and output.
Func PulseDel(state%, out%, num%|name$);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse to delete, from 1 to the number of pulses-1 (you cannot
delete pulse zero; the initial level).

name$ The name of the pulse to delete. You cannot delete the initial level.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

PulseDataSet()

PulseDel()

PulseFlags() The Signal script language Pulses()

5-182

This function retrieves, and optionally sets, the options flags for a pulse in the outputs for
a given state and output.
Func PulseFlags(state%, out%, num%|name${, flags});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.
name$ The current name of the pulse in question.
flags If present, this sets the new flags for the pulse. Flag bit 0 is set for varying-width

pulses to push following pulses back, bit 1 is set for pulses to stay up at the end
and bit 3 is set for digital marker items to read the digital inputs to set the
marker code (bit 2 is reserved).

Returns The flags for the pulse at the time of the function call.
See also: Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

This function retrieves, and optionally sets, the name of a pulse in the outputs.
Func PulseName$(state%, out%, num%|name${, new$});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.
name$ The current name of the pulse in question.
new$ The new name for the pulse. Blank pulse names are legal.
Returns The name of the pulse at the time of the function call.
See also: Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

This function returns the number of pulses for a given state and output. This number is
usually straightforward to use, but can be complicated by the fact that waveform output
items always appear on control track and not on any DAC used for the waveform output.
Func Pulses(state%, out%);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values from 0 upwards select the
corresponding DAC, -1 selects the digital outputs, -2 the control track.

Returns The number of pulses on this output. This value will be 1 or more as there is
always one pulse defined for an output, the initial level.

See also: PulseDel(), PulseAdd(), PulseWaveSet(), PulseName$()

PulseFlags()

PulseName$()

Pulses()

PulseTimesGet() Alphabetical command reference PulseTimesSet()

5-183

This function retrieves the times for a pulse in the outputs for a given state and output.
Func PulseTimesGet(state%, out%, num%|name$, &time, &len);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 1 to the number of pulses-1. Zero is
not meaningful because there are no times for the initial level.

name$ The name of the pulse to use.
time This is updated with the start time for the pulse, in seconds from the start of the

pulse outputs.
len This is updated with the length of the pulse, in seconds.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseTimesSet(), SampleOutMode()

This function sets the times for a pulse in the outputs for a given state and output.
Func PulseTimesSet(state%, out%, num%|name$, time, len);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 1 to the number of pulses-1. Zero is
not usable because there are no times for the initial level.

name$ The name of the pulse to use.
time This sets the start time for the pulse, in seconds from the start of the pulse

outputs.
len This sets the length of the pulse in seconds. This does not affect arbitrary

waveform items; use PulseWaveSet().
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseTimesGet(), SampleOutMode()

PulseTimesGet()

PulseTimesSet()

PulseType() The Signal script language PulseVarGet()

5-184

This function returns a code for the type of a pulse defined in the outputs.
Func PulseType(state%, out%, num%|name$);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.
name$ The name of the pulse in question.
Returns A code for the type of pulse, as follows:
 0 The initial level for the output.
 1 A simple square pulse.
 2 A square pulse with varying amplitude, DACs only.
 3 A square pulse with varying duration.
 4 A ramp output, DACs only.
 5 A cosine wave segment, DACs only.
 6 An arbitrary waveform, control track only.
 7 A pulse train.
 8 A digital marker generation item, control track only.
See also: Pulses(), PulseAdd(), PulseDataGet(), PulseDataSet()

This function retrieves the values controlling the automatic variation of a pulse in the
outputs for a given state and output.
Func PulseVarGet(state%, out%, num%|name$, &step{, &repeat
 {, &steps}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.
name$ The name of the pulse in question.
step This is updated with the step value for the pulse.
repeat This, if present, is updated with the repeat count for each step in the variation.
steps This, if present, is updated with the total steps for the variation. Note that the

number of values for the variation is steps+1 as the initial value is also used.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseVarSet(), PulseName$()

PulseType()

PulseVarGet()

PulseVarSet() Alphabetical command reference PulseWaveformGet()

5-185

This function sets values controlling the automatic variation of a pulse in the outputs for a
given state and output.
Func PulseVarSet(state%, out%, num%|name$, step{, repeat
 {, steps}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

out% The output to which this applies. Values of zero upwards select the
corresponding DAC output, -1 selects the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.
name$ The name of the pulse to use.
step This sets the step value for the pulse.
repeat This, if present, sets the repeat count for each step in the variation.
steps This, if present, sets the total steps for the variation. Note that the number of

values for the variation is steps+1 as the initial value is also used.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseVarGet(), PulseName$()

This function retrieves the waveform data values sent to a given DAC as part of an
arbitrary waveform item in the pulses for a given state.
Func PulseWaveformGet(state%{, num%}, dac%, dat%[]|dat[]);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

num% The The number of the waveform output within the state, from 1 to the number
of waveform output items. This item can be omitted for compatibility with
earlier versions of Signal, in which case waveform item number 1 will be used.
This optional parameter was added in Signal version 5.00.

dac% The DAC number for which we want data. If the DAC is not used, no data will
be returned.

dat%[] An integer array that will be filled with the data for the DAC. The values are the
16-bit integer values that would be written to the DAC. A value of -32768
corresponds to an output of -5 volts, 32767 corresponds to +5 volts (assuming 5-
volt 1401 hardware). If the array is too short to hold all of the waveform, it will
be filled with the initial points of the waveform. If the array is longer than the
waveform, all the points will be copied and the rest of the array left unchanged.

dat[] A real array that will be filled with the data for the DAC. The values are
calibrated using the appropriate DAC scaling factors. If the array is too short to
hold all of the waveform, it will be filled with the initial points of the waveform.
If the array is longer than the waveform, all the points will be copied and the rest
of the array left unchanged.

Returns The number of points copied or a negative error code.
See also: Pulses(), PulseAdd(), PulseWaveSet(), PulseWaveGet(),

PulseWaveformSet()

PulseVarSet()

PulseWaveformGet()

PulseWaveformSet() The Signal script language PulseWaveGet()

5-186

This function sets the waveform data values sent to a given DAC as part of an arbitrary
waveform item in the pulses for a given state.
Func PulseWaveformSet(state%{, num%}, dac%, dat%[]|dat[]);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

num% The number of the waveform output within the state, from 1 to the number of
waveform output items. This item can be omitted for compatibility with earlier
versions of Signal, in which case waveform item number 1 will be used. This
optional parameter was added in Signal version 5.00.

dac% The DAC number for the data. If the DAC is not used, the function will do
nothing.

dat%[] An integer array that holds the new data for the DAC. The values are the 16-bit
integer values that would be written to the DAC. A value of -32768 corresponds
to an output of -5 volts, 32767 corresponds to +5 volts (assuming 5-volt 1401
hardware). If the array is too short to hold all the waveform points, only the
earlier points in the waveform will be changed. If the array is longer than the
waveform, the extra data in the array is unused.

dat[] A real array that holds the new data for the DAC. The values are converted into
DAC output values using the appropriate DAC scaling factors. If the array is too
short to hold all of the waveform points, only the earlier points in the waveform
will be changed. If the array is longer than the waveform, the extra data in the
array is unused.

Returns The number of waveform points changed or a negative error code.
See also: Pulses(), PulseAdd(), PulseWaveSet(), PulseWaveGet(),

PulseWaveformGet()

This function retrieves the settings of an arbitrary waveform item in the pulses for a given
state. Note that the mask% and rate values are the same for all waveform items.
Func PulseWaveGet(state%{, num%}, &mask, &rate, &points);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

num% The number of the waveform output within the state, from 1 to the number of
waveform output items. This item can be omitted for compatibility with earlier
versions of Signal, in which case waveform item number 1 will be used. This
parameter was added in Signal version 5.00.

mask This is updated with the DAC mask value for the output. This has one bit set for
each DAC used, bit 0 for DAC 0 and so forth.

rate This is updated with the output rate for the waveform data, in Hz.
points This is updated with the number of points of data for each DAC.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseWaveSet()

PulseWaveformSet()

PulseWaveGet()

PulseWaveSet() Alphabetical command reference Rand()

5-187

This function sets the waveform settings for an arbitrary waveform item in the pulses for
a given state. Note that, as the mask% and rate values are the same for all waveform
items, changing either of these in one waveform item changes all such items.
Func PulseWaveSet(state%{, num%}, mask, rate, points);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple
states are not in use.

num% The number of the waveform output within the state, from 1 to the number of
waveform output items. Prior to version 5.00 of Signal this value was ignored,
set this to 1 for compatibility with these earlier versions.

mask This sets the DAC mask value for the output, which controls which DACs are
used. This has one bit set for each DAC used, bit 0 for DAC 0 and so forth.

rate This sets the output rate for the waveform data, in Hz.
points This sets the number of points of data for each DAC in the mask.
Returns Zero or a negative error code.
See also: Pulses(), PulseAdd(), PulseWaveGet()

This function is used to ask the user a Yes/No question. It opens a window with a
message and two buttons. The window is removed when a button is pressed.
Func Query(text1${, yes${, no$}});

text1$ This string forms the text in the window. If the string contains a vertical bar
character (|), the portion of the string before the | will be used to set the title of
the window. Up to 20 lines of text can be shown, each up to 60 characters long.

yes$ This sets the text for the first button. If this argument is omitted, "Yes" is used.
no$ This sets the text for the second button. If this is omitted, "No" is used.
Returns 1 if the user selects Yes or presses Enter, 0 if the user selects the No button.
See also: Print(), Input(), Message(), DlgCreate()

This function returns pseudo-random numbers with a uniform density over a given range.
The values returned are R * scl + off where R is a random number in the range 0 up to,
but not including, 1. When you start Signal, the generator is initialised with a random
seed based on the time. If you require a repeatable sequence, you must set the seed. The
sequence is independent of RandExp() and RandNorm().
Func Rand(seed);
Func Rand({scl, off});
Func Rand(arr[]{[]}{, scl{, off}});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside
this range, the fractional part of the number is used. If you use 0.0 as the seed,
the generator is initialised with a seed based on the time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an
integer array is used, the random number is truncated to an integer.

scl This scales the random number. If omitted, it has the value 1.
off This offsets the random number. If omitted it has the value 0.
Returns If the first argument is not an array, the return value is a random number in the

range off up to off+scl. If the first argument is an array, the return is 0.0.

See also: RandExp(), RandNorm()

PulseWaveSet()

Query()

Rand()

RandExp() The Signal script language RandNorm()

5-188

This function returns pseudo-random numbers with an exponential density, suitable for
generating Poisson statistics. The values returned are R * mean + off where R is a
random number with the density function p(x) = e-x. When you start Signal, the generator
is initialised with a random seed based on the time. For repeatable sequences, you must
set a seed. The sequence is independent of Rand() and RandNorm().
Func RandExp(seed);
Func RandExp({mean, off});
Func RandExp(arr[]{[]}{, mean{, off}});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside
this range, the fractional part of the number is used. If you use 0.0 as the seed,
the generator is initialised with a seed based on the time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an
integer array is used, the random number is truncated to an integer.

mean This scales the random number. If omitted, it has the value 1.
off This offsets the random number. If omitted it has the value 0.
Returns If the first argument is not an array, the return value is a random number. If a

seed is given, a random number is still returned. If the first argument is an array,
the return value is 0.0.

The following example fills an array with event times with a mean interval t:
RandExp(arr[], t); 'Fill arr with event intervals
ArrIntgl(arr[]); 'convert intervals to times

See also: Rand(), RandNorm()

This function returns pseudo-random numbers with a normal density. The values returned
are R * scl + off where R is a random number with a normal probability density
function p(x) = (2π)-½e-x2/2; this has a mean of 0 and a variance of 1. When you start
Signal, the generator is initialised with a random seed based on the time. For a repeatable
sequence, you must set a seed. The sequence is independent of Rand() and RandExp().
Func RandNorm(seed);
Func RandNorm({scl, off});
Func RandNorm(arr[]{[]}{, scl{, off}});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside
this range, the fractional part of the number is used. If you use 0.0 as the seed,
the generator is initialised with a seed based on the time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an
integer array is used, the random number is truncated to an integer.

scl This scales the random number. If omitted, it has the value 1.
off This offsets the random number. If omitted it has the value 0.
Returns If the first argument is not an array, the return value is a random number. If a

seed is given, a random number is still returned. If the first argument is an array,
the return value is 0.0.

See also: Rand(), RandExp()

RandExp()

RandNorm()

Read() Alphabetical command reference Read()

5-189

This function takes the next line read from the current view as the source of a text string
and converts the text into variables. The read starts at the current position of the text
cursor. The text cursor moves to the start of the next line after the read.
Func Read({&var1{, &var2{, &var3 ...}}});

varn Arguments must be variables. They can be any type. One dimensional arrays are
allowed. The variable type determines how the function extracts data from the
string. In a successful call, each variable will be matched with a field in the
string, and the value of the variable is changed to the value found in the field.

 A call to Read() with no arguments skips a line.
Returns The function returns the number of fields in the text string that were successfully

extracted and returned in variables, or a negative error code. Attempts to read
past the end of the file produce the end of file error code.

 It is not considered an error to run out of data before all the variables have been
updated. If this is a possibility you must check that the number of items returned
matches the number you expected. If an array is passed in, it is treated as though
it was the number of individual values held in the array.

The source string is expected to hold data values as real numbers, integer numbers and
strings. Strings can be delimited by quote marks, for example "This is a string", or
they can be just text. However, if a string is not delimited by quotes, it is deemed to run
to the end of the source string, so no other items can follow it.

The fields in the source string are separated by white space (tabs and spaces) and
commas. Space characters are “soft” separators. You can have any number of spaces
between fields. Tabs and commas are treated as “hard” separators. Two consecutive tabs
or commas, or a tab and a comma (with or without intervening spaces), imply a blank
field. When reading a field, the following rules are applied:

1. Space characters are skipped over
2. Characters that are legal for the variable into which data is to be read are extracted

until a non-legal character or a separator or end of data is found. The characters read
are converted into the variable type. If an error occurs in the translation, the function
returns the error. Blank fields assigned to numbers are treated as 0. Blank fields
assigned to strings produce empty strings.

3. Characters are then skipped until a separator character is found or the end of the data
is reached. If the separator is a space, it and any further spaces are skipped. If the
next character is a hard separator it is also skipped.

4. If there are no more variables or no more data, the process stops, or else goes back
to step 1.

The following example shows a source line, followed by a Read() function, then the
assignment statements that would be equivalent to the Read():

"This is text" , 2 3 4,, 4.56 Text too 3 4 5 The source line
n := Read(fred$, jim[1:2], sam, dick%, tom%, sally$, a, b, c);
n := 7;
fred$:= "This is text";
jim[1] := 2; jim[2] := 3;
sam := 4;
dick% := 0;
tom% := 4;
sally$:= "Text too 3 4 5"
a, b and c are not changed

See also: FileOpen(), ReadStr(), ReadSetup()

Read()

Example

ReadSetup() The Signal script language Right$()

5-190

This sets the separators and delimiters used by Read() and ReadStr() to convert text
into numbers and strings. You can also set string delimiters and set a string separator.
Proc ReadSetup({hard${, soft${, sDel${, eDel${, sSep$}}}}});

hard$ The characters to use as hard separators between all fields. If this is omitted or
the string is empty, the standard hard separators of comma and tab are used.

soft$ The characters to use as soft separators. If this is omitted, the space character is
set as a soft separator. If soft$ is empty, no soft separators are used.

sDel$ The characters that delimit the start of a string. If omitted, a double quote is
used. If empty, no delimiter is set. Delimiters are not returned in the string.

eDel$ The characters that delimit the end of a string. If omitted, a double quote is used.
If empty, no delimiter is set. If sDel$ and eDel$ are the same length, only the
end delimiter character that matches the start delimiter position is used. For
example, to delimit strings with <text> or 'text' set sDel$ to "<'" and eDel$ to
">'". You can repeat a character to force different lengths.

sSep$ The list of hard separator characters for strings that have no start delimiter. For
example, setting "|" lets you read one|two|three into three separate strings.

See also: Read(), ReadStr(), Val()

This function extracts data fields from a string and converts them into variables.
Func ReadStr(text$, &var1{, &var2{, &var3...}});

text$ The string used as a source of data.
var The arguments must all be variables. The variables can be of any type, and can

be one dimensional arrays. The type of each variable determines how the
function tries to extract data from the string. See Read() for details.

Returns The function returns the number of fields in the text string that were successfully
extracted and returned in variables, or a negative error code.

 It is not an error to run out of data before all the variables have been updated. If
this is a possibility you must check the returned value. If an array is passed in, it
is treated as though it was the number of individual values held in the array.

See also: Read(), Print$(), Val(), ReadSetup()

This function returns the rightmost n characters of a string.
Func Right$(text$, n);

text$ A string of text.
n The number of characters to return.
Returns The last n characters of the string, or all the string if it is less than n characters.
See also: DelStr$(), InStr(), Left$(), Len(), Mid$()

ReadSetup()

ReadStr()

Right$()

Round() Alphabetical command reference SampleAccept()

5-191

Rounds a real number or an array of reals to the nearest whole number.
Func Round(x|x[]{[]...});

x A real number or an array of reals.
Returns If x is an array it returns 0. Otherwise it returns a real number with no fractional

part that is the nearest to the original number.
See also: Trunc(), Frac()

This function cancels sampling and deletes the views that were being sampled and any
associated result and cursor views. If a memory view derived from the data has been
saved, the saved file remains. It is equivalent to the Abort button on the floating sampling
control window.
Func SampleAbort({noask%});

noask% if present and non-zero, this bypasses the normal querying of the user that is
carried out before this potentially destructive operation.

Returns 0 if sampling was aborted, or a negative error code.
See also: SampleReset(), SampleStart(), SampleStop(), SampleStatus()

This function sets and gets the absolute levels flag as seen in the sampling configuration
dialog Outputs page.
Func SampleAbsLevel({new});

new If present, this sets the new absolute levels flag if non-zero, clears the flag if
zero.

Returns The absolute levels flag from the configuration at the time of the call.
See also: SampleClear(), Pulses()

This flags the current frame 0 data in a sampling document to be accepted or rejected.
Func SampleAccept({yes%});

yes% If this is zero, the frame is rejected, otherwise the frame is written to disk. This
is equivalent to the Accept check box in the sampling control dialog.

Returns 0 if sweep was written successfully or a negative error code.
See also: SamplePause(), SampleStatus(), SampleWrite()

Round()

SampleAbort()

SampleAbsLevel()

SampleAccept()

SampleArtefactGet() The Signal script language SampleAutoFile()

5-192

This command returns the parameters used in automatic artefact rejection during
sampling. Artefact rejection consists of testing all points within a given time range and
rejecting or tagging frames where the points at the ADC limit exceed a set threshold. This
function normally operates on the stored sampling configuration but if used during
sampling it operates upon the on-going sampling.
Func SampleArtefactGet(&mode%, &start, &end, &per{, &lev});

mode% Returned holding the artefact rejection mode: 0 for none, 1 for Tag and 2 for
Reject.

start Returned holding the start time for the search for out-of-range points.
end Returned holding the end time for the search for out-of-range points.
per Returned holding the percentage of out-of-range points that can be tolerated,

frames with more than this are deemed to contain artefacts.
lev The percentage of the ADC range (from zero to full scale) above or below which

will be considered an artefact.
Returns Zero or a negative error code.
See also: SampleArtefactSet(), SampleAccept(), FrameTag(),

SamplePortFull()

This command sets the parameters used in automatic artefact rejection during sampling.
Artefact rejection consists of testing all points within a given time range and rejecting or
tagging frames where the points at the ADC limit exceed a set threshold. This function
normally operates on the stored sampling configuration but if used during sampling it
operates upon the on-going sampling.
Func SampleArtefactSet(mode%, start, end, per{, lev});

mode% Sets the artefact rejection mode: 0 for none, 1 for Tag and 2 for Reject.
start The start time for the search for out-of-range points.
end The end time for the search for out-of-range points.
per The percentage of out-of-range points that can be tolerated, frames with more

than this are deemed to contain artefacts.
lev The percentage of the ADC range (from zero to full scale) above or below which

will be considered an artefact. The default is 100.
Returns Zero or a negative error code.
See also: SampleArtefactGet(), SampleAccept(), FrameTag(),

SamplePortFull()

This gets or sets the flag for file auto-filing as seen in the sampling configuration dialog.
Func SampleAutoFile({yes%});

yes% If present and non-zero, this turns on automatic filing of data when sampling
finishes. If zero or missing it turns automatic filing off.

Returns The automatic filing flag at the time of the function call.
See also: SampleAutoName$(), FileNew()

SampleArtefactGet()

SampleArtefactSet()

SampleAutoFile()

SampleAutoName$() Alphabetical command reference SampleAuxStateParam()

5-193

This gets or sets the template for sampled file auto-naming.
Func SampleAutoName$({name$});

name$ If present, this sets the new template string for file auto-naming (which can be
up to 22 characters long), or turns off auto-naming if it is a blank string. See the
sampling configuration documentation for details on the template string.

Returns The auto-naming template at the time of the function call.
See also: SampleAutoFile(), FileNew()

This function is used to get or set parameters for the auxiliary states device if one is
installed. The meaning and use of these parameters varies according to the type of
auxiliary states device in use. At the time of writing the auxiliary devices supported are
the Magstim and the CED 3304. The meaning of the num% parameter in this function will
depend entirely upon the type of auxiliary states device installed. It is therefore very
important that the value returned by SampleAuxStateParam(0) is checked before using
these functions (for a Magstim you should call SampleAuxStateParam(1) as well to
check the Magstim type) and that nothing is done by the script if the returned values do
not match the supported devices.

Both the Magstim and CED 3304 are potentially dangerous devices. If you use these
script functions carelessly, they could be set to deliver high levels of stimulation or
magnetic field. CED cannot accept any responsibility whatsoever for any harm or
damage resulting.
Func SampleAuxStateParam(num%{, val});

num% Selects the parameter to read or set. The meaning of all parameters except 0
depends on the auxiliary device type.
0 The type of auxiliary device support loaded. -1 = no device, 1=Magstim,

2=CED 3304 current stimulator. You cannot set this parameter.
For a Magstim only:
1 The device in use. -1 = Do not use, 0 = 2002, 1 = BiStim2, 2 = Rapid2, 3 =

dual 2002.
2 The device flags. This is the sum of 1 for the Rapid2 coil interlock ignore,

2 for BiStim2 high-resolution timing, 4 for Rapid2 single pulse mode, 8
for assume BiStim2 independent triggers, 16 to prevent generation of
textual information for the sampling window title and 128 to allow
operation without Magstim hardware being present. Not all of these
values are meaningful with any particular Magstim type.

3 The serial line port (COM port) used to control the Magstim, from 1 to 9.
4 The second serial line port for dual 2002 mode, from 1 to 9.
For a CED 3304 only:
1 CED 3304 in use. -1=Do not use, 0=Use CED 3304.
2 The device flags. This is 1 for the high level trigger, 0 for low trigger. Add

2 to prevent generation of textual information for the sampling window title
3 The serial line port (COM port) used to control the 3304, from 1 to 9.
4 The range switch setting, from 0 (10 microamps) to 3 (10 milliamps).

val If present, this sets the new value of the selected parameter, otherwise it will be
unchanged. It is not possible to set a new value for parameters zero, this is set by
the type of auxiliary device support installed.

Returns The parameter value selected at the time of the function call.
See also: SampleAuxStateValue(), SampleStates(), SampleState()

SampleAutoName$()

SampleAuxStateParam()

Warning

SampleAuxStateValue() The Signal script language SampleBar()

5-194

This function is used to get or set auxiliary states device settings for individual states.
The meaning and use of these settings varies according to the type of auxiliary states
device in use, it is vitally important that you use SampleAuxStateParam(0) in your
script to check that the correct auxiliary states device is installed. At the time of writing
the auxiliary devices supported are the Magstim and the CED 3304.
Func SampleAuxStateValue(state%, num%{, val});

state% The state number for which the settings are being read or written, from zero to
the number of extra states enabled.

num% This selects the setting that will be read or set. The meaning and use of all
settings varies with the type of auxiliary states device in use.
For a Magstim only:
0 The state flags. This is 1 if manual control is selected, otherwise zero.
1 The power level from zero to 100 percent (or 110 percent for Rapid2

single pulse mode).
2 The secondary power level for BiStim2 and dual 2002 devices.
3 The pulse interval for BiStim2 devices.
4 The pulse frequency in Hz for Rapid2 devices.
5 The number of pulses for Rapid2 devices.
For a CED 3304 only:
0 The state flags. Unused with the 3304 and read as 0.
1 The current in uA from zero to the maximum allowed by the range setting.

val If present, this sets the new value of the selected setting, otherwise it will be
unchanged.

Returns The setting value selected at the time of the function call.
See also: SampleAuxStateParam(), SampleStates(), SampleState()

This function gives you access to the Sample toolbar. The format of strings passed by this
command is the button label (up to 8 characters), followed by a vertical bar, followed by
the full path name to a sampling configuration file, including the .sgc file extension,
followed by a vertical bar, then a comment to display when the mouse pointer is over the
button. If you call the command with no arguments it returns the number of buttons in the
toolbar.
Func SampleBar({n%{, &get$}});
Func SampleBar(set$);

n% If set to -1, get$ must be omitted, all buttons are cleared and the function
returns 0. When set to the number of a button (the first button is 0), get$ is as
described above. In this case, the function returns -1 if the button does not exist,
0 if it exists and is the last button, and 1 if higher-numbered buttons exist.

set$ The string passed in should have the format described above. The function
returns the new number of buttons or -1 if all buttons are already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets two buttons:
SampleBar(-1); 'clear all buttons
SampleBar("Fast|C:\\Signal3\\Fast.sgc|Fast 4 channel sampling");
SampleBar("Faster|C:\\Signal3\\FastXX.sgc|Very fast sampling");

See also: App()

SampleAuxStateValue()

SampleBar()

SampleBurst() Alphabetical command reference SampleDacMask()

5-195

This function gets or sets the burst mode sampling flag as seen in the sampling
configuration dialog.
Func SampleBurst({bMode%});

bMode% If present and non-zero this turns burst mode on in the sampling configuration.
Burst mode is often to be preferred, as the actual sampling rate used is more
likely to match the preferred rate set.

Returns 1 if burst mode is on, 0 if it is off.
See also: SampleClear(), SampleRate(), SamplePoints(),

SampleTrigger(), SamplePorts()

This procedure resets the contents of the sampling configuration dialog to a standard
state. You can use the sampling configuration commands to get or change values in the
sampling configuration. There is a full list of the sampling configuration commands in
the Commands by function chapter.
Proc SampleClear();

This function gets the full-scale value used to scale values written to the DACs from the
sampling configuration and optionally sets it to a new value.
Func SampleDacFull(port{, new});

port The DAC number, from 0 to 7.
new If present, sets the value in the units for this DAC corresponding to a full-scale

value. This value is used throughout Signal to calibrate DAC values.
Returns The DAC full-scale value before the call.
See also: Pulses(), SampleDacMask(), SampleDacZero(),

SampleDacUnits$(), SampleStateDac()

This function gets the mask value used to enable the DAC outputs from the sampling
configuration and optionally sets it to a new value.
Func SampleDacMask({new});

new If present, sets the mask enabling the DAC outputs. This mask has one bit for
each DAC, set bits enable the corresponding DAC output.

Returns The DAC outputs mask value before the call.
See also: SampleStatesMode(), SampleDigOMask(), SampleDigIMask(),

SampleStateDac()

SampleBurst()

SampleClear()

SampleDacFull()

SampleDacMask()

SampleDacUnits$() The Signal script language SampleDigMark()

5-196

This function gets the units string for a DAC from the sampling configuration and
optionally sets it to a new value.
Func SampleDacUnits$(port{, new$});

port The DAC number, from 0 to 7.
new If present, sets the units string for this DAC. This value is used throughout

Signal to calibrate DAC values.
Returns The DAC units string before the call.
See also: Pulses(), SampleDacMask(), SampleDacFull(),

SampleDacZero(), SampleStateDac()

This function gets the zero value used to scale values written to the DACs from the
sampling configuration and optionally sets it to a new value.
Func SampleDacZero(port{, new});

port The DAC number, from 0 to 7.
new If present, sets the value in the units for this DAC corresponding to a zero value.

This value is used throughout Signal to calibrate DAC values.
Returns The DAC zero value before the call.
See also: Pulses(), SampleDacMask(), SampleDacFull(),

SampleDacUnits$(), SampleStateDac()

This function gets the mask value used to enable the digital inputs for the External
digital multiple states mode from the sampling configuration and optionally sets it to a
new value.
Func SampleDigIMask({new});

new If present, sets the mask enabling the digital inputs. This mask has one bit for
each digital input, set bits enabling the corresponding inputs. This value is only
used in External digital states mode.

Returns The digital inputs mask value before the call.
See also: SampleStatesMode(), SampleStateDig(), SampleDacMask(),

SampleDigOMask()

This function sets and gets the flag for enabling the digital marker channel in the
sampling configuration.
Func SampleDigMark({on%});

on% If present and non-zero, enables the marker channel
Returns 1 if the marker channel was on, 0 if it was off.
See also: SampleClear(), SampleKeyMark()

SampleDacUnits$()

SampleDacZero()

SampleDigIMask()

SampleDigMark()

SampleDigOMask() Alphabetical command reference SampleHandle()

5-197

This function gets the mask value used to enable the digital outputs from the sampling
configuration and optionally sets it to a new value.
Func SampleDigOMask({new});

new If present, sets the mask enabling the digital outputs. This mask has one bit for
each digital output, set bits enabling the corresponding outputs.

Returns The digital outputs mask value before the call.
See also: SampleStatesMode(), SampleStateDig(), SampleDacMask(),

SampleDigIMask()

This function sets and gets the sweep interval for Fixed interval and Fast Fixed int
sweep modes, as stored in the pulses information. Note that this sets the interval after
frames with the specified state, not the interval before a frame. This function normally
operates on the stored sampling configuration but, if used during sampling, it operates
upon the on-going sampling.
Func SampleFixedInt(state{, period});

state This sets the state (set of pulses) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

period If present, this argument sets the fixed interval period, in seconds.
Returns The fixed interval period at the time of the call.
See also: SampleOutMode(), SampleOutTrig(), SampleOutClock(),

SampleFixedVar(), Pulses(), SampleStates()

This function sets and gets the percentage variation of the sweep interval for Fixed
interval sweep mode, as stored in the pulses information. This function normally operates
on the stored sampling configuration but, if used during sampling, it operates upon the
on-going sampling.
Func SampleFixedVar(state{, vary});

state This sets the state (set of pulses) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

vary If present, this argument sets the fixed interval variation, from 0 to 100 percent.
Returns The fixed interval variation percentage at the time of the call.
See also: SampleOutMode(), SampleOutTrig(), SampleOutClock(),

SampleFixedInt(), Pulses(), SampleStates()

This gets the handle of a view associated with sampling. This can be used to position,
show or hide the sampling control panel or the output control panel.
Func SampleHandle(which%);

which% Selects which view handle to return:
0 Main file view.
1 Sampling control panel.
2 Sequencer control panel.
3 Pulses configuration dialog.
4 States control bar.
5 Clamp control bar.

Returns The view handle or 0 if the view does not exist.
See also: View(), ViewList(), Window(), WindowVisible()

SampleDigOMask()

SampleFixedInt()

SampleFixedVar()

SampleHandle()

SampleKey() The Signal script language SampleLimitSize()

5-198

This procedure adds events to the keyboard marker channel, exactly as if you had typed
them (with the sampling document view as the current view). If there is no sampling, the
procedure does nothing. If the output sequencer is running, and you add a key that
corresponds to a key linked to a sequencer step, the sequencer jumps to the step.
Func SampleKey(key$);

key$ The first character of the string is added to the keyboard marker channel.
Returns The time in seconds at which the marker was added to the keyboard marker

channel.
See also: SampleClear(), SampleKeyMark()

This function turns the keyboard marker channel on or off or gets the current setting of
this from the sampling configuration.
Func SampleKeyMark(on%);

on% If present and non-zero this turns keyboard markers on in the sampling
configuration.

Returns 1 if the keyboard channel is on in the sampling configuration, 0 if not.
See also: SampleClear(), SampleDigMark(), SampleKey()

This function corresponds to the Number of Frames field on the Automation page of
the sampling configuration dialog.
Func SampleLimitFrames({limit%});

limit% The number of frames to set as a limit. A positive number sets the limit and
checks the box (enabling the limit). A negative number sets the limit to the
positive time, but clears the check box (so the limit is not used). A value of zero
or omitting the argument, leaves the time limit unchanged.

Returns The function returns the frames limit as it was at the time of the call. If the limit
is disabled, the number of frames is returned negated.

See also: SampleClear(), SampleLimitSize(),SampleLimitTime(),
SampleWrite()

This function corresponds to the File size field on the Automation page of the sampling
configuration dialog.
Func SampleLimitSize({size});

size The size limit for the output file, in KB. A positive value sets the size and
enables the limit. A negative value sets the limit to the positive value of size, but
disables the limit. A zero value, or omitting the argument, means no change.

Returns The limit before the call. If the limit is disabled, the value is returned negated.
See also: SampleClear(), SampleLimitFrames(), SampleLimitTime(),

SampleWrite()

SampleKey()

SampleKeyMark()

SampleLimitFrames()

SampleLimitSize()

SampleLimitTime() Alphabetical command reference SampleOutClock()

5-199

This function corresponds to the Run time field on the Automation page of the sampling
configuration dialog.
Func SampleLimitTime({time});

time The time in seconds to set as a limit. A positive time sets the limit and checks
the box (enabling the limit). A negative time sets the limit to the positive time,
but clears the check box (so the limit is not used). A value of zero, or omitting
the argument, leaves the time limit unchanged.

Returns The function returns the time limit as it was in the sampling configuration at the
time of the call. If the limit is disabled, the time is returned negated.

See also: SampleClear(), SampleLimitFrames(), SampleLimitSize(),
SampleWrite()

This function gets and optionally sets the sampling sweep mode as seen in the sampling
configuration dialog.
Func SampleMode({mode%});

mode% If supplied, this argument sets the new sampling mode as follows:
0 Basic post triggered mode.
1 Peri-trigger mode.
2 Outputs frame mode.
3 Fixed interval mode.
4 Fast triggers mode.
5 Fast fixed interval mode.
6 Gap-free mode.

Returns The sweep mode set in the sampling configuration at the time of the call.
See also: SampleClear(), SamplePeriType(), SampleFixedInt(),

SampleOutLength(), SampleOutTrig()

This function sets and gets the outputs clock as seen in the sampling configuration dialog
Outputs page.
Func SampleOutClock({period{, flags%}});

period If present, this argument sets the outputs clock period, in seconds. This value
sets the time resolution for pulses and sequencer output, for measuring sweep
absolute start times, for timing sweeps in Fixed interval mode and for
measuring the time of marker data. For the standard 1401, this value should not
be less than 10 ms, for a 1401plus 3 ms, for a micro1401 0.1 ms, for a
Micro1401 mk II 25 μs and for a Power1401 10 μs.

flags% If present, this sets clock options. Set flags% to 2 to enable the maximum
possible waveform output rates at the expense of sequencer timing precision. In
versions of Signal before version 4.06, adding 1 to flags% was equivalent to
checking the “Synchronise sampling” box in the sampling configuration
dialog - this option has now been removed.

Returns The outputs clock period from the configuration at the time of the call.
See also: SampleOutMode(), SampleFixedInt(), SampleOutTrig(),

Pulses()

SampleLimitTime()

SampleMode()

SampleOutClock()

SampleOutLength() The Signal script language SampleOutTrig()

5-200

This function sets and gets the length of the pulses output frame; the length of time that
pulses are generated, as stored in the pulses information for use in Outputs frame and
Fixed interval sweep modes. This function normally operates on the stored sampling
configuration but, if used during sampling, it operates upon the on-going sampling.
Func SampleOutLength(state{, length});

state This sets the state (pulses set) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

length If present, this argument sets the length of the pulses output frame, in seconds.
Returns The pulses output frame length at the time of the call.
See also: SampleOutMode(), SampleOutTrig(), SampleOutClock(),

Pulses(), SampleStates()

This function sets and gets the outputs mode as seen in the sampling configuration dialog
Outputs page.
Func SampleOutMode({mode%});

mode% This argument determines the action of the command:
0 Sets None outputs mode.
1 Sets Pulses outputs mode.
2 Sets Sequencer outputs mode.
3 For future expansion.

Returns The outputs mode from the configuration at the time of the call.
See also: SampleClear(), Pulses()

This function sets and gets the sweep trigger time within the pulses frame as stored in the
pulses information for use in Outputs frame and Fixed interval sweep modes. This
function normally operates on the stored sampling configuration but, if used during
sampling, it operates upon the on-going sampling.
Func SampleOutTrig(state{, time});

state This sets the state (set of pulses) to which this applies, from 0 to 256. Use 0 if
multiple states are not in use.

time If present, this argument sets the sweep trigger time within the pulses output
frame, in seconds. The value should be from 0 to the pulses output frame length.

Returns The sweep trigger time at the time of the call.
See also: SampleOutLength(), SampleFixedInt(), SampleOutClock(),

Pulses(), SampleStates()

SampleOutLength()

SampleOutMode()

SampleOutTrig()

SamplePause() Alphabetical command reference SamplePeriHyst()

5-201

This function ascertains or sets whether the sampling is set to pause after each sweep, this
is equivalent to the Pause at sweep end check box.
Func SamplePause({pause%});

pause% If present this is equivalent to changing the state of the Pause at sweep end
check box. A non-zero value pauses sampling and zero enables sampling.

Returns If pause% is present it returns the new state as 1 or 0, or a negative error code. If
pause% is absent it returns the current state as 1 or 0.

See also: SampleSweep(), SampleStart(), SampleStop(), SampleStatus(),
SampleWrite(), SampleAbort()

This function gets or selects the state of the digital input bit required to trigger sampling.
It is equivalent to the dropdown selection box in the digital peri-trigger sampling
configuration.
Func SamplePeriBitState({set%});

set% If present a value of 1 selects Trigger on bit high in the digital peri-trigger
sampling configuration. A value of 0 selects Trigger on bit low.

Returns The value for the setting at the time of the call.
See also: SamplePeriDigBit(), SamplePeriHyst(), SamplePeriLevel(),

SamplePeriLowLev(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the digital bit number in the digital peri-trigger information
within the sampling configuration.
Func SamplePeriDigBit({bit%});

bit% If present and in the range 8-15, this sets the new digital bit number in the digital
peri-trigger sampling configuration.

Returns The value for the peri-trigger digital bit in the sampling configuration at the time
of the call.

See also: SamplePeriBitState(), SamplePeriHyst(), SamplePeriLevel(),
SamplePeriLowLev(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the hysteresis value for triggering from an analogue channel
level in the peri-trigger information within the sampling configuration. If used while
sampling is in progress, this gets and sets the hysteresis value currently in use.
Func SamplePeriHyst({level});

level If present this sets the new hysteresis value in the peri-trigger sampling
configuration or sampling document.

Returns The value for hysteresis in the sampling configuration at the time of the call.
See also: SamplePeriDigBit(), SamplePeriBitState(),

SamplePeriLevel(), SamplePeriLowLev(), SamplePeriType(),
SamplePeriPoints()

SamplePause()

SamplePeriBitState()

SamplePeriDigBit()

SamplePeriHyst()

SamplePeriLevel() The Signal script language SamplePeriPoints()

5-202

This function gets or sets the threshold level for triggering from an analogue channel
level in peri-trigger mode. This is the threshold level for +Analogue and -Analogue
peri-trigger types and the upper threshold for the =Analogue peri-trigger type. If used
while sampling is in progress, this gets and sets the threshold level currently in use.
Func SamplePeriLevel({level});

level If present this sets the peri-trigger threshold level in the sampling configuration
or sampling document.

Returns The value for peri-trigger threshold level in the sampling configuration.
See also: SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),

SamplePeriLowLev(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the peri-trigger Lower threshold for =Analogue peri-trigger
type in the peri-trigger sampling configuration. If used while sampling is in progress, this
gets and sets the lower threshold level currently in use.
Func SamplePeriLowLev({level});

level If present this sets the lower threshold for =Analogue peri-trigger type in the
peri-trigger sampling configuration or sampling document.

Returns The value for the lower threshold for =Analogue peri-trigger type in the peri-
trigger sampling configuration.

See also: SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),
SamplePeriLevel(), SamplePeriType(), SamplePeriPoints()

This function gets or sets the type of peri-trigger in the peri-trigger information within the
sampling configuration.
Func SamplePeriType({pts%});

pts% If present this sets the type of trigger in the sampling configuration as follows:
0 +Analogue.
1 -Analogue.
2 =Analogue.
3 Digital.
4 Event.

Returns The trigger type in the sampling configuration at the time of the call.
See also: SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),

SamplePeriLevel(), SamplePeriLowLev(), SamplePeriPoints()

This function gets or sets the number of data points in the frame before the trigger as
given by Pre-trig. points in the Peri-trigger section of the sampling configuration.
Func SamplePeriPoints({pts%});

pts% If present this sets the pre-trigger points in the peri-trigger sampling
configuration. This can be any negative number or a positive number less than
the points per sweep.

Returns The value for pre-trigger points in the peri-trigger sampling configuration.
See also: SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(),

SamplePeriLevel(), SamplePeriLowLev(), SamplePeriType()

SamplePeriLevel()

SamplePeriLowLev()

SamplePeriType()

SamplePeriPoints()

SamplePoints() Alphabetical command reference SamplePortOptions$()

5-203

This function gets or sets the number of data points per ADC port per frame as given by
the Frame points in the sampling configuration.
Func SamplePoints({pts%});

pts% If present this sets the number of frame points in the sampling configuration.
Returns The value for frame points in the sampling configuration.
See also: SampleClear(), SampleRate(), SamplePeriPoints(),

SampleTrigger()

This function gets and sets the Full value for an input port, as shown in the sampling
configuration dialog. Complete calibration of a waveform channel requires Full, Zero and
Units to be set up correctly. This function normally operates on the stored sampling
configuration but if used during sampling it operates upon the on-going sampling.
Func SamplePortFull(port%{, full});

port% The port number (0-127).
full The value of the data corresponding to the ADC full-scale level (+5 volts or +10

volts for a 10 volt system) at the input.
Returns The value for the port Full scale value at the time of the call, or zero for illegal

port numbers.
See also: SampleClear(), SamplePorts(), SamplePortOptions$(),

SamplePortUnits$(), SamplePortZero(), SampleTel()

This function gets and sets the title attached to a port, as shown in the sampling
configuration dialog.
Func SamplePortName$(port%{, new$});

port% The port number (0-127).
new$ If present, the new title. If the title is too long, it is truncated.
Returns The title at the time of the call, or an empty string for illegal channel numbers.
See also: SampleClear(), SamplePorts(), SamplePortFull(),

SamplePortOptions$(), SamplePortUnits$(), SamplePortZero()

This function gets and sets the online processing options attached to a waveform input
port setup, as shown in the sampling configuration dialog.
Func SamplePortOptions$(port%{, new$});

port% The port number (0-127).
new$ If present, the new options string, up to 7 characters long. If the string is too

long it will be truncated.
Returns The options string at the time of the call, or an empty string for illegal channel

numbers.
See also: SampleClear(), SamplePortFull(), SamplePorts(),

SamplePortName$(), SamplePortUnits$(), SamplePortZero()

SamplePoints()

SamplePortFull()

SamplePortName$()

SamplePortOptions$()

SamplePorts() The Signal script language SampleProtocol()

5-204

This function gets or sets the ADC ports to be used as shown in the sampling
configuration.
Func SamplePorts({get%[]|num%{, new%[]}});

num% If present this sets the number of ADC ports to take from the new% array. If
new% is not present the new ADC ports will be 0..num%-1.

get%[] If present as a single argument this is filled with ADC ports from the sampling
configuration up to the size of the array. If there are insufficient ports to fill the
array the unused entries are left unchanged.

new%[] If present this holds the new ADC ports for the sampling configuration. The
number of new ADC ports will be restricted by the size of num% or by the size of
this array, whichever is the smaller.

Returns The number of ADC ports at the time of the call.
See also: SampleClear(), SamplePortFull(), SamplePortName$(),

SamplePortOptions$(), SamplePortUnits$(), SamplePortZero()

This function gets and sets the units string for an input port, as shown in the sampling
configuration dialog. Complete calibration of a waveform channel requires Full, Zero and
Units to be set up correctly.
Func SamplePortUnits$(port%{, new$});

port% The port number (0-127).
new$ The units to use. If the string is longer than 7 characters only the first 7 are used.
Returns The units at the time of the call, or an empty string for illegal channel numbers.
See also: SampleClear(), SamplePorts(), SamplePortFull(),

SamplePortOptions$(), SamplePortZero()

This function gets and sets the Zero value for an input port, as shown in the sampling
configuration dialog. This function normally operates on the stored sampling
configuration but if used during sampling it operates upon the on-going sampling.
Func SamplePortZero(port%{, zero});

port% The port number (0-127).
zero The value of the data corresponding to a zero-volt input at the ADC.
Returns The value for the port zero value at the time of the call, or zero for illegal port

numbers.
See also: SampleClear(), SamplePorts(), SamplePortFull(),

SamplePortUnits$(), SamplePortOptions$()

This function is used during sampling to retrieve the index number of the currently
executing protocol and optionally to start off execution of a protocol.
Func SampleProtocol({num|name$});

num If provided, the protocol number to use, from 1 to the number returned by
Protocols().

name$ If provided, the name of the protocol to use.
Returns The number of the protocol in use before this call or a negative error code.
See also: Protocols(), ProtocolName$(), SampleState()

SamplePorts()

SamplePortUnits$()

SamplePortZero()

SampleProtocol()

SampleRate() Alphabetical command reference SampleSeqStep()

5-205

This function gets the waveform sample rate in Hz from the sampling configuration and
optionally sets it to a new value.
Func SampleRate({new});

new If present, the new preferred rate in Hz. The actual sampling rate used will be as
close as possible to the new rate, but will not always match it exactly.

Returns The sampling rate before the call. This is the actual sampling rate that would
have been used, not the preferred rate.

See also: SampleClear(), SamplePoints(), SampleTrigger(),
SampleBurst(), BinSize()

This function can be used while sampling is in progress to abandon sampling, delete any
data that has been written to disk, and return to the state as if FileNew() had just been
used to create a new data file.
Func SampleReset({noask%});

noask% if present and non-zero, this bypasses the normal querying of the user that is
carried out before this potentially destructive operation.

Returns 0 if the reset operation completed without a problem, or a negative error code.
See also: SampleAbort(), SampleStart(), SampleStop(), SampleStatus(),

SampleWrite(), SamplePause()

This function sets and gets the options that control the use of the output sequence.
Func SampleSeqCtrl(opt%{, new%};

opt% This value selects the option which is to be retrieved or set: 1 for the sequencer
jump control, 2 for the restart sequence at frame start flag.

new% The new value for the control option. For the jump control: 0 = keyboard,
control panel and script, 1 = control panel and script, 2 = script only. For the
restart sequence flag a value of 1 selects the sequence restarting at the start of
each frame, 0 selects a free-running sequence without restarts.

Returns If you are setting a value or if this is used at an inappropriate time, the function
returns 0. If you are reading a value, the function returns the value.

See also: SampleKey(), SampleSeqStep(), SampleSequencer$(),
SampleStart()

This function returns the current sequencer step or -1 if not sampling. If no sequence is
running the result is usually 0 (but this is not guaranteed).
Func SampleSeqStep();

Returns The current sequence step number, or -1 if not sampling.
See also: SampleKey(), SampleSequencer$(), SampleSeqVar()

SampleRate()

SampleReset()

SampleSeqCtrl()

SampleSeqStep()

SampleSeqTable() The Signal script language SampleSeqVar()

5-206

If there is a sampling document with an output sequence, you can use this function to find
the size of any table set in the sequence by the TABSZ directive or to transfer data
between an integer array and the table.
Func SampleSeqTable({tab%[]{, offs%{, get%}}});

tab%[] An integer array holding items to transfer to the 1401 sequencer table or to hold
items read back from the table. The array size sets the maximum item count.

offs% This sets the index into the sequencer table to start the transfer. The first index in
the table is 0. If this value is negative or greater than or equal to the sequencer
table size, no data is transferred. If omitted, the value 0 is used.

get% Set 0 or omit this argument to transfer data to the sequencer table, set to 1 to
transfer data from the sequencer table.

Returns If you call this with no arguments, the return value is the size of the sequencer
table. Otherwise, the returned value is the number of items transferred between
the sequencer table and the array. A negative error code is also possible, for
example -1 if there is no sampling document.

See also: SampleKey(), SampleSequencer$(), SampleSeqVar()

You can use this function to set the sequencer file to attach to the Sampling
configuration. Use SampleSequencer$() to get the name of the current sequencer file.
Func SampleSequencer(new$);

new$ The name of the sequence file. Pass an empty string to set no sequencer file.
Returns It returns 0 if all was well, or a negative error code.
See also: SampleKey(), SampleSequencer$(), SampleSeqVar()

This function returns the name of the sequencer file that is currently attached to the
sampling configuration. Use SampleSequencer() to set the sequencer file.
Func SampleSequencer$();

Returns It returns the current sequencer file name, or an empty string if there is no file.
The returned name includes the full path.

See also: SampleKey(), SampleSequencer(), SampleSeqVar()

This function is used during sampling with an output sequence to get or set the value of
an output sequencer variable. Values set before the sampling window exists are ignored.
Values set before SampleStart() set the initial variable values.
Func SampleSeqVar(sVar%{, new%});

sVar% The sequencer variable to set or read, in the range 1 to 64.
new% The new value for the output sequencer variable. If present, the value of the

variable is updated. Omit to return the variable value. A common error when
setting variables for the DAC instruction is to set a value 65536 times too small.

Returns If you are setting a value or if this is used at an inappropriate time, the function
returns 0. If you are reading a value, the function returns the value.

See also: SampleKey(), SampleSeqStep(), SampleSequencer$(),
SampleStart(), SampleSeqWave()

SampleSeqTable()

SampleSequencer()

SampleSequencer$()

SampleSeqVar()

SampleSeqWave() Alphabetical command reference SampleSeqWave()

5-207

This command can be used to set the number or size of the arbitrary waveform output
areas used by the Signal outputs sequencer, to retrieve such information, or to load
waveform data into or out of a waveform area.
Func SampleSeqWave(area%, arr%[]{, offs%{, get%}});
Func SampleSeqWave(area%, arr[]{, offs%{, get%}});

These two forms of the command copy data between a script array and a waveform
output area. They can be used while sampling is in progress, or after the FileNew()
function has been used but before SampleStart(), but will not have any effect if used
when not sampling. If a single DAC is being used for waveform output, the array data is
a simple list of values. If more than one DAC is used the values for the various DACs are
interleaved so if DACs two and four are being used the data array goes 242424....

area% The waveform area number, from 1 to 256. Zero is also accepted and taken to
mean 1 for compatibility with previous versions of Signal.

arr%[] The array holding, or to be updated with, the waveform data. For integer arrays
values from -32768 to 32767 span the complete DAC range.

arr[] As for arr%[] but an array of real numbers. For real arrays, the DAC scaling
values for the sequencer will be used to convert from user units in the array to
DAC values.

offs% The offset within the waveform area to start the transfer. The size of the data
array sets the transfer size. If this parameter is omitted, a value of zero is used.

get% Set this parameter to 1 to read data from the waveform area, set it to zero or omit
it to transfer data into the waveform area.

Func SampleSeqWave(areas%, mask%{, pnts%, hz%});
Func SampleSeqWave(area%{, num%});

These forms of the command operate on the sampling configuration settings and are
either used to define the waveform areas or to retrieve area settings. They should
therefore be used before sampling is begun. The form with four arguments defines the
waveform areas, while the form with one or two arguments returns information:

areas% The number of waveform output areas, from 1 to 256. Zero is also accepted and
taken to mean 1 for compatibility with previous versions of Signal

mask% A value that defines which DACs are used, with bit zero set if DAC 0 is used,
bit 1 for DAC 1, bit 2 for DAC 2 and bit 3 for DAC 3.

pnts% Sets the number of waveform points per DAC in each area.
hz% Sets the waveform output rate, in points per second.
num% A number which determines the return value of the function. Note that none of

these values vary between areas (but the sequencer WAVE instruction can set
less than the full number of DAC points to be replayed). Possible values for
num% are:
 0 pnts% * number of DACs, i.e. the total area data size in points.
-1 mask%.
-2 pnts%.
-3 hz%.
-4 The number of DACs in mask%.
-5 The number of waveform areas

Returns If only area% is provided then the return code is the total area data size, in DAC
points. If num% is provided the return value is as above, in this case area% is
ignored. In all other cases the return value is 0 if all went well or a negative error
code.

See also: SampleKey(), SampleSeqStep(), SampleSequencer$(),
SampleStart(), SampleSeqVar()

SampleSeqWave()

SampleStart() The Signal script language SampleStateDig()

5-208

This function starts sampling off, it can be used after FileNew() has created a new file
view based on the current sampling configuration. It starts sampling immediately or on a
1401 event trigger.
Func SampleStart({trig%});

trig% If this is 0 or omitted, sampling starts immediately, otherwise sampling waits for
a trigger signal on the 1401 E1 input.

Returns 0 if all went well or a negative error code.
See also: SampleAbort(), SampleReset(), SampleStop(), SampleStatus(),

SampleWrite(), SamplePause()

This function is used during sampling to set the current state directly; it is the scripting
equivalent of controlling the state manually with the states control bar. The command
should be used with states sequencing set to Manual, or the values set will be overridden
by the sampling system.
Func SampleState(num);

num The state to use, from 0 to 256.
Returns The state in use at the time of the call or a negative error code. Note that this is

the state currently in use; the function return value will not change until the next
sweep is started by calling SampleSweep() or an equivalent operation.

See also: SampleStatesOrder(), SampleStatesRun(), SampleStates()

This function gets the DAC output value for a specific state from the sampling
configuration and optionally sets it to a new value.
Func SampleStateDac(state, port{, new});

state The state for which information is required, from 0 to 256.
port The DAC number, from 0 to 3.
new If present, sets the value to be output to the DAC for this state in Static outputs

states mode.
Returns The DAC output value before the call.
See also: SampleStatesMode(), SampleStates(), SampleState(),

SampleDacMask(), SampleDacFull(), SampleDacZero()

This function gets the value to be written to the digital outputs for a specific state or the
value read from the digital inputs to set a state and optionally sets it to a new value.
Func SampleStateDig(state{, new});

state The state for which information is required, from 0 to 256.
new If present, sets the value to be written to the digital outputs for this state in

Static outputs states mode, or the value used to test the digital input data in
External digital states mode.

Returns The digital output or input value before the call.
See also: SampleStatesMode(), SampleStates(), SampleState(),

SampleStateDac(), SampleDigIMask()

SampleStart()

SampleState()

SampleStateDac()

SampleStateDig()

SampleStateLabel$() Alphabetical command reference SampleStatesIdle()

5-209

This function gets the label string for a specific state (this is used to label the state control
bar buttons amongst other things) and optionally sets it to a new value.
Func SampleStateLabel$(state{, new$});

state The state for which information is required, from 0 to 256.
new$ If present, sets the new label for this state. A state label should consist of

printable text and should not be longer than ten characters.
Returns The label for the state before the call.
See also: SampleStateRepeats(), SampleStates(), SampleState(),

 SampleStateDac()

This function gets the number of repeats for a specific state from the sampling
configuration and optionally sets it to a new value.
Func SampleStateRepeats(state{, new});

state The state for which information is required, from 0 to 256.
new If present, sets the number of times the state is repeated in Numeric and Random

ordering mode if Individual repeats is enabled.
Returns The number of repeats before the call.
See also: SampleStateRepeats(), SampleStates(), SampleState()

This function gets the number of extra states from the sampling configuration and
optionally sets it to a new value.
Func SampleStates({new});

new If present, the new number of extra states. Values from 1 to 256 set the states
and turn on Multiple states mode, a value of zero turns off multiple states.

Returns The number of extra states before the call, or zero if multiple states were
disabled.

See also: SampleStatesMode(), SampleStatesOrder(), SampleState(),
SampleStatesOptions()

This function gets the number of states ordering cycles to be executed before idling from
the sampling configuration and optionally sets it to a new value.
Func SampleStatesIdle({idle%});

idle% If present, this sets the number of cycles of states using Numeric, Random or
Semi-random state sequencing that will be executed before idling. A zero value
means keep cycling forever. This parameter is ignored for protocol ordering.

Returns The states cycles before idling before the call.
See also: SampleStates(), SampleStatesMode(), SampleStatesOrder(),

SampleState(), SampleProtocol(), ProtocolFlags()

SampleStateLabel$()

SampleStateRepeats()

SampleStates()

SampleStatesIdle()

SampleStatesMode() The Signal script language SampleStatesPause()

5-210

This function gets the mode for multiple states from the sampling configuration and
optionally sets it to a new value.
Func SampleStatesMode({new});

new If present, sets the new multiple states mode as follows:
 0 External digital

1 Static outputs
2 Dynamic outputs

Returns The mode for multiple states before the call.
See also: SampleStates(), SampleStatesOrder(), SampleState()

This function gets the options for non-protocol ordering multiple states from the sampling
configuration and optionally sets new options.
Func SampleStatesOptions({new%});

new% If present, this sets the new multiple states options and is the sum of:
 1 Start cycling states automatically when sampling starts.
 2 Turn on writing to disk whenever states cycling starts.
Returns The multiple states options before the call.
See also: SampleStates(), SampleStatesIdle(), SampleStatesMode(),

SampleState(), SampleProtocol(), ProtocolFlags()

This function gets the ordering mode for multiple states from the sampling configuration
and optionally sets it to a new value.
Func SampleStatesOrder({new%});

new% If present, this sets the new multiple states ordering mode as follows:
 0 Numeric 1 Random 2 Protocol 3 Semi-random
Returns The states ordering mode before the call.
See also: SampleStates(), SampleStatesIdle(), SampleStatesMode(),

SampleState(), SampleProtocol(), ProtocolFlags()

This function gets the paused or not-paused state of multiple states cycling and optionally
sets it to a new value.
Func SampleStatesPause({pause%});

pause% If present, this sets the new paused condition of state cycling:
0 Not paused
1 Paused

Returns The paused condition before the call.
See also: SampleStates(), SampleStatesIdle(), SampleStatesMode(),

SampleState(), SampleProtocol(), ProtocolFlags()

SampleStatesMode()

SampleStatesOptions()

SampleStatesOrder()

SampleStatesPause()

SampleStatesRepeats() Alphabetical command reference SampleStatesStep()

5-211

This function gets the number of times each state is repeated from the sampling
configuration and optionally sets it to a new value, or selects individual repeats mode.
Func SampleStatesRepeats({new%});

new% If present and non-zero, disables individual repeats and sets the number of times
each state is repeated in Numeric and Random ordering mode. A value of zero
turns on individual repeats.

Returns The number of repeats before the call, or zero if individual repeats were enabled.
See also: SampleStateRepeats(), SampleStatesOrder(), SampleState()

This function is used during sampling to reset the states-sequencing system and the
pulses built-in varations; it is the scripting equivalent of pressing the Reset button on the
states control bar.
Func SampleStatesReset();

Returns Zero or a negative error code.
See also: SampleStatesOrder(), SampleStatesRun(), SampleStates()

This function is used during sampling to set the state seqencing execution mode; the
script equivalent of the Manual, On Write or Cycle buttons on the states control bar.
Func SampleStatesRun({mode%});

mode% The mode of sequencing to use, as follows:
 0 Manual or direct script control of states
 1 States sequencer runs, moves to next state if data written
 2 States sequencer runs, moves to next state unconditionally
Returns The state sequencing mode in use before this call or a negative error code.
When using protocols, setting mode to 0 will terminate the protocol, though this
command cannot be used to start a protocol running.

See also: SampleStatesOrder(), SampleStatesReset(), SampleState(),
SampleStatesOptions()

This function returns the current value of the states sequencing counter which is used
during sampling to control states seqencing.
Func SampleStatesStep();

Returns The states sequencing counter at the time of the call.
When using non-protocol ordering, the step counter runs from zero to states*repeats,
in protocol mode it is the count of steps since the protocol started.

See also: SampleStatesOrder(), SampleStatesReset(), SampleState()

SampleStatesRepeats()

SampleStatesReset()

SampleStatesRun()

SampleStatesStep()

SampleStatus() The Signal script language SampleSweepPoints()

5-212

This function returns the current state of any sampling.
Func SampleStatus();

Returns A code indicating the sampling state or -1 if there is no sampling:
0 A file view is ready to sample, but it has not been told to start yet.
1 Sampling is waiting for an Event 1 trigger.
2 Sampling of a sweep is now in progress or is awaiting a trigger.
3 Sampling is paused at the end of a sweep.
4 Sampling is stopped but not finished (changes to -1 when it has finished).

See also: SampleAbort(), SampleReset(), SampleStart(), SampleStop(),
SampleWrite(), SamplePause()

This function stops sampling in progress and is equivalent to using the Stop and Finish
buttons of the sampling control panel. The default behaviour is that there is no
intermediate state between stopping and finishing, when sampling is stopped by using
this function. The function does not return until sampling has stopped.
Func SampleStop({noFin%});

noFin% If present and non zero then sampling will stop but not finish. SampleSweep()
may then be used to continue sampling.

Returns 0 if sampling stopped correctly or a negative error code.
See also: SampleAbort(),SamplePause(), SampleReset(),

SampleStart(),SampleStatus(), SampleSweep(), SampleWrite()

If sampling is paused at the end of a sweep, or stopped but not finished because a limit
was reached, this starts sampling of the next sweep. The current sweep will be lost if it is
unsaved. This function is the equivalent of the Continue button in the sampling control
panel (or More when sampling is stopped).
Func SampleSweep();

Returns 0 or a negative error code.
See also: SamplePause(), SampleReset(), SampleStart(), SampleStop()

If variable points per sweep sampling is in use, this function gets the number of points
sampled for a given state and optionally sets a new points value. If used online, it
operates upon the sampling that is in progress.
Func SampleSweepPoints(state%{, new%});

state The state for which information is required, from 0 to 256.
new% If this is provided it sets the number of ADC points sampled per channel for the

specified state. This should be an even number no larger than the overall sweep
points for the sampling configuration, odd numbers will be rounded down to a
value divisible by 2, values larger than overall sweep points will be truncated.

Returns The number of ADC points sampled per channel before the call.
See also: SamplePoints(), SampleVaryPoints(), SampleStates(),

SampleMode(), SampleState()

SampleStatus()

SampleStop()

SampleSweep()

SampleSweepPoints()

SampleTel() Alphabetical command reference SampleVaryPoints()

5-213

This function gets or sets the telegraph options in the sampling configuration.
Func SampleTel(nSet%, nPort%, nTel%{, volt[]|volt, gain[]|gain});
Func SampleTel(nSet%, opt%);

nSet% The set of telegraph values to work with.
nPort% The port number whose input is to be scaled by the telegraph. If this and nTel%

are both set to -1 then these telegraph settings will be turned off.
opt% This can be set to the following negative values which cause the function to

return the following values:
-1 The scaled port number for these settings.
-2 The telegraph port number.
-3 The number of items in the telegraph list.
-4 The first telegraph voltage in the list.
-5 The first gain in the list.
-n If n > 3 and n is even, the (n-2)/2nd voltage in the list is returned. If n > 4

and n is odd, the (n-3)/2nd gain in the list is returned.
nTel% The port number being used to read the telegraph voltage. If this and nPort%

are both set to -1 then these telegraph settings will be turned off.
volt A telegraph voltage. If this is set to 0 and no gain is given then the list of gains

and telegraph voltages is cleared.
volt[] An array of telegraph voltages.
gain The gain associated with a particular voltage.
gain[] An array of gains associated with the array of telegraph voltages provided.
Returns 0, the requested value or a negative error code.
See also: SamplePorts(), SamplePortFull(), SamplePortZero()

This function gets or sets the external trigger option in the sampling configuration.
Func SampleTrigger({trig%});

trig% If this is non-zero, sampling of each frame waits for a trigger input. Zero turns
trigger mode off.

Returns 0 or 1, or a negative error code.
See also: SampleClear(), SampleRate(), SampleSweep(), SamplePoints(),

SampleStatus()

This function gets the flag enabling variable sweep points from the sampling
configuration and optionally sets it to a new value.
Func SampleVaryPoints({new%});

new% If this is provided it sets the enable variable sweep points flag in the sampling
configuration. This will not affect sampling unless the sweep mode in use allows
variable points mode.

Returns The variable sweep points flag before the call.
See also: SamplePoints(), SampleSweepPoints(), SampleStates(),

SampleMode()

SampleTel()

SampleTrigger()

SampleVaryPoints()

SampleWrite() The Signal script language ScriptBar()

5-214

This function controls the automatic writing of data to the file during sampling and is
equivalent to the Write to disk at sweep end check boxes.
Func SampleWrite({write%});

write% If present this sets the state of automatic writing of data at the end of each
sweep:
0 Disable writing to disk at the end of each sweep
1 Enable writing to disk at the end of each sweep

Returns The state of automatic writing to file at the end of each sweep: 0 for disabled, 1
for enabled.

See also: SampleClear(), SamplePause(), SampleSweep(), SampleStatus()

This function sets and gets the offset value applied to the zero point on the x-axis for
newly sampled data. Normally zero will be at the start of the frame or the trigger point for
peri-triggered data.
Func SampleZeroOffset({offset});

offset If present this sets the amount in seconds by which to offset zero:
Returns The offset in seconds of zero before the function was called.

See also: SampleClear()

This function controls the Script toolbar. Call the command with no arguments to return
the number of toolbar buttons. The first button is numbered 0.
Func ScriptBar({nBut%{, &get$}});
Func ScriptBar(set$);

nBut% Set -1 and omit get$ to clear all buttons and return 0. Otherwise it is a button
number and returns -1 if the button does not exist, 0 if it is the last button, and 1
if higher-numbered buttons exist. get$ returns the information as for set$.

set$ This holds up to 8 characters of button label, a vertical bar, the path to the script
file including .sgs, a vertical bar and a pop-up comment. The function returns
the new number of buttons or -1 if all buttons are already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets a button:
ScriptBar(-1); 'clear all buttons
ScriptBar("ToolMake|C:\\Scripts\\ToolMake.sgs|Build a toolbar");

See also: App()

SampleWrite()

SampleZeroOffset()

ScriptBar()

ScriptRun() Alphabetical command reference Selection$()

5-215

This sets the name of a script to run when the current script terminates. You can pass
information to the new script using disk files or by using the Profile() command. You
can call this function as often as you like; only the last use has any effect.
Proc ScriptRun(name${, flags%});

name$ The script file to run. You can supply a path relative to the current folder or a
full path to the script file. If you supply a relative path, it must still be valid at
the end of the current script. Set name$ to "" to cancel running a script.

flags% Optional flags, taken as 0 if omitted. Sum of: 1 = run even if the current script
ends in an error, 2 = keep loaded script in memory.

If the file you name does not exist when Signal tries to run it, nothing happens. If the
nominated script is not already loaded, Signal will load it, run it and unload it unless the
keep loaded script in memory flag is set. If a loaded script calls Yield() or calls any
function that allows the system to idle (Toolbar(), DlgShow()...), the script can be
unloaded while it is still running. This is usually harmless unless the loaded script
attempts to use App(3), which will return 0 if the script is no longer in memory.

See also: App(), Profile()

This sets or gets the timer in seconds and is used for relative time measurements. If you
want the position reached in the current sweep, use the Maxtime() function.
Func Seconds({set{, hiRes%}});

set If present, this sets the time in seconds.
hiRes% If present, this selects between normal or high-resolution timing. A zero value

selects the standard resolution of nominally 1 millisecond (but may be worse on
some systems). Set this to 1 for the highest timer resolution available. Note that
the default is 1 millisecond resolution, which is set when Signal starts. Changes
to the resolution are persistent between scripts.

Returns If hiRes is not present, the function returns the time in seconds. This is the value
before any new time is set. If hiRes is present, the return value is the time
resolution, in seconds. This is 1 millisecond for the standard resolution and can
be (much) less than 1 microsecond for the high resolution timer.

See also: MaxTime()

This function returns the text in the current view that is currently selected, that is, the text
that would be copied to the clipboard if the Edit menu Copy command was used.
Func Selection$();

Returns The current text selection. If there is no text selected, or if the view is
inappropriate for this action, an empty string is returned.

See also: EditSelectAll(), EditCopy(), EditCut(), EditPaste(),
MoveBy(), MoveTo()

ScriptRun()

Seconds()

Selection$()

SerialClose() The Signal script language SerialCount()

5-216

This function closes a serial port opened by SerialOpen(). Closing a port releases
memory and system resources. Ports are automatically closed when a script ends,
however it is good practice to close a port when your script has finished with it. Closing a
serial port deletes any data from SerialWrite() that has not been transmitted, if this
could cause problems you can poll the output buffer space using SerialWrite() until
all the data is gone.
Func SerialClose(port%);

port% The serial port to close as defined for SerialOpen().
Returns 0 or a negative error code.
See also: SerialOpen(), SerialWrite(), SerialRead(), SerialCount()

This counts the characters or items buffered in a serial port opened by SerialOpen().
Use this to detect input so your script can do other tasks while waiting for serial data.
There is an internal buffer of 1024 characters per port that is filled when you use
SerialCount. The size of this buffer limits the number of characters that this function
can tell you about. To avoid character loss when you are not using a serial line
handshake, do not buffer up more than a few hundred characters with SerialCount().
Func SerialCount(port%{, term$});

port% The serial port to use as defined for SerialOpen().
term$ An optional string holding the character(s) that terminate an input item.
Returns If term$ is absent or empty, this returns the number of characters that could be

read. If term$ is set, this returns the number of complete items that end with
term$ that could be read.

See also: SerialOpen(), SerialWrite(), SerialRead(), SerialClose()

SerialClose()

SerialCount()

SerialOpen() Alphabetical command reference SerialRead()

5-217

This function opens a serial port and configures it for use by the other serial line
functions. It is not an error to call SerialOpen() more than once on the same port. The
serial routines use the host operating system serial line support. Consult your system
documentation for information on serial line connections and Baud rates limit.
Func SerialOpen(port%{, baud%{, bits%{, par%{, stop%{, hsk%}}}}});

port% The serial port to use, in the range 1 to 256 (1 to 9 before version 5.05). The
number of ports actually available depends on the computer. Only one port is
found on most PCs but USB serial ports can be used to add more.

baud% This sets the serial line Baud rate (number of bits per second). The maximum
character transfer rate is of order one-tenth this figure. All standard rates from
50 to 115200 Baud are supported. If you do not supply a Baud rate, 9600 is
used.

bits% The number of data bits used to encode a character. Windows supports 4 to 8
bits, the Macintosh supports 7 or 8. If bits% is omitted, 8 is set. Apart from
very specialised use, standard values are 7 or 8 data bits. If you set 7 data bits,
character codes from 0 to 127 can be read. If you set 8 data bits, codes from 0 to
255 are possible.

par% Set this to 0 for no parity check, 1 for odd parity or 2 for even parity. If you do
not specify this argument, no parity is set.

stop% This sets the number of stop bits as 1 or 2. If omitted, 1 stop bit is set. If you
specify 5 data bits, a request for 2 stop bits results in 1.5 stop bits being used.

hsk% This sets the handshake mode, sometimes called “flow control”. 0 sets no
handshake, 1 sets a hardware handshake, 2 sets XON/XOFF protocol.

Returns 0 or a negative error code.
See also: SerialWrite(), SerialRead(), SerialCount(), SerialClose()

This function reads characters, a string, an array of strings, or binary data from a
nominated serial port that was previously opened with SerialOpen(). Binary data can
include character code 0, string data never includes character 0.
Func SerialRead(port%, &in$|in$[]|&in%|in%[]{, term${, max%}});

port% The serial port to read from as defined for SerialOpen().
in$ A single string or an array of strings to fill with characters. There is no point

providing an array of strings unless you have set a terminator, as without a
terminator all input goes to the first string in the array.

in% A single integer (term$ and max% are ignored) or an array of integers (term$
and max% can be used) to read binary data. Each integer can hold one character,
coded as 0 up to 255. The function returns the number of characters returned.

term$ If this is an empty string or omitted, all characters read are input to the string,
integer array or to the first string in the string array, The number of characters
read can be limited by max%. The function returns the number of characters read.

 If term$ is not empty, the contents are used to separate data items in the input
stream. Only complete items are returned and the terminator is not included. For
example, set the terminator to "\n" if lines end in line feed, or to "\r\n" if
input lines end with carriage return then line feed. If in$ is a string, one item at
most is returned. If in$[] is an array, one item is returned per array element.
The function returns the number of items read unless in is an integer, in which
case the function returns the number of characters returned.

SerialOpen()

SerialRead()

SerialWrite() The Signal script language SerialWrite()

5-218

max% If present, it sets the maximum number of characters to read into each string or
into the integer array. If a terminator is set, but not found after this many
characters, the function breaks the input at this point as if a terminator had been
found. There is a maximum limit set by the size of the buffers used by Signal to
process data and by the size of the system buffers used outside Signal. This is
typically 1024 characters.

Returns The function returns the number of characters or items read or a negative error
code. If there is nothing to read, it waits 1 second for characters to arrive before
timing out and returning 0. To avoid hanging up Signal, use SerialCount() to
test for items to read.

See also: SerialOpen(), SerialWrite(), SerialCount(), SerialClose()

This writes strings or binary data to a serial port opened by SerialOpen(). Use the
command with a single argument to find out how much space is available in the serial
line output buffer (typically 1024 characters).
Func SerialWrite(port%{, out$|out$[]|out%|out%[]{, term$}});

port% The serial port to write to as defined for SerialOpen().
out$ A single string or an array of strings to write to the output.. The return value is

the number of strings written
out% A single integer or an integer array to write as binary. One value is written per

integer. The output written depends on the number of data bits set for the port;
7-bit data writes as out% band 127, 8-bit data writes as out% band 255. The
return value is 1 if the transfer succeeded.

term$ If present, it is written to the output port after the contents of out%, out%[] or
out$ or after each string in out$[].

Returns If only the port argument is present, the return value is the amount of space
available in the serial port output buffer. With more arguments, for success the
return value is as documented for the out argument. If there is no room in the
output buffer for the data the return value is -1 except when out$[] is used when
the return values is the count of complete strings actually sent.

SerialWrite() does not actually write the strings or data to the serial line; it merely
puts it into a buffer for later transmission. If you use the SerialClose() command
before the system has had time to write buffered characters to the serial port, the buffered
characters will be lost.

See also: SerialOpen(), SerialRead(), SerialCount(), SerialClose()

SerialWrite()

SetAmplitude() Alphabetical command reference SetAmplitude()

5-219

This family of commands creates memory view windows. Memory views which require
processing are derived from and attached to the current data view, which should be a file
view. This does not apply to SetCopy() and SetMemory(), which create memory
views that do not use a Process command. The MeasureToXY() function is special in
that it creates an XY view which will receive data points from processing a source view
which can be either a file or a memory view. The SetXXX() functions do not update the
display, for which you should use Draw() or DrawAll().

All these functions, with the exception of SetOpCl() return a positive view handle if
they succeed or a negative error code. Possible errors are: bad channel number, illegal
number of bins and out of memory. The new derived memory view will be empty until a
processing command is executed for it. The processing of a memory view takes data from
the source view and replaces or adds to the data in the memory view. SetOpCl()creates
a idealised trace channel in the source view to hold an idealised trace and returns the
channel number.

When these functions create a new view, it is made the current view. The view is created
invisibly and must be made visible with WindowVisible(1) before it will appear.
See also: Process(), ProcessAll(), ProcessFrames(), SetAutoAv(),

SetAverage(), SetLeak(), SetOpCl(), SetOpClScan(),
SetPower(), MeasureToXY(), SetCopy(), SetMemory()

This function creates a memory view to hold an amplitude histogram in each channel
when it is processed. Sweeps() reports the number of sweeps of waveform data
accumulated by processing into the memory view. The current view when
SetAmplitude() is called will be the source view for the data to be processed. In this
version of Signal the source view cannot be log-binned.
Func SetAmplitude(ch%, bins%{, minAmp|minAmp${, maxAmp|maxAmp$
 {, sTime|sTime${, eTime|eTime$}});

ch% A single waveform channel to analyse from the current view. Use a channel
number (1 to n).

bins% The number of bins in the resulting histogram.
minAmp The smallest amplitude to be represented in the histogram. The default is the

lower limit of the ADC range of the channel.
minAmp$ The smallest amplitude to be represented in the histogram, as a string. Strings

such as “Hcursor(1)” can be used.
maxAmp The largest amplitude to be represented in the histogram. The default is the

upper limit of the ADC range of the channel.
maxAmp$ The largest amplitude to be represented in the histogram, as a string. Strings

such as “HCursor(1)” can be used.
sTime The start time of the data to be included in the analysis. The default is the

minimum time in the frame.
sTime$ A string giving the start time of the data to be included in the analysis, e.g.

“Cursor(1)”.
eTime The end time of the data to be included in the analysis. The default is the

maximum time in the frame.
eTime$ A string giving the end time of the data to be included in the analysis e.g.

“Cursor(2)”.
Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), Process(), ProcessAll(), ProcessFrames(),

Sweeps(), View()

SetXXX() commands

SetAmplitude()

SetAutoAv() The Signal script language SetAutoAv()

5-220

This function creates a memory view to hold a sum or average in each channel when it is
processed. The memory view will hold multiple frames, with set numbers of source
frames being averaged into each destination frame. This allows you to set up averaging
with, for example, every ten source frames processed into a new average. The amount
moved-on between averages can be separately controlled for extra flexibility. The current
view when SetAutoAv() is called will be the source view for the data to be processed.
SetAutoAv() is very similar to SetAverage().
Func SetAutoAv(cSpc, perAv%, betAv%{, width, offs{, sum%
 {, xzero%{, cntExc%{, doErrs%}}}});

cSpc A channel specifier for the channels to average. See the Script language syntax
chapter for a definition of channel specifiers.

perAv% The number of source frames to use per average.
betAv% The number of source frames between the first frame for one average and the

first frame for the next. If perAv% is the same as betAv%, then each perAv%
frames processed make a new average frame. If betAv% is less than perAv%,
then some source frames are used for more than one average; if it is greater
than perAv% then some source frames will be unused.

width The width of the average in x axis units. If omitted the whole frame will be
used. The maximum is limited by available memory.

offs This sets the offset in x axis units from start of frame to the start of the data to
average. If omitted or zero, the data will be taken from the start of the frame.

sum% If present and non-zero, each channel in the memory view will hold the sum of
the data accumulated. If omitted or zero, the memory view channels will hold
the mean of the data accumulated.

xzero% If present and non-zero, this forces the x axis of the memory view to start at
zero. If omitted or zero, the start of the x axis will be the same as the start of
the data that is averaged.

cntExc% If present and non-zero, excluded frames will count as if they had been added,
so Signal will not continue to search for enough frames to form each average,
and so remain in step with the sampling protocol.

doErrs% If present and set to 1 then error bar information will be generated.
Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), SetAverage(), Process(), ProcessAll(),

ProcessFrames(), Sweeps(), View(), MinTime()

SetAutoAv()

SetAverage() Alphabetical command reference SetCopy()

5-221

This function creates a memory view to hold a sum or average in each channel when it is
processed. Sweeps() reports the number of sweeps of waveform data accumulated by
processing into the memory view. The current view when SetAverage() is called will
be the source view for the data to be processed.
Func SetAverage(cSpc{, width, offs{, sum%{, xzero%{, doErrs%}}});

cSpc A channel specifier for the channels to average. See the Script language syntax
chapter for a definition of channel specifiers.

width The width of the average in x axis units. If omitted the whole frame will be
used. The maximum is limited by available memory.

offs This sets the offset in x axis units from start of frame to the start of the data to
average. If omitted or zero, the data will be taken from the start of the frame.

sum% If present and non-zero, each channel in the memory view will hold the sum of
the data accumulated. If omitted or zero, the memory view channels will hold
the mean of the data accumulated.

xzero% If present and non-zero, this forces the x axis of the memory view to start at
zero. If omitted or zero, the start of the x axis will be the same as the start of
the data to average, as defined by offset offs from MinTime() in the current
frame.

doErrs% If present and set to 1 then error bar information will be generated.
Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), SetAutoAv(), Process(), ProcessAll(),

ProcessFrames(), Sweeps(), View(), MinTime()

This function creates a new memory view with channels selected from and identical to
those in the current view. The new view can be empty or contain data copied from the
current frame. It is attached to no source view and has no implied Process(). Idealised
trace channels are not handled.
Func SetCopy(cSpc, title$, bcopy%);

cSpc A channel specifier for the channels to copy. See the Script language syntax
chapter for a definition of channel specifiers.

title$ The new window title.
bcopy% If this is not 0 the data values are copied into the new memory view. If this is 0

the waveform data values in the new view are zero and marker channels are
empty.

Returns A handle for the new view, or a negative error code.
See also: SetXXX(), SetMemory(), View()

SetAverage()

SetCopy()

SetLeak() The Signal script language SetLeak()

5-222

This function creates a memory view to hold leak subtracted data when it is processed.
The current view when SetLeak() is called, which must be a file view, will be the
source view for the data to be processed.
Func SetLeak(mode%, chan%, stim%, base|base$, pulse|pulse$, width,
 form%, sub%{, zero%{, cntExc%}});

mode% A value to set the leak subtraction mode: 0 for Basic, 1 for P/N or 2 for
States.

chan% A single waveform channel from the current view, this is the channel that will
be leak-subtracted, all other source channels are copied unchanged. Use a
channel number (1 to n).

stim% A single waveform channel from the current view. This is the channel that will
be used to measure the stimulus pulse size. Normally this will be a channel on
which the stimulus was recorded.

base A time at which the baseline level can be measured; a time outside the
stimulus pulse.

base$ The baseline level time expressed as a string, allowing constructs such as
“Cursor(1)-10”.

pulse A time at which the pulse level can be measured; a time inside the stimulus
pulse.

pulse$ The pulse time expressed as a string.
width The width of the two level measurements. The measurement used is the

average of all waveform points within the specified width.
form% The first frame used to measure the leak in Basic mode, the number of frames

to use for the leak in P/N mode and the state code for leak frames in States
mode.

sub% The last frame used to measure the leak in Basic mode and the number of
frames to subtract the current leak from in P/N mode. This parameter is
unused in States mode.

zero% If present and non-zero, the baseline level will be maintained constant by the
leak subtraction process; otherwise this adjustment is not done.

cntExc% If present and non-zero, excluded frames will count as if they had been used,
so Signal will not continue to search for enough frames to form each leak and
so remain in step with the sampling protocol.

Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), FrameState(), SetPower(), Process(),

ProcessAll(), ProcessFrames(), View()

SetLeak()

SetMemory() Alphabetical command reference SetOpCl()

5-223

This function creates a memory view of user-defined type, attached to no source view
and with no implied Process().
Func SetMemory(chans%, pts%, binsz, offset, marks%, tmks%,
 mkBns%, title$, xU${, yU${, xT${, yT$}}});

chans% The number of waveform channels in the view (1 to 80).
pts% The number of data points in each waveform channel.
binsz The x axis increment per point in the waveform channels. This is equivalent to

the sample interval for sampled data. This value should be positive and non-
zero.

offset The x axis value at the first point of the waveform channels.
marks% The number of marker channels in the view, not including text markers (0 to

80).
tmks% The number of text marker channels in the view. Not implemented yet.
mkBns% The number of marker items in each marker channel.
title$ The new window title.
xU$ The x axis units.
yU$ Optional, y axis units, blank if omitted.
xT$ Optional, x axis title (otherwise blank).
yT$ Optional, y axis title (otherwise blank).
Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), SetCopy(), View()

This function creates an idealised trace process. The current view when SetOpCl() is
called will be the source view for the data to be processed.
Func SetOpCl(cSpc, start|start$, end|end$, level1|level1$,
 level2|level2$, base|base${, interp%{, track%{, flags%}}});

cSpc A channel specifier for the channels to analyse. See the Script language syntax
chapter for a definition of channel specifiers.

start The start time in seconds of the idealised trace to be created.
start$ The start time as a string, e.g. “Cursor(1)”.
end The end time in seconds of the idealised trace to be created.
end$ The end time as a string, e.g. “Cursor(2)”.
level1 The level which the original data trace must cross in order to change from

closed state to open state.
level1$ The level1 value as a string, e.g. “HCursor(1)”.
level2 The level which the original data trace must cross in order to change from

open state to closed state.
level2$ The level2 value as a string, e.g. “HCursor(2)”.
base The level at which the data trace is considered to be in the closed state. This is

used for calculating additional thresholds for multi-level data.
base$ The base level as a string, e.g. “HCursor(3)”.
interp% The interpolation method to use for calculating the time of a threshold

crossing. Set to 0 for no interpolation and 1 for linear interpolation. The default
value is 0.

SetMemory()

SetOpCl()

SetOpClAmp() The Signal script language SetOpClAmp()

5-224

track% The number of data points in the closed state to use in tracking the base level,
in order to adjust the thresholds to compensate for baseline drift. The default
value is 0.

flags% A set of flags built up by adding together the following values:
0x0001 1 Outward current. An opening of a channel leads to a more positive

current.
0x0002 2 Multiple level data. Normally set if there is more than one channel

in the patch.
This parameter is set to 0 by default.

Returns The function returns the number of the idealised trace channel.
See also: SetXXX(), SetOpClAmp(), SetOpClBurst(), SetOpClHist(),

SetOpClScan()

This function creates a memory view to hold an open/closed amplitude histogram from
an idealised trace. The current view when SetOpClAmp() is called will be the source
view for the data to be processed.
Func SetOpClAmp(chan%, bins%, minAmp|minAmp$, maxAmp|maxAmp$,
 incl%, excl%{, flags%});

chan% The channel number in the source view. This channel must have an idealised
trace fitted, for a histogram to be built.

bins% The number of bins in the resulting histogram.
minAmp The smallest amplitude to be represented in the histogram.
minAmp$ The smallest amplitude to be represented in the histogram, as a string. Strings

such as “Hcursor(1)” can be used.
maxAmp The largest amplitude to be represented in the histogram.
maxAmp$ The largest amplitude to be represented in the histogram, as a string. Strings

such as “Hcursor(1)” can be used.
incl% A set of flags associated with each open/closed time to include. If an event has

any of the flags in the incl% set and none of the flags in the excl% set, it will
be included in the histogram. See SetOpClHist() for a list of flag values.

excl% A set of flags defining those events to be excluded from the histogram. Events
having flags in the excl% set will be excluded regardless of whether they have
flags in the incl% sets.

flags% Set to 1 if amplitudes are to be measured relative to the baseline. If this is set
to 0 or omitted then processing will use absolute amplitudes.

Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), SetOpCl(), SetOpClBurst(), SetOpClHist(),

SetOpClScan()

SetOpClAmp()

SetOpClBurst() Alphabetical command reference SetOpClHist()

5-225

This function creates a memory view to hold an open/closed burst time histogram from
an idealised trace. The current view when SetOpClBurst() is called will be the source
view for the data to be processed. A burst duration is from the start time of an included
event to the start time of an excluded event having a duration greater than the critical
interval.
Func SetOpClBurst(chan%, binsz, maxDur, crInt, incl%, excl%);

Func SetOpClBurst(chan%, minDur, maxDur, crInt, incl%, excl%,
nBins%);

chan% The channel number in the source view. This channel must have an idealised
trace fitted for a histogram to be built.

binsz The x increment per bin in the histogram.
minDur The minimum duration of a burst to be included in the histogram. This is used

for log-binning.
maxDur The maximum duration of a burst to be included in the histogram.
crInt The critical interval.
incl% A set of flags associated with each open/closed time to include. If an event has

any of the flags in the incl% set and none of the flags in the excl% set, it will
be included in the histogram. See SetOpClHist() for a list of flag values.

excl% A set of flags defining those events to be excluded from the histogram. Events
having flags in the excl% set will be excluded regardless of whether they have
flags in the incl% sets.

nBins% The number of bins in the histogram of log-binned data. Omit or set to 0 for all
bins to be of width binsz.

Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), SetOpCl(), SetOpClAmp(), SetOpClHist(),

SetOpClScan()

This function creates a memory view to hold an open/closed time histogram from an
idealised trace. The current view when SetOpClHist() is called will be the source view
for the data to be processed.
Func SetOpClHist(chan%, binsz, maxDur, incl%, excl%);

Func SetOpClHist(chan%, minDur, maxDur, incl%, excl%, nBins%);

chan% The channel number in the source view. This channel must have an idealised
trace fitted for a histogram to be built.

binsz The x increment per bin in the histogram.
minDur The minimum duration of an open/closed time to be included in the histogram.

This is used for log-binning.
maxDur The maximum duration of an open/closed time to be included in the histogram.
incl% A set of flags associated with each open/closed time to include. If an event has

any of the flags in the incl% set and none of the flags in the excl% set it will be
included in the histogram. A set of flags is built up by adding together the
following values:
0x0001 1 Level 1: Closed times and the first open level.
0x0002 2 Bad data: Events marked as bad in the idealised trace editor.
0x0004 4 Assumed amplitude: Events whose amplitude has not been

calculated from the raw data.
0x0008 8 Spare.

SetOpClBurst()

SetOpClHist()

SetOpClScan() The Signal script language SetOpClScan()

5-226

0x0010 16 First latency: The period from the start of the idealised trace to
the first transition.

0x0020 32 Truncated: The last event in an idealised trace.
0x0040 64 Closed time.
0x0080 128 Open time.
0x0100 256 Spare.
0x0200 512 Spare.
0x0400 1024 Spare.
0x0800 2048 Level 6 of multi-level data.
0x1000 4096 Level 5 of multi-level data.
0x2000 8192 Level 4 of multi-level data.
0x4000 16384 Level 3 of multi-level data.
0x8000 32768 Level 2 of multi-level data.

excl% A set of flags defining those events to be excluded from the histogram. Events
having flags in both the incl% and excl% sets will be excluded.

nBins% The number of bins in the histogram of log-binned data. Omit or set to 0 for all
bins to be of width binsz.

Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), SetOpCl(), SetOpClAmp(), SetOpClBurst(),

SetOpClScan()

This function creates an idealised trace process using the SCAN method. The current
view when SetOpClScan() is called will be the source view for the data to be
processed. You will need to call OpClNoise before calling this function.
Func SetOpClScan(cSpc, start|start$, end|end$, base|base$,
 thresh|thresh$, open|open$, cutoff{, track%{, flags%}});

cSpc A channel specifier for the channels to analyse. See the Script language syntax
chapter for a definition of channel specifiers.

start The start time in seconds of the idealised trace to be created.
start$ The start time as a string, e.g. "Cursor(1)".
end The end time in seconds of the idealised trace to be created.
end$ The end time as a string, e.g. "Cursor(2)".
base The initial level of the baseline.
base$ The base value as a string, e.g. "HCursor(1)".
thresh The level which the original data trace must cross in order to change from

closed state to an open state.
thresh$ The thresh value as a string e.g. "HCursor(2)".
open The approximate initial level at which the channel will be assumed to be fully

open.
open$ The open value as a string, e.g. "HCursor(3)".
cutoff The –3dB frequency in Hz of the cut-off frequency of the filter used to remove

noise from the raw data..
track% The number of data points over which to form a running average of the

baseline. The default value is 0.

SetOpClScan()

SetPower() Alphabetical command reference SetPower()

5-227

flags% A set of flags built up by adding together the following values:
1 Outward current. An opening of a channel leads to a more positive

current.
2 Avoid sub-levels. Normally set if you know there are no sub-levels so

multiple transitions will be used instead where possible.
This parameter is set to 0 by default.

Returns The function returns the number of the idealised trace channel.
See also: SetXXX(), OpClNoise(), SetOpClAmp(), SetOpClBurst(),

SetOpClHist(), SetOpCl()

This function creates a memory view to hold a power spectrum in each channel when it is
processed. Sweeps() reports the number of sweeps accumulated by processing into the
memory view. The current view when SetPower() is called will be the source view for
the data to be processed. In this version of Signal the source view cannot be log-binned
data.
Func SetPower(cSpc, fftsz%{, offset{, wnd%}});

cSpc A channel specifier for the channels to analyse. See the Script language syntax
chapter for a definition of channel specifiers.

fftsz% The size of the transform used in the FFT. This must be a power of 2 in the
range 16 to 262144, numbers that are not an integral power of 2 will be
rounded down to the next lower such power. The memory view has half this
number of bins. The width of each bin is the sampling rate of the channel
divided by fftsz%. Each block of fftsz% data points processed increments
the value for Sweeps().

offset This sets the offset in x axis units from start of frame to the start of the data to
analyse. If omitted or zero, the data will be taken from the start of the frame.

wnd% The window to use. 0 = none, 1 = Hanning, 2 = Hamming. Values 3 to 9 set
Kaiser windows with -30 dB to -90 dB sideband ripple in steps of 10 dB. If
this is omitted a Hanning window is applied.

Returns The function returns a handle for the new view, or a negative error code.
See also: SetXXX(), SetAverage(), ArrFFT(), Process(), Sweeps(),

View()

SetPower()

SetTrend() The Signal script language SetTrend()

5-228

This function creates an XY view to hold XY points calculated by trend plot processing.
The function creates an XY view with a single channel; more channels can be added
using SetTrendChan(). This command has been replaced with MeasureToXY
which should be used for all new scripts.
Func SetTrend(name$, xtyp%, xc%, xp|xp$, xb|xb$, xw, ytyp%, yc%,
 yp|yp$, yb|yb$, yw{, pts%{, xFitCh%{, yFitCh%{, comX%}}})};

name$ The name of the channel. The channel name is shown in the XY key area.
xtyp% The type of measurement to take for the X part of each point. The possible

values are:
100 Value at a point.
101 Value difference between points.
102 Time at a point.
103 Time difference between points.
104 Frame number.
105 Absolute time of frame.
106 Frame state value.
107 Fit coefficient.
108 User entered value
109 Value ratio.
110 Value product.
111 Value above baseline.
1 Curve area between positions.
2 Mean between positions.
3 Slope between positions.
4 Area between positions.
5 Sum between positions.
6 Modulus between positions.
7 Maximum value between positions.
8 Minimum value between positions.
9 Amplitude value between positions.
10 RMS Amplitude value between positions.
11 Standard deviation value between positions.
12 Absolute maximum value between positions.
13 Peak found between positions.
14 Trough found between positions.
15 Point count between positions.
NOTE. These values have changed from earlier versions of Signal – you
will need to adjust any scripts that use them.

xc% A single waveform channel from the current view, this is the channel that will
be used to take the X measurement. Use a channel number (1 to n). For xtyp%
= 107 this is the coefficient index.

xp The time for single-point X measurements and difference measurements. For
measurements between points, this is the end time.

xp$ The time for single-point X measurements and difference measurements
expressed as a string. This allows constructs such as ”Cursor(1)–10” to be
used.

xb The reference time for difference measurements; for measurements between
points, this is the start time.

xb$ The reference time for difference measurements expressed as a string.
xw The width used for some measurements, particularly value at point and value

difference.
ytyp% The type of measurement to take for the Y part of each point. The possible

values are the same as for xtyp%.

SetTrend()

SetTrendChan() Alphabetical command reference ShowBuffer()

5-229

yc% A single waveform channel from the current view; this is the channel that will
be used to take the Y measurement. Use a channel number (1 to n). For ytyp%
= 107 this is the coefficient index.

yp The time for single-point Y measurements and difference measurements. For
measurements between points, this is the end time.

yp$ The time for single-point Y measurements and difference measurements
expressed as a string. This allows constructs such as ”Cursor(1)–10” to be
used.

yb The reference time for difference measurements; for measurements between
points, this is the start time.

yb$ The reference time for difference measurements expressed as a string.
yw The width used for some measurements, particularly value at point and value

difference.
pts% The number of points for this channel before they are recycled. If this is

omitted or set to zero, all points are simply added.
xFitCh% The channel containing the fit to take fit coefficient values from if xtyp% =

107. If this is set to 0 (the default) Signal will scan all channels to find one
containing a fit with sufficient coefficients to use.

yFitCh% 1The channel containing the fit to take fit coefficient values from from if
ytyp% = 107. If this is set to 0 (the default) Signal will scan all channels to
find one containing a fit with sufficient coefficients to use.

comX% Set to 1 for all channels in the plot to share the same x-values. 0 (default) sets
channels to have independent x-values.

Returns The function returns a handle for the new view, or a negative error code.
See also: MeasureToXY(), FrameState(), FrameAbsStart(),

ChanMeasure(), SetTrendChan(), Process(), ProcessAll(),
ProcessFrames()

This function adds another channel to an XY view created using SetTrend(). The
current view must be the XY view to be modified. The SetTrendChan() function can
be used to create XY views with up to 32 channels. This command has been replaced
with MeasureChan which should be used for all new scripts.
Func SetTrendChan(name$, xtyp%, xc%, xp|xp$, xb|xb$, xw, ytyp%,
 yc%, yp|yp$, yb|yb$, yw{, pts%{, xFitCh%{, yFitCh%}}});

All of the parameters to SetTrendChan() are exactly the same as for SetTrend().
Returns The function returns zero or a negative error code.
See also: MeasureChan(), FrameState(), ChanMeasure(), SetTrend(),

Process(), ProcessAll(), ProcessFrames()

This function gets or sets the show frame buffer flag from the current view.
Func ShowBuffer({yes%});

yes% If this is non-zero the frame buffer is shown otherwise the current frame data is
shown. If this is omitted, no change is made.

Returns The buffer show flag at the time of the call.
See also: BuffXXX(), Frame()

SetTrendChan()

ShowBuffer()

ShowFunc() The Signal script language Sinh()

5-230

This function draws a function over a data channel. This function is included for
compatibility. It has been replaced with ChanFitShow() in version 3 or later.
Func ShowFunc(func%, chan%{, start, coefs[]});

func% The type of the function to show:
 0 Don’t show a function

1 Single exponential
2 Double exponential
3 Single gaussian
4 Double gaussian

chan% The channel on which to show the function.
start The time to start drawing from.
coefs The coefficients to use in drawing the function.
Returns The function returns zero or a negative error code.
See also: FitExp(), FitGauss(), ChanFitShow()

This function calculates the sine of an angle in radians, or converts an array of angles into
an array of sines.
Func Sin(x|x[]{[]...});

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2π to 2π.

Returns When the argument is an array, the function replaces the array with the sines of
all the points and returns either a negative error code or 0 if all was well. When
the argument is not an array the function returns the sine of the angle.

See also: ATan(), Cos(), Cosh(), Ln(), Log(), Pow(), Sinh(),
Sqrt(),Tan()

This calculates the hyperbolic sine of a value or of an array of values.
Func Sinh(x|x[]{[]...});

x The value, or an array of real values.
Returns When the argument is an array, the function replaces the array elements with

their hyperbolic sines and returns 0. When the argument is not an array the
function returns the hyperbolic sine of the argument.

See also: Abs(), ATan(), Cos(), Cosh(), Exp(), Frac(), Ln(), Log(),
Max(), Min(), Pow(), Rand(), Round(), Sqrt(), Sinh(),
Tan(), Tanh(), Trunc()

ShowFunc()

Sin()

Sinh()

Sound() Alphabetical command reference Sound()

5-231

This has two variants. The first plays a tone of set pitch and duration in Windows NT/XP
and a short “beep” in Windows 98/ME. The second plays a .WAV file or system sound if
your system has multimedia support. The .WAV output was added at version 2.05.

Func Sound(freq%, dur{, midi%}); Tone output
Func Sound(name${, flags%); Multimedia sound output
freq% If midi% is 0 or omitted this holds the sound frequency in Hz. If midi% is non-

zero this is a MIDI value in the range 1-127. A MIDI value of 60 is middle C, 61
is C# and so on. Add or subtract 12 to change the note by one octave.

dur The sound duration, in seconds. The script stops during output.
midi% If this is present and non-zero, the frequency is interpreted as a MIDI value,

otherwise it is a frequency in Hz.
name$ Either the name of .wav file or the name of a system sound. You can either

supply the full path to the file or just a file name and the system will search for
the file in the current directory, the Windows directory, the Windows system
directory, directories listed in the PATH environmental variable and the list of
directories mapped in a network. If no file extension is given, .wav is assumed.
The file must be short enough to fit in available physical memory, so this
function is suitable for files of a few seconds duration only.

 A blank name halts any current sound output. If name$ is any of the following
(case is important), a standard system sound plays:
"S*" Asterisk "SS" System start "SE" System exit
"S?" Query "SW" System welcome "SD" System default
"SH" Hand "S!" System exclamation

flags% This optional argument controls how the data is played. It is the sum of the
following values (given in hexadecimal and decimal):
0x0001 1 Play asynchronously (start output and return). Without this flag,

Signal does nothing (including sampling) until replay ends.
0x0002 2 Silence when sound not found. Normally Sound() plays the

system default sound if the nominated sound cannot be found.
0x0008 8 Loop sound until stopped by another Sound() command. You

must also supply the asynchronous flag if you use loop mode.
0x0010 16 Don’t stop a playing sound. Normally, unless the “No wait” flag

is set, each command cancels any playing sound.
0x2000 8192 No wait if sound is already playing. Sound("",0x2010) can be

used to detect if a previous asynchronous sound has finished.
If you don’t supply this argument, the flag value is set to 0x2000.

Returns The tone output returns 0 or a negative error code. The multimedia output
returns non-zero if the function succeeded and zero if it failed.

See also: Speak()

Sound()

Speak() The Signal script language Sqrt()

5-232

If your system supports text to speech, this command allows you to convert a text string
into speech. Currently we provide no facilities to setup voices or to route the sound
output; you must do this from the Speech applet in the control panel.

Func Speak(text${, opt%}); Convert text to speech
Func Speak({what%{, val}}); Speech status and control
text$ A string holding the text to output, for example "Sampling has started.".
opt% This optional argument (default value 1) controls the text conversion and output

method. It is the sum of the following flags:
1 Speak asynchronously. Without this flag the command waits until speech

output is over before returning.
2 Cancel any pending speech output.
4 Speak punctuation marks in the text.
8 Process embedded SAPI XML; the www.microsoft.com/speech web site

has more information on this advanced topic. For example:
Speak("Emphasis on <EMPH>this</EMPH> word",8);

16 Reset to the standard voice settings before speaking.
what% An optional variable, taken as 0 if it is omitted:

0 Returns 1 if speech is playing and 0 if it is not.
1 Wait for up to val seconds (default value 3.0) for output to end. The return

value is 0 if playing is finished, 1 if it continues after val seconds.
2 Returns the current speech speed in the range –10 to 10; 0 is the standard

speed. If val is present, it sets the new speed.
3 Returns the current speech volume in the range 0 to 100, 100 is the

standard volume. If val is present, it sets the new volume.
val An optional argument used when what% is greater than 0.
Returns If there is no speech support available, or a system error occurs, the command

returns -1. Otherwise the first command variant returns 0 if all is well and the
second variant returns the values listed for what%.

To use TTS (text to speech), you need a suitable sound card and the Microsoft SAPI
software support. Windows XP has this software included with the operating system. You
can get text to speech support as a download for other versions of windows. In August
2004, the speech support was available as SpeechSDK51MSM.exe from the web page
www.microsoft.com/speech/download/sdk51/ but this location may change.

See also: Sound()

Forms the square root of a real number or replace each element of an array of real
numbers with their square roots. Negative numbers cause the script to halt with an error
when x is not an array. With an array, negative numbers are set to 0 and an error is
returned.
Func Sqrt(x|x[]{[]...});

x A real number or a real array to replace with an array of square roots.
Returns With an array, this returns 0 if all was well, or a negative error code. With an

expression, it returns the square root of the expression.

Speak()

Sqrt()

Str$() Alphabetical command reference System$()

5-233

This converts a number to a string.
Func Str$(x{, width%{, sigd%}});

x A number to be converted.
width% Optional minimum field width. The number is right justified in this width.
sigd% Optional number of significant figures in the result (default is 6) or set a

negative number to set the number of decimal places.
Returns A string holding a representation of the number.
See also: Print$(), Print(), Val()

This function returns the number of sweeps accumulated into the frame data and
optionally sets it to a new value. If the memory view is saved and reloaded as a file view,
the sweeps value is preserved. What each item or sweep is, depends on the type of the
analysis.
Func Sweeps({new});

new If present, sets the sweeps value for the frame to a new value. Note that, while
setting the sweep count for a frame is necessary in some circumstances, if used
incautiously this mechanism will corrupt the sweep count of analysed data.

Returns The number of sweeps accumulated to produce the frame data.
See also: SetAverage(), SetPower(), View()

This returns the operating system name as a string and accesses environment variables
belonging to Signal. The environment holds a list of strings of the form "name=value".
If you know the name, you can get or set the associated value. You can also read back the
entire list of strings into a string array.
Func System$({var${, value$}});
Func System$(list$[]{, &n%});

var$ If present, this is the name of an environment variable (case insensitive).
value$ If present, the new value. An empty string deletes the environment variable.
list$ An array of strings to fill with environment strings of the form "name=value".
n% An optional integer that is returned holding the number of elements copied.
Returns With no arguments, it returns: "Windows SS build n" where SS is the

operating system and n is the build number. Otherwise it returns the value of the
environment variable identified by var$ or an empty string.

The following example shows how to use this function:
var list$[200], value$, n%, i%;
PrintLog("%s\n", System$()); 'Print OS name
System$("fred","good"); 'Assign the value good to fred
PrintLog("%s\n", System$("fred")); 'get value of fred
System$("fred",""); 'Delete fred from the environment
System$(list$[], n%); 'Print all environment strings
for i%:=0 to n%-1 do PrintLog("%s\n",list$[i%]) next;

Each process has its own copy of the environment. Changes you make here only affect
the local environment. If you use ProgRun() to start another process, it inherits the
Signal environment, so you can use the environment to pass information to the new
process. However, you cannot see environment changes that the new process makes.

See also: ProgRun(), System()

Str$()

Sweeps()

System$()

System() The Signal script language Tan()

5-234

This function returns the operating system version as a number and gets information
about desktop screens. Use the App() command to get the version number of Signal.
Func System({get%{, scr%{, sz%[]}}});

get% If omitted or 0, the return value is the operating system revision times 100:
351=NT 3.51, 400=95 and NT 4, 410=98, 490=Me, 500=NT 2000, 501=XP,
502=XP x64 Edition, 600=Vista. If 1, the function returns information about
installed desktop monitors.

scr% Set 0 to return the number of desktop monitors; sz%[] gets the pixel co-
ordinates of the desktop. Set to n (>0) to get the pixel co-ordinates of screen n;
returns 1 for the primary monitor, 0 if not and -1 if it does not exist. Add 1000 to
scr% to get the pixel co-ordinates of screen n with any areas reserved by the
system (for example the taskbar) removed.

sz%[] Optional array of at least 4 elements to return pixel positions. Elements 0 and 1
hold the top left x and y, 2 and 3 hold bottom right x and y.

See also: App(), System$(), Window(), WindowVisible()

This sets and gets the tab settings for a text view. Any changes you make apply to the
current view only. If you want to change the tab settings for all views, open the Edit
menu preferences General tab and click the appropriate button in the Text view settings.
It is possible to do this using a script with the Profile() command.
Func TabSettings({size%{, flags%}});

size% Tab sizes are set in units of the width of the space character in the Default
style set for the view (style 32). Values in the range 1 to 100 set the tab size. If
size% is 0 or omitted, no change is made. If size% is -1, the return value is the
current flags% value for the text view.

flags% If omitted, no change is made to the flags. Otherwise, this is the sum of flag
values: 1=Keep tab characters (the alternative is replace tabs with spaces),
2=show indents.

Returns If size% is positive, the return value is the tab size at the time of the call. If
size% is -1, the return value is the flags% value at the time of the call.

See also: FontGet(), FontSet(), Profile()

This calculates the tangent of an angle in radians or converts an array of angles into
tangents. Tangents of odd multiples of π/2 are infinite, so cause computational overflow.
There are 2π radians in 360°. The value of π is 3.14159265359 (4.0*ATan(1)).
Func Tan(x|x[]{[]...});

x The angle, expressed in radians, or a real array of angles. The best accuracy of
the result is obtained when the angle is in the range -2π to 2π.

Returns For an array, it returns a negative error code (for overflow) or 0. When the
argument is not an array the function returns the tangent of the angle.

See also: ATan(), Cos(), Cosh(), Ln(), Log(), Pow(), Sin(), Sinh(),
Sqrt(), Tanh()

System()

TabSettings()

Tan()

Tanh() Alphabetical command reference Time$()

5-235

This calculates the hyperbolic tangent of a value or an array of values.
Func Tanh(x|x[]{[]...});

x The value or an array of real values.
Returns For an array, it returns 0. Otherwise it returns the hyperbolic tangent of x.

See also: ATan(), Cos(), Cosh(), Ln(), Log(), Pow(), Sin(), Sinh(),
Sqrt(), Tan()

This function returns the current system time of day as a string. If no arguments are
supplied, the returned string shows hours, minutes and seconds in a format determined by
the operating system settings. To obtain the time as numbers, use the TimeDate()
function. To obtain relative time (and fractions of a second), use Seconds().
Func Time$({tBase%{, show%{, amPm%{, sep$}}}});

tBase% Specifies the time base to show the time in. You can choose between 24 hour
clock or 12 hour clock mode. If this argument is omitted, a value of 0 is used.
0 Operating system settings.
1 24 hour format.
2 12 hour format.

show% Specifies which time fields to show. Add the values of the required options
together and enter that number as the argument. If this argument is omitted or a
value of 0 is used, 7 (1+2+4) is used for 24 hour format and 15 (1+2+4+8) for
12 hour format.
1 Show hours.
2 Show minutes.
4 Show seconds.
8 Remove leading zeros from hours.

amPm% This sets the position of the “AM” or “PM” string in 12 hour format. This
parameter has no effect in 24 hour format. If this argument is omitted, a value of
zero is used. The actual string which gets printed (“AM” or “PM”) is specified by
the operating system.
0 Operating system settings.
1 Show to the right of the time.
2 Show to the left of the time.
3 Hide the “AM” or “PM” string.

sep$ This string appears between adjacent time fields. If sep$ = “:” then the time
will appear as 12:04:45. If an empty string is entered or sep$ is omitted, the
operating system settings are used.

See also: Date$(), FileTime$(), Seconds(), TimeDate()

Tanh()

Time$()

TimeDate() The Signal script language TimeUnits$()

5-236

This procedure returns the time and date in seconds, minutes, hours, days, months, and
years. It can also return the day of the week. You can either enter a separate variable for
each field to be returned, or alternatively, an integer array of the desired size. This
procedure returns numerical values. If you wish to have a formatted string containing
either the date or the time you should use Date$() and Time$(). If you want to measure
relative times, or times to a fraction of a second, see the Seconds() command. To get
the current sampling time, see MaxTime().
Proc TimeDate(&s%{, &m%{, &h%{, &d%{, &mon%{, &y%{, &wDay%}}}}}});
Proc TimeDate(now%[]);

s% If this is the only argument is passed, the number of seconds since midnight is
returned in this variable. If the min% argument is present, the number of seconds
since the beginning of the present minute is returned.

m% If this is the last argument, then the number of minutes since midnight is
returned in this variable. If hour% is present, then the number of full minutes
since the beginning of the present hour is returned.

h% If present, the number of hours since midnight is returned in this variable.
d% If present, the day of the month is returned as an integer in the range 1 to 31.
mon% If present, the month number is returned as an integer in the range 1 to 12.
y% If present,. the year number is returned here. It will be an integer such as 2008.
wDay% If present, the day of the week will be returned here. This will be an integer in

the range 0 (Monday) to 6 (Sunday).
now%[] If an array is passed as the first and only arguments, array elements are filled

with time and date data. Elements beyond the seventh are not changed. The
array can be less than seven elements long. Element 0 is set to the seconds, 1 to
the minutes, 2 to the hours, and so on.

See also: Date$(), FileTimeDate(), MaxTime(), Seconds(), Time$()

This function returns the ratio between the current view X axis units and seconds; for
example in milliseconds mode it returns 1000. Use of this value allows script output to
use the preferred time units, as the script functions always see time values in seconds,
regardless of the time units preferred.
Func TimeRatio();

Returns The current time ratio.
See also: TimeUnits$()

This function returns the current view time units, for example in milliseconds mode it
returns “ms”. Use of this allows script output to show the preferred time units.
Func TimeUnits$();

Returns The current time units.
See also: TimeRatio()

TimeDate()

TimeRatio()

TimeUnits$()

Toolbar() Alphabetical command reference Toolbar()

5-237

The toolbar is at the top of the screen, below the menu. The bar has a message area and
can hold buttons that are used in the Interact() and Toolbar() commands.

Message area OK CancelFilt er Zero
File Ed it View Analysis Sam p le Scr ip t Wind ow
Help

It is possible to link user-defined functions and procedures to the toolbar buttons. This is
done through a set of functions that define buttons and optionally link the buttons to the
toolbar. You can define up to 17 buttons in your toolbar, but you will probably be limited
by the available space to a maximum of around 10. Buttons are numbered from 1 to 17.
There is an invisible button, numbered 0, that is used to set a function that is called when
the toolbar is waiting for a button to be pressed.

When you start a script, the toolbar is invisible and contains no buttons. When a script
stops running, the toolbar becomes invisible (if it was visible).

There is an example script Toolmake.s2s which automates the writing of toolbar
commands to generate your desired toolbar.

See also: Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarSet(), ToolbarText(), ToolbarVisible()

This function displays the toolbar and waits for the user to click on a button. If button 0
has been defined with an associated function, that function is called repeatedly while no
button is pressed. If no buttons are defined or enabled, or if all buttons become undefined
or disabled, the toolbar is in an illegal state and an error is returned. If the toolbar was not
visible, it becomes visible when this command is given.

If the user presses the “escape” key (Esc) with the toolbar active, the script will stop
unless an “escape button” has been set by ToolbarSet(), in which case the action
associated with that button is performed.
Func Toolbar(text$, allow%{, help%|help$});

text$ A message to display in the message area of the toolbar. The area available for
messages competes with the area for buttons. If there are too many buttons, the
message may not be visible.

allow% A code that defines what the user can do (apart from pressing toolbar buttons).
The code is the sum of possible activities:

 1 User may swap to other applications.
 2 User may change the current window.
 4 User may move and resize windows.
 8 User may use the File menu.
 16 User may use the Edit menu.
 32 User may use the View menu.
 64 User may use the Analysis menu.
 128 User may use the Cursor menu and add cursors.
 256 User may use the Window menu.
 512 User may use the Sample menu.
 1024 User may not double-click y axis.
 2048 User may not double-click the x axis or scroll it.
 4096 User may not change channel of horizontal cursors.
 8192 User may not change to another frame.

The toolbar

Toolbar building

Toolbar()

ToolbarClear() The Signal script language ToolbarEnable()

5-238

 A value of 0 would restrict the user to the current view in a fixed window and, in
a data view, the user would be able to scroll data and switch frames. A value of
9216 is the same as 0 but without being able to change y axes or frame.

help This is either a numeric code or a string that defines the help to be presented if
the user asks for it while using the toolbar. A code of 0 means use standard help.

Returns The function returns the number of the button that was pressed to leave the
toolbar, or a negative code returned by an associated function.

The buttons are displayed in order of their item number. Undefined items leave a gap
between the buttons. This effect can be used to group related buttons together.
See also: Interact(), ToolbarClear(), ToolbarEnable(), ToolbarSet(),

ToolbarText(), ToolbarVisible()

This function is used to remove some or all of the buttons from the toolbar. If you delete
all the buttons, the Toolbar() function will insert a button labelled OK so you can get
out of the Toolbar() function. Use ToolbarText("") to clear the toolbar message.
Proc ToolbarClear({item%});

item% If present, this is the number of the button in the toolbar to clear. Buttons are
numbered starting at 0. If omitted, all buttons in the toolbar are cleared.

See also: Interact(), Toolbar(), ToolbarEnable(), ToolbarSet(),
ToolbarText(), ToolbarVisible()

This function enables and disables toolbar buttons and reports on the state of a button.
Enabling an undefined button has no effect. If you disable all the buttons and then use the
Toolbar() function or if you disable all the buttons in a function linked to the toolbar
and there is no idle function set, a single OK button is displayed.
Func ToolbarEnable(item%{, state%});

item% The number of the button or -1 for all buttons. You must enable and disable
button 0 with ToolbarSet() and ToolbarClear().

state% If present this sets the button state. A value of 0 disables a button, a value of 1
enables a button.

Returns The function returns the state of the button prior to the call, as 0 for disabled and
1 for enabled. If all buttons were selected the function returns 0. If an undefined
button, or button 0 is selected, the function returns -1.

See also: Interact(), Toolbar(), ToolbarClear(), ToolbarSet(),
ToolbarText(), ToolbarVisible()

ToolbarClear()

ToolbarEnable()

ToolbarMouse() Alphabetical command reference ToolbarMouse()

5-239

This command gives you access to the mouse positions and left button mouse clicks in
Time, Result and XY views when the mouse is over a data channel while a toolbar is
active. There is an example, here.

Proc ToolbarMouse(vh%, ch%, mask%, want%, Down%{, Up%{, Move%}});

vh% Either the view handle of the view that you want to get mouse information from,
or 0, meaning that you will accept mouse information from any suitable view.

ch% Either a channel number in the view that you want mouse information for when
you are over it or 0 to accept input from any channel. In an XY view, the display
area is treated as belonging to channel 1, so setting 1 or 0 will work. If you set a
channel number, once you have clicked on that channel, all values passed to you
will be for that channel, even if you drag the mouse over a different channel. To
click on a channel, then drag to another and be told about the other channel you
must set ch% to 0. With ch% set to 0, if you drag to a place where there is no
channel, you will be returned the last position that was over a channel.

mask% This, and the next argument (want%) are used when the left mouse button is
clicked to decide if the script should be told about the mouse click. When the
mouse button is clicked, and the conditions set here are met, the mouse becomes
owned by the script and all mouse input will be given to the script until the
mouse is released (or another application grabs the mouse). The mouse is said to
be captured. The conditions set here are also used to decide if the script should
be informed of mouse movements when the mouse is not owned by the script.
Both mask% and want% are the sum of a set of values:
1 The left-hand mouse button is down.
2 The right-hand mouse button is down (releasing this button will normally

display a context menu)
4 The Shift key is down
8 The Ctrl key is down
16 The mouse middle button is down
32 Extra button 1 is down (this is the left-hand side button on my mouse)
64 Extra button 2 is down (this is the right-hand side button on my mouse)
128 The Alt key is down
256 This mouse down was a double-click
The mask% value determines which of these items we care about. For example if
you cared about the state of Shift and Ctrl, you would set the value to 12.

want% This argument sets the desired state of the items that you have identified with
mask%. For example, if you only want to be told when the Shift key is down
and the Ctrl key is not down, set mask% to 12 and want% to 4. Another use
would be to stop the script being told when the mouse was just being moved
around but had not been clicked in an area we wanted. In this case you would set
mask% and want% to 1 (only tell me when the left-hand mouse button is down).

Down% This is the name of a user-defined function that is called when the mouse left-
hand button is clicked and the conditions implied by vh%, ch%, mask% and
want% are satisfied. The arguments and return value are described below.

Up% This is the name of an optional user-defined function that is called when the
mouse button is released after it has been captured. You will always get a Down%
function call before you get an Up% call. If another application (rudely) takes
over the mouse by popping up a window, you will also get a call to the Up%
function. This function is described below.

Move% This is the name of an optional user-defined function that is called when the
mouse is moved after being captured. This function is also called when the
mouse is moved when not captured by a mouse click and the conditions set by
vh%, ch%, mask% and want% are satisfied. If you only want to be called during a

ToolbarMouse()

ToolbarMouse() The Signal script language ToolbarMouse()

5-240

drag operation, make sure you include the value for the left-hand mouse button
in both mask% and want%

All three functions have exactly the same arguments. The function names do not have to
be Down%, Up% and Move%, you can choose any suitable names. Ideally your mouse
functions (especially mouse move) should not take a long time to run; if they do, the
mouse movement will feel uncomfortable and jerky. The mouse up function could be
used to trigger a more time consuming operation. The return value has different uses in
all three cases. The functions are:
Func Down%(vh%, ch%, x, y, flags%);
Func Move%(vh%, ch%, x, y, flags%);
Func Up%(vh%, ch%, x, y, flags%);

vh% The view handle of the view that the mouse is over. If you set vh% to a view
handle value in the ToolbarMouse() call, then this will be that value.

ch% The channel number that the values of x and y relate to. If you specified a
channel number in the ToolbarMouse() call, then this will be that value.

x The x-axis value in x-axis units. If you click and drag you can get values that are
outside the visible range of the x axis. If you want to scroll the view in response
to this, you can do so.

y The y-axis value in y axis units for the channel identified by ch%. If there is no y
axis, the value will be 0.

flags% This holds the same information as held by mask% and want%. It gives you the
state of the mouse buttons and Shift, Ctrl and Alt keys.

The return values have different uses for the three functions:
If you decide that you do not want to do anything with the mouse, for example the click
was not over anything interesting, then return 0 and Signal will decide what to do with
the click. You will never get a mouse down call when the mouse is over the XY view
key, or over a vertical or horizontal cursor. However, you do get priority over Signal for
all other clicks in a view (for sizing, for instance). Return values greater that 0 select the
mouse pointer to display (this is covered below) and mean that you want to capture the
mouse for script use.

You can also choose to display an indication of a selection size or area by adding a value
to the return value (only 1 value can be added). If you add any of the following values
and you drag beyond the left or right edges of the data area, the area will scroll (if it is
allowed to).

Value Result
256 Display a selection rectangle, as you would for zooming in and out. If you return

256, the appropriate zoom cursor is selected based on the state of the Ctrl key).
512 Display a measurement of the distance between the start of the drag and the

current position. If you return 512, the measurement cursor is selected.
1024 Display a line from the selection start to the current position. If you return 1024,

the measurement cursor is selected.

The return value from this sets the mouse pointer to be used (see below). A return value
of 0 makes no change to the mouse pointer, which means that the pointer set by Func
Down%() will be used for a drag operation and the cross-hair cursor (#1 in the list below)
used when not dragging.

The return value from this determines if the toolbar closes or not. Return 0 to close the
toolbar, 1 to keep running.

The user-defined mouse
functions

Return value
Func Down%()

Func Move%()

Func Up%()

ToolbarSet() Alphabetical command reference ToolbarSet()

5-241

You have access to many of the mouse pointers that are available in Signal, so you can
use these to indicate that you are over an item or to show that you are dragging
something. The values for the preset mouse pointers are:

The first seven and the last four of
these are system mouse pointers and
may have a different appearance if you
have chosen a custom set of mouse
pointers in the Windows system
Control Panel in the Mouse section.
You should be aware that 3D and
animated mouse pointers can be a lot
slower on some systems than simple monochrome pointers. You can also define your
own mouse pointers with the MousePointer() command. These are assigned numbers
above the range of the built-in cursors.

If you double-click, you will get a mouse down, possibly followed by one or more mouse
moves, followed by a mouse up for the first click. The second click generates a mouse
down with the double-click flag set in the flags. If your mouse down function does not
claim the mouse (returns 0), Signal will use the double click as appropriate for the
channel in which you clicked.

See also: MousePointer(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarSet(), ToolbarText(), ToolbarVisible()

This function adds a button to the toolbar and optionally associates a function with it.
When a button is added, it is added in the enabled state. There are two variants:

Func ToolbarSet(item%, label$ {,func ff%()}); 'Set a button
Func ToolbarSet(); 'Get the last used button number while the toolbar is active

item% The button number in the range 1 to 40 to add or replace or 0 to set or clear a
function that is called repeatedly while the toolbar waits for a button press.

 You can set an “escape” key as described in Toolbar(), by negating item%.
For example, ToolbarSet(-2,"Quit"); sets button 2 as the escape key.

label$ The button label plus optional key code and tooltip as "Label|code|tip".
Labels compete for space with each other; use tooltips for lengthy explanations.
The label is ignored for button 0. Tooltips can be up to 79 characters long. To
use a tooltip with no code use "Label||A tooltip with no code field".

 To link a key to a button, place & before a character in the label or add a vertical
bar and a key code in hexadecimal (e.g. 0x30), octal (e.g. 060) or decimal (e.g.
48) to the end of the label. Characters set by & are case insensitive. For example
"a&Maze" generates the label aMaze and responds to m or M; the label
"F1:Go|0x70" generates the label F1:Go and responds to the F1 key. Useful
key codes include (nk = numeric keypad):

 0x08 Backspace 0x09 Tab 0x0d Enter 0x1b Escape
0x20 Spacebar 0x21 Page up 0x22 Page down 0x23 End
0x24 Home 0x25 Left arrow 0x26 Up arrow 0x27 Right arrow
0x28 Down arrow 0x2e Del 0x30-0x39 0-9 0x41-0x5a A-Z
0x60-0x69 nk 0-9 0x6a nk * 0x6b nk + 0x6c nk Enter
0x6d nk - 0x6e nk . 0x6f nk / 0x70-0x87 F1-F24

 Use of other keys codes or use of & before characters other than a-z, A-Z or 0-9
may cause unpredictable and undesirable effects.

 Beware: When the toolbar is active, it owns all keys linked to it. If A is linked,
you cannot type a or A into a text window with the toolbar active.

Mouse pointers set by
return values

Mouse double-click
behaviour

ToolbarSet()

ToolbarText() The Signal script language ToolbarVisible()

5-242

ff%() This is the name of a function with no arguments. The name with no brackets is
given, for example ToolbarSet(1,"Go",DoIt%); where Func DoIt%() is
defined somewhere in the script. When the Toolbar() function is used and the
user clicks on the button, the linked function runs. If the item% 0 function is set,
that function runs while no button is pressed. The function return value controls
the action of Toolbar() after a button is pressed.

 If it returns 0, the Toolbar() function returns to the caller, passing back the
button number. If it returns a negative number, the Toolbar() call returns the
negative number. If it returns a number greater than 0, the Toolbar() function
does not return, but waits for the next button. An item 0 function must return a
value greater than 0, otherwise Toolbar() will return immediately.

 If this argument is omitted, there is no function linked to the button. When the
user clicks on the button, the Toolbar() function returns the button number.

Returns 0 unless called with no arguments when it returns the last used button number.
See also: Asc(), Interact(), Toolbar(), ToolbarClear(),

ToolbarEnable(), ToolbarText(), ToolbarVisible()

This function replaces any message in the toolbar, and makes the toolbar visible if it is
invisible. This function can be used to give a progress report on the state of a script that
takes a while to run.
Proc ToolbarText(msg$);

msg$ A string to be displayed in the message area of the toolbar.
See also: Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),

ToolbarSet(), ToolbarVisible()

This function reports on the visibility of the toolbar, and can also show and hide it. You
cannot hide the toolbar if the Toolbar() function is in use.
Func ToolbarVisible({show%});

show% If present and non-zero, the toolbar is made visible. If zero and the Toolbar()
function is not active, the toolbar is made invisible.

Returns The state of the toolbar at the time of the call. The state is returned as 2 if the
toolbar is active, 1 if it is visible but inactive and 0 if it is invisible.

See also: Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarSet(), ToolbarText()

ToolbarText()

ToolbarVisible()

Trim() Alphabetical command reference TrimRight()

5-243

This function removes leading and trailing white space (spaces, tabs and end of line
characters) or user-defined characters from a string variable. This function was added in
Signal version 5.00.
Proc Trim(&text${, chars$};

text$ The string variable to remove characters from.
chars$ An optional list of characters to remove. If omitted, " \t\n\r" is used.
This function and the similar TrimLeft() and TrimRight() are commonly used to help
parse user input that may contain multiple spaces. For example:
Input After Trim() After Trim(text$, "1234 ");

" 12AB34 " "12AB34" "AB"

" 1234 " "1234" ""

See also: DelStr$(), InStr(), Left$(), Len(), Mid$(), Right$(),
TrimLeft(), TrimRight()

This function removes leading white space (spaces, tabs and end of line characters) or
user-defined characters from a string variable. This function was added in Signal version
5.00.
Proc TrimLeft(&text${, chars$};

text$ The string variable to remove characters from.
chars$ An optional list of characters to remove. If omitted, " \t\n\r" is used.
This function and the similar Trim() and TrimRight() are commonly used to help parse
user input that may contain multiple spaces. For example:
Input After TrimLeft() After TrimLeft(text$, "1234 ");

" 12AB34 " "12AB34 " "AB34 "

" 1234 " "1234 " ""

See also: DelStr$(), InStr(), Left$(), Len(), Mid$(), Right$(),
Trim(), TrimRight()

This function removes trailing white space (spaces, tabs and end of line characters) or
user-defined characters from a string variable. This function was added in Signal version
5.00.
Proc TrimRight(&text${, chars$};

text$ The string variable to remove characters from.
chars$ An optional list of characters to remove. If omitted, " \t\n\r" is used.
This function and the similar TrimLeft() and Trim() are commonly used to help parse
user input that may contain multiple spaces. For example:
Input After TrimRight() After TrimRight(text$, "1234 ");

" 12AB34 " " 12AB34" " 12AB"

" 1234 " " 1234" ""

See also: DelStr$(), InStr(), Left$(), Len(), Mid$(), Right$(),
TrimLeft(), Trim()

Trim()

TrimLeft()

TrimRight()

Trunc() The Signal script language Trunc()

5-244

Removes the fractional part of a real number or truncates an array. To truncate a real
number and return an integer value, just assign the real to the integer. To copy a real
array to an integer array, use ArrConst().
Func Trunc(x|x[]{[]...});

x A real number or a real array.
Returns When the argument is an array, the function replaces the array with the Trunc

of all the points and returns either a negative error code or 0 if all was well.
 When the argument is not an array the function returns the value with the

fractional part removed. Trunc(4.7) is 4.0; Trunc(-4.7) is -4.0.
See also: Frac(), Round(), ArrConst()

Trunc()

U1401Close() Alphabetical command reference U1401Open()

5-245

The U1401 commands give you direct access to the CED 1401 interface connected to
your computer. You should not use these commands during sampling, as this will
probably cause the sampling to fail. You must use the U1401Open() command first to
take control of the 1401, and you should use the U1401Close() command to release the
1401 once you have finished with it. See the 1401 family programming manual for
details of using the 1401; this is available from CED as part of the 1401 programming kit
and also as a download from the CED web site.

See also: U1401Close(), U1401Ld(), U1401Open(), U1401Read(), U1401To1401(),
U1401ToHost(), U1401Write()

This command closes the link between the script language and a 1401 interface generated
by the U1401Open() command. If there is no open 1401, the command is ignored.
Proc U1401Close();

See also: U1401Ld(), U1401Open(), U1401Read(), U1401To1401(),
U1401ToHost(), U1401Write()

This command loads one or more 1401 commands with the option of nominating the
folder to load the commands from. If no 1401 is open, the script halts.
Func U1401Ld(list${, path$});

list$ The list of commands to load separated by commas. Include KILL as the first
item to clear all commands first. For example: "KILL,ADCMEM,MEMDAC". The
file name for a command is the command name plus an extension that depends
on the type of 1401. The extension is added automatically.

path$ Optional. The path to the folder to search for the commands. If omitted, or if the
command is not found in this path, the 1401 folder in the Signal source folder is
searched, then any path indicated by the 1401DIR environment variable, and
finally, the \1401 folder on the current drive.

Returns 0 if all commands loaded. Otherwise the bottom 16 bits is an error code and the
upper 16 bits is the 0-based index to the command in the list that failed to load.

See also: U1401Close(),U1401Open(), U1401Read(), U1401To1401(),
U1401ToHost(), U1401Write()

This command attempts to open a 1401 for use with the other U1401 commands and
returns the type of the opened 1401 or a negative error code. Note that the 1401 opened is
the unit that will be (or is) used in sampling; if you attempt to use the 1401 from the
script while sampling is in progress the likely result will be a failure of Signal. It is not an
error to call U1401Open() multiple times with no intervening U1401Close().
Func U1401Open({unit%});

unit% Optional 1401 unit number in the range of 1 to 8 or 0 for the first available unit.
If a 1401 unit number has been set using the Signal command line, the specified
unit is used if unit% is omitted, otherwise a default value of zero is used.

Returns The return value is the type of the 1401 detected: 0=standard 1401, 1=1401plus,
2=micro1401, 3=Power1401, 4=Micro1401 mk II, 5=Power1401 mk II.
Otherwise it is a negative error code that can be decoded by Error$().

See also: Error$(), U1401Close(), U1401Ld(), U1401Read(),
U1401To1401(), U1401ToHost(), U1401Write()

U1401 1401 access
commands

U1401Close()

U1401Ld()

U1401Open()

U1401Read() The Signal script language U1401ToHost()

5-246

This command reads a text response from a 1401 and optionally converts it into one or
more integer values or reports the number of available input lines. If no 1401 is open, the
script halts. There are four variants:

Func U1401Read(); Get count of input lines
Func U1401Read(&text$); Real an input line as text
Func U1401Read(&v1%{, &v2%, {...}}); Read a line and convert to integers
Func U1401Read(arr%[]); Read a line, convert to integer array
text$ A text variable returned holding the entire response.
v1% An integer variable that is returned with the first integer number read.
vn% Optional integer variables (v2% up to v12%) returned with following values.

Values for which no number is returned are unchanged.
arr%[] An integer array that is filled (starting at element 0) with converted values.
Returns The version with no arguments returns the number of available input lines. The

other versions return the number of items that were converted from the input
text and stored to a script variable or a negative error code. If you use a variant
that reads a line and there is no text to read, the command times out after about 3
seconds and returns an error code.

See also: U1401Close(), U1401Ld(), U1401Open(), U1401To1401(),
U1401ToHost(), U1401Write()

This command transfers the contents of an integer array to memory in the 1401.
Func U1401To1401(arr%[]{[]}, addr%{, size%});

arr% This is a one or 2 dimensional array to transfer. If you use a 2 dimensional array
to interleave 4 channels of data, for example for MEMDAC, set the first dimension
to 4 and the second to the number of points per channel.

addr% The start address of the block of contiguous memory in the 1401 user area to be
filled with data.

size% Optional, the number of bytes in the 1401 that each array element is copied to.
Acceptable values are 1, 2 or 4. If size% is omitted, 4 is used.

See also: U1401Close(), U1401Ld(), U1401Open(), U1401Read(),
U1401ToHost(), U1401Write()

This command transfers a block of 1401 memory into an integer array.
Func U1401ToHost(arr%[]{[]}, addr%{, size%});

arr% This is a one or 2 dimensional array to receive the data. If you use a 2
dimensional array to interleave 8 channels of data, for example for ADCMEM, set
the first dimension to 8 and the second to the number of points per channel.

addr% The start address of the block of contiguous memory in the 1401 user area to
copy data from.

size% Optional, taken as 4 if omitted. The number of bytes of 1401 data used to set
each array element. Use 1, 2 or 4 to read 1, 2 or 4 bytes and sign extend to 32-bit
integer. Use -1, -2 or -4 to read 1 or 2 or 4 bytes and zero extend to 32-bit
integer.

See also: U1401Close(), U1401Ld(), U1401Open(), U1401Read(),
U1401To1401(), U1401Write()

U1401Read()

U1401To1401()

U1401ToHost()

U1401Write() Alphabetical command reference Val()

5-247

This command writes a text string to the 1401.
Func U1401Write(text$);

text$ The text to write to the 1401. Commands to the 1401 are terminated by either a
newline "\n" or a semicolon ";".

Returns 0 if the line was added to the 1401 device driver output buffer, or a negative
error code.

See also: U1401Close(), U1401Ld(), U1401Open(), U1401Read(),
U1401To1401(), U1401ToHost()

This function converts a string into upper case. The upper-case operation may be system
dependent. Some systems may provide localised upper-casing, others may only provide
the minimum translation of the ASCII characters a-z to A-Z.
Func UCase$(text$);

text$ The string to convert.
Returns An upper-case version of the original string.
See also: LCase$()

This converts a string to a number. The converter allows the same number format as the
script compiler and leading white space is ignored.
Func Val(text${, &nCh%{, flag%}});

text$ A string that starts with a floating point number to convert. The conversion stops
at the first character that is not part of the number. From version 4.06, the
function will also accept a hexadecimal number if flag% is set to 1. In
ambiguous cases, the conversion uses the format that uses the most characters of
the input string, so "0xa" has the value 10, not 0 and uses all the characters. The
string "0x" is converted as 0 and uses 1 character as "0x" is not a valid
hexadecimal number. The expected formats are (items in curly brackets are
optional, a vertical bar means use one of the characters before or after the bar):

 {white space}{-|+}{digits}{.digits}{e|E{+|-}digits} or
 {white space}0x|Xhexadecimaldigits

nCh% If present, it is set to the number of characters used to construct the number.
flag% If present and set to 1, hexadecimal input is also acceptable.
Returns It returns the extracted number, or zero if no number was present.
See also: Str$(), ReadStr()

U1401Write()

UCase$()

Val()

View(), View(v,c).[] and View().x() The Signal script language View

5-248

The View() function sets the current view and returns the last view handle, or a negative
error. A view handle is a positive integer > 0. Changing the current view does not change
the focus or bring the view to the front; use FrontView() to do that.
Func View({vh%});

vh% An integer argument being:
>0 A valid view handle that is to be made the current view. An invalid view

handle will stop the script with a fatal error.
0 (Or omitted) no change of the current view is required.
<0 If the argument is -n, this selects the nth duplicate of the current data view.

This is equivalent to Dup(n). Use ViewSource() to get the data view
from which a memory view is derived.

Returns 0 if there are no views at all, -1 if the duplicate requested does not exist,
otherwise it returns the view handle of the view that was current.

The View(vh%,c).[] construction accesses view data for channel c. The [] refers to
the whole array unless it encloses an expression to define a range of array elements. For
waveform channels, the array holds the waveform values as expected. Marker channels
appear as an array holding the marker times, but this array is read-only and a script error
will be caused by attempting to assign to it. Use the MarkTime() function to change the
times of markers.
View(vh%, c%).[{aExp}]

vh% A view handle of an existing view, 0 for the current view, or -n for the nth
duplicate view associated with the current view.

c% A channel number from the view.
aExp An optional array indexing expression. If omitted, the whole array is accessed.

Here are three examples, to work on data from bin b% in channel c% of view v%:
val:=View(v%,c%).[b%] 'get one data value
sum:=ArrSum(View(v%,c%).[b%:100])'sum 100 data values
ArrDiff(View(v%,c%).[]) 'replace data by differences

The View().x() construction overrides the current view for the evaluation of the
function that follows the dot. It is an error if the selected view does not exist, and the
script stops. Don’t use this contruct for functions which close the view.
View(vh%).x()

vh% A view handle of an existing view, 0 for the current view (a waste of time), or -n
for the nth duplicate view associated with the current view.

x() A function or procedure.

For example, View(vh%).Draw() draws the view indicated by vh%. The equivalent
code to View(vh%).x() is:
var temp%;
temp% := View(vh%);
x();
View(temp%);

See also: FrontView(), ViewFind(), ViewKind(), ViewSource(),
Window(), WindowTitle$()

View(), View(v,c).[]
and View().x()

View(v,c).[]

View().x()

ViewColour() Alphabetical command reference ViewFind()

5-249

This function gets and sets the colours of file, memory and XY view items, overriding the
application-wide colours set by Colour(). Currently you can set the background colour.
Deprecated, use ViewColourSet() and ViewColourGet().
Func ViewColour(item%{, col%});

item% The colour item to get or set; 0=background
col% If present, the new colour index for the item. There are 40 colours in the palette

with indices 0 to 39. Use -1 to revert to the application colour for the item.
Returns The palette colour index at the time of the call or -1 if no view colour is set.
See also: ChanColour(), Colour(), PaletteGet(), PaletteSet(),

XYColour()

This function gets the RGB colour of time, result and XY view items, indicating if it
overrides the application-wide colours set by ColourSet(). Added in version 5.02.
Func ViewColourGet(item%{, &r, &g, &b});

item% The colour item to get or set; 0=background. There is only one item at present.
r g b If present, set to the red, green and blue colour values in the range 0.0 to 1.0.
Returns 1 if the returned colour overrides the application colour, 0 if it does not.
See also: ChanColourGet(), ColourGet(), ViewColourSet()

This function sets the RGB colour of time, result and XY view items, to override the
application-wide colours set by ColourSet(). Added in version 5.02.
Proc ViewColourSet(item%{, r, g, b});

item% The colour item to get or set; 0=background. There is only one item at present.
r g b If present, These set the red, green and blue colour values in the range 0.0 to 1.0.

If omitted, the item colour is set to the application default.
See also: ChanColourSet(), ColourSet(), ViewColourGet()

This function searches for a window with a given title and returns its view handle.
Func ViewFind(title$);

title$ A string holding the view title to search for. Note that, in Windows 95 or 98,
system settings in Windows Explorer can cause the file extension to be removed
from the view title, so you may have to search both with and without the “.cfs”.

Returns The view handle of a view with a title that matches the string, or 0 if no view
matches the title.

See also: FileOpen(), Window(), WindowTitle$(), View()

ViewColour()

ViewColourGet()

ViewColourSet()

ViewFind()

ViewKind() The Signal script language ViewLineNumbers()

5-250

This function returns the type of a view or of the current view. Types 5-7 are reserved.
Func ViewKind({vh%});

vh% The handle of the view for which the type is required. If omitted the function
returns information about the current view.

Returns The type of the view. Possible view types are:

0 File view A data view showing one frame at a time from a CFS data file.
Access to any frame in the file is possible for analysis etc.

1 Text view A view holding a text file for editing.
2 Output sequence A view holding an output sequence file.
3 Script view A view holding a script file.
4 Memory view A data view created by a SetXXX() command, similar to a

file view but wholly held in memory.
8 External text file An invisible view for use with routines Read() and Print().
9 External binary file An invisible view for use by BRead(), BWrite() etc.
10 Application window The Signal program window.
11 Other types Other views with handles, such as the Status bar, and Toolbar,

which can be made visible or invisible.
12 XY view An XY view showing sets of XY data points.
-1 Unknown type These include the cursor windows.
-2 Invalid handle The return value if the vh% parameter value is invalid.

See also: App(), ChanKind(), FileOpen(), View(), ViewList()

This function is used in a text-based view to display or hide line numbers and to set the
number of decimal digits of space to use for a line number.
Func ViewLineNumbers({show%});

show% Set -1 or omit for no change, 0 to hide line numbers, 1 to show them. Use 2-8 to
set 2-8 digits of space and greater than 8 for a standard display (5 digits).

Returns 0 if line numbers were hidden at the time of the call, else the display space (2-8).
See also: Gutter()

ViewKind()

ViewLineNumbers()

ViewLink() Alphabetical command reference ViewLink()

5-251

This function returns the view handle of the view that owns the current window. For
example, you can use this to get the data view that created a memory or XY view or that
owns a cursor window. This is slightly different from View(-n), which finds the n th
duplicate of the time view linked to the current data or XY view. This function was added
in Signal version 5.00 and extended to add the second form in Signal 5.02.
Func ViewLink();

Returns The handle of the linked view, or 0 if there is no such view.
It can also iterate through process operations that are using the current data view as their
source. For example, if you create a new sampling document using FileNew() with
mode% containing 2, you may also open other memory and XY documents and have
additional channels present due to the sampling configuration. In this case, the command
is:
Func ViewLink(n%{, mask%{, &name$}});

n% This can be 0, meaning count the number of processes and return it, or it can be
the process number to report on.

mask% This value determines the types of processes we wish to count or report on and
is the sum of: 1 for result views generated bySetAverage() and similar calls, 2
for XY views generated by MeasureToXY() and 4 for idealised trace data
channels in the current view generated by SetOpCl() and similar. If this
argument is omitted, it takes the value 3, to report on memory and XY views.
Normally this argument will be set to 1, 2, 3 or 4. There is nothing to stop you
using the values 5, 6 and 7, but you would need to interpret the returned name$
argument to decide if the return value was a channel number or a view handle.

name$ If present, and n% is greater than 0, this is set to the name of the command that
will process the data.

Returns If n% is 0, this returns the number of processes that match the mask% argument.
If n% is greater than 0, then this returns either the handle of the view or the
channel number in the current view that is the target of the process operation. If
n% is greater than 0 and there is no corresponding process, the return value is 0.

Note that this form of the command identifies active processes, that is processes for
which the Process() command could have some effect.

See also: App(), SampleHandle(), View(), ViewKind(), ViewList()

ViewLink()

ViewList() The Signal script language ViewSource()

5-252

This function fills an integer array with a list of view handles. It never returns the view
handle of the running script. Use the App() command to get this.
Func ViewList({list%[]{, types%}});

list% An integer array that is returned holding view handles. The first element of the
array, list%[0], is set to the number of handles returned, and the remaining
elements in the array are view handles. If the array is too small to hold the full
number, the number that will fit are returned.

types% The types of view to include. This is a code that can be used to filter the view
handles. The filter is formed by adding the types from the list below. If this is
omitted or if no types are specified for inclusion, all view handles are returned.
 1 File views 8 Script views 512 External binary 4096 XY views
 2 Text views 16 Memory views 1024 Application view
 4 Sequencer 256 External text 2048 Other view types

You can also exclude views otherwise included by adding:

 8192 Exclude views not directly related to the current view.
 16384 Exclude visible windows.
 32768 Exclude hidden windows.
 65536 Exclude duplicates.

Returns The total number of windows that satisfy the types%. This can be used to find a
suitable array size.

See also: App(), SampleHandle(), ViewKind()

This function is used in a text-based view to limit the maximum number of lines. For the
Log view, this does not change the value set in the preferences.
Func ViewMaxLines({max%});

max% Set to -1 or omit for no change, 0 for no limit or the maximum number of lines.
Returns The value of the limit at the time of the call.
See also: ViewStandard()

This function returns the handle of the source view for a memory or XY view created by
processing.
Func ViewSource();

Returns The handle of the data view from which this memory or XY view was derived,
and from which it obtains its data. Note that memory views created using
SetCopy() or SetMemory() do not have a data view attached and return 0.

See also: View(), SetXXX(), SetAverage(), SetMemory(), SetPower()

ViewList()

ViewMaxLines()

ViewSource()

ViewStandard() Alphabetical command reference ViewZoom()

5-253

This sets the current data or XY view to a standard state by making all channels and axes
visible in their standard drawing mode, axis range and colour. All channels are given
standard spacing and are ungrouped and the channels are sorted into the correct order. In
an XY view the key is hidden and the axes are optimised.

In a text-based view it removes any maximum line limit, hides line numbers, displays the
gutter and the folding margin (for views that support folding). All the text styles are set to
the default values and any zooming is removed.
Proc ViewStandard();

See also: ChanOrder(), ChanWeight(), DrawMode(), XYDrawMode()

This function can be used to force the display to use black and white only, or to use the
colours set in the colour dialog or by the Colour() command.
Func ViewUseColour({use%});

use% If present, a value of 0 forces Signal to display all windows in black and white.
Any other value allows the use of colour. If omitted, no change is made.

Returns The current state as 1 if colour is in use, 0 if black and white is used.

See also: Colour()

This function is used in a text-based view to get and optionally set the zoom factor. This
is the number of points to add to the nominal size of the text.
Func ViewZoom({zoom%});

zoom% Omit for no change or a value in the range -10 to 20 to add to the point size of
all the text. The resulting minimum text size is 2 point regardless of zoom%.

Returns The zoom value at the time of the call.
See also: ViewStandard()

ViewStandard()

ViewUseColour()

ViewZoom()

VirtualChan() The Signal script language VirtualChan()

5-254

This command controls virtual channels in the current data view and has the functionality
of the Virtual Channel dialog. Virtual channels are defined by an algebraic expression
that can include other channels (but not virtual ones). The first command variant creates
and modifies a virtual channel, the second reports the state of a virtual channel.
Func VirtualChan(chan%, expr${, match%{, binsz{, align}}});
Func VirtualChan(chan%, get%{, &expr$});

chan% In the first command variant, set this to 0 to create a new virtual channel and
return the channel number. The remaining arguments set the initial channel
settings, otherwise default values are used. If not 0, this is the number of an
existing virtual channel to modify or from which to read back the settings.

expr$ In the first command variant, this is a string expression defining the output. See
the Analysis chapter of the Signal manual for details. In the second command
variant, this is an optional string variable that is returned holding the current
expression for the channel.

match% This is the number of an existing waveform channel to match for sample interval
and alignment. If 0, the sample interval and alignment are set by the binsz and
align arguments. If negative, no change is made.

binsz If match% is 0, this sets the sample interval of the channel. Values of binsz less
than or equal to zero are ignored.

align If match% is 0, this sets the channel alignment. Values less than 0 are ignored.
get% In the second command variant, get% determines the returned value. 0 = the

state of the expression parsing, 1 = match%, 2 = binsz, 3 = align.
Returns When creating a new channel, the return value is the new channel number or a

negative error code. When modifying an existing channel, the return value is a
negative code if the match%, binsz or align arguments are illegal, a positive
code if the expression contains an error and 0 if there was no error. The second
variant returns the requested information or a negative error code. If get% is 0,
the return value is negative if the channel is not a virtual channel, 0 if the
expression is acceptable and a positive code if not.

See also: ChanDelete()

VirtualChan()

Window() Alphabetical command reference WindowDuplicate()

5-255

This sets the position and size of the current view. Normally, positions are percentages
from the top left-hand corner of the application window size. You can also set positions
relative to a monitor. This can also be used to position, dock and float dockable toolbars.
Func Window(xLow, yLow{, xHigh{, yHigh{, scr%{, rel%}}}});

xLow Position of the left hand edge of the window. When docking a dockable toolbar,
the xLow and xHigh values correspond to the position of the top left corner of
the window when dropped with the mouse.

yLow Position of the top edge of the window.
xHigh If present, the right hand edge. If omitted the previous width is maintained. If

the window is made too small, the minimum allowed size is used. If the current
view is a dockable control and yHigh is 0, values less than 1 or greater than 4
float the window at (xLow, yLow), otherwise xHigh sets the docking state:
1 Docked to the left window edge 3 Docked to the right edge
2 Docked to the top window edge 4 Docked to the bottom edge

yHigh If present, the bottom edge position. If omitted the previous height is
maintained. If the window is made too small, the minimum allowed size is used.

 If the Window is dockable and yHigh is 0, this command sets the docked state
of the window (see xHigh.) Otherwise the window is floated with the nearest
allowed width that is no more than xHigh-xLow. If xHigh-xLow is 0 or
negative YHigh sets the height of the dockable window.

scr% Optional screen selector for views, dialogs and the application window. If
omitted, positions are relative to the application window. Otherwise, 0 selects
the entire desktop rectangle and greater values select a particular screen
rectangle (see System() for screen information.) If rel% is 1, positions are
relative to the selected rectangle. If rel% is 0 or omitted, positions are relative to
the intersection of the application window and this rectangle.

rel% Omit or set 0 for application window relative, 1 for screen or desktop relative.
Returns 1 if the position was returned, or -1 if the rectangle set by scr% and rel% is of

zero size.
This command can also position the application-window. If scr% is omitted, positions
are relative to the primary monitor screen. If scr% is 0, positions are relative to the entire
desktop, otherwise to screen scr%.
view(App()).Window(0,0,100,100); 'set maximum application size

See also: App(), System(), WindowDuplicate(), WindowGetPos(),
WindowSize(), WindowTitle$(), WindowVisible()

This duplicates the current data view, creating a new window that has all the settings of
the current view. It does not duplicate channels; these are shared with the existing
window. The new window becomes the current view and is created invisibly.
Func WindowDuplicate();

Returns This command returns the view handle of the new window or a negative error
code or 0 if no free duplicates (there is a limit of 9 duplicates per data view.)

See also: Dup(), Window(), WindowGetPos(), WindowSize(),
WindowTitle$(), WindowVisible(), View()

Window()

WindowDuplicate()

WindowGetPos() The Signal script language WindowTitle$()

5-256

This gets the window position of the current view with respect to the application window.
Positions are given as percentages of the available area, measured from the top left hand
corner.
Func WindowGetPos(&xLow, &yLow, &xHigh, &yHigh{, scr%{, rel%}})

xLow A real variable that is set to the position of the left hand edge of the window.
yLow A real variable that is set to the position of the top edge of the window.
xHigh A real variable that is set to the position of the right hand edge of the window or

that returns a docking code for a docked control bar if yHigh is returned as 0:
1 Docked to the left window edge 3 Docked to the right edge
2 Docked to the top window edge 4 Docked to the bottom edge

yHigh A real variable that is set to the position of the bottom edge of the window or to
0 if the window is docked.

scr% Optional screen selector for views, dialogs and the application window. If
omitted or -1, positions are relative to the application window. Otherwise, 0
selects the entire desktop rectangle and greater values select a particular monitor
(but see rel%). See System() for more screen information..

rel% Ignored unless scr% is 0 or greater. Set 0 or omit for positions relative to the
intersection of the rectangle set by scr% and the application window, 1 for
positions relative to the scr% rectangle.

Returns 1 if the position was returned, or -1 if the rectangle set by scr% and rel% is of
zero size.

See also: App(), Window(), WindowDuplicate(),WindowSize(),
WindowTitle$(), WindowVisible()

This procedure is used to resize the current window without changing the position of the
top left-hand corner. Setting a window dimension less than zero leaves the dimension
unchanged. Setting a dimension smaller than the minimum allowed sets the minimum
value. Setting a size greater than the maximum allowed sets the maximum size. There are
no errors from this function. When this is used to size Signal application window the
available area is the whole screen, otherwise the available area is Signal application area.
Proc WindowSize(width, height);

width The width of the window as a percentage of the available area.
height The height of the window as a percentage of the available area.
See also: App(), Window(), WindowDuplicate(), WindowGetPos(),

WindowTitle$(), WindowVisible()

This function gets and sets the title of the current window. There may be windows that
are resistant to having their title changed. For these, the routine has no effect. Most
windows can return a title. If you change a title, dependent window titles change, for
example, cursor windows belonging to data views track the title of the data view.
Func WindowTitle$({new$});

new$ If present, this sets the new window title. Window titles must follow any system
rules for length or content. Illegal titles (for example titles containing control
characters) are mangled or ignored at the discretion of the system.

Returns The window title as it was prior to this call.
See also: Window(), WindowDuplicate(), WindowGetPos(), WindowSize(),

WindowVisible()

WindowGetPos()

WindowSize()

WindowTitle$()

WindowVisible() Alphabetical command reference XAxisAttrib()

5-257

This function is used to get and set the visible state of the current view. This function can
also be used on the application window, however the effect will vary with the system and
on some, there may be no effect at all.
Func WindowVisible({code%});

code% If present, this sets the window state. The possible states are:
0 Hidden, the window becomes invisible. A hidden window can be sent data,

sized and so on; the result is just not visible.
1 Normal, the window assumes its last normal size and position and is made

visible if it was invisible or iconised.
2 Iconised. An iconised window can be sent data, sized and so on; the result is

not visible.
3 Maximised. The window is made as large as possible.
4 Application window only; extend over all available desktop monitors.

Returns The window state prior to this call.
See also: FrontView(), Window(), WindowDuplicate(), WindowGetPos(),

WindowSize(), WindowTitle$()

This function can be used to turn on and off the x axis of the current view, or to find the
state of the x axis:
Func XAxis({on%});

on% Set the axis state. If omitted, no change is made. 0=Hide axis, 1=Show axis.
Returns The axis state at the time of the call (0 or 1, as above) or a negative error code. It

is an error to use this function on a view that has no concept of an x axis.
Changes made by this function do not cause a redraw immediately. The affected view is
drawn at the next opportunity.
See also: XHigh(), XLow(), XRange(), XTitle$(), XUnits$()

This function controls the choice of logarithmic or linear axis andautomatic adjustment of
axis units at high zoom levels. This command is equivalent to the check boxes at the
bottom of the X Axis dialog.
Func XAxisAttrib({flags%});

flags% A value of 0 sets a linear axis with no auto-adjust of units for high zoom. Add 1
for logarithmic. Add 2 to display powers on the logarithmic axis (you must have
added 1 as well for this to take effect). Add 4 to cause a linear axis to auto-adjust
its units at high zoom around 0. Omit this argument for no change to the
attributes.

Returns The sum of the current flags set for the x-axis.

See also: XAxis(), XAxisMode(), XAxisStyle(), XHigh(), XLow(),
XRange(), YAxisAttrib()

WindowVisible()

XAxis()

XAxisAttrib()

XAxisMode() The Signal script language XLow()

5-258

This function controls what is drawn in an x axis.
Func XAxisMode({mode%});

mode% Optional argument that controls how the axis is displayed. If omitted, no change
is made. Possible values are the sum of the following. Values not included in the
sum will be restored to their default states:
1 Hide all the title information.
2 Hide all the unit information.
4 Hide small ticks on the x axis. Small ticks are hidden if big ticks are hidden.
8 Hide numbers on the x axis. Numbers are hidden if big ticks are hidden.
16 Hide the big ticks and the horizontal line that joins them.
32 Scale bar axis. If selected, add 4 to remove the end caps.

Returns The x axis mode value at the time of the call or a negative error code.
See also: XAxis(), XHigh(), XLow(), XRange(), YAxisMode()

This function controls the major and minor tick spacing for all views that have an x axis.
If you set values that would cause illegible or unintelligible axes, they are stored but not
used unless the axis range or scaling changes to make the values useful.
Func XAxisStyle({style%{, nTick%{, major}}});

style% A value of -1 returns the number of minor divisions set or 0 for automatic. A
value of -2 returns the major tick spacing or 0 for automatic spacing. Set
style% to 0 if setting nTick% or major.

nTick% The number of minor tick subdivisions or 0 for automatic spacing. Omit nTick%
or set it to -1 for no change.

major If present, values greater than 0 set the major tick spacing. Values less than or
equal to 0 select automatic major tick spacing.

Returns See the description of style% for return values.

See also: XAxis(), XAxisAttrib(), XAxisMode(), XHigh(), XLow(),
XRange(), YAxisStyle()

This function returns the value of the right end of the X axis of the current data or XY
view or the line past the last fully visible line in a text view. To find the frame limit use
Maxtime().
Func XHigh();

Returns In a data or XY view, the result is the X axis upper limit in X axis units. It is in
lines in a text view.

See also: Draw(), XRange(), BinToX(), XToBin(), XLow(), Maxtime()

This function returns the value that corresponds to the left end of the X axis of the current
data or XY view or the first visible line in a text view. To find the frame limit use
Mintime().
Func XLow();

Returns The X axis lower limit in X axis units. In a text view, this returns a line number
(the first line number in a text view is 1).

See also: Draw(), XRange(), BinToX(), XToBin(), XHigh(), Mintime()

XAxisMode()

XAxisStyle()

XHigh()

XLow()

XRange() Alphabetical command reference XUnits$()

5-259

This function sets the start and end of the x axis in a data or XY view in x axis units.
Unlike Draw(), it does not update the view immediately; updates must wait for the next
Draw(), DrawAll() or some interactive activity.
Proc XRange(low{, high});

low The left hand edge of the view in x axis units.
high The right hand edge of the view. If omitted, the view stays the same width.
Values are limited to the axis range. Without high, it preserves the width, adjusting low
if required. If the resulting width is less than the minimum allowed, no change is made.

See also: Draw(), XLow(), XHigh()

This function gets and optionally sets the visibility of the x axis scroller.
Func XScroller({show%});

show% If present, 0 hides the scroll bar and buttons, non-zero shows it.
Returns 0 if the scroll bar was hidden, 1 if it was visible.

This function gets the title of the x axis. In a memory or XY view, or in a sampling
document view, you can also set the title. The window will update with a new title at the
next opportunity, but, in version 3.00, the x axis title is not written to CFS data files.
Func XTitle$({new$});

new$ If present this sets the new x axis title in a sampling document or memory view.
Returns The x axis title at the time of the call.
See also: ChanTitle$(), XUnits$()

This function converts between x axis units and bin numbers in a data view.
Func XToBin(chan%, x);

chan% A channel number (1 to n).
x An x axis value. If it exceeds the x axis range it is limited to the nearer end.
Returns In a data view it returns the bin position that corresponds to x. In general, this

will not be an integral number of bins; however, when used to access a bin, it
will be truncated to an integer, and will refer to the bin that contains the x value.

See also: BinToX(), BinSize(), BinZero()

This function gets the units of the x axis in the current view. In a memory, XY, or
sampling document view, you can also set the units. The window will update with the
new units at the next opportunity and they will become part of the new file if it is saved.
Func XUnits$({new$});

new$ If present this sets the new x axis units in a new file or memory view.
Returns The x axis units at the time of the call.
See also: ChanUnits$(), XTitle$()

XRange()

XScroller()

XTitle$()

XToBin()

XUnits$()

XYAddData() The Signal script language XYCount()

5-260

This function adds data points to an XY view channel. If the axes are set to automatic
expanding mode by XYDrawMode(), they will change when you add a new data point
that is out of the current axis range. If the channel is set to a fixed size (see XYSize()),
adding new points causes older points to be deleted once the channel is full. The first
form of the command allows unrestricted x and y positions. The second form is for data
that is equally spaced in the x direction.
Func XYAddData(chan%, x|x[]|x%[], y|y[]|y%[]);
Func XYAddData(chan%, y[], xInc{, xOff});

chan% A channel number in the current XY view. The first channel is number 1.
x The x co-ordinate(s) of the added data point(s). In the first form of the

command, both x and y must be either single variables or arrays. If they are
arrays, the number of data points added is equal to the size of the smaller array.

y The y co-ordinate(s) of the added data point(s). In the second form of the
command, this is an array of equally spaced data in x.

xInc Sets the x spacing between the y data points in the second form of the command.
xOff Sets the x position of the first data point in the second form of the command. If

omitted, the first position is set to 0.
Returns The number of data points which have been added successfully.

See also: XYColour(), XYCount(), XYDelete(), XYDrawMode(),
XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize(), XYSort()

This function gets or sets a channel line colour or a channel fill colour in the current XY
view. Deprecated, use ChanColourSet() and ChanColourGet().
Func XYColour(chan%{, col%{, item%}});

chan% A channel number in the current XY view. The first channel is number 1.
col% The index of the colour in the colour palette. There are 40 colours in the palette,

numbered from 0 to 39. If omitted or -1, there is no colour change.
item% Set 1 for the line colour, 2 for the fill colour. Taken as 1 if omitted.
Returns The colour index in the colour palette at time of call or a negative error code.
See also: Colour(), XYDrawMode(), XYJoin(), XYKey(), XYSetChan()

This function returns the number of data points in an XY channel in the current XY view.
To find the maximum number of data points, see the XYSize() command.
Func XYCount(chan%);

chan% A channel number in the current XY view.
Returns The number of data points in the channel or a negative error code.
See also: XYAddData(), XYColour(), XYDelete(), XYDrawMode(),

XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize(), XYSort()

XYAddData()

XYColour()

XYCount()

XYDelete() Alphabetical command reference XYDrawMode()

5-261

This command deletes a range of data points or all data points from one channel of the
current XY view. Use ChanDelete() to delete the entire channel.
Func XYDelete(chan%{, first%{, last%}});

chan% A channel number in the current XY view.
first% The zero-based index of the first data point to delete. If omitted, all data points

are deleted.
last% The zero-based index of the last data point to delete. If omitted, data points from

first% to the last point in the channel are deleted. If last% is less than first%
no data points are deleted.

Returns The function returns the number of deleted data points.

The index number of a data point depends on the current sorting method of the channel
set by XYSort(). For different sorting methods, a data point may have different index
numbers. The data points in a channel have continuous index numbers. When a point has
been deleted the remaining points re-index themselves automatically.

See also: ChanDelete(), XYAddData(), XYColour(), XYCount(),
XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize()

This gets and sets the drawing and automatic axis expansion modes of a channel in the
current XY view. It is an error to use this command with any other view type.
Func XYDrawMode(chan%, which%{, new%});

chan% A channel number in the current XY view. This is ignored when which% = 5,
as all the channels in an XY view share the same axes.

which% Which drawing parameter to get or set in the range 1-5. When setting
parameters, the new value is held in the new% argument. The values are:
1 Get or set the data point draw mode. The drawing modes are:

0 dots (default) 1 boxes 2 plus signs +
3 crosses x 4 circles (NT only) 5 triangles
6 diamonds 7 horizontal line 8 vertical line

2 Get or set the size of the data points. The sizes allowed are 0 to 100 (0 is
invisible.) The default size is 5.

3 Get or set the line style. If the line thickness is greater than 1 all lines are
drawn as style 0. Styles are:
0 solid (default) 1 dotted 2 dashed

4 Get or set the line thickness. Thickness values range from 0 (invisible) to
10. The default is 1.

5 Get or set automatic axis range mode. This applies to the entire view, so the
chan% argument is ignored. Values are:
0 The axes do not change automatically when new data points are added.
1 When new data points are added that lie outside the current x or y axis

range, the data and axes screen area update at the next opportunity to
display all the data.

new% New channel draw or axis expanding mode. If omitted, no change is made.
Returns The value of relevant channel draw mode or axis expanding mode at time of call

if successful or a negative error code if it fails.
See also: XYAddData(), XYColour(), XYCount(), XYDelete(),

XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize(), XYSort()

XYDelete()

XYDrawMode()

XYGetData() The Signal script language XYInChan()

5-262

This function gets the data points between two indices from a channel in the current XY
view. It is an error to use this command with any other view type.
Func XYGetData(chan%, &x|x[], &y|y[]{, first%{, last%}});

chan% A channel number in the current XY view.
x|x[] The returned x co-ordinate(s) of data point(s). When arrays are used, either both

x and y must be arrays or neither can be. The smaller of the two arrays sets the
maximum number of data points that can be returned.

y|y[] The returned y co-ordinate(s) of data point(s).
first% The zero-based index of the first data point to return. If omitted, the returned

data starts at the first data point in the channel.
last% The zero-based index of the last data point returned. last% is only meaningful

when x and y are array names. If omitted or greater than the number of data
points, the final data point is the last one in the channel. If last% is less than
first%, no data points are returned.

Returns The number of data points copied. This can be less than the number of data
points between the requested indices. For example, if the size of x or y array is
not big enough to hold all the data points from first% to last%, the number of
data points returned is equal to the size of the array. If x and y are simple
variables, 1 is returned if the data point with index number first% exists.

The index number of a data point depends on the current sorting method (see XYSort().)

See also: XYAddData(), XYColour(), XYCount(), XYDelete(),
XYDrawMode(), XYInCircle(), XYInRect(), XYJoin(),
XYRange(), XYKey(), XYSetChan(), XYSize(), XYSort()

This function returns the number of data points in a channel of the current XY view that
lie inside another channel that is treated as a joined up shape. The points in the channel
that defines the shape are not sorted (regardless of the sorting mode set for that channel);
they are always considered in the order in which the points were added to the channel.

For a data point to lie inside a shape, we count the
number of times that a line drawn from the data
point to infinity in any direction crosses a line of
the shape. Points that are inside have an odd
crossing count; points outside have an even count.
This is obvious for simple shapes, but less so for
complex ones. In the example, the shaded sections
are the inside and the non-shaded are the outside. Points that lie exactly on the boundary
may be inside or outside; however, if you have a set of shapes that exactly tessellate to
fill an area, any point in that area will be in only one of the shapes
Func XYInChan(chan%, shCh%{, list%[]});

chan% A channel number in the current XY view that defines the points.
shCh% The channel in the current XY view that defines the shape that the points must

be inside.
list% An optional integer array that is returned holding the indices of the data points

that were inside. If the array is too small, the function returns the number that
would have been returned had the array been large enough. The index values
returned are the index positions in the current sort mode for the channel. You
can read the points back with XYGetData().

Returns The number of data points inside the shCh% channel or a negative error code.

See also: XYAddData(), XYInCircle(), XYInRect(), XYJoin(), XYRange()

XYGetData()

XYInChan()

XYInCircle() Alphabetical command reference XYJoin()

5-263

This gets the number of data points inside a circle defined by xc, yc, and r in the current
XY view. A general point (x,y) is considered to be inside the circle if:
(x-xc)2 + (y-yc)2 <= r2

Points lying on the circumference are considered inside, but owing to floating-point
rounding effects, they may be indeterminate.
Func XYInCircle(chan%, xc, yc, r{, list%[]});

chan% A channel number in the current XY view. The first channel is number 1.
xc,yc These are the x and y co-ordinates of the centre of the circle.
r This is the radius of the circle. r must be >= 0.
list% An optional integer array that is returned holding the indices of the data points

that were inside. If the array is too small, the function returns the number that
would have been returned had the array been large enough. The index values
returned are the index positions in the current sort mode for the channel. You
can read the points back with XYGetData().

Returns The number of data points inside the circle or a negative error code.

See also: XYAddData(), XYInChan(), XYInRect(), XYJoin(), XYRange()

This function returns the number of data points in a channel of the current XY view that
lie inside a rectangle. To be inside, a data point must lie between the low rectangle
coordinate up to, but not including the high coordinate. This is so that two rectangles with
a common edge will not both count a data point on the boundary.
Func XYInRect(chan%, xl, yl, xh, yh{, list%[]});

chan% A channel number in the current XY view.
xl,xh The x co-ordinates of the left and right hand edges of the rectangle. xh must be

greater than or equal to xl.
yl,yh The y co-ordinates of the bottom and top edges of the rectangle. yh must be

greater than or equal to yl.
list% An optional integer array that is returned holding the indices of the data points

that were inside. If the array is too small, the function returns the number that
would have been returned had the array been large enough. The index values
returned are the index positions in the current sort mode for the channel. You
can read the points back with XYGetData().

Returns The number of data points inside the rectangle or a negative error code.
See also: XYInChan(), XYInCircle(), XYGetData(), XYJoin(), XYRange()

This function gets or sets the data point joining method of a channel in the current XY
view. Data points can be separated, joined by lines, or joined by lines with the last point
connected to the first point (making a closed loop), filled or filled and framed.
Func XYJoin(chan%{, join%});

chan% A channel number in the current XY view. The first channel is number 1. -1 is
also allowed, meaning all channels.

join% If present, this is the new joining method of the channel. If this is omitted, no
change is made. The data point joining methods are:
0 Not joined by lines (this is the default joining method)
1 Joined by lines. The line styles are set by XYDrawMode().
2 Joined by lines, the last data point is connected to the first data point.

XYInCircle()

XYInRect()

XYJoin()

XYKey() The Signal script language XYOffset()

5-264

3 Not joined by lines, but the channel data is filled with the channel fill colour.
4 Joined by lines and filled with the channel fill colour set by XYColour()
5 Draw as histogram with a baseline at zero, filled with the channel fill colour.

Returns The joining method at the time of the call or a negative error code.
See also: XYColour(), XYDrawMode(), XYKey(), XYSetChan(), XYSort()

This gets and sets the display mode and positions of the channel key for the current view,
which must be an XY view. The key displays channel titles (set by ChanTitle$()) and
drawing symbols for all visible channels. It can be positioned anywhere within the data
area. The key can be framed or unframed, transparent or opaque and visible or invisible.
Func XYKey(which%{, new});

which% This determines which property of the key we are interested in. Properties are :
1 Visibility of the key. 0 if the key is hidden (default), 1 if it is visible.
2 Background state. 0 for opaque (default), 1 for transparent.
3 Draw border. 0 for no border, 1 to draw a border (default).
4 Key left hand edge x position. It is measured from the left-hand edge of the x

axis and is a percentage of the drawn x axis width in the range 0 to 100. The
default value is 0.

5 Key top edge y position. It is measured from the top of the XY view as a
percentage of the drawn y axis height in the range 0 to 100. The default is 0.

new If present it changes the selected property. If it is omitted, no change is made.
Returns The value selected by which% at the time of call, or a negative error code.
See also: ChanTitle$(), XYAddData(), XYColour(), XYDrawMode(),

XYJoin(), XYRange(), XYSetChan(), XYSize(), XYSort()

This command sets and gets an XY channel offset. The offset moves the origin of the x,y
co-ordinate system when the channel is drawn. This allows you to generate a grid of
histograms or to generate waterfall displays.
Proc XYOffset(chan%, x, y{, opt%});
Proc XYOffset(chan%, &x, &y{, opt%});

chan% A channel number in the current XY view or -1 for all channels or -2 for all
visible channels.

x,y Used when setting the channel offset. This is the offset in the current axis units.
&x,&y Used when returning the offset. Returns the offset in the current axis units.
opt% Omit or set to 0 to set the offset. Set -1 to return the offset.

In Signal you have the choice of drawing axes in linear, logarithmic or square root mode.
In linear mode, the axis units are the same as the user units. In logarithmic mode, the axis
units are Log(user units), in square root mode they are root(user units).
See also: XYRange(), XYCount(), XYDrawMode(), XYJoin(), XYSort()

XYKey()

XYOffset()

Axis units

XYRange() Alphabetical command reference XYSetChan()

5-265

This function gets the range of data values of a channel or channels in the current XY
view. This is equivalent to the smallest rectangle that encloses the points.
Func XYRange(chan%, &xLow, &yLow, &xHigh, &yHigh);

chan% A channel number in the current XY view or -1 for all channels or -2 for all
visible channels.

xLow A variable returned with the smallest x value found in the channel(s).
yLow A variable returned with the smallest y value found in the channel(s).
xHigh A variable returned with the biggest x value found in the channel(s).
yHigh A variable returned with the biggest y value found in the channel(s).
Returns 0 if there are no data points or the channel does not exist, 1 if values are found.
See also: XYAddData(), XYColour(), XYCount(), XYDelete(),

XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYKey(), XYSetChan(), XYSize(), XYSort()

This function creates a new channel or modifies an existing channel in the current XY
view. It is an error to use this function if the current view is not an XY view. This
function can be used as a short-cut method for modifying all properties of an existing
channel without calling the XYSize(), XYSort(), XYJoin() and XYColour()
commands individually.
Func XYSetChan(chan%{, size%{, sort%{, join%{, col%}}}});

chan% A channel number in the current XY view. If chan% is 0, a new channel is
created. Each XY view can have maximum of 256 channels, numbered from 1
upwards. The first channel is created automatically by Signal when you open a
new XY view with FileNew(). If chan% is not 0, it must be the channel
number of an existing channel which will be modified.

size% This sets the number of data points in the channel and how and if the number of
data points can extend. The only limits on the number of data points are the
available memory and the time taken to draw the view.

 A value of zero (the default) sets no limit on the number of points and the size of
the channel expands as required to hold data added to it.

 If a negative size is given, for example -n, this limits the number of points in the
channel to n. If more than n points are added, the oldest points added are deleted
to make space for the extra points. If you set a negative size for an existing
channel that is smaller than the points in the channel, points are deleted.

 If a positive value is set, for example n, this allocates storage space for n data
points, but the storage will grow as required to accommodate further points.
Using a positive number rather than 0 can save time if you know in advance the
likely number of data points, as it costs time to grow the data storage.

sort% This sets the sorting method of data points. The sorting method is only important
if the points are joined. If they are not joined, it is much more efficient to leave
them unsorted as sorting a large list of points takes time. The sort methods are:
0 Unsorted (default). Data is drawn and sorted in the order that it was added.

The most recently added point has the highest sort index.
1 Sorted by x value. The index runs from points with the most negative x value

to points with the most positive x value.
2 Sorted by y value. The index runs from points with the most negative y value

to points with the most positive y value.
 If this is omitted, the default value 0 is used for a new channel. For an existing

channel, there is no change in sorting method.

XYRange()

XYSetChan()

XYSize() The Signal script language XYSize()

5-266

join% If present, this is the new joining method of the channel. If this is omitted, no
change is made to an existing channel and a new channel is given mode 0. The
data-point joining methods are:
0 Not joined by lines (this is the default joining method).
1 Joined by lines. The line styles are set by XYDrawMode().
2 Joined by lines and also connect the first and last data points to form a loop.
3 Not joined by lines, but the channel data is filled with the channel fill colour.
4 Joined by lines and filled with the channel fill colour set by XYColour().

col% If present, this sets the index of the colour in the colour palette to use for this
channel. There are 40 colours in the palette, their index numbered 0 to 39. If
omitted, the colour of an existing channel is not changed. The default colour for
a new channel is the colour that a user has chosen for an ADC channel in a time
window.

Returns The highest channel number (including any created channel) that was
affected by the command or a negative error code. When you create a new
channel, the value returned is the number of the new channel.

See also: XYAddData(), XYColour(), XYCount(), XYDelete(),
XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSize(), XYSort()

This function gets and sets the limits on the number of data points of a channel in the
current XY view. Channels can be set to have a fixed size, or to expand as more data is
added. The only limit on the number of data points is the available memory and the time
taken to draw data.
Func XYSize(chan%{, size});

chan% A channel number in the current XY view.
size% This sets the number of data points in the channel and how and if the number of

data points can extend. A value of zero sets no limit on the number of points and
the size of the channel expands as required to hold data added to it.

 If a negative size is given, for example -n, this limits the number of points in the
channel to n. If more than n points are added, the oldest points added are deleted
to make space for the extra points. If you set a negative size for an existing
channel that is smaller than the points in the channel, points are deleted.

 If a positive value is set, for example n, this allocates storage space for n data
points, but the storage will grow as required to accommodate further points.
Using a positive number rather than 0 can save time if you know in advance the
likely number of data points, as it costs time to grow the data storage.

 If this is omitted, there is no change to the size.
Returns If the number of points for the channel is fixed at n points, the function returns

-n. Otherwise, the function returns the maximum number of points that could be
stored in the channel without allocating additional storage space.

See also: XYAddData(), XYColour(), XYCount(), XYDelete(),
XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSort()

XYSize()

XYSort() Alphabetical command reference YAxisAttrib()

5-267

In the current XY view, gets or sets the sorting method of the channel.
Func XYSort(chan%{, sort%});

chan% The channel number.
sort% This sets the sorting method of data points. The sorting method is only important

if the points are joined. If they are not joined, it is much more efficient to leave
them unsorted, as sorting a large list of points takes time. The sort methods are:
0 Unsorted (default). Data is drawn and sorted in the order that it was added.

The most recently added point has the highest sort index.
1 Sorted by x value. The index runs from points with the most negative x value

to points with the most positive x value.
2 Sorted by y value. The index runs from points with the most negative y value

to points with the most positive y value.
 If this is omitted, there is no change in sorting method.
Returns The function returns the sorting method at time of call or a negative error code.
See also: XYAddData(), XYColour(), XYCount(), XYDelete(),

XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize()

This function is used to turn the y axes on and off in the current view and to find the state
of the y axes in a view.
Func YAxis({on%});

on% Optional argument that sets the state of the axes. If omitted, no change is made.
Possible values are:
0 Hide all y axes in the view.
1 Show all y axes in the view.

Returns The state of the y axes at the time of the call (0 or 1) or a negative error code.

See also: ChanTitle$(), ChanUnits$(), YHigh(), YLow(), YRange(),
Optimise()

This function controls the choice of logarithmic or linear axis andautomatic adjustment of
axis units at high zoom levels. This command is equivalent to the check boxes at the
bottom of the Y Axis dialog.
Func YAxisAttrib(cSpc{, flags%});

cSpc A channel specifier or -1 for all, -2 for visible and -3 for selected channels.
When multiple channels are specified, returned values are for the first channel.

flags% A value of 0 sets a linear axis with no auto-adjust of units for high zoom. Add 1
for logarithmic. Add 2 to display powers on a logarithmic or square root axis
(you must have added 1 or 8 as well for this to take effect). Add 4 to cause a
linear or square root axis to auto-adjust its units at high zoom around 0. Add 8
for a square root axis. Add 16 as well as 4 to cause the axis to auto-adjust its
units using an SI prefix rather than factors of 1000. It is an error to add both 1
and 8 for logarithmic and square root at the same time, 16 without 4 does
nothing. Omit this argument for no change to the attributes.

Returns The sum of the current flags set for the y-axis of the first channel in the list.
See also: YAxis(), YAxisMode(), YAxisStyle(), YHigh(), YLow(),

YRange(), XAxisAttrib()

XYSort()

YAxis()

YAxisAttrib()

YAxisLock() The Signal script language YAxisMode()

5-268

This function locks and unlocks the axes of grouped channels and reports on the locked
state of grouped channels. If you lock a group, the grouped channels keep their own axis
ranges, but display using the axis of the first channel in the group. The YRange(),
YHigh() and YLow() commands operate on the information stored with a channel. To
change the displayed range of grouped and locked channels, you must use YRange() on
the first channel in a group.
Func YAxisLock(chan%{, opt%{, vOffs}});

chan% A channel that is in the group that you wish to address.
opt% If present, values of 1 and 0 set and unset the locked state. A value of -1 returns

the visual offset per channel for the group. If omitted, no change is made.
vOffs If present, this sets the y axis display offset to apply between channels in the

group. The nth channel has a visual offset of (n-1)*offs.
Returns The current locked state of the group unless opt% was -1, when it returns the y

axis visual offset per channel for the group.

See also: ChanOrder(), YAxisMode(), YHigh(), YLow(), YRange()

This function controls what is drawn in a y axis and where the y axis is placed with
respect to the data.
Func YAxisMode({mode%{, hal%{, hsp%{, hvp%}}}});

mode% Optional argument that controls how the axis is displayed. If omitted or
negative, no change is made. Positive values are the sum of:
1 Hide all the title information.
2 Hide all the unit information.
4 Hide y axis small ticks. They are also hidden when big ticks are hidden.
8 Hide y axis numbers. They are also hidden when big ticks are hidden.
16 Hide the big ticks and the vertical line that joins them.
32 Scale bar axis. If selected add 4 to remove the end caps.
4096 Place the y axis on the right of the data.
8192 Horizontal text for the title and units.

hal% Horizontal label alignment: 0 for centred, 1 for edge, -1 or omit for no change.
hsp% Horizontal label character space in the range 2-17. Set -1 or omit for no change.
hvp% Horizontal label vertical position: 0 for centred, 1 for top, 2 for bottom. Set -1 or

omit for no change.
Returns If mode% is positive, omitted or -1 it returns the mode% value at the time of the

call or a negative error code. Set mode% to -2 to return the current value of
hal%, -3 for hsp% or -4 for hvp%.

See also: ChanNumbers(), YAxis(), YAxisStyle(), YHigh(), YLow(),
YRange()

YAxisLock()

YAxisMode()

YAxisStyle() Alphabetical command reference Yield()

5-269

This function controls the y-axis major and minor tick spacing. If you set values that
would cause illegible or unintelligible axes, they are stored but not used unless the axis
range or scaling changes to make the values useful.
Func YAxisStyle(cSpc, opt%{, major});

cSpc A channel specifier or -1 for all, -2 for visible and -3 for selected channels.
When multiple channels are specified, returned values are for the first channel.

opt% Values greater than 0 set the number of subdivisions between major ticks. 0 sets
automatic small tick calculation. Use -1 for no change. Values less than -1 return
information, but do not change the axis style.

major If present and opt% is greater than -2, values greater than 0 sets the major tick
spacing. Values less than or equal to 0 select automatic major tick spacing.

Returns If opt% is -2 this returns the current number of forced subdivisions or 0 if they
are not forced. If opt% is -3 this returns the current major tick spacing if forced
or 0 if not forced. Otherwise the return value is 0 or a negative error code. If
multiple channels are specified the return value is for the first channel in the list.

See also: YAxis(), YAxisAttrib(), YAxisMode(), YHigh(), YLow(),
YRange(), XAxisStyle()

This function suspends script operation for a user-defined time and allows the system to
idle. During the idle time, invalid screen areas update, you can interact with the program
and the system has the opportunity to do housekeeping. If your script runs for long
periods without using Interact() or Toolbar(), adding an occasional Yield() can
make it feel more responsive and stop the operating system marking Signal as "not
responding".
Func Yield({wait{, allow%}});

wait An optional time period, in seconds, to wait. If omitted or set to 0, the program
will give the system one idle cycle and continue to run. If set negative, there is
no idle cycle but the allow% argument is applied.

allow% This defines what the user can do during the wait period. See Interact() for
the allowed values. The allow% value is cancelled after the command unless
wait is 0 or negative.

Returns The function returns 1. We may add more return codes in future versions.
See also: Interact(), Seconds(), TimeDate(), Toolbar()

YAxisStyle()

Yield()

YieldSystem() The Signal script language YLow()

5-270

To share the system CPU(s) among competing processes, the operating system allocates
time slices of around 10 milliseconds based on process priorities and recent process
activity. A process can surrender a time slice if it has nothing to do. A typical application
spends most of its time waiting for user input or messages in the message queue; it will
surrender a time slice if the message queue is empty unless it is busy. Signal normally
surrenders time slices but if you run a script it runs for the full time slice unless it is in
Yield(), Interact(), or you use ToolBar() or DlgShow() without an idle routine.

The YieldSystem() command causes Signal to surrender the current time slice and
suspends the user interface and script thread for a user-defined time or until a new
message arrives in the Signal input queue. It has no effect on sampling, which runs in a
separate thread. Unlike Yield(), it does not allow Signal to idle.
Proc YieldSystem({wait});

wait The time to wait, in seconds, before resuming the thread. Values are rounded to
the nearest millisecond. Values greater than 10 are treated as 10 seconds; values
less than –10 are treated as –10 seconds.

For wait values greater than 0, the wait is ended by unserviced messages; keyboard and
mouse activity, timers for screen updates and the like. If wait is 0 or omitted, the current
time slice is surrendered, but if Signal is the highest priority task it will be re-scheduled
immediately. Negative values suspend Signal for –wait seconds regardless of messages.

YieldSystem() with wait values greater than 0 returns immediately if there are
messages in the input queue. Unless you allow Signal to idle, either with a Yield() call
or with Toolbar() or DlgShow(), there will always be pending messages, so it will
have no effect. If you have a script loop that causes 100% CPU usage, inserting:
Yield();YieldSystem(0.001);

Will give other processes a chance to run. Increasing the wait time up to 0.05 will further
reduce the CPU usage. Larger values have little additional effect due to timer messages
ending the wait early. To give as much system time as possible to other tasks without
allowing Signal to idle, you can use:
YieldSystem(-0.001);

In this case, increasing the time to –10.0 will have an effect; Signal will feel completely
unresponsive until the time period has elapsed.

See also: Interact(), DlgShow(), Seconds(), Toolbar(), Yield()

This function returns the current upper limit of the y axis in a data or XY view.
Func YHigh(chan%);

chan% A channel number (1 to n). The channel number is ignored for an XY view.
Returns The value at the appropriate end of the axis.
See also: ChanTitle$(), ChanUnits$(), YLow(), YRange(), Optimise()

This function returns the current lower limit of the y axis in a data or XY view.
Func YLow(chan%);

chan% A channel number (1 to n). The channel number is ignored for an XY view.
Returns The value at the appropriate end of the axis.
See also: ChanTitle$(), ChanUnits$(), YHigh(), YRange(), Optimise()

YieldSystem()

YHigh()

YLow()

YRange() Alphabetical command reference ZeroFind()

5-271

This sets the y axis range for a channel or XY view. Attempting to set the range for a
display mode that doesn't have a y axis is not an error, but has no effect. If the y range
changes, the display is invalidated, but waits for the next Draw().
Proc YRange(chan%|chan%[]|chan${, low, high});

chan% A channel number (1 to n) or you can also use -1 for all channels, -2 for all
visible channels, -3 for all selected channels, -4 for waveform channels or -5 for
marker channels, -6 for selected waveform channels or visible if none selected, -
7 for visible waveform channels or -8 for selected waveform channels. The
channel number is ignored in an XY view as there is only one axis for all
channels.

 This can also be an integer array. If it is, the first array element holds the number
of channels in the list. This is followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".
low The value for the bottom of the y axis. If this is omitted, Signal sets low and

high to suitable limits. For example, for a normal waveform channel the limits
are those set by the 16-bit nature of the data, if there is no underlying 16-bit data
the available data range is used.

high The value for the top of the y axis. If low and high are the same, or stupidly
close, the range is not changed.

See also: YHigh(), YLow(), ChanScale(), ChanOffset(), Optimise()

Find a zero (root) of a user-defined continuous function using Brent's method. You must
supply a range to search that contains a zero. The method is iterative with each iteration
reducing the search range. Iterations stop when a zero is found, the search range becomes
smaller than a supplied tolerance or an iteration limit is reached.

Func ZeroFind(&x, f(x), a, b{, tol{, maxIt%}});

x A real variable that is returned with a value that is within tol of a position for
which f(x) is zero.

f The name (no brackets or argument) of a user-defined function that takes a
single real argument and that returns a real value.

a,b These values define a range to be searched for a zero. f(a) and f(b) must both
be non-zero and must have different signs.

tol This specifies how close the returned x must be to the exact result and must be
positive. If omitted or zero, the tolerance is set based on the root position and
floating point precision.

MaxIt% The maximum number of iterations of the algorithm in the range 1 to 200. If
omitted, a maximum of 100 iterations are set.

Returns The number of iterations left after the tolerance is achieved, or 0 if it was not, or
-1 if the initial range (a, b) does not include a zero.

The following example calculates the roots of the equation x2-2=0.

func root2(x) return x*x-2 end;

var r1,r2;
ZeroFind(r1, root2, 0, 2);
ZeroFind(r2, root2, 0, -2);
printlog("Roots at %g and %g\n", r1, r2);

YRange()

ZeroFind()

Example

ZeroFind() The Signal script language ZeroFind()

5-272

 Index

v

—#—
\ string literal escape character, 3-2
$ string variable designator, 3-2
& reference parameter designator, 3-12
& in Windows dialog prompts, 5-58, 5-

62
{} optional syntax, 1-5
| vertical bar, 1-5
= equality test operator, 3-8
+ arithmetic add, 3-7
+= add and assign, 3-7
+= Append string, 3-7
+ Concatenate strings, 3-8
:= assignment, 3-7, 3-8
() round brackets, 3-7
[] Array subscripts, 3-7
[start:size] array syntax, 3-3
: array range designator, 3-3
; Statement separator, 3-7
< <= > >= arithmetic comparison, 3-

7
< <= > >= String comparisons, 3-8
/ arithmetic divide, 3-7
/= divide and assign, 3-7
= arithmetic equality, 3-7
= String equality, 3-8
% Integer variable designator, 3-2
* multiply, 3-7
*= multiply and assign, 3-7
<> arithmetic inequality, 3-7
<> String inequality, 3-8
' Comment designator, 3-7
-= subtract and assign, 3-7
- Unary minus and subtract, 3-7

—1—
1401 access

Commands summary, 4-9
1401 control, 5-245
1902. See also Signal conditioner

Get revision, 5-44
script support, 5-41

—A—
Abandon sampling, 5-191, 5-205
Abort sampling, 5-191
Abs(), 5-1
Absolute pulse levels, 5-191
Absolute time for frame, 5-121
Absolute value of expression or array,

5-1
Accept sweep, 5-191
Active cursor

Get parameters, 5-47
Set parameters, 5-48

Active cursors
CursorSearch(), 5-51
CursorValid(), 5-52

ADC data
Units, 5-204

ADC port
Calibration, 5-203, 5-204
Name, 5-203
Number, 5-204
Options, 5-203
Setup, 5-204
Units, 5-204

Add cursor, 5-50
Add protocol, 5-176
Add to array, 5-3
Amplitude histogram, 5-219
Amplitude of waveform, 5-37
Analysis

Amplitude histogram, 5-219
Burst histogram, 5-225
Command synopsis, 4-9
Create arbitrary memory view, 5-

223
Create idealised trace, 5-223, 5-226
Leak subtraction, 5-222
Multiple waveform averages, 5-220
New memory view, 5-219
Number of sweeps, 5-233
Online, 5-172
Open/close amplitude histogram, 5-

224
Open/close time histogram, 5-225
Power spectrum, 5-227
Process all linked views, 5-170
Process data, 5-170
Process multiple frames, 5-171
Summary of script commands, 4-9
Trend plot, 5-228
Trend plot channel, 5-229
Waveform average and accumulate,

5-221
and operator, 3-7
App(), 5-1
Append frame, 5-2, 5-56
AppendFrame(), 5-2
Application close, 5-88
Application directory, 5-86
Arc tangent function, 5-13
Argument lists, 3-12
ArrAdd(), 5-3
Array and matrix arithmetic, 4-11
Arrays, 3-3

Absolute value, 5-1
Add constant or array, 5-3
Arc tangent function, 5-13
Copy, 5-4
Cosine of array, 5-46
Cubic splines, 5-11
Data view as an array, 3-6
Declaring, 3-3
Difference of two arrays, 5-12
Differences between elements, 5-4
Division, 5-5
Dot product, 5-6
Examples, 5-2

Exponential function, 5-75
FFT analysis, 5-6
FIR filter, 5-8
Fractional part of real number, 5-121
Gain and phase, 5-6
Hyperbolic cosine of array, 5-46
Hyperbolic sine, 5-230
Hyperbolic tangent, 5-235
Integer overflow, 5-2
Integrate, 5-10
Inverse FFT, 5-7
Length of array, 5-143
Logarithm to base 10, 5-148
Logarithm to base e, 5-147
Maximum value, 5-150
Mean and standard deviation, 5-13
Minimum value, 5-154
Multiplication, 5-10
Natural logarithm, 5-147
Negate, 5-10
Passing to functions, 3-3
Power function, 5-167
Power spectrum, 5-6
Resizing, 3-5
Set to constant, 5-4
Sine of array elements, 5-230
Smoothing and filtering, 5-8
Sorting, 5-11
Square root of array elements, 5-232
Subtract array from value or array,

5-12
Subtract value or array from array,

5-12
Sum of product, 5-6
Sum of values, 5-13
Summary of script commands, 5-2
Summary of script commands, 4-11
Syntax, 3-3
Tangent of the array elements, 5-234
Total of array elements, 5-13
Truncate real array elements, 5-244
Use of [a:b] syntax, 3-3

ArrConst(), 5-4
ArrDiff(), 5-4
ArrDiv(), 5-5
ArrDivR(), 5-5
ArrDot(), 5-6
ArrFFT(), 5-6
ArrFilt(), 5-8
ArrIntgl(), 5-10
ArrMul(), 5-10
ArrSort(), 5-11
ArrSpline(), 5-11
ArrSub(), 5-12
ArrSubR(), 5-12
ArrSum(), 5-13
ArrXXX(), 5-2
Artefact rejection

Get parameters, 5-192
Asc(), 5-13
ASCII code of character, 5-13
ASCII to string conversion, 5-38

The Signal script language

Index-6

Assignment, 3-7, 3-8
ATan(), 5-13
Automatic file naming, 5-193
Automatic file saving, 5-192
Automatic file saving folder, 5-86
Automatic processing while sampling,

5-172
Auxiliary states device, 5-193, 5-194
Average waveform data, 5-220, 5-221
Axis controls

Drawing colour, 5-39
XY view data tracking, 5-261

—B—
band binary and operator, 3-7
Basic sampling mode, 5-199
Beep or tone output, 5-231
Best fit, 5-108
BetaI(), 5-14
Bin access in data view, 3-6
Bin number, convert to x axis unit, 5-

16
Binary files

Close, 5-78
Little or big endian, 5-17
Move current position, 5-17
Open, 5-85
Read data, 5-16, 5-17
Summary of script commands, 4-14
Write data, 5-21, 5-22

BinError(), 5-14
Binomial distribution, 5-14
BinomialC(), 5-15
BinSize(), 5-15
BinToX(), 5-16
BinZero(), 5-16
Bitmap output

To clipboard, 5-73
Black and White display, 5-253
Boltzmann sigmoid, 5-102
bor binary logical or operator, 3-7
BRead(), 5-16
BReadSize(), 5-17
break, 3-11
Break points, 2-1

Clear all, 2-1
Breaking out of a script, 2-3
BRWEndian(), 5-17
BSeek(), 5-17
BuffAcc(), 5-19
BuffAdd(), 5-18
BuffAddTo(), 5-18
BuffClear(), 5-19
BuffCopy(), 5-19
BuffCopyTo(), 5-19
BuffDiv(), 5-19
BuffDivBy(), 5-20
Buffer, 4-5, 5-18

Add frame data, 5-18
Add to frame data, 5-18
Average frame data, 5-19, 5-21
Clear, 5-19

Copy frame data, 5-19
Copy to frame, 5-19
Divide by frame data, 5-19
Divide frame data by, 5-20
Exchange with frame data, 5-20
Multiply by frame data, 5-20
Multiply frame data by, 5-20
Show or hide, 5-229
Subtract frame data, 5-20
Subtract from frame data, 5-21

BuffExchange(), 5-20
BuffMul(), 5-20
BuffMulBy(), 5-20
BuffSub(), 5-20
BuffSubFrom(), 5-21
BuffUnAcc(), 5-21
BuffXXX() Buffer commands, 5-18
Burst mode, 5-195
Buttons. see toolbar and Interact()
BWrite(), 5-21
BWriteSize(), 5-22
bxor binary exclusive or operator, 3-7

—C—
Calibration, 5-203, 5-204

Full scale, 5-203
Zero value, 5-204

Call stack in debug, 2-6
case. see docase
CED 1902 signal conditioner, 5-41
Ceil(), 5-22
CFS file

Variables commands summary, 4-14
CFS File

Export As, 5-80
Open, 5-85

Chan$(), 5-22
ChanAdd(), 5-23
ChanColour(), 5-23
ChanColourGet(), 5-23
ChanColourSet(), 5-23
ChanCount(), 5-24
ChanDelete(), 5-24
ChanDiff(), 5-24
ChanDiv(), 5-24
ChanFit(), 5-25
ChanFitCoef(), 5-26
ChanFitShow(), 5-27
ChanFitValue(), 5-27
ChanImage(), 5-28
ChanIntgl(), 5-28
ChanItems(), 5-29
ChanKind(), 5-29
ChanList(), 5-29
ChanMean(), 5-30
ChanMeasure(), 5-30
ChanMult(), 5-30
ChanNegate(), 5-31
Channel

ADC inputs, 5-204
Add new XY view channel, 5-265
Arithmetic operations, 5-2

Attach horizontal cursor, 5-129
Background image, 5-28
Channel array, 5-29
Channel list, 5-29
Channel numbers, 5-29
Copy data from XY view, 5-262
Data as array, 5-248
Delete, 5-24
Differentiate, 5-24
Drawing mode, 5-72
First item in channel, 5-155
Get colour, 5-23
Get ordering, 5-31
Groups, 5-31
Hide, 5-35
Integrate, 5-28
Items in range, 5-33
Keyboard marker, 5-198
Last item in channel, 5-151
Marker count, 5-29
Maximum time in channel, 5-151
Minimum and maximum data, 5-155
Minimum time in channel, 5-155
Modify XY view channel settings,

5-265
Negate, 5-31
Next item in channel, 5-158
Number show and hide, 5-31
Offset data, 5-31
Ordering, 5-31
Pen width, 5-32
Ports, 5-204
Previous item in channel, 5-143
Rectify, 5-33
Sample ports, 5-204
Scale data, 5-33
Selected, get or set, 5-34
Selecting, 5-34
Selecting in a dialog, 5-61
Set colour, 5-23
Shift data, 5-35
Show, 5-35
Smooth data, 5-35
Subtract DC offset, 5-36
Summary of script commands, 4-3
Time of next item, 5-158
Time of previous item, 5-143
Title, get or set, 5-36, 5-203
Type of a channel, 5-29
Units, get or set, 5-36
Units, get or set, 5-204
Value at given position, 5-37
Vertical space, 5-38
Visible, get or set, 5-37
Weight, 5-38
Zero data, 5-38

Channel number
Drawing colour, 5-39
Show and hide, 5-31

Channel specifier, 3-14
Channels, 4-3
ChanNumbers(), 5-31
ChanOffset(), 5-31

Index

Index-7

ChanOrder(), 5-31
ChanPenWidth(), 5-32
ChanPixel(), 5-32
ChanPoints(), 5-33
ChanRange(), 5-33
ChanRectify(), 5-33
ChanScale(), 5-33
ChanSearch(), 5-34
ChanSelect(), 5-34
ChanShift(), 5-35
ChanShow(), 5-35
ChanSmooth(), 5-35
ChanSub(), 5-35
ChanSubDC(), 5-36
ChanTitle$(), 5-36
ChanUnits$(), 5-36
ChanValue(), 5-37
ChanVisible(), 5-37
ChanWeight(), 5-38
ChanZero(), 5-38
Character code, 5-38
Character code (ASCII), 5-13
Check box in a dialog, 5-62
chi squared, 5-99
Choose k from n, 5-15
Chr$(), 5-38
Clear protocol, 5-176
Clear sampling configuration, 5-195
Clipboard

Copy and Cut data, 5-73
Cut current selection to the

clipboard, 5-74
Paste, 5-74

Close file, 5-78
Close Signal application, 5-88
Close view, 5-78
Close window, 5-78
Coefficients, 5-9
Colon, array range designator, 3-3
Colour palette, 5-166
Colour(), 5-39
ColourGet(), 5-39
Colours of screen items, 5-39

Data channels, 5-23
Force Black and White, 5-253
View colours, 5-249
XY view, 5-260

ColourSet(), 5-40
Combinations, 5-15
Command line, 5-175
Comment

Get and set file comment, 5-78
In script language, 3-7

Comparison operators, 3-7
Compile script, 2-1
CondFeature (), 5-41
CondFilter(), 5-42
CondFilterList(), 5-42
CondFilterType(), 5-42
CondGain(), 5-43
CondGainList(), 5-43
CondGet(), 5-43
CondOffset(), 5-44

CondOffsetLimit(), 5-44
CondRevision$(), 5-44
CondSet(), 5-45
CondSourceList(), 5-46
CondType(), 5-46
CondXXX() Conditioner commands, 5-

41
Configuration. see Sampling

configuration
Configuration file

Load sampling configuration, 5-85
Save sampling configuration, 5-80

Constant delarations, 3-3
continue, 3-11
Continue sampling, 5-212
Control panel. See Sampling control

panel
Convert

A number to a string, 5-233
A string to a number, 5-190, 5-247
A string to upper case, 5-247
Data view bin to x axis units, 5-16
Data view bin zero to x axis units, 5-

16
Number to a character, 5-38
Parse string into variables, 5-190
String to lower case, 5-143
Time to points, 5-259
X axis units to bins, 5-259

Convert foreign file format, 5-79
Converting between data types, 3-2
Copy

Array or result view to another, 5-4
Current selection to clipboard, 5-73
External file, 5-79
Make duplicate view, 5-255
Text format, 5-80
View to new view, 5-221

Cos(), 5-46
Cosh(), 5-46
Cosine of expression, 5-46
Count

points in XY circle, 5-263
points in XY rectangle, 5-263
points inside XY channel, 5-262

Count channels in data view, 5-24
Count markers in time range, 5-29
Count of frames, 5-121
Count points in time range, 5-29
Covariance array, 5-100
Create idealised trace, 5-223, 5-226
Create memory view, 5-219, 5-223
cSpc channel specifier, 3-14
Curly brackets, 1-5
Current directory, 5-86
Current frame. see Frame
Current view, 1-2, 2-4, 5-248
Cursor

Horizontal cursor
Delete cursor, 5-130
Label position, 5-130
Label style, 5-130
New cursor, 5-131

Renumber cursors, 5-131
Horizontal cursor

Cursor channel, 5-129
Get and set cursor position, 5-129
Summary of script commands, 4-

3
Horizontal cursor

Test if exists, 5-130
Vertical cursor

Cursor label style, 5-49
Cursor position, 5-47
Delete cursor, 5-48
Get active cursor parameters, 5-

47
Label position, 5-49
Mode, 5-50
Renumber cursors, 5-51
Set active cursor parameters, 5-48
Set number, 5-52
Summary of script commands, 4-

3
Test if exists, 5-49

Cursor regions measurements, 5-30
Cursor regions window

Open, 5-51
Cursor values window

Open, 5-51
Cursor(), 5-47
CursorActiveGet(), 5-47
CursorActiveSet(), 5-48
CursorDelete(), 5-48
CursorExists(), 5-49
CursorLabel(), 5-49
CursorLabelPos(), 5-49
CursorMode(), 5-50
CursorNew(), 5-50
CursorOpen(), 5-51
CursorRenumber(), 5-51
Cursors

Create new cursor, 5-50
Drawing colour, 5-39

CursorSearch(), 5-51
CursorSet(), 5-52
CursorValid(), 5-52
CursorVisible(), 5-52
Curve fitting

Exponential, 5-104
Exponentials, 5-102
Gaussian, 5-102, 5-106
Linear, 5-109
Polynomial, 5-102, 5-113
Sigmoid, 5-102, 5-115
Sine, 5-117
Sinusoid, 5-102
User function, 5-111

Customise memory view, 5-223
Cut

Current selection to clipboard, 5-74
CyberAmp. See also Signal conditioner

Get revision, 5-44
script support, 5-41

The Signal script language

Index-8

—D—
DAC enables, 5-195
DAC full scale, 5-195
DAC units, 5-196
DAC zero, 5-196
Data for pulse, 5-180, 5-181
Data types, 3-1

Compatibility, 3-2
Data values

Value at given x axis position, 5-37
Data view

Access to contents, 3-6
Array access, 3-3, 3-6
Bin width, 5-15
Convert x axis units to bin number,

5-259
Count of channels, 5-24
Count of markers, 5-29
Draw, 5-71
Drawing mode, 5-72
Minimum and maximum data, 5-155
Modified flag, 5-156
Overdraw frames, 5-165, 5-166
Overdraw mode, 5-162
Process data, 5-170
Process multiple frames, 5-171
Show grid, 5-129
Summary of script commands, 4-2
Time of next item, 5-158
Time of previous item, 5-143
Value at given x axis position, 5-37

Data views, 4-2
Date

as a string, 5-53
as numbers, 5-236

Date$(), 5-53
Debug

Call stack, 2-6
Enter debugger, 5-54
Enter debugger, 2-3
Globals window, 2-4
Locals window, 2-4
Operations, 4-15
Summary of script commands, 4-15
Using Script Evaluate window, 5-75
Watch window, 2-4

Debug script, 2-2
Debug(), 2-3, 5-54
Include files, 3-16
DebugHeap(), 5-54
DebugList(), 5-55
DebugOpts(), 5-56
Delay in script. See Yield()
Delete

Channel, 5-24
Cursor, 5-48
File, 5-80
Horizontal cursor, 5-130
Selection, 5-73
Substring, 5-56
XY view data, 5-261

Delete all pulses, 5-180

Delete protocol, 5-176
Delete pulse, 5-181
DeleteFrame(), 5-56
DelStr$(), 5-56
Determinant of a matrix, 5-149
diag() operator, 3-5
Diagonal of a matrix, 3-5
Dialogs

Buttons, 5-60
Check box, 5-62
Create new dialog, 5-62
Dialog units, 5-57
Display and collect responses, 5-67
Enable and disable items, 5-63
Get item value, 5-69
Get time or x value, 5-70
Group boxes, 5-64
Integer number input, 5-64
Real number input, 5-66
Selecting a channel, 5-61
Selecting one value from a list, 5-65
Set label, 5-65
Set label, 5-69
Show or hide items, 5-70
Simple format, 5-57
Text string input, 5-68
User actions and call-backs, 5-59
User interaction commands, 4-13
User-defined, 4-13
User-defined, 5-57

Differences between array elements, 5-
4

Differentiate channels, 5-24
Digital filter bank

Apply from script, 5-91, 5-135
Create digital filter from script, 5-93
Filter name from script, 5-94, 5-139
Force filter calculation, 5-92
Get filter bank information, 5-94, 5-

138
Sampling frequency range, 5-94
Set attenuation of filter bank filter,

5-91
Set comment in filter bank, 5-93
Set filter bank information, 5-137

Digital filtering, 4-10
Digital inputs enable, 5-196
Digital outputs enable, 5-197
Directory for files, 5-86
Display channel, 5-35
Divide operator with integer

arguments, 3-7
Division of arrays, 5-5
DlgAllow(), 5-59
DlgButton(), 5-60
DlgChan(), 5-61
DlgCheck(), 5-62
DlgCreate(), 5-62
DlgEnable(), 5-63
DlgGetPos(), 5-63
DlgGroup(), 5-64
DlgInteger(), 5-64
DlgLabel(), 5-65

DlgList(), 5-65
DlgMouse(), 5-66
DlgReal(), 5-66
DlgShow(), 5-67
DlgSlider(), 5-67
DlgString(), 5-68
DlgText(), 5-69
DlgValue(), 5-69
DlgVisible(), 5-70
DlgXValue(), 5-70
docase, 3-10
Dockable toolbars, 5-255
DOS command line, 5-175
Dot product of arrays, 5-6
Dots draw mode, 5-72
Draw a view, 5-71
Draw mode

Idealised trace, 5-72
Markers, 5-72
Waveform, 5-72

Draw(), 5-71
DrawAll(), 5-71
Drawing modes

Join XY view points, 5-263
XY view, 5-261

DrawMode(), 5-72
Dup(), 5-73
Duplicate view

Create, 5-255
Exclude from list, 5-252
Front view, 5-127
Handle, 5-248

—E—
e, Mathematical constant, 3-9
Edit marker codes, 5-149
Edit marker time, 5-149
Edit menu

Copy, Copy As, 5-73
Summary of script commands, 4-10

EditClear(), 5-73
EditCopy(), 5-73
EditCut(), 5-74
EditFind(), 5-74
Editing

Commands summary, 4-10
EditPaste(), 5-74
EditReplace(), 5-74
EditSelectAll(), 5-75
else. see if and docase, see if

and docase
end, 3-12
End protocol, 5-176
endcase. see docase
endif. see if
Environment variables, 5-233
Erase file, 5-80
Error codes, 5-75
Error$(), 5-75
Esc key in a script, 2-3
Escape character backslash, 3-2
Eval(), 5-75

Index

Index-9

Evaluate argument, 5-75
Event data

Drawing colour, 5-39
Execute program, 5-175
Existance of cursor, 5-49
Existance of horizontal cursor, 5-130
Exit from Signal, 5-88
Exp(), 5-75
Exponential fitting, 5-102, 5-104
Exponential function, 5-75
Export

Channel list, 5-76
Data file, 5-80
Export As, 5-80
Format for text, 5-76
Format for text output, 5-77
Frame list, 5-76
Summary of script commands, 4-2
Time range, 5-77
X axis range, 5-77

ExportChanFormat(), 5-76
ExportChanList(), 5-76
ExportFrameList(), 5-76
ExportTextFormat(), 5-77
ExportTimeRange(), 5-77
Expressions, 3-7
External files, 5-85
External program

Kill, 5-175
Run, 5-175
Status of, 5-175

Extra states, 5-209

—F—
Factorials, 5-15
F-Distribution, 5-14
Feature search, 5-34

Start cursor search, 5-51
Test search, 5-52

FFT analysis
Of arrays, 5-6
Of waveform data, 5-227

File
Apply resource, 5-78
CFS file variables, 5-81, 5-82, 5-90
CFS frame variables, 5-122, 5-123,

5-126, 5-127
Close file, 5-78
Comment, 5-78
Convert foreign format, 5-79
Copy external file, 5-79
Count CFS file variables, 5-90
Delete list of files, 5-80
Dump as text, 5-76, 5-77
Export As, 5-80
Export channel list, 5-76
Export frame list, 5-76
Get creation date as string, 5-79
Get creation time and date, 5-90
Get creation time as string, 5-89
Get size, 5-89
Global resource file, 5-82

List of files, 5-83
Name, 5-83
Open window or external file, 5-85
Parent and child directories/folders,

5-83
Save As, 5-88
Save new file, 5-88
Save resource, 5-89

File menu
Export As, 5-80
Load configuration, 5-85
New, 5-84
Open..., 5-85
Print visible, 5-87
Save As, 5-88
Save configuration, 5-80
Summary of script commands, 4-1

File menu commands, 4-1
File system commands, 4-14
File view

New, 5-84
Open, 5-85

FileApplyResource(), 5-78
FileClose(), 5-78
FileComment$(), 5-78
FileConvert$(), 5-79
FileCopy(), 5-79
FileDate$(), 5-79
FileDelete(), 5-80
FileExportAs(), 5-80
FileGetIntVar(), 5-81
FileGetRealVar(), 5-81
FileGetStrVar$(), 5-82
FileGlobalResource(), 5-82
FileList(), 5-83
FileName$(), 5-83
FileNew(), 5-84
FileOpen(), 5-85
FilePath$(), 5-86
FilePathSet(), 5-86
FilePrint(), 5-87
FilePrintScreen(), 5-87
FilePrintVisible(), 5-87
FileQuit(), 5-88
FileSave(), 5-88
FileSaveAs(), 5-88
FileSaveResource(), 5-89
FileSize(), 5-89
FileTime$(), 5-89
FileTimeDate(), 5-90
FileVarCount(), 5-90
FileVarInfo(), 5-90
FiltApply(), 5-91
FiltAtten(), 5-91
FiltCalc(), 5-92
FiltComment$(), 5-93
FiltCreate(), 5-93
Filter bank. See Digital filter bank
Filter coefficients, 5-9
Filtering of arrays, 5-8
FiltInfo(), 5-94
FiltName$(), 5-94
FiltRange(), 5-94

Find feature, 5-34
Start cursor search, 5-51
Test search, 5-52

Find func or proc, 2-1
Find text, 5-74
Find view, 5-249
Finish sampling, 5-212
FIR filter

Apply from script, 5-91
Frequency response, 5-97
Make coefficients, 5-95
Make coefficients (simplified), 5-96
Script functions, 4-10

FIR filter of array, 5-8
FIRMake(), 5-95
FIRQuick(), 5-96
FIRResponse(), 5-97
First time in frame, 5-155
FitCoef(), 5-101
FitData(), 5-102
FitExp(), 5-104
FitGauss(), 5-106
FitLine(), 5-108
FitLinear(), 5-109
FitNLUser(), 5-111
FitPoly(), 5-113
FitSigmoid(), 5-115
FitSin(), 5-117
Fitting functions, 4-12
FitValue(), 5-119
Fixed interval period, 5-197
Fixed interval variation, 5-197
Flag frame, 5-122
Floor(), 5-119
Flow of control statements, 3-9
FocusHandle(), 5-119
Folder for files, 5-86
Font

Get font characteristics, 5-119
Set font, 5-120

FontGet(), 5-119
FontSet(), 5-120
for, 3-11
Formatted text output, 5-168, 5-170
Frac(), 5-121
Fractional part of real number or array,

5-121
Frame

Absolute start time, 5-121
Accept, 5-191
Analyse, 5-170
Append, 5-2
Append, 5-56
Comment, 5-121
Count, 5-121
Discard changes, 5-125
Flag, 5-122
Frame list, 5-124
Frame numbers array, 5-124
Number, 5-121
On line processing, 5-172
Overdraw, 5-162, 5-165, 5-166
Points to sample, 5-203

The Signal script language

Index-10

Process multiple frames, 5-171
Reject, 5-191
Save changes, 5-125
State, 5-125
Tag, 5-126
User Variable, 5-126

Frame buffer
Summary of script commands, 4-5

Frame buffer commands, 5-18
Frame list, 5-124
Frame(), 5-121
FrameAbsStart(), 5-121
FrameComment$(), 5-121
FrameCount(), 5-121
FrameFlag(), 5-122
FrameGetIntVar(), 5-122
FrameGetRealVar(), 5-123
FrameGetStrVar$(), 5-123
FrameList(), 5-124
FrameMean(), 5-124
FrameSave(), 5-125
FrameState(), 5-125
FrameTag(), 5-126
FrameUserVar(), 5-126
FrameVarCount(), 5-126
FrameVarInfo(), 5-127
Front view, 5-127
Front window, 5-127
FrontView(), 5-127
func, 3-12
Function argument lists, 3-12
Functions and procedures, 3-12
Functions as arguments, 3-14

—G—
GammaP(), 5-128
GammaQ(), 5-128
Gaussian fitting, 5-102, 5-106
Get protocol step, 5-178
Global resource files, 5-82
Globals window, 2-4
Grid colour, 5-39
Grid(), 5-129
Groups of channels, 5-31
Gutter(), 5-129

—H—
Halt, 3-12
HCursor(), 5-129
HCursorChan(), 5-129
HCursorDelete(), 5-130
HCursorExists(), 5-130
HCursorLabel(), 5-130
HCursorLabelPos(), 5-130
HCursorNew(), 5-131
HCursorRenumber(), 5-131
Help(), 5-131
Hexadecimal number format, 3-2, 5-

169
Hide

Channel (list), 5-35

Clamping bar, 5-1
Config bar, 5-1
Edit bar, 5-1
Frame buffer, 5-229
Log window, 5-148
Running script, 5-1
Sampling control panel, 5-1
Sampling control panel, 5-197
Script bar, 5-1
Script toolbar, 5-242
Sequence control panel, 5-1
States control bar, 5-1
Status bar, 5-1
View/Window, 5-257
X axis, 5-257
X axis scroll bar, 5-259
Y axis, 5-267

Hide sampling controls, 5-197
Histogram draw mode, 5-72
Horizontal cursor. see Cursor
Horizontal cursor commands, 4-3
Host operating system, 5-233, 5-234
Hyperbolic cosine, 5-46
Hyperbolic tangent, 5-235
Hysteresis, 5-201

—I—
Iconise view, 5-257
Idealised trace

Delete event, 5-160
Fit using step response, 5-161
Get event details, 5-159
Measure baseline noise, 5-161
Merge events, 5-160
Set event details, 5-160
Split event in three, 5-161
Split event in two, 5-159

if statement, 3-9
IIR filter

Apply from script, 5-135
Overview, 5-132

IIRApply(), 5-135
IIRBp(), 5-135
IIRBs(), 5-136
IIRComment$(), 5-137
IIRCreate(), 5-137
IIRHp(), 5-137
IIRInfo(), 5-138
IIRLp(), 5-138
IIRName$(), 5-139
IIRNotch(), 5-139
IIRReson(), 5-140
Import foreign data file, 5-79
Impulse response, 5-9
Include files, 3-15
Indent text, 2-2
Initialise protocol, 5-176
Input a single number, 5-140
Input a string, 5-141
Input$(), 5-141
Input(), 5-140
Instantaneous frequency

Drawing colour, 5-39
InStr(), 5-141
Integer data type, 3-2
Integer overflow, 5-2
Integrate array, 5-10
Integrate channels, 5-28
Interact(), 5-142
Inverse FFT, 5-7
Invert channels, 5-31
Invert matrix, 5-149

—J—
Join data points in XY view, 5-263

—K—
Key window

Control of, 5-264
Keyboard channel

Add marker, 5-198
Turn on/off, 5-198

Keyboard input
ToolbarSet(), 5-241

Keywords, 3-1
Kind of channel, 5-29

—L—
Label

Colour, 5-39
Label style of cursor, 5-49, 5-130
Position label on cursor, 5-49, 5-130
X axis, 5-259
Y axis, 5-36

LastTime(), 5-143
LCase$(), 5-143
Leak subtraction, 5-222
Least-squares linear fit, 5-108
Left$(), 5-143
Legal characters in string input, 5-141
Len(), 3-12, 5-143
Length of array or string, 5-143
Length of pulse outputs, 5-200
Limit file size, 5-198
Limit frames, 5-198
Limit recording time, 5-199
Line length in script, 3-1
Linear fitting, 5-109
Linear least-squares fit, 5-108
Linear prediction, 5-144
LinPred(), 5-144
List

Channel numbers, 5-29
Files, 5-83
Frames, 5-124
Views, 5-252

literal string delimiter, 3-2
Ln(), 5-147
LnGamma(), 5-148
Load configuration, 5-85
Locals window, 2-4

Index

Index-11

Log amplitude of the power spectrum
in dB, 5-7

Log view, 5-148
Log window, 5-148
Log(), 5-148
Logarithm to base 10, 5-148
Logarithm to base e, 5-147
LogHandle(), 5-148
Lower case version of a string, 5-143

—M—
MarkCode(), 5-148
MarkEdit(), 5-149
Marker

Codes, 5-148
Count in time range, 5-29
Edit marker codes, 5-149
Edit marker time, 5-149
Time, 5-149
Time resolution, 5-15
X axis resolution, 5-15

MarkTime(), 5-149
MATDet(), 5-149
Mathematical constants, 3-9
Mathematical functions, 4-12
MATInv(), 5-149
MATMul(), 5-150
Matrix, 3-3

Determinant of, 5-149
Diagonal of, 3-5
Inverse of, 5-149
Multiplication, 5-150
Solve linear equations, 5-150
Transpose of, 3-5, 5-150

MATSolve(), 5-150
MATTrans(), 5-150
Max(), 5-150
Maximise view, 5-257
Maximum

Of several values, 5-150
Value in array, 5-150

Maximum
X axis in current frame, 5-151

Maximum
Time in channel, 5-151

Maximum
Value in channel, 5-155

Maximum and minimum of XY
channel, 5-265

Maxtime(), 5-151
mean, 5-98
Mean

Mean of array, 5-13
Mean value in channel, 5-30
Mean value in time range, 5-30
Option for memory view, 5-220, 5-

221
Mean frequency

Drawing colour, 5-39
Measure value in channel, 5-30
MeasureChan(), 5-151
Measurements

MeasureChan(), 5-151
MeasureToXY(), 5-152
MeasureX(), 5-153
MeasureY(), 5-154

MeasureToXY(), 5-152
MeasureX(), 5-153
Memory view

Amplitude histogram, 5-219
Auto Average, 5-220
Average waveform, 5-221
Burst time histogram, 5-225
Count sweeps accumulated, 5-233
Create copy, 5-221
Create user-defined view, 5-223
Get source data view, 5-252
Leak subtraction, 5-222
New memory view, 5-219
Open/closed amplitude histogram, 5-

224
Open/closed time histogram, 5-225
Power spectrum, 5-227
View Info., 5-233

Message(), 5-154
Metafile output

To clipboard, 5-73
Mid$(), 5-154
Min(), 5-154
Minimum

Of several values, 5-154
Value in array, 5-154

Minimum
Value in channel, 5-155

Minimum
X axis in current frame, 5-155

Minimum
Time in channel, 5-155

Minmax(), 5-155
Mintime(), 5-155
mod remainder operator, 3-7
Mode

Drawing channel, 5-72
Mode of cursor, 5-50
Modified(), 5-156
Monochrome display, 5-253
MousePointer(), 5-157
Move in text views, 5-158
MoveBy(), 5-158
MoveTo(), 5-158
Multimedia sound output, 5-231

Speech, 5-232
Multiple frames

Export, 5-76
List, 5-124
Online analysis, 5-172
Overdraw, 5-165
Processing, 5-171, 5-172

Multiple monitor support, 4-15, 5-234,
5-257

Multiple states
DAC enables, 5-195
DAC value, 5-208
Digital data, 5-208
Digital inputs enable, 5-196

Digital outputs enable, 5-197
Idling after cycles, 5-209
Individual repeats, 5-209
Label, 5-209
Mode, 5-210
Number, 5-209
Options, 5-210
Ordering, 5-210
Pausing, 5-210
Repeats, 5-211
Sequencing step, 5-211
Sweep points, 5-212
Variable sweep points, 5-213

Multiplication
arrays, 5-10
Matrices, 5-150

—N—
Name format, 3-1
Name of protocol, 5-177
Name pulse, 5-182
Natural logarithm, 5-147
Negate array, 5-10
Negate channels, 5-31
New cursor, 5-50
New horizontal cursor, 5-131
New memory view, 5-219
New XY view, 5-219
next, 3-11
Next

Item, 5-158
NextTime(), 5-158
Non-linear fit, 5-111
Normal distribution, 5-98
not logical operator, 3-7
Number input with prompt, 5-140
Number of protocols, 5-178
Number of pulses, 5-182
Numeric input, 5-140

—O—
Offset channel data, 5-31
Offset channels in XY view, 5-264
Online

Analysis, 5-172
Processing, 5-172

OpClEventChop(), 5-159
OpClEventDelete(), 5-160
OpClEventGet(), 5-159
OpClEventMerge(), 5-160
OpClEventSet(), 5-160
OpClEventSplit(), 5-161
OpClFitRange(), 5-161
OpClNoise(), 5-161
Open

File view, 5-85
Script file, 5-85
Text file, 5-85

Open cursor windows, 5-51
Open file, 5-85
Operating system, 5-233, 5-234

The Signal script language

Index-12

Operators, 3-7
Order of precedence, 3-7

Optimise the display, 5-162
Optimise(), 5-162
or operator, 3-7
Order of channels, 5-31
Outdent text, 2-2
Output

Reset values, 5-162
Output sequencer

Get current step, 5-205
Get file name, 5-206
Keyboard link control, 5-205
Set file name, 5-206
Set variable, 5-206
Set waveform areas, 5-207
Set waveform data, 5-207

OutputReset(), 5-162
Outputs

DAC full scale, 5-195
DAC units, 5-196
DAC zero, 5-196

Outputs clock, 5-199
Outputs frame length, 5-200
Outputs mode, 5-200
Outputs trigger, 5-200
Overdraw frame list, 5-162
Overdraw(), 5-162
Overdraw3D(), 5-164
OverdrawFrames(), 5-165
OverdrawGetFrames(), 5-166

—P—
Palette for colour, 5-166
PaletteGet(), 5-166
PaletteSet(), 5-166
Passing arguments

by reference, 3-12
by value, 3-12
functions and procedures, 3-14

Paste from clipboard, 5-74
Path for application, 5-86
Path for application data, 5-86
Path for desktop, 5-86
Path for documents, 5-86
Path for file operations, 5-86
Pause at sweep end, 5-201
Pause sampling, 5-201
PCA(), 5-167
Pen width for channel, 5-32
Period for fixed interval, 5-197
Peri-trigger

Sampling mode, 5-199
Peri-trigger

Digital bit, 5-201
Peri-trigger

Digital bit, 5-201
Peri-trigger

Hysteresis, 5-201
Peri-trigger

Level, 5-202
Peri-trigger

Threshold, 5-202
Peri-trigger

Type, 5-202
Peri-trigger

Trigger type, 5-202
Peri-trigger

Pre-trigger points, 5-202
Permutations, 5-15
Phase of power spectrum, 5-7
pi, Mathematical constant, 3-9, 5-234
Polynomial fitting, 5-102, 5-113
Pop-up

Message window, 5-154
Number input with prompt, 5-140
Query user in pop-up window, 5-187
String input with prompt, 5-141

Port
Calibration, 5-203, 5-204
Full value, 5-203
Name, 5-203
Options, 5-203
Units, 5-204
Zero value, 5-204

Position of cursor, 5-47
Position of window, 5-255
Pow(), 5-167
Power function, 5-167
Power spectra

All poles method, 5-144
Maximum Entropy method, 5-144
Of arrays, 5-6
Of waveform channels, 5-227

Precedence of operators, 3-7
Preferences

Script access, 5-173
Pre-trigger points, 5-202
Principal Component Analysis, 5-167
Print

All views on screen, 5-87
Formatted text output, 5-168, 5-170
Print visible region, 5-87
To log window, 5-170
To string, 5-169

Print$(), 5-169
Print(), 5-168
PrintLog(), 5-170
proc, 3-12
Procedures as arguments, 3-14
Process file view data to memory view,

5-170
Process(), 5-170
ProcessAll(), 5-170
ProcessFrames(), 5-171
ProcessOnline(), 5-172
Profile(), 5-173
ProgKill(), 5-175
Program size limits, 3-16
ProgRun(), 5-175
ProgStatus(), 5-175
Protocol repeats, 5-177
ProtocolAdd(), 5-176
ProtocolClear(), 5-176
ProtocolDel(), 5-176

ProtocolEnd(), 5-176
ProtocolFlags(), 5-177
ProtocolName$(), 5-177
ProtocolRepeats(), 5-177
Protocols

Add, 5-176
Clear, 5-176
Delete, 5-176
Flags, 5-177
Get step, 5-178
Name, 5-177
Number, 5-178
Select while sampling, 5-204
Set step, 5-178

Protocols(), 5-178
ProtocolStepGet(), 5-178
ProtocolStepSet(), 5-178
Pulse outputs, 5-179
PulseAdd(), 5-179
PulseClear(), 5-180
PulseDataGet(), 5-180
PulseDataSet(), 5-181
PulseDel(), 5-181
PulseFlags(), 5-182
PulseName$(), 5-182
Pulses

Absolute levels, 5-191
Delete all pulses, 5-180
Delete pulse, 5-181
Get data, 5-180
Get times, 5-183
Get type, 5-184
Get variation, 5-184
Get waveform data, 5-185
Get waveform settings, 5-186
Name pulse, 5-182
Number, 5-182
Set data, 5-181
Set times, 5-183
Set variation, 5-185
Set wavefom data, 5-186
Set wavefom settings, 5-187

Pulses(), 5-182
PulseTimesGet(), 5-183
PulseTimesSet(), 5-183
PulseType(), 5-184
PulseVarGet(), 5-184
PulseVarSet(), 5-185
PulseWaveformGet(), 5-185
PulseWaveformSet(), 5-186
PulseWaveGet(), 5-186
PulseWaveSet(), 5-187
PulseXXX() Pulse output commands,

5-179

—Q—
Query user in pop-up window, 5-187
Query(), 5-187
Quit Signal, 5-88

Index

Index-13

—R—
Radians, 5-13, 5-46, 5-230

Convert to degrees, 5-234
Rand(), 5-187
RandExp(), 5-188
RandNorm(), 5-188
Random number generator, 5-187

Exponential distribution, 5-188
Normal distribution, 5-188

Range of data points in XY view, 5-
265

Raster drawing mode
Drawing colour, 5-39

Rate drawing mode
Drawing colour, 5-39

Read binary data, 5-16, 5-17
Read text file

Input from a text file into
variable(s), 5-189

Open file, 5-85
Read(), 5-189
ReadSetup(), 5-190
ReadStr(), 5-190
Real data type, 3-1
Reciprocal of array, 5-5
Rectify channels, 5-33
Reference parameters, 3-12
Registry access, 5-173
Reject sweep, 5-191
Renumber cursors, 5-51, 5-52
Renumber horizontal cursors, 5-131
repeat, 3-10
Replace text, 5-74
Reset outputs, 5-162
Reset sampling, 5-205
Reset states, 5-211
Residuals, 5-99
Resource information suppression, 5-

85
Restart sampling, 5-205
Restore view, 5-257
Result view

Drawing colours, 5-39
return, 3-12, 3-13
Right$(), 5-190
Rightmost characters from a string, 5-

190
RMS Amplitude

Trend plot, 5-153
Root of equation, 5-271
Round a real to nearest whole number,

5-191
Round(), 5-191
RS232 Summary of script commands,

4-15
Run external program, 5-175
Run script, 2-1

—S—
Sample menu. Topics indexed by name
Sample toolbar

Control from script language, 5-194
SampleAbort(), 5-191
SampleAbsLevel(), 5-191
SampleAccept(), 5-191
SampleArtefactGet(), 5-192
SampleArtefactSet(), 5-192
SampleAutoFile(), 5-192
SampleAutoName$(), 5-193
SampleAuxStateParam (), 5-193
SampleAuxStateValue(), 5-194
SampleBar(), 5-194
SampleBurst(), 5-195
SampleClear(), 5-195
SampleDacFull(), 5-195
SampleDacMask(), 5-195
SampleDacUnits$(), 5-196
SampleDacZero(), 5-196
SampleDigIMask(), 5-196
SampleDigMark(), 5-196
SampleDigOMask(), 5-197
SampleFixedInt(), 5-197
SampleFixedVar(), 5-197
SampleHandle(), 5-197
SampleKey(), 5-198
SampleKeyMark(), 5-198
SampleLimitFrames(), 5-198
SampleLimitSize(), 5-198
SampleLimitTime(), 5-199
SampleMode(), 5-199
SampleOutClock(), 5-199
SampleOutLength(), 5-200
SampleOutMode(), 5-200
SampleOutTrig(), 5-200
SamplePause(), 5-201
SamplePeriBitState(), 5-201
SamplePeriDigBit(), 5-201
SamplePeriHyst(), 5-201
SamplePeriLevel(), 5-202
SamplePeriLowLev(), 5-202
SamplePeriPoints(), 5-202
SamplePeriType(), 5-202
SamplePoints(), 5-203
SamplePortFull(), 5-203
SamplePortName$(), 5-203
SamplePortOptions$(), 5-203
SamplePorts(), 5-204
SamplePortUnits$(), 5-204
SamplePortZero(), 5-204
SampleProtocol(), 5-204
SampleRate(), 5-205
SampleReset(), 5-205
SampleSeqCtrl(), 5-205
SampleSeqStep (), 5-205
SampleSeqTable(), 5-206
SampleSequencer$(), 5-206
SampleSequencer(), 5-206
SampleSeqVar(), 5-206
SampleSeqWave(), 5-207
SampleStart(), 5-208
SampleState(), 5-208
SampleStateDac(), 5-208
SampleStateDig(), 5-208
SampleStateLabel$(), 5-209

SampleStateRepeats(), 5-209
SampleStates(), 5-209
SampleStatesIdle(), 5-209
SampleStatesMode(), 5-210
SampleStatesOptions(), 5-210
SampleStatesOrder(), 5-210
SampleStatesPause (), 5-210
SampleStatesRepeats(), 5-211
SampleStatesReset(), 5-211
SampleStatesRun(), 5-211
SampleStatesStep(), 5-211
SampleStatus(), 5-212
SampleStop(), 5-212
SampleSweep(), 5-212
SampleSweepPoints(), 5-212
SampleTel (), 5-213
SampleTrigger(), 5-213
SampleVaryPoints(), 5-213
SampleWrite(), 5-214
SampleZeroOffset(), 5-214
Sampling

Automatic processing, 5-172
Current state, 5-212
Reset states, 5-211
Run states sequencing, 5-211
Runtime control functions, 4-8
Select protocol, 5-204
Select state, 5-208
Setting where data is stored during

sampling, 5-86
States sequencing step, 5-211
View handle, 5-197

Sampling configuration
Absolute pulse levels, 5-191
ADC ports, 5-204
Add protocol, 5-176
Artefact rejection, 5-192
automatic filing, 5-192
automatic naming, 5-193
auxiliary states device, 5-193, 5-194
Burst mode, 5-195
Clear protocol, 5-176
Count pulses, 5-182
DAC full scale value, 5-195
DAC outputs enable, 5-195
DAC units, 5-196
DAC zero value, 5-196
Data points per sweep, 5-203
Delete all pulses, 5-180
Delete protocol, 5-176
Delete pulse, 5-181
Digital inputs enable, 5-196
Digital outputs enable, 5-197
End protocol, 5-176
Extra states, 5-209
Fixed interval period, 5-197
Fixed interval variation, 5-197
Get protocol step, 5-178
Get pulse data, 5-180
Get pulse times, 5-183
Get pulse variation, 5-184
Get waveform data, 5-185
Get waveform settings, 5-186

The Signal script language

Index-14

Individual state repeats, 5-209
Keyboard marker channel, 5-198
Limit file size, 5-198
Limit frames, 5-198
Limit sample time, 5-198, 5-199
Load, 5-85
Name of protocol, 5-177
Name pulse, 5-182
Number of protocols, 5-178
Outputs clock, 5-199
Outputs frame length, 5-200
Outputs mode, 5-200
Outputs trigger, 5-200
Peri-trigger

Analogue level, 5-202
Analogue threshold, 5-202
Digital bit level, 5-201
Digital bit number, 5-201
Hysteresis, 5-201
Trigger type, 5-202

Peri-trigger:, 5-202
Port setup

Name, 5-203
Options, 5-203

Port Setup
Full, 5-203
Units, 5-204
Zero, 5-204

Protocol flags, 5-177
Protocol repeats, 5-177
Pulse outputs, 5-179
Pulse type, 5-184
Reset configuration, 5-195
Sample mode, 5-199
Sample rate, 5-205
Save, 5-80
Set protocol step, 5-178
Set pulse data, 5-181
Set pulse times, 5-183
Set pulse variation, 5-185
Set wavefom data, 5-186
Set wavefom settings, 5-187
Signal conditioner (CED 1902), 5-

41
Standard settings, 5-195
State DAC value, 5-208
State digital data, 5-208
State label, 5-209
States idling, 5-209
States mode, 5-210
States options, 5-210
States ordering, 5-210
States pausing, 5-210
States repeats, 5-211
Summary of script commands, 4-6
Suppress extra windows, 5-84
Sweep length, 5-203
Trigger, 5-213
Using it, 5-84
Variable sweep points, 5-212, 5-213

Sampling control panel
Window handle, 5-197

Sampling control panel

Summary of script commands, 4-8
Sampling control panel

Continue, 5-212
Sampling control panel

Sweep trigger, 5-213
Sampling parameters. See Sampling

configuration
Sampling rate, 5-205
Sampling window

Handle, 5-197
Save configuration, 5-80
Save file, 5-88
Save file As, 5-88
Save frame data, 5-125
Save sweeps while sampling, 5-197, 5-

214
Scale

X axis, 5-15, 5-205
Y axis, 5-203

Scale channel data, 5-33
Scope of variables and user-defined

functions, 3-14
Screen dump to printer, 5-87
Script

Call stack, 2-6
Clear all break points, 2-1
Commands by function

Analysis, 4-9
Array arithmetic, 4-11
Binary files, 4-14
CED 1902, 4-9
CFS variables, 4-14
Channels in data view, 4-3
CyberAmp, 4-9
Data views, 4-2
Edit menu, 4-10
File menu, 4-1
Filing system, 4-14
Fitting functions, 4-12
Horizontal cursors, 4-3
Mathematical functions, 4-12
New memory views, 4-9
Sampling configuration, 4-6
Sampling control at runtime, 4-8
Script debugging, 4-15
Serial line, 4-15
Signal conditioner, 4-9
String handling, 4-11
System, 4-15
Text files, 4-14
User interaction and pop-up

windows, 4-13
Vertical cursors, 4-3
Windows and Views, 4-1

Compile, 2-1
Debug, 2-2
Find func or proc, 2-1
Run, 2-1
Set and clear break points, 2-1
Start new script, 1-1

Script Bar
Control from script language, 5-214

Script view

New, 1-1
Open, 5-85

ScriptBar(), 5-214
ScriptRun(), 5-215
Scroll bar, show and hide, 5-259
Scroll display, 5-71
Search data

For feature, 5-34
Start cursor search, 5-51
Test search, 5-52

Seconds(), 5-215
Select a channel, 5-34
Select all copyable items, 5-75
Select protocol, 5-204
Selection$(), 5-215
Semicolon, statement separator, 3-7
Serial line

Serial port
Summary of script commands, 4-

15
Signal conditioner

Summary of script commands, 4-
9

SerialClose(), 5-216
SerialCount(), 5-216
SerialOpen(), 5-217
SerialRead(), 5-217
SerialWrite(), 5-218
Set commands, 5-219
Set protocol step, 5-178
Set up processing, 5-219
SetAmplitude(), 5-219
SetAutoAv(), 5-220
SetAverage(), 5-221
SetCopy(), 5-221
SetLeak(), 5-222
SetMemory(), 5-223
SetOpCl(), 5-223
SetOpClAmp(), 5-224
SetOpClBurst(), 5-225
SetOpClHist(), 5-225
SetOpClScan(), 5-226
SetPower(), 5-227
SetTrend(), 5-228
SetTrendChan(), 5-229
SetXXX(), 5-219
Shift channel data, 5-35
Show

Channel (list), 5-35
Clamping bar, 5-1
Config bar, 5-1
Edit bar, 5-1
Frame buffer, 5-229
Running script, 5-1
sampling control panel, 5-1
Script bar, 5-1
Script toolbar, 5-242
Sequence control panel, 5-1
States control bar, 5-1
Status bar, 5-1
View/Window, 5-257
X axis, 5-257
X axis scroll bar, 5-259

Index

Index-15

Y axis, 5-267
ShowBuffer(), 5-229
ShowFunc(), 5-230
Sigmoid fitting, 5-102, 5-115
Signal conditioner, 5-41

Get and set gain, 5-43
Get and set offset, 5-44
Get and set special features, 5-41
Get list of gains, 5-43
Get list of sources, 5-46
Get offset range, 5-44
Get revision, 5-44
Get type, 5-46
List filter frequencies, 5-42
List filter types, 5-42
Low-pass and high-pass filters, 5-42
Read all port settings, 5-43
Set all parameters, 5-45
Summary of script commands, 4-9

Signal directory, 5-86
Sin(), 5-230
Sine fitting, 5-117
Sine of an angle in radians, 5-230
Single step a script, 2-3
Sinh(), 5-230
Sinusoid fitting, 5-102
Size of window, 5-256
Skyline draw mode, 5-72
Smooth channel data, 5-35
Smoothing of arrays, 5-8
Solve linear equations, 5-150
Sort arrays, 5-11
Sort channels, 5-31
Sound output, 5-231
Sound(), 5-231
Spawn program, 5-175
Speak(), 5-232
Speech output, 5-232
Sqrt(), 5-232
Square root, 5-232
standard deviation, 5-98
Standard deviation of array, 5-13
Start sampling, 5-208
State frame, 5-125
State select, 5-208
State sequencing, 5-211
State sequencing counter, 5-211
Statements, 3-7
States

DAC enables, 5-195
DAC value, 5-208
Digital data, 5-208
Digital inputs enable, 5-196
Digital outputs enable, 5-197
Idling after cycles, 5-209
Individual repeats, 5-209
Label, 5-209
Mode, 5-210
Number, 5-209
Options, 5-210
Ordering, 5-210
Pausing, 5-210
Repeats, 5-211

Reset sequencing, 5-211
Select while sampling, 5-208
Set sequencing mode, 5-211
Sweep points, 5-212
Variable sweep points, 5-213

Statistical tests, 5-14
Status bar

Show and hide, 5-1
Stop sampling, 5-212
Str$(), 5-233
Straight line fit, 5-108
String functions, 4-11
Strings, 3-2

ASCII code, 5-13
Comparison operators, 3-8
Conversions, 4-11
Convert a number to a string, 5-233
Convert ASCII to string, 5-38
Convert to a number, 5-247
Convert to lower case, 5-143
Convert to numbers, 5-190
Convert to upper case, 5-247
Currently selected text, 5-215
Delete substring, 5-56
Extract fields from, 5-190
Extract middle of a string, 5-154
Find string within another string, 5-

141
Get rightmost characters, 5-190
Input with prompt, 5-141
Leftmost characters of string, 5-143
Length of a string, 5-143
Printing into, 5-169
Read from binary file, 5-17
Read string from user, 5-141
Reading using a dialog, 5-68
Remove leading white space, 5-243
Remove trailing white space, 5-243
Remove white space, 5-243
Specifying legal characters in input,

5-141
Write to binary file, 5-22

Student't t test, 5-14
Substring of a string, 5-154
Subtract DC offset from channel, 5-36
Subtraction of arrays and values, 5-12
Sum of array, 5-13
Sum of array product, 5-6
Sweep

Points, 5-203
Sweep count

Analysis, 5-233
Sweep length, 5-203
Sweeps(), 5-233
Syntax colouring, 2-2
System$(), 5-233
System(), 5-234

—T—
t test, 5-14
TabSettings(), 5-234
Tag frame, 5-126

Tan(), 5-234
Tangent of an angle in radians, 5-234
Tanh(), 5-235
Ternary operator, 3-8
Text copy, 5-73
Text dump, 5-80

Channel list, 5-76
Configuration, 5-76
Format, 5-77
Frame list, 5-76
Marker, 5-76
Waveform, 5-76
X axis range, 5-77

Text editing
Summary of script commands, 4-10

Text file script commands summary, 4-
14

Text to speech, 5-232
Text view

Modified flag, 5-156
Move absolute, 5-158
Move relative, 5-158
New, 5-84
Open, 5-85
Tab settings, 5-234

Time
Maximum time in the current frame,

5-151
Measure elapsed time, 5-215
Minimum time in the current frame,

5-155
Of next item on a channel, 5-158
Of previous item on a channel, 5-

143
Resolution for channels, 5-15

Time of day
as a string, 5-235
as numbers, 5-236

Time ratio, 5-236
Time shift, 5-9
Time units, 5-236
Time view

Apply resource file, 5-78
Background colour, 5-39
Save resource file, 5-89

Time$(), 5-235
TimeDate(), 5-236
Timer, 5-215
TimeRatio(), 5-236
Times for pulse, 5-183
TimeUnits$(), 5-236
Title

Channel, 5-36
View or Window, 5-256

Toolbar
Add buttons, 5-241

Toolbar building, 5-237
Toolbar for script

Clear all buttons, 5-238
Toolbar for script, 5-237

Display, 5-237
User interaction, 5-237

Toolbar for script

The Signal script language

Index-16

Enable and disable buttons, 5-238
Toolbar for script

Change text, 5-242
Toolbar for script

Show and hide, 5-242
Toolbar(), 5-237
ToolbarClear(), 5-238
ToolbarEnable(), 5-238
ToolbarMouse(), 5-239
ToolbarSet(), 5-241
ToolbarText(), 5-242
ToolbarVisible(), 5-242
Tooltips

DlgButton, 5-60
Toolbar, 5-241

Trace through a script, 2-3
trans() operator, 3-5
Transpose of matrix, 5-150
Trend plot

Add channel, 5-229
MeasureChan(), 5-151
MeasureToXY(), 5-152
MeasureX(), 5-153
MeasureY(), 5-154

Trend plot, 5-228
Trigger from outputs, 5-200
Trigger mode

Set on/off, 5-213
Triggered sweeps, 5-213
Trim(), 5-243
TrimLeft(), 5-243
TrimRight(), 5-243
Trunc(), 5-244
Truncate real number, 5-244
Type compatibility, 3-2
Type of pulse, 5-184
Types of data, 3-1

—U—
U1401Close(), 5-245
U1401Ld(), 5-245
U1401Open(), 5-245
U1401Read(), 5-246
U1401To1401(), 5-246
U1401ToHost(), 5-246
U1401Write(), 5-247
UCase$(), 5-247
Units for waveform channel, 5-36
until, 3-10
Update all views, 5-71
Update invalid regions in a view, 5-71
Upper case a string, 5-247
User interaction

Ask user a Yes/No question, 5-187
Command summary, 4-13
Dialogs, 5-57
Let user interact with data, 5-142
Message in pop-up window, 5-154
Print formatted text, 5-168, 5-170
Read a number in a pop-up window,

5-140

Read a string in a pop-up window,
5-141

The toolbar, 5-237
User variables, 5-126
User-defined functions and procedures,

3-12

—V—
Val(), 5-247
Value parameters, 3-12
var keyword, 3-3
Variable

Inspecting value, 2-4
Names, 3-1
Types, 3-1

Variable declarations, 3-3
variance, 5-98
Variation for fixed interval, 5-197
Variation of pulse, 5-184, 5-185
vector, 3-3
Vertical bar notation, 1-5
Vertical cursor commands, 4-3
Vertical space for channels, 5-38
View

Bring to the front, 5-127
Close view, 5-78
Colour/Monochrome, 5-253
Count of channels, 5-24
Count of markers, 5-29
Create duplicate, 5-255
Current view, 5-248
Data array, 5-248
Duplication, 5-255
Find by title, 5-249
Generate frame list, 5-124
Iconise, 5-257
Info., 5-233
Limit text lines, 5-252
List view handles, 5-252
Maximise, 5-257
Minimum, maximum, and positions,

5-155
Overdraw frame list, 5-162, 5-165
Overdraw frames, 5-166
Overdraw mode, 5-162
Override current view, 1-5, 5-248
Process data, 5-170
Restore, 5-257
Sampling view handle, 5-197
Set colour, 5-249
Set size, 5-256
Set to standard state, 5-253
Show, 5-257
Show and hide, 5-257
Show text line numberss, 5-250
Size, 5-256
Summary of script commands, 4-1
Time of previous item, 5-143
Title, 5-256
Type, 5-250
View handle, 5-248

View handle for another view, 1-5,
5-248

Zoom text font size, 5-253
View handle, 1-2

Create memory view, 5-219
Get colour for view, 5-249
Get list of views, 5-252
Other than current view, 1-5, 5-248
Sampling window, 5-197
Set colour for view, 5-249
Set or get current view, 5-248
Update the view, 5-71

View(), 5-248
View().x(), 5-248
View(v,c).[], 5-248
ViewColour(), 5-249
ViewColourGet(), 5-249
ViewColourSet(), 5-249
ViewFind(), 5-249
ViewKind(), 5-250
ViewLineNumbers(), 5-250
ViewLink(), 5-251
ViewList(), 5-252
ViewMaxLines(), 5-252
ViewSource(), 5-252
ViewStandard(), 5-253
ViewUseColour(), 5-253
ViewZoom(), 5-253
Virtual channel

Control settings, 5-254
Create, 5-254

VirtualChan(), 5-254
Visible state of a window, 5-257
Visible state of channel, 5-37

—W—
Wait in script. See Yield()
Watch window, 2-4
WAVE file output, 5-231
Waveform data, 5-185, 5-186

Amplitude, 5-37
Amplitude histogram to memory

view, 5-219
Average to multiple frames, 5-220
Average, accumulate to memory

view, 5-221
Count of points, 5-29
Count points, 5-33
Drawing colour, 5-39
Drawing mode, 5-72
Leak subtraction, 5-222
Mean level, 5-30
Measure values, 5-30
Power spectrum, 5-227
Sampling interval, 5-15
Units, 5-36

Waveform settings, 5-187
Waveform settings, 5-186
WaveMark data

Drawing colour, 5-39
Weighting of channel space, 5-38
wend, 3-10

Index

Index-17

while, 3-10
Window. See view
Window(), 5-255
WindowDuplicate(), 5-255
WindowGetPos(), 5-256
Windows

Position, 5-255
WindowSize(), 5-256
WindowTitle$(), 5-256
WindowVisible(), 5-257
Working Set, 5-175
Write binary data, 5-21, 5-22
Write data automatically, 5-214
Write to disk at sweep end, 5-214

—X—
X axis

Bin number conversions, 5-16
Display set region, 5-71
Drawing mode, 5-258
Drawing style, 5-258
Increment per bin in data view, 5-15
Maximum in the current frame, 5-

151
Minimum in the current frame, 5-

155
Offset, 5-16
Range, 5-259
Scaling factor, 5-15, 5-205
seconds, hms and time of day, 5-258
Show and hide, 5-257
Show and hide features, 5-258
Show and hide scroll bar, 5-259
Tick spacing, 5-258
Title, 5-259
Units, 5-259
Value at given position, 5-37

XAxis(), 5-257
XAxisAttrib(), 5-257
XAxisMode(), 5-258
XAxisStyle(), 5-258
XHigh(), 5-258
XLow(), 5-258

xor exclusive logical or, 3-7
XRange(), 5-259
XScroller(), 5-259
XTitle$(), 5-259
XToBin(), 5-259
XUnits$(), 5-259
XY view

Add data, 5-260
Add trend plot channel, 5-229
Automatic axis expansion, 5-261
Background colour, 5-39
Channel offset, 5-264
Count points, 5-260
Create a new channel, 5-265
Data joining method, 5-263
Data range, 5-265
Delete data points, 5-261
Drawing styles, 5-261
Fill colour, 5-260
Get data points, 5-262
Modify all channel settings, 5-265
Open file from script, 5-85
Points inside a channel, 5-262
Points inside a circle, 5-263
Points inside a rectangle, 5-263
Set channel colour, 5-260
Set Key properties, 5-264
Size of channel, 5-266
Sorting method, 5-267
Trend plot, 5-228

XY views
Summary of script commands, 4-5

XYAddData(), 5-260
XYColour(), 5-260
XYCount(), 5-260
XYDelete(), 5-261
XYDrawMode(), 5-261
XYGetData(), 5-262
XYInChan(), 5-262
XYInCircle(), 5-263
XYInRect(), 5-263
XYJoin(), 5-263
XYKey(), 5-264
XYOffset(), 5-264

XYRange(), 5-265
XYSetChan(), 5-265
XYSize(), 5-266
XYSort(), 5-267

—Y—
Y axis

Channel number show and hide, 5-
31

Drawing mode, 5-268
Drawing style, 5-269
Get current limits, 5-270
Lock channels, 5-268
Range optimising, 5-162
Right and left, 5-268
Scaling factor, 5-203
Set limits, 5-271
Show and hide, 5-267
Show and hide features, 5-268
Tick spacing, 5-269
Title, 5-36
Units, 5-36

YAxis(), 5-267
YAxisAttrib(), 5-267
YAxisLock(), 5-268
YAxisMode(), 5-268
YAxisStyle(), 5-269
Yes/No pop-up window, 5-187
YHigh(), 5-270
Yield time to the system, 5-269
Yield(), 5-269
YieldSystem(), 5-270
YLow(), 5-270
YRange(), 5-271

—Z—
Zero

X axis, 5-16
Zero channel data, 5-38
Zero search, 5-271
ZeroFind(), 5-271

The Signal script language

Index-18

	The Signal script language
	Table of contents
	Introduction
	What is a script?
	Hello world
	Views and view handles
	Writing scripts by example
	Using recorded actions
	Derived views
	Notation conventions
	Sources of script information

	Script window and debugging
	Script window
	Functions
	Compile
	Run
	Set break point
	Clear all break points
	Help

	Syntax colouring
	Editing features for scripts
	Debug overview
	Preparing to debug
	Inspecting variables
	Watch window

	Call stack

	Script language syntax
	Script format
	Keywords and names
	Data types
	Real data type
	Integer data type
	String data type
	Conversion between data types

	Variable declarations
	Constant declarations
	Arrays of data
	Resize array
	Efficiency

	Data views as arrays
	Statement types
	Comments in a script
	Expressions and operators
	Numeric operators
	String operators
	The ternary operator
	Examples of expressions
	Mathematical constants

	Flow of control statements
	if...endif
	docase...endcase
	repeat...until
	while...wend
	for...next
	continue, break
	Halt

	Functions and procedures
	Argument lists
	return
	Examples of user-defined functions
	Scope of user-defined functions
	Functions as arguments

	Channel specifiers
	Include files
	Opening included files

	Include files and debugging
	Program size limits

	Commands by function
	Windows and views
	Data views
	Vertical cursors
	Horizontal cursors
	Channels
	Buffer
	XY views
	Sampling configuration commands
	Runtime sampling commands
	Analysis
	Signal conditioner control
	1401 access functions
	Editing operations
	Matlab interaction
	Digital filtering
	String functions
	Array and matrix arithmetic
	Fitting functions
	Mathematical functions
	User interaction commands
	File system
	Text files
	CFS variables
	Binary files
	Serial line control
	Debugging operations
	Environment
	Multiple monitor support

	Alphabetical function index
	Abs()
	App()
	AppendFrame()
	ArrXXX() commands
	ArrAdd()
	ArrConst()
	ArrDiff()
	ArrDiv()
	ArrDivR()
	ArrDot()
	ArrFFT()
	ArrFilt()
	ArrIntgl()
	ArrMul()
	ArrSort()
	ArrSpline()
	ArrSub()
	ArrSubR()
	ArrSum()
	Asc()
	ATan()
	BetaI()
	BinError()
	BinomialC()
	BinSize()
	BinToX()
	BinZero()
	BRead()
	BReadSize()
	BRWEndian()
	BSeek()
	BuffXXX() Buffer commands
	BuffAdd()
	BuffAddTo()
	BuffAcc()
	BuffClear()
	BuffCopy()
	BuffCopyTo()
	BuffDiv()
	BuffDivBy()
	BuffExchange()
	BuffMul()
	BuffMulBy()
	BuffSub()
	BuffSubFrom()
	BuffUnAcc()
	BWrite()
	BWriteSize()
	Ceil()
	Chan$()
	ChanAdd()
	ChanColour()
	ChanColourGet()
	ChanColourSet()
	ChanCount()
	ChanDelete()
	ChanDiff()
	ChanDiv()
	ChanFit()
	ChanFitCoef()
	ChanFitShow()
	ChanFitValue()
	ChanImage()
	ChanIntgl()
	ChanItems()
	ChanKind()
	ChanList()
	ChanMean()
	ChanMeasure()
	ChanMult()
	ChanNegate()
	ChanNumbers()
	ChanOffset()
	ChanOrder()
	ChanPenWidth()
	ChanPixel()
	ChanPoints()
	ChanRange()
	ChanRectify()
	ChanScale()
	ChanSearch()
	ChanSelect()
	ChanShift()
	ChanShow()
	ChanSmooth()
	ChanSub()
	ChanSubDC()
	ChanTitle$()
	ChanUnits$()
	ChanValue()
	ChanVisible()
	ChanWeight()
	ChanZero()
	Chr$()
	Colour()
	ColourGet()
	ColourSet()
	CondXXX() Conditioner commands
	CondFeature()
	CondFilter()
	CondFilterList()
	CondFilterType()
	CondGain()
	CondGainList()
	CondGet()
	CondOffset()
	CondOffsetLimit()
	CondRevision$()
	CondSet()
	CondSourceList()
	CondType()
	Cos()
	Cosh()
	Cursor()
	CursorActiveGet()
	CursorActiveSet()
	CursorDelete()
	CursorExists()
	CursorLabel()
	CursorLabelPos()
	CursorMode()
	CursorNew()
	CursorOpen()
	CursorRenumber()
	CursorSearch()
	CursorSet()
	CursorValid()
	CursorVisible()
	Date$()
	Debug()
	DebugHeap()
	DebugList()
	DebugOpts()
	DeleteFrame()
	DelStr$()
	Dialogs
	18BMore complex example

	DlgAllow()
	DlgButton()
	DlgChan()
	DlgCheck()
	DlgCreate()
	DlgEnable()
	DlgGetPos()
	DlgGroup()
	DlgInteger()
	DlgLabel()
	DlgList()
	DlgMouse()
	DlgReal()
	DlgShow()
	DlgSlider()
	DlgString()
	DlgText()
	DlgValue() and DlgValue$()
	DlgVisible()
	DlgXValue()
	Draw()
	DrawAll()
	DrawMode()
	Dup()
	EditClear()
	EditCopy()
	EditCut()
	EditFind()
	EditPaste()
	EditReplace()
	EditSelectAll()
	Error$()
	Eval()
	Exp()
	ExportChanFormat()
	ExportChanList()
	ExportFrameList()
	ExportTextFormat()
	ExportTimeRange()
	FileApplyResource()
	FileClose()
	FileComment$()
	FileConvert$()
	FileCopy()
	FileDate$()
	FileDelete()
	FileExportAs()
	FileGetIntVar()
	FileGetRealVar()
	FileGetStrVar$()
	FileGlobalResource()
	FileList()
	FileName$()
	FileNew()
	FileOpen()
	FilePath$()
	FilePathSet()
	FilePrint()
	FilePrintScreen()
	FilePrintVisible()
	FileQuit()
	FileSave()
	FileSaveAs()
	FileSaveResource()
	FileSize()
	FileTime$()
	FileTimeDate()
	FileVarCount()
	FileVarInfo()
	FiltApply()
	FiltAtten()
	FiltCalc()
	FiltComment$()
	FiltCreate()
	FiltInfo()
	FiltName$()
	FiltRange()
	FIRMake()
	FIRQuick()
	FIRResponse()
	Fitting
	Testing the fit

	FitCoef()
	FitData()
	FitExp()
	FitGauss()
	FitLine()
	FitLinear()
	FitNLUser()
	FitPoly()
	FitSigmoid()
	FitSin()
	FitValue()
	Floor()
	FocusHandle()
	FontGet()
	FontSet()
	Frac()
	Frame()
	FrameAbsStart()
	FrameComment$()
	FrameCount()
	FrameFlag()
	FrameGetIntVar()
	FrameGetRealVar()
	FrameGetStrVar$()
	FrameList()
	FrameMean()
	FrameSave()
	FrameState()
	FrameTag()
	FrameUserVar()
	FrameVarCount()
	FrameVarInfo()
	FrontView()
	GammaP()
	GammaQ()
	Grid()
	Gutter()
	HCursor()
	HCursorChan()
	HCursorDelete()
	HCursorExists()
	HCursorLabel()
	HCursorLabelPos()
	HCursorNew()
	HCursorRenumber()
	Help()
	IIR commands
	IIR and FIR filters
	Filter types
	Common command variants

	IIRApply()
	IIRBp()
	IIRBs()
	IIRComment$()
	IIRCreate()
	IIRHp()
	IIRInfo()
	IIRLp()
	IIRName$()
	IIRNotch()
	IIRReson()
	Input()
	Input$()
	InStr()
	Interact()
	LastTime()
	LCase$()
	Left$()
	Len()
	LinPred()
	Ln()
	LnGamma()
	Log()
	LogHandle()
	MarkCode()
	MarkEdit()
	MarkTime()
	MATDet()
	MATInv()
	MATMul()
	MATSolve()
	MATTrans()
	Max()
	Maxtime()
	MeasureChan()
	MeasureToXY()
	MeasureX()
	MeasureY()
	Message()
	Mid$()
	Min()
	Minmax()
	Mintime()
	Modified()
	MousePointer()
	MoveBy()
	MoveTo()
	NextTime()
	OpClEventGet()
	OpClEventChop()
	OpClEventDelete()
	OpClEventMerge()
	OpClEventSet()
	OpClEventSplit()
	OpClFitRange()
	OpClNoise
	Optimise()
	OutputReset()
	Overdraw()
	Overdraw3D()
	OverdrawFrames()
	OverdrawGetFrames()
	PaletteGet()
	PaletteSet()
	PCA()
	Pow()
	Print()
	Print$()
	PrintLog()
	Process()
	ProcessAll()
	ProcessFrames()
	ProcessOnline()
	Profile()
	ProgKill()
	ProgRun()
	ProgStatus()
	ProtocolAdd()
	ProtocolClear()
	ProtocolDel()
	ProtocolEnd()
	ProtocolFlags()
	ProtocolName$()
	ProtocolRepeats()
	Protocols()
	ProtocolStepGet()
	ProtocolStepSet()
	PulseXXX() Pulse output commands
	PulseAdd()
	PulseClear()
	PulseDataGet()
	PulseDataSet()
	PulseDel()
	PulseFlags()
	PulseName$()
	Pulses()
	PulseTimesGet()
	PulseTimesSet()
	PulseType()
	PulseVarGet()
	PulseVarSet()
	PulseWaveformGet()
	PulseWaveformSet()
	PulseWaveGet()
	PulseWaveSet()
	Query()
	Rand()
	RandExp()
	RandNorm()
	Read()
	ReadSetup()
	ReadStr()
	Right$()
	Round()
	SampleAbort()
	SampleAbsLevel()
	SampleAccept()
	SampleArtefactGet()
	SampleArtefactSet()
	SampleAutoFile()
	SampleAutoName$()
	SampleAuxStateParam()
	SampleAuxStateValue()
	SampleBar()
	SampleBurst()
	SampleClear()
	SampleDacFull()
	SampleDacMask()
	SampleDacUnits$()
	SampleDacZero()
	SampleDigIMask()
	SampleDigMark()
	SampleDigOMask()
	SampleFixedInt()
	SampleFixedVar()
	SampleHandle()
	SampleKey()
	SampleKeyMark()
	SampleLimitFrames()
	SampleLimitSize()
	SampleLimitTime()
	SampleMode()
	SampleOutClock()
	SampleOutLength()
	SampleOutMode()
	SampleOutTrig()
	SamplePause()
	SamplePeriBitState()
	SamplePeriDigBit()
	SamplePeriHyst()
	SamplePeriLevel()
	SamplePeriLowLev()
	SamplePeriType()
	SamplePeriPoints()
	SamplePoints()
	SamplePortFull()
	SamplePortName$()
	SamplePortOptions$()
	SamplePorts()
	SamplePortUnits$()
	SamplePortZero()
	SampleProtocol()
	SampleRate()
	SampleReset()
	SampleSeqCtrl()
	SampleSeqStep()
	SampleSeqTable()
	SampleSequencer()
	SampleSequencer$()
	SampleSeqVar()
	SampleSeqWave()
	SampleStart()
	SampleState()
	SampleStateDac()
	SampleStateDig()
	SampleStateLabel$()
	SampleStateRepeats()
	SampleStates()
	SampleStatesIdle()
	SampleStatesMode()
	SampleStatesOptions()
	SampleStatesOrder()
	SampleStatesPause()
	SampleStatesRepeats()
	SampleStatesReset()
	SampleStatesRun()
	SampleStatesStep()
	SampleStatus()
	SampleStop()
	SampleSweep()
	SampleSweepPoints()
	SampleTel()
	SampleTrigger()
	SampleVaryPoints()
	SampleWrite()
	SampleZeroOffset()
	ScriptBar()
	ScriptRun()
	Seconds()
	Selection$()
	SerialClose()
	SerialCount()
	SerialOpen()
	SerialRead()
	SerialWrite()
	SetXXX() commands
	SetAmplitude()
	SetAutoAv()
	SetAverage()
	SetCopy()
	SetLeak()
	SetMemory()
	SetOpCl()
	SetOpClAmp()
	SetOpClBurst()
	SetOpClHist()
	SetOpClScan()
	SetPower()
	SetTrend()
	SetTrendChan()
	ShowBuffer()
	ShowFunc()
	Sin()
	Sinh()
	Sound()
	Speak()
	Sqrt()
	Str$()
	Sweeps()
	System$()
	System()
	TabSettings()
	Tan()
	Tanh()
	Time$()
	TimeDate()
	TimeRatio()
	TimeUnits$()
	The toolbar
	Toolbar()
	ToolbarClear()
	ToolbarEnable()
	ToolbarMouse()
	ToolbarSet()
	ToolbarText()
	ToolbarVisible()
	Trim()
	TrimLeft()
	TrimRight()
	Trunc()
	U1401 1401 access commands
	U1401Close()
	U1401Ld()
	U1401Open()
	U1401Read()
	U1401To1401()
	U1401ToHost()
	U1401Write()
	UCase$()
	Val()
	View(), View(v,c).[] and View().x()
	ViewColour()
	ViewColourGet()
	ViewColourSet()
	ViewFind()
	ViewKind()
	ViewLineNumbers()
	ViewLink()
	ViewList()
	ViewMaxLines()
	ViewSource()
	ViewStandard()
	ViewUseColour()
	ViewZoom()
	VirtualChan()
	Window()
	WindowDuplicate()
	WindowGetPos()
	WindowSize()
	WindowTitle$()
	WindowVisible()
	XAxis()
	XAxisAttrib()
	XAxisMode()
	XAxisStyle()
	XHigh()
	XLow()
	XRange()
	XScroller()
	XTitle$()
	XToBin()
	XUnits$()
	XYAddData()
	XYColour()
	XYCount()
	XYDelete()
	XYDrawMode()
	XYGetData()
	XYInChan()
	XYInCircle()
	XYInRect()
	XYJoin()
	XYKey()
	XYOffset()
	XYRange()
	XYSetChan()
	XYSize()
	XYSort()
	YAxis()
	YAxisAttrib()
	YAxisLock()
	YAxisMode()
	YAxisStyle()
	Yield()
	YieldSystem()
	YHigh()
	YLow()
	YRange()
	ZeroFind()

	Index

