
Copyright Cambridge Electronic Design Ltd 1996-2021

Signal Version 6.06

Signal Version 6.06
The Signal help as a printed manual

Cambridge Electronic Design Ltd.

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the prior
written permission of Cambridge Electronic Design (CED) Limited.

Permission is granted to make a backup copy for security purposes. Permission is granted to print copies of this
documentation for use by the licencee. Permission is granted to use attributed extracts from this documentation for
educational purposes. Commercial copying, hiring or lending is prohibited.

While every precaution has been taken in the preparation of this document, CED assumes no responsibility for errors
or omissions, or for damages resulting from the use of information contained in this document or from the use of
programs and source code that accompany it. In no event shall CED be liable for any loss of profit or any other
commercial damage caused or alleged to have been caused directly or indirectly by this document or software.

Generated: April 2021 in Cambridge, England

Signal Version 6.06

Copyright Cambridge Electronic Design Ltd 1996-2021

Revision History
Version 6.00
Version 6.01
Version 6.02
Version 6.03
Version 6.04
Version 6.05
Version 6.06

November 2013
March 2014
July 2014
June 2015
August 2016
October 2017
April 2021

Published by:

Cambridge Electronic Design Ltd,
Technical Centre,
139 Cambridge Road,
Milton,
Cambridge CB24 6AZ
UK

Telephone: Cambridge (01223) 420186
International: +44 1223 420186
Fax: Cambridge (01223) 420488
International Fax: +44 1223 420488
Email: info@ced.co.uk
Home page: www.ced.co.uk

Curve fitting functions are based on routines in Numerical Recipes: The Art of Scientific Computing, published by Cambridge
University Press and are used by permission.

The XML library used to save and restore resources is written by Michael Chourdakis (www.turboirc.com).

Trademarks and Tradenames used in this document are acknowledged to be the Trademarks and Tradenames of their
respective Companies and Corporations.

Acknowledgements

Signal Version 6.06

Contents-i

Table of Contents

..1-1Signal version 6

... 1-3Installation

... 1-4Updating and removing Signal

..2-5Getting started

... 2-5Signal overview

... 2-6Signal basics tutorial

... 2-6Opening a file to view

... 2-7Signal display overview

... 2-9Data channels

... 2-9Frame buttons

... 2-10Zoom buttons

... 2-11Cursor buttons

... 2-11Cursor style and pointers

... 2-11Zoom in on an area

... 2-12Zoom a channel

... 2-12Using x and y axes to scroll and zoom

... 2-12X Range dialog

... 2-13Y Range dialog

... 2-14Waveform draw mode dialog

... 2-14Customise display

... 2-14Channel order

... 2-15Channel spacing

... 2-15Channel overdraw

... 2-15Frame overdrawing

... 2-16Cursor measurements

... 2-16Cursor regions

... 2-16Memory views

... 2-17Make a waveform average

... 2-17Process dialog

... 2-17Repeating analysis

... 2-17Memory view usage

... 2-18XY views

..3-19General information

... 3-19View types

... 3-30The Signal command line

... 3-3064-bit operating systems

... 3-31Program files installation

Contents

Contents-ii

... 3-33Unicode

... 3-35Resource limitations

..4-36Sampling data

... 4-36Inputs and outputs

... 4-38Types of channel

... 4-41Sampling configuration

... 4-56Creating a new document

... 4-57Online analysis

... 4-57Sampling control panel

... 4-59Other interaction with sampling

... 4-59Stopping sampling

... 4-60Saving new data

... 4-60Saving configurations

... 4-61Sequence of operations to set and save the configuration

..5-62Pulse outputs while sampling

... 5-62Pulses dialog

... 5-71Controlling pulse outputs during sampling

..6-72Sequencer outputs during sampling

... 6-72Sequencer technical information

... 6-73The sequence editor

... 6-73Sequencer compiler error messages

... 6-75Loading sequence files for sampling

... 6-76Sequencer control panel

... 6-76Marker channel and digital input conflict

... 6-76Getting started

... 6-78Instructions

... 6-83Sequencer instruction reference

..7-108Sampling with multiple states

... 7-109Dynamic outputs states

... 7-109States sequencing

... 7-113Controlling multiple states online

... 7-115Static outputs states

... 7-115External digital states

... 7-116Auxiliary state hardware

..8-117Sampling with clamp support

... 8-117Online clamp support features

... 8-119Clamping configuration

... 8-121Running a clamping experiment

... 8-123Dynamic clamping

Signal Version 6.06

Contents-iii

..9-152File menu

... 9-152New

... 9-153Open

... 9-153Import data

... 9-157Import Op Cl

... 9-158Global Resources

... 9-159Resource Files

... 9-159Close

... 9-159Close All

... 9-159Save, Save As

... 9-160Export As

... 9-161MATLAB external exporter

... 9-165Backup sgrx file

... 9-165Revert to Saved

... 9-166Data update mode

... 9-166Send Mail

... 9-166Load and Save Configuration As

... 9-167Page Setup

... 9-167Page Headers

... 9-169Print Preview

... 9-169Print visible, Print and Print selection

... 9-169Print screen

... 9-170Exit

..10-171Edit menu

... 10-171Undo and Redo

... 10-171Cut

... 10-171Copy

... 10-172Copy As Text Data view

... 10-174Copy As Text XY view

... 10-174Paste

... 10-174Delete

... 10-174Clear

... 10-174Reload frame

... 10-174Select All

... 10-174Find, Find Next, Find Previous

... 10-176Replace

... 10-176Edit toolbar

... 10-176File comment

... 10-177Frame comment

... 10-177Auto Format

... 10-177Toggle Comments

Contents

Contents-iv

... 10-178Auto Complete

... 10-179Preferences

..11-195View menu

... 11-195Toolbar, Edit bar, Status bar

... 11-195Next frame, Previous frame

... 11-195Goto frame

... 11-195Show buffer

... 11-195Overdraw frames

... 11-196Add frame to list

... 11-196Overdraw settings...

... 11-198Enlarge view, Reduce view

... 11-198X Axis range

... 11-200Y Axis Range

... 11-201File Information

... 11-201Channel Information

... 11-202Channel Information (XY view)

... 11-202Experimenter's notebook

... 11-203Standard Display

... 11-204Customise display

... 11-205Draw mode

... 11-207Channel Pen Width

... 11-208Channel Image

... 11-210XY Draw Mode

... 11-210Options

... 11-211Font

... 11-211Use Colour and Use Black And White

... 11-211Change Colours

... 11-215Folding

... 11-215Show Gutter

... 11-215Show Line numbers

... 11-216Mouse display control

... 11-216Keyboard display control

... 11-217Annotate

... 11-217Grid view commands

..12-218Analysis menu

... 12-218New Memory View

... 12-223Process

... 12-224Process command with a new file

... 12-224Process settings

... 12-224Measurements

... 12-230Measurement processing online

Signal Version 6.06

Contents-v

... 12-230Fit data

... 12-235Memory Channels

... 12-238Virtual Channels

... 12-251Append frame

... 12-251Append frame copy

... 12-252Delete frame

... 12-252Delete channel

... 12-252The frame buffer

... 12-254Multiple frames

... 12-254Modify channels

... 12-254Tag frame

... 12-255Digital filters

... 12-255Keyboard analysis control

..13-256Single-channel analysis

... 13-256About idealised traces

... 13-256New idealised trace SCAN

... 13-258New idealised trace Threshold

... 13-259Open Closed time histogram

... 13-260Open Closed amplitude histogram

... 13-260Burst duration histogram

... 13-261Baseline measurements

... 13-261View and modify event details

... 13-262View event list

... 13-262Export to HJCFIT

... 13-263Short cuts

... 13-263Tips for fitting

... 13-263Strategy for long recordings

..14-265Cursor menu

... 14-265Vertical cursors

... 14-267Horizontal cursors

... 14-268Active cursors

... 14-271Active horizontal cursors

... 14-273Display Y values

... 14-274Cursor Regions

... 14-276Cursor context menus

..15-277Sampling menu

... 15-277Sampling configuration

... 15-277Sample Bar

... 15-277Sample Bar List

... 15-278Signal conditioner

... 15-278Show Sampling controls

Contents

Contents-vi

... 15-279Show Pulse controls

... 15-279Sample now

... 15-279Show Sequencer controls

... 15-279Keyboard sampling control_2

..16-280Script menu

... 16-280Compile Script

... 16-280Run Script

... 16-280Evaluate

... 16-280Turn Recording On/Off

... 16-280Debug Bar

... 16-281Script Bar

... 16-281Script Bar List

..17-282Window menu

... 17-282Duplicate window

... 17-282Hide

... 17-282Show

... 17-282Window Title

... 17-283Tile Horizontally

... 17-283Tile Vertically

... 17-283Cascade

... 17-283Arrange Icons

... 17-283Close All

... 17-284Windows

..18-285Help menu

... 18-285Help Index

... 18-285Using help

... 18-285Tip of the day

... 18-285View web site

... 18-285Getting started

... 18-286About Signal

... 18-287Other sources of help

..19-288Script language

... 19-288Script introduction

... 19-293Script window and debugging

... 19-298Script language syntax

... 19-321Script functions by topic

... 19-335Alphabetical script function index

... 19-649Curve fitting

..20-653Digital filtering

Signal Version 6.06

Contents-vii

... 20-653FIR and IIR filters

... 20-654Digital filter dialog

... 20-655Filter bank

... 20-655FIR filter details

... 20-658IIR filter details

... 20-660FIR filters technical information

... 20-663FIRMake filter types

... 20-664Low pass filter example

... 20-665High pass filter

... 20-666General multiband filter

... 20-667Differentiators

... 20-669Hilbert transformer

..21-670Programmable Signal conditioners

... 21-670What a signal conditioner does

... 21-670Serial ports

... 21-671Control panel

... 21-672Setting the channel gain and offset

... 21-673Conditioner connections and details

..22-676Amplifier telegraphs

... 22-676Standard 1401 telegraphs

... 22-678MultiClamp 700 telegraphs

... 22-682AxoClamp 900A telegraphs

... 22-685EPC 800 telegraphs

..23-688Auxiliary states devices

... 23-688Magstim device

... 23-699MagPro device

... 23-704CED 3304 current stimulator

..24-707Technical support

... 24-707Contacting CED

... 24-708Revision history

... 24-723Common questions

... 24-728License information

..Index-1Index

Signal version 6

1-1

Signal version 6

The Signal software running under Windows together with one of the CED 1401 family of interfaces gives a PC the
power to capture and analyse multi-channel waveform and time marker data.

Signal is designed to let you manipulate your data using the familiar Windows idioms. You can arrange the
windows to display the data within them to best advantage and copy and paste the results to other applications.
Alternatively, you can obtain printer hard copy directly from the application. When you close a data file, Signal
saves the screen format and analysis window setup associated with it. When you open a file, Signal restores the
configuration, so it is easy to resume work where you stopped in a previous session.

You can analyse sections of data by reading off values at and between cursors, or by applying the built-in frame by
frame automated analyses such as waveform averaging and power spectrum. More ambitious users can further
automate both data capture and analysis with scripts. The script language is described in The Signal script
language manual.

New features in version 6
Version 6 of Signal is completely compatible with earlier versions; it will read data files and sampling configurations
created by versions 2, 3, 4 or 5 without problems. Scripts that ran in versions 3, 4 and 5 should work without
modification (with a very few exceptions). The main new features in Version 6 are:

· A new type of data called real markers has been added to the types of data handled by Signal. Real marker data
consists of a marker (a time and four code bytes) plus one or more floating point values. Various marker-related
script commands have been extended to support this - for example MarkCode() can read the real value(s) held in
a real marker.

· The memory channel mechanisms used to hold idealised trace data have been extended to allow marker and real-
marker data channels held in memory. Memory channels are more flexible than channels stored in the CFS data
file, for example new items can be freely added and existing items deleted.

· New memory channel dialogs have been added that allow you to create, import data into and modify memory
channels holding marker, real marker and idealised trace data. These mechanisms are matched by new script
functions.

· New built-in processing mechanisms have been provided to create marker and real marker data both offline and
during sampling, plus a new script language function to do the same.

· The virtual channel system has been extended to provide mechanisms to generate a waveform from data in a real
marker channel.

· Both 64- and 32-bit versions of Signal version 6 will be shipped, when installing onto a 64-bit version of
Windows you can choose which version you want to install. The 64-bit version requires a 64-bit version of
Windows, is some 10 percent faster than the 32-bit code and will interface with 64-bit versions of MATLAB.

There are many other improvements and more are planned. You can find a full list of new features, bug fixes and
changes in the Revision History in the on-line Help. Licensed users of version 5 can download updated releases of
Signal version 5 from our web site www.ced.co.uk as they become available.

Hardware required
The absolute minimum requirement to run the program is a Pentium II with 256 MB of memory running Windows XP
SP2. The more memory you have and the faster the processor, the better Signal will run. A graphics accelerator will
greatly improve drawing and scrolling speeds.

To sample data, you will need a CED Power1401 mk I, mk II or -3, a Micro1401 mk I, mk II or -3 or a 1401plus,
dynamic clamping requires a Power1401 mk II or -3. Version 6 does not support the standard 1401, if you want to
use a standard 1401 you will have to use version 4, a version 4 installer is supplied on the Signal version 5 CD. Gap-
free sampling and some advanced output options are not available with a 1401plus. Unless the exact type of 1401 is
specified, when the terms Micro1401 and Power1401 are used in this manual they refer to all versions of these types
of 1401. All 64-bit versions of Windows are supported.

Signal Version 6.06

1-2

File icons

 The various file types in Signal have icons so that you can easily recognise them when you minimise their
windows. The icons will automatically be used for the relevant files by programs such as Windows Explorer. All the
icons have a set of waveforms to remind you of the application to which they belong. The icon to the left is the
Signal application icon that you double-click to launch Signal from the Signal program group.

 These icons are for Signal data files. The icon on the left represents Signal CFS data files or file
views. The icon on the right represents an XY data file: a saved XY view. If you double-click on one of these in
Windows Explorer it will launch the Signal application (if it is not already running) and open the data file in a data or
XY view.

 These icons are for text-type Signal documents and files. The icon on the left represents a
text file, which can hold any textual data. The centre icon represents a Signal script file. Script files hold script
programs that execute within Signal to automate analysis or to customise Signal behaviour in some way. The icon
on the right represents a Signal sequencer file. These files store sequences of output pulses for use during
sampling.

 These icons are for other files created by Signal. The icon on the left represents a Signal sampling
configuration, while the one on the right represents a Signal resources file.

Direct access to the raw data
Some users may wish to write their own applications that manipulate Signal data files directly. A C library: The CFS
library is available from CED. The library includes all functions necessary to read or write Signal data files from
Windows programs. This library is available, along with complete documentation in PDF format, from the CED web
site (http://www.ced.co.uk).

Using this on-line help
Much of the information in this help file is also in the manuals Signal for Windows and The Signal script language.
If you prefer printed documentation you may like to read the manuals and use this system for context-based help
from the program (by pressing F1 or clicking Help buttons).

We do not explain standard procedures, for example clicking and dragging, using menu short-cut keys or using a
file open dialog; we expect that you are already familiar with them. We use standard Windows idioms wherever
possible so that you feel at home and have a consistent interface to work with.

The Overview page at the start of the Getting started chapter aims to give you a general understanding of Signal
and what it does.

The Getting started section suggests some tasks you might undertake to get started with the system. We have
supplied example data files for you to experiment with; there is no need to have your own data available at this time.
This is followed by sections on General information, Sampling data, Pulse outputs, Sequencer outputs and
Sampling with multiple states.

The next sections are a reference section to all the menu commands in Signal: File, Edit, View, Analysis, Cursor,
Sample, Script, Window and Help.

Once you are familiar with the program, you may wish to investigate the script language so you can automate your
data capture and analysis.

There are also sections on specific topics, such as: Sampling with clamp support, Single channel analysis, Digital
filtering, Programmable signal conditioners, Telegraph support and Auxiliary states devices.

http://www.ced.co.uk

Signal version 6

1-3

The Signal Training Course Manual covers selected topics in more detail. It is particularly useful for script
authors as the approach is much more descriptive than the reference material presented here.

Credits
Nearly all of the Signal code was written by CED programmers and is copyright Cambridge Electronic Design Ltd.
However there are a few other sources of code who should be thanked and acknowledged (though of course CED
is still responsible for any shortcomings):

· Curve fitting procedures are based on routines in Numerical Recipes: The Art of Scientific Computing,
published by Cambridge University Press and are used by permission.

· XML resource files are handled using the XML library developed by Michael Chourdakis and available from
www.turboirc.com.

Installation

To be reading this help you must have already installed Signal. However, you may need to move it to another
system (mindful of the Signal Software License).

Your installation disk is serialised to personalise it and the Signal software to you. Please do not allow others to
install unlicensed copies of Signal.

Just put the CD-ROM in the drive and it will start the installation. You can also run the installation manually by
opening the Signal6 folder on the CD-ROM, then the Disk1 folder and running setup.exe.

During installation
You must select a suitable drive and folder for Signal and personalise your copy with your name and organisation.
You can have earlier versions of Signal on the same system as long as they are in different folders. If you have a
previous version on your system, make sure you install to a different folder. The installation program copies the
Signal program plus demonstration, help, tutorial and example files. It also copies and installs all required 1401
support (device drivers and control panels). In rare cases you may need to install drivers manually; the installation
program will tell you if this is the case and point you at detailed instructions. Your system may require a restart after
installation to get all 1401 device drivers up to date.

Installation location
By default, versions of Signal before 5.08 were installed by default into a C drive directory such as C:\Signal6.
As installation outside C:\Program Files is frowned-upon these days, modern versions of Signal install by
default into a directory inside C:\Program Files and we have made minor adjustments to ensure that Signal
will work smoothly in the new location. When running from C:\Program Files Signal cannot save data,
sampling configurations and other values inside the Signal installation directory as was often done previously, so
the Signal version 6 installer creates two new directories for you to save your files in. These are:

My Documents\Signal6
This directory is always created and if you are installing Signal inside C:\Program Files this folder is also
where the the installer puts the example data files, scripts and other useful files that were previously installed inside
the Signal installation folder. This folder is user-specific (for each user that logs on a different folder acts as My
Documents) and so you can use it for all of the files which you do not need to share with other users of the
computer.

Public Documents\Signal6Shared
This directory is also always created and can be used for files that you want to share with other users of the
computer.

Custom install
To install without 1401 support, or to install extra information and documentation (which includes the latest copies
of the software manuals) choose Custom installation.

http://www.turboirc.com

Signal Version 6.06

1-4

After installation
If you are new to Signal, please work through the Getting Started tutorial in the online help. Where you go next
depends on your requirements. The Signal Training Course Manual is more descriptive than the other manuals,
which are organised as reference material. However, it covers all versions of Signal and you will occasionally need
to refer to the other manuals or this online help for version 6 specific details.

Updating and removing Signal

You can update your copy of Signal to the latest version 6 release free of charge from our web site: www.ced.co.uk.
You can only update a correctly installed copy of Signal version 6. There are full instructions for downloading the
update on the web site.

Once you have downloaded the Signal update, you will find that the update process is very similar to the original
installation process, except that you must already have a properly installed of Signal for Windows version 6 on
your computer.

Updates will include both bug fixes and new features. We will notify you by email (if we know your email address)
of new releases. You can also register for this service on our web site. To stop emails, reply to them and ask to be
removed from the list.

Removing Signal
You can remove Signal from your system: open the system Control Panel, select Add/Remove Programs, select
CED Signal for Windows version 6 and click Remove. This removes all of the files installed with Signal; you will not
lose any data or other files that you created.

http://www.ced.co.uk/upu.shtml

Getting started

2-5

Getting started

This section of the Signal online help consists of a series of familiarisation exercises to help you become familiar
with Signal. You can begin the exercises by clicking here.

Signal overview

What is Signal and what does it do?

Signal is a program used to collect and analyse information from (normally bio-medical) scientific experiments. The
data that Signal works with are primarily waveforms - voltages that vary with time - each waveform is represented
by a separate channel. Signal collects and manipulates waveform data in chunks that are called frames, the frames in
a Signal data file are usually all of the same length - rather like a software oscilloscope.

Collecting data with Signal
Signal uses the CED 1401 data acquisition hardware to sample voltages and generate new data files, the 1401 can
also be used to generate outputs (stimuli) during sampling. To sample new data using Signal you would normally
read a sampling configuration from a disk file or edit an existing sampling configuration to generate a new
configuration, there are many options available to control how Signal samples data and generates outputs. Once
the sampling configuration is satisfactory you can make use of it by clicking on the Sample Now button in the
sampling configuration dialog, or using the File menu New command and selecting a data file. This creates the new
(empty) data file, gets the 1401 ready for use and makes the sampling control panel visible. Sampling is started,
stopped and controlled using the sampling control panel, once sampling has finished the new data file can be
saved to disk to make it permanent.

Viewing data with Signal
Signal data can be visualised in a number of different ways, from a simple display drawing waveforms as dots, line
or cubic splines, to overdrawn channels, to overdrawn frames using 3D perspective. Waveform channels can be
displayed using differing Y axis ranges and the appearance of both the Y and X axes can be extensively
customised. The time or Y axis range shown can be interactively adjusted in various ways.

Analysing data with Signal
Signal can carry out many types of data analysis. Vertical and horizontal cursors can be used to mark positions of
interest within the data and measurements can be taken using the current vertical cursor positions. Virtual channels
can be used to create simulated channel data using an evaluated expression and data in other channels and memory
channels can be created to hold temporary or easily modified data. New data views can be created holding the
results of processing existing data, for example by waveform averaging, and memory channels or XY views can be
generated holding measurements taken from other data views - the ability of vertical cursors to be active and
automatically move to locate features in channel data is particularly useful with these measurements. Other
available analysis techniques include curve fitting, digital filtering and interactive data modification across multiple
frames.

What can Signal be used for?

Hopefully you already know that Signal is suitable for the type of experiment that you want to carry out! However
Signal is a very versatile program and can be used for a wide range of experiments. Here are some of it's uses and
capabilities:

Evoked response studies
Measuring responses to stimuli requires that the data acquisition be synchronised with stimulus presentation by
suitably triggering the data acquisition and often that data frames be collected at a high rate to minimise discomfort
for the subject. Automatic generation of an averaged response as part of the data acquisition process helps to
ensure that the data acquisition is proceeding satisfactorily.

Signal Version 6.06

2-6

Complex stimulus generation
Generation of complex stimuli including arbitrary waveforms are a useful tool in many types of experiment. The
ability to generate multiple different stimulus sets and run through them in a predefined or randomised order allows
more complex experiments to be undertaken. If you require extremely complex behaviour including reacting to the
sampled data, the output sequencer allows still more control over what and when outputs are generated.

TMS studies
Signal can make Transcranial Magnetic Stimulation studies much easier & quicker to carry out by controlling a
Magstim stimulator and adjusting the stimulus parameters such as the power level automatically during an
experiment. Errors in record keeping are avoided by automatically recording the stimulation settings along with the
data and the Magstim health and temperature are automatically monitored throughout use.

Clamping studies
Signal can be used for both voltage clamp and current clamp experiments and is able to provide a quick analysis of
incoming data for the purpose of monitoring cell health or seal quality. Single-channel voltage clamping
experiments are also supported, in particular by the inclusion of the SCAN analysis technique developed by Prof.
David Colquhoun. When using advanced 1401 hardware such as the Power1401-3 is is possible to use dynamic
clamping techniques to simulate the presence of (or cancel out) particular ion channels.

System customisation
The Signal script language is a complete programming language which can be used to extend the capabilities of
Signal by allowing specialised analyses, automatic analysis and interaction with the data acquisition to perform
more complex experiments. The sample and scripts toolbar provide a simpler customisation mechanism by allowing
frequently used sampling configurations & scripts to be loaded by a single mouse-click.

Signal basics tutorial

This tutorial teaches you the basic operations that manipulate Signal data files. Signal is a large program with many
features; this short tutorial will get you started finding your way around. It is intended that you should work
through the tutorial sections in the order in which they appear, though some sections are optional as they are only
relevant in certain circumstances.

Run Signal

To work through this tutorial you need to be running Signal. If Signal is not already running, click the Start button
and select Programs. Select the Signal entry in the list of programs and inside this you will find the Signal program.
Select the program to start Signal.

Clean up unwanted windows
If you have any windows open in Signal, close them before you start to follow the tutorial instructions. The
quickest way to close all windows is to use the Window menu Close All command (click on Window in the menu
bar, then click on Close All). You can also close windows by double-clicking the control menu at the top left of a
window, or with the File menu Close command.

Opening a file to view

In this step you will open the demonstration data file that was shipped with Signal. Follow these steps:

1. Open the File menu and select the Open... command

2. Open the data directory (inside the Signal6 directory in My Documents for a Program Files install) and
double click on example.cfs (if you have moved files since your installation you may have to search around
to find this file, if all else fails, use any Signal CFS data file)

3. A new window will open. Arrange the help window and this new window so that you can see both.

4. To follow the tutorial, you should see a window holding at least one data channel and with a horizontal scroll
bar at the bottom. If this is not the case your file is in a mess!

Getting started

2-7

Clean up a messy file

If the file does not display properly this is because the last user of this file didn't put it away tidily. You can tidy up
by following these instructions:

1. Click on the window labelled example.cfs.

2. From the View menu select the Standard Display option.

3. If the fonts used seem too large or too small open the View menu Font dialog and select Times New Roman,
Regular 10 point.

4. If the colours are grotesque open the View menu and select Use Black And White (which always works) or
select the Change Colours... option and choose a better combination.

Signal display overview

Here is the Signal program with the example data file open, Signal displays the file in the state in which it was last
saved (as long as it can find a file with the same name and the extension .sgrx holding the previous settings). The
example.cfs window shows data from a specific frame in the file. We call this a file view because it displays data
from a file, along with memory views (which are described later), file views are examples of data views, so called
because they display standard Signal data.

The Signal window
You can see a number of separate components that are part of the Signal window and are normally present
regardless of what Signal is currently doing:

Menu bar
As normal in Windows programs, menus provide your main access to commands used to make Signal take an
action. The menu bar contains a number of separate menus: File, Edit, View, Analysis, Cursor, Sample, Window
and Help, each menu contains relevant commands, for example the File menu contains the Open command used to
open a file. The menus and commands available can vary according to the type of view in use. There are separate
chapters in the Signal help describing the commands available from the various menus.

Toolbar
Just below the menu bar is the toolbar; a line of buttons that, when pressed, carry out common actions. Each
toolbar button matches an action from the menu. The buttons are shown in this manual with the menu items. To
find out what a toolbar button does, leave the mouse pointer over the button for a few seconds. If you want, you
can hide the toolbar (& show it again) using View menu commands. You can also drag the toolbar and “stick” it to

Signal Version 6.06

2-8

any of the 4 sides of the application window (this is known as docking the toolbar) or simply leave it 'floating' in a
separate window inside the main Signal window.

Status bar
The Status bar is at the bottom of the Signal window, it provides information about the current view (and again can
be shown and hidden using the View menu). The status bar holds a number of 'panes' plus an open area on the left.
This leftmost portion shows menu item prompts; as you move the mouse pointer over the menus, it will show text
describing the item underneath the mouse pointer. The other panes each show a particular item of information. If
the space available is too small for all of the panes, panes disappear starting at the right hand side. From the left,
the status bar panes are:

Cur Pos If the mouse pointer is over a part of a data or XY view that has axes this pane displays the pointer X
and Y positions, the first figure is the channel number from which the Y value is taken. For a text-type
view it displays the current text cursor position in lines and columns.

Frame This pane shows the current frame number for the current view and the maximum frame number in the
view. If the current view is not a data document then this pane is blank. See below for a discussion on
frames.

Start This pane, adjacent to the frame number, shows the absolute start time for the frame - this is the time for
the start of the frame relative to the time at which sampling started.

State This pane shows the state code (described below) for the current frame in the current view as a decimal
number or (if available) as a state label with the number appended. It is blank if the current view is not a
data document.

Tag If the current view is a data document and the current frame is tagged (described below), this pane
shows the text TAG, otherwise it is blank.

Flags This pane shows the flags for the current frame in the current view as an 8 digit hexadecimal (base 16)
number (hexadecimal format makes the individual flag states visible), each digit shows the state of four
flags with the highest on the left. This pane is blank if the current view is not a data document view.

Caps If the keyboard Caps lock is on, this pane displays the text CAPS.

Num If the keyboard Num lock is on, this pane displays the text NUM.

Record This pane displays REC if Signal is recording user actions into a script.

The data view window
You can also see a number of separate components inside the example.cfs data view window:

Title bar
This shows the name of the data file used by the view and the current frame number, during sampling extra
information relating to the state of sampling can also be shown here. At the right of the title bar are buttons used to
minimise (show as an icon), maximise and close the view.

Channel data
These areas show the actual data from the file, which can be drawn in various ways.

Channel number
The channel number is shown to the extreme left (can be changed to right) of the channel data, it can be used to
select or de-select channels (this is described later on).

Channel Y axis
The Y axis shows the range of data values that are being plotted in the corresponding channel data area, you can
adjust the range shown as necessary (this is described later on) and also whether it is displayed to the left (as
shown here) or right of the channel data. The Y axis also displays the channel title and the units for the data. Not all
channels have a Y axis, for example the keyboard marker channel at the top of the data view.

X axis
The X axis shows the time range over which data is being shown, you can adjust the range shown as necessary
(this is described later on). The X units are also shown, for normal Signal data you can choose between seconds
(s), milliseconds (ms) and microseconds (us).

Getting started

2-9

Control buttons
These buttons below the Y axes are used to zoom the X axis, add cursors and move to the next or previous frame,
they are introduced in detail below.

Scroll bar
If the X axis range shown is less than the total available in the data frame the scroll bar will be activated (its always
present but may be disabled). The scroll bar 'thumb' visually indicates the section of data that is being shown, you
can move back and forth through the data in the current frame by dragging the thumb.

Data channels

There are several data channels displayed in the window. These channels can hold different types of data: in the
example file channels 1 to 4 hold waveform data, channel 5 holds keyboard markers. Waveform channels are
normally displayed with channel 1 at the top, marker channels are shown above waveform channels but you can re-
arrange them as you like. Ordinary data channels are stored in the CFS data file, but there are also other types of
channel: memory channels are stored in the resource file associated with the CFS data file (this allows them to be
easily modified or deleted) and virtual channels are not stored anywhere - their data is calculated on-the-fly by
arithmetic operations on data from other channels.

Selecting channels
You select channels by clicking on the channel number to the left of the channel. Signal highlights the channel
number for selected channels. Hold down the Shift key and click on a channel to select all channels between it and
the last selection. Hold down Ctrl to select discontinuous channels. Many commands can operate on a list of
selected channels (for example y axis display optimisation). To clear any selection, click on the rectangular area
below the channel Y axes and to the left of the X axis.

From Signal 6.04, the mouse pointer changes when you move it over a channel number, or over the rectangular area
at the bottom left if any channels are selected. to remind you that you can select the channel.

Frame buttons

The bottom window edge holds five buttons and a scroll bar. The scroll bar controls movement through the frame
when the displayed time range is less than the frame length. If you resize the window, the same data is drawn,
scaled to the window. The two buttons to the left of the scroll bar change the currently displayed frame.

Click on these buttons to move to the previous or next frame in the file. All CFS files contain a number of separate
frames which hold similar data, you can use these buttons to move from one frame to another. If the currently
displayed frame is the first available, then the previous frame button is grayed-out, similarly for the next frame
button. These buttons correspond to the View menu Previous frame and Next frame commands, there is also a
Goto frame command.

What buttons and scroll bar?
If the buttons and scroll bar are not visible, select the Standard Display option from the View menu, which should
tidy up the display so that you can see them.

Signal Version 6.06

2-10

About frames

Frames are a central concept within the Signal software. A CFS file or Signal data document contains one or more
data frames, each frame corresponds to a sweep of sampling. A data document view normally only displays one
frame at a time, this is the current frame for that view. You can have multiple views of the same data document, each
view can have a different current frame so you can examine separate parts of the file simultaneously. It is also
possible to overdraw multiple frames in the same view.

Each frame in a Signal data document has the same number and type of channels, but may have varying frame start
and end times. Each frame holds channel data from the various channels. Usually, all of the waveform channels will
have the same number of data points, while the number of markers can vary. In addition to this frame data there are
a number of other data items attached to each frame; a frame comment, the frame state, tag and flags, 16 user frame
variables and others:

Comment a single line of text, of length up to 72 characters, that can be read or written using Signal scripts.

State a 32-bit number that will normally have a value from 0 to 256, it is intended for use in conditional
analysis where each state value corresponds to a separate condition in the experiment, but may be
used for any purpose.

Start a floating point number holding the absolute start time for the frame. This value is the time for the
frame x axis zero relative to the start of sampling. For files collected by Signal version 1.00 or collected
using Fast triggers mode this will always be zero.

Tag a single yes/no switch; each frame can be tagged or not. This is intended for any purpose where a set
of frames need to be marked for analysis or attention.

Flags a set of 32 flags, each of which may be set or clear. These flags are available for any user-defined
purpose, currently they are only useable from the Signal script language.

User a set of 16 floating point numbers that can be read or written using Signal scripts. They are intended
for any purpose required.

Others when using an auxiliary states device such as a Magstim, extra frame variables are created to show the
Magstim power levels and other settings. When sampling with multiple states, a StateLvariable is
created, this holds the state label corresponding to the frame state or is blank if no state label is set.

When you are working with Signal data, the current frame for the view is held in memory. This frame will be
discarded when the view switches to a different frame. Any changes made to the frame data while it is held in
memory must be saved before the new frame is loaded or the changes will be lost. You can write the changed data
back into the file using the File menu Save command, or you can use the Preferences dialog to select what happens
if the frame is changed while data is unsaved. Changes made to non-channel data such as the frame state or flags
are always saved.

Often in Signal you will need to specify the frame or frames to be used for an operation. There are a number of ways
of doing this, you can select the current frame in the view or you can enter a single frame number directly. To
specify more than one frame, you can enter a frame list such as ‘1..50,60,61,70..80’, or you can select options such
as All frames, Tagged frames or Frames with state n, giving a wide range of possibilities. These frame
specification mechanisms are also available from within the Signal script language.

Zoom buttons

The bottom window edge holds three buttons and a scroll bar. The scroll bar controls movement through the file. If
you resize the window, the same data is drawn, scaled to the window. The two buttons to the left of the scroll bar
change the time range.

This button halves the time range (zoom in). The left edge of the display remains fixed. You can
zoom in until the ratio between the frame length and the width of a pixel reaches 2,147,483,647.

This button doubles the time range (zoom out). The left edge of the window does not move unless
the start plus the new width exceeds the length of the frame. If the new width exceeds the frame
length, the entire frame is displayed.

Getting started

2-11

Cursor buttons

These buttons add vertical or horizontal cursors to the display. Up to 10 cursors can be present in a window, it is
also possible to have up to 9 horizontal cursors. A vertical cursor is a dashed line used to mark positions on the X
axis, a horizontal cursor marks levels on a channel. You can remove cursors with the Cursor menu Delete option or
by right-clicking on them. You add cursors in four ways.

1. Click and release the relevant button to add a cursor in the centre of the window or centre of the first channel
with a Y axis (for horizontal cursors).

2. The Cursor menu New cursor command or it’s Ctrl-| shortcut adds a cursor in the centre of the window. The
New Horizontal cursor command adds a horizontal cursor in the centre of the first channel with a Y axis.

3. If you right-click on a data view, the pop-up context menu will include an item for a new vertical cursor. If you
clicked on a channel with a Y axis, the channel-specific sub menu will include an item to create a new horizontal
cursor.

4. From a script you can use the CursorNew() or CursorSet() commands to create vertical cursors,
HCursorNew() to create horizontal cursors. Script users have full control over the cursors.

Cursor style and pointers

Click on the cursor button so that at least one cursor is visible. The mouse pointer changes over a cursor or a
cursor label:

This indicates that you can drag the cursor. If you drag beyond the window edge, the window
scrolls. The further beyond the edge, the faster the scroll. Dragging hides the label unless the
Ctrl key is down or you drag the label.

If you position the mouse pointer over the cursor label, the pointer changes to a 4-headed arrow
to indicate that you can drag both the cursor and the label. This can be useful when preparing an
image for publication and you need the cursor label to be clear of data. If you move the pointer to
one side, or hold down the shift key, the pointer becomes a two-headed vertical arrow and you
can drag the label, but not the cursor.

There are four labelling styles for the cursor: no label, position, position and cursor number, and number alone. You
select the style with the Cursor menu Label mode option or by right-clicking on the cursor and selecting Set
Label.

Zoom in on an area

Move the mouse pointer to the waveform channel. Drag a rectangle round a waveform feature with the mouse and
release the button. The window displays the area within the rectangle. If the rectangle covers more than one
channel, only the time axis changes. If your rectangle lies within a channel and has zero width, only the y (vertical)
axis changes, similarly a rectangle with no height changes only the X axis.

The mouse pointer changes to a magnifying glass when you hold the mouse button down in the
data channel area to show that you are about to magnify the data.

If you hold down the Ctrl key as you drag, the mouse pointer changes to the un-magnify symbol
and the rectangle holding the channel area shrinks to the rectangle you drag

Now move the mouse pointer over an axis; you will see it changing to show a scrolling or stretching axis. You drag
the axis to directly shift or stretch it; if you are over the axis ticks you get a shift while over the numbers generates a
stretch in or out (the mouse pointer changes to show what operation you will get).

Whatever method you use to scale the data, you can return to the previous display using the Edit menu Undo
command or the keyboard short-cut Ctrl+Z. If you release the mouse button with the pointer in the same position
from which you started the drag, the display does not change.

Signal Version 6.06

2-12

If you hold down the Alt key before you click and drag, Signal displays the size of the
dragged rectangle next to the mouse pointer and does not zoom the display. Release
Alt, then you can use the C key to copy the current measurement to the clipboard and
the L key to copy it to the Log view.

Zoom a channel

You can zoom one channel to use the entire display area!

Double click anywhere in the waveform channel. The channel will expand to occupy the entire window.

Double click in the waveform channel again and your previous display is restored.

You can also change the display to show a channel and all duplicates of it by holding down the Ctrl key, then
double-clicking on a channel. This is useful with sorted spikes, where duplicates of a channel are used to display
spike classes.

Using x and y axes to scroll and zoom

When the cursor is over the tick marks of an axis, you can drag the axis. This maintains the current
axis scaling and the window moves to keep pace with the mouse pointer. You can do this with most x
and y axes in Signal. This is particularly useful for y axes as they do not have a vertical scroll bar. The
window does not update until you release the mouse button. If you hold down the Ctrl key, the
window will update continuously.

When the cursor is over the axis numbers, a click and drag changes the axis scaling. The effect
depends on the position of zero on the axis. If the zero point is visible, the scaling is done around the
zero point; the zero point is fixed and you drag the point you clicked towards or away from zero. If the
zero point is not visible, the fixed point is the middle of the axis and you drag the point you clicked
towards and away from the middle of the axis

In a data or XY view you can drag the y axis so as to invert the axis. You can prevent this happening by setting an
option in the Edit Preferences command Display tab. You are not allowed to invert the X axis.

X Range dialog

Click this toolbar button or double-click the time (X) axis of the display to
open the X Range dialog. Experiment with the time axis. You can type new
positions or use the pop-up menus next to each field to access cursor
positions and the maximum time in the file.

Left Sets the window start time. You can type times either
using the selected X axis units, or as a number
followed by 's', 'ms' or 'us' to force the units. In
addition to typing times or selecting a time from the
drop-down list, you can type in expressions using the maths symbols + (add), - (subtract), *
(multiply) and / (divide). You can also use round brackets. For example, to display from 1
second before cursor 1 to one second past cursor 1 set Left to Cursor(1)-1 and Right to
Cursor(1)+1. The Draw button is disabled if you type an invalid expression, or if the Right
value is less than or equal to the Left value or if the new range is the same as the current
range.

Right Sets the window end time using the same format as the Left field.

Width Shows the window width. You can either set the left and right positions, or the left position
and the width. Check the box to keep the width the same when the Left field changes or to
enter a width directly.

Large tick spacing Use this to customise the X axis appearance by forcing the interval (in X axis units) between
large ticks on the axis. If you enter a value that would produce an illegible axis it will be
ignored.

Getting started

2-13

Tick subdivisions Use this to customise the X axis appearance by setting the number of small-tick subdivisions
between large ticks on the axis. Again, any value entered that produces an unusable axis will
be ignored.

Logarithmic Check this box for a logarithmic rather than a linear X axis.

Auto adjust units Check this to cause the units displayed on the axis to switch to multiples of powers of 10
when zoomed well in or well out in order to keep the figures shown on the axis sensible.

Show All Expands the time axis to display all the file and closes the dialog.

Draw If the axis range had been edited, use this to redraw the data to match the new range. You do
not need to press Draw to see the effect of other changes made within the dialog.

Close This closes the dialog; it does not update the axis range.

Cancel This undoes all changes made with the dialog and closes it.

Y Range dialog

Click this toolbar button or double-click on the Y axis of a waveform
channel to open the Y Range dialog for that channel. This dialog changes
the y axis range and attributes for one or more channels. Experiment with
the Y axis range.

Channel This is a pop-up menu from which you can select
any channel with a y axis, or all channels with y
axes, or all selected channels. You can also enter a
list of channel numbers such as 1..3,6 directly.

Top Enter the upper limit for the Y axis here.

Bottom Enter the lower limit for the Y axis here.

Axis type Select a linear, logarithmic or square root axis.

Large tick spacing Use this to customise the Y axis appearance by forcing the interval (in Y axis units) between
large ticks on the axis. If you enter a value that would produce an illegible axis it will be
ignored.

Tick subdivisions Use this to customise the Y axis appearance by setting the number of small-tick subdivisions
between large ticks on the axis. Again, any value entered that produces an unusable axis will
be ignored.

Auto units This is used to select between the units displayed on the axis being static, switching to
multiples of powers of 1000 in order to keep the figures sensible when zoomed well in or well
out, or you can select the SI Prefix option which does the same thing by changing the units
using SI prefixes, for example by converting V to mV when you are zoomed in.

Optimise Press this button to change the Y axis ranges of the set channel(s) to fit the range of the
displayed data.

Show All Press this button to change the Y axis ranges to the data limits for the channel(s), if available.
If the channel has no limits to its data this does the same as the Optimise button.

Draw Press this button to redraw the data using the currently entered Y axis range.

If no channel has a y axis, open this dialog from the View menu.

Signal Version 6.06

2-14

Waveform draw mode dialog

Data files hold two basic channel types: waveform and
markers. Waveform channels hold a list of values
representing the waveform amplitude at successive time
intervals. Marker channels hold the times at which
something happened (and more data, depending on the
marker type).

Open the View menu Draw Mode dialog. Experiment with
different drawing modes for channels 1 to 4. Click Draw to
update the display without closing the dialog. Click OK to
close the dialog.

If you want to find out more about waveform drawing modes, you can find a complete description in the View menu
chapter, Draw mode section.

Customise display

Open the View menu Customise display dialog. This sets the
channels to display in your window. With up to 80 channels in
a file, this ability is quite important if you are to see any detail!

The list on the left of the dialog holds all the channels that can
be displayed. Check the box next to a channel to include it in
the display list.

You can also show and hide the axes, background grid and the
horizontal scroll bar in the window from this dialog, and switch
to displaying Y axes with horizontal labels.

Click the OK button to see the result. If you make a complete
mess of your window you can use the View menu Standard
Display command to clean things up.

Channel order

Make sure that the example file is the current window and use the View menu Standard Display command to tidy
things up. Click on the ADC 0 channel number (1) and drag it down over the other channel numbers.

As the mouse pointer passes over each channel, a horizontal line appears above or below the channel. This
horizontal line shows where the selected channel will be dropped. Drag until you have a horizontal line below
channel 2 and release the mouse button. Channel 1 will now move to the middle of the channel list, between
channels 2 and 3. Type Ctrl+Z or use the Edit menu Undo to remove your change.

You can move more than one channel at a time. Signal moves all the channels that are selected when you start the
drag operation. For example, hold down Ctrl and click on the channel 3 number. Keep Ctrl down and click and
drag the channel 2 number. When you release, both channels will move. The mouse pointer shows a tick when you
are in a position where dropping will work.

The usual Signal channel order is with low numbers at the top of the screen. If you prefer low numbers at the
bottom of the screen, open the Edit menu Preferences and uncheck Standard Display shows lowest numbered
channel at the top, then use the View menu Standard Display command.

Getting started

2-15

Channel spacing

Hold down the Shift key and move the mouse over the data area of channel 3. Keep the Shift key down and
click. Drag up and down and release the mouse. You will see that this adjusts the vertical space allocated to the
channel.

When you click with Shift down, the mouse jumps to the nearest channel boundary and you can change the
boundary position by dragging. With Shift down, you can move the edge up and down as far as the next channel
edge. You can undo changes or use Standard Display to restore normal sizes.

If you add Ctrl, all channels with a Y axis are scaled. If there are no channels with a Y axis above or below the drag
point, then all channels scale. You can force all channels to scale by lifting your finger off the Shift key (leaving
Ctrl down) after you start to drag the boundary.

Channel overdraw

You can overlay channels of data in a time view or a result view. This is done interactively by dragging channel
numbers on top of each other or from a script by using the ChanOrder() command. To do this in the example file:

Click the "3" of channel 3 and drag it on top of Channel 1 and release.

Channels 1 and 3 now share the same Y axis space with the channel numbers stacked up next to the Y axis. The
visible Y axis is for the top channel number in the stack. You can promote another channel in the stack to the top by
double-clicking the channel number. The channels retain their own y axes and scaling. You can remove a channel
by dragging the channel number to a new position.

When you drag channels, and at least one of the selected channels has a Y axis, you can drop the channels with a
Y axis on top of another channel with a Y axis. As you drag, a hollow rectangle appears around suitable dropping
zones. You can also drop between channels when a horizontal line appears.

Merged channels are drawn such that the channel with the visible Y axis is drawn last. If you have a channel that
fills in areas, such as a marker channel drawn as rate mode, put it at the bottom of the stack, as it will mask channels
below it in the stack.

Use the View menu Standard Display command to tidy things up before you continue.

Frame overdrawing

Open the View menu Overdraw settings... dialog. Specify frames 1..4 as the
frame list and click OK. Use the View menu Overdraw frames command to
turn overdrawing on and off. Experiment with different frame selections and
with the colour cycling display mode.

The frame display list is a list of frames that will be shown in addition to the
current frame when overdrawing in standard (non-3D) mode. When using
colour cycling each overdrawn frame is drawn in a different colour, or all the
display list frames are drawn in the colour specified by the Frame list
traces item in the colour setup dialog, or you can fade to the background
colour or channel secondary colour. The current frame will be displayed in
its usual colour if it is not in the frame list. All the standard mechanisms for
selecting frames are available. 3D overdrawing options are also available,
this differs from the simple overdrawing mechanisms in that the current
frame is always shown at the front and therefore only frames that are before
the current frame are overdrawn - so that the 3D array shows a time history
of frames with the oldest at the back.

Signal Version 6.06

2-16

Cursor measurements

Make sure there are cursors in the window.

Click the toolbar button (the toolbar is at the top of the Signal window, just below the menus, it holds
buttons for common tasks) or use the Cursor menu Display Y Values option. The columns show the cursor times
and values. For channels without a y axis, the value is the next marker time after the cursor.

The Time zero and Y zero check-boxes select relative rather than absolute measurements; the radio buttons set
the reference cursor. Reference cursor values are unchanged; values at other cursors have the reference value
subtracted.

If you move cursor or alter a channel display mode, the values change. If you add or remove channels in the
display, they are added or removed in the dialog.

You can copy dialog fields to the clipboard. Click and drag for multiple selections. Click the top or left hand cells to
select an entire column or row. Hold down the Ctrl key to make non-contiguous row or column selections.

Cursor regions

Click the toolbar button or use the Cursor menu Cursor Regions command. Experiment with changing
cursor positions and channel display types. The regions dialog looks at the data values between cursors. There are
nine modes set by the drop down list at the bottom of the dialog:

Curve area The area between a waveform trace and the line joining its end points, no measurement for markers.

Mean The average level of a waveform, or the number of markers divided by the width of the region.

Slope The gradient of the least-squares best fit line to the waveform, no measurement for markers.

Area The area between a waveform and the y axis 0.0 level, or the number of markers in the region.

Sum The sum of all waveform points, or the number of markers in the region.

Modulus The area between a waveform and the y axis 0.0 level, all values taken as positive, no measurement for
markers.

Maximum The maximum waveform (or marker as rate) value or interval between markers.

Minimum The minimum waveform (or marker as rate) value or interval between markers.

Peak-Peak The difference between the Maximum and Minimum.
SD The standard deviation from the mean of the waveform values.

RMS
amplitude

The RMS amplitude of the waveform values.

Extreme The largest of the Maximum and Minimum, taken as absolute values.
Peak The amplitude of the first peak found.

Trough The amplitude of the first trough found.

Point Count The number of sample points between the cursors.

SEM The standard error in the mean of the waveform values.

RMS error The RMS error relative to the mean of the waveform values.

You can also make relative measurements by checking the Zero region box and choosing a reference region.

Memory views

Windows holding data from a file are called File views. There is another type of data window, called a Memory
view, that holds the result of analysing file view data, or other generated data. Memory views are very similar
indeed to file views, the only difference is that they are wholly held in memory and do not have an associated CFS
data file. Saving a memory view to disk will create a CFS data file which, if re-opened, will create a file view. The
simple way of generating a memory view is to analyse file view data. There are two steps in the analysis:

1. You set the type of analysis, the channels to analyse, the number of points or bins to generate and any other
parameters required. This creates a new, empty memory view.

2. You select frames from the file view to analyse and Signal calculates the result and adds it to the memory view.

Getting started

2-17

You may repeat step 2 as many times as is required to accumulate results from different frames or selections of
frames. The new window behaves like a file view containing a single frame of data.

Make a waveform average

Close all windows except the original view of example.cfs. Then:

1. Click this button on the toolbar or use the Analysis menu New Memory View command to select
Waveform Average.

2. Set the channels to analyse. The channel list in the pop-up menu includes suitable channels only. All
Channels of the example file is the best for this example.

3. Set the width of the average, we suggest 0.04.

4. Leave the first field set to 0.0 seconds. This is the offset from the start of the frame for the data to be averaged.

5. Click the New button to create a new window and open the Process dialog.

If you want to find out more about waveform averaging, you can find a complete description in the Analysis menu
chapter, New Memory View section, under Waveform Average.

Process dialog

Now set the region of the data file to analyse:

1. Set the frames for analysis and the frame subset to All frames.

2. Check the Optimise Y axis after process box to scale the y axis to the data automatically.

3. Click Process to analyse the data and display the result.

The Clear result view before process check box sets the memory view contents to zero before you analyse the
data, otherwise each new result is added to the previous one. The Settings button takes you back to the previous
step.

Repeating analysis

You can add more data into the analysis or change the analysis settings and analyse again:

1. Recall the analysis dialog by selecting the Process command from the Analysis menu.

2. Click the Process button again. The data in the result window will not change, as it is an average, but the
sweeps shown by the View menu Info command will double (if you have not checked the Clear result view
before process box).

3. Recall the process settings dialog by selecting the Process settings command from the Analysis menu.

4. Change the width to 0.02, and the start offset to 0.01 then click the Change button.

5. Select frames for processing with the new settings and process as before.

Memory view usage

Experiment with this new window.

You will find that the memory view behaves in a very similar manner to the original file view, but has a single frame.

Signal Version 6.06

2-18

XY views

In addition to File and memory views, there are XY views. These hold multiple data channels (up to 256) that share
the same x and y axes. Each channel is a list of (x,y) co-ordinates. Each channel has its own point marking style, line
style and colour.

Use the Script menu Run Script command and select the Load and run… command. Locate the Scripts folder (in the
folder where you installed Signal), and open the file clock.sgs.

Signal will load and run this script which generates an analogue clock in an XY view. You can move and resize the
clock window. You can stop the script running (and regain control of Signal) by clicking on the OK button at the
upper right hand side of the Signal window. You can read more about XY views in the script language manual.

Signal can also create XY views holding data taken from measurements from data files. Use the analysis menu
Measurements command to select XY View (Trend Plot) analysis. This will give you a dialog for the trend plot
settings allowing the trend plot measurements to be defined. Once the trend plot settings are set a normal process
dialog is used to select the frames from which measurements are taken. As for memory view processing, trend plot
generation can be saved as part of a sampling configuration.

You can use the View menu to manipulate the an XY view. Try Customise display, XYDrawMode, Options and
Colours to see XY-specific features.

If you want to find out more about trend plots, you can find a complete description in the Analysis menu chapter,
Measurements section, under XY View(Trend plot).

End of "Getting started tutorial"
If you have worked through these operations, you have the basic skills required to make use of Signal for
interactive data analysis.

To learn about using Signal to collect data to create new data files you should read the Sampling data, Pulse
outputs while sampling and Sampling with multiple states chapters of the documentation and experiment with the
sampling configuration dialog.

To learn about all of the various forms of data analysis that Signal can carry out you should read the Analysis
menu chapter of the documentation.

To learn about using the script language for analysis you should read the Script language chapter of the
documentation and investigate the example scripts provided with Signal.

General information

3-19

General information

There are several topics that are important throughout Signal. Channel lists are used in many dialogs and also in
the script language, as are frame lists. Expressions can be used in many dialogs where x axis values are wanted and
also more generally. There are many keyboard shortcuts in Signal; they are gathered together here. We have also
included information on a number of other topics.

View types

We often refer to Views when we describe features of Signal. The types of views that an interactive user of Signal
has to deal with have a window on the screen with an associated menu and a data file on disk. These views come
under the categories of Data based views and Text based views. If you write scripts you will also have to deal with
two other types of views: External views (with no associated window) and Other. If you do write scripts, you
should read the more technical description of views and view handles in the Script language section.

Data file based views
There are three types of data views in Signal:

File views (*.cfs)
These display data that is being sampled or has been sampled by Signal or imported into Signal and are associated
with a .cfs file. They hold channels of various types of data, chiefly waveforms and contain multiple frames of data
all using the same channels. They are created by the File menu New command (to create a new file for sampling
based on the current sampling configuration), by opening an existing file or by importing a foreign format file or
from the script language with the FileOpen(name$, 0,...) or FileNew(0,...) commands.

Memory views (saved as *.cfs)
Memory views are much the same as File views, but do not have a data file associated with them. When they are
saved to disk they are saved as .cfs files and when re-opened have become File views. They are generated from
other File or Memory views or by scripts. You can open saved memory views with the File menu Open command
and create new ones when the current view is a File or Memory view from the Analysis menu New Memory View
command.

XY views (*.sxy)
XY views are generated from analysis of File or Memory views or by the script language. They display multiple
channels of data points defined by (x,y) co-ordinates. The data can be drawn as dots, lines, closed curves or as
histograms, allowing a wide variety of displays to be created. Existing XY files are opened by the File menu Open
command.

Text based views
Text-based views correspond to standard text files. In Signal version 6, we expect text files saved on disk to be in
UTF-8 format, but we will attempt to read text in an range of formats and translate as appropriate. We save text files
in UTF-8. If you are firmly of the ASCII text persuasion, do not worry as this is a subset of UTF-8. We distinguish
the varieties of text file we support by the file extension used to store them on disk. The Text file view types that
Signal supports are:

The Log view
The log view is unusual in that it does not have an associated data file, though you can save it as a text file. The
Log view is used as a convenient place for Signal to display messages and there is a dedicated script command,
PrintLog(), to make it easy to write to from the script language, regardless of the current view.

Text views (*.txt)
These views are created by opening an existing .txt file or by creating a new text file with the File menu New
command or from the script language with the FileOpen(name$, 1,...) or FileNew(1,...) commands. They
display the text in the file and the text can be added to it with the script Print() command. You can choose to
display a gutter margin which can hold bookmarks, and a line number margin, which is normally hidden. Text views

Signal Version 6.06

3-20

are normally used from the script language to build output files that the user can view. Script users can also create
external text files, which are faster but have no display window.

Script views (*.sgs)
These views are created by opening an existing script file or by creating a new one with the File menu New
command or from the script language with the FileOpen(name$, 3,...) or FileNew(3,...) commands.
Scripts are used to automate Signal operations. Most Signal interactive functionality can be controlled by a script,
and there is a lot of functionality that is only available from a script.

Script views display the text in a window. Script views highlight your script files based on the syntax of the script
language, which can make scripts easier to understand and write. They are also used to debug scripts. They have
additional folding margin which shows the structure of the script and allows you to fold away blocks of code based
on the script structure.

Output sequencer views (*.pls)
These views are created by opening an existing output sequence file or by creating a new one with the File menu
New command. Output sequences are used when sampling data with a 1401 interface to sequence DAC and digital
outputs. They can also be used to respond to inputs very quickly, enabling real-time responses to external signals.
Like scripts, output sequences support syntax highlighting and and folding.

There is an alternative way to control outputs while sampling using the Pulses editor. However the output of the
pulses editor is converted to a sequence before it is used and a text sequence gives you the most complete control
of the 1401 outputs.

Grid views (*.sggx)
These were added as an experiment at version 6.04. They are mainly intended for use from the script language, but
can be used interactively. They provide a spreadsheet-style grid that can be used to store data and to build tables
for printing. They are not intended for vast quantities of data. You can read more about them here.

External views
These views have data files and view handles, but no display windows. They are used for text and binary data files
and are only available to users of the script language.

External text files (*.txt, *.*)
These files are opened and created with the FileOpen(name$, 8,...) script command. You can read data from
the files with Read() and write data with Print(); the files are accessed sequentially, that is you will read from the
start of the file through to the end or write from the start to the end or append to the end. Because there is no
associated screen image to update when you write or to scroll through on a read, external text files can be much
faster to use than a text view with an associated window, particularly if the file is very big.

External binary files (*.*)
These files are opened and created with the FileOpen(name$, 9,...) script command. You can read and write
real, integer and text data to these files in a wide variety of formats. The files allow random access. See the
BRead(), BReadSize(), BWrite(), BWriteSize() and BSeek() commands for details. You can read or write
just about any type of file as a binary file, but to do it usefully you need to know the exact file format. The example
for the BWriteSize() command shows you how to create a .bmp file using the script language. The example for
Spline2D() has an example of generating a bitmap file.

Other view types
These view types are for objects that are controllable by the script using view handles, but that do not fit the view
types listed above. These are things like the various control bars, the Signal application window and so on.

General information

3-21

Data file and view topics

Channel lists

In most places where Signal prompts you for a data file channel you can select a channel or group of channels from
a drop down list or you can type in a channel list directly. A channel list is a list of channel numbers or channel
ranges separated by commas, while a channel range is two channel numbers separated by two periods or a hyphen.
For example 4..7 means channels 4, 5, 6 and 7 while the range 7-4 is equivalent to channels 7, 6, 5 and 4. In nearly
all situations the order of channels is not significant and these two ranges are treated the same. The channel list
1,3..5,7 therefore means channel numbers 1, 3, 4, 5 and 7. Virtual channels can be specified by using the vn
channel numbers shown by Signal, for example 1..3,v1,v3..v5. Memory channels can be specified in a similar
manner by using mn (so m1, m2 etc.).

In most cases, Signal checks channel lists and removes channels that are not suitable for the operation. For
example, if you open the example.cfs file supplied with Signal, select a waveform average and type in a channel
list of 1..32 and then click on another field in the settings dialog, Signal will reformat the list as 1..4 as these are the
only suitable channels in the data file. It is not an error for a channel list to include unsuitable channels, however it
is an error for a channel list to include no suitable channels.

You can also specify groups of channels in other ways, for example dialogs that require you to enter a channel list
will also, if any channels are currently selected, offer you a Selected channels option. Many of these dialogs will
also allow you to select and de-select channels while the dialog is visible. You will normally also be offered All
channels and All visible channels as other alternatives.

Channel lists can also be used in script commands, for example: ChanShow("1..4"). Script commands that will
accept this format describe the argument as cSpc. You can find more information about channel specifications in
the script language documentation.

Frame lists

In many places, you will be asked to specify the frame or frames to be used
for an operation. Dialogs that do this generally provide you with a pair of
frame selectors plus an associated numeric value, for example in the display
frame list dialog. Other dialogs behave in a very similar manner to this one
though the precise options available may vary, the description below only
mostly matches the display frame list setup.

You can use the upper Frames selector to choose from All frames, Current frame, Buffer, Tagged frames,
Untagged frames, Frames state = xxx (with a separate field for entering the state value) and Last n frames
(again with an extra field for entering n). When used online an additional field All sampled frames is available and
the text shown for All frames changes to All filed frames. In addition to these options you can also directly enter
frame numbers or a frame list such as 1..50,60,61,70..80.

Direct text entry can also be used to specify wanted or unwanted states; ST:<list> will select all frames whose
state value is in the list, while !ST:<list> selects all frames whose state is not in the list. For example ST:1..8 will
select all frames with state values from 1 to 8, while !ST:3,6 selects all frames whose state value is not 3 or 6. So this
main selector already gives you a wide range of possibilities.

When the main Frames selector is set to All frames, Tagged frames, Untagged frames or a numerical frame list the
Frame subset selector is shown. This allows you to select an extra criterion such as Frame state = xxx to apply to
get the frames that are wanted. Using the two selectors together allows selection of, for example, all untagged
frames with a certain state code, giving even more possibilities. These mechanisms are also available in the Signal
script language where you can also build a frame list directly in an script array to get complete control.

Signal Version 6.06

3-22

Dialog expressions

Many dialogs (and the equivalent script functions) in Signal accept an expression in place of a number. These
expressions can be divided into two types: numeric expressions and view-based expressions.

Numeric expressions
A numeric expression is composed of numbers, the arithmetic operators +, -, * and /, the logical operators <, <=, =,
>=, <> and ? and round brackets (and). The result of a logical comparison is 1 if the result is true and 0 if the result
is false. You may not have come across ? which is used as:

expr1 ? expr2 : expr3

The symbols expr1, expr2 and expr3 stand for numerical expressions. The result is expr2 if expr1 evaluates to a non-
zero value and expr3 if expr1 evaluates to zero. This can be used in the Cursor mode dialog to give a cursor position
if a search fails based on some other information, for example:

Cursor(2)>Cursor(1) ? Cursor(2) : Cursor(1)

This evaluates to the position of the rightmost of cursors 1 and 2.

If you write expressions involving more than one operator, for example 1+2*3 you need to know if this is evaluated
as (1+2)*3 or as 1+(2*3). This is determined by the operator precedence level which is described below.

View-based expressions
These expressions follow the rules for numeric expressions and allow references to positions along the x axis or a
channel Y axis. If a dialog field is documented as allowing expressions and the field supplies an x axis position (for
example a time), then you can use the following in addition to all of the operators and options available in numeric
expressions:

Cursor(n) Where n is 0 to 9, this returns the position of the relevant cursor in the view. If the cursor
does not exist or the position is invalid, the expression evaluation fails.

C0 to C9 This is shorthand for Cursor(0) to Cursor(9).

CursorX(n) Where n is 0 to 9 returns the position of the cursor before the move to the current
position. If the cursor does not exist the expression evaluation fails. This was added at
Signal version 6.05.

C0X to C9X This is shorthand for CursorX(0) to CursorX(9), and returns the previous position
of cursors 0 through 9. This was added at Signal version 6.05.

XLow() The left hand end of the view's visible x axis in x axis units.

XHigh() The right hand end of the view's visible x axis.

MinTime() The start time or x axis value for the frame.

MaxTime() The end time or x axis value of the frame.

AbsTime() The frame start time; the time relative to the start of sampling of the trigger time (generally
zero on the X axis) for the frame.

FO This is shorthand for AbsTime().

View-based channel expressions

If a dialog field is documented as allowing expressions and the field supplies a y axis position that is associated
with a specified channel, then you can use the following:

HCursor(n) Where n is 1 to 9 returns the position of the relevant horizontal cursor in the view. If the
cursor does not exist or is not on the relevant channel, the expression evaluation fails.

H1 to H9 This is shorthand for HCursor(1) to HCursor(9).

HCursorX(n) Where n is 0 to 9 returns the position of the horizontal cursor before the move to the
current position. If the cursor does not exist the expression evaluation fails. This was
added at Signal version 6.05.

H1X to H9X This is shorthand for HCursorX(1) to HCursorX(9), and returns the previous
position of horizontal cursors 1 through 9. This was added at Signal version 6.05.

YLow() The bottom end of the view's visible y axis for the relevant channel.

General information

3-23

YHigh() The top end of the view's visible y axis for the relevant channel.

At(t{, c}) The value on the relevant channel at time t, which can be a view-based time expression. If
the optional channel number c is supplied the measurement is taken from that channel
rather than the channel associated with the dialog field.

Mean(t1, t2{, c}) The mean level on the relevant channel between times t1 and t2, both or either of which
can be view-based time expressions. If the optional channel number c is supplied the
measurement is taken from that channel rather than the channel associated with the dialog
field.

SD(t1, t2{, c}) The standard deviation of the values on the relevant channel between times t1 and t2,
both or either of which can be view-based time expressions. If the optional channel
number c is supplied the measurement is taken from that channel rather than the channel
associated with the dialog field.

Meas(m, t1, t2{,
c})

Any available measurement (selected by m) made on the relevant channel between times
t1 and t2, both or either of which can be view-based time expressions. If the optional
channel number c is supplied the measurement is taken from that channel rather than the
channel associated with the dialog field. See the ChanMeasure() script function for a list
of the possible values of m and the corresponding measurements.

You can add View(-n). before these expressions (apart from those referring to frame information) to force the
expression to be evaluated for the n-th duplicate of the current data view, for example View(-1).Cursor(0)
forces the use of cursor 0's position in duplicate number 1 of the current view. This is required when the current
view is duplicated and you need to be sure which duplicate should be used.

Times as numbers
Times are normally entered in the preferred X axis units, as set in the preferences. However, where a time is typed
into a dialog field with a drop-down for preset strings such as XLow() you can use {{{days:}hours:}minutes:}
seconds where the seconds may include a decimal point and items enclosed in curly brackets are optional. Each
colon promotes the number to the left of the colon from seconds to minutes to hours to days. Times may only
contain numbers and colons, white space is not allowed. One decimal point is allowed at the end of the time to
introduce fractional values. We also allow a number with no colons to be followed by s, ms or us to force Signal to
interpret the time entered in seconds in milliseconds or microseconds. So the following are all equivalent: 1.6, 1.6s,
00:00:01.6, 1600ms, 1600000us.

Operator precedence
In the table, LHS means the value of the expression to the left of the operator as far as the next operator of same or
lower precedence, RHS means the value of the expression on the right up to the next operator of the same or lower
precedence. Where operators have the same level, evaluation is from left to right. The order from high to low is:

Level Name Return value

5 () Brackets Everything inside a pair of brackets is evaluated before
considering the effect of an adjacent operator.

4 *
/

Multiply
Divide

LHS multiplied by RHS
LHS divided by RHS. It is an error for RHS to be zero

3 +
-

Add
Subtract

LHS plus RHS
LHS minus RHS

2 <
<=
=
>=
>

Less than
Less or equal
Equal
Greater or equal
Greater than

If LHS less than RHS then 1 else 0
If LHS less than or equal to RHS then 1 else 0
If LHS equal to RHS then 1 else 0
If LHS greater than or equal to RHS then 1 else 0
If LHS greater than RHS then 1 else 0

1 ? Ternary operator LHS?A : B has the value A if LHS is not 0, and B is it is 0.
Put spaces around the colon to distinguish it from a time.

1+2*3 has the value 7 because multiply has a higher precedence level than add.

Signal Version 6.06

3-24

Script language compatibility
The expressions are compatible with the script language except for use of C0 to C9, H1 to H9 and F0 as shorthand
for Cursor(0) to Cursor(9), HCursor(1) to HCursor(9) and AbsTime() and the use of colons, ms and us to
denote times. If you use these in a script you will get syntax errors. However, you can use these constructs in
strings passed as expressions to CursorActive() or MeasureToXY().

Data view keyboard shortcuts

The following shortcut key combinations can generally be used in file, memory or XY views, except where
otherwise specified.

Key Operation

Left arrow Scroll display left.

Right arrow Scroll display right.

Ctrl+Left Decrease X axis range.

Ctrl+Right Increase X axis range.

Ctrl+Home Show all X range.

Ctrl+X Provide the X Axis range dialog.

Down arrow Shift data down (scroll Y axis) on all selected or visible channels.

Up arrow Shift data up (scroll Y axis) on all selected or visible channels.

Ctrl+Down Increase Y range (data shown smaller) on all selected or visible channels.

Ctrl+Up Decrease Y range (data shown bigger) on all selected or visible channels.

Home Show all Y range on all selected or visible channels.

End Optimise Y range on all selected or visible channels.

Ctrl+Y Provide the Y Axis range dialog.

Double-click Zoom or un-zoom double-clicked channel (file and memory views only).

Del Hide the selected channels (file and memory views only).

Ctrl+Del Provide the customise display dialog.

Ctrl+B Toggle displaying the frame buffer (file and memory views only).

Ctrl+D Toggle frame display list overdrawing (file and memory views only).

Ctrl+Shift+D Provide the frame display list dialog (file and memory views only).

Ctrl+n Where n is 0 to 9. Fetch vertical cursor 0 to 9. If the cursor does not exist it is created. Cursor
0 exists only in file and memory views.

Ctrl+Shift+
Left/Right

If cursor 0 is active, search for the next/previous feature and scroll the screen to make it
visible (file and memory views only).

PgUp Next frame (file and memory views only).

PgDn Previous frame (file and memory views only).

Ctrl+PgUp Last frame (file and memory views only).

Ctrl+PgDn First frame (file and memory views only).

Ctrl+A Open the experimenter's notebook (file and memory views only).

Ctrl+I Open the File information dialog (file and memory views only).

Ctrl+G Provide the Goto frame dialog (file and memory views only).

Ctrl+C Copy the image of the view and data as text to the clipboard.

Ctrl+N Open a new view.

Ctrl+O Open the file open dialog.

Ctrl+E Export data (file and memory views only).

Ctrl+P Print the current data file.

Ctrl+L Open the Evaluate window to run single line script commands.

Ctrl+T Toggle the frame tag (file and memory views only).

Ctrl+Z Undo the last undoable operation.

General information

3-25

Ctrl+Break Break out of long drawing or calculation operations.

There are also a large number of keyboard shortcuts for various analysis and data manipulation operations for file
and memory views only. These are documented separately at the end of the Analysis menu chapter. There are also
a number of shortcuts for control of sampling.

Text view topics

Text view features

Drag and drop

The editor supports drag and drop of text both within Signal and between Signal and other applications that
support it (for example the Signal Help system). Signal also supports drag and drop for rectangular text areas.

Operation Method

Move block Select the text to move. Move the mouse pointer over the selected text and hold down the left
mouse button and drag. The mouse pointer will indicate that you can now drag the text and the
text caret will show the insertion point. Drag the text to the desired insertion point and release.

Copy block Select the text to copy. Hold down the Ctrl key and move the mouse pointer over the selected
text, click and drag. A small + symbol indicates the copy operation and the text caret will show
the insertion point for the duplicate. Drag the text to the target position and release the mouse
button to duplicate the text. The Ctrl key must be down when you release the mouse button or
the operation will move the text.

Virtual space

Prior to Signal version 4.06, the text caret could only be positioned between or next to existing characters in a text
line. From version 4.06 onwards, you can position the caret beyond the end of the text in a line by clicking in a
blank area with the mouse, or using the cursor right key. You cannot position the text caret below the last line of
text. When the caret is beyond the end of the line, it is said to be in virtual space. If you type with the caret in
virtual space, space characters will be added to fill in the virtual space up to the text you type.

There are two main uses for virtual space: to add comments without having to space along to the required column,
to make rectangular selections without having strange visual effects due to short lines.

If you use the script language to manipulate the text caret and make selections, virtual space is ignored; a caret in
virtual space will be treated as if it is at the end of the line. There are no script commands that will move the caret
into virtual space. If there is a requirement for the script to report or use virtual space, we will extend the script in a
compatible way to incorporate it.

Multiple selections

From Signal version 4.06 onwards, you can make multiple selections in a text view. To do this, hold down the Ctrl
key and click and drag. Each time you make a new selection in this way it becomes the current selection; all
previous selections are shown with a different selection colour. When you have a multiple selection, each selected
area has a flashing text caret at the insertion point. If you type characters, these will appear at all insertion points,
replacing all the selected text. If you use the delete or backspace key, all selected text will vanish. Note that pasting
into a multiple selection will clear all the selected text, then insert the pasted text at the current (last made) selection.

Multiple selection can be useful when you want to move several non-consecutive script functions to make them
consecutive.

Signal Version 6.06

3-26

Select rectangular text area

You can select, cut, paste and drag rectangular selections within Signal. To select a rectangular area hold down the
Alt key then select text with the mouse. The point where you hold down the mouse button will be one corner of
the selection, the point where you release the mouse will be the other corner. You can use this feature to change
the alignment of comments in a script, or to convert a single column of numbers into multiple columns. You can also
paste such text into other applications as plain text.

A rectangular selection will paste within Signal as a rectangular selection. Beware that Ctrl+X (cut) on a
rectangular selection followed by Ctrl+V (paste) will not leave the text unchanged (unless you select the text from
bottom to top). The cut operation will leave a vertical flashing line (assuming a fixed pitch font) with the insertion
point marked by a more visually obvious caret. The paste operation will paste the cut text as a rectangular block at
the insertion point.

A rectangular selection is a multiple selection.

You can also easily select whole lines of text by holding the mouse pointer just off the edge of the margin on the
left of the text view. The mouse pointer changes to a rightwards-leaning arrow when you are in the line selection
area. A selection that is a number of whole lines of text can be moved up and down by using Alt+Up and
Alt+Down.

Read only text

If you open an output sequence or script file that is held in a read only file, the text window will also be marked read
only and you will not be allowed to change it. This is to allow users to protect sequences and script from
inadvertent change. If you want to edit such a text file you have two options:

1) Close the file, remove the read only status on disk, then open it

2) Save the file to a new file with a different name

You can use the Modified() script command to get and change the read only status of a text file. However, if the
original disk file is marked read only, using Modified() to allow you to edit the text will not change the status of
the disk file, so you will not be able to save it to the same file name.

Text view keyboard shortcuts

Text views have more keyboard short cuts than any other area of Signal. We have grouped them by function to
make the huge list more digestible. There are more keyboard shortcuts for data view manipulation, for analysis, and
for control of sampling.

Cut, Copy, Paste, Delete, Undo and Redo

Some of these operations are also available from the Edit menu and the main toolbar.

Key Operation

Ctrl+A Select all the text in the document.

Ctrl+C
Ctrl+Inser
t

Copy selected text to the clipboard. If no text is selected, nothing is copied. Some keyboards have
Ins in place of Insert.

Ctrl+Shift
+T

Copy the current line to the clipboard.

Ctrl+V
Shift+Inse
rt

Paste the contents of the clipboard into the text at the caret. If there is a selection, the selection is
replaced.

Ctrl+D Duplicate the selection.

General information

3-27

Ctrl+X Cut the selected text and copy it to the clipboard.

Shift+Del Cut the selected text and copy it to the clipboard.

BackSpace Delete the selection or the character to the left of the text caret.

Del Delete the selection or the character to the right of the text caret.

Ctrl+Del Delete word right. Add Shift to delete to the end of the line.

Ctrl+D Duplicate the selection.

Ctrl+Shift
+L

Delete the current line.

Ctrl+Z
Alt+Backsp
ace

Undo the last interactive text operation. The editor supports more or less unlimited levels of Undo.

Shift+Ctrl
+Z

Redo the immediately previous Undo operation.

Find, Replace and Bookmarks

The Find and Replace commands can be accessed from the Edit menu, from the Edit Toolbar and by keyboard
short cuts:

Key Operation

Ctrl+F Open the Edit menu Find dialog. In addition to searching for text you can also use this dialog to
bookmark all matching text.

Ctrl+H This shortcut key opens the Edit menu Replace dialog.

F3 Repeat the last find operation in the same direction. You can use the toolbar to search forwards or
backwards.

F2 Move the text caret to the next bookmark. You can use the edit toolbar to move to the next or previous
bookmark.

Ctrl+F2 Toggle bookmark on the current line. You can use the edit toolbar to set or clear a bookmark and to
clear all bookmarks.

Bookmarks tag a line for future reference. They are displayed as a blue mark to the left of the text. Bookmarks are
kept as long as the current file is open; they are lost when you close the file. The easiest way to use a bookmark is
from the Edit Toolbar. You can show and hide this from the Edit menu (when a text-based window is active), or by
clicking the right mouse button on any toolbar or on the Signal application title bar and using the pop-up context
menu that appears.

Indent and Outdent

The structure of Signal scripts can often be made clearer by indenting program structures. To make this easier, you
can indent and outdent selected blocks of text to the next or previous tab stops. The tab size is set in the Edit menu
Preferences options for script files.

Key Operation

Tab If there is a multi-line selection, all lines included in the selection are indented so that the first
non-white space character is at the next tab stop. If there is no selection, a tab character is
inserted (or spaces to the next tab stop depending on the Edit menu Preferences settings).

Shift+Tab If there is a multi-line selection, all selected lines are out-dented so that the first non-white
space character on the line is at the previous tab stop. If there is no selection, the text caret
moves to the previous tab stop unless it is already at one.

Signal Version 6.06

3-28

Text caret control

The text caret is a flashing vertical bar that indicates the current position. Do not confuse this with the I-beam
mouse pointer which does not flash and which indicates the mouse position. Each time you click and release the
left mouse button (we assume you haven't swapped the mouse buttons), the caret moves to the nearest character
position to the click point. To select text with the mouse, click at one end of the text you want to select and drag
(move the mouse with the button held down) to the other end of the text. You can also use the keyboard to move
the caret and select text:

Key Operation (+Shift to extend a text selection, +Alt+Shift for rectangular)

Left arrow Move the caret one character to the left. At the start of a line it wraps to the end of the previous
line.

Right arrow Move the text caret one character right. You can move it into uncharted territory beyond the
end of the line. It does not wrap to the next line.

Up arrow Move up one line.

Down arrow Move down one line.

Ctrl+Left
Ctrl+Right

Move one word to the left/right. This means move the caret to the next boundary between a
word character and a non-word character. Word characters are defined to be useful and vary
depending on the view type. In a script view, they are A-Z, a-z, 0-9, _, $ and %. In an output
sequence, they are A-Z, a-z and 0-9. All other text views use A-Z, a-z, 0-9 and _ as word
characters.

Ctrl+Up/Down Scroll the text window up and down, leaving the selection unchanged.

Alt+Up/Down Move the lines containing the selection up or down by one line.

End Move the caret to the right of the last character on the line.

Home Move the text caret to the start of the current line.

Alt+Home Move the text caret to the start of the current line.

Ctrl+End Move the text caret to the right of the last character in the file.

Ctrl+Home Move the text caret to the left of the first character in the file.

Ctrl+] ([) Start of next (previous) paragraph (after empty line)

Ctrl+\ (/) Word part right (left).

PgUp Move upwards by one window of lines.

PgDn Move downwards by one page of lines.

Insert Swap between insert mode caret | and over-type caret _

Miscellaneous

These commands do not fit into any other category!

Key Operation

Ctrl+U Convert the selection to upper case. Add Shift for lower case

Ctrl+Add,Sub Change font size (Add and Sub are numeric keypad + and -). You can also change the
displayed text size by holding down the Ctrl key and using the scroll wheel on your mouse (if
you have one). The View menu Standard Display command will remove any zooming. The
script equivalent is ViewZoom().

General information

3-29

Grid View topics

You can create a Grid view interactively with the File menu New command or from a script with the FileNew(17,
mode%, rows%, cols%); command.

You can save and restore grid views with .sggx files (these are XML files internally). Grids support cut and paste
of text using a Tab character to separate columns and an end of line character "\n" to separate rows. There is also
the GrdXxx...() family of script commands to support the grid.

What the Grid is and what it is not
Our first implementation of a Grid is not attempting to be a spreadsheet program. It is implemented as a utility to
make it relatively easy to generate tabulated data. The initial implementation stores data as text, but we may extend
this to allow data to be stored as integers, or real numbers with some user-control of formatting. There is no
capability yet in the grid to refer to other cells or to allow expressions to be evaluated.

Grid properties
The underlying grid implementation is capable of giving each cell its own font, alignment and type. To give us a
chance of implementing the grid in a reasonable time, we have restricted the grid as follows:

Size
The grid is currently restricted to 10000 rows and 1000 columns. We may change this to a limit based on the
product of rows and columns (so you can have more or one at the expense of the other). Rows and columns are
numbered from 0,0 at the top left. There is a default size for grids created interactively; from a script you can create
a grid with a defined size with FileNew(17, ...) and you can resize it with GrdSize().

Headers
The grid has one header row at the top and one header column on the left. You can choose to hide or show these
headers. By default the header column displays the 0-based row number and the column header displays columns
as letters, A-Z for columns 0 to 25, AA-AZ for columns 26 to 51 and so on.

Font
All cells in the body of the grid use the same font. The headers use a bolder version of the same font.

Row and column spacing
For simplicity, all rows are the same height, which is based on the font. Columns can be sized individually, or you
can set a standard size, or you can optimise the columns widths to match the data displayed in them.

Alignment
You can apply Left, Centred or Right alignment on a column by column basis.

Signal Version 6.06

3-30

Copy current file path to clipboard

When working with file views (data, result, XY or text-based) you can copy the full path to the file (if the view has
an associated file) by right clicking on the view title bar and then selecting the Copy path item that appears. This is
especially useful if you have set the operating system to not display full path names. This is an experimental
feature, added at version 6.02.

The Signal command line

When Signal starts, it checks the command line for option switches and for files to load. If there is no command
line, Signal looks in the folder that it ran from for a script called startup.sgs and, if it exists runs it. If startup.sgs is
found and run or if the command line loads a file, any start up messages that wait for a user response are
suppressed. The items in the command line used to run Signal are also available to running scripts by using the
System$() script function.

The command line holds option switches and file names, separated by white space characters (space and tab). If a
file name contains spaces, you must surround the file name with quotation marks. Option switches start with a / or
– character followed by a character to identify the option. The switches understood by Signal are:

/M When you start Signal, it checks if there is already a running copy. If there is, the new one quits. This
option removes the check, allowing multiple copies to run on a single system. You need a Signal license
for each copy except when using multiple synchronised 1401s to capture related data on one computer
under the control of a single operator, when one license is sufficient. To do this, you must set separate file
names for each 1401 in the Automation tab of the Sampling Configuration dialog.

/Un n is 1-8 to select a 1401 when you have more than 1. The default is /U0, which uses the lowest-numbered
unused 1401. You set a device number in the CED 1401 device settings in the Device Manager (My
Computer->Properties->Hardware->Device Manager).

/Q Quiet startup. Suppress all message boxes and the Signal "splash screen".

The remaining items in the command line are assumed to be file names. Signal attempts to load the files in command
line order (from left to right). The files must have extensions so that the file type is known. If a script file is included
in the command line, Signal runs it before continuing with the remainder of the command line.

As an example, suppose we want to launch Signal so that it automatically opens a data file called example.cfs and
runs doit.sgs to process it. Follow these steps:

1. Create a short cut to cfsview.exe (this is the Signal program).

2. Right-click on the new short cut and select Properties and open the Shortcut tab.

3. Add example.cfs doit.sgs to the end of the Target field.

4. Set the Start in field to the folder that contains your files.

5. Click OK.

This example assumes that both files are in the same folder. You could also have included the full path to each file
in the command line.

64-bit operating systems

Before Signal version 6, all versions of Signal were 32-bit programs, even if the operating system was 64-bit. From
Signal version 6, by default, we will install a 64-bit version of the program on 64-operating systems and a 32-bit
version on 32-bit operating systems. The advantages of 64-bit code on a 64-bit operating system are:

1. The 64-bit version of the CPU has more registers and instructions; "typical code" runs maybe 10% faster.

2. Calls into the operating system do not transition from 32-bit Signal code to 64-bit system code and back.

3. A 32-bit program is limited to a 4 GB memory space, and of this, quite a bit (typically 1GB) is reserved for the 32-
bit operating system. With a 64-bit program you can use a lot more memory.

There are some disadvantages, too:

1. 64-bit code is typically larger (for example the cfsview.exe file is 20% larger as 64-bit code).

2. Pointers in memory are double the size, so memory usage increases.

General information

3-31

Unless your system has limited installed memory, we recommend that you use the 64-bit version of Signal on a 64-
bit operating system.

Program files installation

Previously, CED has expected Signal to be installed in a directory directly inside the C: disk drive such as C:
\Signal6. While this practice was perfectly satisfactory when used with earlier versions of Windows, it has
become more-and-more frowned-upon by Microsoft (for reasons primarily related to security) and it has become
clear that our methods will have to change sooner or later. CED has now altered Signal and the Signal installer so
that Signal can be installed in the protected C:\Program Files directory tree as expected by Microsoft. Of
course, many users will prefer to keep their existing arrangements so we still support installation into C:
\Signal6 or similar.

The main change caused by allowing installation inside C:\Program Files is not in the installation itself but
in where users are expected to put their data and find files provided for their use by CED. While there is no problem
in your storing data files, sampling configurations, scripts and other files inside C:\Signal6, you are not
allowed to store anything inside C:\Program Files. Therefore as part of the Signal installation new folders
are created for the current user's data, for data shared between all users and for data generated by the application.

New folders created by the installer

User data directories
User data directories are used to hold data that is directly saved or loaded by the user, for example data files,
sampling configurations and scripts. Two such directories are created by the Signal installer:

· Data for the current user (the user who installed Signal). This directory is called Signal6 and is created
inside the My Documents folder for the current user. Windows has separate My Documents folders for each
user of a computer system, this directory is only created inside My Documents for the current user. When
installing inside C:\Program Files the Signal installer puts all data intended for the user's own use
inside this directory, the folder contains the Data, Scripts, Sequence, ExtraDoc and TrainDay

folders plus all of their contents, in addition an empty Include directory is provided to hold your own script
include files. This folder can also be used to hold your own files though of course you can use any directory
you choose for this.

· Data for all users of this computer. This directory is called Signal6Shared and is created inside the
Documents folder provided for all users of the system. The installer does not put any data inside this
directory but it does create an empty Include directory inside it to hold any shared script include files that
should be generally available. If there are multiple Signal users on the system this directory ensures that there
is always a suitable directory for user's data.

When searching for the user data directory, Signal first looks for the current user's data directory and if this is not
found will use the user data directory for all users. If neither of these directories can be found Signal uses the
current user's My Documents folder as a last resort. If there are other Signal users on the system apart from the one
that installed Signal they can create their own Signal6 directory inside their My Documents folder if they want, or
they can use their own data directory somewhere or make use of the shared directory for all users.

Application data directories
Application data directories are used to store data that is generated by the application without any direct user
involvement, for example the filter bank settings and the default and last-used sampling configurations. In the same
manner as the user data directories, two application data directories are created by the Signal installer:

· Specific to the current user (the user who installed Signal). This folder location varies with the operating
system version but in Windows7 the folder is C:\Users\Username\AppData\Local\CED\Signal6.

· Shared between all users. This folder location varies with the operating system version but in Windows7 the
folder is C:\ProgramData\CED\Signal6. If there are multiple Signal users on the system this directory
ensures that there is always a suitable location available for application data.

When searching for the application data directory, Signal first looks for the current user's application data directory
and if this is not found will use the application data directory for all users. If neither of these directories can be
found Signal uses the current user's My Documents folder as a last resort. If there are other Signal users on the

Signal Version 6.06

3-32

system apart from the one that installed Signal they should create their own CED\Signal6 directory inside their
own AppData\Local folder unless they are happy for Signal to use the shared application data directory for all
users.

Moving your files to a new-style location
After an installation inside C:\Program Files, Signal and the data files that are installed with Signal will be in their
new locations but any files in the original C:\Signal6 directory (or whatever has been previously used) will be left
unchanged. This applies to both your own files and the previous installation of Signal. There is no reason why you
have to do anything much about this - you can continue to load sampling configurations from and save data files
into C:\Signal6 just as before and many users may prefer to do this, perhaps after cleaning it up (see below).
Alternatively you can choose to keep your data (and other files) in the new location for user data files. This can be
done by moving all .cfs, .sxy, .sgr, .sgrx, .sgc, .sgcx, .sgs and .pls files (plus any other files you
might want to keep: .txt? .jpg?) that are inside C:\Signal6 plus any folders of your own into the Signal6
directory inside your My Documents folder. Once you do that you will be able to use your data files, scripts,
sampling configurations and other files from the new location. There are a small number of possible issues involved
in moving these files (see below for a list of these) but generally things will Just Work. After moving all of your
data to a new location you should check the following:

Application-level issues: While the Signal application will run in its new location without any problems, there may
be a number of minor issues relating to moving your files or installation into the new location:

· The Sampling page of the Preferences dialog contains the path to a directory which is used to store the
temporary CFS data file which is created by sampling. Previously this was set by default to be the directory in
which Signal was installed, so you will probably see that it is something like C:\Signal6. While there is no
problem in leaving this setting unchanged even if you have deleted C:\Signal6, if you want you can get
Signal to set it to the application data directory by clearing the path in the preferences dialog and pressing
OK. You should avoid setting this to a directory inside C:\Program Files as this might cause problems.

· Global resources - some options for the global resource file location use the directory where Signal is
installed. While this location can still be used you will have problems if you try to make use of a directory
inside C:\Program Files, so Signal now uses a list of directories which are searched in turn for the
required file. The list starts with the current user's data directory inside My Documents - if you are using
global resource files inside the directory where Signal is installation you should move the resource files to
this location or somewhere else suitable and adjust the global resource setting to match.

· The Sample and Script bars hold lists of sampling configurations and script files. These lists hold the
complete path to the file so if you use either of these you should update them so that they use the new file
locations.

Data and XY file issuess: There should be no problems with the data files themselves as they do not contain any
information relating to directory locations. However if a background image file has been set up for a data or XY file
the background image settings will contain a complete path to the image file which may need to be updated.

Sampling configurations: Sampling configuration files can contain a number of directory paths which may need to
be adjusted. Note that (as documented just below) Signal will only write sampling configuration files using the new
XML file format and .sgcx file extension so any sampling configurations you change will have to be converted to
the new format (by using them for sampling before) they can be saved. As changed sampling configurations will
use the new file name extension your old configuration files will remain unchanged; if you want an original
sampling configuration you should use the .sgc file while if you want updated configurations you should use the
.sgcx file. The things you might have to change are:

· Sequence file.Where the sampling configuration Outputs page specifies a sequence file to be used during
sampling, the entire path to the sequence file is stored and will point to the previous directory for the .pls
sequence file, this should be changed to point to the new file location.

· Automatic file-naming. Where a sampling configuration Automation page specifies a directory for
automatically-named files this path might now point at a non-existent directory and should be suitably
adjusted.

· Dynamic clamp model tables in text files. Some dynamic clamp models use user-generated text files to
customise their behaviour. The model settings include the text file name which can optionally include a
directory path. The location of these files are normally relative to the sampling configuration location, in
which case Signal will be able to find the files but any absolute text file paths (paths starting with a drive
letter and colon) should be adjusted to point to the new file locations.

General information

3-33

Sequence files: Apart from the references to sequence file names in sampling configurations that are described
above, there should be no problems with these and no changes to these files will be required.

Script files: Depending upon how they are written and what they do, script files may or may not have problems.
Any problems that do occur will probably be caused by file path string constants in the scripts which may need
adjusting and by the use of the FilePath$() function. Any use of FilePath$(2) to get the directory where

Signal is installed is likely to give problems as you should not create or write to files inside Program Files and you
should adjust the script so that it uses a different location. The parameters to FilePath$() have been adjusted
to allow you to find the current user data folder - we suggest that you change to using this location.

Cleaning up the old installation location with or without moving your own files
If after installing Signal into a new location inside C:\Program Files, you want to leave your files in the old install
location but get rid of the previously installed Signal application you should do the following:

· Delete the 1401, BaseDemo, Export, import and include folders inside the old install location. If you
have not put any of your own files into them, you can also remove the data, ExtraDoc, scripts,
sequence and trainday folders.

· Inside the old Signal installation folder itself, delete all .exe, .dll, .chm, .sgl, .t14 and .tip files. All of
these are files specific to the Signal installation and will have been replaced by newly installed files in the new
installation location.

Unicode

Before Signal version 6.03, all text in Signal was represented by 8-bit characters with codes in the range 0 to 255
(hexadecimal 0x00 to 0xff). In the 8-bit character world, characters with codes 0 through 127 are pretty much
universal, for example character 32 (0x20) is a space anywhere on the planet. These are sometimes referred to as the
ASCII character set. However, character codes 128 to 255 (0x80 to 0xff) have meanings that depended on what code
page your computer is set to. As some cultures have many more characters than can fit in the 255 available, in some
cases pairs of 8-bit characters are used to represent characters. The result of this was that you could use characters
with codes above 127 to represent national characters in text views, but if you sent a data file or text file that used
such characters to someone with a computer set to a different code page, the result was unpredictable (and often
gibberish).

The solution to this problem is to use a character encoding that does not limit us to 8-bit characters. The Unicode
Consortium has defined a standard set of characters (1,112,064 valid code points) that can encompass all the
cultures on the planet. The characters are grouped into 17 'planes' of 65536 characters, of which the most important
is the first, known as the Basic Multilingual Plane (BMP). Character codes 0-127 of the BMP have the same
meanings as the ASCII codes 0-127, which is very convenient for backwards compatibility. The BMP holds the vast
majority of the characters used in everyday communication. The remaining planes hold more infrequently-used and
specialist characters, such a music clefs, historic scripts (hieroglyphs), playing card symbols and the like.

There are a variety of ways of storing Unicode characters in memory and in data files. Only two need concern us:
UTF-8 and UTF-16LE.

UTF-8
This is a method of storing Unicode characters using a sequence of 8-bit characters. It has the property that if your
text only uses character codes 0 to 127 (0x00-0x7f), then it is identical to ASCII text. So any Signal script that you
have that does not use any characters with codes above 127 is already coded in UTF-8. Character codes in the
range 128 to 2047 (0x80-0x7ff) are coded in two bytes, character codes in the range 2048-65535 (0x800-0xffff) need
three bytes and character codes greater than that take 4 bytes. If your text is mainly ASCII, or uses only European
characters, this is the most compact coding. The encoding is arranged so that you can always tell if a particular
byte is the start of a character or the continuation of a character.

We have standardised on UTF-8 as the encoding we will use for all external files (scripts, output sequences, XML
resources, text in Signal data files). The text editor within Signal uses UTF-8 internally (though this is of no
consequence to most users). UTF-8 is probably the most common format used for storing Unicode in files; in
October 2014 it accounted for 81.6% (with an upward trend of 4% over the year) of all web pages with a known
encoding. The next most common web format was ISO-8859-1 (which is an 8-bit character set covering European
languages) with 9.8%, down about 2% over the year.

http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Code_page
http://en.wikipedia.org/wiki/Code_page
http://www.unicode.org/
http://www.unicode.org/
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/UTF-16
http://w3techs.com/technologies/details/en-utf8/all/all

Signal Version 6.06

3-34

UTF-16LE
This uses 16-bit Little Endian values to store the characters. This is the format that Windows uses internally for all
text. Unicode builds of Signal uses this format internally everywhere except where we have to use 8-bit characters
(1401 communications, serial line input and output, external text files, resource files, the script editor, data import,
MATLAB interface). In UTF-16LE, characters in the BMP are all represented by one 16-bit value. Characters in all
other planes require a pair of 16-bit values. Character codes in the range 0xd800 to 0xdbff are reserved for the first
(lead) of a two word pair and characters in the range 0xdc00 to 0xdfff are reserved for the second (trail) part of a two
word pair. These are known as surrogate pairs.

Updating to a Unicode version of Signal
Signal version 6.03 and onwards uses Unicode characters internally and stores output text in UTF-8 compatible
files. When you update from an ASCII (8-bit character) to a Unicode version of Signal our aim is that you should
see no difference. We achieve this by assuming that any characters that we read above code 127 that are not valid
UTF-8 sequences are code page characters, and we convert text appropriately:

· When we open a script or sequencer or text file in a text editor, we check read file to attempt to guess the format.
If it starts with a BOM (Byte Order Mark: a special code that indicates the file format) for UTF-8 or UTF-16LE, we
assume that is the format. Otherwise, if it holds no characters above code 127 we can already treat it as Unicode.
If it holds correctly formed UTF-8 (this is easy to detect), we assume it is UFT-8. If the text is an even number of
bytes long and holds 0 bytes in odd positions, we assume it is UTF-16LE. If it is none of these, it must hold 8-bit
characters above code 127 and we assume these are code page characters and we translate the text using the
local code page set on the computer. It is possible that we might be fooled into interpreting code-page text as
UTF-8, but this is unlikely for text of any length.

· When we read text from a resource or from a Signal data file we test to see if it holds correctly formed UTF-8. If it
does not, we assume it holds code-page characters.

However, for performance reasons, we do not convert text from #included script files. If you have included a script
file that use characters codes above 127 you must convert these by opening it in the script editor and saving it.
Note that we do not count changing the format of a text, script or sequencer file from code-page based to Unicode
as a change (the result should appear identical). To force a converted file to write you will need to use the File Save
As command or edit the file.

Backwards compatibility
If you update to Unicode by saving a script or a modified data file or a resource and you used character codes
above 127, the modified files will no longer read correctly into non-Unicode versions of Signal. This will not stop
you opening the files or resources, but any character codes above 127 will not appear correctly. If you write all your
text in English this will not be a problem for you; you will see no change.

The .cfs file format has limited size fields for channel titles, units and comments. The channel units field can be a
problem as this is limited to 5 8-bit characters. If you use extended European characters, these typically code as 2
UTF-8 bytes each, so you are limited to 2 of these, or 1 of these and three ASCII characters. If you use a Far East
typography, such as Japanese, each character uses 3 UTF-8 bytes, so you only have space for one such character
and 2 ASCII codes.

If you require 100% backwards compatibility with old versions of Signal you must use only ASCII character codes
for channel titles, units comments and file comments.

Character set used in scripts and sequences
The characters that are accepted as numbers, punctuation, keywords and variable and constant names in the script
language and in the output sequencer are restricted to the ASCII set. There are additional sets of numbers,
punctuation and a-z and A-Z in Unicode, for example Japanese defines wide versions of numbers and A-Z; these
cannot be used. You do have a free choice of Unicode characters for comments and for string literals in the script
language.

http://en.wikipedia.org/wiki/Endianness#Little-endian

General information

3-35

Resource limitations

There are some limitations that are imposed on us by the operating system and the computer environment. Some of
these are obvious, some less so:

Memory
Your computer will have a fixed amount of memory (typically several GB). This is shared out between all the
competing programs as they require it. If you use a lot of memory, for example by using Memory buffer channels
and copying vast quantities of data into them, Windows will try to cope with this (especially if you run under a 64-
bit operating system), but at some point the operating system will start swapping allocated memory to disk. This
makes things much slower. If you keep allocating more memory, at some point Signal will start reporting that it is
out of memory. The more memory your system has, the more you can use.

If you run under particularly restrictive rights you may find that you get error -544 when Signal tries to allocate the
memory Working Set.

Disk space
This is a pretty obvious limitation. Once you have filled your disk, you cannot use more space. However, you may
well find that once a disk becomes significantly full, disk operations start to get slow. It is usually well worth
periodically cleaning up your disk system by deleting unwanted files. It may also be worth de-fragmenting your
disk (though this seems less important in modern versions of Windows).

GDI and User Handles
Windows tracks the use of GDI objects (things like fonts, bitmaps, brushes, pens and drawing surfaces) and User
objects (things like desktops, windows, menus, cursors, icons and menu short cuts). For reasons tied up in the
history of Windows and for backwards compatibility, these have 16-bit identifiers, which meant that there can only
be 65535 GDI and 65535 User handles. Each application is limited to 10,000 GDI objects and 10,000 User objects.
Most programs do not use a huge number of either (typically a few hundred of each), so this is not usually a
problem.

It starts to be a problem when an application creates lots of windows as each window will use quite a few handles.
You can track the the number of GDI and User objects with the App() command. Each new view (visible or not)
uses some 20 to 100 of each of these objects. This means that you can run out of handles by opening 300-400 data
views (or even fewer if they all have a lot of channels). We refuse to allow you to create new views if you have
used more than 9900 of either object. If this happens, you are probably running a script that is not deleting
windows that it has created.

Symptoms of resource exhaustion
Windows does not manage running out of resources very gracefully. The symptoms include:

· Messages from Signal warning that there was not enough memory or resources to complete an action

· Missing areas or channels in window or screen repainting problems

· Text appearing in degraded fonts

· Poor system performance (to the point of appearing to stop)

· Crashes

If you start to suffer from these problems while using Signal, do the following:

· Save any volatile data in case things get so slow that you cannot continue.

· Check for a lot of hidden windows in the Windows menu Show list or in the Windows... command. Close down
(and save, if required) unwanted, hidden windows.

· If you are running a script, check that you are closing all windows that you have opened. Each FileNew() or
FileOpen() should have a matching FileClose().

· If you are running a script, have you used a huge array space, and could you reduce it? Script users can use
DebugHeap() and App(-4) commands to get information on used memory resources.

Signal Version 6.06

4-36

Sampling data

If you worked through the Getting started section you already have most of the skills to sample a new data
document. Sampling a new document is the same as working with an old document, except that the new document
grows in length as new frames are added. There is also a special frame zero that shows incoming data from the 1401
as it is sampled and before it is written to the file, you would normally display this frame so you can see what the
sampling is doing.

Inputs and outputs

Before we discuss the sampling configuration itself, we need to provide some information on the types of input and
output signal available to users of the 1401. There are two basic types of signal, analogue and digital.

Analogue signals are varying voltages that can have any value within the available range, normally this range is -5
to +5 volts. Because the 1401 handles these signals as a 16-bit binary number, the actual values available are
quantised to the available integer values. The 1401 provides analogue inputs via the ADC inputs and analogue
outputs via the DACs.

Digital signals use TTL-compatible voltages that can take only two values; low and high. The 1401 provides both
digital inputs and digital outputs.

ADC inputs

The 1401 ADC (Analogue to Digital Converter) measure varying voltage signals in the range of ±5 volts, these can
be optionally changed to ±10 volts if required - usually this requires the unit to be returned to CED. The Power1401
mkII Power1401-3 and Micro1401-3 incorporate software control of the ADC input range - you can switch these
units between 5 and 10 volts using the 1401 options dialog in the Try1401 utility installed with Signal. The ADC
generates a 16-bit integer value representing the voltage seen, with -32768 corresponding to the lowest voltage
possible and 32767 corresponding to (just less than) the highest voltage. Zero corresponds to zero volts. Signal
uses the ADC inputs to generate waveform channels through sampling.

ADC input connections
To sample waveforms, connect your signals to the 1401 ADC input ports that you are sampling. Ports 0-7 (0-3 for
an unexpanded Micro1401) are the labelled BNC connectors on the front of the 1401.

For the original standard 1401 and 1401plus, ports 8-15 are on the 15-way "D-type" connector on the front of the
1401. Connections on this are:

ADC port 8 9 10 11 12 13 14 15 Ground

Pin number 1 2 3 4 5 6 7 8 9-15

For early-model Power1401s without an ADC expansion topbox, ports 8-15 are on the rear panel 37-way "D-type"
connector labelled Analogue Expansion. The connections on this are:

ADC port 8 9 10 11 12 13 14 15 Ground

Pin number 35 34 33 32 31 30 29 28 1-19

For late-model Power1401s and Power1401 mk IIs and above the Analogue expansion socket is a high-density 44-
way "D-type" connector. On this connector each signal has its own separate ground return. The connections are:

ADC port 8 9 10 11 12 13 14 15

Pin number 33 34 35 36 37 38 39 40

Ground return 3 4 5 6 7 8 9 10

Sampling data

4-37

For port numbers above 15 you will require a 32-channel expansion card (for the standard 1401 or 1401plus) or
expansion topboxes for Micro or Power1401s. If you have a Micro1401 ADC expansion box installed, ports 4 to 15
are BNC connectors on the expansion box. If you install a Power1401 expansion box, it adds new ADC ports
starting at number 8 and the port numbers on the rear expansion connector are adjusted to start after the expansion
box ports, so if you add an ADC-16 topbox ports 0-7 are on the main unit, ports 8-23 are on the topbox and ports 24-
31 are on the rear connector. If you try to sample using a port above the number available on your 1401, Signal will
generate an error message.

DAC outputs

The 1401 DACs (Digital to Analogue Converters) produce varying voltage outputs in the range ±5 volts, these can
be optionally scaled to ±10 volts if required. DACs can be used to generate pulses with arbitrary initial values and
amplitudes (as long as they lie within the DAC output voltage range), they can also generate ramps, sine waves
and arbitrary waveforms.

To generate complex DAC outputs and particularly for arbitrary waveform output, the DACs must update
repeatedly with new output values. The faster this is done, the more accurate the output pulses or waveforms.
However, very high DAC output rates may interfere with data acquisition. Signal pulse output is limited to a time
resolution of 100 microseconds, which is not fast enough to cause any interference with data acquisition.

The 1401plus and Power1401s have four DACs, numbered 0 to 3, while the Micro1401s have two (0 and 1). Both the
1401plus and Micro1401s have the DAC outputs available on BNC connectors on the left-hand side of the 1401
front panel. Power1401s have DACs 0 and 1 on the front panel and has DACs 2 and 3 on pins 36 and 37
respectively of the rear-panel analogue expansion connector. The Power1401 mk II and later versions of the
Power1401 have a high-density 44-pin analogue expansion connector with DACs 2 and 3 on pins 43 and 44.

If your Power1401 has a Signal expansion top box fitted, then 8 DAC outputs are available via BNC connectors on
the 1401 front panel.

TTL compatible signals

In several places in this manual we refer to TTL compatible signals. TTL stands for Transistor-Transistor Logic and
is a method of passing logical (High/Low) information between devices using voltage levels. Levels above 3.0 volts
are in the High state, levels below 0.8 volts are in the Low state. Levels in between 0.8 and 3.0 volts are undefined.

The TTL inputs and outputs on the 1401 are the digital inputs and outputs, the event inputs, the clock F external
frequency inputs, the ADC external convert input, the clock output, the DAC Bri output and Micro1401 or
Power1401 trigger inputs. On Micro1401s and Power1401s, the event inputs are not actually TTL but can be treated
as such (they are actually heavily protected analogue inputs from which a TTL signal is derived).

Do not subject 1401 TTL inputs to voltages above 5.0 volts or less than 0.0 volts. CED hardware has special
circuits on TTL compatible inputs to provide some protection, however determined abuse will damage them.

The 1401 TTL compatible inputs are pulled up by a resistor to 5 volts. They require a current of some 0.8 mA to pull
them into the Low TTL state. Alternatively, you can connect them to ground to pull them low (useful for the Event
inputs).

See the Owners handbook of your 1401 interface for full details of each input port.

Trigger input

All modern 1401 systems have a Trigger input BNC on the front panel. This is a TTL input that normally responds
to low-going pulses. It is possible to configure the Trigger input so that it responds to high-going TTL pulses
instead.

Signal uses a pulse on the trigger input as the sweep trigger except in Peri-triggered sampling mode when, in
addition to the Event trigger (which uses the standard Trigger input), other forms of sweep triggers are available.

Signal Version 6.06

4-38

Digital inputs

1401 systems have 16 bits of digital input available, numbered 0 to 15. They are normally used separately as two
eight-bit input sets, which can cause some confusion between overall bit numbers and bit numbers within the low
or high digital inputs.

Digital input bits 8 to 15 are used in External digital states mode and in Peri-trigger sampling, they can also be used
as triggers for some of the dynamic clamping models. Digital input bits 0 to 7 are read by the output sequencer and
are used for digital markers. To keep the various discussions simpler, Signal refers to both sets of inputs as bits 0 to
7, the context determines if we actually mean bits 0-7 or 8-15.

The 1401 digital inputs are on a 25-way ‘D-type’ plug; this is on the right-hand side of the 1401 and 1401plus front
panel and on the rear of Power1401s and Micro1401s.

Power1401s and Micro1401s have digital inputs 8 and 9 on 1401 front panel BNC sockets for easy access. These are
labelled as event inputs 0 and 1 to match Spike2 usage. If the Spike2 digital I/O expansion top box is fitted, it has
digital inputs 10 to 15 on front panel BNC sockets labelled as events 2 to 7 (again to match Spike2 usage).

Digital input connections

Signal input bit number 7 6 5 4 3 2 1 0 Gnd

External digital / Peri-trig pin / DC trigger pin
numbers

1 14 2 15 3 16 4 17 13

Sequencer / Marker pin numbers 5 18 6 19 7 20 8 21 13

Digital outputs

The 1401 digital outputs are TTL-compatible and can be set high or low. When high they generate a voltage in the
range 2.6 to 5 volts; the usual lightly loaded level is about 4.5 volts. When low they generate a voltage between 0
and 0.6 volts.

The Signal pulse output system and the output sequencer DIGOUT instruction control 1401 digital output bits 8
to 15 of the 16-bit digital output port. If you use the output sequencer, you can also set bits 0 to 7 with the
DIGLOW instruction. Signal refers to both sets of outputs as digital outputs bits 0 to 7, the context determines
which set we mean.

The 1401 digital outputs use a 25-way ‘D-type’ socket. This is on the right-hand side of the 1401plus front panel
and on the rear of Power1401s and Micro1401s.

Power1401s and Micro1401s also have digital output bits 8 and 9 on 1401 front panel BNC sockets for easy access,
they are labelled 0 and 1 (the labels match Signal usage). If the Spike2 digital I/O expansion top box is fitted, it has
front panel BNC sockets for digital output bits 10 to 15 labelled 2 to 7 (also matching Signal usage).

Digital output connections

Signal output bit number 7 6 5 4 3 2 1 0 Gnd

DIGLOW pin numbers 5 18 6 19 7 20 8 21 13

Pulses and DIGOUT pin numbers 1 14 2 15 3 16 4 17 13

Types of channel

Signal can directly sample two types of channel: waveform and marker. Waveform channels are generated by
sampling from 1401 ADC inputs, marker channels can be generated using the keyboard or from the 1401 digital
inputs. Channels in a Signal data file are numbered starting with number 1, the channel numbers are contiguous.
Memory channels (either marker or real marker) can be created during sampling by measurements processing, while
virtual channels will automatically work with incoming data during sampling.

Sampling data

4-39

Waveform channels

The waveforms that Signal records and displays are continuously changing voltages sampled using the 1401 ADC
inputs. Signal stores waveforms as a list of numbers that represent the waveform amplitude at equally spaced time
intervals. These numbers are 16-bit integers, they are scaled using calibration values to produce the floating point
data values that Signal uses and displays. The process of converting a waveform into a number at a particular time
is called sampling. The time between two samples is the sample interval and the reciprocal of this is the sample
rate, which is the number of samples per second. A set of samples taken at regular intervals is referred to as a
sweep, a sweep of sampling generates a frame in a Signal data file.

Signal is also able to handle waveform channels (for example data that is the result of analysis or generated by a
script) where the underlying data is floating point values; these are indistinguishable from channels using integer
data in nearly all circumstances. Floating point data is more accurate and does not require calibration values, but it
requires twice as much disk space. Though Signal can create and use channels based on floating-point data, Signal
data created by sampling is always based upon 16-bit integers from the ADC hardware and calibration values taken
from the sampling configuration.

ADC ports and channels
Waveform channel data is generated as described above by sampling from ADC inputs. A 1401 has a number of
separate ADC inputs, these are called ports and are numbered from zero upwards – so a Micro1401 with four ADC
inputs has ADC ports numbered 0 to 3. When you define a Signal sampling configuration the ADC ports that will
be used are specified as a list, for example ports 0, 1 and 3. Note that these port numbers do not have to be
contiguous (or even in ascending order). The ports are sampled in the order given to produce waveform data
channels, the number of channels being set by the number of ports in the list. The data channels are numbered in
ascending order starting with channel 1 and these channel numbers are contiguous. So when the port list given
above is used to sample data, data from port 0 generates data file channel 1, port 1 generates channel 2 and port 3
generates channel 3.

Minimum sample rate

0 1 2 3 4 5 6 7 8 9

Original waveform Resulting waveform

samples

The sample rate for a waveform must be high enough to represent the data correctly. You must sample at a rate at
least double, and preferably 2.5 to 5 times, the highest frequency contained in the data. If you do not sample fast
enough, high frequency signals will be aliased to lower frequencies, as illustrated above. The dots in the diagram
represent samples; the thin line shows the original waveform while the thicker grey line shows how the sampled
data will appear. Just to keep things interesting, you also want to sample at the lowest frequency appropriate to
keep the size of your disk files down.

Voltage range
The 1401 ADC (Analogue to Digital Converter) measure varying voltage signals in the range of ±5 volts, these can
be optionally changed to ±10 volts if required - usually this requires the unit to be returned to CED. The Power1401
mk II, Power1401-3 and Micro1401-3 incorporate software control of the ADC input range - you can switch these
units between 5 and 10 volts using the 1401 options dialog in the Try1401 utility installed with Signal.

Use of filters
Many users pass waveform data through amplifiers or signal conditioners with filter options to limit the frequency
range. Some transducers have a limited frequency response and require no filtering. If you are concerned about
measuring the frequency content of your data, you should ensure that your waveform data is filtered to remove
frequencies above 50% of the sampling rate – the Nyquist frequency.

Signal Version 6.06

4-40

Marker channels

Signal can sample two types of marker data: keyboard markers and digital markers. Signal treats both marker types
identically once the data has been captured; they differ only in their source. Marker channels can only be logged
by Signal when not using fast sweep modes.

A Marker is a 32 bit time value, in units of the sample interval on waveform channels for keyboard markers and of
the output resolution for digital markers. In addition to the time a marker has 4 bytes of marker code data. The first
of these 4 data bytes is the ASCII code of the keyboard character pressed by the user (for a keyboard marker) or an
8 bit digital code read by the 1401 from the digital inputs (for a digital marker). The remaining 3 bytes are normally
zero.

Keyboard markers
Keyboard markers time events to an accuracy of, at best, around 0.1 second, you should use digital markers if you
require precise timing. The upper and lower case characters a-z and the numbers 0-9 are logged, but only when the
new document window or the sampling control panel is the current window. The keyboard marker channel, if
created, is the first channel number after the sampled waveform channels.

Digital markers
These are not available for the Standard 1401. Digital markers are timed as accurately as the outputs and record 8
bits of TTL data. These can be used as 8 separate channels of on/off information or one channel of 8 bit numbers or
any combination in between. Digital marker data is sampled when a low going TTL compatible pulse is detected as
described below. The data is read from bits 0 to 7 of the 1401 digital input. Digital markers can also be generated by
the Pulses and Sequencer output systems, for example to show when something was done, in these cases the
marker data can either be read from the 1401 digital inputs or set directly by the outputs. The digital marker channel,
if created, is the first channel number after the keyboard marker channel or after the waveform channels if the
keyboard marker is not used.

Digital marker connections
The digital marker data is read from the 1401 digital inputs bits 0 to 7. These inputs are found on the 1401 Digital
inputs connector; a 25-way ‘D-type’ plug located on the front of the 1401plus, and on the rear of Micro1401s and
Power1401s. In addition to the data lines a TTL pulse is required on the digital inputs Data Available input to log a
digital marker.

Digital input: bits 0 to 7

Digital input bit bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Gnd

Digital input pin 5 18 6 19 7 20 8 21 13

Digital input: other signals

Signal 1401plus All others

Data Available pin 24 pin 23

To log a digital marker, apply a low going TTL pulse at least 1 µs wide to the Data Available. When the 1401
detects the falling edge of the input, it latches the input data on Power1401s and Micro1401s. If you have a
1401plus you must keep the digital input data signals stable for 50 microseconds after the low going data available
edge.

Marker codes

When Signal displays data from the keyboard marker, digital marker or other marker channels, it shows a marker
code value as well as the marker time. The code displayed is normally the first marker code but can be selected
using the draw mode dialog.

Marker codes have values from 0 to 255. This is the same range of numbers that the ASCII character set uses, and it
is sometimes convenient to treat the codes as ASCII character codes (for instance when dealing with keyboard
markers). At other times it is more convenient to deal with the codes as numbers.

Sampling data

4-41

Whenever Signal displays a marker code that has the same value as the ASCII code of a printable character, it
displays the code as a character, otherwise it displays the marker code as a two digit hexadecimal number.
Hexadecimal (base 16) numbers use the standard digits 0 to 9, but also use a to f (for decimal 10 to 15). Thus 00 to
09 hexadecimal is equivalent to 0 to 9 decimal. 0a to 0f is equivalent to 10 to 15 decimal. 10 to 1f hexadecimal is 16 to
31 decimal, 20 to 2f is 32 to 47 decimal and so on.

 + 0 1 2 3 4 5 6 7 8 9 a b c d e f

20 ! “ # $ % & ‘ () * + , - . /

30 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

40 @ A B C D E F G H I J K L M N O

50 P Q R S T U V W X Y Z [\] ^ _

60 ` a b c d e f g h i j k l m n o

70 p q r s t u v w x y z { | } ~

The printing characters are 20 to 7e hexadecimal, 32 to 126
decimal, as in the table. Character 7f may or may not print,
depending on the character set. To find the hexadecimal code of a
printing character, add the number above it to the number to the
left of it. For example, the code for A is 41. To convert a code to a
character, look up the first digit in the left column and the second
in the top row. For example, 3f codes to ?, the intersection of the
row for 30 and the column for f.

Sampling configuration

A Signal sampling configuration contains all the information and settings that Signal needs in order to create a new
data file by sampling. This information includes fairly obvious things like how fast to sample waveforms in the 1401
and what 1401 outputs to be generated during sampling, and also extra information such as how the sampled data is
to be displayed and what online processing to create measurement channels or derived data documents should be
carried out. Signal always holds a sampling configuration in memory, this is the current sampling configuration. The
current sampling configuration is used for all sampling, you can change the current sampling configuration by
using the File menu Load Configuration command. When Signal starts up, it normally loads the last-used
sampling configuration into memory so that the setup will be the same as when it was last used.

Before you start to sample data with Signal you must set up
the sampling configuration. This is done through the
Sample menu Sampling Configuration dialog, which is also
available by using a toolbar button.

The sampling configuration dialog is a tabbed dialog - it
contains a number of tabs for selecting different sections of
the parameters. Click on a tab to display the corresponding
section of the dialog. Some sections of the sampling
configuration dialog are always present, while others are
shown or hidden according to the circumstances. The
sections that are always available are General, Port setup,
Outputs and Automate. The other sections, Peri-trigger,
States and Clamp hold extra information not relevant to all
sampling configurations. The Peri-trigger tab appears only
when the sampling mode selector in the General section is
set to Peri-trigger. Similarly, the States tab only appears
when the General section Multiple frame states item is checked. The Clamp tab is only available if clamping
experiments are enabled using the Clamp section of the Preferences dialog.

The title of the dialog shows the filename and path of the configuration file from which the configuration data was
read. A '*' character is appended to the file name if the current sampling configuration contains unsaved changes.

Press OK to keep any changes you made to the sampling configuration or Cancel to discard changes. The Run
now button keeps any changes and then immediately starts off sampling.

Signal sampling configurations are saved on disk as files with a .sgcx filename extension using the File menu
Save configuration as command. Older version of Signal used a different sampling configuration file format
that used a .sgc filename extension. Signal can read and use these older sampling configuration files, but before
you can save them in the new format it is necessary to convert them to the new form by using them for sampling.

Signal Version 6.06

4-42

General configuration

The General section holds a selector for the sweep mode,
the multiple frame states check box, fields to define the
waveform sampling rate and the frame width or points, check
boxes to control the creation of marker channels and various
other options, plus a list of the ADC ports to sample to
generate waveform channels.

Sweep mode
The Sweep mode selector defines how sweeps of data are
taken and triggered and how sampling sweeps relate to the
outputs system. The modes available are:

Basic the trigger for a sweep of data is a TTL
pulse at the start of the sweep, and
pulse outputs start and finish at the
same time as the sampling sweep. We
have tried to keep this mode simple to
use to help beginners with the Signal software. It is useful for a wide variety of
straightforward sampling requirements.

Peri-trigger the trigger point can be before the start of the sweep, at the start of the sweep or at any point
within the sweep. Pulse outputs start at the trigger point and finish at the end of the sampling
sweep. This mode allows a wide variety of triggers including threshold crossings on a
sampled waveform channel, and allows data to be collected before the sweep trigger, which
no other sweep mode can achieve. The trigger point and type of trigger are set in a separate
peri-trigger configuration page.

Extended the pulse outputs are triggered rather than the sweep. The outputs can be longer than the
sampling sweep, occur both before the sweep starts and after the sweep is over and the
sampling sweep is triggered by the outputs; the sampling sweep trigger time is set along with
the outputs in the pulses dialog. This is a very powerful sweep mode while still being useful
for general-purpose use.

Fixed interval similar to Extended, but the sweeps are internally timed so that they occur at the specified
interval; a random variation in the interval can optionally be provided. Both the sweep
interval and any required random variation are set using the pulses dialog that is used to
define the outputs. External sweep triggers are not used in this mode, needless to say. The
fixed interval must be longer than the overall sweep length so that Signal has enough time to
get things ready for the next sweep. The amount of time required varies a lot with the
sampling and computer system, 100 to 200 milliseconds is usually sufficient.

Fast triggers like Basic mode except that marker logging, multiple frame states and variations in the pulse
outputs are not available, in addition the absolute start time for a sampled frame cannot be
measured and is set to zero. This keeps the inter-sweep interval to a minimum - less than 100
microseconds usually.

Fast fixed interval has the same limitations as Fast triggers but uses a fixed interval between sweeps rather than
requiring an external trigger; in this mode no random variation in the interval is available - the
interval is set using the pulses dialog. The fixed interval still has to be longer than the overall
sweep length, but only by a millisecond or two.

Gap free is like Fast triggers mode but only the first frame is actually triggered; subsequent frames
start immediately after the previous frame finishes with no loss of data, change in sampling
interval between points or any other variation in sample timing. It is used when you want to
sample continuously but are happy to break up the data into frames. If you want full-blown
continuous sampling then you should consider using the CED Spike2 software, Signal
cannot do this very well.

Useful extra information relevant to some of these modes can be found in Pulse outputs during sampling – the
pulses dialog is used to set the fixed interval sweep timing and other parameters.

Sampling data

4-43

Multiple frame states
This check box enables sampling with multiple frame states. With multiple frame states disabled, all sampling
sweeps are the same, the same pulse outputs are generated and the new data frames are set to state zero. With
multiple frame states enabled, each sampling sweep can be different from other sweeps in a number of ways and the
data frame states are different to indicate what happened during sampling. This can be used to achieve a variety of
useful effects.

The use of multiple frame states is a complex topic which is covered separately in Sampling with multiple states.

Variable sweep points
This check box is only available with Extended and Fixed interval sweep modes with multiple frame states
enabled; it allows different sampled sweeps (with different states) to have different numbers of ADC data points.
The number of data points for each state is set in the pulses outputs dialog, the sweep points set in this page sets
the upper limit for sweep data points, this will also be the maximum display width for such a file.

When variable sweep points data is displayed, the allowed X range is set by the maximum number of sweep points
which is set here, so you may have frames of data that do not reach the limits of the X axis.

Use ADC external convert
ADC sampling is normally done on a clocked interval basis. This means that each sample point in the sweep is
separated by the same time period. With this box checked each point is triggered by a pulse supplied by external
hardware. On the 1401plus this trigger is connected to the Ext BNC connector on the front panel. On more modern
1401s you should use pin 6 of the Events socket on the back of the 1401. The pins are numbered from right to left
with pin 6 being the 6 th hole along on the top row.

Sample rate
The Sample rate field sets the sampling rate for all waveform channels, in Hz. The rate displayed will not always be
exactly the preferred rate that was entered; it shows the closest achievable rate given the 1401 clocks and the
number of ADC ports to be sampled. This occurs because the 1401 ADC converter clock can only generate sample
intervals that are an exact multiple of the clock input frequency. In all modern 1401 designs the maximum input
frequency is 10 MHz (in older 1401 designs the maximum input frequency is 4 MHz) so the ADC clock can only
generate sample intervals that are a multiple of 100 nanoseconds. It is important to emphasize that, though you may
not get exactly the sampling rate that you want, this will not cause inaccuracies in your sampling - Signal knows
exactly what sampling rate it is actually using and will ensure that the timing of all ADC data is correctly derived
from this actual sampling rate.

Getting the correct sample rate
As described above, the ADC clock interval has to be an exact multiple of 100 nanoseconds and this can make it
impossible to get the exact sampling rate that you want. For example suppose you want to sample at exactly 3 KHz.
To do this the ADC clock would have to generate an interval of 333 and 1/3 microseconds. This cannot be done as
1/3 of a microsecond is clearly not a multiple of 100 nanoseconds and so Signal will use the closest achievable
sampling rate (approximately 2994.012 Hz).

If you cannot get the correct rate, it is often possible to fix this, or at least a rate much closer to the one you want,
by enabling the Burst mode check box described below. This is because of the way burst mode sampling operates.
Consider a sampling configuration that samples 8 ADC ports at a rate of 20 KHz - this means a 50 microsecond
interval between samples on each ADC port. With burst mode disabled the ADC clock must generate a sample
interval of 6.25 (50/8) microseconds, clearly this cannot be achieved when all intervals have to be an exact multiple
of 100 nanoseconds. However with burst mode sampling is enabled the ADC clock has to generate a 50
microsecond interval which is of course easily done. For this reason we recommend always using burst mode
sampling unless you need to exactly match the behaviour of previously-used sampling configurations.

Maximum sample rates
The overall sampling rate in the 1401 is the Sample rate times the number of ADC ports. With a Power1401 625, the
maximum overall sampling rate is 625 kHz. A Micro1401 mk II and Micro1401-3 will sample at up to 500kHz, while a
Power1401 mkII and Power1401-3 will go up to 1MHz. With an original micro1401 or a 1401plus (with modern 12 bit
ADC hardware), the maximum overall sampling rate is 333 kHz. A 1401plus with a 16 bit ADC can sample at 400 kHz.
With a standard 1401 or 1401plus with older ADC hardware the maximum rate is 82.5 kHz.

Signal Version 6.06

4-44

The sampling configuration dialog does not apply hardware-specific limits to the sample rates that you enter. If you
use a sampling configuration with an overall sampling rate beyond that achievable a 1401 sampling error will occur
and be reported by Signal. If Signal detects a Power1401 (or other more modern 1401 type) during program startup,
it enables the use of higher timing resolutions. You can force Signal to allow this higher timing resolution by
checking the Assume Power1401 hardware box in the Edit menu Preferences dialog.

Frame length and points
The Frame length and Frame points fields set the length of the sampled frame. The frame length is always shown
in the appropriate time units. Changes made to one of these fields automatically cause an appropriate change in the
other. The Frame length field also updates whenever the sampling rate changes.

The maximum frame length possible varies with the model of 1401 and the 1401 memory installed; each sampled
point requires two bytes of memory. For a standard 1401 the maximum number of points (points per frame times
number of channels) is about 28,000, for a micro1401 or unexpanded 1401plus the limit is about 480,000 while for an
expanded 1401plus or Power1401 the limit depends upon the amount of extra memory installed but is at least 15
million. For a Micro1401 mk II the limit is either about 480,000 or 1 million depending on the amount of memory the
unit was built with. The sampling configuration dialog does not apply any limits to the frame length that you enter,
when sampling starts the 1401 memory required is checked against the memory that is available.

X axis zero offset
Normally the X axis zero appears at the start of the frame, or at the trigger time for peri-triggered sampling mode.
This position can be moved by entering a non-zero value in this field. This does not alter how and when sampling
takes place, only the way in which times are displayed on the x-axis.

ADC ports
This field sets a list of ADC ports to sample, up to 80 ports can be specified in the list. You can enter individual
ADC ports separated by commas or spaces or a range of ports such as 0..7 or both (for example “0,7,1..6”). Port
numbers between 0 and 127 are accepted, the list of ports can be in any order that you want, unwanted ports can be
freely omitted and duplicated port numbers are allowed.

Each ADC port in the list creates a separate waveform channel in the resulting data document. The ports are
sampled in the order they are given in the list, so the first port in the list generates data channel number 1, the
second channel 2, and so forth.

Keyboard marker
The Keyboard marker check box enables the creation of the keyboard marker channel and logging of keyboard
markers. If the keyboard marker channel is enabled then it is the first channel in the data document after the
waveform channels. Keyboard markers cannot be logged when using fast sweep modes.

Digital marker
The Digital marker check box enables the creation of the digital marker channel and logging of digital markers from
the 1401 digital inputs, digital marker data items can also be created by Pulses or Sequencer outputs. If this channel
is enabled it is the first channel after the keyboard marker channel or the waveform channels if the keyboard marker
channel is not present. Digital markers cannot be logged when using fast sweep modes.

Burst mode
Check this box for burst mode sampling, leave it clear for equal interval sampling. In equal interval sampling the
waveform data points are sampled individually in turn and the interval between samples is 1/(Sample rate * number
of ADC ports) - this gave some slight advantages with very early 1401 designs. In burst mode sampling all of the
ADC ports are sampled in a burst as close together as possible and the interval between bursts is 1/Sample rate.
Burst mode sampling is generally preferable as it ensures that the interval between samples on adjacent ADC ports
is kept to a minimum and it very often allows the required ADC sampling rate to be achieved precisely, as described
above.

If the first two ADC ports sampled are ports 0 and 7 (or 0 and 3 for a micro1401 or Micro1401 mk II), then the second
sample and hold circuit optionally fitted to 1401s is enabled. If fitted this option causes the sampling on ports 0 and
7(3) to be exactly simultaneous. If the 1401 has the 1401-32 multiple sample and hold card fitted, then burst mode
sampling will be exactly simultaneous on all channels. Second sample and hold is not currently available
Power1401s.

Sampling data

4-45

With Peri-triggered sampling mode burst mode is always used for efficiency reasons.

Sweep trigger
This check box sets the initial state of the Sweep trigger check box in the sampling control panel, this check box
enables and disables sweep triggers. With sweep triggers enabled, a sampling sweep will not occur until a trigger
has been detected, the sampling configuration determines what a trigger is. With sweep triggers disabled, a
sampling sweep starts immediately. For Extended sweep mode, the trigger starts the outputs rather than the
sampling sweep.

Except when using Peri-trigger sweep mode, the sweep trigger is a low-going (or high-going if a rising edge trigger
is selected below) TTL pulse supplied to the Trigger BNC input on the 1401 front panel (or the Event 0 input on the
front of a 1401 or 1401plus). For Peri-triggered sweep mode the trigger can be any of a number of signals.

With older 1401 types (the standard 1401 and the 1401plus) there may be a small (~5 microseconds) delay between
the time of the sweep trigger and start of sampling. This is affected by the outputs synchronisation controls in the
Outputs configuration section. When using Basic sweep mode, it is possible to start sampling at exactly the time
of the sweep trigger by providing the trigger pulse to both the 1401 E0 and E4 inputs. This mechanism is only
available when the synchronised sampling option in the Outputs configuration is disabled. For all modern 1401
types the trigger input is automatically routed to both E0 and E4 internally as appropriate, thus guaranteeing a
precise start of sampling relative to the trigger.

Rising edge trigger
Sweep triggers normally occur on the falling edge of the supplied TTL pulse on the 1401 Trigger input. Check this
box to make them occur on the rising edge.

Write sweep to disk
This check box sets the initial state of the Write to disk at sweep end check box in the sampling control panel.
When this is set, sampled sweeps are automatically written to disk when the sweep finishes.

Pause at sweep end
This check box sets the initial state of the Pause at sweep end check box in the sampling control panel. When
this is set, Signal waits at the end of a sweep instead of immediately starting the next sampling sweep.

Reset
Pressing this button resets all of the sampling configuration parameters to the default state.

Peri trigger configuration

The Peri-trigger section holds information that is specific to
the Peri-trigger sampling mode. It is only available when Peri-
triggered sweeps are selected in the General section.

At the top of the dialog is a selector for the type of trigger
and a field for the pre-trigger points. Below this is a section
holding details of the trigger parameters. The contents of this
section changes with the type of trigger, the individual fields
will be described along with the various types of trigger.

Trigger type
This can be set to one of +Analogue, -Analogue,
=Analogue, Digital or Event. The three analogue types
monitor the last ADC port in the sampled ADC ports list for a
trigger. The trigger levels are shown with the sampled data as
a pair of cursors which can be moved, without stopping the
sampling, to alter the levels. The Digital trigger waits for a
specified state on a bit in the 1401 digital inputs, while the Event trigger is a TTL pulse just as for the Basic sample
mode triggers. Each form of trigger has different parameters:

Signal Version 6.06

4-46

+Analogue Trigger on a positive-going level transition on the last ADC port in the sampled list. The parameters
are Threshold level and Hysteresis, both in units set by the channel calibration. The trigger process
first waits for the sampled data to go below (Threshold - Hysteresis) and then triggers when the
sampled data value rises above Threshold. The hysteresis acts to prevent false triggering by noise
as the sampled data passes downwards through the threshold level, triggering can only occur after
the sampled data has clearly been below the threshold. If you find that you are having problems with
false triggers due to noise, increase the Hysteresis value.

-Analogue Trigger on a negative-going level transition on the last ADC port in the sampled list. This is identical
to +Analogue, but in the opposite direction. The trigger process first waits for the sampled data to
go above (Threshold + Hysteresis) and then triggers when the sampled data value falls below
Threshold.

=Analogue Trigger on signal moving outside a pair of levels on the last ADC port in the sampled list. The
parameters are Upper threshold and Lower threshold. The trigger process first waits for the sampled
data to go between the thresholds. It then monitors the sampled data and triggers when the sampled
data value is above the upper level or below the lower level.

Digital Trigger on a digital input bit state. The parameters set the digital input bit, from 8 to 15 and select
triggering on a high bit or on a low bit. The trigger occurs when the bit is in the correct state. There is
no requirement for the bit to be in the other state first. The digital inputs are found on the 1401 digital
inputs connector, the pins for the digital bits are:

Digital input bit bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8 GND
Digital input pin 1 14 2 15 3 16 4 17 13

Event Trigger on a TTL pulse. There are no parameters; the trigger occurs when a TTL pulse is detected on
the Trigger BNC input on the 1401 front panel (or the Event 0 input on the front of a standard 1401 or
1401plus). The Rising edge trigger option in the general sampling configuration operates normally.

Pre-trig. time
This parameter sets the amount of data in the frame that will be sampled before the point at which the trigger
occurred. This can have any value from -(1,000,000 * sample interval) to the length of the frame -(2 * sample
interval). If the value is negative, this means that points sampled after the trigger occurs are discarded before the
first point in the frame is kept. If the value is positive, then the specified time must have elapsed before the search
for a trigger begins and the resulting frame contains points sampled before the trigger occurred.

When a non-zero pre-trigger time is specified the resulting data x axis adjusts to start at -pre-trig. time. Thus a
negative value gives an x axis starting at some positive value because the first point in the frame was sampled some
time after the trigger. Similarly, a positive value gives an x axis starting at a negative value as some points sampled
before the trigger are shown.

Sampling data

4-47

Ports configuration

The port setup section defines settings for the individual
ADC ports used to sample waveform channels. You can set
the scaling and units for data sampled from a port, the name
of the data channel created by sampling and specify online
processing options for data from a port. This section
defines settings for each ADC port, note that the actual
ports that will be used for sampling are set in the General
page of the configuration dialog.

The main dialog displays the current settings for all ADC
ports (note that this can include ports that are not available
with the current 1401 hardware). Double-click on the entry
for a particular port to open the parameters dialog for that
port and change the parameters. The entries for each port
(both in the main dialog and in the parameters dialog) are:

Zero The value (in the specified units)
corresponding to a zero volt reading from the
ADC. This value, along with Full, is used to
convert ADC data into the floating-point values used by Signal.

Full (5.0V) The value (in the specified units) corresponding to the full scale reading from the ADC. To scale the
data in volts, this will be 5 for a 5 volt 1401 and 10 for a 10 volt 1401. The 1401 ADC range in use is
shown alongside the title.

Units The units for calibrated data. This is a string from 1 to 6 characters long, you can set any units string
that you want.

Name The port name. This is a string from 1 to 19 characters long, it sets the title of the waveform data
channel sampled from this port.

Options This is a string of 0 to 8 characters that holds online processing options for data from the port.
Characters corresponding to various processing options can be entered into this dialog. Currently,
only one processing option is available; enter an ‘R’ character to cause online rectification of sampled
data. If the port scaling is being altered or controlled by an amplifier telegraph, this field shows Tel (or
ATel if an auxiliary telegraph) in red to indicate this fact. If the port is being used by the standard 1401
telegraphs to control the scaling of another port this field shows T>n in red, where n is the port
number that is controlled.

Amplifier telegraphs
The 1401 Telegraphs and Aux Telegraphs buttons on the bottom provide dialogs that allows you to configure
amplifier telegraph support. Amplifier telegraphs are signals, usually analogue outputs, from an amplifier that
indicate amplifier settings such as gain and offsets. By collecting and interpreting the telegraph signals, Signal can
automatically adjust for changes in the amplifier settings. Signal supports a standard telegraph mechanism using
analogue voltages sampled using the 1401 and it can also use a custom DLL to support alternative mechanisms.

The standard telegraph mechanism using a voltage signal is accessed and configured using the 1401 Telegraphs
button on the left. If support for an auxiliary telegraph system has been installed then central button will be enabled
and its label will change to indicate the type of auxiliary telegraph in use. For information on setting up and using
amplifier telegraphs, see Amplifier Telegraphs. Only a few types of amplifier provide telegraph signals; if you do
not have such an amplifier you can ignore these option.

Conditioner or quick calibration
The Conditioner… button on the bottom right opens the signal conditioner setup dialog if a signal conditioner
channel for the currently selected port has been found (see Programmable Signal Conditioners). If the name of
the signal conditioner hardware is known to Signal the label on this button will change.

Signal Version 6.06

4-48

If no signal conditioner support has been selected, the Conditioner... button will
change to Quick Calibration. The Quick calibration dialog offers an easy way to
set up the calibration of the current port as a voltage based upon the amplifier gain
and the desired units for data from that port. To set your calibration, select the
desired units from the available choices of kV,Volt, mV, µV and nV, and enter the
total amplifier gain applied to the signal between the preparation and the 1401
ADC input. If you have a headstage or other pre-amplifier don't forget to include that in your calculation of the
gain.

More on channel scaling and amplifier gains
The Zero, Full and Units fields are important; they define the way that 1401 ADC data is converted into the values
that you will see throughout Signal. Initially these values are set to give readings in volts at the 1401 ADC inputs,
you can keep them as they are but often it is more useful to change them to show values more closely connected to
the experiment.

For example, imagine you are using an amplifier with a gain of 100 to amplify the signal from an electrode before the
signal is fed to the ADC input. A gain of 100, for those that are unfamiliar with electronics, means that the amplifier
output voltage at any point will be the input voltage multiplied by 100. Now you could leave the calibration of this
signal alone and just log the voltage connected to the 1401 but it is usually much neater, and harder to make
mistakes, if you adjust the signal calibration to take the amplifier gain into account so that the calibrated signal
levels show the voltage at the electrode. To do this you have to set the Full value to show the electrode voltage
that would result in a full-scale reading (we will assume your 1401 uses a 5-volt range in this discussion). As gain is
a simple multiplier we can work out what electrode voltage gives a 5-volt amplifier output by dividing 5.0 volts by
the gain in use; 100. That gives us 0.05 so you would set the Full value to that.

That will work fine but numbers running from -0.05 to +0.05 are not particularly convenient; it would probably be
much nicer to work in millivolts. To do this you would set the units to "mV" and multiply the Full value by 1000.
That gives us an input range of -50 to +50 mV which is a lot easier to work with. The same arithmetic applies to
whatever gain your amplifier provides - just divide the actual 1401 full-scale value (5 or 10 volts, in volts, millivolts
or microvolts as you prefer) by the amplifier gain to get the Full value to enter. But in nearly all circumstances, the
Quick Calibration dialog described above will take care of this for you; this description is provided to give you a
more complete understanding of what is going on.

Only a few amplifiers have an offset control that allows removal of standing DC levels while still retaining DC
measurements (one of the few that do is the 1902 from CED). Unless you are using one of these you will never need
to do anything with the Zero value and can leave it set to zero (the 1902 control software will take care of the Zero
setting for you).

Going beyond altering the port settings to take account of amplifier gain, you can also use them to generate
correctly calibrated values from a transducer which measures a quantity other than voltage. The arithmetic required
is much the same; calculate the transducer input that will result in a full-scale value at the 1401 ADC input and set
that as the Full value (and don't forget to set the correct units). For example consider a pressure transducer that
generates 1 volt for each 50 mmHg applied. Then a 5 volt 1401 input will be generated by 250 mmHg pressure and
you should set the Full value to that and set the port units to "mmHg". If the transducer electronics includes a
selectable gain then you apply the gain in the same way as for voltage - by dividing the Full value by the gain. So if
your transducer gain was changed to 5 you should change the Full value to 50 (250/5).

Clamp configuration

This section of the sampling configuration dialog is only available when clamping support is enabled in the
preferences. It is described under Sampling with clamp support.

Outputs configuration

The outputs section of the sampling configuration is used to set the outputs required during sampling, which
DACs and digital outputs are available for use and to set the DAC units and scaling. The leftmost area is used to
configure the type of outputs. It contains a selector for the type of outputs required plus items specific to the
currently selected type of outputs. The right-hand areas enable and set up the output ports.

Sampling data

4-49

Outputs type
This control selects the type of outputs to use from either None, Pulses or Sequence. The controls in the area
below the selector vary according to the selection.

Outputs type: None

This disables outputs during sampling. When selected, only a single control is shown:

Timer period (ms)
This item sets the period of the internal timer used to measure the absolute frame start time and to time digital
markers. A value of 1 to 10 ms is usually appropriate for these purposes. Values from 0.1 microseconds to 250 ms
can be entered and they are rounded to the nearest 0.1 microseconds.

Outputs type: Pulses

This selects pulse outputs during sampling. The pulses can be controlled by the script language or interactively
using a dialog. The details of configuring and using pulse outputs are covered separately under Pulse outputs
during sampling. When pulse outputs are in use, a number of controls to configure the pulses are shown:

Resolution (ms)
This sets the timing resolution of the output pulses in
milliseconds or microseconds and also sets the period of the
internal timer used to measure the absolute frame start time
and to time digital markers. Values are rounded to the nearest
0.1 microseconds. The practical limit to the resolution
depends upon the type of 1401 in use; for a 1401plus the
recommended limit is 3 ms, for the micro1401 values down to
0.1 ms can be used, for the Micro1401 mk II and Micro1401-3
25 microseconds, while for Power1401s you can go down as
far as 6 to 10 microseconds.

Maximise wave rates
The design of the 1401 is such that it is possible to maximise
either the timing precision with which the pulses are
generated or the highest possible arbitrary waveform output
rates, but not both. Normally you should leave this check box
clear but if you want high waveform rates and are getting errors indicating the rate in use is too high, setting this
check box may help, at the cost of a very small increase in the timing jitter in the DAC outputs. We have also found
that setting this check box allows slightly higher rates of sampling with dynamic clamping before slow dynamic
clamp updates occur.

Absolute levels
This selects between absolute and relative pulse levels. With absolute pulse levels, the pulse amplitude sets the
level directly, with relative levels the pulse amplitude is added to the level before the pulse to get the actual pulse
level.

Absolute times
This selects between absolute and relative pulse times. With absolute times, the pulse dialog allows you to enter
the pulse start time directly; with relative times you use the delay since the start of the previous pulse. This control
only affects the way in which the pulse dialog handles pulse start times, not the other times shown in the dialog,
the underlying pulse data or the generation of pulses.

Configure pulses
Press this button to configure the output pulses using the pulse configuration dialog. Details of doing this are
covered in Pulse outputs while sampling.

Signal Version 6.06

4-50

DAC enables, scaling and units
This section contains four sets of controls, one for each DAC (users of micro1401s and Micro1401 mk IIs should
ignore DACs 2 and 3). These control if a DAC is available for use and set the scaling and units with which DAC
values are defined.

Enable These check boxes enable the DACs for use. Set a check box to use a DAC, leave it clear otherwise. The
fewer DACs are enabled for output the more space is available for the display of each DAC in the pulse
dialog.

Zero The value (in calibrated units) corresponding to a zero value output from the DAC. This value, along
with Full, is used to convert the floating-point values used by Signal into the integer quantities actually
used by the DAC hardware. This conversion process occurs when generating pulse outputs, when
waveform data is pasted into an arbitrary waveform pulse and when compiling pulse sequences.

Full The value corresponding to the full scale output from the DAC. For DACs calibrated in volts set this to
5 for a 5 volt 1401 and to 10 for a 10 volt 1401.

If your 1401 has a patch clamp scaling card fitted, this scales DAC 3 in a 1401plus and DAC 1 in a
Power1401 or Micro1401. To calibrate the DAC in volts, set Full to 2.048 or 10.24 depending on the
scaling card setting.

Units The units with which the DAC output scaling is specified. This is a string from 1 to 6 characters long.

On the Power1401 DACs 2 and 3 are available on pins 36 and 37 respectively of the rear-panel analogue connector.
If a Signal top-box is fitted, DACs 2 to 5 will be available on the top box front panel, with DACs 6 and 7 available on
pins 36 and 37 respectively of the rear-panel analogue connector. If a Spike2 top-box is fitted then DACs 2 and 3
will be available on the top box front panel, with DAC’s 4 and 5 available on pins 36 and 37 respectively of the rear-
panel analogue connector.

Digital outputs enable
This section contains a set of check boxes to enable and disable the individual digital outputs for use. Set the
check box to use this digital output port, leave it clear otherwise. The fewer digital outputs are enabled for output,
the more space is available for the display of each output in the pulse configuration dialog. See Pulse outputs
during sampling for details of the digital outputs.

Outputs type: Sequence

This type of operation generates pulses and other outputs
using a list of sequencer instructions that are executed
inside the 1401 at a specified rate. Each instruction carries
out a simple function such as setting a DAC to a given
value, waiting for a specified time or looping. The sequencer
instructions are generated using a output sequence file; a
form of text document that is edited and viewed within
Signal using a Sequence view. Though writing a sequence
is a more complicated task than generating outputs using
the pulses dialog, the sequencer allows for more
complicated behaviour and can be very useful for the more
demanding operations.

The sequencer includes 256 variables that can hold values
and a table of data that can be quickly read and updated by
scripts running in Signal.

The details of the sequencer language and instructions are
covered separately under Sequencer outputs during
sampling. When Sequencer outputs are selected, a number of sequencer controls are shown:

Step period ms
This item sets the clock interval for sequencer instruction execution and thus the rate at which sequencer
instructions are executed. It functions identically to the Pulses outputs Resolution (ms) control, it has the same
hard limits of 0.1 microseconds to 250 milliseconds, the same rounding to the nearest 0.1 microseconds, and the
recommended limits for the various types of 1401 are the same as documented for Pulses outputs. Note however

Sampling data

4-51

that some instructions will have a speed penalty that will start to limit how fast you can run the sequencer on
modern 1401’s. DIV and RECIP in particular may take twice as long to execute as most other instructions.

Maximise wave rates
The design of the 1401 is such that it is possible to maximise either the timing precision with which the sequencer
executes or the highest possible arbitrary waveform output rates, but not both. Normally you should leave this
check box clear but if you want high waveform rates and are getting errors indicating the rate in use is too high,
setting this check box may help, at the cost of a very small increase in the timing jitter in the DAC outputs. We have
also found that setting this check box allows slightly higher rates of sampling with dynamic clamping before slow
dynamic clamp updates occur.

Free run without restarts
If this item is left clear, sequencer execution will be restarted at the first instruction at the start of each sampling
sweep (specifically, at the time that the data point at time zero is sampled). This allows you to easily produce
sequencer outputs at a particular time in the sampled data, but the sequencer is halted between sampling sweeps. If
this item is checked, the sequencer starts running at the time that sampling starts, before the first sampling sweep is
started, and continues to run until sampling is stopped.

Jumps controlled by
Sometimes you may want to stop users activating sequence sections with the keyboard or from the sequencer
control panel, for example when an inadvertent change in a DAC output controlling a force feedback device might
hurt the subject. This item allows you to do this; you can choose between Keys and control panel, Control panel
and Script only. The script language equivalent is SampleSeqCtrl() The script language SampleKey()
command can always activate sequencer sections.

Sequence file
This control defines the file holding the instruction sequence to be used. You can either enter a file name directly or
you can use the Browse button to select the sequence file directly.

DAC scaling and waveforms
This section contains fields that define how DAC outputs are calibrated for use with sequencer outputs and how
waveforms used by the sequencer are calibrated. It also sets the arbitrary waveform output rate, number of
waveform areas, the length of each area and the DACs used. Both the sequencer itself and the arbitrary waveform
output system assume that all the DACs have the same scale factors and units setting. See SampleSeqWave() for
the script language equivalent.

Full and zero These fields define the full scale output level of the DACs in the units that you wish to use
corresponding to a full-scale output from the DAC and similarly the value corresponding to a
zero-volt output from the DAC. They are used to convert from the user units entered into the
sequence into actual DAC values and are also used by the dynamic clamping system to
calibrate DAC outputs when dynamic clamping is used with sequencer outputs.

DAC units This defines the DAC units that you wish to use. This value is provided mainly for your
convenience (it is not used within the sequencer outputs system itself) but it is used by the
dynamic clamping system to check and calibrate DAC outputs when dynamic clamping is used
with sequencer outputs.

Waveform areas This sets the number of arbitrary waveform output areas, you can set any number from 1 to 256.

Waveform points This defines the length of each arbitrary waveform storage area, in points. Values from 0 to 4
million can be entered.

Output rate (Hz) This defines the rate at which the arbitrary waveform is played out through the DACs. In
conjunction with Waveform points, this sets the maximum duration of waveform replay. Values
from 1 to 10 MHz can be entered. The maximum achievable rate depends on the type of 1401
and the number of DACs used.

DACs These check boxes set which DACs will be used for waveform output. If one DAC is selected,
the waveform data consists of a simple list of values; for more than one DAC the data for the
DACs is interleaved starting with the lowest-numbered DAC.

Signal Version 6.06

4-52

Pulses or sequencer?

You can define the outputs that Signal will generate during sampling in two different ways; by defining pulses
using a graphical editor and by generating a sequence, a text file listing the operations that will be carried out in the
form of a simple program. Pulses output is easier to get started with and supports multiple states directly, this form
of outputs will be suitable for most users of Signal. You should consider using the sequencer only if you are unable
to achieve the effect you require with Pulses output. The table below summarises the main differences between
these two forms of output.

Sampling data

4-53

Pulses Sequence

Edited with Built-in graphical editor Built-in text editor

Visualise output Yes No

Stored as Part of the sampling configuration Output sequence .PLS files

Implemented by Drag and drop editing Machine code like language

Ease of use Very easy to learn and use Takes time to learn

Flexibility Uses pre-set building blocks All features available

User interaction Pulse editor while sampling Buttons trigger jumps

Script interaction Add, delete and modify pulses Variables and table data

Arbitrary waveform Data in sampling configuration Data loaded by script

Sweeps Locked to sampling sweeps Can be sweep independent

Timing Several instructions per item One instruction per text line

Though the way in which the required outputs are defined in Pulses and Sequencer outputs are very different, the
actual generation of outputs is carried out identically. When you use Pulses outputs, the pulses information is
used to build sequencer data that is loaded into the 1401 and executed in exactly the same manner as Sequencer
outputs. The timing requirements and limits for these two forms of output are therefore identical.

The following table summarises the use of the various output methods in the different sweep modes. More details
can be found under Pulse outputs during sampling and Sequencer outputs during sampling.

Pulses Sequence (triggered) Free-run sequence

Basic Sampling sweep and outputs
start together and are of
same length.

Sweep and sequencer
triggered (or just start)
together so that sequence is
repeatedly restarted.

Sequencer starts immediately
and runs throughout. Can
trigger sweeps or react to
sweep progress.

Peri-trigger Pulse outputs triggered
when sweep trigger is
recognised, same length as
remaining sweep.

Sequencer triggered when
sweep trigger is recognised, so
sequence restarts at time of
trigger.

Sequencer starts immediately,
runs throughout. Can trigger
sweeps via outputs or react to
sweep progress.

Extended Pulse outputs are triggered
or free-running, can be
longer than the sampling
sweep, outputs trigger the
sampling sweep at a defined
point.

Sequencer triggered (or just
starts) and triggers the
sampling sweep at the required
point.

Sequencer starts immediately
and triggers sweeps as
required. No external trigger
available.

Fixed interval Outputs (which are triggered
by an internal timer) starts
the sweep at a specified time.

Not available, simulate with
Extended mode with a free
running sequence.

Not available, simulate with
Extended mode with free
running sequence.

Fast triggers Single set of outputs of same
length as sampling sweep.
Sweep and outputs triggered
(or just start) together.

Sweep and sequencer
triggered together (or just
started) so that sequence
repeatedly restarts.

Sequencer starts immediately,
runs throughout. Can trigger
sweeps itself or react to
(triggered or free-running)
sweep progress.

Fast fixed
interval

Single set of outputs, same
length as sampling sweep.
Sweep and outputs triggered
together by internal timer.

Not available, simulate using
Fast triggers mode with free
running sequence.

Not available, simulate using
Fast triggers mode with free
running sequence.

Gap-free Single set of outputs, same
length as sampling sweep.
First sweep only can be
triggered.

Sequencer re-triggered at start
of each sweep so that
sequence repeatedly restarts.

Sequencer starts immediately,
runs throughout. Can react to
sweep progress, first sweep can
be triggered.

Signal Version 6.06

4-54

Automation configuration

This section of the sampling configuration dialog controls
the Signal automation features. There are two areas of the
dialog: Filing, which controls automatic file name generation
and automatic filing, and Sampling limits, which can be
used to restrict the amount of data sampled or filed. There is
also a button used to access the artefact rejection dialog.

Path
This sets the directory where the automatic file naming will
look to produce a unique file name and where new files are
saved when sampling has finished. This is distinct from the
directory for new files that is set in the Preferences dialog,
that sets the location for the temporary files used while
sampling. If this field is blank, automatic file name
generation and file saving use the current directory which is
generally not a good idea as this directory can change. You
can enter a directory path directly, or use the Browse
button to select a directory.

File name template
This sets a filename template for automatic file name generation (which should not be more than 22 characters
long), if left blank automatic file name generation is disabled and normal document names (Data1, Data2, …) are
used for sampled data. If a template is provided, it generates a sequence of unique file names based on a numeric
code. If the template ends with one or more digits, these set the length and initial value of the numeric code. If the
template does not end with digits, Signal adds "000" before using it. Signal increments the code until it finds an
unused name in the directory set by the Path field. Thus, a template of “testdat” generates “testdat000” to
“testdat999”, while “testdat10” generates “testdat10” to “testdat99”.

You can insert fields holding the time and date that the data was sampled by using % followed by a character code.
The button marked >> to the right of the template text can be used to insert these codes, which is easier than
remembering them. The codes are:

%T Time as numbers (hhmmss) %D Date as numbers (ddmmyy)

%H Hour in 24 hour format (00-23) %d Day of month (01-31)

%M Minute as number (00-59) %m Month as number (01-12)

%S Seconds as number (00-59) %y Year without century (00-99)

%Y Year with century, e.g. 2007

If you use one of these codes right at the end of the template, Signal will add a ‘_’ after the date information so that
the automatic filename generation does not change the date or time information. If a file name template is set, the
generated name is used automatically when the data file is saved without the user being prompted to confirm the
name. A different name can be specified using the File Save As command.

Save file to disk
If this check box is set, the new data file will automatically be saved to disk when sampling finishes. If automatic
filename generation is in use, the generated filename is used, otherwise the usual prompts for a file name from the
user are generated. Therefore, if you set the path, a filename template and this check box your data files will be
automatically saved without your having to enter a file name at the end of sampling.

Sampling limits
This part of the dialog controls three limits that will cause sampling to stop automatically. These are Number of
Frames, Sampling duration and File size. Each option has a check box to enable the limit plus a field for entry of
the limit value. If the check box for a particular limit is clear, or if the corresponding limit value is set to zero, then
that limit is disabled. Note that all of these limits cause sampling to stop, not finish, sampling can still be continued
after a limit is reached.

Sampling data

4-55

In addition to these user-defined limits, Signal has a built-in sampling limit based on the available free disk space. If
the available free disk space drops below 0.5 Mbytes, sampling stops automatically. This limit cannot be disabled
as it is important not to allow hard disks to get completely full, both because this can slow down file accesses
considerably and also because of the trouble a full disk gives to an operating system such as Windows that uses
spare disk space for virtual memory management. The user-defined limits are:

Number of frames If this limit is enabled, sampling stops when the set number of frames have been written to
the data file.

Sampling duration If this limit is enabled, sampling stops when the set time has passed since sampling was
started.

File size (Kbyte) If this limit is enabled, sampling stops automatically when the file size reaches or exceeds the
set size.

If you press the 'More' button in the sampling configuration dialog after sampling has stopped after reaching a
preset limit, sampling will allow another limits-worth of sampling to occur before stopping again. So if the frame limit
was set to 25, pressing More would cause sampling to continue until the data file had 50 frames. Pressing More
again would give 75 frames and so on.

OutputResets...
Press this button to open the dialog for the configuration output reset settings. These allow you to define DAC
and digital outputs that will be set before and after any sampling, for example to ensure that a stimulator is reliably
turned off.

Artefact reject...
The Artefact reject … button opens a dialog that allows you to configure artefact rejection. This provides
mechanisms for automatically rejecting or tagging sampled frames if they contain an artefact, normally caused by
stimulation.

Output Resets

In most cases, when sampling is not in progress the
signal levels on 1401 outputs are of no interest to
the researcher, but if an output is driving
equipment that needs to be held in an inert state
(for example a skin stimulator) it can be very
important (if only for the peace of mind of the
experimental subject) to ensure that the 1401
outputs are in the 'off' state before sampling starts
and are reliably restored to this state when
sampling finishes. This can be a particularly
difficult problem if sampling stops during the
middle of a sweep as the 1401 outputs will be left in
whatever state they were at the point where
sampling stopped. To avoid such problems, Signal
provides mechanisms to define and apply forced output resets. There are two sets of forced output settings;
application-wide settings which are controlled by a page in the preferences and these settings which are held as
part of the sampling configuration. The two sets of information are very similar; any reset level defined for an
output in the sampling configuration settings overrides the corresponding application-wide settings for the same
output. Note that if you do not have outputs that need to be controlled in this manner you do not need to make use
of these settings.

DAC outputs
All reset output DAC values are defined in volts, each DAC has a check box which enables the use of the forced
output value.

Digital outputs
There are separate fields for the main digital outputs used by the pulse outputs and the DIGOUT sequencer
instruction and for the lower digital outputs used by the DIGLOW sequencer instructions. Each field is eight
characters long with the first character controlling the highest output bit and the last character controlling the

Signal Version 6.06

4-56

lowest bit. An 'x' character leaves the corresponding output bit unchanged, a '0' clears the output bit (sets it to TTL
low) while a '1' sets it (TTL high). So, to set the digital output 0 BNC on the front of a modern 1401 high and the
digital output bit 1 BNC low, you would enter "xxxxxx01" into the DIG Out bits field.

Ramp DACs to desired voltage over ...
It may be necessary to avoid simply setting DAC outputs to the required voltage and instead ramp the output level
to the correct level over a period of time. This option is not currently available but if required by significant
numbers of users will be implemented in a future release.

Apply when sampling configuration is loaded
If this check box is set then the sampling configuration output reset settings will be applied immediately when the
sampling configuration is loaded into Signal by any means.

Apply before sampling starts
If this check box is set then the sampling configuration output reset settings will be applied when sampling is about
to begin.

Apply after sampling ends
If this check box is set then the sampling configuration output reset settings will be applied when sampling has
finished.

Artefact rejection

The artefact rejection dialog can be used to configure Signal to
automatically examine newly sampled data and, if the data has reached
the ADC limits, to reject or tag the new frame. Artefact rejection is
important when generating averaged evoked responses, particularly
from the EEG, where artefacts often occur and where the mathematical
rigor of the averaging process will be affected by the presence of
signals at the ADC limits.

The Artefact rejection mode item controls what form of artefact
rejection to apply. It can be set to None for no artefact rejection, Tag
frames to label frames with artefacts, or Reject frames, to discard
frames with artefacts by not writing them to disk. The Artefact level is the percentage of the ADC range outside
which data values will be regarded as an artefact.

The next two items set the time range for the search for artefacts; note these are specified as offsets from the start
of the data rather than as absolute frame times. The final item, Allowed bad points (percent), sets the limit before
the frame is rejected or tagged, allowing you to avoid rejecting frames with a trivial amount of bad data.

If artefact rejection is enabled, each frame of data sampled is scanned for artefacts. All sampled waveform channels
are scanned over the time range specified and the points that exceed the Artefact level are counted. If the
percentage of bad points found during the scan exceeds the limit of Allowed bad points then the frame is rejected
or tagged as appropriate.

Creating a new document

Once you have set up the sampling configuration you can create a new sampling data document. You can do this
by clicking on the Run Now button in the sampling configuration dialog or the Run Now button on the Toolbar, or
by selecting New from the File menu, then Data Document for the file type.

The exact appearance of the new document view varies, depending on the configuration. The name for the new
document will either be Data1, Data2, and so on or a name automatically produced from the file name template in
the sampling configuration. You can customise the view by adjusting the x axis, y axes, channels and other aspects
of the view.

Frame zero
A sampling document is different from all other types of data documents because it starts at frame zero, while the
others start at frame 1. Frame zero is a special frame that holds the transitory data making up the sweep currently

Sampling data

4-57

being sampled; frames 1 onward hold data that has been made permanent by being written to the disk file. Sampling
is a cyclical process of collecting a new sweep of data into frame 0, deciding if it is to be written to disk and writing
it if necessary, clearing frame 0 and starting the next sweep off. This process continues until enough frames have
been written to disk or until sampling is stopped.

Data is shown in frame zero for as long as it is the most recent data. Frame zero is cleared when pulse outputs for
the next frame start or when sampling of the next frame begins. For Basic and Peri-trigger sweeps, this means that
data is displayed right up until data from the next sweep starts to be drawn. For Extended or Fixed interval sweep
modes, the frame zero data will be cleared when the pulse output for the next frame starts and the new data starts to
be drawn when the sampling is triggered. There may be a period when no data is shown, which provides the user
with a clear indication that the next sweep has started. This is valuable because once the pulse output or sampling
has started, the Accept/Reject button in the control panel cannot be used on the previous sweep of data.

For fast sweep modes (Fast triggers, Fast fixed interval or Gap-free) the most recently sampled sweep is
displayed, starting when the first data points for the frame are sampled.

The sampling is controlled using a small floating or docked window; the Sampling
control panel. This contains buttons and other controls to interact with the
sampling. Sampling will not start until you click Start in this control panel (the
Sample menu duplicates the panel controls). If the Event 1 start box is checked,
sampling waits for an external signal after the start button is pressed.

Online analysis

You can create memory channels and result and XY views to hold the result of analysis carried out during data
acquisition in exactly the same way as when working offline; using the Analysis menu Measurements to data
channel, New Memory View and New XY View commands. The dialogs through which you specify what analysis is
to be performed are exactly the same as when offline, however the Process dialog that specifies what data is to be
processed is different from it’s offline equivalent.

This dialog controls which frames to include in the processing and how to update the memory view holding the
analysis result (see under Analysis menu for a full description of this dialog). The most common mode is All filed
frames, with an update every 0 frames (every frame). This dialog closes when you select either OK or Cancel. You
can recall it with the Process command in the Analysis menu or by right-clicking in the result view.

Other variations on the standard Process dialog are provided when carrying out online processing to an XY view,
particularly when the data source is a memory view which is itself being generated by online processing.

Sampling control panel

The sampling control panel holds several buttons and check boxes used to control
and interact with data sampling. When the control panel is a floating window it
looks like the picture to the right, or it can be docked to any edge of the Signal
application window (most often the top). Click Start to begin sampling, or Abort to
give up immediately. Once sampling has started the buttons change but most check
boxes are always present and can be changed at any time during sampling.

The Event 1 start check box allows you to trigger the entire sampling process
externally. If this check box is set, clicking on Start will not start sampling directly,
it enables the start of sampling on an event 1 pulse. This allows precise control of
the time of the start of sampling; the time from which the frame absolute start times are measured. While Signal is
waiting for an E1 start pulse, the Start button will flash ‘Waiting for E1’. The E1 input is on the 1401plus front
panel and is pin 2 of the rear panel Events connector for Power1401s and Micro1401s with a suitable ground on pin
9. Connect the E1 input to ground (or pull it below 0.6 V) to start sampling.

The Sweep trigger check box is initially set from the Sweep trigger item in the sampling configuration. It enables
or disables triggered sweeps, while Signal is waiting for a sweep trigger the check box text will show ‘Waiting (TR)’.

Signal Version 6.06

4-58

The check boxes in the Sweep end section of the dialog control what happens at the end of a sweep of sampling
and how data is written to disk. If the Write to disk at sweep end check box is set, then each frame zero is written
to the disk file when the sweep finishes. If the check box is clear, then the frame is not written - the check box text is
drawn in red in this case to remind you that data may be lost. You can override this behaviour for individual sweeps
using the Accept/Reject button in the sampling control panel.

The Pause at sweep end check box controls whether a new sweep is started automatically once the previous
sweep has ended. If the check box is set then sampling will pause until the Continue button is pressed, or until the
check box is cleared again, allowing the user to pause for a while or to inspect the data and accept or reject each
frame. If the check box is clear then the next sweep starts immediately.

Sweep end check box combinations

Write to disk Pause at Effect

No No Continuous (free-running or triggered) sweeps for signal monitoring

Yes No Continuous (free-running or triggered) sweeps written to disk

No Yes Interactive sweeps (optionally triggered) written to disk if accepted

Yes Yes Interactive sweeps (optionally triggered) written to disk unless rejected

The sampling control panel can be hidden or shown using the Sampling menu, the Signal toolbar or the pop-up
menu provided by right-clicking the mouse on unused parts of the Signal window. It can also be hidden by clicking
on the x button at the top right of the control panel, or docked at any edge of the Signal window.

During sampling

Once sampling has started, the sampling control panel changes to show buttons suitable for the sampling process.
If Event 1 start was checked before you click Start, the word Waiting flashes until a suitable signal is applied to
the E1 input to enable sampling. This is distinct from the Sweep trigger. Use this method to synchronise the start
of sampling with an external event. Sampling starts within 1 or 2 µs of the external event signal. The buttons
available are:

Start This is only shown before data capture starts and after sampling has been restarted. When you click
on the button, sampling of data begins. If the Sweep trigger box is checked, the 1401 system waits
for the sweep trigger before starting to collect data.

Continue This button is labelled Start before data capture starts. It's name is changed and it is enabled when
sampling is paused at the end of a sweep. When you click on the button, sampling of the next sweep
is enabled. If the Sweep trigger box is checked, the 1401 system waits for the sweep trigger before
starting to collect data.

More This is labelled Start before data capture starts. It's name is changed and it is enabled when sampling
has been stopped or when one of the Automate limits has been reached. Pressing it will cause
sampling to resume, if it had stopped because an Automate limit was reached the limit is adjusted
upwards. So if sampling had automatically stopped because 100 frames had been collected, pressing
More will cause a further 100 frames to be collected before sampling again stops automatically/

Stop This button is displayed after data capture starts. If you click on this button, the data capture stops,
in the same manner as if one of the Automate limits was reached. Once the data capture has been
stopped it is possible to resume sampling again using the More button.

Finish This button is displayed when data capture has stopped but could be resumed by pressing More. If
you click on this button, data capture stops completely and it is not possible to resume sampling
again.

Accept Clicking on this button writes unwritten frame 0 data to disk. If frame zero is still being collected, it
overrides the Write to disk at sweep end check box so that the sweep is written to disk at sweep
end; it does not affect subsequent sweeps. If the frame has been collected and sampling is paused,
this writes the frame to disk immediately. The button acts upon a sweep up until the point that the
next sweep is triggered or pulse outputs for the next sweep begins.

Sampling data

4-59

Reject If Write to disk at sweep end is checked, or sampling is paused at the end of the sweep and frame 0
has already been written, then the label on the Accept button changes to Reject. Clicking on Reject
either overrides the Write to disk at sweep end check box to cause the currently sampling frame not
to be written automatically, or removes the current frame 0 data from the end of the data file, as
appropriate. This button acts on a sweep up until the point when the next sweep is triggered or pulse
outputs for the next sweep starts.

Abort This button abandons sampling and discards the file. You can use this button before sampling starts
or while sampling. You are warned if this will lose saved data.

Restart This button is available once sampling starts. It stops sampling, discards any data that has been
written to disk, then waits for you to start sampling again with the same document by pressing Start.
You are warned if this will lose saved data.

Other interaction with sampling

If a keyboard marker channel is being sampled, you can insert markers into the sampled data by pressing keys on
the keyboard. You can do this if the new data view is the current view, or if the sampling control panel is current.
The current view or window has a highlighted title bar, you can make a view current by clicking on it. If the
sampling control panel is current, you should be careful about pressing the space bar, which is equivalent to
pressing whichever button is currently highlighted, or pressing Enter, which is equivalent to pressing the
Start/Continue button.

If you are using Peri-triggered sampling in any of the analogue trigger modes, frame zero of the sampling document
displays a pair of horizontal cursors that indicate the positions of the two trigger thresholds. These cursors are
displayed on the highest-numbered waveform channel (which is the last port in the ADC ports field), as this is the
trigger channel. For +Analogue and Analogue trigger modes, the cursors show the trigger level and the trigger
level minus (or plus) the hysteresis, this latter level is shown as the Arm level. For =Analogue trigger mode the two
separate trigger levels are shown. During sampling you can adjust the trigger levels used by moving the cursors;
they cannot be moved to a different channel as the trigger channel is fixed.

If you use the keyboard command Ctrl+PgUp, Signal will switch to displaying the last frame that was saved to
disk.

If you are using a programmable signal conditioner such as the CED 1902 programmable amplifier then you can use
the signal conditioner control panel to adjust the amplifier settings – see Programmable Signal Conditioners for
more details of these. Note that, if you alter the amplifier gain or offset settings, the channel calibration will be
adjusted in such a way to keep the incoming data correctly calibrated – cancelling out the gain and offset changes
– so you will not normally see any change in the displayed data. The Edit menu Preferences dialog has a setting
(in the Sampling section) to allow the display range shown to be adjusted, if required, to reflect changes in the ADC
range caused by signal conditioner changes.

You can tag data frames as they are sampled by pressing Ctrl+T, or frames can be automatically tagged by the
artefact detection system.

Most standard display manipulation mechanisms work in exactly the same manner online, but frame overdraw mode
works differently on frame zero; it never erases old data but just redraws it in grey and the frame display list is
ignored. This provides a very nice ‘storage oscilloscope’ style display, but if any part of the view is redrawn the
previous traces are lost. You can use the Edit menu Clear command to erase all the previous traces.

Stopping sampling

Sampling can be stopped by clicking on the Stop button or by the sampling limits being reached. If a (non fast
mode) sweep is in progress when Stop is pressed then sampling will continue until the end of the sweep is reached.
When sampling has stopped Signal is in between sampling and finishing sampling. The sampling control panel is
still present, but the button labels will change:

More This is the button previously labeled as Start or Continue. Click it to resume sampling as if the Stop
button had not been pressed. If sampling stopped due to the frame count reaching a limit then
pressing More resets the frame count and sampling runs until the count again reaches the limit,
otherwise the limit is disabled and sampling continues indefinitely.

Signal Version 6.06

4-60

Finish This is the button previously labeled as Stop. If you click on this button, the data capture is
terminated and the sampling control panel disappears.

Click on the Finish button to end sampling. If the sampling configuration has automatic saving to disk enabled, the
new data file will be saved at this point, using either the automatically generated filename from a template or a name
entered by the user as appropriate. You will also be prompted for a comment for the new file, if this feature is
enabled. Once the sampling has actually shut-down, the sampling control panel is removed. In the new data view,
frame zero of the data document disappears and the view changes to show the last filed frame if it was previously
showing frame zero. If there are no saved frames, the data document and view are destroyed, giving the same effect
as pressing Abort.

Saving new data

A sampling document that has stopped sampling is essentially the same as a document loaded from disk. However,
unless you are using automatic saving to disk, the data has not yet been saved in a permanent disk file, though it is
stored on disk as a file without the .CFS file extension. To keep the data, you must save the new data using the
File menu Save command. If you try to close the document view without saving the data Signal will check that you
really want to do this. If you do not save the new document the data file will be deleted but, to try to protect you
against accidentally losing important data, it will be moved into the recycle bin.

Data documents are always stored on disk while other document types are kept in memory until you save them. We
keep data documents on disk because they can be very large. When you use the File menu New command, Signal
creates a temporary file in the directory specified in the Edit menu Preferences dialog. If you do not specify a
directory, the location of the temporary file is system dependent. When you save a new data document after
sampling, Signal moves it to the directory you specify.

Saving configurations

To avoid setting the sampling, analysis and screen configuration each time you sample, you can save and load
sampling configurations from the File menu. The configuration includes:

· The basic sampling parameters in full, including port information for all ports.

· The position of all windows associated with the new file (including duplicated windows and the various control
panels) plus all windows generated by processing.

· The displayed channels and display modes of the channels in the windows.

· The outputs to be generated during sampling if pulse outputs are used - sequences are saved in separate .pls
files.

· The multiple states information, including the protocols.

· The processing parameters and update modes of all memory views.

If sampling ends without failing or being aborted, then Signal will save the sampling configuration that was used as
last.sgcx. This last-used sampling configuration is used the next time data is sampled unless a default sampling
configuration is found, which overrides this. When Signal starts, it searches for and loads the configuration file
default.sgcx. If this cannot be found, it uses last.sgcx so generally you will get the same sampling setup as
was used last time. If sampling fails or is aborted the last.sgcx file is not updated and the sampling configuration
switches back to the configuration in use at the time you started sampling.

Both of these files are saved in the current user's application data directory but in order to be as compatible as
possible they are searched-for in both the current user's application data directory and the application installation
directory.

It is a good idea not to rely on last.sgcx as this may have been changed by someone else doing some sampling,
instead you should save important sampling configurations to disk using suitable names and reload them before
starting an experiment. You can make this much easier by using the Sample Bar which holds sampling
configurations so that they can be quickly loaded using a single mouse click.

Sampling data

4-61

Sequence of operations to set and save the configuration

This describes a sequence of operations that build a new sampling configuration from scratch. You will find that
once you have built a few configurations, it is simpler to load an existing configuration and change the sections
that do not fit your requirements, rather than re-build entirely. The steps are:

1. Open the Sampling Configuration dialog using the Sampling menu or toolbar and set the sampling
configuration, limits and port information.

2. Press Run Now from the configuration dialog or press OK and select the New command in the File menu and
choose Data Document.

3. Arrange the new file view as you require and add or remove duplicate windows.

4. Use the Analysis menu New Memory view and Measurements view commands to add result views, XY views
and memory channels as required and set their update mode and position on screen.

5. You can use the File menu Save Configuration As command to save the configuration to disk at this point.

6. Sample, adjusting any positions, display configurations and so forth as required. Again, you can save the
configuration as adjusted at this point.

7. If sampling has finished without being aborted or failing, the sampling configuration is held in memory for use
the next time you sample. You can use the File menu Save Configuration As command to save the
configuration used to disk.

You can re-use a saved configurations by loading it with the File menu Load Configuration command before you
use the File menu New command to create a sampling document.

Signal Version 6.06

5-62

Pulse outputs while sampling

Signal can generate pulse and waveform outputs from your 1401 during sampling using the DACs and the digital
outputs.

Signal pulse outputs provide a simple way of configuring outputs that will be generated during sampling. Pulse
outputs, like Signal data acquisition, is arranged as fixed-length frames. Depending upon the sampling sweep mode,
the pulse outputs may be the same length as the sampling sweep, longer, or shorter (Peri-triggered mode only). In
all circumstances, the outputs are fixed in time relative to the sampling sweep. In Basic mode and the three fast-
trigger modes (Fast triggers, Fast fixed interval and Gap-free) the pulse outputs start at the same time as the
sweep (triggered or un-triggered) and is of the same length. In Peri-triggered mode, the pulse outputs start at the
time of the trigger (which can be before or after the start of the sampled data, depending upon the pre-trigger
points), and again runs to the end of the sampling sweep. In Extended and Fixed interval sampling modes, the
pulse outputs can be any length greater than or equal to the sampling sweep and the sampling sweep starts at a
defined point within the pulse outputs.

Pulses dialog

If you press the Configure Pulses button
(only available with Pulses outputs
selected) in the outputs page in the
sampling configuration, Signal will
display the Pulses dialog which allows
you to view and edit the pulses.

This dialog can also be used to control
and adjust the pulses while Signal is
sampling, in which case it is accessed
using the sampling menu, the Signal
toolbar or by using the right mouse
button popup menu.

The Pulses configuration dialog can be
used to define square pulses and pulse
trains, ramps, sine waves, markers and
arbitrary waveforms which will be generated during sampling. Many of these pulses can automatically vary by
incrementing their amplitude or duration by fixed amounts. This provides a straightforward way of generating a
repeating set of pulses from one definition. If you are using Extended frame or Fixed interval sweep modes, this
dialog is also used to set and control the length of the pulse outputs, the start of the sampling sweep within the
outputs period, the sampling sweep ADC points if Variable points are enabled, and the fixed interval sweep
interval and interval variation.

You can resize the Pulses dialog by dragging the bottom right-hand corner of the dialog.

Pulses dialog layout

The dialog is divided into a number of sections:

Pulse and state controls
These controls occupy the topmost
area of the dialog and provide buttons
used to interact with the dialog,
information about any timing problems and a state selector and state label for multiple states use:

These buttons are used to toggle through the pulses on the current output trace in forwards or reverse
time order, selecting each pulse available in turn.

This button is used to delete the currently selected pulse.

Pulse outputs while sampling

5-63

This button is only enabled when multiple states controlling dynamic outputs are in use (see Sampling
with multiple states). It is used to copy sets of pulse data from the currently displayed state to other states.

See below for more details on using this.

Timing faults: 3
This area shows if there are any timing problems with your pulses, it will be blank if there are no problems. Timing
problems are caused by the fact that the Signal outputs system can only do one thing within each time step, a non-
zero timing fault count indicates that at some point or points the system is trying to do more than one thing at a
time, cannot do so and therefore an action will be delayed. Timing faults will not cause sampling to fail, they just
indicate that the pulse timings will not be perfect, to get rid of them you will have to alter your pulse times. Red dots
are drawn at the bottom edge of the pulse display area (below the blue control track) to indicate where the timing
problems are happening - you can see three of them in the Pulse display area picture below.

This pair of controls is only visible when multiple states controlling dynamic outputs are in
use (see Sampling with multiple states). They are used to select the state shown by the

dialog: you can only display and edit pulses for one state at a time.

This control is also only visible when multiple states controlling dynamic outputs are in
use (see Sampling with multiple states). It is used to set a label for the currently displayed

state; a descriptive name for the state up to 10 characters long that will be used in the state control bar buttons and
elsewhere within Signal. If you leave this field blank the standard state names “Basic 0, State 1 ..” will be
used.

Pulse display area
This occupies most of the upper part of
the dialog and shows the currently
defined outputs as graphical traces. At
the bottom of the display area is a blue
line, the control track, that is used to
hold special pulse items and provide
access to special information. The
control track line also indicates what
portion of the pulses output period that
is covered by the sampling sweep, the line is thick where sampling is happening (if you are using Extended or
Fixed interval sweeps) and thin where no sampling is taking place.

Numbers indicating the start and end times of the pulses are shown just below the pulse display area itself. If you
are dragging a pulse about an extra indicator appears here showing the current drag time.

The outputs themselves are displayed starting with DAC zero at the top and finishing with the digital outputs at
the bottom, with the higher-numbered digital outputs first. Only traces for enabled outputs are displayed, they are
labeled with the DAC or digital output bit number. If you double-click on a trace in the display area it will expand to
use all of the space available for traces, hiding all other outputs. Double-clicking on the display a second time will
restore the display of all traces. If you stretch the dialog by dragging a corner or edge, the pulse display area will
expand to fill the space available and give you more space to see what the pulses are doing.

This display also includes a dotted rectangle drawn around one of the pulses, or around the initial level of an
output. This indicates the currently selected pulse whose numerical parameters are displayed at the bottom of the
dialog (see the Values section below). You can select a pulse by clicking on it with the mouse. Alternatively you
can toggle the selection through the various pulses on an output using buttons in the Controls section. You can
change the start time of a pulse by dragging it around the display area.

Review controls
 These are at the right of the central area of the dialog, just below the numbers showing the start and
end times of the pulse display area. The controls are:

Click on this control to see the effect of pulse variations. While you hold down the mouse button on this
control, the limits to pulse variations plus three intermediate values are displayed.

Click on this button to animate the display to show the effect of pulse variations. The display updates to
show the effect of each variation in turn. Click again on the button to turn animation off.

Signal Version 6.06

5-64

Pulses toolbox
 This is the area at the bottom left of the dialog. It holds pulse icons which can be dragged into the display area to
add a new pulse into the outputs. Each icon represents a different type of pulse:

a square pulse without variations, digital or DAC.

a square pulse with varying amplitude, DACs only.

a square pulse with varying duration, digital or DAC.

a train of square pulses without variations, digital or DAC.

a ramp pulse with varying amplitude at start, finish or both, DACs only.

a sine-wave without variations, DACs only.

an arbitrary waveform on one or more DACs.

a digital marker generation item, this is not an output but is added to the sampled data.

Pulse values
This is the area at the bottom centre of the dialog, it holds the
parameters defining the currently selected pulse which can be
changed by editing the parameter values. The parameters
shown vary according to the type of pulse, the box title shows
the type of pulse and the start and end times for the pulse,
again using the currently selected time units. The details of the
parameters are covered under the individual pulse types. If the
control track is the current selection this area will show other parameters according to the sampling mode, such as
the length of the outputs, the time of the sweep trigger , the fixed interval times and the sampling sweep points.

The Id field at the top right of the values area displays the name for the currently selected pulse, which can be
edited as desired. The main reason for giving a pulse a name is to make it easy to access the pulse from the script
language.

Dragging and dropping

A number of operations in the pulse configuration dialog are carried out by dragging and dropping. A major
advantage of drag and drop is its graphical, visual nature. For this reason, it is increasingly commonly found as a
way of carrying out operations in Windows software.

To drag and drop a screen object place the mouse pointer on top of the object, then press and hold down the left
mouse button. The mouse pointer may change to indicate the start of a drag operation and an icon may be attached
to the pointer to indicate that the object has been ‘grabbed’. Still holding the mouse button down, move the mouse
pointer to drag the object to its required destination. The mouse pointer may change while you do this, a common
effect is for the pointer to change to a no entry sign (a circle with a diagonal line through it) to indicate that you
cannot drop the object at this point. When the object is at the required destination, release the mouse button to
drop it in place.

Adding a new pulse

To add a new pulse into the outputs, select the pulse required from the pulses area of the dialog. Drag the new

pulse from the pulses area into the display, the mouse pointer changes to a (a hand with a plus sign) to
indicate that you are adding a new pulse. As you move the mouse pointer about the display, a vertical line
indicates where the new pulse will go and the drop time is displayed in the control area. Once the pulse is correctly
positioned, drop it into place by releasing the mouse button.

If you cannot get the display area to accept the new pulse (the mouse pointer is always No Entry), this could be
because of the following reasons:

· You are trying to drag a DAC-only pulse such as a ramp, sine wave or waveform into the digital outputs.

· You are trying to drag an arbitrary waveform or marker generation item onto an output track, these can only go
on the control track.

Pulse outputs while sampling

5-65

Moving a pulse

To move a pulse, select the pulse in the display area. Then drag the pulse into the new position required (you are
allowed to drag a pulse onto a different output as long as you do not change from DAC to digital or vice-versa).

The drop position is shown as for adding a new pulse, the mouse pointer changes to (a hand) to indicate
taking hold of something without addition or removal.

If the Ctrl key is held down during the drag operation the mouse pointer will change to (a hand with a + in
the centre to indicate addition) and the pulse will be copied instead of moved.

To avoid problems with precise positioning of the mouse Signal does not recognise a drag-and-drop operation until
the mouse has moved a certain amount away from the initial position. The mouse pointer shows this by only
including the pulse icon and showing the drop position when the amount of movement is sufficient. You can give
up on a move by returning the pointer close to the initial position. If you want to move a pulse a small amount, but
find that Signal will not recognise a drag operation that short, move the mouse pointer a larger amount vertically to
convince Signal that you mean it and smaller horizontal movements will be accepted.

If you cannot find or click on the pulse to start dragging it (usually because it is too short or completely hidden by
another pulse), see Finding a pulse for how to select it. Once the pulse is selected, you can change the start time
directly by editing it in the values area.

Removing a pulse

To remove a pulse, select it in the display area, then drag the pulse out of the display area completely. The mouse

pointer changes to (a hand with a minus sign) to indicate a remove operation once you are outside the display
area. Drop the pulse to complete the removal.

Alternatively, once the pulse has been selected, you can remove it by clicking the Del button in the controls area. If
you cannot find or click on the pulse to start dragging it, see Finding a pulse for how to select it.

Finding a pulse

It may be difficult to see a pulse or to click on it because the pulse is too short to see or because it is hidden by

another pulse. Click on the appropriate output trace, then use the buttons to toggle through all of the

pulses on that output. At the appropriate point, your hidden pulse will be selected and can then be edited or
deleted directly.

Copying pulses

You can copy a single pulse to the same or a different output by holding down the Ctrl key while dragging a pulse,
without the Ctrl key this moves a pulse.

When working with the multiple sets of pulses provided by
multiple states with dynamic outputs, it is often useful to
copy a set of pulses or settings to create duplicated data
for other states. The Copy button opens a dialog where
you can specify items within the currently selected state to
be copied and a range of destination states to copy them
to. The left-hand side of the dialog sets the items that will
be copied, the right hand side sets the destination, with
check boxes for each DAC and digital output plus another
for the control track that select the pulse items to be copied. If the Length, trigger check box is checked, the
outputs length, the sweep trigger time within the outputs and any variable points settings are copied from the
currently selected state into the target states, otherwise these values are left unchanged. Similarly, checking the
Fixed interval check box causes the fixed interval and interval variation values to be copied. For the DACs and
digital outputs selected, all existing pulses in the destination states are deleted before the new data is copied in.

Signal Version 6.06

5-66

Pulse types

The pulses dialog can handle a number of different pulse types, both varying and not, some of which can only be
used on DAC outputs or are attached to the control track:

a square pulse without variations, on digital or DAC outputs.

a square pulse with varying amplitude, on DACs only.

a square pulse with varying duration, on digital or DAC outputs.

a train of square pulses without variations, on digital or DAC outputs.

a ramp pulse with varying amplitude at start, finish or both, on DACs only.

a sine-wave without variations, on DACs only.

an arbitrary waveform on one or more DACs, the pulse item is on the control track.

a digital marker generation item on the control track only.

in addition to these there is extra information setting the initial level of an output. For the control track, this sets
extra information about the outputs, for example the outputs length and the sweep interval in Fixed interval mode.

Initial level

This item specifies the state that the outputs are set to at
the beginning of the pulse outputs, this item is always
present and cannot be deleted or moved.

The item has a single parameter; Level, that sets the level
that the DAC is initially set to. The level entered is scaled
before use as defined by the DAC settings in the output
page. The three other parameters at the bottom of the
values area; Step change, Repeats and Steps, are used to define a built-in variation in the initial level. Built-in
variations are described under Pulses with variations.

For digital outputs only a single initial level parameter is available, set this to 1 for a high output and 0 for low.

Control track values
The initial level item for the control track provides other
parameters that control the overall outputs, these available
vary with the sampling sweep mode, they are provided as
part of the pulses outputs setup because they can vary
with the state in multiple states sampling and can interact
with the outputs in some cases.

When using Extended and Fixed interval sweep modes,
the outputs length and start time for the sampling sweep are shown. The Outputs parameter sets the length of the
outputs, while the Trigger parameter sets the time, relative to the start of the pulse outputs, of the start of the
sampling sweep.

With Fixed interval mode two more parameters; Interval (s), and Vary (%) appear (with Fast fixed interval mode
the Interval field is available but not Vary). These set the timed interval between output frames (which cannot be
less than the pulse output frame length) and the percentage random variation in the interval, from 0 to 100, for the
selected state. If the variation is non-zero, the frame interval used while sampling will vary randomly from Interval-
Vary% to Interval+Vary%.

If variable sweep points are enabled (only available with Extended and Fixed interval modes when multiple states
are used), other fields are provided to set the number of points sampled per channel for the selected state. This
ADC points field can be set to any even number less than or equal to the sweep points value set in the General
section of the sampling configuration, the Length field does the same but in terms of the sweep duration.

Pulse outputs while sampling

5-67

Simple square pulse

This specifies a square pulse without any variations. This
is the simplest type of pulse and is available for DACs and
for the digital outputs, in addition to generating simple
pulses multiple items can be used to generate simple pulse
trains or biphasic pulses. Many of the parameters used for
this type of pulse are also used for all other types of pulse,
to save space these common parameters are described in
detail once only.

The Size parameter sets the pulse size, in calibrated units as defined in the outputs page. If absolute pulse levels
are in use, the item changes to Level, and is the level that the pulse goes to, for relative levels the size is added to
the level prior to the pulse to get the pulse level. Either positive or negative values can be used.

For digital pulses, the Size parameter disappears; for outputs with a low initial value a high-going pulse is
produced and vice-versa. The use or otherwise of absolute pulse levels does not affect digital pulses and
overlapping pulses do not invert each other.

The Start parameter sets the start time for the pulse. If absolute times are not in use, this parameter changes to
Delay and sets the delay from the start of the previous pulse to the start of this pulse. The Length parameter sets
the length of the pulse. Both of these fields will use the time units selected in the Preferences dialog.

If the No return check box is checked, the pulse does not return back to the initial level when it ends but just stays
at the pulse level, giving us a single step-change. In this circumstance the length parameter has no effect.

Varying amplitude pulse

This specifies a square pulse whose amplitude varies as it
is used. The Size, Start and Length parameters are exactly
the same as for the simple pulse. In addition there are three
parameters controlling the built-in variation. This type of
pulse is not available for digital outputs. The behaviour of
the built-in variation is described under Pulses with
variations.

Varying duration pulse

This specifies a pulse whose amplitude is constant but the
pulse length changes as it is used. This is the only pulse
with a built-in variation that is available for the digital
outputs.

The Size, Start and Length parameters are exactly the
same as for the simple pulse. The other parameters control
the variation, with the exception of the Push back check box. If this is checked, increases in the pulse duration
delay the start of following pulses by the same amount. Decreases in the pulse duration move the following pulses
earlier in time. If the check box is clear, changes in the pulse duration do not affect the time of following pulses. The
behaviour of the built-in variation is described under Pulses with variations

Square pulse train

This specifies a series of non-varying square pulses. This
type of pulse is available for DACs and for the digital
outputs.

The Size, Start and Length parameters are all exactly the
same as for the simple square pulse. The extra parameters
are Pulses, which sets the number of pulses in the train,
Interval which sets the pulse spacing - the spacing between the start of two adjacent pulses, which should not be

Signal Version 6.06

5-68

less than Length, and Freq (Hz) which allows you to set the pulse spacing in terms of pulses per second. Changes
made to Interval are reflected in Freq and vice-versa.

Ramp with varying amplitudes

This item specifies a pulse with different start and end
amplitudes so that the top of the pulse can be sloping. The
variation in amplitude, if this is used, can be applied to
either the pulse start or end, or both.

The Start and Length parameters are exactly the same as
for the simple pulse, the size parameter is also called Start,
but shows the DAC units to avoid confusion. The extra parameters are End, which sets the pulse level at the end of
the pulse and a selector for the variation which can be set to Step both, Step start or Step end. This is an
extremely versatile form of pulse; for example by setting the start size to zero you can produce a ramp running from
one level to another.

Sine wave

This item specifies a cosine wave output of fixed duration,
amplitude and frequency for output on a DAC. For Signal
version 3, sine wave output can be generated on all DACs.
In earlier versions only DACs 0 and 1 could be used.

The Size parameter sets the amplitude of the cosine wave
(the distance from the mid-point to the extreme value, so
the total amplitude will be Size*2). The other parameters are Centre, which sets the level about which the cosine
oscillates, Start phase, which sets the initial phase in degrees, Cycle (s), which sets the duration of one complete
cycle and Freq (Hz) which allows you to set the cycle period in terms of cycles per second. The Centre value is an
absolute or relative voltage level as required. Because the output is actually a cosine wave an initial phase of 90
degrees will start the output off at the centre level.

Digital marker

This item specifies a digital marker generation item with the
marker code either set by the pulse item or read from the
digital inputs. Digital marker generation items can only be
placed onto the control track (as they do not apply to an
output) where they are shown by a green tag.

The Start parameter sets the time for the digital marker
generation. The Code parameter sets the marker code value unless the Read inputs check box is set, in which case
the code value is read from the 1401 digital inputs.

Arbitrary waveform

This item specifies arrays of data to be output to one or
more DACs at a specified rate. Output to each DAC starts
simultaneously and consists of the same number of points,
so the output also finishes simultaneously. An arbitrary
waveform item can only be placed upon the control track,
where it is shown by a purple tag, it also shows the
waveforms on the relevant DACs.

Adding a waveform item to the pulse outputs is a two-step process:

1. First you add the arbitrary waveform item to the control track, which creates the item with a waveform that is all
zeroes. Once the waveform item has been created you can adjust the DACs used, the waveform output rate and
the number of points to get the parameters correct - its particularly worthwhile to set up the DAC list at this
point.

Pulse outputs while sampling

5-69

2. Once the basic waveform item is set up, you can then put the waveform that you want to use into it. This is
most easily done using the clipboard; if you copy Signal data to the clipboard you can then paste it into your
output waveform(s). To do this, select your new waveform item and press Ctrl+V on the keyboard or right-click
on the item and select Paste. Signal then provides the Paste waveform dialog which you can use to control
what data is pasted and which DAC outputs it is pasted into, along with other aspects of the paste operation.
You can also use the script language to copy data from a script array into the output waveform(s).

The DAC list parameter specifies which DACs are used, it is a list of DAC numbers from 0 to 7, this list is always
sorted so if you enter "620" it will be redisplayed and used as "026". The Start parameter sets the start time for the
waveform output in the usual manner, while the Rate (Hz) parameter sets the output rate for the data points for
each DAC and the Points parameter sets the number of data points output for each DAC.

The maximum output rates possible vary according to many factors such as the ADC rate and the pulse output
timing resolution. Tests carried out at CED with two channels of ADC data sampled at 10 KHz show that waveform
rates of 70 KHz are possible using a 1401plus, up to 275 KHz can be achieved with a micro1401 and 500 KHz is
possible (with difficulty) when using a modern Power1401. The Maximise wave rates check box in the Outputs
page of the sampling configuration dialog can be used to increase the waveform output rates achievable.

Waveform output scaling
Waveform data on the clipboard is held as floating-point numbers exactly as seen in the Signal data display. When
this data is copied into a waveform output item it is scaled using the individual DAC scale factors as set up in the
main sampling configuration Outputs page. This conversion does not pay any attention to the units defined for
either the source waveform data or the DAC outputs. So if you copy waveform data with mV units where the data
values range from -200 to +200 mV and paste it into a DAC scaled to generate outputs from -5 to +5 volts, Signal
will try to generate an output running from -200 to +200 volts, not -0.2 to +0.2 volts. As the DAC scaling only
allows values from -5 to +5 volts your waveform will be severely truncated. You can fix this either by adjusting the
DAC scale factors, or by rescaling the data before you put it onto the clipboard. The easiest way to rescale the data
is to use a virtual channel with an expression such as "ch(1)*2.5" as this allows you to adjust the scaling until it
is correct. Once the waveform is as you want it you can copy the virtual channel data onto the clipboard and paste
it into the output waveform. When setting output waveforms using the script language an identical scaling process
is carried out if you are using an array holding floating-point values, values in an integer array are used directly
with 32767 corresponding to the upper full-scale DAC range limit and -32768 corresponding to the lower DAC range
limit.

Multiple waveform items
You can define an unlimited number of arbitrary waveform items but there are restrictions; both the DAC list and
the waveform output rate must be the same for all waveform outputs in a given set of outputs (waveform outputs
for different states can be different).

Pasting a waveform

Copying data to the clipboard in Signal also places the visible view data onto the clipboard in a private format
which can be used to set the waveforms for outputs. To place suitable data on the clipboard, open a data file and
adjust the display so that the required time range and channels are visible, then use the Edit menu Copy command.

You can then paste this data into a waveform item in the pulse
outputs configuration dialog by selecting a waveform output item
and pressing Ctrl+V (the Paste command shortcut) or right-
clicking on the dialog and selecting Paste. Signal then provides a
dialog to control the paste so that you can ensure that you paste
the right data into the waveform and to control other options.

The upper part of the dialog describes the data on the clipboard
and provides control of which data to be taken from the clipboard
- you specify the first channel whose data will be used (channel
numbers start at 1 from the first waveform channel that was
pasted; the actual channel numbers for the data that was copied
are not used) and the start data point offset for each channel to be
taken from the clipboard. An offset of zero takes data starting with
the first point on the clipboard, larger offsets cause points at the
start of the clipboard data to be skipped. The same offset is used
for all pasted channels.

Signal Version 6.06

5-70

The lower part of the dialog describes the current waveform output parameters, and provides control over where
the data taken from the clipboard is put to what extent the waveform output parameters are modified to match the
clipboard data. The upper pair of controls, making up the line Modify x outputs, start on DAC n, defines the
channels of the waveform output to modified. The DAC selector will only show DACs that are in the DAC list for
the waveform output item that you are pasting-into, so it is a good idea to set the DAC list correctly before pasting.
If you are changing more than one DAC output, DACs in the DAC list starting with the DAC specified are
changed. The lower pair, making up the line Overwrite x points, starting at offset y, sets the amount of data that
is pasted and where in the waveform buffer it is put.

The Output length set to end of pasted data and Output frequency set from pasted data check boxes act as
their titles imply. If all data offsets are set to zero, the points to overwrite is set to the points on the clipboard and
these two check boxes are checked, the paste operation copies all the clipboard data and changes the waveform
output parameters to match. Click OK to paste the data, or Cancel to do nothing.

Pulses with variations

Some types of pulse can be set up so that they vary
automatically. The pulse types that support this are initial
level, square pulse with varying amplitude, square pulse
with varying duration and the ramp pulse. All of these use
the same three parameters to control the variation, only the
varying aspect depends upon the type of pulse. The
pattern of variation used is: the pulse is generated a
number of times without variation, then a number of times with one ‘step change’ added, then two steps and so on.
This repeats until the maximum number of changes has been reached, at which point the cycle restarts with the
pulse with no step changes.

The Step change parameter sets the amount by which the varied aspect (the pulse amplitude for example) changes
at a time. The Repeats parameter sets the number of times each step is repeated before moving on to the next step
and the Steps parameter sets the maximum number of changes to be added. This arrangement gives a final value of
Initial + (Steps * Step change). The total number of pulse forms generated is one more than Steps as the
variation includes the basic pulse without any step changes.

In the example shown, seven pulses will be generated with amplitudes of 30, 20, 10, 0, 10, 20 and 30 mV. Each pulse
will be generated twice in the order shown; the entire sequence will repeat after 14 pulses. If you wanted a
sequence that ran 30, 20, 10, 0, 10, 20,and 30, you would set the pulse amplitude to 30 and the step change to 10.

Extended and Fixed interval sweep modes

With Basic, Peri-triggered, Fast triggers and Fast fixed interval sweep modes, the length of the pulse outputs
is set by the sampled data (Basic, Fast triggers and Fast fixed interval modes have the outputs length the same
as the sweep length, Peri-triggered mode has outputs length as the sweep length less any pre-trigger time). With
Extended and Fixed interval sweep modes, the outputs length is set independently of the data frame and data
acquisition starts at a preset time within the outputs. Because these values can vary with the state in multiple states
sampling, for convenience they have been located in the pulses dialog.

When using Extended mode the length of the outputs and
the sweep start time values are shown whenever the
control track is selected. The Outputs field sets the length
of the outputs, this value must be at least as long as the
sampling sweep. The Trigger parameter sets the time,
relative to the start of the pulse outputs, of the start of the
sampling sweep.

Pulse outputs while sampling

5-71

With Fixed interval mode two more control track
parameters appear; Interval, and Vary (%) (with Fast fixed
int mode the Interval field is available but not Vary). These
set the timed interval between output frames (which cannot
be less than the pulse output frame length) and the
percentage random variation in the interval, from 0 to 100,
for the selected state. If the variation is non-zero, the frame
interval used while sampling will vary randomly from Interval-Vary% to Interval+Vary%.

Variable sweep points
If variable sweep points are enabled (only available with
Extended and Fixed interval modes with multiple states in
use), extra control track parameters are provided to control
the sweep points. The Sweep points item sets the number
of points sampled per channel for the selected state, this
can be set to any value less than or equal to the overall
maximum sweep points value set in the General section of
the sampling configuration, and must be an even number. The Length parameter controls the same sweep points
value in terms of the sweep duration.

Controlling pulse outputs during sampling

While sampling is in progress, the pulses configuration dialog can be obtained by using the Sampling menu, by
clicking on the relevant toolbar button or by right-clicking on spare application areas to get a popup menu. All
three mechanisms provide the pulse configuration dialog in the same form as used offline. The only difference is
that the OK button has been renamed Apply and the Cancel button Close and that pressing Apply doesn’t cause
the dialog to disappear.

You can use the pulse configuration dialog freely during sampling to change the pulses that are output, the only
restriction being that you cannot increase the size of any arbitrary waveform items, or add an arbitrary waveform
item where one was not present beforehand. All changes made will be copied into the sampling configuration if the
sampling completes successfully so that they can be used next time.

Timing warnings
With Fixed interval or Fast fixed interval mode in use, the use of external sweep triggers is disabled as the interval
timer does all of the triggering. If the delay between the end of one pulse frame and the start of the next is too short,
the internal trigger may be missed, if this occurs a warning message is generated at the end of data acquisition.

Signal Version 6.06

6-72

Sequencer outputs during sampling

The Signal output sequencer is available as an alternative to Pulses for generation of outputs during sampling. It
can generate both digital and analogue signals and can be used to respond to external signals and to control data
capture.

An output sequence is a list of up to 8191 instructions (2047 for older 1401 types) that are executed by the 1401
during sampling at a constant, user-defined rate to produce the outputs required. Sequences are defined by a
sequence file, which is a text file with a .pls file extension. The Signal sequencer has the following features:

· It controls digital output bits 15-8 to produce precisely timed digital pulse sequences. In Power1401s and
Micro1401s it can also control the 1401 digital output bits 7-0.

· It controls the 1401 DACs (Digital to Analogue Converters) to produce voltage pulses and ramps.

· It can play cosine waves at variable speed and amplitude through the DACs.

· It can test digital input bits 7-0 and branch on the result.

· It supports loops and branches, can randomise delays and stimuli and generate digital marker items.

· It has 256 variables (V1 to V256) that can be read and set by on-line scripts. The 1401plus allows only 64
variables.

· It supports a user-defined table of values for fast information transfer from a script.

· It can read the latest value from a waveform channel and, using this information, provide real-time (fractions of
a millisecond) responses to input data changes.

· It can set or get the sweep state code, get the start time of the sweep, wait until a specified time within the
sweep or trigger a sweep.

· It can control and monitor arbitrary waveform outputs.

You write sequences with a text sequence editor; each text line generates one instruction.

Sequencer technical information

The sequencer clock starts within a microsecond of recording time zero, the time at which the Start button is
pressed, and is time locked to the 1401 sweep timing and waveform channel recording. Each clock tick books an
interrupt to run the next sequencer instruction and updates digital output bits 15-8 if they were changed by the
previous instruction.

An interrupt is a request to the 1401 processor to stop what it is doing at the earliest opportunity and do something
else, then continue the original task. The time delay between the interrupt request and the instruction running
depends on what the 1401 is doing when the clock ticks and the speed of the 1401. This delay is typically a few
microseconds, so instructions do not occur precisely at the clock ticks but changes to digital output bits 15-8 do.
Changes made by the sequencer to the 1401 DACs and digital output bits 7-0 occur a few microseconds after the
clock tick.

The table shows the minimum clock interval, the approximate time per step and the extra time used for cosine and
ramp output for each 1401. Notice that the first item is in units of milliseconds (to match Signal) and the remainder
are in microseconds.

Power mk II Power Micro3 Micro mk II micro1401 1401plus

Minimum tick (ms) 0.006 0.010 0.025 .025 .10 3.0

Time used per tick (us) <1 <1 ~1 ~1 <8 <10

Cosine penalty/tick
(us)

0.3 0.55 ~1 ~1 ~5 ~10

Ramp penalty/tick (us) 0.25 0.5 0.7 0.7 ~3 ~10

DIV/RECIP penalty
(us)

<1 <1 <3 <3 <10 <5

The Minimum tick is the shortest interval we recommend that you set. The Time used per tick is how long it
takes to process a typical instruction. The Cosine penalty/tick is the extra time taken per cosine output. The
Ramp penalty/tick is the extra time taken per ramped DAC, the DIV/RECIP penalty indicates the extra time taken
up by these instructions. Time used by the sequencer is time that is not available for sampling, transferring data

Sequencer outputs during sampling

6-73

back to the host or arbitrary waveform output. To make best use of the capabilities of your 1401 you should set the
slowest sequencer step rate that is fast enough for your purposes.

If you overload the system so much that the output sequencer cannot keep up, Signal will warn you of this when
sampling finishes. If the 1401 is extremely overloaded by the combination of sampling and sequencer output,
sampling will fail with an appropriate error message.

The clock interval that you set is rounded to the nearest 4 microseconds to generate the actual sequencer tick
interval. For modern 1401s (Power1401s and Micro1401s mk II and -3), intervals less than 5 milliseconds are
rounded to the nearest 0.1 microsecond. All subsequent timing is based upon the rounded interval so that full
accuracy is maintained.

1401-specific limitations
On the 1401plus, the sequencer is limited to 64 variables, all other 1401 types allow 256.

On the 1401plus, micro1401 and Micro mk II, the limit to the number of sequencer instructions is 2047, all other
types allow 8191.

The sequence editor

The output sequence is stored as a text file with the extension .PLS. You can open existing Signal output sequence
files or create new ones with File menu New. There are five buttons at the top of the window:

Compile
This checks the sequence to make sure that it is correct with no labels missing or duplicated and no
duplicated key codes. The picture shows a sequence with a simple error (the LB in the seventh line should be
LP). The line in error is marked and an explanatory message is shown at the top of the window.

Format
This aligns the labels, key codes, instructions and any arguments, output text and comments and removes
step numbers. Undefined labels are not flagged but there must be no other errors.

Format with step numbers

This does the same job as the Format button, and also starts each line with the step number. Step numbers
can be useful as they give an indication when you are running out of space and can pinpoint the line where
your sequence is not behaving as you expect.

Current
This compiles the sequence and, if the sequence is correct, saves it and makes this the current sequence for
use during sampling. If you were to open a new data file and start sampling, this sequence would be used.
You can also set the output sequence file from the Sampling Configuration dialog.

Help
This is the Help button. It opens a window holding a list of the sequencer topics for which help is available.
You can copy and paste text from the help window into your sequence. You can also obtain online help on a
topic by clicking on the relevant text and pressing the F1 key.

Sequencer compiler error messages

When you use the Format or Compile buttons in the sequence editor, Signal displays the result of the compilation
or format operation in the message bar at the top of the window. The messages report either successful operation
or the cause of the problem.

No errors, N lines compiled

Your sequence has been checked and is syntactically correct. This means that it will certainly run, but it is up to
you to ensure that the sequence of codes produces the desired effect. If your sequence runs off the end of the
defined instructions, it will stop as the compiler adds a HALT instruction to the end of every sequence. The number
of lines compiled is a count of the number of instructions generated, which is one more than the number in the
sequence text as Signal adds a HALT instruction to the end of the sequence.

Signal Version 6.06

6-74

Formatting done
The format operation has completed and all lines of instructions are syntactically correct in themselves. There is no
check that a label referenced in an instruction exists.

Invalid label format, or same as Opcode, VAR, CONST or function
A colon was found, indicating a label, but the characters before the colon are not legal. A label starts with an
alphabetic character (A-Z) and is followed by alphanumeric characters (A-Z and 0-9) and is terminated by a colon.
Case is not significant in labels. The label can be up to 8 characters long. It must not be the same as an instruction
name, a variable name, a constant name or a built-in function.

Invalid key definition
A quote mark was found, but there was no acceptable character following the quote, or there was more than one
character.

Unknown command used
A group of characters was found in the correct position to be an instruction, but they were not recognised. Change
them to a correct instruction mnemonic. This can also be caused by a missing colon at the end of a label.

The first/second/third/fourth argument is invalid
The instruction argument is either missing, invalid or was too long to be correct. If the argument included a table
reference, the offset may be too large or too small.

Internal error, contact CED
This is caused by a serious system error. If you can reproduce this problem please contact CED for advice.

Out of memory
Signal has run out of memory while processing the sequence. Close any non-essential windows in the Signal
application and try again. If this does not allow compilation, close any other applications and retry. As you are
most unlikely to exhaust your memory when compiling it may mean that something has gone badly wrong.

Label or table size defined twice
A label has been defined on more than one line. Remember that the labels are converted to upper case, so two
labels that differ in case only will cause this error. This error is also given if you use TABSZ more than once in a
sequence.

Unexpected characters at end of line
The most common cause of this error is a missing semicolon to introduce a comment.

Couldn't find branch destination
The label used by the instruction is not defined anywhere in the sequence. Define the label, or correct the label
name.

Invalid numeric value
A numeric argument was expected, but an invalid number or one that was outside the permitted range for the
argument was found.

Probability out of range
The probability field of the BRAND instruction must be set to a number in the range 0 to less than 1.0000000000;
correct the number.

Bad digital i/o pattern
Whenever a digital i/o pattern is expected, exactly 8 characters must be present, one for each bit of the digital i/o.
The characters are restricted to “0”, “1” and “.”, plus “c” for DIGIN and “i” for DIGOUT.

A label, key or display string but no instruction
Labels, key definitions and display strings may only occur on lines that have an instruction. If you really want an
instruction that does nothing, use NOP. Blank lines and lines consisting entirely of comments are allowed and
ignored.

Sequencer outputs during sampling

6-75

Too many instructions
You have defined more than the maximum allowed number of instructions (8191, or 1023 for the 1401plus and the
original micro1401), so you must shorten your sequence. You may be able to significantly shorted your sequence
by using variables and the SampleSeqVar() script instruction. You can also split a sequence into sections and
load these one at a time.

Input line too long; shorten and try again
Each line of the file must be no more than 100 characters long. Shorten the offending line and try again. This limit in
previous versions of Signal was less, so it is a good idea to keep to short lines wherever you can.

Unexpected end of file encountered
This shouldn't happen and probably means that something has gone badly wrong.

Variable name too long, unknown, badly formed or missing
A variable name used to replace the V1 to V256 built-in names is incorrectly formed.

Bad branch code: S=Stopped, G=Going
The branch code for the WAVEBR command was not one of the allowed characters listed, or the branch code was
more than one character.

Variable name already defined as Opcode, label, function or CONST
Previous versions of Signal allowed a variable name to be the same as a label or an Opcode. This is no longer
allowed. Also, the name is not allowed to the same as a built-in function, for example VAngle or the same as a
CONST item. Change the variable name.

Label already exists as Opcode, variable, function or CONST
Previous versions of Signal allowed a label to be the same as a variable name or an instruction name. This is no
longer allowed. The name may not match a built-in function or a constant. Change the label.

The DAC value exceeds the DAC output range
You have entered an expression for a DAC value that exceeds the DAC full-scale range. Check that the Full and
Zero values in the Outputs page are correct and that you have not mistyped the value.

More table entries than set by TABSZ
You have used the TABDAT directive to create table entries. There is either no TABSZ directive, or you have
generated more table data than you allocated with TABSZ.

The 1401plus only allows 64 variables in a sequence
You are sampling with a 1401plus and the sequence uses a variable number greater than 64.

Target of branch is too far away
You should only see this with an original micro1401 or a 1401plus if you attempt to JUMP or branch to a target
instruction that is more than 4096 instructions before or 4095 instructions after the current instruction. Although
you can have sequences up to 8191 instructions with these interfaces, there is a limit on the size of a branch. This
was a choice between slowing down all branch instructions, or limiting the range of a JUMP for these devices.

Loading sequence files for sampling

The name of the output sequence file to use during sampling is part of the sampling configuration. The file name,
including the path to the folder containing it, must be less than 250 characters long. You set the file name either
with the Current button in the sequence editor or in the Outputs page of the Sampling Configuration dialog.
When you start sampling, Signal searches for the output sequence file named in the sampling configuration and
will generate an error message if it cannot be found.

Signal compiles output sequence files whenever you use them. If a file contains errors you are warned and the
sequence file is not used.

Signal Version 6.06

6-76

Sequencer control panel

While sampling is in progress, you can interact with sequencer execution using the
sequencer control panel. The control panel displays the next sequence step and any
display string associated with it. You can use display strings to prompt the user for an
action or to tell the user what the sequence is doing. If there are any keyboard-
controlled entry points in the sequence, these are also shown in the control panel.

You can show and hide the control panel with the Sequencer Controls option in the Sample menu or by right
clicking on any toolbar to activate the context menu. You can also dock it on any edge of the Signal application
window. When undocked, the control panel displays sequence entry points as the key that activates
them and a descriptive comment. When docked, the keys are displayed as buttons and the comment is
hidden to save space. Move the mouse pointer over a key to see the comment as pop-up text. Click the
mouse on a key and the sequencer will jump to the instruction associated with the key. The key is also
stored as a keyboard marker. This is equivalent to pressing the same key in the time window or using
the script language SampleKey() routine.

The control panel is always displayed if you start sampling using Sequencer outputs from a Signal menu command
or from a dialog. If the sample command comes from the script language, the control panel visible state does not
change. The control panel position is saved in the sampling configuration. However, the position is restored only if
the control is currently invisible or floating, and the saved position was floating; if the control panel is docked, we
assume it is positioned where you want it.

Marker channel and digital input conflict

If you record a digital marker channel, this uses the same hardware in your 1401 as the sequencer instructions
DIBEQ, DIBNE, WAIT and DIGIN that read the digital input bits. Reading digital input bits 7-0 clears the hardware
flag that indicates that a marker event has occurred. These instructions can cause events to be missed on the
marker channel if they read the digital input at exactly the same time as the marker event arrives.

When you sample, Signal will warn you if there is a conflict in the use of these digital input bits. You can choose to
hide the warning for the remainder of your Signal session. In October 2002 we released updates to the Micro1401
mk II and Power1401 firmware that allow reads of the digital input that do not clear the hardware flag. The warning
is suppressed when the new firmware is installed in your 1401. Newer 1401 designs have this fix in all firmware
versions.

Getting started

The sequencer runs instructions in order unless told to branch, starting with the first instruction. The sequence can
either be restarted at the start of each sweep, or it can be set to free run throughout data acquisition. Sequencer
execution can be re-routed during data acquisition by associating an instruction with a key on the keyboard. Each
time the key is pressed or the associated sequencer control panel button is clicked or the script language
SampleKey() command is used, the sequencer jumps to the associated instruction. Signal records keys pressed
during sampling in the keyboard marker channel, so you can have a record of where in the sampling you switched
to a new portion of the sequence.

Simple sequence restarted each sweep

 Here is a simple sequence that pulses DAC 0 high for 10 milliseconds ten times starting at 0.25 seconds into the
sweep. It for use with sequencer execution restarting each sweep. You can start and stop the pulses with keys or
by clicking buttons. You will find this in Signal3\Sequence\MyFirst.pls to save typing it in.

0000 MOVI V1,10 ;Initialise loop counter
0001 DELAY 248 ;Just less than 0.25 s >Waiting
0002 LP: DAC 0,2 ;Set output high
0003 DELAY 8 ;Wait 9 steps
0004 DAC 0,0 ;Set output low
0005 DELAY 7 ;Wait 8 steps
0006 DBNZ V1,LP ;Loop required times
0007 HALT ;Stop outputs >Done

Sequencer outputs during sampling

6-77

Open MyFirst.pls and click the Check and make current sequence button at the upper right of the window
(leave the mouse over each button for a second or so to see the descriptive text). Open the Sampling configuration
dialog, and set a configuration with one sampled channel on ADC port 0, a sample rate of at least 10 KHz and a
sweep length of a second. On the Outputs page, make sure the sequencer clock rate is set to the default of 1
millisecond, and that the Free run without restarts box is not checked. To record the output pulses you must
connect the DAC 0 output to the ADC 0 input. This is easily done with a BNC cable on the 1401 front panel. You
do not need to make the connection to follow this description.

Click the Run now button in the sampling configuration, and then click the Start button. The sequencer control
panel is now visible. It displays Step 0000 in the top left window and a blank area to the right. If the control panel
is not docked there is also an area for comment display, currently clear. If you start sampling, you will see that the
control panel displays the text after the > when the relevant steps are being executed, if you are sampling the
output you will see the ten pulses being generated.

As this is our first sequence we will explain it in detail. Click the Format and add step numbers button at the top
of the sequencer window. All of the lines get a step number starting at zero, this is the step number displayed in the
control panel. You can remove step numbers with the Format button.

Step 0 is executed at time zero in each sweep. The MOVI V1,10 instruction on this line sets the value of variable 1
(V1) to 10. This variable is used as a loop counter in the sequence, so this statement sets the number of times that
execution will go round the loop. The remainder of the line is a comment.

The next line, step 1, holds the instruction DELAY 248. This causes sequencer execution to wait at this step for the
specified number of sequencer ticks into the sampling sweep, plus one more for the delay instruction itself (this
could be changed, but we have kept it this way to match the behaviour of the Spike2 sequencer, for those who use
both programs). The sequencer control panel displays the text to the right of the > for the current step, so while this
step is executing, the text “Waiting” is displayed. Note that we wait for 249 ticks (0.249 seconds). This means that
the next step will execute at precisely 250 steps into the sweep, or 0.25 seconds. Note also that we could have
written DELAY ms(249)-1 to achieve the same effect and that this would have the advantage of being immune to
changes in the sequencer tick interval.

Step 2 is DAC 0,2, which sets the output of DAC zero to two volts. This step has a label at the start of the
instruction text, LP:, so we can branch back here from elsewhere in the sequence.

Step 3 is DELAY 8, which causes sequencer execution to wait at this step for nine sequencer clock ticks, thus
setting the width of the pulse. The width will include the time taken by the DAC instruction as well, giving ten ticks
(0.01 seconds) overall. Note that, as for step 1, we could have written DELAY ms(9)-1 to achieve the same effect.

Steps 4 and 5 are the same as steps 2 and 3; they set the DAC output low again and wait for 8 sequencer ticks. We
only wait for 8 ticks because step 6 adds an extra step into this part of the sequence, so we get 10 ticks overall for
the low phase too.

Step 6 is DBNZ V1,LP, which causes the sequencer to decrement the value of variable number 1 and, if it has not
reached zero, branch to the label specified so that the next instruction executed will be step 2. As we have put the
value 10 into variable 1 at the start of the sequence, this will cause the loop that creates a pulse to execute ten
times, so we get ten pulses.

Finally step 7 is HALT, which causes sequencer execution to stop until the start of the next sweep, where it will be
automatically restarted at step 0. This step displays the text “Done” in the sequencer control panel while it is
executing.

Free running sequence

The simple way to use the sequencer is with restarts, so that the sequence restarts at the first step at the start of
each sweep. However, this mode of operation may prove insufficiently flexible for some situations. If you check the
Free run without restarts box in the Outputs page, you get a different style of sequencer operation. You will find
a sequence that operates in this manner in Signal3\Sequence\MySecond.pls; this also demonstrates some
other aspects of sequencer use:

Signal Version 6.06

6-78

0000 FL: 'F DAC 0,2 ;Start fast pulse >S for slow
0001 DELAY ms(9)-1 ;Wait 9 ms >S for slow
0002 DAC 0,0 ;Set output high >S for slow
0003 DELAY ms(8)-1 ;Wait 8 ms >S for slow
0004 JUMP FL ;Continue >S for slow
0005 SL: 'S DAC 0,2 ;Set slow pulse >F for fast
0006 DELAY ms(99)-1 ;Wait 99 ms >F for fast
0007 DAC 0,0 ;Set output low >F for fast
0008 DELAY ms(98)-1 ;Wait 98 ms >F for fast
0009 JUMP SL ;Continue >F for fast

Most of this sequence is similar to MyFirst.pls. The differences of interest are:

Steps 0 and 5 have a keyboard character defined as well as a label for looping. The sequencer control panel will
show buttons corresponding to each character defined; pressing the button or the appropriate keyboard character
will cause sequencer execution to jump to the relevant instruction.

A JUMP instruction is used instead of DBNZ so that the pulse output loops continue forever.

The remainder of this information is organised as a reference manual for the sequencer instructions. You can find
more information about the output sequencer in the Signal Training Course manual.

Instructions

Instruction format

Blank text lines and lines with a semicolon as the first non-blank character, are ignored. Instructions are not case
sensitive. Each instruction has the format:

num lab: 'key code arg1,arg2,… ;Comment >display

num An optional step number in the range 0 to 1022, for information only.

lab: An optional label, up to 8 characters long followed by a colon. The first character must be alphabetic
(A-Z). Labels are not case sensitive. Labels may not be the same as instruction codes, variable names,
constants or expression function names.

'key In this optional field, key is one alphanumeric (a-z, A-Z, 0-9) character. When this character is recorded
as a keyboard marker during data capture, the sequencer jumps to this instruction. Each key can occur
once. Upper and lower case are distinct. The key appears in the sequencer control panel.

code This field defines the instruction to be executed. It is not case sensitive.

arg1,… Instructions need up to 4 arguments and are separated by commas or spaces. These are described with
the instructions. If an argument can be represented in different ways, they are separated by vertical bars
(read as "or"), for example: expr|Vn|[Vn+off]. In this case, the argument can be an expression, a
variable or a table reference.

comment The text after the semicolon is to remind you of the reason for the instruction. If a key is set, this
comment also appears in the sequencer control panel.

>display When a sequence runs, text following a ">" in a comment is displayed in the sequencer control panel to
indicate the current instruction. Signal is notified every few milliseconds of the current instruction and
the control panel is updated whenever there is free time, so the display is only a sampling of what is
going on. The special combination >" means use the same display text as for the previous instruction.
This can save you some typing when a group of instructions in a loop need the same display. If there
are several instructions in a row that use this, Signal searches backwards until it finds an instruction
with a display string that is not >". The special combination >= means make no change to the display
string. This might be used in a code section that is called as a subroutine from several different places.

Sequencer outputs during sampling

6-79

Expressions

Many instructions allow the use of an expression in place of a constant value, indicated by expr. An expression is
formed from constants, numbers, labels, round brackets (and), the operators +, -, * and /, and sequencer
expression functions. Labels have the value of the instruction number in the sequence; the first instruction is
numbered 0.

The operators * and / (multiply and divide) have higher priority than + and – (add and subtract). This means that
1+2*3 is interpreted as 1+(2*3) and not as (1+2)*3. Apart from this, evaluation is from left to right unless
modified by brackets.

The sequence compiler evaluates expressions as real numbers, so 3/2 has the value 1.5. If expr is used as an
integer, for example DELAY expr, it is rounded to the nearest integer. Values in the range 3.5 to 4.49999… are
treated as 4. Before version 4.06 the result was truncated, so 3.0 to 3.9999… was treated as 3.

Sequencer expression functions
These functions can be used as part of expressions to give you access to sequencer step timing and to convert
between user units and DAC and ADC values and to calculate table indices.

s(expr)
ms(expr)
us(expr)

The number of sequencer steps in expr seconds, milliseconds and microseconds. For example,
with a step size of 200 milliseconds, s(1.1) returns 5.5. This is often used with the DELAY
instruction. Each instruction uses 1 step, so use DELAY s(1)-1 for a delay of 1 second.

Hz(expr) The angle change in degrees per step for a cosine output of expr Hz. For a 2 Hz cosine on DAC
n, use RATE n,Hz(2). To slow the current rate down by 0.1 degrees per step use RINC n,Hz(-
0.1). Use in RATE, RATEW, RINC and RINCW instructions.

VHz(expr) The same as Hz(), but the result is scaled into the 32-bit integer units used when a variable sets
the rate. MOVI V1,VHz(2) followed by RATE n,V1 will set a 2 Hz rate.

VAngle(expr) Converts an angle in degrees into the internal angle format. The 32-bit integer range is 360
degrees. The result is expr * 11930464.71. For use with ANGLE and PHASE.

VDAC16(expr) Converts expr user DAC units so that the full DAC range spans the full range of a 16-bit integer.

VDAC32(expr) Converts expr user DAC units into a 32-bit integer value such that the full DAC range spans the
32-bit integer range. Use this to load variables for use with the DAC and ADDAC instructions.

ASz(expr) Converts expr user DAC units into a value suitable for use with the SZ and SZINC commands.
That is, it converts an amplitude or amplitude change in user DAC units to a value in the range 0
to 1. It does this by dividing the value you supply by the (DAC scale factor * 5).

VSz(expr) Converts expr user DAC units into a variable value suitable for use with the SZ and SZINC
commands. That is, it converts an amplitude or amplitude change in user DAC units to a value in
the range 0 to 32768. It does this by multiplying the value you supply by 32768/ (DAC scale
factor * 5).

TabPos() The number of table data items defined at this point in the sequence by TABDAT. This is also the
index of the next table data item to use. You can use this to define constants that reference table
indices.

DRange() The DAC output range (usually 5.0 for a ±5 Volt system or 10.0 for a ±10 Volt system). When the
sequence is built for use during sampling, this value is taken from the DAC output range of the
attached 1401, otherwise, this is taken from the Voltage range set in the Edit menu Preferences
option.

Used with care, the built-in functions allow you to write sequences that operate in the same way regardless of the
sequencer step time or DAC scaling values.

Signal Version 6.06

6-80

Variables

You can use the 256 variables, V1 to V256 in place of fixed values in many instructions (the 1401plus allows only 64
variables). In the sequencer command descriptions, Vn indicates the use of a variable. Where a variable is an
alternative to a fixed value expression we use expr|Vn. Variables hold 32-bit integer numbers that you can set and
read with the SampleSeqVar() script command.

Some variables have specific uses: Variables V57 through V64 hold the last value written by the sequencer to
DACs 0 through 7 and V56 holds the last bit pattern read from the digital inputs with the DIBxx or DIGIN
instructions.

There are sequencer instructions that can be used to perform arithmetic and logic operations on variables.

VAR directive
You can assign each variable a name and an initial value with the VAR directive. Names must be assigned before
they are used, usually at the start of the sequence. The syntax is:

 VAR Vn,name=expr ;comment

VAR does not generate any instructions. It makes the symbol name equivalent to variable Vn and sets the initial
value when the sequence is loaded. Anywhere in the remainder of the sequence where Vn is acceptable, name can
be used. name can be up to 8 characters, must start with an alphabetic character and can contain alphabetic
characters and the digits 0 to 9. Variable names are not case sensitive. A variable name must not be the same as an
instruction code or a label.

There is no need to specify a name or an initial value. If no initial value is set, a variable is initialised to 0 even if not
included in a VAR statement. Signal automatically assigns V56 the name VDigIn and variables V57 through V64 the
names VDAC0 through VDAC7. The following are all acceptable examples:

 VAR V1,Wait1=ms(100) ;Set name and initial value
 VAR V2,UseMe ;Set name only, so value is 0
 VAR V3=200 ;No name, initialise to a value
 VAR V4 ;No name, initialised to 0

When a variable is used in place of a voltage value in a DAC output instruction, the full 32-bit range of the
sequencer variable value corresponds to the full range of voltages that can be generated by the DAC, so
-2147483648 corresponds to the lowest possible output voltage (-5 or -10 volts) while 2147483647 corresponds to
the highest possible output voltage (almost +5 or +10 volts).

When a variable is used in place of a bit pattern in a digital input or output instruction, bits 15 to 8 and bits 7 to 0
have different uses. In the expressions that describe these operations we write Vn(7-0) and Vn(15-8) to describe
which bits are used. BAND means bitwise binary AND (if both bits are 1, the output is 1, otherwise 0), BXOR means
bitwise exclusive OR (if both bits are different the output is 1, otherwise 0).

When used in one of the cosine output angle instructions, the 32-bit variable range from -2147483648 to 2147483647
represents -180 up to +180 degrees. The VarValue script in the Scripts folder calculates variable values for the
digital and the cosine instructions. The SeqLib script installed with Signal and downloadable from the CED
website contains a complete set of functions to convert from user values to correctly scaled sequencer variable
values.

Script access to variables
Scripts can set and read sequencer variable values by using the SampleSeqVar() script command. See The Signal
script language manual for details. You can set initial values from the script as long as you set the values after you
create the new data file, but before you start sampling. Values set in this way take precedence over values set by
the VAR directive.

Constants

It is often useful to define a numeric value as a named constant. For example, when referencing a table value
[V1+Slope] is easier to understand than [V1+23]. It also helps to maintain code; if you need to change a numeric
value that is used often make it a named constant and just change the constant once. The = directive does not
generate any instructions, it just makes a name equivalent to a number, and the name can be used anywhere a
numeric expression is valid. The syntax is:

Sequencer outputs during sampling

6-81

name = expr ;comment

The name must start with an alphabetic character and can contain alphabetic characters and the digits 0 to 9. The
name can be up to 8 characters long. Numeric constant names are not case sensitive and must not clash with label,
instruction, variable or built-in function names. Examples of use:

Wait1 = ms(100)
Wait2 = Wait1*1.3
 DELAY Wait1-1 ;Use constant in an instruction

The expression values are calculated and stored as floating point numbers. If they are used in a context that
requires an integer value, the fractional part of the number is ignored.

The = directive was added at version 4.06.

Table of values

The Signal sequencer supports a table of 32-bit values that can be up to 1000000 items in length.

Declaring the table
You declare that a table exists with the TABSZ directive, which normally occurs at the start of your sequence:

TABSZ expr

Where expr is an expression that sets the number of items in the table. The table size must evaluate to a number in
the range 1 to 1000000. Each table item is a 32-bit integer and uses 4 bytes of 1401 memory, if you try to use a table
size that leaves too little 1401 memory available for other necessary purposes (sequencer instructions, arbitrary
waveforms and sampled data) an error will occur when you try to start sampling. The first table item has an index
number of 0, the second item is index 1, and so on.

Setting table data
From the script language you can move data between an integer array and the table with the SampleSeqTable()
function. You can also preset table data from the sequence with the TABDAT directive, which must come after the
TABSZ directive:

 TABDAT expr
 TABDAT expr,expr,expr...

Where expr is an expression that evaluates to a 32-bit integer. Each TABDAT directive adds data to the table,
starting at the beginning. The sequencer compiler will flag an error if you define more data that will fit in the table.
Table data declared in this way is stored separately from the sequence and is transferred to the 1401 when you
create a new data file to sample. If you do not set the table data with the TABDAT directive or from a script, the
values in the table are undefined.. The TabPos() expression has the value of the number of data items that have
been defined at the point where it is used. For example:

 TABDAT TabPos() ;a table item that holds its own index.

Accessing table data
Although you can move data between one of the variables and the table with the TABLD and TABST instructions,
many instructions access the table directly. It takes more time to use a table than to use a variable.

All references to the table use the contents of one of the variables as an index into the table plus an optional offset
as: [Vn] or [Vn+off] or [Vn-off]. The offset off is an expression that evaluates to a number in the range –
1000000 to 1000000. For example, if V1 holds 10, [V1] refers to the contents of index 10, [V1-10] refers to index 0
and [V1+10] refers to index 20. Out of range table indices read 0 and are non-destructive.

The TABINC instruction makes it easy to increment a variable used as a table index and branch until the increment
generates an index outside the table. The following example generates five DAC outputs at 5 different intervals:

Signal Version 6.06

6-82

 SET 1,1,0 ; 1ms per step, normal scales
 TABSZ 10 ; table of 10 items
oMs = TabPos() ; offset to milliseconds
 TABDAT ms(1000)-3 ; 1000 ms in sequencer steps-3
oVolt = TabPos() ; offset to Volts
 TABDAT VDac32(1) ; 1 Volt
oNext = TabPos() ; offset to next set of entries
 TABDAT ms(100)-3,VDac32(2) ; 100 ms, 2 Volts
 TABDAT ms(50)-3,VDac32(3) ; 50 ms 3 Volts
 TABDAT ms(500)-3,VDac32(-1) ; 500 ms –1 Volt
 TABDAT ms(200)-3,VDac32(0) ; 200 ms 0 Volts

 MOVI V1,0 ; use V1 as table index, set 0
TLOOP: DELAY [V1+oMs] ; programmed delay
 DAC 0,[V1+oVolt] ; set DAC 0 to the value
 TABINC V1,oNext,TLOOP ; add 2 to V1, branch if in table

In this case, we could just as easily have set oMs to 0, oVolt to 1 and oNext to 2, or used the values 0, 1 and 2 in
the code. However, by using constants, we make it easy to extend the number of items per step. For example, if we
decided to insert a new value in the table, making three items per step, we could do so without having to work
through our code to check if each occurrence of 0, 1 or 2 was correct or needed changing.

Long data sequences
If you have a very long data sequence, you should consider using the table as a buffer. The basic idea is to divide
the table into two halves and use a script to transfer new data into the half of the table that the sequence is not
using. To find out where the sequence has reached, look at the value of the variable used as an index with
SampleSeqVar(). Set a large enough table size so that the time taken to use half the table is several seconds.

Including files

There are times when you will want to reuse definitions or sequence code sections in multiple projects. You can do
this by pasting the text into your sequence, but it can be more convenient to use the #include command to
include files into a sequence. A file that is included can also include further files. We call these nested include files.
Only the first #include of a file has any effect. Subsequent #include commands that refer to the same file are
ignored. This prevents problems with output sequence files that include each other and stops multiple definitions
when two files include a common file. A #include command must be the first non-white space item on a line. There
are two forms of the command:

#include "filename" ;optional comment
#include <filename> ;optional comment

where filename is either an absolute path name (starting with a \ or / or containing a :), for example C:
\Sequences\MyInclude.pls, or is a relative path name, for example include.pls. The difference between the
two command forms lies in how relative path names are treated. The search order for the first form starts at item 1 in
the following list. The search for the second form starts at item 3.

1. Search the folder where the file with the #include command lives. If this fails...

2. Search the folder of the file that included that file until we reach the top of the list of nested include files. If this
fails...

3. Search any \include folder inside the Signal6 folder inside your My Documents folder (this location
was added at version 5.08). If this fails...

4. Search the \include folder inside the Signal6Shared folder inside the Public Documents folder
(this location was added at version 5.08). If this fails...

5. Search any \include folder in the folder in which Signal is installed. If this fails...

6. Search the current folder.

Included files are always read from disk, even if they are already open. If you have set the Edit menu Preferences
option to save modified scripts and sequences before running, modified include files are automatically saved when
you compile. If this option is not set, the output sequence compiler will stop the compilation with an error if it finds
a modified include file. You must save the included file to compile your sequence.

Sequencer outputs during sampling

6-83

There are no restrictions on what can be in an included file. However, they will normally contain constant and
variable definitions and possibly user-defined code. It is usually a good idea to have all your #include commands
at the start of a sequence file so that anyone reading the source is aware of the scope of the sequence.

The #include command for output sequences was added to Signal at version 4.06 and is not recognised by any
version before this. A typical file using #include might start with:

#include <sysinc.pls> ; my system specific includes
#include "include/proginc.pls" ; search script relative folder
 ; start of my code...

Opening included files
If you right-click on a line that holds an include command, and Signal can locate the included file, the context menu
will hold an entry to open the file. The search for the file follows that described above, except that it omits step 2.

Errors in included files
If an error is detected during the compilation of an included file, an error message is displayed at the top of the
original window indicating which included file has a problem, and the included file is opened (if it can be found) and
the offending line is highlighted.

Sequencer instruction reference

Each instruction below is followed by an example. The examples show the preferred instruction format, however the
system is flexible. For example, a comma should separate arguments, but a space is also accepted. The patterns
used for digital ports should be enclosed by square brackets, however you may omit the brackets if you wish.

Many of these instructions allow you to use a variable or a table entry in place of an argument. In this case, the
alternatives are separated by a vertical bar, for example:

 DELAY expr|Vn|[Vn+off],OptLB

This means that the first argument can be an expression, a variable or a table entry. There is no explicit
documentation for the use of the table, except in TABLD and TABST. Where table use is allowed it is written as
[Vn+off]. If you use a table value in an instruction, the effect is exactly the same as using a variable with the same
value as the table entry.

OptLab in instructions is an optional label that sets the next instruction to run. If it is omitted, the next sequential
instruction runs.

Digital I O

These instructions give you control over the digital output bits and allow you to read and test the state of digital
input bits 7-0.

DIGOUT

The DIGOUT instruction changes the state of digital output bits 15-8 (see under Sampling data for the
connections). The output changes occur at the next tick of the output sequencer clock, so you need to use this
instruction one tick early!

 DIGOUT [pattern]|Vn|[Vn±off],OptLab

pattern This determines the new output state. You can set, reset or invert each output bit, or leave a bit in the
previous state. The pattern is 8 characters long, one for each bit, with bit 15 at the left and bit 8 at the
right. The characters can be “0”, “1”, “i” or “.” standing for clear, set, invert or leave alone. You may
omit the square brackets, however the Format command will insert them.

 DIGOUT [....001i] ;clear bits 3 and 2, set 1, invert 0
 DIGOUT [.......i] ;invert 0 again to produce a pulse
 DIGOUT V10 ;use variable V10 to set the pattern

Signal Version 6.06

6-84

Vn With a variable the new output is: (old output BAND Vn(7-0)) BXOR Vn(15-8). The variable
equivalent of [....001i] is 241+256*3, and of [.......i] is 255+256*1. If you use a table value,
set the same value in the table that you would use for a variable. You can use the VarValue script in
the Scripts folder to calculate variable or table values.

OptLB If this optional label is present it sets the next instruction to run.

This example produces ten 1 millisecond pulses 100 milliseconds apart.

 MOVI V1,10 ;V1 holds the number of pulses
LOOP: DIGOUT [.......1] ;bit 0 high >Pulsing
 DIGOUT [.......0] ;bit 0 low >Pulsing
 DELAY ms(100)-4 ;4 inst in the loop >Pulsing
 DBNZ V1,LOOP ;count down >Pulsing
 HALT ;finished >Done

See also:
Output connections, Variables, DIGLOW

DIGLOW

The DIGLOW instruction changes the state of digital output bits 7-0 of Power1401s and Micro1401s (see under
Sampling data for the connections). It has no effect on a 1401plus. Unlike DIGOUT, the output changes occur
immediately, they do not wait for the next sequencer clock tick. You can take advantage of this to change all 16
digital outputs almost simultaneously (within a few microseconds) by using DIGOUT followed by DIGLOW.

 DIGLOW [pattern]|Vn|[Vn+off],OptLB

pattern This determines the new output state. The pattern is 8 characters long, one for each bit, with bit 7 at the
left and bit 0 at the right. The characters can be “0”, “1”, “i” or “.” standing for clear, set, invert or
leave alone. You may omit the square brackets, however the Format command will insert them.

 DIGLOW [....001i] ;clear bits 3 and 2, set 1, invert 0
 DIGLOW [.......i] ;invert 0 again to produce a pulse
 DIGLOW V10 ;use variable V10 to set the pattern

Vn With a variable the new output is: (old output BAND Vn(7-0)) BXOR Vn(15-8). The variable
equivalent of [....001i] is 241+256*3, and of [.......i] is 255+256*1. If you use a table value,
set the same value in the table that you would use for a variable. You can use the VarValue script in
the Scripts folder to calculate variable or table values.

OptLB If this optional label is present it sets the next instruction to run.

This example produces ten 1 millisecond pulses 100 milliseconds apart.

See also:
Output connections, Variables, DIGOUT

DIBEQ DIBNE

These instructions test digital input bits 7-0 against a pattern (see under Sampling data for connections). These
are the same inputs that will be used for digital markers in the future. DIBEQ branches on a match. DIBNE branches
on a non-match. Both instructions copy digital input bits 7-0 to V56 (VDigIn), for use by DISBEQ and DISBNE.

 DIBNE [pattern]|Vn|[Vn+off],LB

 DIBEQ [pattern]|Vn|[Vn+off],LB

pattern This is 8 characters, one for each input bit. The characters can be “0”, “1” and “.” meaning match 0
(TTL low), match 1 (TTL high) or match anything. The bit order in the pattern is [76543210]. You may
omit the square brackets, however the Format command inserts them.

Vn With a variable the result is: (input BAND Vn(7-0)) BXOR Vn(15-8). A result of 0 is a match, not
zero is not a match.

LB The destination of the branch if the input was a match (DIBEQ) or not a match (DIBNE). This label must
exist in the sequence.

Sequencer outputs during sampling

6-85

This example waits for a pulse sequence in which the falling edges of two consecutive pulses are less than 2*V1+2
sequencer clock ticks apart. It waits for a falling edge, waits for a rising edge with a timeout and then waits for the
next falling edge with a timeout. If timed out, we start again. If the input signal has high states less than three ticks
wide, or low states less than 2 ticks wide, this example may miss them.

WHI: DIBNE [.......1],WHI ;wait until high >Wait high
SETTO: MOVI V1,24 ;set 50 step timeout >Wait low
WLO: DIBNE [.......0],WLO ;wait for falling >Wait low
TOHI: DIBEQ [.......1],TOLO ;wait for high >Wait high
 DBNZ V1,TOHI ;loop if not timed out >Wait high
 JUMP WHI ;timed out, restart >Restart
TOLO: DIBEQ [.......0],GOTIT;jump if found events >Wait low
 DBNZ V1,TOLO ;loop if not timed out >Wait low
 JUMP SETTO ;timed out, restart >Restart
GOTIT: ... ;here for 2 close pulses

See also:
Connections, Variables, DISBEQ,DISBNE

DISBEQ DISBNE

These instructions test digital input bits 7-0 read by the last DIBEQ, DIBNE or WAIT against a pattern. DISBEQ
branches on a match. DISBNE branches if it does not match.

 DISBNE [pattern]|Vn|[Vn+off],LB
 DISBEQ [pattern]|Vn|[Vn+off],LB

pattern This is 8 characters, one for each input bit. The characters can be “0”, “1” and “.” meaning match 0
(TTL low), match 1 (TTL high) or match anything. The bit order in the pattern is [76543210]. You may
omit the square brackets, however the Format command inserts them.

Vn With a variable the result is: (input BAND Vn(7-0)) BXOR Vn(15-8). A result of 0 is a match, not
zero is not a match.

LB The destination of the branch if the input was a match (DISBEQ) or not a match (DISBNE). This label
must exist in the sequence.

This example shows a typical use of this instruction. We want to run a different part of the sequence for three trial
types signalled by external equipment that writes the trial type to digital input bits 1 and 0; 00 means no trial, 01, 10
and 11 select trial types 1, 2 and 3.

TRWAIT:'W DIBEQ [......00],TRWAIT ;Wait for trial >Wait...
 DISBEQ [......01],TRIAL1
 DISBEQ [......10],TRIAL2
 DISBEQ [......11],TRIAL3

See also:
Variables, DIBEQ,DIBNE

DAC outputs

The output sequencer supports up to 8 DAC (Digital to Analogue Converter) outputs. The 1401plus and
Power1401s have four DACs (expandable to 8) and Micro1401s have two. The last value written to DACs 0-7 is
stored in variables V57-V64 (which you can also refer to as VDAC0-VDAC7). The values are stored as 32-bit numbers
with the full 32-bit range corresponding to the full range of the DAC. This high resolution allows us to ramp the
DACs smoothly.

Values written to the DACs are expressed in units of your choice. The DAC scaling set in the sampling
configuration Outputs page determines the conversion between the numbers you supply and the DAC outputs.
All DACs are scaled identically. The standard settings for a system with ±5 volts DACs is to set the DAC outputs
in volts.

Signal Version 6.06

6-86

If you write to a DAC that does not exist, the variable associated with the DAC is set as if the DAC were present.
Output to 1401plus DACs 4 –7 is mapped back to DACs 0-3. For the Micro1401 and Power1401, output to DACs
that do not exist has no effect.

The Power1401 DAC 2 and 3 outputs are on pins 36 and 37 of the rear panel 37-way Cannon D type Analogue
Expansion connector. Suitable grounds are on the adjacent pins 18 and 19. With a Power1401 top-box with
additional front panel DACs, the rear panel DAC outputs are mapped to the two highest numbered DACs. For
example, with a 2709 Spike2 top box, DACs 2 and 3 are available as BNC connections on the front panel, and the
rear panel DACs become DAC 4 on pin 36 and DAC 5 on pin 37.

DAC ADDAC

The DAC instruction writes a value to any of the 8 possible DAC outputs. ADDAC adds a value to the DAC output.
The output value changes immediately unless the DAC is in use by the arbitrary waveform output, in which case
the result is undefined.

 DAC n,expr|Vn|[Vn+off],OptLB
 ADDAC n,expr|Vn|[Vn+off],OptLb

n The DAC number, in the range 0-7. Variable 57+n is set to the new DAC value such that the full DAC
range spans the full range of the 32-bit variable.

expr The value to write to the DAC or the change in the DAC value. The units of this value are as set in the
outputs page of the sampling configuration dialog. It is an error to give a value that exceeds the DAC
output range.

Vn When a variable is used, the full range of the 32-bit variable corresponds to the full range of the DAC,
so -2147483648 corresponds to the lowest possible output voltage (-5 or -10 volts) while 2147483647
corresponds to the highest possible output voltage (almost +5 or +10 volts). You can use the VDAC32()
function to load a variable using user-defined DAC units, the SeqLib script library contains a function
that mimics the behaviour of VDAC32 to calculate variable values within a script.

OptLB If this optional label is present it sets the next instruction to run.

This example ramps DAC 2 from 0 to 4.99 volts in 1 second in steps of 0.01 volts using values and then using
variables. You can also use the RAMP instruction to ramp a DAC.

 'R DAC 2,0 ;Ramp 0 to 5 >Ramping
 MOVI V1,499 ;499 steps >Ramping
RAMP1: ADDAC 2,0.01 ;0.01V increment >Ramping
 DBNZ V1,RAMP1 ;count increments >Ramping
 HALT ;task finished >Done
 'V MOVI V3,VDAC32(0) ;Use variables >Ramping
 MOVI V2,VDAC32(0.01) ;increment in V2 >Ramping
 MOVI V1,499 ;499 steps >Ramping
 DAC 2,V3 ;set initial value>Ramping
RAMP2: ADDAC 2,V2 ;add increment >Ramping
 DBNZ V1,RAMP2 ;count increments >Ramping
 HALT ;task finished >Done

It is a property of signed integers that adding 1 to the maximum positive number yields the minimum negative
number. If you use ADDAC repeatedly with the same value, eventually you will run off the end of the DAC range and
come back in at the other end.

DAC units run from -32768 to +32767. In a ±5 volt system with 16-bit DACs, this is -5.0000 to +4.99985 volts. The
DAC unit value for +5 volts is +32768, but this number does not exist in 16-bit signed integers and wraps around to
-32878. Users often want to set the DAC to full scale, so for the DAC command used with expr (not with Vn), we
change requests to set +32768 units to set +32767 units. When a sequencer variable is written out to a DAC the
upper half of the variable (the top 16 bits) provide the data that is written.

Unlike the digital outputs, the DAC output changes when the instruction runs, not at the next sequencer clock tick;
the changes may have a time jitter of a few microseconds.

See also:
General DAC information, Expressions, Variables

Sequencer outputs during sampling

6-87

RAMP

This command starts a DAC ramping with updates every sequencer step. If the DAC was generating a cosine, the
cosine output stops. The DAC ramps from the current value until it reaches a target value, when the DAC cycle flag
sets. You can use WAITC to test for the end of the ramp. The RATE instruction stops a ramp before it reaches the
target value.

 RAMP n,target|Vn,slope|Vs|[Vs+off]

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

target This is the DAC value at which to end the ramp. The units of the DAC values are those set in the
outputs page of the sampling control dialog.

Vn When a variable is used for the target, the full range of the 32-bit variable corresponds to the full range
of the DAC. You can use the VDAC32() function to load a variable using user-defined DAC units.

slope This expression sets the DAC increment per sequencer step. The sign of the value you set here is
ignored as the sequencer works out if it must ramp upwards or downwards to achieve the desired target
value. If your DAC is calibrated in volts, for a slope of 1 volt per second, use 1.0/s(1.0).

Vs You can also set the slope from a variable or by reading it from the table. In this case, the full range of
the 32-bit value represents the full range of the DAC. The DAC changes by the absolute value of this
32-bit value on each step. For a slope of 1 user unit per second, use VDAC32(1.0)/s(1.0).

This example ramps DAC 1 from its current level to 1 volt in 3 seconds, waits 1 second, then ramps it to 0 volts in 5
seconds. See the OFFSET command for another example.

 RAMP 1,1.0,1.0/S(3) ;start with zero size
 ... ;other instructions during ramp
WT1: WAITC 1,WT1 ;wait for ramp to end >Ramp to 1
 DELAY S(1)-1 ;wait for a second >Wait 1 sec
 RAMP 1,0,1.0/S(5) ;ramp down
WT2: WAITC 1,WT2 ;wait for ramp >Ramp to 0

See also:
General DAC information, Expressions, Variables, WAITC, RATE, OFFSET

Cosine output control instructions

The sequencer can output cosine waveforms of variable amplitude and frequency through Micro1401 DACs 0 and
1, Power1401 DACs 0 to 7 and 1401plus DACs 0 to 1. If you attempt to set cosine output for an unsupported DAC,
the instruction is treated as a NOP. When enabled, the cosine value is computed and output every step. The time
penalty per step per DAC is around 10 us for the 1401plus, 4 us for the micro1401 and about 1 us for the Power1401,
Power1401 mk II, Power1401-3, Micro1401 mk II and Micro1401-3. The output is:

output in volts = 5 A Cos(q+f) + offset

where A is an amplitude scaling factor in the range 0 to 1
q an angle in the range 0° to 360° that changes each step (set by ANGLE)
f is a fixed phase angle in the range -360° to 360° (set by PHASE)
offset A voltage offset defined by the OFFSET command

q changes every step by dq. A cycle of the cosine takes 360/dq steps. You can change the angle increment
immediately, or you can delay the change until the next time Theta passes through 0°. You can set dq in the range
0° up to 360° to an accuracy of about 0.0000001°. With the sequencer running at 1 kHz, you can output frequencies
up to 500 Hz with a frequency resolution of around 0.00012 Hz. Ideally the output would be passed through a low
pass filter with a corner frequency at one half of the sequencer step rate to smooth out the steps in the cosine
wave.

By adjusting f you control the output cosine phase where q passes through zero. Unless you set the value
(PHASE), it is zero and the zero crossing occurs at the peak of the sinusoid. To have the output rising through 0, set
the phase to –90.

Each time q passes through zero a new cycle flag sets. The RAMP, RATEW, RINCW, WAITC and CLRC instructions
clear the flag.

Signal Version 6.06

6-88

Output as a function of q+f

SZ

This instruction sets the waveform amplitude. If a wave is playing, the amplitude changes at the next sequencer
step. The amplitude is set to 1.0 when sampling starts.

 SZ n,expr|Vn|[Vn+off],OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The cosine amplitude in the range 0 to 1. A cosine with amplitude 1.0 uses the full DAC range.

Vn Variable values 0 to 32768 correspond to amplitudes of 0.0 to 1.0; values outside the range 0 to 32768
cause undefined results.

OptLB If this optional label is present it sets the next instruction to run.

See also:
Cosine output, SZINC amplitude change, OFFSET set cosine offset, General DAC information, Expressions,
Variables

SZINC

This instruction changes the waveform amplitude. The change is added to the current amplitude. If the result
exceeds 1.0, it is set to 1.0. If it is less than 0, the result is 0.

 SZINC n,expr|Vn|[Vn+off],OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The change in the waveform scale in the range -1 to 1.

Vn A variable value of 32768 is a scale change of 1.0, -16384 is -0.5 and so on.

OptLB If this optional label is present it sets the next instruction to run.

You can gradually increase or decrease the wave amplitude. For example, the following increases the amplitude from
zero to full scale (we assume that the waveform is playing):

 SZ 0,0.0 ;start with zero size
 MOVI V1,100 ;proceed in 1% increments
loop: SZINC 0,0.01 ;a 1% increase
 DELAY ms(100)-2 ;show some of the waveform at this size
 DBNZ V1,loop ;loop 100 times

Sequencer outputs during sampling

6-89

See also:
Cosine output, SZ cosine amplitude, OFFSET set cosine offset, General DAC information, Expressions, Variables

RATE

This sets the angle increment in degrees per step, which sets the cosine frequency. If the nominated DAC was
ramping, this cancels the ramp. You can stop the cosine output with a rate of 0. Any non-zero value starts the
cosine output.

 RATE n,expr|Vn|[Vn+off],OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The angle increment per step in the range 0.000 up to 180 degrees. The Hz() function calculates the
increment required for a frequency.

Vn For a variable, the value 11930465 is an increment of 1 degree. The VHz() function can be used to set a
variable value equivalent to an angle in degrees.

OptLB If this optional label is present it sets the next instruction to run.

This example starts cosine output at 10 Hz, runs for 10 seconds, and then stops it. This is then repeated using a
variable to produce the same effect:

 'C RATE 0,Hz(10) ;start output at 10 Hz
 DELAY S(10)-1 ;delay for 10 seconds >Sine wave
X: 'S RATE 0,0 ;stop output
 HALT >Stopped
 'V MOVI V1,VHz(10) ;set V1 equivalent of 10 Hz
 RATE 0,V1 ;start at 10 Hz
 DELAY S(10)-1,X ;delay then goto exit >Sine wave

See also:
Cosine output, RINC(W) change frequency, RATEW set frequency change at phase 0, ANGLE change phase,
WAITC wait for phase 0, PHASE define phase zero, General DAC information, Expressions, Variables

RATEW

This instruction performs the same function as RATE, except that the change is postponed until the next time Theta
passes through 0 degrees. RATEW cannot start output; a sinusoid must already be running to pass phase 0. It can
stop output, but does not remove the overhead for using cosine output. This instruction clears the new cycle flag
(see WAITC).

 RATEW n,expr|Vn|[Vn+off] ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The angle increment in the range 0.000 to 180 degrees. The Hz() built-in function calculates the
increment required for a frequency.

Vn For a variable, the value 11930465 is an increment of 1 degree. The VHz() function can be used to set a
variable value equivalent to an angle in degrees.

OptLB If this optional label is present it sets the next instruction to run.

This example starts cosine output at 10 Hz, runs for 1 cycle, changes to 11 Hz for one cycle, then stops:

 ANGLE 0,0 ;make sure we are at phase 0
 RATE 0,Hz(10) ;start output at 10 Hz
 RATEW 0,Hz(11) ;request 11 Hz next time around
CYCLE10: WAITC 0,CYCLE10 ;wait for the cycle>10Hz
CYCLE11: WAITC 0,CYCLE11 ;wait for the cycle>11Hz
 RATE 0,0 ;stop output

See also:

Signal Version 6.06

6-90

Cosine output, RATE set frequency change, RINC(W) change frequency, ANGLE change phase, WAITC wait for
phase 0, CLRC clear new cycle flag, PHASE define phase zero, General DAC information, Expressions, Variables

ANGLE

This changes the cosine angular position. It takes effect on the next instruction when the angle increment is added
to the value set by this instruction and the result is output.

 ANGLE n,expr|Vn|[Vn+off],OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The phase angle to set in the range -360 up to +360.

Vn For a variable, the value 11930465 is a phase of 1 degree (to be precise, 4294967296/360 is a phase of 1
degree). You can use the VAngle() function to convert degrees into a suitable value for a variable.

OptLB If this optional label is present it sets the next instruction to run.

This example sets the phase angle to –90 degrees directly, and by using a variable. There is no need to use the
VAngle() function; we could have set V1 to –1073741824. However, VAngle(-90) is much easier to understand.

 ANGLE 1,–90 ;set the DAC 1 cosine angle directly
 MOVI V1,VAngle(-90)
 ANGLE 1,V1 ;set using a variable

See also:
Cosine output, RATE set frequency, RINC(W) change frequency, RATEW set frequency change at phase 0,
PHASE define phase zero, General DAC information, Expressions, Variables

PHASE

This changes the relative phase of the cosine output for the next cosine output. A common use is to change the
output from a cosine (maximum value at phase zero) to sine (rising through zero at phase zero).

 PHASE n,expr|Vn|[Vn+off],OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The relative phase angle to set in the range -360 up to +360. The relative phase is set to 0 when sampling
starts. Set –90 for sinusoidal output.

Vn For a variable, the value 11930465 is a phase of 1 degree (to be precise, 4294967296/360 is a phase of 1
degree). You can use the VAngle() function to convert degrees into a suitable value for a variable.

OptLB If this optional label is present it sets the next instruction to run.

This example plays a 1 Hz sinusoidal output (assuming that the output is not running).

 PHASE 2,–90 ;set the DAC 2 phase angle directly
 ANGLE 2,0 ;prepare to start as a sine wave
 RATE 2,Hz(1) ;start the sinusoid

See also:
Cosine output, RATE set frequency, RINC(W) change frequency, RATEW set frequency change at phase 0,
General DAC information, Expressions, Variables

OFFSET

This changes the cosine output voltage offset for the next cosine output.

 OFFSET n,expr|Vn|[Vn+off],OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The offset value for sinusoidal output. The units of this value are as set in the outputs page of the
sampling configuration dialog. It is an error to give a value that exceeds the DAC output range.

Sequencer outputs during sampling

6-91

Vn When a variable is used, the full range of the 32-bit variable corresponds to the full range of the DAC.
You can use the VDAC32() function to load a variable using user-defined DAC units.

OptLB If this optional label is present it sets the next instruction to run.

This example ramps DAC 0 from 0 to 1 volt, the runs 5 cycles of a sine wave at 1 Hz, and finally ramps the data back
to 0 volts. This example does not work with a 1401plus.

 DAC 0,0 ;use DAC 0 for all output
 OFFSET 0,1.0 ;set DAC 0 offset
 SZ 0,0.2 ;1 V sinusoid
 PHASE 0,-90 ;Prepare sinusoid
 ANGLE 0,0 ;set start point
 RAMP 0,1.0,1.0/s(1) ;ramp to 1 volt in 1 sec
RAMPUP: WAITC 0,RAMPUP ;wait for ramp >Ramp up
 RATE 0,HZ(1) ;start sinusoid
 DELAY S(4.9) ;Sinusoid >Sine
 RATEW 0,0 ;stop at cycle end
END: WAITC 0,END ;wait for end >Wait end
 RATE 0,0 ;stop now
 RAMP 0,0.0,1.0/S(1) ;ramp to 0 volt in 1 sec
RAMPDN: WAITC 0,RAMPDN ;wait >Ramp down
 HALT

See also:
Cosine output, SZ cosine amplitude, SZINC amplitude change, General DAC information, Expressions, Variables

WAITC

Each time the phase angle of a cosine passes through 0°, a new cycle flag sets. This flag is also set when a ramp
terminates. There is a separate flag for each DAC. This flag is cleared by CLRC, RATEW, RINCW and when tested by
WAITC.

 WAITC n,LB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

LB A label to branch to if the new cycle flag is not set. If the flag is set, the sequencer clears the flag and
does not branch.

This instruction can produce a pulse at the start (or at least a known time after) the start of each waveform cycle.
The following sequence outputs 4 cycles of waveform at different rates on DAC 1, and changes the digital outputs
for each cycle.

 SZ 1,1.0 ;make sure full size
 ANGLE 1,0.0 ;make sure we start at phase 0
 RATE 1,1.0 ;1 degree per step to start with
 DIGOUT [00000001] ;so outside world knows
 RATEW 1,1.2 ;next cycle faster, clear cycle flag
w1: WAITC 1,w1 ;wait for cycle >1 degree cycle
 DIGOUT [00000010] ;announce another cycle
 RATEW 1,1.4 ;next cycle a bit faster
w2: WAITC 1,w2 ;wait for cycle >1.2 degree cycle
 DIGOUT [00000011] ;yet another one
 RATEW 1,1.6 ;last cycle a bit faster
w3: WAITC 1,w3 ;wait for cycle >1.4 degree cycle
 DIGOUT [00000100] ;last cycle number
w4: WAITC 1,w4 ;wait for end >1.6 degree cycle
 RATE 1,0.0 ;stop waveform

See also:
Cosine output, RATE set frequency, RINC(W) change frequency, RATEW set frequency change at phase 0,
ANGLE change phase, PHASE define phase zero, CLRC clear new cycle flag, General DAC information

Signal Version 6.06

6-92

RINC RINCW

These instructions behave like RATE and RATEW except that they change the output rate (angle increment per step)
by their argument rather than set it. RINCW clears the new cycle flag.

 RINC n,expr|Vn|[Vn+off],OptLB ;DAC n
 RINCW n,expr|Vn|[Vn+off],OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

expr The change in the angle increment per step. You can use the built-in Hz() function to express the
change as a frequency.

Vn For a variable, the value 11930465 is a change of 1 degree. You can use the VarValue script in the
Scripts folder to calculate variable values.

OptLB If this optional label is present it sets the next instruction to run.

This example starts cosine output at 10 Hz and lets you adjust it from the keyboard.

 RATE 1,Hz(10) ;start output at 10 Hz
wt: JUMP wt ;HALT stops all output>P=+1Hz, M=-1Hz
 'P RINC 1,Hz(1),wt;1 Hz faster
 'M RINC 1,Hz(-1),wt;1 Hz slower

These instructions can be used to produce waveforms that change gradually in frequency. The following code
generates a linear speed increase every two steps on DAC 1:

 SZ 1,1.0 ;make sure full size
 ANGLE 1,0.0 ;make sure we start at phase 0
 RATE 1,1.0 ;1 degree per step to start with
 MOVI V1, 900 ;in 900 steps of...
loop: CRINC 0.01 ;...1/100 degrees to...
 DBNZ V1, loop ;...10 degrees per step

The next example produces 90 cycles, each increasing by 0.1 degrees per step per cycle.

 SZ 1,1.0 ;make sure full size
 ANGLE 1,0.0 ;make sure we start at phase 0
 RATE 1,1.0 ;1 degree per step to start with
 MOVI V1, 90 ;in 90 steps of...
loop: RINCW 1,0.1 ;...1/10 degrees to...
wait: WAITC 1,wait ;...(wait for next cycle)...
 DBNZ V1, loop ;...10 degrees per step

See also:
Cosine output, RATE set frequency, RATEW set frequency change at phase 0, WAITC wait for phase 0, CLRC
clear new cycle flag, PHASE define phase zero, General DAC information, Expressions, Variables

CLRC

This instruction clears the cosine output new cycle flag. If you have been running for several cycles and you want
to stop the next time phase 0 is crossed use this instruction immediately before using WAITC.

 CLRC n,OptLB ;DAC n

n DAC number in the range 0-7 (available DACs depend on the 1401 type).

OptLB If this optional label is present it sets the next instruction to run.

This example starts a sinusoid and stops it at the next phase 0 crossing after a user stop requests. Because the
sinusoid passes phase 0 in the WAITC instruction and does another step in the RATE 1,0 instruction, we offset the
phase by 2 steps. However, this would cause the start of the sinusoid to be 2 steps wrong, so we change the start
angle to match.

Sequencer outputs during sampling

6-93

 'G PHASE 1,-2*Hz(2) ; compenstate for ending
 ANGLE 1,2*Hz(2) ; so we start in correct place
 RATE 1,Hz(2) ; 2 Hz output
HERE: JUMP HERE ; output is running >Running
 'S CLRC 1 ; Stop output
WT: WAITC 1,WT ; wait for cycle end>Waiting
 RATE 1,0,HERE ; stop and then idle

See also:
Cosine output, RATE set frequency, RINC(W) change frequency, RATEW set frequency change at phase 0,
WAITC wait for phase 0, PHASE define phase zero, General DAC information, Expressions, Variables

General control

These instructions do not change any outputs or read data from any inputs. They provide the framework of loops,
branches and delays used by the other instructions.

DELAY

The DELAY instruction occupies one clock tick plus the number of extra ticks set by the argument. It produces
simple delays of 1 to more than 4,000,000,000 sequencer steps.

 DELAY expr|Vn|[Vn+off],OptLB

expr The extra sequencer clock ticks to delay in the range 0 to 4294967295. The s(), ms() and us() built-in
functions convert a delay in seconds, milliseconds or microseconds into sequencer steps.

Vn Variable or table index from which to read the number of extra clock ticks.

OptLB If this optional label is present it sets the next instruction to run.

This example uses display messages to tell the user what the sequence is doing.

 DELAY 2999 ;wait 2999+1 ticks >3 second delay for 1ms ticks
 DELAY s(3)-1 ;3 seconds –1 tick delay >3 second delay
 DELAY V1,LB ;wait V1+1 ms, branch >variable delay
 DELAY [V1+9] ;V1+9 is table index >table delay

See also:
Expressions, Variables, TABSZ and TABDAT directives, DBNZ count and branch for loops,
CALL,CALLV,RETURN, JUMP to label, HALT the sequence, NOP do nothing

DBNZ

DBNZ (Decrement and Branch if Not Zero) subtracts 1 from a variable and branches to a label unless the variable is
zero. It is used for building loops.

 DBNZ Vn,LB

Vn The variable to decrement and test for zero.

LB Instruction to go to next if the result of the decrement is not zero.

DBNZ is often used with MOVI to set up loops, for example:

 MOVI V2,1000 ;set times to loop
WT: DIGOUT [00000000] ;set all digital outputs low
 DIGOUT [11111111] ;set them all high
 DBNZ V2,WT ;loop 1000 times

See also:
Variables, DELAY wait for a number of steps, CALL,CALLV,RETURN, JUMP to label, HALT the sequence, NOP do
nothing

Signal Version 6.06

6-94

Compare variables

These instructions compare two variables or a variable and a 32-bit expression and branch on the result of the
comparison. All comparisons are as signed 32-bit integers.

 Bxx Vn,Vm,LB ;compare with a variable
 Bxx Vn,expr,LB ;compare with a constant
 Bxx Vn,[Vm+off],LB ;compare with a table entry

xx This is the branch condition. The xx stands for: GT=Greater Than, GE=Greater or Equal, EQ=Equal,
LE=Less than or Equal, LT=Less Than, NE=Not Equal.

Vn The variable to compare with the next argument.

Vm A variable to compare Vn with or table index variable.

expr A 32-bit integer constant to compare Vn with.

This example collects the latest data value from channel 1 (assumed to be a waveform), waits for it to be in a set
range for 1 second, then outputs a pulse to a digital output bit.

START: CHAN V1,1 ; get channel 1 data
 BGT V1,4000,START ; if above upper limit, wait
 BLT V1,0,START ; if too low, wait
IN: MOVI V2,S(1)/4 ; timeout, 4 instructions/loop
INLOOP: CHAN V1,1 ; to check if still inside
 BGT V1,4000,START ; if above upper limit, wait
 BLT V1,0,START ; if too low, wait
 DBNZ V2,INLOOP ; see if done yet
REWARD: DIGOUT [.......1] ; Task done OK
 DELAY S(1) ; leave bit set for 1 second
 DIGOUT [.......0] ; clear done bit
 ... ; next task...

We want the data to be in range for one second. There are 4 instructions in the loop that tests this, so we set to the
loop to run for the number of steps in a second divided by 4. For this to work correctly, the sequencer must be
running fast enough so that 4 steps are no longer than the sample interval for the waveform channel.

See also:
Expressions, Variables, TABSZ and TABDAT directives

CALL CALLV RETURN

These instructions run a labelled part of a sequence and return. CALL and CALLV save the next step number to a
return stack and jump to the labelled instruction. The RETURN instruction removes the top step number from the
return stack and jumps to it. CALLV also sets a variable to a constant.

 CALL LB ; use LB as a subroutine
 CALLV LB,Vn,expr ; Vn = expr, then call LB
 RETURN ; return to step after last CALL

LB The next instruction to run. The CALLed section should end with a RETURN.

Vn CALLV copies the value of expr to this variable. CALL1 sets V33, CALL2 sets V34 CALL3 sets V35 and
CALL4 sets V36.

expr A 32-bit integer constant that is copied to a variable.

You can use CALL inside a CALLed subroutine. This is known as a nested CALL. If you call a subroutine from inside
itself, this is known as a recursive CALL. The return stack has room for 64 return addresses. If you use more than
this, the oldest return address is overwritten, so your sequence will not behave as you expect.

This example generates different pulse widths from DAC 0. The sequence is written to be independent of the
sequencer rate, However, it must be high enough so that the widths are possible. In this case a sequencer Step
period of 1 millisecond (set in the Outputs tab of the sampling configuration) would be fine. The example sets DAC
0 to zero, then pulses for 20 milliseconds twice, once using CALL and once using CALLV. Then after a delay, there is
a 50 millisecond pulse.

Sequencer outputs during sampling

6-95

 DAC 0,0 ; make sure DAC0 is zero
 MOVI V3,ms(20)-2 ; these two instructions...
 CALL PUL ; ...have the same effect as...
 CALLV PUL,V3,ms(20)-2; ...this one. 20 ms pulse
 DELAY s(1)-1 ; wait 1 second, then...
 CALLV PUL,V3,ms(50)-2; ...a 50 ms pulse
 HALT ; So we don't fall into PUL routine
PUL: DAC 0,1 ; set DAC value
 DELAY V3 ; wait for time set
 DAC 0,0 ; set DAC back to zero
 RETURN ; back to the caller

CALL/CALLV and RETURN let you reuse a block of instructions. This can make sequences much easier to
understand and maintain. The disadvantage is the additional steps for the CALL and RETURN. If you need to set a
variable, use CALLV and there is only the overhead of the RETURN instruction.

See also:
Expressions, Variables, DELAY wait for a number of steps, DBNZ count and branch for loops, JUMP to label,
HALT the sequence, NOP do nothing

JUMP

The JUMP instruction transfers control unconditionally to the instruction at the label. Many instructions allow the
use of an optional label to set the next instruction, so you can often avoid the need for this instruction. You can
also jump using the contents of a register as the destination, or relative to a label (LB):

 JUMP LB ; Jump to label
 JUMP (Vn),OptLB ; Jump to instruction Vn
 JUMP LB(Vn),OptLB ; Jump to instruction LB+Vn

(Vn) The value of variable Vn sets the instruction number to jump to.

LB(Vn) Jump to the instruction given by label LB plus the contents of Vn.

OptLB An optional label to jump to if (Vn) or LB(Vn) is not an instruction number. The first instruction is 0, the
last depends on the size of the sequence.

Multiple states

You can use the JUMP instruction with a variable holding an offset from a label to design a sequence that does
different things according to the current sweep state. As an example:

 VAR V1,CurSta ; A variable to hold the sweep state number

 WSWP 0 ; Wait until a sweep is in progress - not needed if the sequence is reset on each sweep
 STATE CurSta ; Get the state code (0 to n) in a variable
 JUMP JTAB(CurSta),DONE ; Jump into the table or to DONE if the state code is too high
DONE: JUMP DONE ; Finish off here - does nothing

; State 1 generates one digital pulse
S1: WSWP s(0.1)-1 ; Generate a trigger pulse at 0.1 seconds
 DIGOUT [......1]
 DELAY 10 ; We could be more precise about timing if we wanted...
 DIGOUT [......0],DONE

; State 2 generates two digital pulses
S1: WSWP s(0.1)-1 ; Generate a trigger pulse at 0.1 seconds
 DIGOUT [......1]
 DELAY 10 ; We could be more precise about timing if we wanted...
 DIGOUT [......0]
 WSWP s(0.2)-1 ; Generate a second trigger at 0.2 seconds
 DIGOUT [......1]
 DELAY 10

Signal Version 6.06

6-96

 DIGOUT [......0],DONE

; This is the table of jumps, each one of which goes to the code to handle a separate sweep state. So first the
; JUMP above jumps into the table, then it jumps out to the relevant code. We put the table at the end of the sequence
; so that if the state code is too high for the table we automatically jump to DONE.
JTAB: JUMP DONE ; State 0, does nothing
 JUMP S1 ; Jump to state 1 code
 JUMP S2 ; and so on
.... ; The table should have an entry for each state in use

State machine

You can also use the JUMP instruction to implement a state machine. A state machine is characterised by activities
in each state, and transitions between states. State machines are a convenient way to tidy up a complicated
sequence of operations involving conditions such as the level of an input signal. For example:

State Activity Transition

0 Wait for digital input 0 to be low To state 1

1 Wait for digital input 0 to go high To state 2 on high

2 Wait for digital input 0 to go low To state 3 on low, digital output high on change

3 Wait for 10 seconds To state 0, digital output low on change

This could be coded as:

 VAR V1,StaV=State0 ;initial state
 VAR V2,Until=0 ;Used to time state 3
 VAR V3,Now

IDLE: ... ;background actions >=
 JUMP (StaV) ;run state machine >=

STATE0: DIBNE [.......0],IDLE ;wait for low >State 0
 MOVI StaV,State1,IDLE ;move on >"
STATE1: DIBNE [.......1],IDLE ;wait for high >State 1
 MOVI StaV,State2,IDLE ; >"
STATE2: DIBNE [.......0],IDLE ;wait for low again >State 2
 DIGOUT [.......1] ;Digital out high >"
 TICKS Until,s(1) ;1 second ahead >"
 MOVI StaV,State3,IDLE ; >"
STATE3: TICKS Now,0 ;get current time >State 3
 BLT Now,Until,IDLE ;wait for 1 second >"
 DIGOUT [.......0] ;Digital out low >"
 MOVI StaV,State0,IDLE

The ... at label IDLE stands for instructions that you want to run in the background while the state machine runs -
probably handling on-going sampling. Of course, the more background instructions you include, the less
frequently the state machine checks the state of the inputs.

See also:
DELAY wait for a number of steps, DBNZ count and branch for loops, CALL,CALLV,RETURN, HALT the
sequence, NOP do nothing

HALT

The HALT instruction stops the output sequence and removes all overhead associated with it. It does not stop the
sequencer clock, which continues to run. Any cosine output will stop, but will restart when the sequence restarts.
To restart the sequencer, press a key associated with a sequence step or click a key in the sequencer control panel.
If you associate a display string with this instruction, it appears in the sequencer control panel.

 HALT >Press X when ready

Sequencer outputs during sampling

6-97

See also:
DELAY wait for a number of steps, DBNZ count and branch for loops, CALL,CALLV,RETURN, JUMP to label,
NOP do nothing

NOP

The NOP instruction (No OPeration) does nothing except use up one sequencer clock tick. It can be thought of as
the equivalent of DELAY 0.

See also:
DELAY wait for a number of steps, DBNZ count and branch for loops, CALL,CALLV,RETURN, JUMP to label,
HALT the sequence

Variable arithmetic

These instructions perform basic mathematical functions while a sequence runs. You can also compare variables
and branch on the result

MOVI

This instruction moves an integer constant into a variable. The syntax is:

 MOVI Vn,expr,OptLB ; Vn = expr

Vn A variable to hold the value of expr.

expr An expression that is evaluated as a 32-bit integer.

OptLB If this optional label is present it sets the next instruction to run.

MOVI is not the same as the VAR directive. The VAR directive sets the value of a variable when the sequence is
copied to the 1401 and does not occupy a step. The MOVI instruction is part of the sequence and set the value of
the variable each time the instruction is used.

See also:
Expressions, Variables, Set variable to another variable

MOV ABS NEG

The MOV instruction sets a variable to the value of another with the option of adding a 32-bit number and dividing
by a power of two). The NEG instruction is identical to MOV except that the source variable is negated first. ABS is
also the same, except that the absolute value (negative values become positive) of the variable is taken first. ABS
was added at version 4.06. The syntax is:

 MOV Va,Vb,expr,shift ; Va = (Vb + expr) >> shift
 NEG Va,Vb,expr,shift ; Va = (-Vb + expr) >> shift
 ABS Va,Vb,expr,shift ; Va = (|Vb| + expr) >> shift

Va A variable to hold the result. It can be the same as Vb.

Vb A variable used to calculate the result. It is not changed unless it is the same variable as Va.

expr An optional expression that is evaluated as a 32-bit integer. If this argument is omitted, it is treated as 0.

shift An optional argument in the range 0 to 31, set to 0 if omitted, that sets the number of times to divide the
result by 2.

The following examples assume that V3 holds 1000:

Signal Version 6.06

6-98

 VAR V6,Result
 MOV V1,V3 ; set V1 to 1000
 NEG V1,V3 ; set V1 to -1000
 MOV V1,V3,-8 ; set V1 to 992
 NEG Result,V3,0,4 ; set V6 to -63
 ABS Result,Result ; set V6 to 63
 MOV Result,V3,4,1 ; set V6 to 502

See also:
Expressions, Variables, Set variable to constant

ADDI

This instruction adds a 32-bit integer constant to a variable. There is no SUBI as you can add a negative number.
The syntax is:

 ADDI Vn,expr,OptLB ; Vn = Vn + expr

Vn A variable to hold the result of Vn + expr.

expr An expression that is evaluated as a 32-bit integer.

OptLB If this optional label is present it sets the next instruction to run.

The following examples assume that V1 holds -1000:

 VAR V1,Result=-1000
 ADDI Result,1000 ; set V1 to 0
 ADDI V1,-4000 ; set V1 to -5000

See also:
Expressions, Variables, Add variable to variable

ADD SUB

The ADD instruction adds one variable to another. The SUB instruction subtracts one variable from another. In both
cases you can optionally add a 32-bit integer constant and optionally divide the result by a power of two. The
syntax is:

 ADD Va,Vb,expr,shift ; Va = (Va + Vb + expr) >> shift
 SUB Va,Vb,expr,shift ; Va = (Va - Vb + expr) >> shift

Va A variable to hold the result. It can be the same as Vb.

Vb A variable to add or subtract.

expr An optional expression evaluated as a 32-bit integer. If omitted, 0 is used.

shift An optional argument in the range 0 to 31, set to 0 if omitted, that sets the number of times to divide the
result by 2.

The following examples assume that V1 holds -1000, V3 holds 1000, V6 holds 100:

 VAR V6,Result=100
 ADD V1,V3 ; V1 = 0 (-1000 + 1000 + 0)
 SUB V1,V3 ; V1 = -1000 (0 – 1000 + 0)
 ADD V1,V3,-8 ; V1 = -8 (-1000 + 1000 - 8)
 SUB Result,V3,0,2 ; V6 = -225 (100 – 1000 + 0)/4
 ADD Result,V3,4,1 ; V6 = 389 (-225 + 1000 + 4)/2

See also:
Expressions, Variables, Add constant to variable

Sequencer outputs during sampling

6-99

DIV RECIP

DIV and RECIP divide variables. These are relatively slow instructions; they take around .4 microseconds in a
Power1401 mk II, a little less in a Power1401-3, around 1 microsecond in the Power1401 mk I, 3 microseconds in a
micro1401 mk II orMicro1401 -3, 10 microseconds in a micro1401 mk 1 and 5 microseconds in a 1401plus.

 DIV Va,Vb ; Va = Va / Vb
 RECIP Va,expr ; Va = expr / Vb

If the numerator is 0, the result is 0. If the denominator is 0, the result is 2147483647 if the numerator is greater than 0
and –2147483648 if it is negative. The 1401plus truncates all results downwards, all other 1401s truncate towards 0.
So, 7/3 or –7/–3 is 2 in all 1401s, but –7/3 or 7/–3 is –2 except in a 1401plus, where it is –3.

MUL MULI

MUL multiplies a variable by another variable, then optionally adds a 32-bit integer constant and divides the result
by a power of two. MULI multiplies a variable by a 32-bit integer constant and divides the result by a power of 2.

 MUL Va,Vb,expr,shift ; Va = ((Va*Vb)+expr) >> shift
 MULI Va,expr,shift ; Va = (Va*expr) >> shift

Va A variable to hold the result. It can be the same as Vb.

Vb A variable used to calculate the result.

expr An expression that is evaluated as a 32-bit integer. It is optional for MUL and required for MULI. If this
argument is omitted, it is treated as 0.

shift An optional argument in the range 0 to 31, set to 0 if omitted, that sets the number of times to divide the
result by 2.

The following examples assume that V1 holds –10 and V3 holds 10:

 MULI V1,10 ; V1 = -100 (-10 * 10)
 MUL V1,V3,-8 ; V1 = -992(-100 * 10 -8)

See also:
Expressions, Variables

Variable logic

These instructions perform basic bitwise logical functions between two variables or a variable and a constant while
a sequence runs.

AND, ANDI

These instructions bitwise AND a variable with a variable or a 32-bit expression. A bitwise AND means that each bit
of the 32-bit result is 1 if both corresponding source bits are 1, otherwise the result bit is 0. For example, 3 AND 1 is 1,
0x55 AND 0xAA is 0.

 AND Va,Vb ; Va = Va AND Vb
 ANDI Va,Vb,expr ; Va = Vb AND expr

Va The variable to hold the result.

Vb A variable to AND with Va or with the expression.

expr A 32-bit integer constant to AND with Va.

This example waits for the digital input to have bit 4 set, then branches based on the digital input value (placed in
VDigIn or V56 by DIBNE).

Signal Version 6.06

6-100

WT: DIBNE [...1....],WT ; wait for bit 4 set >Wait for Bit 4
 ANDI V1,VDigIn,0x0f ; isolate bits 0..3 (value 0-15)
 JUMP ACTION(V1) ; branch based on the result
ACTION: JUMP ACT0 ; action for value 0
 JUMP ACT1 ; action for value 1
 ...
 JUMP ACT15 ; action for value 15

See also:
Expressions, Variables, Constants

OR, ORI

These instructions bitwise OR a variable with a variable or a 32-bit expression. A bitwise OR means that each bit of
the 32-bit result is 1 if either corresponding source bit is 1, otherwise the result bit is 0. For example, 3 OR 1 is 3, 0x55
OR 0xAA is 0xff.

 OR Va,Vb ; Va = Va OR Vb
 ORI Va,Vb,expr ; Va = Vb OR expr

Va The variable to hold the result.

Vb A variable to OR with Va or with the expression.

expr A 32-bit integer constant to OR with Va.

See also:
Expressions, Variables, Constants

XOR, XORI

These instructions bitwise exclusive OR a variable with a variable or a 32-bit expression. A bitwise exclusive OR
means that each bit of the 32-bit result is 1 if the corresponding source bits differ, otherwise the result bit is 0. For
example, 3 XOR 1 is 2, 0x55 XOR 0xAA is 0xff.

 XOR Va,Vb ; Va = Va XOR Vb
 XORI Va,Vb,expr ; Va = Vb XOR expr

Va The variable to hold the result.

Vb A variable to XOR with Va or with the expression.

expr A 32-bit integer constant to XOR with Va.

See also:
Expressions, Variables, Constants

Table access

Tables are declared with the TABSZ directive and can be populated with data using the TABDAT directive. Most
access to tables is through the [Vn+off] method, but there are also instructions for loading and storing a register
in a table, for adding and subtracting table values from a variable, and for incrementing or decrementing a register
used as a pointer into the table.

TABLD TABST

These two instructions load a variable from the table and store a variable into the table. Many instructions can load
arguments from the table, so TABLD is not often required.

 TABLD Vm,[Vn+off],OptLB ; load Vm from the table
 TABST Vm,[Vn+off],OptLB ; store Vm into the table

Sequencer outputs during sampling

6-101

Vm The variable to load from the table or store into the table.

+off An optional expression that evaluates to an integer in the range –1000000 to 1000000. If omitted, the
value 0 is used.

Vn Any offset in the off expression is added to the contents of this variable and the result is used as an
index into the table. If the index lies in the table, Vm is loaded from the table or stored in the table at the
index. If the index is outside the table, TABLD copies 0 to Vm and TABST does nothing.

OptLB If this optional label is present it sets the next instruction to run.

See also:
TABSZ and TABDAT directives, Variables, TABINC

TABADD TABSUB

These two instructions add a table value to a variable or subtract a table value from a variable. These instructions
were added at version 4.06.

 TABADD Vm,[Vn+off],OptLB ; add table value to Vm
 TABSUB Vm,[Vn+off],OptLB ; subtract value from Vm

Vm The variable to add data to or subtract it from.

+off An optional expression that evaluates to an integer in the range –1000000 to 1000000. If omitted, 0 is
used.

Vn The variable value plus the offset is used as a table index. If the index lies in the table, Vm is changed. If
the index is not in the table, the instruction does nothing.

OptLB If this optional label is present it sets the next instruction to run, otherwise the next sequential
instruction runs.

See also:
TABSZ and TABDAT directives, Variables, TABINC, TABLD, TABST

TABINC

This instruction adds a constant to a variable and detects if the result is a valid table index. If it is a valid index, the
instruction branches. If it is not, the result is reduced by the table size if it is positive and is increased by the table
size if it is negative, and the instruction does not branch. This gives you an efficient way to work through the table.

 TABINC Vn,expr,OptLB

Vn This variable is assumed to hold a valid table index.

expr This expression evaluates to a positive or negative number that is added to Vn.

OptLB If this optional label is present it sets the next instruction to run.

For example, the following codes plays pulses through DAC 0 based on data in the table. The table data holds
groups of three items, holding the time for the DAC to stay at 0, the DAC amplitude and the time to stay at the
amplitude. Some example table data is given, but the data could also be set with the SampleSeqTable() script
command.

Signal Version 6.06

6-102

 TABSZ 12 ;4 sets of 3 items
 TABDAT ms(50)-2,VDAC32(1),ms(50)-3
 TABDAT ms(100)-2,VDAC32(1.3),ms(70)-3
 TABDAT ms(200)-2,VDAC32(1.5),ms(90)-3
 TABDAT ms(400)-2,VDAC32(1.9),ms(110)-3
 'G MOVI V1,0 ;use V1 as the table pointer
LOOP: DAC 0,0 ;strt with the DAC low
 DELAY [V1] ;wait for first period>Low
 DAC 0,[V1+1] ;get the DAC value
 DELAY [V1+2] ;wait for second period>High
 TABINC V1,3,LOOP
 DAC 0,0 ;tidy up the dac

See also:
TABSZ and TABDAT directives, Variables, TABLD,TABST

Access to data capture

Most activities in the sequencer are independent of the sampling process. However, there are times when you need
to know the value of a channel to decide what to do next or you need to trigger a sweep.

CHAN

This instruction gives the output sequencer access to sampled data on a waveform channel. You can also use this
command to get the most recent value written to the DAC outputs. The variable value is set to 0 if the channel is
not being sampled. This instruction is not available for the 1401plus.

 CHAN Vn,chn ; Vn = ChanData(chn)

chn The channel number is 1 to 80 for sampled channels or 0 to -7 for the last value on DACs 0 to 7. The
result is the most recent data available.

Waveform and DAC data are treated as 16-bit signed values from –32768 to 32767. You also have access to DAC
values as 32-bit data in variables V57 to V64 (VDAC0 to VDAC7) without the need to use the CHAN instruction. This
instruction takes rather longer to execute than other sequencer instructions (it incurs the DIV/RECIP time penalty),
and may cause timing problems if used in circumstances when the 1401 is heavily loaded.

This example waits for a sampled signal to cross 0.05 volts and produces a pulse.

 VAR V1,level=VDAC16(0.05) ;level to cross
 VAR V2,data ;to hold the last data
 VAR V3,low=0 ;some sort of hysteresis level
 DIGOUT [00000000] ;set all dig outs low
BELOW: CHAN data,1 ;read latest data >wait below
 BGT data,low,below ;wait for below >wait below
ABOVE: CHAN data,1 ;read latest data >wait above
 BLE data,level,above ;wait for above >wait above
 DIGOUT [.......1] ;pulse output...
 DIGOUT [.......0],below ;...wait for below

See also:
Variables

DCON

This instruction is used to turn a dynamic clamp model on or off.

 DCON num,on,OptLb ; num = model, on = on/off switch

num An expression that sets the model number, from 1 to the maximum available. Models are numbered in the
order they are shown in the main dynamic clamp setup dialog, with the first model being number 1.

on An expression that turns the model on or off, set this to 1 to enable a model, 0 to disable it.

Sequencer outputs during sampling

6-103

OptLb If present, the instruction branches to this label.

This instruction can be used in conjunction with the Signal dynamic clamping mechanism to turn models on and off
at particular times within the sampling sweep. Note that this command only operates upon the model information
currently in the 1401 and that this information is updated by Signal whenever the user updates model data and
whenever the sampling sweep state changes in multiple states sampling, and that this updating process will
override changes made by this instruction with the enable or disable flags associated with the main model data.

See also:
Variables, Dynamic clamping

POINTS

This instruction sets a variable to the current number of points sampled in the current sweep. The variable value is
set to 0 if the sampling sweep has not started. This instruction is not available for the 1401plus.

 POINTS Vn,OptLB ; Vn = Sweep points

Vn This variable is updated with the sweep point count.

OptLB If present, the instruction branches to this label.

This can be used instead of the WSWP command to wait until a specific point in the sweep, but based on points
rather than time. This instruction takes rather longer to execute than other sequencer instructions (it incurs the
DIV/RECIP time penalty), and may cause timing problems if used in circumstances when the 1401 is heavily
loaded.

See also:
Variables, POINTS get sampled pointsVariables

STATE

This instruction sets a variable to the current sweep state code.

 STATE Vn,OptLb ; Vn = Sweep state code

Vn This variable is updated with the current sweep state code.

OptLb If present, the instruction branches to this label.

This can be used in conjunction with the Signal multiple states mechanism (in Static or Dynamic outputs mode
only) to produce a sequence that behaves in a different fashion according to the sweep state.

See also:
Variables

SETS

This instruction sets the state number for the current sweep.

 SETS expr|Vn|[Vn+off],OptLB ; Sweep state = expr

expr This is the state code, from 0 to 255 normally.

Vn When a variable or table entry is used to set the state, the value sets the sweep state.

OptLb If present, the instruction branches to this label.

This can be used instead of the normal Signal multiple states mechanisms to generate data files with separate state
code numbers for each data sweep. This instruction should not be used with a sampling configuration which uses
multiple states as the two mechanisms will be in conflict; use it in a sampling configuration with multiple states
turned off. To match the built-in multiple states mechanism you should restrict yourself to state codes from 0 to
255, however you can use other state code values if you wish.

To find the state number for the current sweep when using the built-in multiple states mechanism, use the STATE
instruction.

Signal Version 6.06

6-104

See also:
Expressions, Variables

SWEEP

This sets a variable to the start time of the current sweep in sequencer clock ticks plus an optional expression.

 SWEEP Vn,expr ; Vn = Sweep start time + expr

Vn This variable is updated with the start time of the current sweep.

expr This optional expression will be added to the sweep start time as expressed in sequencer clock ticks.

This can be used to find the start time of the current sweep, or a time within the current sweep. If there is no sweep
in progress, the start time of the previous sweep is used.

See also:
Expressions, Variables

WSWP

This instruction waits until the specified time (in sequencer ticks) within the sampling sweep is reached (or has
been passed).

 WSWP expr|Vn|[Vn+off],OptLB ; Wait till expr in sweep

expr This is time within the sweep, in sequencer ticks. Values of expr from 1 to the sweep duration specify a
time within a sweep, if you specify a time greater than the sweep duration the sequencer will wait
forever. The following values of expr have special meanings:

0 Wait until sampling of sweep data is in progress
-1 Wait until a sampling of sweep data is not in progress
-2 Wait until the sampling sweep is armed; the 1401 is ready to accept a trigger but has not been
triggered yet

Vn When a variable or table entry is used, the value is the time within the sweep in sequencer ticks or one
of the special values above.

OptLb If present, the instruction branches to this label when the wait is completed.

This can be used to pause sequencer execution until a required sweep time is reached; it is the easiest way of
synchronising the sequencer with sampling.

See also:
Expressions, Variables

TRIG

This instruction causes a trigger to start a sampling sweep. If the Free run without restarts box is checked, you
can use this in Basic, Extended and Fast trigger sweep modes. If the box is clear, you can use it in Extended
mode only. Using this instruction in other circumstances may cause sampling problems.

 TRIG ; Trigger a sweep

In Extended sampling mode, you must use TRIG to trigger sweeps as external triggers are disabled.

TICKS

This instruction sets a variable to the current sampling time in sequencer clock ticks and adds an expression or 0 if
expr is omitted. The s(), ms() and us() expression functions can be used to make the sequence independent of
the clock rate.

 TICKS Vn,expr ; Vn = Signal time + expr

Sequencer outputs during sampling

6-105

Vn This variable is updated with the current time.

expr This optional expression will be added to the time.

This can be used with the CHAN command and variable related branches to check the timing of external pulses. The
sequencer runs under interrupt, and competes for time with other interrupt driven processes in the 1401 interface.
This causes some “jitter” in the timing. The jitter for a Micro1401 or Power1401 is typically only a few
microseconds, often less than 1 microsecond for fast modern units. For a 1401plus, it can be a few tens of
microseconds, depending on other 1401 activity.

See also:
Expressions, Variables

REPORT MARK

The REPORT instruction records a digital marker (if the digital marker channel is enabled) as if there was an external
pulse on the “data available” input (see under Sampling data for the input to use). The MARK instruction does the
same, except it takes the argument as the value to record. REPORT has no arguments.

 REPORT OptLB
 MARK expr|Vn|[Vn+off],OptLB

expr The argument should have a value in the range 0 to 255. If a variable or table is used, the bottom 8 bits
of the value are used.

OptLB If this optional label is present it sets the next instruction to run, otherwise the next sequential
instruction runs.

LB: DIBNE [.......1],LB >Waiting for bit 0
 REPORT ;save a marker when this is set
 MARK 12 ;set code 12 as a digital marker

See also:
Output connections, Expressions, Variables, TABSZ and TABDAT directives

Randomisation

These functions use a pseudo-random number generator. The generator is seeded by a number that is based on the
length of time that the 1401 has been switched on.

BRAND

BRAND branches with a probability set by the argument or by a variable. This could be used when several different
stimuli are required, but in a random sequence.

 BRAND LB,expr|Vn|[Vn+off]

LB Where to go if the branch is taken

expr This is the probability of branching in the range 0 up to (but not including) 1.

Vn When a variable or table entry is used for a branch, the value is treated as a 32-bit unsigned number; 0
means a probability of zero and 4294967295 (the largest 32-bit unsigned number) means a probability of
0.9999999998.

 BRAND LB,0.5 ;branch with 50% probability

To produce a multiple way random branch you use more BRAND instructions. A three way equal probability branch
to LA, LB and LC can be coded:

 BRAND LA,0.33333 ;Split the first route with p=1/3
 BRAND LB,0.5 ;0.6667 to here * 0.5 is 0.3334 (1/3)
LC: ... ;If neither of the above, comes here

 The following shows the sequence for a five-way branch with equal probabilities:

Signal Version 6.06

6-106

 BRAND LA,0.2 ;5 way, LA probability is 0.2 (1/5)
 BRAND FX,0.5 ;Probability to here=0.8, so to FX=0.4
 BRAND LB,0.5 ;Probability to here=0.4, so to LB=0.2
LC: ... ;Probability to here=0.2
FX: BRAND LD,0.5 ;Probability to here=0.4, so to LD=0.2
LE: ... ;Probability to here=0.2

The best technique is to reduce the branches to a power of two as soon as possible. Case 1 of the five-way branch
is split off (probability of 0.2), leaving 4 ways. The 4 ways are split with a probability of 0.5 (0.4 for each division)
then the last two routes are split, again with a probability of 0.5 (0.2 for each division).

Poisson process
In a Poisson process, the probability of something happening per time interval is constant. You can generate a
delay with a Poisson statistic by:

POISSON: BRAND POISSON,prob ; poisson delay

The probability is given by prob = 1.0 – 1.0/(mDelay*S(1)), where mDelay is the mean delay required in
seconds and S(1) is the built in function that tells us how many steps there are per second. If you would rather
express this in terms of a rate, then prob = 1.0 – rate/S(1), where rate is the expected rate in Hz.

TENHZ: BRAND TENHZ,1.0-10/S(1) ;10 Hz mean rate
 DIGOUT [.......1] ;set output high
 DIGOUT [.......0],TENHZ ;set output low, goto TENHZ

This example generates a digital output that pulses to produce an approximation to a Poisson distributed pulse train
with a mean frequency of 10 Hz. The approximation improves the shorter the step time. The mean interval between
pulses is 100 milliseconds plus the time for 2 steps and the shortest gap between pulses is 3 sequencer steps.

Scripts and variables
From a script you can set sequencer variables as 32-bit signed integers. For the range 2147483648 to 4294967295 we
must use negative numbers. This script example shows you how to convert a probability into a variable value and
pass it to the sequencer:

Proc SetBrandVar(prob, v%) 'prob is probability, v% is variable
prob *= 4294967296.0; 'range 0-4294967296 is 0 to 1.0
if (prob > 4294967295.0) then prob := 4294967295.0 endif;
if prob > 2147483647 then prob -= 4294967296.0 endif;
if prob < -2147483647 then prob := -2147483647 endif;
SampleSeqVar(v%, prob);
end;

See also:
Expressions, Variables, TABSZ and TABDAT directives, MOVRND set a variable to a random number

MOVRND

This instruction generates a random number in the range 0 to a power of 2 minus 1, then adds an integer constant
to it and stores the result in a variable.

 MOVRND Vn,bits,expr

Vn The variable to hold the result.

bits The number of random bits to generate in the range 1 to 32. The generated random bits fill the variable
starting at the least significant bit. Bits above the highest numbered generated bit are set to 0.

expr An optional expression that evaluates to a 32-bit integer number, that is added to the random bits. If this
is omitted, nothing is added.

Expressed in terms of the script language, the random number is one of the numbers in the range expr to
expr+Pow(2,bits)-1. For example, MOVRND V33,8,1 generates a random number in the range 1 to 256.

The following code fragment implements a random delay of between 1 and 2.024 seconds (assuming a 1 millisecond
clock).

Sequencer outputs during sampling

6-107

 MOVRND V1,10,998 ;load V1 0 with (0 to 1023) + 998
 DELAY V1 ;this uses 999 to 2023 steps

See also:
Expressions, Variables

Arbitrary waveform output

In addition to generating voltage pulses, ramps and cosine waves through the DACs, Signal can play arbitrary
waveforms. The sequencer can start waveform output from one of the available areas and also test the state of
waveform output and branch on the result. The sampling configuration sets the size of the areas used for waveform
storage and the number of these areas, not all of a waveform area need be used. The waveforms are stored in 1401
memory and can be updated just before and during sampling using the SampleSeqWave() script command.

WAVE

The WAVE instruction triggers the start of arbitrary waveform output from a waveform area.

 WAVE area|Va,len|Vl,OptLb ; Start arbitrary waveform output

area If present, an expression that sets the waveform area to use, from 1 to the maximum available. If this is
omitted area 1 is used.

Va If present, a sequencer variable that holds the area number as above.

len If present, an expression that sets the number of waveform points to be output, set to zero or omit this
argument to output all of the points in the area. Note that this value is points per DAC, not total points.

Vl If present, a sequencer variable that holds the output points as above.

OptLb If present, the instruction branches to this label.

Note that, in versions of Signal before 5.00, there was only a single waveform output area and the WAVE
instruction had no arguments. For compatibility with existing sequences, all of the arguments are optional and, if
omitted, it will output all of the points from waveform area number 1. The waveform output areas used by the
sequencer can only be loaded up with data by using the SampleSeqWave() script language function, waveform
areas can be reloaded with different data during sampling as required.

WAVEBR

The WAVEBR instruction tests the state of the waveform output and branches on the result. No branch occurs if
there is no output running or requested.

 WAVEBR LB,flag

LB Label to branch to if the condition set by the flag is met.

flag An optional single character flag to specify the branch condition:

S branch if arbitrary waveform output is stopped.
G branch if arbitrary waveform output is going.

The following (fairly trivial) sequence plays the output waveform 5 times.

 MOVI V1,5 ; load variable 1 with 5
WL: WAVE ; start output
WT: WAVEBR WT,G ; wait here while output is going
 DBNZ V1,WL ; do this 5 times >Waiting for cycle

The WAVE command starts output, it then waits for the output to stop at the WT label. Next the sequence repeats this
process 5 times.

See also:
Control from a script, WAVE start waveform output

Signal Version 6.06

7-108

Sampling with multiple states

Multiple states sampling is one of the most powerful
features in Signal. Multiple states can be used to do a lot of
things, by far the most common (and straightforward) is to
allow a sampling configuration to have a number of different
sets of output pulses available (one per state) and to switch
between these outputs during sampling. So, for example,
you could have one state that generates a single stimulation
pulse on a DAC, another state that has two stimulation
pulses separated by 20 milliseconds and another that has
two pulses separated by 40 milliseconds, and Signal could
then switch between them randomly or in a preset order
during sampling. This form of multiple states is known as
Dynamic outputs, we will concentrate on this type of
multiple states usage because it is the most useful and most
general-purpose.

State numbers, idling and state 0
With multiple states sampling disabled all sampling uses the only state available, which is number zero. With
multiple states in use you gain a number of extra states, which are numbered from one upwards. The design of
Signal expects (though it does not require) that state zero will be reserved for passive or idle outputs rather than for
outputs that will form part of the main experimental data – so for example state zero might generate no stimulus at all
or maybe a sub-threshold stimulus that allows the health of the preparation to be checked but does not generate
any useful data.

This design choice is most visible in the ‘idling’ behavior of Signal states sequencing. Idling means that Signal will
stop states sequencing, switch to state zero, and turn off writing to disk. Controls in the states configuration allow
you to specify when states sequencing will automatically idle; there is also an Idle button in the states control bar.
The built-in states sequencing within Signal also expects this arrangement - for example if you use numeric
sequencing with three extra states Signal will run through states 1, 2 and 3 but will not use state zero until the
sequencing has finished.

State labels
Where Signal needs to refer to a state, for example in a button in the states control bar, it generates a simple
descriptive name; either 'Basic 0' for state zero or 'State n' for the other states. This reflects the special nature of
state zero as described above. It is often useful to be able to replace these labels with more descriptive ones such
as '2 Pulses' or '10 ms int', this can be done for Dynamic outputs multiple states using the Label field in the Pulses
dialog. For other forms of multiple states you have to temporarily select Dynamic outputs mode, use the Pulses
dialog to edit the state labels, and then revert the multiple states mode to the form that is wanted.

Auxiliary states hardware
In addition to controlling the 1401 outputs, Signal multiple states can be used to set up external hardware, for
example a Magstim transcranial magnetic stimulator, supported hardware can be set up differently for each state.
This is done using specialised software for each type of supported hardware and is documented separately under
Auxiliary states devices.

What else can multiple states do
In addition to Dynamic outputs there are two other more specialised forms of multiple states: Static outputs and
External digital.

Static outputs mode replaces multiple sets of pulse outputs with multiple sets of unchanging outputs, one for
each state. It is not much different from what one could achieve using Dynamic outputs without any output pulses
defined so you could only set the initial levels of the outputs. The key extra feature of Static outputs states is that
the outputs are set up before the sampling sweep begins, at the time the sweep is enabled (soon after the previous
sweep finishes). So Static outputs can be useful if you want to feed controlling information to external equipment
such as a stimulator to get it ready to deliver different stimulations – setting the outputs earlier allows the
stimulator time to read the outputs and become ready before triggering the sampling sweep.

Sampling with multiple states

7-109

External digital mode is very different. In this style of operation the 1401 digital inputs are read by Signal at the
end of each sampling sweep to retrieve data generated by external stimulation equipment such as a visual
stimulator. This digital input data is used to generate the state code value for the frame just sampled. So this form of
multiple states is suitable with external equipment which determines the stimulation to be used independently of
Signal and outputs digital data to indicate what it has done.

Enabling multiple states
The General page in the sampling configuration dialog contains a check box labelled Multiple frame states that
enables multiple states in data acquisition. With this check box clear, sampling does not use multiple states and all
sampled data frames are set to state zero, with it checked, sampling will use multiple states and set the data frames
to the appropriate state value. The check box is not available with fast triggers, fast fixed interval or gap-free sweep
modes as these do not allow for adjustment of the 1401 behaviour between sweeps.

When multiple frame states are enabled, the sampling configuration dialog gains another page labelled States
which holds controls used to configure multiple states. All configuration of multiple states is carried out using this
page in the sampling configuration, the actual outputs generated by the different dynamic output states are defined
using the standard pulses configuration dialog..

Dynamic outputs states

The State variation selector at the top left of the States
page in the sampling configuration selects the type of
multiple states to use from External digital, Static outputs
and Dynamic outputs. The controls shown in the dialog
change dramatically with the type of multiple states that is
selected. Unless you are sure that you want to use another
form of multiple states you should select Dynamic outputs.

With Dynamic outputs each state uses a different set of
output pulses. The actual digital and DAC outputs for each
state (along with some other information such as the state
label) are set up using the Pulses configuration dialog
available from the Outputs tab of the sampling
configuration. The states page is purely concerned with
defining how many states there are and how they are
sequenced – how and when Signal will switch from state to
state during sampling.

The Number of extra states item can be set to any value from 1 to 256, note that this sets the number of states in
addition to state zero. Thus in the example shown there are 4 states possible, with codes running from 0 to 3. In
many circumstances Signal will only make use of the extra states and reserves state zero as a background or idle
state. This item also controls the states available in the pulses configuration dialog; you should set the number of
extra states that you want here and set up the pulse outputs afterwards.

States sequencing

Because Signal controls the states when using Dynamic outputs mode, we need to be able
to specify which state is used at what point during sampling. The simplest way to do this is
to control the state manually using the states control bar (see here), but we will often want
some form of automatic sequencing – it's easier, faster and less error-prone. Signal provides
two basic forms of states sequencing – numeric or protocol. The four numeric modes provide
simple numeric or randomised states sequencing, while using protocol mode allows more
complex sequences of states to be generated.

Signal Version 6.06

7-110

Numeric non protocol sequencing modes

In the numeric states sequencing modes the user specifies
how many of each state are to be used, how many times
they are to be used overall, how and whether the ordering is
to be randomised, and what happens when state
sequencing begins. All of these options are controlled
using other items on the states configuration page, the
items and their operation are the same for all state
sequencing modes apart from Protocol mode.

Repeats
This item sets how many of each state are to be used to
make up one cycle of the states sequence. It can be set to
any number from 1 to 1000. For example with 3 extra states
and 4 Repeats, each state from 1 to 3 will be used 4 times in
one cycle of the states sequencing. It is possible to set a
different repeat count for each state by using individual
repeats.

Cycles before idle
This item sets how many cycles (a cycle being states*repeats as described above) of sequencing are wanted before
the sequencing stops and Signal switches automatically to idling in state 0. Set this item to the number of cycles
you want or to 0 if you want states sequencing to repeat forever until stopped manually.

Cycle automatically at start
This check box, if checked, causes states sequencing to begin automatically when sampling starts (normally
sampling starts with Signal idling in state zero, though writing to disk can be turned on).

Turn on writing with cycling
This check box, if checked, causes writing to disk to be enabled whenever states sequencing is started – this can
be quite useful as otherwise it is hard to do this neatly and all too easy to forget to do at all and often we do not
want to write data collected while idling.

Ordering
This selector sets the states sequencing mode to be used, it can be set to any of:

Numeric In this mode the states are used in numerical order with each state being used the number of
times that is set by Repeats. First state 1 is used the specified number of times, then state 2
and so forth. Once the last state has been done, one sequencing cycle has been completed.
For the example with 3 states and 4 repeats, Numeric sequencing would give:

1 1 1 1 2 2 2 2 3 3 3 3

in one cycle of sequencing.

Random In this mode, one cycle of the sequencing again uses each state the number of times specified
by Repeats, but the order of the states within a cycle is randomised. So, again for the example,
Random sequencing might give:

2 3 2 1 3 3 1 2 1 3 1 2

in one cycle of sequencing (but of course what you actually get will vary). When the
sequencing starts another cycle, the states order is re-randomised.

Semi-random This is an alternative method of randomisation where the states are not all randomised across a
cycle but instead randomised within one set of states. For the example settings the first 3
frames will always include one of each state (in random order), as will the next 3 and so forth,
but one cycle of sequencing still consists of (states * repeats) frames. So you might get:

2 1 3 3 1 2 3 2 1 1 2 3

Sampling with multiple states

7-111

in a sequencing cycle for the example. As you will have realised, this mode achieves exactly
the same as setting the number of repeats to 1 in Random mode, but a sequencing cycle still
consists of each state being used the number of times specified by Repeats.

Protocol This is a non-numeric mode and is described separately. When Protocol mode is selected, all of
the check boxes and controls for repeats and cycles are hidden and replaced by a Protocols…
button.

Random repeated This is an alternative method of randomisation where the order of the states is randomised, but
each state repeats the number of times that is set by Repeats. For the example settings the
first 4 frames will always be the same state, as will the next 4, but the state numbers for each set
of four will be random. So you might get:

2 2 2 2 3 3 3 3 1 1 1 1

in a sequencing cycle for the example shown.

Individual repeats

The simple descriptions of state sequencing all assume that each state is used Repeats times in one sequencing
cycle. The Individual repeats check box allows you to set a different repeat count for each state. If it is clear, the
Repeats item is used to set how many times each state is repeated. If the check box is set, different controls are
used to set the repeats wanted for each state separately.

When Individual repeats are selected, the overall
Repeats item for all states is hidden and the dialog
instead shows a state selector and repeat count so
that you can set a repeat count for each state.
Individual repeat counts are used in much the same
way as the overall repeat count. In Numeric
ordering each state is repeated in turn the specified
number of times, while with Randomised ordering
each state is repeated the set number of times but
the order within each sequencing cycle is
randomised. Semi-random ordering does not work
very well with individual repeats enabled as towards
the end of a cycle the states with a lower repeat
count will be left out, but maybe this behaviour will
be useful in some circumstances. With Random
repeated ordering the order of the states is
randomised as usual, but the number of repeats
varies as set for the state in question.

State sequencing using protocols

When Protocol states ordering is selected all of the states page controls apart from the number of extra states are
hidden and a Protocol… button is provided that allows you to create, view and edit the protocols.

A protocol consists of a list of steps; each step defines a state that will be used, the number of times it will be used
and the step to go to next. There are also controls defining what happens when a protocol starts, and when it
finishes. Each protocol can use up to ten steps, protocols can loop and be chained together to produce longer
sequences of states. Up to 50 protocols can be defined in a single sampling configuration.

Protocols are defined using the protocols dialog which is provided when you press the Protocol… button on the
states page. The dialog has a selector at the top that is used to select a protocol for viewing and editing. To create
a new protocol press the Add Protocol button, while the currently selected protocol can be deleted using the

Signal Version 6.06

7-112

Delete button. The protocol name can be changed by directly editing it in the protocol selector. Blank protocol
names are not allowed and will be rejected.

General and start-of-protocol options
The check boxes below the Add Protocol and Delete buttons set general
options and define what happens at the start of protocol execution – some of
them perform similar functions to check boxes available for numeric
sequencing modes:

Create toolbar button for protocol
This item provides a separate button for this protocol in the states control bar
when it is checked – see the section Controlling multiple states online.

Run protocol automatically at start
This item does what it says; when checked it sets this protocol to be run
when sampling starts. A protocol that is to be run automatically at the start is
indicated by having a ‘*’ character appended to the protocol name.

Cycle protocol state only after write
This controls the sequencing of protocol steps; if it is checked then the
protocol sequence does not advance unless data file frames are written to
disk, if the data is not written or a sweep is rejected then the same state is
repeated.

Use per-step write flags
This item enables control of writing to disk on a step-by-step basis if checked.
The actual control of writing is then done using the check boxes by the right-
hand edge of the protocol table section of the dialog.

Turn on writing at protocol start
This item causes writing of sampled sweeps to disk to be turned on when the protocol starts execution if it is
checked.

Reset pulse steps at protocol start
This item, if checked, causes any varying pulses that are defined in the output pulses to be reset to their initial state
when the protocol starts.

Table of protocol states
The table below the check boxes defines the actual protocol steps. There are ten steps in a protocol, each one with
a State, a Repeats count and a Next step. These specify the state to be used, the number of times to repeat this
state and the step to go to (from 1 to 10) when this step is done. If you set the next step to zero then this step is the
end of the protocol. If per-step write flags option has been selected the Write check boxes are enabled and will
control the turning on and off of writing data to disk at the beginning of each step of the protocol.

When protocol execution begins it starts with step 1. The state set by the State field in step 1 is set and is used
the number of times set in the Repeats field. Following this the protocol switches to the step that is set by the
Next field. This process continues until it is ended by encountering a Next item of zero. In the example shown, step
1 repeats state 1 four times and then goes to step 2. This repeats state 3 eight times, after which the protocol ends.
If the Next item for step 2 were set to 1, the protocol would loop forever or it could be set to 3 for a more complex
sequence.

End-of-protocol options
The controls at the bottom of the dialog control what happens when the sequence of states defined in the protocol
table reaches it's end:

Repeats for entire protocol
This item, immediately below the protocol table, controls the number of times that the protocol repeats before it
ends. Set this to 1 for a protocol that goes through the steps only once (as in the example above) or set it to a larger
number for a protocol that repeats a set number of times before ending. For example, if you set the repeat count to

Sampling with multiple states

7-113

three in the example above, the protocol would run for 36 frames before ending. If you set this item to 0 the protocol
will repeat forever until stopped manually.

At end
This item controls what happens once the specified number of protocol repeats has been executed. It can either be
set to Finish or to a protocol that will be ‘chained-to’, chaining to a protocol allows more complex sequences than
is possible with just ten steps. If the selector is set to Finish protocol execution finishes, otherwise execution
switches to the protocol selected and carries on. When a protocol is chained-to, it starts off completely normally,
so the Turn on writing and Reset pulse steps check boxes take effect. These check boxes do not take effect if the
last step in the protocol has a Next item of step 1 or when an entire protocol repeats, so it is meaningful to allow a
protocol to chain to itself.

The check boxes below control what happens when a protocol actually finishes; they are disabled if the protocol
chains to another protocol.

State zero when protocol finishes
This item causes automatic switching to state zero when the protocol finishes if checked, if it is clear then the last
state used by the protocol will continue to be used.

Turn off writing when protocol finishes
This item controls disabling of writing sampled data to disc, if checked then automatic writing of data to disk will be
turned off when the protocol finishes.

If both of these check boxes are checked they give the standard idling behaviour when the protocol finishes. When
the test protocol shown above is executed writing to disk would first be turned on, then the following sequence of
states would be generated:

1 1 1 1 3 3 3 3 3 3 3 3

and finally Signal would idle in state zero, with writing to disk turned off.

Controlling multiple states online

When sampling using multiple states Signal provides a states control bar to allow you to control the sampling state
and states sequencing. The control bar can be docked at the edges of the Signal application or be left floating
anywhere within the application. The states control bar will be initially visible when sampling starts, it can be
hidden or shown by using the sample menu or a popup menu that is displayed if you right-click on an unused part
of the Signal application window.

The layout of controls in the states control bar is depends upon whether a numeric or protocol sequencing style is
being used; numeric modes have extra buttons for controlling states sequencing whilst protocol mode has extra
items to select and run a protocol and optional buttons to run individual protocols.

Non protocol ordering

The states control bar contains a number of buttons and controls:

Reset Press this button to reset any states sequencing in operation (so that the state sequence restarts at
the beginning) and also to reset any varying pulses to their initial state.

Idle Press this button to force states sequencing to idle. It switches to manual control of states, sets state
zero and turns off writing to disk.

Pause Press this button to pause any automatic state sequencing that is in progress. This option does not
pause the sampling itself which continues to run using the current state (use the sampling control
panel if you want to pause the sampling). While states sequencing is paused this button is shown
depressed; press it again to resume sequencing.

Signal Version 6.06

7-114

Manual Press this button to terminate any automatic sequencing in progress and to switch to manual control
of states. With manual control, the frame state is controlled interactively by the user, sampling begins
with manual control selected unless the Cycle automatically at start option is used.

On write Press this button for automatic states sequencing with the states changing only if the previous data
was written to disk. The states sequencer will have control of the frame states and will move on to the
next stage after a sampling sweep only if the sweep data was saved to disk. This allows for artefact
rejection and interactive sweep accept/rejection without missing out states from the sequence.

Cycle Press this button to start automatic states sequencing with the states always changing. The state
sequencer will have control of the frame states and the sequencer will always move on to the next
stage after a sampling sweep regardless of whether the sweep data is written to disk or not.

Basic 0 … Press these buttons when in manual mode to switch to a state. Buttons for unused states are hidden,
as are buttons for states numbers greater than 9. If you have created labels for the states in the pulses
configuration dialog these labels will be used in the buttons instead of the standard state names.
During automatic states sequencing the state buttons are disabled; Signal depresses them
automatically to show the state currently in use.

State n To the right of the individual state buttons is a state selector and spinner that can be used when in
manual mode to choose any state from those available. This selector is most useful when there are
more than 9 states, the limit for individual state buttons. As for the buttons, if you have set a label for
a state this is shown instead of the simple state name. Selecting a state uses it immediately. During
automatic states sequencing the current state is shown.

Protocol ordering

When multiple states are used with protocol ordering some controls in the states control bar are hidden and others
are displayed instead. Those that are retained behave in the same way as described above (the On write and Cycle
buttons are hidden because the individual protocols select between these two styles of operation). If the number of
states is less than ten, so that they can all be represented by the individual state buttons, the main state selector is
also hidden to save space. The extra items provided are the protocol selector, the run protocol button and the
individual protocol buttons:

Protocol To the right of the state buttons (or the state selector if it is visible) is a protocol selector and spinner
that can be used to select a protocol from those available. Unlike the state selector, selecting a
protocol does not execute the protocol. During execution of a protocol the current protocol in use is
shown so you can see what is going on if you use chained protocols. If all of the protocols have
individual buttons then the protocol selector is not shown.

Run This button is shown below the protocol selector. Pressing it causes Signal to start executing the
selected protocol. If all of the protocols have individual buttons then this is also not shown.

Buttons These buttons are created for the individual protocols as required, they are arranged to the right of (or
below) the protocol selector and are labelled with the protocol name. A protocol button will be created
if the Create toolbar button for protocol check box in the protocol definition is set and there are not
too many protocol buttons – the limit is 20. Pressing one of these buttons causes the relevant
protocol to be executed immediately.

Starting a protocol
Execution of a protocol can be begun by the user pressing the Run button with that protocol selected (or the
button for an individual protocol), or by another protocol chaining to it, or by means of the script language.

Stopping a protocol
Execution of a protocol is stopped when the protocol finishes, by the user pressing the Idle or Manual buttons in
the states control bar or by another protocol being started by whatever means.

Sampling with multiple states

7-115

Static outputs states

Static outputs states are very similar to Dynamic outputs mode, the difference is that instead of having different
sets of output pulses it sets up unchanging outputs that are present throughout the sampling sweep. When a
sampling sweep is primed, Signal writes values to the 1401 DACs and digital outputs using data for the current
state of the experiment. These outputs could select the stimulus to be used or have other effects.

The States box to the bottom left of the dialog is used to select a state and to define the values to be written to the
digital outputs for each sweep. The digital output bits available are set in the Outputs page of the sampling
configuration, check on a check box to set that output high for the relevant state or leave it clear for a low output.
The actual digital outputs and connector pins used are the same as for pulse outputs (see Pulse outputs during
sampling).

The buttons to the left of the States box set or modify the digital bit patterns in various useful ways, they are
intended to allow simple patterns to be set up quickly and to help to produce more complex ones:

Invert This inverts all of the bits for all states. This is useful for converting all zeroes to all ones and a walking
one into a walking zero.

0000 This sets all of the bits for all states to zero.

0100 This sets most bits to zero with a walking 1. This leaves state zero all clear, sets bit 0 for state 1, bit 1 for
state 2 and so forth. The pattern is not adjusted to skip disabled digital outputs.

1234 This sets the bit values to count the states using binary code. Thus state 1 has just bit 0 set, state 2 has
bit 1 only and state 3 has both bits 0 and 1. Once again the pattern is not adjusted to skip disabled digital
outputs.

The State data box to the right of the States box sets the DAC outputs for a selected state. You can select the
state for which values are shown by clicking on the digital outputs line for that state. The DAC outputs used (0 to 3
only are available) are enabled and disabled in the Outputs page of the configuration. If individual repeats are
enabled then the repeat count for a state is set here too.

Static output states can only be used with the outputs type set to None in the Outputs page, as otherwise the
state values would conflict with other outputs that are generated. When sampling using Static output states,
controls for the state and states sequencing are provided in exactly the same manner as for Dynamic outputs.

External digital states

External digital states are very different from the other forms of multiple states. When using this mode, external
equipment generates up to 8 bits of digital code corresponding to the current experiment state. Signal reads this
code from the 1401 digital inputs at the end of each sampling sweep and uses this data to set the state for each
sampled data frame. There is no internal control over the states so all of the state sequencing controls are hidden.

The States box on the bottom left of the dialog is used to define the input bit patterns that correspond to
individual states. Input bits 0 to 7 are shown, with 0 on the left, the Digital inputs enable check boxes below
control which inputs are used; disabled inputs are ignored. An unchecked bit corresponds to a zero bit (low or 0
volts) while a checked bit selects a one bit (high or 5 volts). The buttons to the left of the States box modify the bits
in various useful ways as documented for Static outputs mode.

During sampling Signal will read the digital inputs at the end of each sampling sweep - don't forget that any
unconnected digital inputs will read as ones, not zeroes. The bits read are then checked against the bits for each of
the states starting with state 1 and the state for the new frame is set to the first one that matches. If no match is
found then the frame state is left set to zero. The bits for state zero are shown disabled as they are ignored.

External digital states uses digital input bits 8 to 15; see Sampling data for details of the digital input connections.
Please note that if a digital input is not connected it will read as high (reads as a 1); it is thus important to disable
any unconnected inputs or set up the states bits so that a high input works.

When sampling using External digital states, Signal behaves much as it does with multiple states disabled and no
states control bar is shown. The only difference is that the state code value for sampled data frames varies
according to the digital inputs.

Signal Version 6.06

7-116

Auxiliary state hardware

In addition to the standard multiple states facilities that control the 1401 outputs it is possible to install support for
auxiliary states hardware. Auxiliary states hardware is separate, external hardware (most often a type of stimulator
that cannot be adequately controlled using the 1401 outputs) that is set up in a different way for each state.

Auxiliary states hardware support is provided by means of a DLL that is copied to the Signal installation directory;
a separate DLL is supplied for each type of hardware. When auxiliary states hardware is installed an extra button
(labelled with the external hardware name) is provided in the States page to allow the hardware settings for each
state to be defined. In addition, the SampleAuxStateParam() and SampleAuxStateValue() script language
functions can be used to read and write the auxiliary hardware settings.

See Auxiliary states devices for details of the supported auxiliary states hardware.

Sampling with clamp support

8-117

Sampling with clamp support

Signal incorporates a number of specialised features directly supporting whole-cell and single-channel clamping
experiments - online holding potential control, resistance measurements and membrane analyses, dynamic
clamping, leak subtraction and single-channel analysis. In order to avoid confusing users who are not interested in
this type of experiment, all of these features can be hidden using a check box in the Edit menu Preferences dialog
(Clamp page), the initial state of this option is set up by Signal when starting if it detects that it has not already
been set. The specific features controlled by this option are the online clamping support, leak subtraction analysis
and the generation and analysis of idealised single-channel traces.

Unlike many applications used for clamping experiments, Signal is a very general-purpose program that can be used
for many other types of experiment. This can make it harder for new users setting up clamping experiments to find
the aspects of Signal that they need. In addition to the clamp-specific features mentioned above (and general
familiarity with Signal), clamping researchers should start by reading the Getting started with clamping experiments
discussion or, if they are using one of the specialised amplifiers supported as auxiliary telegraph devices, the similar
discussion here.

For proper familiarity, researchers should look through all of the sampling configuration dialog, at the amplifier
telegraph system (Amplifier telegraphs), the pulses configuration dialog (Pulse outputs while sampling) and
dynamic outputs multiple states (Sampling with multiple states). In addition to clamping-specific analysis
mechanisms, the general Analysis menu documentation should be useful as all of these analyses can be used on
clamp data. The trend plot, measurement generation and curve fitting sections of the analysis menu may be of
particular interest. Specialised data acquisition and analysis can be carried out using the Signal script language
which has access to all aspects of Signal data.

Online clamp support features

The online clamp support within Signal consists of a specialised page within the sampling configuration which
holds clamp set information (input channels and control DACs that are linked to a clamping amplifier) mechanisms
for online analysis and experiment manipulation that make use of this information to provide automatic resistance
measurements, holding-potential (or current) controls and a membrane analysis display plus generation of dynamic
clamping currents. Note that the dynamic clamping support is independent of the clamp sets - you can use either of
these facilities without the other as you prefer, or both together.

There are a number of limitations to the types of experiments that can be used with the clamping support which are
described under Other sampling configuration considerations.

Getting started with clamping experiments
Signal is a much more general-purpose program that many of the other applications used for voltage- and current-
clamping experiments. While this does have advantages - for example Signal can carry out an extremely wide range
of analyses - it does make getting started with these types of experiment a bit harder. If you are using one of the
specialised amplifiers supported as auxiliary telegraph devices such as the MultiClamp 700 you should refer to the
similar discussion here which covers both special aspects of using these amplifiers and the general aspects
discussed here.

Defining your clamping sets
You should start defining a sampling configuration for clamping experiments by determining what signals you are
going to be sampling and how the amplifier that you are going to used is controlled. For example, in voltage-clamp
experiments the membrane potential imposed by the amplifier will be controlled by a signal generated by one of the
1401 DACs. You will then be able to see how you connect the outputs from the amplifier to 1401 ADC inputs and
connect a DAC to the amplifier external control input. The Ports page of the sampling configuration dialog can then
be used to set the calibration and units for the ports connected to the amplifier outputs, and the Outputs page used
to set the calibration and units for the external control DAC. It is very important that you get these calibrations
correct otherwise your sampled data will not be correctly shown and the membrane analysis and holding potential
controls will not operate correctly - see the user manual for your amplifier for details on this.

Once you have done that, you can define your clamping sets. These are defined in detail here here, simply put a
clamping set is a pair of channels of data relating to the same cell/electrode, one showing the membrane current and

Signal Version 6.06

8-118

one the membrane potential, plus a DAC which controls whichever one of these is being clamped. Signal uses the
clamping set information for all aspects of running a clamping experiment.

If there is anything about the clamping set information that you have entered, for example bad ADC port units, it
will show that information in red in the clamping set information. You will need to correct this before using the
sampling configuration.

Getting your sampling configurations correct
Once the ADC and DAC calibrations and units are correct, and the clamping set information is entered and
satisfactory, you are getting there! Other bits of the Signal sampling configuration information will need to be set
up according to what you want to do. You will need to read the relevant pages of this help file, the Sampling data,
Sampling with clamp support, Pulse outputs while sampling and Sampling with multiple states chapters will
probably all be very useful. At the very least you will need to:

· Use the General page to define the sampling rate that you want to use, the ADC ports you want to sample-from
and the duration of each frame of data.

· Use the Outputs page to select pulse outputs. Sequencer-controlled outputs can be used in clamping
experiments but hopefully you will be able to start of with the much simpler pulses mode.

· Use (very probably) the General page to enable multiple states sampling and set the multiple states mode to
Dynamic outputs.

· Generate sets of suitable stimuli using the DACs connected to the amplifier external control inputs. You do this
using the pulses configuration dialog available from the Outputs page of the sampling configuration. Multiple
states sampling in dynamic outputs mode is very useful here as it allows you to have up to 256 separate sets of
output stimuli in one sampling configuration and switch between them in various ways during the experiment.

Using voltage clamp together with current clamp
It is often the case that users want to use both voltage clamping and current clamping on the same cell. While
Signal can easily do this, it cannot do this within the same data file, the amplifier settings for the two modes are too
different. So to switch from one mode to another it is necessary to stop sampling and save the new data file, change
the amplifier mode and sampling configuration, and start sampling again to a different data file. Note that the
Automation section of the sampling configuration provides automatic file name generation and data file saving
facilities that help to make this quick.

It is necessary here to have separate sampling configurations for VC and IC experiments, as the ADC port and DAC
settings needed will be very different. So to run a dual-mode experiment you would probably do something like this:

· Set the amp into VC mode

· Load in the VC sampling configuration file

· Run it and collect data

· Stop sampling and save your data

· Set the amp in IC mode

· Load in the IC sampling configuration file

· Run it and collect data

Remember that any changes you make to the amplifier gains or external control sensitivities must be accounted-for
by altering the relevant ADC port or DAC calibrations, so your signals and stimuli are correctly calibrated. It is
probably a good idea to set up the amplifier with suitable gains and sensitivities, get the calibrations correct for
these, and then never change the amplifier settings.

Note also that there is a sample tool-bar in Signal which you can set up with individual buttons for your key
sampling configurations. Using the sample bar allows loading in a new sampling configuration file to be a one-click
operation, very useful when you are busy trying to collect data quickly.

Issues with 1401 signal limits
As normally shipped, the 1401 data acquisition interface ADCs and DACs only cover a ± 5 volt range. If you
increase the amplifier gain too much, you may well find that they exceed this limit and are clipped, similarly with
some external command sensitivities you may find that the 5 volt DAC output range does not allow the stimuli you
need. In some circumstances and with some amplifiers these problems can be avoided by using low amplifier gains

Sampling with clamp support

8-119

and high external command sensitivities, but it is normally simplest, with modern 1401s, to change the supported
voltage range to ±10 volts. This can be done using the Try1401 program that is installed with Signal, use the File
menu 1401 Options command.

Clamping configuration

The clamp page in the sampling configuration is used to
configure Signal online clamping support. This page allows
up to eight clamping sets to be defined along with a state (set
of pulse outputs) to be used for membrane analysis and also
provides a button used to configure dynamic clamping and
another button used to retrieve information from MC700 (or
other) amplifiers.

What is a clamping set?
A clamping set is a pair of interlinked data file channels that
hold the current and voltage data for a cell (more specifically
across a cell membrane) plus a control DAC that is used to
control the membrane potential (for voltage clamp
experiments) or current (for current clamp). It is necessary for
the clamping sets to be defined in the sampling configuration
so that the stimulus and response channels are known and
the membrane analysis can find the correct data, this also allows Signal to check the units for these channels so
that current and voltage values can be scaled correctly to amps and volts. Defining the DAC used to control the
membrane current or voltage allows Signal to manipulate the holding potential and stimulus pulses and again to
check that the DAC units are correct for the clamping mode.

When using the auxiliary telegraph support for the MultiClamp 700 amplifier or other supported amplifiers, Signal is
able to automatically set up the clamping sets using information read back from the amplifiers. This ensures that all
of the clamping information plus the calibrations of relevant ports are always correct - a great boon for the hurried
researcher. A short 'getting started' guide to using Signal with the MultiClamp 700 support is available here, nearly
all of the information given is also applicable to use with other amplifiers.

Defining the clamping configuration
The upper part of the clamp page shows a list of all eight clamp sets and allows you to click on a set to select it
while the lower area allows you to view and edit the parameters of the selected set.

The Clamp type for a set can be Not clamping to disable use of that clamp set or set to Whole-cell or Single
channel for either voltage clamp or current clamp. If all of the sets are Not clamping then the online clamping
support will be disabled for this sampling configuration. When the clamping information is saved it is sorted so that
all of the clamp sets that are in use are first in the list and all of the unused sets are placed at the end, but you can
edit any of the sets that you want.

The Stimulus channel and Response channel items set the data file channels that will hold the corresponding
data. For voltage-clamp experiments the stimulus channel is voltage and the response channel is current, for
current-clamp it is the other way around. These items can be set to any valid channel number from 1 to 80. If the
channel specified does not exist in the sampling configuration then the text for the incorrect item will be shown in
red. If the channel does exist then the channel calibration will be checked for valid units. The units for a voltage
channel must contain the character V and start with either V or one of M, U, N, P or F (lower-case characters are also
allowed) implying milli-, micro-, nano-, pico- and femto-volts respectively. Plausible legal voltage units would thus
include ‘V’, ‘mVolts’ or ‘uV’. The initial character is used to scale the measured values to actual volts during
online analysis. Similarly the units for a current channel must contain the character A and start with either A or one
of M, U, N, P or F, ‘nA’ and ‘pAmp’ are obvious examples that would be acceptable. If you hover the mouse
pointer over a prompt that is red then a tooltip will be generated that gives more information about what is wrong
with your selection.

The Control DAC item sets the DAC number that is used to control the stimulus, 0 to 7. This DAC must be in use
in the pulse outputs and the units set for the DAC must be appropriate for voltage or current (according to the
clamp type) or the DAC prompt text will be shown in red.

The Resistance measurement state item specifies a state (a set of pulse outputs) to be used for measurement of
resistance and other membrane analyses. This value is not checked within the dialog, but it must either be zero if

Signal Version 6.06

8-120

multiple states are not being used or from zero to the maximum state number in use. Whenever this state is used
during sampling Signal will automatically recalculate and display the membrane resistance. In addition, this state
will be automatically selected when the membrane analysis dialog is used. So, with state 4 set as the state for
resistance, whenever state 4 is used during sampling the membrane resistance will be recalculated, displayed and
saved in the data file. Signal states are quite a complex topic; for more information on them, see under Sampling
with multiple states. The clamp support expects that you will be using Dynamic outputs multiple states so you can
ignore the extra complexity of the other multiple states modes.

A suitable stimulus pulse for resistance measurements should be defined for the control DAC in the specified state,
this pulse can be added to the pulse outputs or modified during sampling should this prove necessary. If there is
more than one pulse for this state the pulse to be used for measurements can be labelled by setting the pulse ID to
‘RM’, otherwise the first suitable pulse found in the outputs will be used. Currently, a square pulse (constant or
varying amplitude) or a square pulse train can be analysed. Varying duration square pulses, sine waves, ramps or
arbitrary waveforms are not currently supported.

Dynamic clamping
The button labelled Dynamic Clamp at the bottom of the clamp configuration page is used to gain access to the
main dynamic clamping setup dialog. Dynamic clamping is a very complex topic which is described below, note that
there is no requirement to have clamp sets defined (which provide information for holding potential control and
membrane analysis) in order to use dynamic clamping – the two systems are independent sections of Signal.

Multiclamp 700, AxoClamp 900A and EPC 800 integration
If you have installed support for MultiClamp 700, AxoClamp 900A or EPC 800 amplifier telegraphs, a button will be
available at the bottom of the clamp page that provides options to read the current amplifier settings and use these
to set up clamping information. This option can obtain the ADC and DAC ports set within MC700/900A/EPC800
telegraph configuration dialogs and use them plus the amplifier settings to set the clamping sets and channels used
thereof, the clamping modes and the relevant ADC and DAC port calibrations - the only things you have to set
yourself are the MC700 or 900A or EPC800 settings available from the ports configuration page - so it should be
much easier to get everything set up correctly. These options are only available when the amplifier control software
is also running, as Signal needs to be able to read back the amplifier settings from this software.

The options available from the MC700/AC900/EPC800 button are Read
channel sets for clamping, which initialises the clamping sets with
stimulus and response channels plus control DACS which were derived from
the current amplifier settings, Read clamping modes for sets which
retrieves the clamping mode used in the amplifier for each clamping set, Read
channel names, scaling and units which retrieves all calibration
information for all waveform channels generated from the relevant ADC ports (as defined in the MC700, AC900 or
EPC800 telegraph settings) and Read DAC scaling and units which sets up the DAC specified for each clamp
set using the external command sensitivity read back from the amplifier. An extra option, Read All - chans,
mode, ADC & DAC, reads all of this information at once.

These options match the reading & use of amplifier settings which may be automatically carried out when sampling
starts depending upon various amplifier configuration options. As well as allowing quick & reliably correct setup of
Signal, they can be used to check what the current amplifier settings are and, because the DAC scalings can thus
be quickly set up, makes it easier to set up the output pulses that you want to use.

See the settings dialog information for the relevant amplifier for details of how a clamping set is recognised using
the amplifier settings.

Other sampling configuration considerations

As mentioned in the introduction, because Signal is a very general-purpose program it is possible to produce a
sampling configuration that does not allow the clamping features to operate correctly, though we have tried hard to
make the software as flexible as possible. A checklist of the aspects of the sampling configuration that we believe
you need to ensure are correct is:

· Any sweep mode can be used but as the two fast sweep modes and gap-free mode do not allow multiple states
or changes to the pulse outputs they are very limiting and will not work at well. Gap-free sampling can be used to
avoid lost data, particularly for single channel experiments, but again only one fixed set of pulse outputs are
available and the clamping control bar and membrane analysis are not available. Currently Signal does not take
account of gap free sampling in single channel analysis but we hope to allow this in the future.

· External convert sampling cannot be used as this prevents Signal from determining the time-course of events.

Sampling with clamp support

8-121

· The stimulus and response channels specified in clamping sets must exist (be generated by the configuration)
and the ports used to log the channels must use appropriate units as described in the clamping configuration
details. The channel calibration scaling factors must be correctly set up for the amplifier gains, and any telegraph
settings must be correct, or data analysis will give incorrect results.

· Pulses outputs must be used with absolute levels turned off if you want the holding potential controls to work as
expected. Sequencer output can be used for specialised experiments but it will not work with the membrane
analysis or holding potential controls.

· All the DACs specified for stimulus control must be enabled in the outputs and calibrated using suitable units.
The DAC scaling factors must be correctly set for the amplifier control inputs or the stimuli generated will be
incorrect.

· If multiple states are used (which is almost always necessary), these should use dynamic outputs variation.

· The state specified for resistance measurements must exist. State zero always exists, even if multiple states are
not used.

Signal checks the sampling configuration for incompatibilities with the requirements of clamping at the start of
sampling and will generate an error message if problems are detected.

Running a clamping experiment

When a sampling configuration with at least one enabled clamping setup is used, the
clamping control toolbar is created in addition to the standard Signal sampling
toolbars. The clamping toolbar contains a separate set of controls for each clamping
setup in use and can either be floating or docked to any edge of the Signal window.
The clamp toolbar contains four items; a selector for the resistance values to be displayed, items for control of the
membrane holding potential, a text display area and a button marked Memb used to provide the membrane analysis
dialog.

The Rt check box is used to toggle between showing the total electrode resistance only (useful when attaching to a
cell) or access and membrane resistance (more useful once the cell is attached and a seal established). If the check
box is set then only the total resistance will be displayed.

The holding potential (or holding current, for current clamp) controls are used to adjust the baseline level of the
stimulus DAC (as set in the sampling configuration) used by the clamping set. The initial value of the holding
potential is taken from the initial (baseline) level of the appropriate DAC in state zero. Whenever the holding
potential is changed, the baseline level for the DAC is set to the new value in all states, the holding potential is also
initialised for all states at the start of sampling. Note that, when editing the holding potential directly, you have to
accept the new value by pressing enter, tab or otherwise moving away from the edit field for the change to take
effect.

You can step the holding potential up and down by clicking on the spinner to the right of the edit field, by using
the keyboard up- and down-arrow keys when the text cursor is in the edit field or by rotating the mouse wheel when
the text cursor is in the edit field. All of these changes take place immediately. For all of these methods, the step size
is 1 millivolt normally, 5 millivolts if the Shift key is held down and 20 millivolts if the Ctrl key is down (0.5, 2.5 and
10 pA for current clamp).

At the bottom of the toolbar area for a clamping set is a text field where the total resistance or electrode access and
membrane resistances are displayed, according to the current state of the Rt check box. This field is automatically
updated whenever the state specified for resistance measurements in the sampling configuration is used, you can
select the state manually or it can be used as part of normal states cycling or protocol execution. Resistance
measurements are carried out regardless of whether sampled data is being written to disk.

All of the controls in the clamping toolbar are disabled when the sampling mode is fast triggers, fast fixed interval or
gap-free as these modes do not allow the necessary interaction with sampling.

Signal Version 6.06

8-122

Membrane analysis

The Membr ane button in the clamping control bar is used to
provide the membrane analysis dialog; this dialog uses the
state for resistance measurements specified in the sampling
configuration to carry out a more complete analysis of
membrane properties. When it is used, sampling is
automatically switched to the state specified for resistance
measurements and writing to disk is turned off.

The membrane analysis measures and displays the total
resistance, access and membrane resistance, the time
constant for the decay of the capacitance transient and the
calculated membrane capacitance (see here for details of the
analysis).

At the top of the dialog is the waveform display area. This
shows a slice of waveform from the response channel at the
time of the stimulus pulse. If the analysis has been
successful the fitted curve corresponding to the capacitance
decay will be drawn on top of the waveform data. The two
buttons labelled >< and <> (below the waveform display
area) can be used to increase and decrease the time range
shown.

Immediately below the waveform display area is an area used to show the results of the most recent analysis. These
results are updated after every frame, the results can optionally be either the average of all stimulus transitions or
the result of just one transition and can also be averaged over a number of sweeps if desired.

The holding potential control can be used to adjust the membrane holding potential (or current) in exactly the same
way as the equivalent control in the clamping control toolbar.

The All transitions check box, when checked, causes the response to all of the edges of the selected stimulus
pulse to be analysed rather than just the first edge (the one shown in the waveform display). If more than one edge
is analysed, the results shown in the text area are based upon the averaged results for all edges. This control also
affects the results shown in the graphical display of a measurement over time.

In addition to averaging across all stimulus transitions, you can average the analysis results that are displayed over
a number of sweeps by using the Average of readings control. This can be set to any value from 1 to 1000. Note
that if you set a large value here there will be a significant delay before any changes become clear.

The area below these controls provides a display of a selected measurement over time. The Display selector selects
the measurement to be displayed from those available, while the count control sets the number of measurements
shown over the width of the display area, from 10 to 1000. The values displayed in this graph are updated with data
from every sweep (the Average of readings control has no effect, but the All transitions check box operates). The
Clear button deletes all saved measurements and restarts the display – this can be particularly useful if an aberrant
value causes the automatic Y scaling to show too large a data range.

When the membrane analysis dialog is closed the sampling state sequencing system and writing to disk are both
restored to their previous state at the time that the dialog was displayed.

Changing pulses

The pulses dialog can be used to edit the output pulses used (including the pulse for resistance measurements) at
any point while the experiment is in progress. Any changes made to the pulses while the membrane analysis dialog
is in use will not cause the membrane analysis to fail in a destructive fashion, but deleting the pulse for resistance
measurements or changing it to a type that is not usable for resistance measurements may prevent the membrane
analysis from being carried out.

Sampling with clamp support

8-123

Resistance data

The total, access and membrane resistance values, along with the membrane capacitance, are stored in the new data
file as frame variables. The names of the variables are ‘RTotn’, ‘RAccn’, ‘RMembn’ and ‘CMembn’
respectively, where n is 1 for the first clamp set, 2 for the second and so forth. The values stored will be zero for
data where the relevant clamp set is not being used, 1.0 when a resistance measurement has not yet been taken or
the relevant value (in MOhms or pF units) generated by the last membrane analysis.

These values can be viewed in the File information dialog, retrieved using the script language or used as
measurement values in trend plot generation.

Analysis methods

Resistance and other membrane measurements are generated by analysis of a transition; a step change in
stimulation (clamped voltage or current) level with the new level being maintained for a reasonable period. For a
simple square pulse there are two transitions; one at the start of the pulse and one at the end, for a pulse train there
are a sequence of transitions. Analysis is carried out on the first suitable pulse found in the outputs for the
specified state; you can force a particular pulse to be used by setting the pulse ID to ‘RM’.

To measure total resistance, the post-transition level is measured during the final quarter of the stimulus pulse (for
transitions at the end of a pulse the previous pulse width is assumed). The delay of ¾ of the pulse width is
intended to allow the capacitive transient to settle and can be adjusted by altering the stimulus pulse width. The
baseline (pre-transition) level is measured over the same amount of time just before the transition. Measurements
are taken from both the stimulus and response channels allowing the resistance to be easily calculated by using
Ohms law.

After the stable levels before and after the transition have been measured, voltage clamp data can be further
analysed to generate membrane capacitance, access resistance and membrane resistance measurements. The decay
phase of the overshoot is analysed by fitting a double exponential curve to the current signal. The data used for
the fitting is half the total stimulus pulse length in duration, starting at the point of maximum overshoot. If the
double-exponential fit is successful the shorter time constant found (corresponding to the neuron body) is used,
otherwise the time constant from a single-exponential fit is used. Having got a time constant for the decay, the area
underneath the overshoot is measured to give the total charge. This analysis is more complex than the simple
calculation of the total resistance and can fail for a number of reasons - the possible causes of failure are too few
points for the curve fitting (either due to sampling too slowly or using too short a pulse for the measurements),
insufficient overshoot in the pulse response to carry out the measurement or a failure in the exponential curve
fitting (probably due to excessively noisy data or not enough data points for a good fit).

Having measured the total charge and the amplitude of the voltage step, the membrane capacitance can be
calculated as charge/delta volts. We are then able to estimate the access resistance by Rs = time
constant/capacitance, which allows us to separate out the membrane and access components of the total
resistance.

For current clamp experiments, only the overall resistance is measured.

When all transitions are being analysed, the results of analysis of each transition are averaged to give a single set
of measurements for the sweep.

Dynamic clamping

Dynamic clamp is a specialised experimental technique in which current is injected into a cell in order to simulate, or
cancel out, a natural transmembrane conductance of some sort. This is done by repeatedly sampling the voltage
differential across membranes, calculating (using equations appropriate to the conductance being modelled, which
can be relatively simple or extremely complex) the current that will be generated and updating a DAC output that
drives a current clamp amplifier to inject the current. To be useful for research, this process has to be done quickly
relative to the speed of the biological processes being modelled, so the mechanisms used to evaluate the equations
need to be fast. The main areas of research that dynamic clamping is used for are:

· Isolating the ionic conductance of a particular ion type in order to study its specific effects on the cell.

· Connecting two cells in a brain slice with an artificial synapse in order to study a cell's response to synaptic
input or generate hybrid networks. The pre-synaptic cell can also be replaced with an artificially generated
action potential.

Signal Version 6.06

8-124

Signal includes a high-performance, easily configurable, dynamic clamping option which is fully integrated into its
standard sampling mechanisms. It makes use of the high performance available from the latest 1401 design to
evaluate the dynamic clamping model equations using highly optimised mechanisms, the equations are evaluated at
the same rate as the ADC inputs are sampled.

Using the 1401 allows dynamic clamping to be tightly coupled to the ADC sampling, ensures that the timing is fast
& unaffected by the non real-time aspects of the Windows operating system and ensures that, if the equation
evaluation and DAC updating are slow relative to the ADC sampling, this can be reliably detected.

Hardware requirements
Because of the high processing speeds required, a Power1401 mk II, Power1401-3 or Micro1401-4 data acquisition
system is needed in order to use dynamic clamping. We have also found that a high-performance clamp amplifier is
required for effective dynamic clamping. The MultiClamp 700A and 700B amplifiers from Molecular Devices
(previously Axon), the 2400 from A-M systems, the BA-03X and many other amplifiers (BA-01X, BA-01M, ELC-
01X, ELC01M, ELC03XS, SEC03M, SEC05X, SEC01X) from NPI Electronics and the EPC 800 from HEKA are all
known to work well with current clamping and are therefore suitable for dynamic clamping, but of course this is not
to say that other amplifiers are unsuitable. The 700A and 700B amplifiers from Molecular Devices, the 2400 from A-
M systems, the EPC 800 from Heka and the BA-03X from NPI have been tested at CED and seen to work correctly
with Signal dynamic clamping.

Models, ADCs and DACs
The basic organisational element within dynamic clamping is the model. A model can define something as simple
as an ohmic leak conductance or as complex as a population of Hodgkin-Huxley ion channels or a synapse. The
basic job of a model is to describe how the dynamic clamp current that is to be injected will be calculated. Models
use one or two sampled waveform channels as inputs, have a set of equations that control how the inputs control
the conductance plus defined parameter values such as the maximum conductance that are used within equation
evaluation and drive one or two DAC outputs with the output of the equations to control the current injected by
the amplifier. If the sampling configuration is using multiple states sampling the model information is extended to
provide multiple sets of model parameters which can differ between states, but the basic model settings such as the
model type, input channels and DAC outputs are the same for all states.

Signal allows you to use up to 15 dynamic clamp models of any type simultaneously within one sampling
configuration, models can share both waveform input channels and output DACs. When the models are evaluated
all outputs that drive the same DAC are summed and the final DAC output is the sum of all the dynamic clamp
outputs and any output sent to that DAC by the standard Signal pulse or sequencer output systems.

Waveform (ADC) inputs
The starting point for any dynamic clamp calculations are measurements of membrane potentials – the potential
within the cell measured relative to the surrounding medium. Signal dynamic clamping uses measurements taken
from sampled data file channels to find the membrane potential, this means that the channels in question must be
created by sampling from an ADC port as set in the sampling configuration and that the data must be suitably
calibrated in millivolts. Other calibrations would be possible – all that is necessary is that Signal ‘understands’ the
units so it can derive correct potentials – but measurements in millivolts appear to be always used by researchers. It
is also important that the channel calibration factors – the conversion factors between volts at the 1401 input and
millivolts measured by the clamp amplifier electrode - set in the ports configuration are correctly set to match the
amplifier behaviour so that the membrane potential values seen by Signal are correct.

DAC outputs
It is equally important that the DACs used to control current injection by the clamping amplifier are correctly set up
so that Signal can correctly control simulated currents. Because of this, any DACs used as control outputs by
models must be calibrated in either picoamps or nanoamps, and the output calibration factors (the values used to
define what current a given DAC output level causes) as set in the Outputs page of the sampling configuration is
correctly set up to reflect the behaviour of the amplifier current control input, otherwise the currents generated by
dynamic clamping will not be correct. When Pulse outputs are used the individual DACs can be separately
calibrated, for Sequencer outputs one set of DAC calibration values are used for all DACs. Note that while
sequencer outputs are compatible with dynamic clamping, the simple clamp support using defined clamping sets
requires Pulse outputs.

Sampling with clamp support

8-125

Digital inputs
Some dynamic clamping models may be triggered by a 1401 digital input. When a model is configured to use digital
triggers you can specify the digital input bit number to use from 0 to 7. These bits are in the upper 1401 digital input
byte and so are actually bits 8-15, they are referred to as bits 0 to 7 for simplicity. See the documentation on digital
inputs for details of the digital input connections.

Starting & stopping
Dynamic clamping uses the DACs on the 1401 to control the injection of current into a cell. Excessive current
injection (sourcing or sinking) will quickly cause the cell membrane potential to exceed reasonable limits and
probably kill the cell so mechanisms within Signal are used to try to avoid transients or other unwanted effects.
When getting ready to sample, Signal makes sure that all of the DACs used to control dynamic clamping currents
are set to zero and as the sampling starts any dynamic clamp models are preset using the current ADC input
voltages to get the models ready for use and to preset the DACs to viable but stable values. As soon as sampling
stops all of the DACs used to control dynamic clamping currents are set to zero once again. In addition, the models
are zeroed and preset every time the parameters are changed to increase stability.

As Signal is an episodic data capture system, in all sampling modes apart from Gap-free there is an interval
between sweeps during which sampling is not happening. This interval can be fairly small (probably <10
milliseconds for untriggered Basic mode, <100 microseconds for untriggered Fast triggers) but can also be very
long, for example in Fixed interval or Extended modes. As the dynamic clamp equations are driven by ADC
sampling this means that during this interval the dynamic clamp equations are not running and current injection is
fixed at whatever level it was at at the end of the sweep. This can give problems if the delay is long so untriggered
Basic or Fast triggers/Gap-free modes will work best. In addition a control is available to force the current
injection to zero between sweeps, this is appropriate if the required resting current injection is close to zero and you
wish to avoid the possibility of transient currents lingering.

Acknowledgements
The work done in adding dynamic clamp to Signal was inspired by the description of the StdpC program, described
in Journal of Neuroscience Methods 158 (2006) 287-299. We are very grateful to Thomas Nowotny (one of the
authors of this paper) for his advice and the time he spent explaining dynamic clamp to us.

In addition, we are grateful to Stephen Brickley, Stephanie Ratte, Carlos Paladini and Farzan Nadim and their co-
workers and students for the work they put into testing the dynamic clamp support within Signal and for the many
useful suggestions they made for improvements to the software.

Signal Version 6.06

8-126

Dynamic clamp setup

Access to the Signal dynamic clamp system is provided through the Clamp tab of the Sampling configuration
dialog. If this tab is not visible you will need to go to the Preferences dialog and select the Clamp tab where you
can then turn on the clamping options used throughout Signal.

The Clamp page of the Sampling configuration dialog
is mostly occupied by up to eight clamping set
definitions for voltage and current clamp or single
channel patch clamp experiments. These are not part of
the dynamic clamp system and can be used alongside
dynamic clamping or not as you prefer. To set up
dynamic clamping in a sampling configuration you
should click on the Dynamic Clamp button provided at
the bottom of the Clamp page. This provides the main
Dynamic clamp setup dialog which is used to define the
dynamic clamp models that you will be using.You can
also use the Dynamic clamp setup dialog online to
enable or disable models and to view, edit and update
model parameters while sampling is in progress.

The Dynamic clamp setup dialog holds of a list of the
models in use and buttons to add, edit or delete models. Models which have been disabled will be shown in grey,
while modes with problems with their input channel or DAC numbers will have those numbers shown in red.

To add a new model, press the Add >> button which provides a menu allowing you to
select the model you want. To create a duplicate of an existing model, press the
Duplicate button. To edit an existing model, select the model by clicking on it in the
list and then click on the Edit button or simply double click on the model in the list. To
delete a model, select it and click the Delete button. It is not possible to add or delete
models on-line though you can disable them or change model parameters. The models
available are:

· Hodgkin-Huxley (Alpha/Beta), which simulates a population of voltage-dependent
ion channels using a formulation based upon multiple rate equations.

· Hodgkin-Huxley (Tau), which simulates a population of voltage-dependent ion-
channels.

· Alpha synapse, which simulates a synapse between two cells using the Alpha function.

· CPG synapse, which simulates a central pattern generator synaptic connection between two cells.

· Destexhe synapse, which simulates a synapse between two cells using the Destexhe model.

· Electrical synapse, which simulates a simple electrical connection (a gap junction) between two cells.

· Exponential synapse, which simulates a synapse between two cells using a single exponential.

· Exponential difference synapse, which simulates a synapse between two cells using a difference between two
exponentials.

· User defined synapse, which simulates a synapse between two cells using a model that replays a user defined
waveform read from a text file.

· Leak models, which simulates various types of trans-membrane current leakage which do not have time-
dependent behaviour.

· Noise, which simulates synaptic or leak noise using an Ornstein-Uhlenbeck process.

Overall options
The Automatically disable all models at the start of sampling check box at the bottom of the dialog can be
used to ensure that all models are initially disabled, should this be desired.

The Force model conductances to zero between sampling sweeps check box below can be used to ensure
that all current control DACs are set to zero while Signal is between sampling sweeps, should this prove advisable

Sampling with clamp support

8-127

(as discussed here). Generally, it is probably better if you leave this unchecked. This option does not have any
effect when sampling using gap-free mode.

Hodgkin-Huxley (Alpha/Beta) model

This model simulates the membrane current generated by a population of ion channels that obey the Hodgkin-
Huxley equations using a formulation based upon multiple rate equations. The alpha/beta model is described using
the equations:

where p, q and r are integers (1 to 4), E
r
 is the reversal potential of the current, V is membrane potential, m, h and u

are activation and inactivation variables and G
max

 is the maximum conductance in nanosiemens. The calculation of

E
r
 – V is done this way around (rather than the more obvious V - E

r
) so that the system generates the correct

polarity of output current. The first equation is, of course, the same as that in the Tau Hodgkin-Huxley model with a

third component u added. The equations deriving h and u are identical to those given above for m, the α
m

 and β
m

values (plus α
h
 and β

h
, α

u
 and β

u
) are functions of V and represent changes in activation and inactivation. There

are three choices for the activation and inactivation functions Fa,b(x):

in addition to these selections any of the four functions can be replaced by information read from a user-generated
lookup table so that any alternative function you might require can be used. The values from these tables replaces

the calculation of the internal rate variables α
m

, β
m

, α
h
, β

h
, α

u
 and β

u
 as shown in the above equations with

values read from a user-supplied table.

To implement this, we observe that for the activation variable m (the analysis for h and u is of course identical):

So, given an m, we can calculate the change in m, and thus the value of m for the next step. The remaining problem
is to calculate the initial value of m. In the case that δm is zero, we get:

Implementing this would require a long calculation, taking an appreciable amount of time. Because of this we simply
set m, h and u to zero, as they will settle to their correct values after just a few sample intervals.

Signal Version 6.06

8-128

Hodgkin-Huxley (Alpha/Beta) configuration
Adding or editing a Hodgkin-Huxley (Alpha/Beta)
model brings up a dialog allowing the parameters
of the model to be defined.

The Model Name field is used to enter a name for
the model to help you remember which model is
which, it can be up to 19 characters long. Input
Channel is the waveform channel number (as
displayed in the file view) for the membrane
potential. It must have the units of mV in order to
be recognised as a valid channel. The Control
DAC field sets the DAC used to control injection
of the current, the DAC selected must be
calibrated in either pA or nA and have zero
calibration offset – these values are set in the
DAC scaling items in the Outputs page in the
sampling configuration.

The Gmax field sets the maximum conductance of

the ion channels being simulated in nanosiemens,
while the E

r
 field sets the reversal potential for the

current. The polarity of the injected current can be
changed by changing the sign of the conductance, a positive conductance will behave as though you were adding
an ion channel population while a negative conductance acts in such a way as to effectively remove ion channels.

Below these parameters we have three sets of very similar parameters, one of which sets parameters that control the
activation component of the Hodgkin-Huxley model, the second controls the inactivation component while the last
controls component 3. It is possible to turn off the components independently using the Include check boxes; not
including a component forces the corresponding m, h or u value to 1.

The rest of the parameters select the equations that are used for the alpha and beta rate variables of each
component and set values that are used within these rate equations when they are evaluated. As an alternative to
selecting an equation you can select User Defined, which replaces data generated by evaluating an equation with
data read from a user generated table. See below for more details on the user defined function.

The Disable model check box at the bottom of the dialog disables and enables the entire model either across the
board or for the currently selected state as appropriate. Disabling the model has the same effect as setting the Gmax

conductance to 0.

User-defined function
A user defined function replaces a selected function which is used to calculate one of the internal rate variables

α
m

, β
m

, α
h
, β

h
, α

u
 or β

u
 with a lookup table read from a text file on disk. The table defines how the relevant internal

variable value depends upon the membrane potential. With a user-defined function the function parameters are
replaced with a field holding a text file name. There are many ways that such a text file could be created; one of the
easiest is to use a Signal script. The example GenAB.sgs script that is installed with Signal is provided as an
example of how to do this.

The text file name can be a fully qualified file path and name such as "C:\Signal6\MyAB\XAB_am.txt" or it can be
a simple file name such as "XAB_am.txt" in which case the directory where the sampling configuration file is stored
is searched for the file. If a partial path and file name such as "MyAB\XAB_am.txt" is used then the directory path
to the file is generated by starting with the sampling configuration directory and appending the text from the model
file name. If no file extension is provided then .txt is appended. The table below illustrates this:

File name in model Configuration directory Model data read from

C:\MyAB\XAB_am.txt C:\Signal6 C:\MyAB\XAB_am.txt

XAB_am.txt C:\Signal6 C:\Signal6\XAB_am.txt

MyAB\XAB_am.txt C:\Signal6 C:\Signal6\MyAB\XAB_am.txt

Sampling with clamp support

8-129

XAB_am C:\Signal6 C:\Signal6\XAB_am.txt

Model functions that vary with the sweep state are generated by using separate file names in the model settings for
each state. You can get Signal to automatically generate text file names that are derived from the sampling state by
including the text "%ST%" in the text file name, this will be converted by Signal to the current sampling state as a
two digit number (00 to 99) or three digits (100 to 256) as appropriate.

The data format in the text file is a pair of numbers on each line separated by spaces or a single tab character. Lines
beginning with a single quote, " ' " are regarded as comments and will be ignored. The first number on the line is a
membrane potential in millivolts as measured by the model input channel, the second is the rate variable value - a
positive number from 0 upwards. The data in the text file should be sorted in order of membrane potential values
with the lowest (most negative) value first and the highest (most positive) value last.

Table usage and requirements
When the text file data is used Signal reads all of the table values from the text file and converts them to a second
lookup table which is 257 points long and exactly covers the ADC range. This conversion is done using cubic
splining which will generally produce a very accurate result, but it does impose requirements upon the text file data.
Firstly, the range of membrane potentials for which rate variable values are given should, in addition to covering
the expected range of membrane potentials, exceed by a few points (5 at each end is ample) the entire range of
potentials that could possibly be sampled from the input channel given the ADC port calibrations in use. This is
necessary in order for the cubic splining to produce accurate results close to the table extremes. If the table values
provided do not cover the entire ADC range then the generated table will be truncated at the first or last text file
value as appropriate and a warning will be generated.

Secondly, the membrane potential values should be sufficiently close together to accurately represent the function
behaviour. 100 values is probably the bare minimum that would be satisfactory and 250 to 500 is recommended.
Evenly spaced potential values will probably be the easiest to produce but this is not a requirement - if your model
displays quickly-changing behaviour at some potentials then you should design your text file to have more closely-
spaced values at these points while fewer points in areas with essentially linear behaviour will save space and time
& not cause inaccuracy.

Hodgkin-Huxley (Tau) model

This model simulates the membrane current generated by a population of ion channels that obey the Hodgkin-
Huxley equations using a formulation based upon thresholds and threshold sensitivities. These are first-order non-
linear differential equations:

where p and q are integers (1 to 4), E
r
 is the reversal potential of the current, V is membrane potential, m and h are

the activation and inactivation variables and G
max

 is the maximum conductance in nanosiemens. The calculation of

E
r
 – V is done this way around (rather than the more obvious V - E

r
) so that the system generates the correct

polarity of output current. The t
m

, t
h
, m and h values are all functions of V and represent the changes in

activation and inactivation:

Signal Version 6.06

8-130

The values of m and h lie between 0 and 1 and represent fractions of the total conductivity. Given starting
conditions, the equations can be solved dynamically:

That is, over a sample interval δt given an initial value of m and h, we can approximate the new value at the end, m +
δm and h + δh, by assuming δm/δt = dm/dt. The only problem left is to set an initial condition. To do this we assume
that at the start of sampling the model is in a steady state (so dm/dt and dh/dt are zero), giving us:

Hodgkin-Huxley (Tau) configuration
Adding or editing a Hodgkin-Huxley (Tau) model brings up a dialog
allowing the parameters of the model to be defined.

The Model Name field is used to enter a name for the model to help
you remember which model is which, it can be up to 19 characters
long. Input Channel is the waveform channel number (as displayed in
the file view) for the membrane potential. It must have the units of mV
in order to be recognised as a valid channel. The Control DAC field
sets the DAC used to control injection of the current, the DAC
selected must be calibrated in either pA or nA and have zero
calibration offset – these values are set in the DAC scaling items in
the Outputs page in the sampling configuration.

If either of the Input Channel or Control DAC fields are invalid then
the text for the problematic item will be displayed in red and, after a
pause, an error message describing the problem shown at the bottom
of the dialog.

The rest of the dialog sets parameters for the model. See the equations
above for precise details of how the various numeric parameters are
used.

The Gmax field sets the maximum conductance of the ion channels

being simulated in nanosiemens while the Er field sets the reversal

potential for the current. The polarity of the injected current can be changed by changing the sign of the
conductance, a positive conductance will behave as though you were adding an ion channel population while a
negative conductance acts in such a way as to effectively remove ion channels.

Below these we have two sets of very similar parameters, one of which sets parameters that control the activation
component m, the other controlling the inactivation component h. You can turn individual components on and off
using the Include check boxes, not including the activation or inactivation component effectively forces m or h
respectively to 1. The rest of the parameters set values for the two components that are used within the equations.
Most of these values can be freely set, regardless of their physiological validity, but the dialog does prevent you
setting a Ta value greater than the value of T0 as doing this guarantees that the equations will ‘blow up’ and

generate unusable results. As an alternative to the Standard function with parameters you can select User
defined, which replaces data generated by evaluating the equations above with data read from a user generated
table. See below for more details on the user defined functions.

The Disable model check box at the bottom of the dialog disables and enables the entire model either across the
board or for the currently selected state as appropriate. Disabling the model has the same effect as setting the Gmax

conductance to 0.

Sampling with clamp support

8-131

The OK button saves any changes that have been made and closes the dialog. The Apply button is only enabled
during sampling and saves all changes while leaving the dialog open, while the Cancel button closes the dialog
and discards unsaved changes as usual. Any changes made will take effect within a few milli-seconds, even if the
current sweep has not finished.

User-defined function
You can select using the standard functions (as describe above) or alternatively a user defined function for
separate sections of the model evaluation. A user defined function replaces the standard function used to calculate

one of the t
m

, t
h
, m and h values with a lookup table read from a text file on disk. The table defines how the

relevant value depends upon the membrane potential. With a user-defined function selected the function
parameters are replaced with a field holding a text file name. There are many ways that such a text file could be
created; one of the easiest is to use a Signal script. The example GenTau.sgs script that is installed with Signal is
provided as an example of how to do this.

The text file name can be a fully qualified file path and name such as "C:\Signal6\MyHH\XHH_minf.txt" or it can be
a simple file name such as "XHH_minf.txt" in which case the directory where the sampling configuration file is
stored is searched for the file. If a partial path and file name such as "MyHH\XHH_minf.txt" is used then the
directory path to the file is generated by starting with the directory where the sampling configuration was stored
and appending the text from the model file name. If no file extension is provided then .txt is appended. The table
below illustrates this:

File name in model Configuration directory Model data read from

C:\MyHH\XHH_minf.txt C:\Signal6 C:\MyHH\XHH_minf.txt

XHH_minf.txt C:\Signal6 C:\Signal6\XHH_minf.txt

MyHH\XHH_minf.txt C:\Signal6 C:\Signal6\MyHH\XHH_minf.txt

XHH_minf C:\Signal6 C:\Signal6\XHH_minf.txt

Model functions that vary with the sweep state are generated by using separate file names in the model settings for
each state. You can get Signal to automatically generate text file names that are derived from the sampling state by
including the text "%ST%" in the text file name, this will be converted by Signal to the current sampling state as a
two digit number (00 to 99) or three digits (100 to 256) as appropriate.

The data format in the text file is a pair of numbers on each line separated by spaces or a single tab character. Lines
beginning with a single quote, " ' " are regarded as comments and will be ignored. The first number on the line is the
membrane potential in millivolts as measured by the model input channel, the second is the corresponding value - a
positive number from 0 upwards. The data in the text file should be sorted in order of membrane potential values
with the lowest (most negative) value first and the highest (most positive) value last.

Table usage and requirements
When the text file data is used Signal reads all of the table values from the text file and converts them to a second
lookup table which is 257 points long and exactly covers the ADC range. This conversion is done using cubic
splining which will generally produce a very accurate result, but it does impose requirements upon the text file data.
Firstly, the range of membrane potentials for which rate variable values are given should, in addition to covering
the expected range of membrane potentials, exceed by a few points (5 at each end is ample) the entire range of
potentials that could possibly be sampled from the input channel given the ADC port calibrations in use. This is
necessary in order for the cubic splining to produce accurate results close to the table extremes. If the table values
provided do not cover the entire ADC range then the generated table will be truncated at the first or last text file
value as appropriate and a warning will be generated.

Secondly, the membrane potential values should be sufficiently close together to accurately represent the function
behaviour. 100 values is probably the bare minimum that would be satisfactory and 250 to 500 is recommended.
Evenly spaced potential values will probably be the easiest to produce but this is not a requirement - if your model
displays quickly-changing behaviour at some potentials then you should design your text file to have more closely-
spaced values at these points while fewer points in areas with essentially linear behaviour will save space and time
& not cause inaccuracy.

Signal Version 6.06

8-132

Alpha synapse model

This model simulates the presence of a synapse between two cells using the Alpha function to generate the post-
synaptic conductance profile. The synapse can be triggered by the presynaptic potential crossing a predefined
threshold (in either direction), by a signal applied to a 1401 digital input port or by internal timed triggers. The
equation for the post-synaptic conductance is given by:

g(t) = G
max

* (t/τ) * exp(1-(t/τ))

where t is the time since the synapse was triggered. The equation generates a linear rising phase and an exponential

decay falling phase using a single time constant τ, with the maximum conductance occurring when t = τ. The

overall effect (while not especially physiologically realistic) provides a reasonable approximation for some
synapses and has been widely used because of its low computational overhead. This model is generated using an
internally-generated waveform table of up to 32000 points so the maximum duration of the synaptic current is
32000/ADC sample rate.

Alpha synapse configuration
Adding or editing an Alpha synapse model brings up a dialog allowing
the parameters of the model to be defined.

The Model Name field is used to enter a name for the model to help you
remember which model is which, it can be up to 19 characters long.

The Trigger section of the dialog defines how the synapse will be
triggered. The Type item selects the type of trigger and can be set to one
of +Analogue, -Analogue, TTL high, TTL low or Internal. +Analogue
and -Analogue select triggering when the membrane potential on the
specified pre-synaptic channel crosses a preset threshold (rising or
falling respectively), with an optional Delay after the crossing before the
trigger activates. For analogue triggers Presynaptic Channel is the
waveform channel number (as displayed in the sampled data file) for the
membrane potential (this must have units of mV in order to be recognised
as a valid channel) and a separate field is used to enter the threshold
potential. TTL high and TTL low select triggering when a specified 1401
digital input (upper byte) changes state (to high or low respectively),
again with an optional Delay. Internal triggering generates one or more
triggers at the specified times relative to the start of the sampling frame.
The Sum triggered outputs check box at the bottom of the trigger
details, if checked, allows the effect of up to 20 triggers to be summed to generate the overall model output - if this
is cleared then each trigger detected terminates the effect of any previous trigger, resetting the conductance to zero
and initiating another conductance pulse at the point when the trigger Delay expires.

The Postsynaptic Channel item is the waveform channel number used to measure the postsynaptic membrane
potential so that the effect of the reversal potential can take effect, as usual this must channel have units of mV in
order to be recognised as valid. The Postsynaptic Control DAC is the number of the DAC used to inject the
current, this DAC must be calibrated in either pA or nA and have zero calibration offset – these values are set in
the DAC scaling items in the Outputs page in the sampling configuration

The Gmax field sets the maximum postsynaptic conductance for the synapse, as used in the equation above, in

nanosiemens, the polarity of the injected postsynaptic current can be changed by changing the sign of the
conductance, a positive conductance will behave as though you were adding an ion channel population while a

negative conductance acts in such a way as to effectively remove ion channels. The τ field sets the time constant

for the model, in milliseconds.

The Receptor type field defines the postsynaptic conductance behaviour, it can be set to Linear (e.g. non-
NMDA), GHK (e.g. GABA and Glycine), Boltzmann (e.g. NMDA) or User defined. The different types show
different relationships between the postsynaptic conductance (g(t) in the equation above), the postsynaptic
membrane potential and the current generated by the model. The Linear receptor type shows a simple ohmic
relationship relative to a reversal potential Er the GHK receptor generates current through the diffusion of an ion

through a membrane via ion channels with the diffusion driven by the differing ionic concentrations on either side

Sampling with clamp support

8-133

of the membrane and the voltage difference across it (there is no Er, this being implicit in the differing ionic

concentrations), Boltzmann type receptors resemble the linear type but with an additional factor that represents a
voltage-dependent blockage of the current and the User defined receptor type uses a user generated lookup table
to derive a scaling factor for g(t) based upon the membrane potential at time t. See the description of the Leak
model for complete details of the behaviour of the various type of receptor, in all cases the postsynaptic receptor
behaves as a leak of the corresponding type whose conductance varies with time according to the above equation
but note that the values in the User defined table act as a scaler of g(t) rather than being a current in pA; the
current is calculated by multiplying the scaled g(t) by the postsynaptic membrane potential, the table data should
be calculated in such a way as to take the required Er into account.

CPG synapse model

This model simulates the presence of a synapse between two cells with the pre-synaptic potential mediating the
release of a synaptic transmitter which causes a post-synaptic current to flow, the current being injected into the
post-synaptic cell. This particular model mimics the behaviour of synapses in the central pattern generation region
of the lobster CNS. The equation for the current is given by:

The h component is the short term depression and is mathematically identical to the standard Hodgkin-Huxley case.
It is not normally used, in which case it has the constant value 1. V

x
 is the presynaptic and V

y
 is the post-synaptic

cell membrane potential. If V
x
 exceeds some threshold V

th
:

Otherwise, S is 0.0. The value of S lies between 0 and 1. As in the Hodgkin-Huxley case, we can solve the

equations using the Euler method:

At the start of sampling we assume a steady state and S is set to S

Signal Version 6.06

8-134

CPG synapse configuration
Adding or editing a CPG synapse model brings up the dialog allowing the
parameters of the model to be defined.

The Model Name field sets a convenient name for the model as usual.
The Presynaptic Channel and Postsynaptic Channel items are the
waveform channel numbers for the pre- and postsynaptic membrane
potential data respectively, as usual these must have units of mV in order
to be recognised as valid inputs of the membrane potential. The
Postsynaptic Control DAC is the number of the DAC used to inject the
current, which must be calibrated in either pA or nA and have zero
calibration offset – these values are set in the DAC scaling items in the
Outputs page in the sampling configuration. The other fields at the top
and bottom of the dialog are identical to those in the Hodgkin-Huxley
(Tau) model already described.

Destexhe synapse model

This model simulates the presence of a synapse between two cells using the Destexhe model to generate the post-
synaptic conductance profile. The synapse can be triggered by the presynaptic potential being above or below a
predefined threshold (in either direction), by a signal applied to a 1401 digital input port or by internal timing. The
triggering acts as a level so the trigger is either in an on or an off state rather than a trigger being detected at a
given instant in time.

The Destexhe model uses two time constants, Trise and Tdecay. When the trigger input is in the on state, the synaptic

conductance tends (with an exponential decay process set by Trise) towards the maximum synaptic conductance,

while when the trigger is off the conductance decays exponentially (with time constant Tdecay) towards zero. The

equation for the post-synaptic conductance during the trigger on state is given by:

g(t) = G
max

+ (G
start

 - G
max

) exp(-t/τ
rise

)

where t is the time since the start of the on state and G
start

 is the conductance at the start of the on state. The

equation for the conductance in the trigger off state is:

g(t) = G
start

 exp(-t/τ
decay

)

where t is the time since the start of the off state and G
start

 is the conductance at the start of the off state.

Sampling with clamp support

8-135

Destexhe synapse configuration
Adding or editing a Destexhe synapse model brings up a dialog allowing
the parameters of the model to be defined.

The Model Name field is used to enter a name for the model to help you
remember which model is which, it can be up to 19 characters long.

The Trigger section of the dialog defines how the synapse will be
triggered. The Type item selects the type of trigger and can be set to one
of +Analogue, -Analogue, TTL high, TTL low or Internal. +Analogue
and -Analogue select triggering when the membrane potential on the
specified pre-synaptic channel is above and below a preset threshold
respectively. For these triggers Presynaptic Channel is the waveform
channel number (as displayed in the file view) for the membrane potential
(this must have units of mV in order to be recognised as a valid channel)
and a separate field is used to enter the threshold potential. TTL high and
TTL low select triggering when a specified 1401 digital input (upper byte)
is in a high or low state. Internal triggering generates one or more fixed-
length triggers at the specified times relative to the start of the sampling
frame.

The Postsynaptic Channel item is the waveform channel number used
to measure the postsynaptic membrane potential so that the effect of the
reversal potential can take effect, as usual this channel must have units of mV in order to be recognised as valid.
The Postsynaptic Control DAC is the number of the DAC used to inject the current, this DAC must be calibrated
in either pA or nA and have zero calibration offset – these values are set in the DAC scaling items in the Outputs
page in the sampling configuration

The Gmax field sets the maximum postsynaptic conductance for the synapse, as used in the equation above, in

nanosiemens, the polarity of the injected postsynaptic current can be changed by changing the sign of the
conductance, a positive conductance will behave as though you were adding an ion channel population while a

negative conductance acts in such a way as to effectively remove ion channels. The τ
rise

 field sets the time

constant for the on trigger state, while τ
decay

 sets the time constant for the off trigger state, both values are in

milliseconds.

The Receptor type field defines the postsynaptic conductance behaviour, it can be set to Linear (e.g. non-
NMDA), GHK (e.g. GABA and Glycine), Boltzmann (e.g. NMDA) or User defined. The different types show
different relationships between the postsynaptic conductance (g(t) in the equation above), the postsynaptic
membrane potential and the current generated by the model. The Linear receptor type shows a simple ohmic
relationship relative to a reversal potential Er the GHK receptor generates current through the diffusion of an ion

through a membrane via ion channels with the diffusion driven by the differing ionic concentrations on either side
of the membrane and the voltage difference across it (there is no Er, this being implicit in the differing ionic

concentrations), Boltzmann type receptors resemble the linear type but with an additional factor that represents a
voltage-dependent blockage of the current and the User defined receptor type uses a user generated lookup table
to derive a scaling factor for g(t) based upon the membrane potential at time t. See the description of the Leak
model for complete details of the behaviour of the various type of receptor, in all cases the postsynaptic receptor
behaves as a leak of the corresponding type whose conductance varies with time according to the above equations
but note that the values in the User defined table act as a scaler of g(t) rather than being a current in pA; the
current is calculated by multiplying the scaled g(t) by the postsynaptic membrane potential, the table data should
be calculated in such a way as to take the required Er into account.

Electrical synapse model

This is a simpler form of dynamic clamping which simulates two cells being electrically connected (a gap junction)
to create a synapse. There are two output currents, these being:

Iy = -Ix = G
es

 (Vx - Vy)

Signal Version 6.06

8-136

Where V
x
 is the presynaptic and V

y
 is the postsynaptic cell membrane potential and G

es is the conductance of the

synapse in nanosiemens. Therefore this model simulates the existence of a resistor with a value 1/G
es

 ohms

between the presynaptic and postsynaptic cells, with current flowing in one direction or another according to the
voltage difference between the electrodes used to measure membrane potentials. The electrical synapse model can
also be used in an alternative rectifying form where current only flows from the presynaptic to the postsynaptic cell
and not in the other direction

Electrical synapse configuration
Adding or editing an Electrical synapse model brings up the dialog
allowing the parameters of the model to be defined.

The Model Name field sets a convenient name for the model as usual. The
Presynaptic Channel and Postsynaptic Channel items are the waveform
channel numbers for the pre- and postsynaptic membrane potential data
respectively, as usual these must have units of mV in order to be
recognised as valid inputs of the membrane potential. The Presynaptic
Control DAC and Postsynaptic Control DAC items are the DACs used to
inject the relevant currents and must be calibrated in units of either pA or
nA and have zero calibration offset – these values are set in the DAC
scaling items in the Outputs page in the sampling configuration.

You can select the rectifying form of the synapse by checking the No
output if postsynaptic > presynaptic voltage check box. Note that this option selects between two fundamentally
different styles of operation and, unlike the actual model parameters, can only be edited when state 0 is selected,
cannot differ between states and cannot be changed online.

The parameters of the model are the synapse conductance G
es

 in nanosiemens and the model enable flag

controlled by the Disable model check box.

Exponential synapse model

This model simulates the presence of a synapse between two cells using an instantaneous rise time and a single
exponential for the post-trigger decay. The synapse can be triggered by the presynaptic potential crossing a
predefined threshold (in either direction), by a signal applied to a 1401 digital input port or by internal timed
triggers. The equation for the post-synaptic current is given by:

g(t) = G
max

 exp(-t/τ
decay

)

where t is the time since the trigger. This model is generated using an internally-generated waveform table of up to
32000 points so the maximum duration of the synaptic current is 32000/ADC sample rate.

Sampling with clamp support

8-137

Exponential synapse configuration
Adding or editing an Exponential synapse model brings up a dialog
allowing the parameters of the model to be defined.

The Model Name field is used to enter a name for the model to help you
remember which model is which, it can be up to 19 characters long.

The Trigger section of the dialog defines how the synapse will be
triggered. The Type item selects the type of trigger and can be set to one
of +Analogue, -Analogue, TTL high, TTL low or Internal. +Analogue
and -Analogue select triggering when the membrane potential on the
specified pre-synaptic channel crosses a preset threshold (rising or
falling respectively), with an optional Delay after the crossing before the
trigger activates. For analogue triggers Presynaptic Channel is the
waveform channel number (as displayed in the sampled data file) for the
membrane potential (this must have units of mV in order to be recognised
as a valid channel) and a separate field is used to enter the threshold
potential. TTL high and TTL low select triggering when a specified 1401
digital input (upper byte) changes state (to high or low respectively),
again with an optional Delay. Internal triggering generates one or more
triggers at the specified times relative to the start of the sampling frame.
The Sum triggered outputs check box at the bottom of the trigger
details, if checked, allows the effect of up to 20 triggers to be summed to generate the overall model output - if this
is cleared then each trigger detected terminates the effect of any previous trigger, resetting the conductance to zero
and initiating another conductance pulse at the point when the trigger Delay expires.

The Postsynaptic Channel item is the waveform channel number used to measure the postsynaptic membrane
potential so that the effect of the reversal potential can take effect, as usual this must channel have units of mV in
order to be recognised as valid. The Postsynaptic Control DAC is the number of the DAC used to inject the
current, this DAC must be calibrated in either pA or nA and have zero calibration offset – these values are set in
the DAC scaling items in the Outputs page in the sampling configuration

The Gmax field sets the maximum postsynaptic conductance for the synapse, as used in the equation above, in

nanosiemens. The polarity of the injected postsynaptic current can be changed by changing the sign of the
conductance, a positive conductance will behave as though you were adding an ion channel population while a

negative conductance acts in such a way as to effectively remove ion channels. The τ
decay

 field sets the decay time

constant for the model, in milliseconds.

The Receptor type field defines the postsynaptic conductance behaviour, it can be set to Linear (e.g. non-
NMDA), GHK (e.g. GABA and Glycine), Boltzmann (e.g. NMDA) or User defined. The different types show
different relationships between the postsynaptic conductance (g(t) in the equation above), the postsynaptic
membrane potential and the current generated by the model. The Linear receptor type shows a simple ohmic
relationship relative to a reversal potential Er the GHK receptor generates current through the diffusion of an ion

through a membrane via ion channels with the diffusion driven by the differing ionic concentrations on either side
of the membrane and the voltage difference across it (there is no Er, this being implicit in the differing ionic

concentrations), Boltzmann type receptors resemble the linear type but with an additional factor that represents a
voltage-dependent blockage of the current and the User defined receptor type uses a user generated lookup table
to derive a scaling factor for g(t) based upon the membrane potential at time t. See the description of the Leak
model for complete details of the behaviour of the various type of receptor. In all cases the postsynaptic receptor
behaves as a leak of the corresponding type whose conductance varies with time according to the above equation
but note that the values in the User defined table act as a scaler of g(t) rather than being a current in pA; the
current is calculated by multiplying the scaled g(t) by the postsynaptic membrane potential, the table data should
be calculated in such a way as to take the required Er into account.

Signal Version 6.06

8-138

Exponential difference synapse model

This model simulates the presence of a synapse between two cells using the difference between two exponentials
(one for the rising phase and one for the decay) to generate the post-synaptic conductance profile. The synapse
can be triggered by the presynaptic potential crossing a predefined threshold (in either direction), by a signal
applied to a 1401 digital input port or by internal timed triggers. The equation for the post-synaptic current is given
by:

g(t) = G
max

 f(exp(-t/τ
decay

) - exp(-t/τ
rise

))

where t is the time since the trigger and f is a normalisation factor to ensure that the peak conductance equals

Gmax. The single exponential model is retrieved when τ
rise

 is set to zero, the alpha model is retrieved when τ
rise

 is

set equal to τ
decay

. The actual effect of the equations is to make the rising phase be controlled by the smaller of the

two time constants so if you set τ
rise

 to greater than τ
decay

 you will find that it acts as τ
decay

 and vice-versa. This

model is generated using an internally-generated waveform table of up to 32000 points so the maximum duration of
the synaptic current is 32000/ADC sample rate.

Exponential difference synapse configuration
Adding or editing an Exponential difference synapse model brings up a
dialog allowing the parameters of the model to be defined.

The Model Name field is used to enter a name for the model to help you
remember which model is which, it can be up to 19 characters long.

The Trigger section of the dialog defines how the synapse will be
triggered. The Type item selects the type of trigger and can be set to one
of +Analogue, -Analogue, TTL high, TTL low or Internal. +Analogue
and -Analogue select triggering when the membrane potential on the
specified pre-synaptic channel crosses a preset threshold (rising or
falling respectively), with an optional Delay after the crossing before the
trigger activates. For analogue triggers Presynaptic Channel is the
waveform channel number (as displayed in the sampled data file) for the
membrane potential (this must have units of mV in order to be recognised
as a valid channel) and a separate field is used to enter the threshold
potential. TTL high and TTL low select triggering when a specified 1401
digital input (upper byte) changes state (to high or low respectively),
again with an optional Delay. Internal triggering generates one or more
triggers at the specified times relative to the start of the sampling frame.
The Sum triggered outputs check box at the bottom of the trigger
details, if checked, allows the effect of up to 20 triggers to be summed to generate the overall model output - if this
is cleared then each trigger detected terminates the effect of any previous trigger, resetting the conductance to zero
and initiating another conductance pulse at the point when the trigger Delay expires.

The Postsynaptic Channel item is the waveform channel number used to measure the postsynaptic membrane
potential so that the effect of the reversal potential can take effect, as usual this must channel have units of mV in
order to be recognised as valid. The Postsynaptic Control DAC is the number of the DAC used to inject the
current, this DAC must be calibrated in either pA or nA and have zero calibration offset – these values are set in
the DAC scaling items in the Outputs page in the sampling configuration

The Gmax field sets the maximum postsynaptic conductance for the synapse, as used in the equation above, in

nanosiemens. The polarity of the injected postsynaptic current can be changed by changing the sign of the
conductance, a positive conductance will behave as though you were adding an ion channel population while a

negative conductance acts in such a way as to effectively remove ion channels. The τ
rise

 field sets the rise time

constant and τ
decay

 sets the decay time constant for the model, both in milliseconds.

The Receptor type field defines the postsynaptic conductance behaviour, it can be set to Linear (e.g. non-
NMDA), GHK (e.g. GABA and Glycine), Boltzmann (e.g. NMDA) or User defined. The different types show
different relationships between the postsynaptic conductance (g(t) in the equation above), the postsynaptic

Sampling with clamp support

8-139

membrane potential and the current generated by the model. The Linear receptor type shows a simple ohmic
relationship relative to a reversal potential Er the GHK receptor generates current through the diffusion of an ion

through a membrane via ion channels with the diffusion driven by the differing ionic concentrations on either side
of the membrane and the voltage difference across it (there is no Er, this being implicit in the differing ionic

concentrations), Boltzmann type receptors resemble the linear type but with an additional factor that represents a
voltage-dependent blockage of the current and the User defined receptor type uses a user generated lookup table
to derive a scaling factor for g(t) based upon the membrane potential at time t. See the description of the Leak
model for complete details of the behaviour of the various type of receptor. In all cases the postsynaptic receptor
behaves as a leak of the corresponding type whose conductance varies with time according to the above equation
but note that the values in the User defined table act as a scaler of g(t) rather than being a current in pA; the
current is calculated by multiplying the scaled g(t) by the postsynaptic membrane potential, the table data should
be calculated in such a way as to take the required Er into account.

User defined synapse model

This model simulates the presence of a synapse between two cells using data from a text file to define the post-
synaptic conductance profile. The text file data consists of a sequence of conductance values (which are scaled by
an overall conductance) which are output at the same rate as the ADC sampling whenever the synapse is triggered.
The synaptic output can be triggered by the presynaptic potential crossing a predefined threshold (in either
direction), by a level change on a 1401 digital input or by internal timing. The model output can sum the effect of
multiple triggers or subsequent triggers can replace any previously triggered output.

User defined synapse configuration
Adding or editing a User defined synapse model brings up a dialog
allowing the parameters of the model to be defined.

The Model Name field is used to enter a name for the model to help you
remember which model is which, it can be up to 19 characters long.

The Trigger section of the dialog defines how the synapse will be
triggered. The Type item selects the type of trigger and can be set to one
of +Analogue, -Analogue, TTL high, TTL low or Internal. +Analogue
and -Analogue select triggering when the membrane potential on the
specified pre-synaptic channel crosses a preset threshold (rising or
falling respectively), with an optional Delay after the crossing before the
trigger activates. For analogue triggers Presynaptic Channel is the
waveform channel number (as displayed in the sampled data file) for the
membrane potential (this must have units of mV in order to be recognised
as a valid channel) and a separate field is used to enter the threshold
potential. TTL high and TTL low select triggering when a specified 1401
digital input (upper byte) changes state (to high or low respectively),
again with an optional Delay. Internal triggering generates one or more
triggers at the specified times relative to the start of the sampling frame.
The Sum triggered outputs check box at the bottom of the trigger
details, if checked, allows the effect of up to 20 triggers to be summed to
generate the overall model output - if this is cleared then each trigger
detected terminates the effect of any previous trigger, resetting the conductance to zero and initiating another
conductance pulse at the point when the trigger Delay expires.

The Postsynaptic Channel item is the waveform channel number used to measure the postsynaptic membrane
potential so that the effect of the reversal potential can take effect, as usual this must channel have units of mV in
order to be recognised as valid. The Postsynaptic Control DAC is the number of the DAC used to inject the
current, this DAC must be calibrated in either pA or nA and have zero calibration offset – these values are set in
the DAC scaling items in the Outputs page in the sampling configuration

The G
scale

 field sets the scale factor for the synapse postsynaptic conductances, the actual conductance at any

time is the result of multiplying the relevant value from the text file by G
scale

. The polarity of the injected

postsynaptic current can be changed by changing the sign of the conductance, a positive conductance will behave

Signal Version 6.06

8-140

as though you were adding an ion channel population while a negative conductance acts in such a way as to
effectively remove ion channels.

The Receptor type field defines the postsynaptic conductance behaviour, it can be set to Linear (e.g. non-
NMDA), GHK (e.g. GABA and Glycine), Boltzmann (e.g. NMDA) or User defined. The different types show
different relationships between the postsynaptic conductance as read from the user table, the postsynaptic
membrane potential and the current generated by the model. The Linear receptor type shows a simple ohmic
relationship relative to a reversal potential Er the GHK receptor generates current through the diffusion of an ion

through a membrane via ion channels with the diffusion driven by the differing ionic concentrations on either side
of the membrane and the voltage difference across it (there is no Er, this being implicit in the differing ionic

concentrations), Boltzmann type receptors resemble the linear type but with an additional factor that represents a
voltage-dependent blockage of the current and the User defined receptor type uses a user generated lookup table
to derive a scaling factor for the user-defined conductance based upon the membrane potential at the time. See the
description of the Leak model for complete details of the behaviour of the various type of receptor. In all cases the
postsynaptic receptor behaves as a leak of the corresponding type whose conductance varies with time according
to the above equation but note that the values in the User defined table act as a scaler of g(t) rather than being a
current in pA; the current is calculated by multiplying the scaled g(t) by the postsynaptic membrane potential, the
table data should be calculated in such a way as to take the required Er into account.

Synapse table details
A user defined synapse uses a lookup table read from a text file on disk to define the synapse conductivity over
time. This allows you to generate customised synapse conductivity profiles that follow any required behaviour.
With a user-defined synapse the extra synapse parameters are replaced with a field holding a text file name. The text
file name can be a fully qualified file path and name such as "C:\Signal6\MySynapses\XSyn.txt" that completely
specifies the directory and file name or it can be a simple file name such as "XSyn.txt" in which case the directory
where the sampling configuration file is stored is used. If a partial path and file name such as
"MySynapses\XSyn.txt" is used then the path to the file is generated by starting with the sampling configuration
directory and appending the text from the model. If no file extension is provided then .txt is appended. The table
below illustrates this:

File name in model Configuration directory Model data read from

C:MySynapses\XSyn.txt C:\Signal6 C:\MySynapses\XSyn.txt

XSyn.txt C:\Signal6 C:\Signal6\XSyn.txt

MySynapses\XSyn.txt C:\Signal6 C:\Signal6\MySynapses\XSyn.txt

XSyn C:\Signal6 C:\Signal6\XSyn.txt

Synaptic conductivity profiles that vary with the sweep state are generated by using separate file names in the
model settings for each state. You can get Signal to automatically generate text file names that are derived from the
sampling state by including the text "%ST%" in the text file name, this will be converted by Signal to the current
sampling state as a two digit number (00 to 99) or three digits (100 to 256) as appropriate.

The Check File button will check that the file name specified is correct, that the file exists, and contains properly
formatted data. The Browse button allows you to browse for a text file to use. Note that the conductance file name
can vary with the sampling state in multiple states sampling along with the usual trigger settings.

Text file details
The file should hold a sequence of numbers specifying the synaptic conductivity, one per line, up to 4,096,000

values can be provided. The values are converted into actual conductances by multiplying by G
scale

, the actual

use of this value is up to the user but two straightforward possibilities are to use actual conductances in the file

and set G
scale

 to 1.0, or the values in the file could run from 0 to 1.0 and G
scale

 used to scale them to the actual

conductance.

Blank lines in the file are ignored and lines starting with an apostrophe (') character are treated as comment lines.

Sampling with clamp support

8-141

Leak model

The Leak model provides a range of simpler dynamic clamping behaviours where the simulated conductance does
not have a time-dependent aspect. A number of different types of leak are supported within this model, currently
Linear, GHK, Boltzmann and User-defined types are available.

Linear leak
A linear leak is a very simple form which represents current leakage through a cell membrane with constant
conductance, in other words a simple ohmic resistance relative to a reversal potential. The relevant equation is:

where V is the membrane potential, Er is the reversal potential and Gleak is the leak conductance. You will recognise

this as being Ohms law modified to take the reversal potential into account, as elsewhere the difference between Er

and V is calculated in such a way as to generate a leak current in the correct direction. If you want to use this model
to cancel-out an existing membrane leak you should set a negative Gleak value.

GHK leak
The Goldman-Hodgkin-Katz leak simulates the behaviour of a leak caused by diffusion of an ion through a
membrane via always-open ion channels with the diffusion driven by the differing ionic concentrations on either
side of the membrane and the voltage difference across it. This might be used to simulate an unvarying GABA

receptor conductance which is driven by the differential concentrations of Cl- ions. The equation used was
originally described by Goldman, Hodgkin and Katz:

where V is the membrane potential, Gghk is the slope conductance (dI/dV) at minimum membrane potential, cin and

cout are the ionic concentrations inside and outside the cell respectively, F is Faraday’s constant, Z is the valency

of the ion in question, R is the universal gas constant and T is the absolute temperature. This equation explodes
when V is equal to zero, but we can use a Taylor expansion to derive the limiting value as V tends to zero and get:

Boltzmann leak
This form of leak current resembles a linear leak but with an additional factor in the equation that represents a
voltage-dependent blockage of the leak. This might be used to simulate an unvarying NMDA receptor
conductance, with its voltage-dependent block by extracellular magnesium. The equation is:

Signal Version 6.06

8-142

where V is the membrane potential, Er is the reversal potential and Gleak is the maximum leak conductance, while

Vhalf is the potential at which 50% of the total leak conductance is available and Vsl controls the rate at which the

leak conductance is blocked, this corresponds the change in potential over which a certain amount of conductance
is blocked, so a smaller Vsl means that the blockage is applied more abruptly as the potential changes.

User-defined leak
A user defined leak uses a lookup table read from a text file on disk to define the leak behaviour. This allows you to
generate customised leak currents that follow any required behaviour, no reversal potential is defined so if this
behaviour is required it should be incorporated into the table values. With a user-defined leak the extra leak
parameters are replaced with a field holding a text file name, the text file defines how the leak current (note well:
current not conductance) varies with the membrane potential. There are many ways that such a text file could be
created; one of the easiest is to use a Signal script. The example GenLeak.sgs script that is installed with Signal is
provided as an example of how to do this.

The text file name can be a fully qualified file path and name such as "C:\Signal6\MyLeaks\XLeak.txt" that
completely specifies the directory and file name or it can be a simple file name such as "XLeak.txt" in which case
the directory where the sampling configuration file is stored is used. If a partial path and file name such as
"MyLeaks\XLeak.txt" is used then the path to the file is generated by starting with the sampling configuration
directory and appending the text from the model. If no file extension is provided then .txt is appended. The table
below illustrates this:

File name in model Configuration directory Model data read from

C:\MyLeaks\XLeak.txt C:\Signal6 C:\MyLeaks\XLeak.txt

XLeak.txt C:\Signal6 C:\Signal6\XLeak.txt

MyLeaks\XLeak.txt C:\Signal6 C:\Signal6\MyLeaks\XLeak.txt

XLeak C:\Signal6 C:\Signal6\XLeak.txt

Leak currents that vary with the sweep state are generated by using separate file names in the model settings for
each state. You can get Signal to automatically generate text file names that are derived from the sampling state by
including the text "%ST%" in the text file name, this will be converted by Signal to the current sampling state as a
two digit number (00 to 99) or three digits (100 to 256) as appropriate.

The table data format in the text file is a pair of numbers on each line separated by spaces or a single tab character.
Lines beginning with a single quote, " ' " are regarded as comments and will be ignored. The first number on the line
is a membrane potential in millivolts as measured by the leak model input channel, the second number is the leak
current in pA (the actual current injected will be the inverse of this to take account of the internal current injection
electrode). The actual leak current that is generated is scaled by the Iscale model parameter, allowing you to generate

leak table values that run from 0 to 1 and scale them to the required leak current using Iscale or alternatively put

absolute values in the table and set Iscale to unity. Negative leak currents are permitted and correspond to a leak

current injection that would act to cancel-out existing leaks. The data in the text file should be sorted in order of
membrane potential values with the lowest (most negative) value first and the highest (most positive) value last.

Table usage and requirements
When the text file data is used Signal reads all of the table values from the text file and converts them to a second
lookup table which is 257 points long and exactly covers the ADC range. This conversion is done using cubic
splining which will generally produce a very accurate result, but it does impose requirements upon the text file data.
Firstly, the range of membrane potentials for which leak values are given should, in addition to covering the
expected range of membrane potentials, exceed by a few points (5 at each end is ample) the entire range of
potentials that could possibly be sampled from the input channel given the ADC port calibrations in use. This is
necessary in order for the cubic splining to produce accurate results close to the table extremes. If the table values
provided do not cover the entire ADC range then the generated table will be truncated at the first or last text file
value as appropriate and a warning will be generated.

Secondly, the membrane potential values should be sufficiently close together to accurately represent the leak
behaviour. 100 values is probably the bare minimum that would be satisfactory and 250 to 500 is recommended.
Evenly spaced potential values will probably be the easiest to produce but this is not a requirement - if your model
displays quickly-changing behaviour at some potentials then you should design your text file to have more closely-
spaced values at these points while fewer points in areas with essentially linear behaviour will not cause
inaccuracy.

Sampling with clamp support

8-143

Leak configuration
Adding or editing a Leak model brings up a dialog allowing the parameters
of the model to be defined.

The Model Name field sets a convenient name for the model as usual. The
Input Channel is the waveform channel number as displayed in the file
view in Signal, as usual it must have units of mV in order to be recognised
as a valid input of the membrane potential. The Control DAC is the DAC
used to inject the current and must be calibrated in units of either pA or nA
and have zero calibration offset – these values are set in the DAC scaling
items in the Outputs page in the sampling configuration.

The leak conductance in nanosiemens for all types of leak is set by the
Gleak field – this changes to the minimum slope conductance Gghk for the

GHK form. The Leak Type selector just below selects between the various types of leak, the remaining parameters
such as the reversal potential Er are shown or hidden depending upon the type of leak selected and are described

with the individual types of leak, the final parameter is the model enable flag controlled by the Disable model
check box.

The settings for a user-defined leak replaces the parameter controls used for the other leak models, with extra fields
and controls to define and check the leak table. The File name field sets the name of the text file holding the table
data, the Browse button allows you to browse the disk to select a file while the Check File button checks the
selected file for satisfactory contents.

Noise model

The Noise model provides a mechanism for generating simulated noisy conductances, which are increasingly
recognised as having an important effect on neuronal behaviour. Currently a single type of noise generation
mechanism is available; this uses an Ornstein-Uhlenbeck process to model noisy behaviour. Ornstein-Uhlenbeck
noise is available in a standard form and three scaled forms that use data from a user-defined lookup table, GHK
behaviour and Boltzmann behaviour to scale the noise according to the membrane potential at any given time.

Ornstein-Uhlenbeck noise
This model generates noise using an Ornstein-Uhlenbeck process, also known as the mean-reverting process,
which is a stochastic process Xt given by the following stochastic differential equation:

dGt = 1/τ((G
base

 - Gt)dt) + σN

where Gt is the noisy conductance at time t, τ is a time constant controlling the decay of the noise back to a

baseline conductance value set by Gbase, σ scales the standard deviation of the noise and N is a random value
obeying Gaussian statistics with a mean of zero and standard deviation of 1.

Noise configuration
Adding or editing a Noise model brings up a dialog allowing the parameters of the model to be defined.

Signal Version 6.06

8-144

The Model Name field sets a convenient name for the model as usual.
The Input Channel is the waveform channel number as displayed in the
file view in Signal, as elsewhere it must have units of mV in order to be
recognised as a valid input of the membrane potential. The Control DAC
is the DAC used to inject the current and must be calibrated in units of
either pA or nA and have zero calibration offset – these values are set in
the DAC scaling items in the Outputs page in the sampling configuration.

The Noise Type selector chooses between the various types of noise,
currently the selections available are Ornstein-Uhlenbeck and Scaled
O-U. The Rectify model conductivity check box, if set, ensures that the
overall conductance - the base conductance plus noise values - never
becomes negative by replacing all negative values with zero, only in rare
circumstances would you want to allow negative conductances. The Gbase

parameter sets the base conductance for the noise - if this value is non-
zero it behaves in exactly the same way as a linear leak conductance
added to the noise. The Er parameter sets the reversal potential both for the Gbase component and the generated

noise. The SD parameter is used to calculate the σ value used to scale the random values (σ is calculated as

SD*sqrt((interval*2)/τ)) and sets the standard deviation of the noisy conductance in nS and τ is the
decay time constant for the generated noise in milliseconds, the final parameter is the model enable flag controlled
by the Disable model check box.

Scaled Ornstein-Uhlenbeck noise
The standard form of the Ornstein-Uhlenbeck noise model generates current in a linear, ohmic, fashion based upon
the current Gt value plus Gbase, the model reversal potential and the membrane potential at the current time. This is

satisfactory for many purposes but may behave rather differently from some sources of biological noise. Therefore
three scaled forms of the model are available: GHK, Boltzmann and User.

GHK scaling
This form of the noise model generates noise using the same Ornstein-
Uhlenbeck process as the standard O-U model but the noise level is
scaled using the GHK equation so that it behaves like current generated
by an ion-specific channel driven by differing ionic concentrations inside
and outside the membrane. See the documentation of the leak model for
complete details of the GHK equations, here the Gghk value is replaced by

the output of the noise generator and the Gbase and Er parameters are not

used - there is also no reversal potential as this is implicit in the effect of
the differing ionic concentrations.

Boltzmann scaling
This form of the noise model generates noise using the same Ornstein-
Uhlenbeck process as the standard O-U model but the noise level is

scaled using the Boltzmann equation so that it shows voltage-dependent blocking of the ion channel. See the
documentation of the leak model for complete details of the Boltzmann equation, here the Gleak value is replaced by

the output of the noise generator. The Gbase and reversal potential parameters are used, Gbase is added to the noisy

output after the Boltzmann scaling. Finally the output is converted to current using the membrane and reversal
potentials.

Sampling with clamp support

8-145

User-defined scaling
This form of the noise model generates noise using the same Ornstein-
Uhlenbeck process as the standard O-U model but the noise level is
scaled by data from a lookup table indexed-into by the membrane
potential. This allows the amplitude of the noisy conductance to vary in
an arbitrary manner controlled by the membrane potential, for example you
could use this mechanism to generate a noisy non-linear leak. The lookup
table data is read from a text file stored on disk, there are many ways that
such a text file could be created; one of the easiest is to use a Signal
script. The example GenLeak.sgs script that is installed with Signal is
provided as an example of how to do this, though note that in this model
the table data is a conductance scaler rather than an actual output current.

The settings for scaled Ornstein-Uhlenbeck noise are mostly the same as
for the standard O-U noise, with extra fields and controls to define and
check the scaling table. The File name field sets the name of the text file
holding the lookup table data, the Browse button allows you to browse the disk to select a file while the Check
File button checks the selected file for satisfactory contents.

The text file name can be a fully qualified file path and name such as "C:\Signal6\MyNoise\XNoise.txt" that
completely specifies the directory and file name or it can be a simple file name such as "XNoise.txt" in which case
the directory where the sampling configuration file is stored is used. If a partial path and file name such as
"MyNoise\XNoise.txt" is used then the path to the file is generated by starting with the sampling configuration
directory and appending the text from the model. If no file extension is provided then .txt is appended. The table
below illustrates this:

File name in model Configuration directory Model data read from

C:\Signal6\MyNoise\XNoise.txt C:\Signal6 C:\Signal6\MyNoise\XNoise.txt

XNoise.txt C:\Signal6 C:\Signal6\XNoise.txt

MyNoise\XNoise.txt C:\Signal6 C:\Signal6\MyNoise\XNoise.txt

XNoise C:\Signal6 C:\Signal6\XNoise.txt

Noise that varies with the sweep state can be generated using different SD values or by using separate file names
in the model settings for each state. You can get Signal to automatically generate text file names that are derived
from the sampling state by including the text "%ST%" in the text file name, this will be converted by Signal to the
current sampling state as a two digit number (00 to 99) or three digits (100 to 256) as appropriate.

The table data format in the text file is a pair of numbers on each line separated by spaces or a single tab character.
Lines beginning with a single quote, " ' " are regarded as comments and will be ignored. The first number on the line
is a membrane potential in millivolts as measured by the noise model input channel, the second number is a scaling
factor that will be used scale the noise. The noisy conductance that is generated using the standard parameters is
multiplied by the relevant lookup table value, then the Gbase model parameter is added to get the final overall

conductance. The data in the text file should be sorted in order of membrane potential values with the lowest (most
negative) value first and the highest (most positive) value last.

Table usage and requirements
When the text file data is used Signal reads all of the table values from the text file and converts them to a second
lookup table which is 257 points long and exactly covers the input ADC range. This conversion is done using cubic
splining which will generally produce a very accurate result, but it does impose requirements upon the text file data.
Firstly, the range of membrane potentials for which noise scaling values are given should, in addition to covering
the expected range of membrane potentials, exceed by a few points (5 at each end is ample) the entire range of
potentials that could possibly be sampled from the input channel given the ADC port calibrations in use. This is
necessary in order for the cubic splining to produce accurate results close to the table extremes. If the table values
provided do not cover the entire ADC range then the generated table will be truncated at the first or last text file
value as appropriate and a warning will be generated.

Secondly, the membrane potential values should be sufficiently close together to accurately represent the noise
behaviour required. 100 values is probably the bare minimum that would be satisfactory and 250 to 500 is
recommended. Evenly spaced potential values will probably be the easiest to produce but this is not a requirement -
if your model displays quickly-changing behaviour at some potentials then you should design your text file to have

Signal Version 6.06

8-146

more closely-spaced values at these points while fewer points in areas with essentially linear behaviour will not
cause inaccuracy.

Dynamic clamp and multiple states

When using multiple states sampling, the model parameters are extended by the number of states in use to give a
separate individually configurable set of parameters for each state. If the number of states in use is increased then
the parameters for the highest pre-existing state will be copied to any new states created. Signal automatically
switches between these parameter sets whenever the state changes during sampling, so you can quickly and easily
observe the effect of different model parameters or, as models can be enabled and disabled independently in the
various states, different models.

If multiple states are enabled within the Signal sampling configuration, two
extra items appear in the model dialogs. The first is a drop-down selector
where the state whose parameters are to be viewed and edited is chosen.
Each state has its own set of model parameters and enable switch and
these items can be edited separately. The Model name, Input channel and
Control DAC numbers, the rectification option for the electrical synapse
model and the Leak type item for leak models all behave differently as
these values are global to the model and can only be edited when the basic
state 0 is selected.

The other item provided for multiple states
operations is a button labelled Copy to…
which, when pressed, brings up a dialog in
which you can select other states to which

you wish to copy the currently selected state’s parameters. There is a list of check
boxes, one per possible destination state, which you can set to enable copying of
data to the corresponding state. The All button sets all the check boxes, while the
None button clears them all.

Example leak models

Setting up dynamic clamping requires you to get all of the ADC and DAC calibrations correct as well as to set up
the models. Many of the models are quite complex in their operation so it can be very hard to be sure you have got
things right. To make things easier, we will start with examining the behaviour of the simpler leak models first, as
with these models it is easier to understand what the model is doing and we can concentrate more on general
understanding and getting the ADC and DAC calibrations correct.

All of these example models will assume a patch amplifier connected to a model cell with an internal 500 MOhm
internal resistance. We shall assume that our amplifier (in current clamp mode) has an external command sensitivity
of 2 nA/V and that the output gain settings give a scaled membrane potential sensitivity of 10 mV/mV. We shall
also assume that the Power1401 analogue range is set to the standard -5 to +5 volts - this can be changed to -10 to
+10 volts using the Try1401 test and setup utility in which case you would need to adjust the calibration
calculations.

ADC and DAC setup
The first thing we have to do is to make sure that we are sampling the ADC inputs that we need to obtain the
membrane potential and current injection signals. The list of ports (ADC inputs) to be sampled is set at the bottom
of the General page of the sampling configuration, data from the first port in the list appears in channel 1 of the
sampled data file, the second port generates data for channel 2 and so forth. It does not matter which ports you
use, you just have to make sure that the relevant signals from your clamp amplifier are connected to the correct
BNC inputs on the front of the 1401 and that the calibration information that you enter is for the matching ports.
You should also choose a DAC output that you will use to control the current and connect this to the amplifier
external command input. If your amplifier is able to provide an additional membrane current output in addition to the
main membrane potential output that should also be sampled, otherwise the DAC output controlling the current
should be connected to both the amplifier external command input and the ADC input of your choice. The amplifier
main or membrane potential output should be connected to the ADC input you will use for sampling membrane
potential.

Sampling with clamp support

8-147

The sampling rate for all of the ADC inputs is also set in the General page of the sampling configuration dialog, this
should be set fast enough to give a rapidly updated dynamic clamp output while not overloading the 1401. A rate
of 20 to 50 KHz will do nicely, if you encounter instability with the Hodgkin-Huxley models you may find that still
higher sampling rates will help with this. You might also want to adjust the length of the sampled sweep to suit
your requirements.

Then we must ensure that the ADC input ports are correctly calibrated, with units set to mV for the membrane
potential signal and nA or pA for the current channel, and that the scale factors match the amplifier settings. Ports
calibration is done in the Ports page of the sampling configuration, you get a dialog allowing you to change the
settings for a port by double-clicking on the line holding the relevant port’s information. For the membrane
potential the port units should be set to mV and the Zero value should be 0 (because the amplifier generates a zero
output for zero membrane potential). With an amplifier output sensitivity of 10 mV/mV and a 5 volt full scale ADC
input, the full-scale calibration value should be 500 mV.

Similarly, the port used to sample the external command signal from the DAC should use units of nA (or pA if you
prefer), again the zero value should be 0 and the Full value should be 10 nA (or 10000 pA).

Finally, the DAC calibration for the external command DAC controlling the current should to be set up, this is done
in the Outputs page of the sampling configuration. We shall calibrate the DAC in nA (again you could use pA). So
we set the units field for the DAC to nA and the Zero value to 0 (because a zero external command voltages causes
zero current to be injected). The command sensitivity is 2 nA/V, with a 5 volt full-scale output this gives us a full
scale value of 10 nA (or 10000 pA). This matches the calibration of the ADC input used to sample the current
control signal, ensuring that they are correctly measured.

Linear leak model
With the ADC inputs and the DAC output defined and calibrated we can
now set up a leak model, we shall start with the simple linear leak. That is
done relatively straightforwardly. First open the main dynamic clamp setup
dialog by pressing the Dynamic Clamp button in the Clamp page of the
sampling configuration. If the Clamp page is not visible, you should
enable clamping features by using the Edit menu Preferences dialog.

Once you have the main dynamic clamp setup dialog open, use the Add
Leak button to add a leak model and open the leak settings dialog to
configure it. You must specify the correct input channel (the channel used
to record membrane potential) and control DAC (the one connected to the
amplifier external command input), select the linear leak form of the model
and set the conductance to 2 nS and the reversal potential to 0 mV. Finally
set the Disable model check box as we want to start off sampling without the leak. Press OK to save the leak model
once you are done.

To see the leak in action we will need a varying input so add a current stimulation pulse to the sampling
configuration by enabling the current control DAC for pulses output and adding a 100 millisecond square pulse,
amplitude 0.2 nA, using the pulses configuration dialog.

Linear leak model operation
We start off sampling with the model disabled. During the sampling sweep the current injection will be controlled
purely by the DAC output set in the pulses configuration dialog so we will see:

1. At the start of the sweep, the DAC output will be zero, so the current through the model cell will be zero, and
the membrane potential would also be zero.

2. When the DAC output pulse occurs, the DAC output will be changed to generate a 0.2 nA current through the
model cell (at the specified command sensitivity this will be a 0.1 volt output). This current will flow through the
500 MOhm model cell resistance, producing a 100 mV increase in the membrane potential (by Ohms law).
Because of the internal capacitance in the model cell this increase in potential will be gradual, but the increase
will flatten out at this level.

3. Now show the Dynamic clamp setup dialog by using the Sample menu Dynamic clamp models command
or pressing the Models button in the clamp control bar. Double-click on the linear leak model to show the model
configuration dialog, enable the leak model by clearing the Disable model check box and press the Apply
button. This generates a 2 nS leak across the membrane, simulating to a 500 MOhm resistance in parallel with
the model cell. This reduces the effective membrane resistance to 250 MOhm, so the change in membrane
potential will be halved to 50 mV.

Signal Version 6.06

8-148

4. To finish our experiments with the linear leak model, change the model reversal potential (Er) to -70 mV and

press Apply again. The leak will change its behaviour to 'pull' the membrane potential towards -70 mV, as the
leak is in parallel with the cell resistance the effect of this is divided in half to give a baseline level of -35 mV,
rising to 15 mV during the stimulation pulse.

GHK leak model
We will finish off our investigations of the leak model by switching to a GHK leak that generates a simulation of
permanently-open potassium ion channels. Finish off sampling and go to the leak model configuration dialog. Set
Leak type to GHK, Gghk to 4 nS, Cin to 200 mM, Cout to 5 mM, Valency to +1 and Temp to 37 degrees. You do not

need to change any of the ADC or DAC calibrations as they are set for the amplifier settings and the connections
used.

With the model enabled you will see that the baseline membrane potential has been shifted (driven by simulated ion
diffusion) strongly negative to about -80 mV. The effect of the stimulation pulse is also reduced to about 15 mV -
the stimulation current is shunted across the membrane by the effect of the leak.

Example Hodgkin-Huxley model

A Hodgkin-Huxley model is more complex than a linear leak because it simulates ion channels whose behaviour is
voltage dependent with complex dynamics. The use and calibration of the ADC inputs and control DAC are the
same as for the example leak models and we can use the same calibration values as long as the amplifier settings
remain unchanged. This example will aim to simulate action potentials (reasonably accurately) by starting with the
example GHK model in the previous example and adding suitable voltage-dependent sodium channels.

Sampling with clamp support

8-149

Model configuration
Starting with the sampling configuration used for
the GHK leak example, open the main dynamic
clamp setup dialog, select and and use the Add
HH (AB) button to create a new Hodgkin-Huxley
model based on multiple time constants and open
the dialog to edit it. The model has a large number
of parameters which have to be set correctly:

Gmax 17000
nS

Er 84 mV

Activ
ation

 Inac
tivat
ion

Inclu
de

ON Inclu
de

ON

p 3 q 1

Fa(x) x/
(exp(x)
-1)

Fa(x
)

exp(x)

k
a

0.01

ms -1

k
a

0.07

ms -1

V
a

40 mV V
a

65 mV

Sa 10 mV Sa 20 mV

Fb(x) exp(x) Fb(x
)

1/
(1+exp
(x))

kb 4 ms -1 kb 1 ms -1

Vb 60 mV Vb 35 mV

Sb 12 mV Sb 10 mV

When you run this sampling configuration with both models enabled you will still see the potassium leak holding
the resting potential down, but you should see a much more spectacular response to the 0.2 nA stimulation pulse:

Signal Version 6.06

8-150

If you experiment with changing the size of the stimulation between 0.1 and 1 nA you will see a wide range of
behaviours.

Sampling with dynamic clamp

When data is sampled using a sampling configuration that includes dynamic clamping, Signal provides a dynamic
clamping toolbar that you can use to control models and watch for slow updates.

This toolbar is part of the basic clamping control toolbar and is attached to the
bottom or right of the standard clamp set controls (if any). Like all of the sampling
control bars within Signal, it can be positioned docked at any edge of the application
window or floating anywhere on the screen. The dynamic clamping toolbar provides
four controls; a Models... button which provides the main dynamic clamping setup dialog, a Disable all check box
which can be used to enable or disable all models, a DB (deblock) button which, when pressed, temporarily
disables all dynamic clamping models and a text area where information about any slow updates in the last sampling
sweep will be displayed. Note that the Disable all check box acts to enable or disable all the models in all the
states, it is shown unchecked if any models are enabled in any of the sampling states. The DB button is often more
useful for recovery from instability than disabling all models as it automatically clears when the mouse button is
released.

The Sample menu also has a Dynamic Clamp models item which is enabled if sampling with dynamic clamping is
in progress. When this item or the Models... button is used the main dynamic clamping setup dialog is provided in
its online form. When used online this dialog and the individual model dialogs look and behave differently from
when they are used to define a sampling configuration as follows:

· The Add button in the main setup dialog is disabled.

· The Delete button in the main setup dialog is replaced by an Enable/Disable button which shows and changes
the enabled state of the currently selected model. If it is used to change the state of a model it enables or disables
the model in all states, the button shows Disable if any of the states for the model are enabled, otherwise it
shows Enable.

· When a dialog to view and edit model parameters is activated by double-clicking on a model or using the Edit
button, the main setup dialog remains active and can be used to open other model parameter dialogs, allowing
multiple model parameter dialogs to be simultaneously available.

· Both the main setup dialog and the individual model parameter dialogs run modelessly which means that you can
interact with the rest of Signal while the dialogs remain visible and in use.

· In the individual model dialogs the global model parameters such as the name, input channels and output DACs
cannot be changed – these are the values that can only be changed if state zero was selected when editing
offline.

· The Apply button in the individual model dialogs are now active. Pressing Apply will copy any changed
parameter information back into the sampling configuration and update the 1401 without quitting the dialog or
terminating sampling. Updating model parameters during sampling should not cause any problems beyond, in
infrequent special cases, momentary instability.

In addition to control of dynamic clamping online using the standard dialogs and the clamping control bar, the
Signal outputs sequencer also provides a DCON instruction that can be used to enable or disable dynamic clamping
models dynamically during a sweep as well as in between sweeps.

Update rates and slow updates
When running dynamic clamp models, every time a set of ADC samples has been taken & stored the 1401 then
iterates the dynamic clamp models to calculate new DAC values and update the DACs. Thus the update rate of the
dynamic clamp is the same as the ADC sampling rate and forced to run in step with the sampling. If the DACs have
not been updated by the time the next set of ADC samples has been taken Signal will detect a slow update. The
dynamic clamp section of the clamping toolbar shows information about slow updates in the last sweep taken; a
warning message will be generated at the end of sampling if any slow updates were detected.

Slow updates means that the dynamic clamp system is not completely keeping up with the sampling. They are not
necessarily a problem but may be associated with short glitches or other small errors in the DAC outputs and
therefore the warning message indicates that the DAC outputs cannot be wholly trusted. If your sampling
configuration suffers from slow updates the only reliable remedy is to reduce the ADC sampling rate, but you might
be able to get rid of them by setting the Maximise waveform rates check box in the Outputs page of the sampling

Sampling with clamp support

8-151

configuration dialog, this acts to give dynamic clamp updates a higher priority compared to standard outputs
generation.

If, however, by the time the DACs have been updated two complete sets of ADC samples has been taken then the
dynamic clamp updates have failed to keep up at all and Signal will terminate sampling with an error. This failure is
generally indicated by a -1,0 error from the 1401, though it can show up as other errors, but you will not encounter it
unless you are using sampling rates very much higher than the dynamic clamping can cope with.

In tests carried out at CED, four Hodgkin-Huxley models were seen to cope with ADC input rates of up to 60 kHz
before slow updates were reported. With 15 Hodgkin-Huxley models it was possible to sample eight ADC channels
at 30 kHz without seeing any slow updates while with only a single model a sample rate of 100 kHz can be attained.

Amplifier gains
Many of the dynamic clamp models, in particular the Hodgkin-Huxley, CPG synapse and noise models, are driven
by pre-calculated lookup tables held inside the 1401. These tables are used to convert a membrane potential value
into values used to execute the model. Because the table is a fixed size (currently 256) which spans the entire range
of a model input channel, the voltage step between table entries wholly depends upon the amplifier gain. Consider
a Hodgkin-Huxley model driven by an amplifier with the gain set to 50. This will give an ADC input range (assuming
a 1401 set to 10 volt range) of -200 to +200 millivolts. With a table size of 256 this gives a voltage step size of about
1.56 millivolts which will give an excellent representation of the model behaviour. However if the amplifier gain is
reduced to 2 the ADC input range becomes -5000 to +5000 millivolts and the table step size becomes much larger,
about 40 millivolts. You could hardly expect such a table to be able to represent model behaviour when the entire
voltage range of interest is covered by only 5 table entries! And indeed if you try this out with a model cell you will
see the model failing when the gain gets below about 10. The upshot of all this is that you should try to use the
highest amplifier gain possible for the membrane potential signals that drive dynamic clamp models, without of
course setting the gain so high that the available signal range is too low for the signals generated. A range of about
-200 to +200 millivolts would seem optimal for most purposes.

Model stability issues
Most of the dynamic clamp models are inherently stable and so long as the amplifier setup matches the ADC and
DAC scalings they should always behave as you expect. However the Hodgkin-Huxley equations are highly non-
linear and can easily exhibit instability which can make them very hard to use. I cannot give you a simple fix for this,
but I can make some suggestions. Firstly you should make sure that the current clamp amplifier is correctly
configured - this goes well beyond setting the correct mode and gain to include capacitance and series resistance
compensation and, very importantly, bridge balance set up. Secondly, we find that any instability issues are at least
reduced by higher sampling rates so use the fastest ADC sampling rate that you can and enable burst mode
sampling. You can also reduce the effective calculation delay slightly by ensuring that the membrane potential
channels are sampled at the end of the list of ADC ports, which may help in some circumstances. Finally, we have
found that the models become more unstable if the Gmax values are higher so, if your experimental technique allows
this, you could try reducing these.

Signal Version 6.06

9-152

File menu

The File menu is used for operations that are mainly associated with files (opening, closing and creating) and with
printing.

New

This command creates a new Signal file. This can be a sampling document, an XY file, or a new text-based file. You
can activate this command with the Ctrl+N shortcut key or from the menu or toolbar.

The command opens the New File dialog in which you select the type of
new document to create. You can create five types of document: Signal data
documents, script documents, sequencer documents, text documents and
XY documents. Select the type of document, click OK and Signal will open a
new window holding an empty document of the specified type.

Data Document
This choice opens a sampling document window plus additional windows as set by the sampling configuration (see
Sampling data for details). Sampling documents are not initially stored in memory, like most new files, but are kept
on disk. Until they are saved after sampling these are temporary files, without any extension, stored in the directory
set by the Filing path in the Automation page of the sampling configuration or if that is blank, the new data
directory set in the Signal preferences. When they have been saved, the file name extension is .cfs and the files
hold CFS (CED Filing System) format files.

Script Document
This choice opens a script editor window in which a new script can be written, run and debugged. A script
document is a specialised form of text document. The file name extension is .sgs.

Sequencer Document
This choice opens a sequence editor window in which you can type, edit and compile an output sequence. The file
name extension is .pls.

Text Document
This choice opens a text window. Text documents can be used to take notes, build reports and to cut and paste text
between other windows and applications. The Log view is a specialised type of text document which is always
present. The file name extension is .txt.

XY Document
This choice opens an XY window. XY windows are used to draw user-defined graphs with a wide variety of line
and point styles. These views can be created interactively when generating a trend plot or measurements, their
other major use is from the script language. The file name extension is .sxy.

Other file types used by Signal

In addition to the standard document types, Signal also uses a number of other types of file:

Resource files
Signal creates resource files with the extension .sgrx, older versions of Signal used files with a .sgr extension.
Each resource file is associated with a data file of the same name but with the extension .cfs. The resource files
hold configuration information about the data file display so that Signal can restore the display on loading. These
files are not essential to Signal and if you delete them the associated data file is not damaged in any way, but you
will lose your display settings, experimenter's notebook data and any virtual and memory channels that you have
added to the data file.

File menu

9-153

Configuration files
Signal stores sampling configuration information in files with the extension .sgcx, older versions of Signal used
files with a .sgc extension. These store all of the information needed to carry out sampling: the sampling
parameters, the position of the sampling control panel and any other windows, the position and display
configuration of the data document window (including any duplicate windows) plus any online processing
required, the online processing parameters and the position and display configuration of the memory views
showing the results of online processing.

Application preferences
Signal stores some of its preferences in a file called cfsview.sgp. This file holds the position of the application
window on the screen, the colour palette and ‘use colour’ switch. The main preferences information from the
preferences dialog is now largely stored in the Windows registry. Signal initialises itself with data from this file
whenever it is started and saves the current state of the software into this file when it exits.

Filterbank files
These files hold descriptions of digital filters and have the extension .cfb. They are used by the Analysis menu
Digital filters command.

Open

This command opens a file into a Signal
document of any type. You can activate
this command with the Ctrl+O
shortcut key or from the menu or
toolbar. It shows the standard file open
dialog for you to select a file. You can
open five types of file with this
command: a Signal data file with the
standard extension .cfs, a text file with
the extension .txt, a sequencer file
with the extension .pls, a script file
with the extension .sgs or an XY data
file with the extension .sxy. The type
of the file is selected with the Files of
type field, if this is set to All files(*.*),
Signal will try to open the file selected
as a CFS file whatever its extension.

When you select a CFS data file, Signal also looks for a file of the same name, but with the file extension .sgrx (or
.sgr for older files). If this is found, the new window displays the file in the same state and screen position as it
was put away. Several windows may open if the file was closed with the Close All command. See the Close and
Close All commands for more details.

If a read-only CFS data file is opened, you will be warned that the file cannot be modified.

If a text file is opened, a simple text edit window is opened. This facility can be used as a notepad or as a repository
for data copied from other parts of Signal. If a script, sequencer or XY file is opened, a window of the appropriate
type is created for it.

Import data

Signal can translate data files from other formats into Signal data files. The File menu Import command leads to a
standard file open dialog in which you select the imported file format and the file to convert. You then set the file
name for the result; Signal will suggest the same name with the extension changed to .cfs. The details of the
conversion depend upon the imported file type.

Supported formats include the SON files used by CED programs such as Spike2 as well as data from many third
party vendors. Signal searches the import folder in the Signal installation folder for CED File Converter DLLs. If

Signal Version 6.06

9-154

you need to translate a file format that is not covered, please contact us and describe your requirements. The script
language command used to import files is FileConvert$().

Data import has two main phases:

1. Scanning the input files to detect the file contents, channel types and data and time ranges present.

2. Transfer of data into a Signal CFS data file

The scanning phase is entirely handled by the file converter DLL. This can take a considerable time, especially if
the data is held in many separate files. The transfer of data is a co-operative effort between Signal and the file
converter DLL.

Display during import

Data file import can take a considerable time, especially if the imported file is very large or the data is spread over
many files. Signal will open a resizeable progress dialog to give you information about how the import is proceeding
and to give you the option of cancelling the import. This dialog may be unresponsive with some importers,
particularly during the scanning phase. Modern importers will give you more feedback during scanning but in some
cases, you may not be able to cancel import until the data transfer phase has started.

The progress dialog closes when the file has been transferred; the text contents of the dialog are written to the Log
view when the file closes, which can be useful if there were problems during the import.

Importer Configuration Files
Some importers store configuration files in the import folder; these files have the extension .icf. The last used
configuration for importer XXX is saved in XXX_Last.icf. If a default format exists, it is saved in XXX_Def.icf. If
the _Def.icf file exists, it is used, otherwise the _Last.icf file is used. Most importers will survive without any
configuration information as the built-in default settings will do something useful. However, if you intend to import
a binary or text file with the FileConvert$() script command it is essential that you have created configuration files,
otherwise these importers will not know what to do with the data.

File types we import
We import data from a wide variety of file types and we attempt to preserve as much of the original data content
and accuracy as we can. If there is a file type that you would like imported that is not in the list, please contact us.
To import a new type we need accurate file format information. We would like to thank the companies that made
such information available to us for their help. Some companies do not release their file formats; in a few cases we
have managed to figure out enough to extract useful information. In cases where companies do not release the
information and we have not been able to figure it out, you can sometimes export data in other formats that we can
import; of course, every change of format will tend to reduce the quality and quantity of data that is imported.

If you find a problem in any importer, please contact us and explain the problem; in many cases the importers were
written with only a small number (sometimes 1) of examples of the source data. We will need a source data file that
fails to convert.

Source of the data File extensions cmd$ Notes

File menu

9-155

Alpha MED Sciences DAT, MODAT Conductor, Performer and Mobius data. Can import
files larger than 2 GB.

Alpha Omega Engineering MAP Old format event data supported. MPX supported.

Axon Instruments DAT, ABF Imports 16-bit integer and 32-bit float.

Binary data BIN, DAT, * Yes Can import 8/16/32/64 bit signed and unsigned
integers data in big and little-endian formats.

Bionic/Cyberkinetics NEV, RND, NS* Can import files larger than 2 GB.

Biopac ACQ Can read version 4 files and older. Imports 16-bit
integer and 32-bit float data.

CED CFS DAT, CFS

CED SON (Macintosh) SMR, SON

COLD_Datin * Pulsion Medical Systems

CONSAM SSD, DAT From Prof. D. Colquhuon. Supports version 1001,
1002.

DATAQ Instruments ACQ (Codas)

DataWave UFF, CUT, EWB Imports both Discovery and Workbench files.

DATAPAC PAR, PBR, PCR

Data Sciences International * You need a dongle to import this file format.
Contact CED for details. Files with 4 character
extensions supported. Can import all files up to
version 5.

Delsys Files EMG Version 4 supported.

European Data Format(+) EDF, BDF Imports 16 and 24-bit data.

Grass-Telefactor BIN (PolyView) We import versions from 2.0.

HLR Data Format HLR From software Platon and Pyton version 3.00 and
4.00.

Heka Data Format DAT

Intan *

Multi Channel System
(Mc_Rack)

MCD Updated to latest format, November 2009. We can
import 12 and 16-bit data.

MindSet (16/24) data Files BIN MindSet, MindMeld.

MindWare data files MW

Motion Lab Systems C3D

NeuroScan EEG, CNT Can read both 16 and 32-bit data.

NewBehaviour HEX (Neurologger) Reads both old and new (in 2012)
formats.

Signal Version 6.06

9-156

Neuralynx NEV, NCS, NTT, NSE,
NST

Plexon NEX, PLX, DDT Can read data generated by the Plexon version 1.07
library.

RC Electronics PRM, INX, DAT Imports 12 and 16-bit data.

Text files TXT, ASC The last used configuration is saved as
Ascii_Last.icf in the import folder. If the file
Ascii_Def.icf exists in this folder, the configuration
in this file is used, otherwise Ascii_Last.icf is used.
If the .icf files are not found, any old format .cim
files are used.

TMS International S00

Tucker-Davis Technologies TSQ You also need the .tev file to import the data.

WAV (Microsoft) WAV

WaveMetrics Igor Pro
(PC/Mac)

IGO, IBW, PXP Imports both PC and Mac files up to and including
version 5.

Binary importer

The last used configuration is saved as Bin_Last.icf in the import folder. If the file Bin_Def.icf exists in this folder,
the configuration in this file is used, otherwise BinLast.icf is used. If the .icf files are not found, old format .cim files
are used.

The binary importer supports the following names in the cmd$ string for the FileConvert$() command.

na
me

value

ConfConfiguration file name. If this string is not empty then the provided file name including its full path will be
used to load the configuration file. This keyword is always applied first, regardless of its position in the cmd$
string.

Bige
nd

Input file origin. Set to 0 if this is a little-endian file (which is almost always the case on modern systems) or
to 1 if this is a big-endian file. The default is 0. In a little-endian file, lower significance bytes are at lower file
offsets than higher significance bytes. If the 32-bit hexadecimal number 0x87654321 was stored at the start of a
binary file, the first 4 bytes would be 0x21, 0x43, 0x65, 0x87 in a little-endian file and as 0x87, 0x65, 0x43, 0x21 in
a big-endian file.

Type Input data type. Set to 0 for 8-bit signed integers, 1 for 8-bit unsigned integers, 2 for 16-bit signed integers, 3
for 16-bit unsigned integers, 4 for 32-bit signed integers, 5 for single-precision floating point numbers and 6
for double-precision floating point numbers. The default is 2.

RateFile sampling rate in Hz. If present it sets the overall file sampling rate. The default rate is 1000 Hz.

Chan
s

Sets the number of imported waveform channels. The default is 3.

Name
s

Channel name. You provide a list of channel names for each imported channel separated by commas, for
example: Names=Resp,HR,BP. The default name is Chan(n) where n is the channel number.

Unit
s

Channel units. You provide a list of units for each imported channel separated by commas, for example
Units=bpm,bpm,mmHg. The default units are V.

Resources are used in the following order:

1. A default state is set.

2. Bin_Def.icfx is used, if it exists. If not found, BinDef.icf is used, if it exists.

File menu

9-157

3. If no Bin_Def files are found, Bin_Last.icfx is loaded, and failing that, Bin_Last.icf

4. If the Conf keyword is used, and the nominated file exists, it is loaded and overrides the current setup.

5. Any other keywords are then applied.

An example
var ret$;
var src$, dest$, flag%, err%, scom$;
src$:= ""; 'Blank name so user is prompted for the source file
dest$:= ""; 'Blank name so user is prompted for the destination file
flag% := 0;
scom$:="Conf=c:/s/b.icfx;Bigend=0;Type=3;Rate=500;Chans=1;Names=HR,BP;Units=bpm,mmHg";
ret$:= FileConvert$(src$, dest$, flag%, err%, scom$);

Import DLL versions

Signal version 6 supports two different import DLL versions: version 4 and version 5. Version 4 DLLs are the same
as those used by Signal version 5 and are limited to importing 32-bit time ranges and the output file size is limited to
2 GByte. The version 5 DLLs are newly designed for Signal version 6 and support 64-bit times (only relevant to
Spike2, really) and file sizes limited only by your disk sizes and patience (though some importers may be limited by
available system memory). The version 5 import DLLs can also provide much better feedback into the progress
dialog during the scanning phase (though this is up to the DLL author).

When you select a file to import, you must first select a file type. If the file convert DLL is a version 4 converter, we
add [4] to the end of the file importer. For example, if you had a version 4 importer for old Spike2 data files the file
type list would display:

Spike2 files (*.SMR)[4]
To indicate that this was an old style importer. We intend to convert most importers to the new format, but this will
take us some time to accomplish.

Writing an import DLL
If a data format is generally available and sufficient users want to import it, we are usually prepared to write an
import DLL to support the format. However, you may have an exotic format of your own than no-one else uses, or
you may have a private format that you do not wish to reveal to third parties. In these cases, you may wish to write
your own import DLL. To do so you will need to be able to write code in C or C++ in the Windows environment.
We have documentation available on the DLL interface. Contact CED for more information.

Text importer

The last used configuration is saved as Ascii_Last.icf in the import folder. If the file Ascii_Def.icf exists in this
folder, the configuration in this file is used, otherwise Ascii_Last.icf is used. If the .icf files are not found, any old
format .cim files are used.

At Signal 5.08, the Time column units were corrected and we improved channel type and sample rate management.

Import Op Cl

Signal can import idealised traces from the CED Patch software for analysis, these are files of the type *.res or
*.r?? generated by the Pulsed Analysis or Continuous Analysis programs. You can also import idealised traces
from David Colquhoun’s SCAN analysis software, these are files of type *.scn. To use this feature, first open the
relevant cf s data file, then import the idealised trace data – the trace data associated with the current data file will
be used. Once imported the idealised trace will be stored in the resource file associated with the data file (i.e. the
*.sgrx file) and can be processed using the Analysis menu (see Single channel analysis for more details).

Signal Version 6.06

9-158

Global Resources

If the current view is not a data or XY view, this command appears in the menu, otherwise it appears in the
Resource Files popup menu.

Normally, each Signal data and XY file has an associated resource
file with the same name and .sgrx extension (in older versions of
Signal the .sgr file extension was used). These per-file resources
remember the screen layout, cursor positions, active cursor
parameters and other settings. They allow each file to open with
exactly the same screen appearance it had when it closed at the
cost of an extra file on disk.

However, per-file resources do not let you use the same display
and cursor settings for a sequence of files. If you enable global
resource files, you can use a single resource file (or one resource
per folder) to control the screen appearance of multiple data files.
This is particularly powerful when you review data stored on a
read-only device such as a DVD drive.

Unlike the per-file resource files, which are updated automatically whenever you close a resource file, global
resource files are never updated automatically. Use Update Global Resource to update the current global
resource and Save Resources As to create a new resource file with the current settings for the current view. The
equivalent script function is FileGlobalResource().

The use of global resources is managed from the Global file resources dialog, which has these fields:

Use global resource files
Check this box to use global resources. If this is unchecked, no global resource files are used and each data file has
its own resource file. Please remember that using this dialog makes no difference to the resources used by any open
time view. It changes the resource file that is used when a saved time view opens. If you check this box and no
global resource file is found, Signal behaves as if the box was not checked.

Name of file
This field sets the name of the resource file. The name should not include a path or the .sgrx file extension. These
are added automatically, as required. If this field is blank, no resource file is used.

File location
This field sets where to search for the global resource file. You have three choices: System folder list only, Data file
folder then System list, Data file folder only. The System folder list is searched in sequence, stopping at the first
folder holding the resource file - at each location Signal looks first for a new file with the .sgrx file name extension
and then for an old file with the .sgr extension - so an old file earlier in the list 'beats' a new file at a later location.
The list used starts with the Signal6 folder inside My Documents, next the Signal6Shared folder inside the
documents folder for all users and finally the Signal installation folder (wherever the cfsview.exe application file
is located). The data file folder is the folder from which the data file is opened.

Only use global resource file if
If you do not check any boxes in this area of the dialog, global resource files are applied to all data files. This dialog
area allows you to restrict the files that use the global resource file in place of the per-file resources.

Data file is within the path shown below
If you set a path and check this box, only files that lie within this path are considered for global resources. For
example, if you only wanted to apply global resources to files read from your DVD drive, you might set this to E:\
(if E:\ is the path to your DVD).

Data file does not have its own resource file
Check this box if you would prefer to use the per-file resources if a resource file with the correct name and in the
same folder as the data file exists.

File menu

9-159

Resource Files

This menu item replaces Global Resources when the current view is a data or XY view. It opens a pop-up menu
from which you can select Global Resources, Apply Resource File, Save Resources As and Update Global
Resource.

Apply Resource File
This command applies a user-chosen resource file to the current data or XY view. You can use this to apply a
complex window arrangement or active cursor measurement to multiple files. The script language equivalent is
FileApplyResource(). You can also use the Global Resources command to automatically apply a specific
resource file.

Save Resources As
This command saves the resources associated with the current data or XY view to a resource file, it opens a file
save dialog for you to set the file name. The script language equivalent is FileSaveResource().

Update Global Resource
This command is enabled for the current data or XY view if global resources are enabled and a global resource file
name is set. It updates the global resource file with the current view settings. If the global resource file does not
exist, one is created in the folder set by the Global Resources dialog (or in the application folder if both the data file
folder and the application folder are allowed).

Close

This command is used to close the active window. It is equivalent to double-clicking the control menu icon at the
top left of the window (in windows that have one) or pressing the right-hand top corner X button. If you use this
command on a new memory or XY view, a newly sampled data document or a text-based view with text that has not
been saved, a dialog will ask if you wish to save the text before closing the window. This behaviour can be disabled
for memory and XY views using an option in the Preferences dialog.

Close All

This command closes the current window and all windows associated with the file. In addition to saving the state
of the data file in a .sgrx resource file, Signal offers to save the state and contents of any memory view windows
that belong to the data file. Next time you open the data file, all the data view windows and their contents will be
restored. If you open saved memory view data then that will be opened as a file view and restored to its previous
state as well.

Save, Save As

Save will save the current document under its current name, unless it is unnamed, in which case you are prompted
for a name before it is saved. Save As is used to save the document with a different name, leaving the original file
intact. The Save command is not available for a data document unless the data has been changed since the last
save. If you save a data document using the same name as an existing data file the existing data file will be
overwritten, but it will be moved to the recycle bin to help you avoid losing important data by accident.

Data documents
Data files are kept on disk, not in memory, as they can be very large. Changes made to a data file are permanent as
they are made on disk. When you save newly sampled data, you are giving the data file on disk a name (replacing a
temporary name). If you save it to a different drive from that set in the Preferences, Signal copies the file to the
new drive and deletes the original. If the file is large this operation can take a noticeable time.

When you are working with a file view, the current frame for the view is held in memory and will be discarded when
the view switches to a different frame. Any changes made to the frame data while it is held in memory must be
saved before the new frame is loaded or the changes will be lost. You can write the changed data back into the file
using the Save command. The Preferences dialog allows you to select what happens if the frame is changed while

Signal Version 6.06

9-160

data is unsaved; the default action is to query the user. Changes made to non-channel frame data (such as the
frame state or flags) are always saved. Memory views hold all frames in memory and do not save changes until the
entire document is saved.

Other documents
Text, script and XY documents are held in memory. Changes made to them are not permanent until the document is
saved to disk.

Export As

This menu item, available only when the current window is a data or XY view, is used to save some or all of the
view data to a new file in one of a number of formats. The dialog prompts you to choose a file name for the output,
and lets you select the output format.
You can choose between: Data file
(*.cfs) to export as a new Signal data
file, Text file (*.txt), Metafile (*.wmf,
*.emf) for a scaleable image and Bitmap
file (*.bmp), JPEG file (*.jpg), PNG
file (*.png) or TIFF file (*.tif) for a copy
of the screen rectangle containing the
window. More file types will be listed if
you have installed external exporters.
Select one of the formats and set a file
name, then use the Save button.

Data file
This option, available for data views
only, opens a dialog in which you can
create a new data file from a time range
and selected channels and frames of the
current file. The CFS file format is
currently only able to hold waveform and marker data, so any idealised trace and real marker channels selected will
not be exported.

Use the dialog to select the channels, time range within the frames, and the
frames to be exported. You can choose all the channels or all visible channels,
individual channels, selected channels or enter a list of channel numbers
directly. You can export all frames, the current frame, all tagged or un-tagged
frames, frames with a given state, or you can enter a list of frames. The check
box Force exported data X range to start at zero shifts the times of data
points in the new file so that the time for the first point in each frame is forced
to be zero.

Once you have selected the channels, frames and a time range, click the
Export button to write the data to the new data file or Cancel to quit.

XY file
This option, available for XY views only, saves all the XY view data to a new file.

Text file
This is the same as the Edit menu Copy As Text command, but with the output sent to a text file and not the
clipboard. See the Copy As Text command for details of the dialogs and text format that will be used.

Metafile
This copies the view window as a Windows Metafile or enhanced Metafile, use the wmf file extension for a normal
metafile and emf for an enhanced metafile. This file format can be scaled without losing any resolution and is
usually the preferred format for moving Signal images to drawing programs or into reports. Note however that some

File menu

9-161

drawing programs can have problems using metafiles, particularly if you are using XY views with channels that are
drawn filled.

Bitmap file, JPEG image, Portable Network Graphic file, Tagged Image Format file
These options copy the screen area containing the window to an image file; the result is a copy at the screen
resolution. If you need to scale the image, or want to edit it, a Metafile copy is often better. The Portable Network
Graphic format will usually be the smallest on disk unless the screen contains a real-word image or a sonogram,
when JPEG may be smaller (but at the cost of artefacts around axis lines and text). Bitmap images will usually be the
largest.

External exporters
These use the same dialog as for exporting to a data file to select the channels, frames and time range. There may be
additional dialogs depending on the target format. See below for additional information on the external exporters.
The only external exporter currently defined is for MatLab files.

MATLAB external exporter

You can export data and XY view data to MATLAB by selecting MATLAB data (*.mat) as the Save as type from
the File menu Export As dialog. To enable this functionality, you must select the MATLAB file export option
when installing Signal. You do not need a copy of MATLAB to be installed on your computer. You can also carry
out and control export to MATLAB format from a script.

Once you have selected MATLAB data, set a file name and click on Save in the Export As dialog. Signal will then
proceed to dialogs where you choose the data to export and the format to export it in. The details of the following
dialogs depends on the source view type.

If you have a problem getting the export to work, check that the file MatExp.sxl is present in the
Signal6\Export folder. A whole bunch of other files are also needed in this folder, but if this one is there, it is
likely that the rest have made it too. If the file is not present, you need to reinstall Signal and make sure that you
select the option to install MATLAB file export support.

Mat-files represent a collection of workspace variables inside MATLAB. Signal creates mat-files containing one
variable holding aggregated data for all waveform channels and separate variables for each other data channel that
is exported. The variables are structures containing multiple fields that hold the channel data.

Possible interaction with MatLabOpen() script function
Various users have reported that exporting data to MatLab files works normally but fails after the MatLabOpen()
script command has been used. This appears to be caused by DLL version incompatibilities between the MatLab
DLLs installed with Signal for the purposes of file export (which should be available even if MatLab is not installed)
and the DLLs installed with MatLab (which are loaded by MatLabOpen()). It appears that the problem can be fixed,
at least in some cases, by hiding the MatLab DLLs installed with Signal so that file export uses the DLLs installed
with MatLab. The DLLs in question are all in the export directory inside the Signal export directory, they are:
libmat.dll, libmx.dll, libut.dll, libz.dll, icudt32.dll, icuin32.dll, icuio32.dll, icuuc32.dll, msvcr71.dll and
msvcp71.dll.

Workspace variable naming

The workspace variables in a mat-file must have names that are both unique and legal. If a variable name is not
unique it will overwrite the existing workspace data with the same name. MATLAB cannot read variables with
illegal names. Signal mat-file export creates variables with names based upon the source view file name and the
channel name. You can independently select if either of these is to be used. This produces variable names that are
both useful and unique. The default setting is to use the source view file name but not the channel name. The
variable name settings are used to build the variable name as follows:

If the source view name is to be used, it is placed at the start of the variable name followed by an underscore
character ‘_’. Following this a channel identifier is added. The identifier is always ‘wave_data’ for the aggregated
waveform channels, for other channels it is either the channel title (if using the source channel name) or Signal
builds a name using ‘Ch’ followed by the channel number. For example, when exporting a view called Expt1

http://en.wikipedia.org/wiki/Portable_Network_Graphics
http://en.wikipedia.org/wiki/Portable_Network_Graphics

Signal Version 6.06

9-162

containing 2 waveform channels and a keyboard marker channel called ‘Keyboard’ we would get the following
MATLAB variable names:

Using source view and channel name: Expt1_wave_data, Expt_Keyboard
Using source view name only: Expt1_wave_data, Expt1_Ch3
Using channel name only: wave_data, Keyboard
Using neither name: wave_data, Ch3

Having generated a name according to these rules, Signal then checks and, if necessary, modifies the name to
guarantee that it is legal. The rules for a legal name are that it must not be more than 63 characters, must begin with
an alphabetic character and must only contain alphanumeric characters and the underscore character ‘_’. Signal
modifies the name by appending a ‘V’ to the start of the name if it does not begin with an alphabetic character,
converting all illegal characters to underscores and finally truncating if more than 63 characters long.

If despite all this you end up with variable names that are the same, the variables will overwrite each other when
you read the file into MATLAB and you will only see the last read variable.

Data view data

When exporting data from a file or memory view you will first get a dialog that allows you to select the channels,
frames and time range that you want to export. There is also a check box that selects offsetting the start of the time
range being exported to zero. This dialog is the same as the dialog used to select data to export to a CFS file.

When you have selected your channels, frames and time range you are
then presented with a second dialog that controls mat-file export options.
These options allow you to define how the MATLAB workspace
variables will be named, what data is generated for different channel types
and the format used for various types of Signal data.

Compatibility
If you are using an older version of MATLAB (currentlybefore version
7.3) or want your exported data to be usable with earlier versions of
MATLAB, you must use the compatibility field to select a suitable output
format.

Use ... in variable names
These two options in the dialog control how the mat-file variable names are constructed as described previously.

Waveform options
These two controls specify how waveform data is handled. The Layout options item can be set to Waveform only
or Waveform and errors, if the second option is selected and there are error values available these will be exported
to a separate array. The Waveform data as item sets the type of data created for waveforms, it can be set to Float
(32-bit) or Double (64-bit). Floats use less memory while doubles are the most generally useful in MATLAB, it is
probably best to leave this set to doubles unless you are suffering from memory problems with large amounts of
data.

XY view data

For an XY view you do not get a dialog to control what data is exported; all the visible channels are exported and
only data points that lie within the displayed X and Y axis ranges are used.

A dialog is provided to control how the data is exported. This is a simplified version of the data view export options
dialog shown above; it only contains the compatibility selector and the two check boxes to select the use of the
source view name and channel names to create the MATLAB variable names.

File menu

9-163

Mat-file data format

A mat-file represents a collection of MATLAB variables rather than simple data values which allows for a complex
representation of Signal data within MATLAB. Each Signal channel exported into a mat-file is represented by one
variable, except for waveform channels which are grouped together into a single variable. The variables are
structures containing fields that hold information about the channel and other fields holding the data. For example,
a structure holding data from waveform channels has the fields xlabel, interval and start each of which is a
simple (scalar) datum holding the x axis title, the sample interval in seconds and the time of the first data point. In
addition there is a field called wave_data that is a 3D matrix holding the waveform data values and an optional field
called SD which is a 3D matrix holding the standard deviation for the corresponding waveform points. The structure
varies according to the channel type, though some fields are common to all channels.

Waveform data

Waveform data is exported as a 3-dimensional array <points x chans x frames> of waveform values with an
optional associated array of error values. All waveform channels are exported together in the same variable. There
are separate arrays of structures holding information about the channels and frames that are exported. The fields in
the waveform data structure are:

xlabel a string holding the X axis label, normally blank.

xunits a string holding the X axis units, this is normally ‘s’ even if you have opted to display time as
milliseconds or microseconds.

start a double holding the start time, in X axis units, for the waveform data.

interval a double holding the waveform data sample interval, in X axis units.

points an integer holding the maximum number of waveform data points exported for each channel for
each frame. The actual number of points exported for each frame can vary if the source data has
varying points per frame.

chans an integer holding the number of waveform channels exported.

frames an integer holding the number of frames exported.

chaninfo an array of structures, length chans, holding information on the channels exported. Each
structure contains the following items:
number an integer holding the actual source file channel number.
title a string holding the channel title.
units a string holding the channel units.

frameinfo an array of structures, length frames, holding information on the frames exported. Each structure
contains the following items:
number an integer holding the actual source file frame number.
points an integer holding the number of data points for each channel in this frame.
start a double holding the start time, in seconds, for the frame.
state an integer holding the frame state code.
tag an integer holding the frame tag (0 or 1).
sweeps an integer holding the frame sweep count. This will be zero for frames not produced by
averaging.

label a string holding the label used for the frame state.

values an array with dimensions <points x chans x frames> holding the waveform values. Depending
upon the output options selected, this array could be double or single-precision real values.

SD an optional array with dimensions <points x chans x frames> holding the waveform error
values as standard deviations. Depending upon the output options selected, this array could be
double or single-precision real values.

Marker channels

Marker channel data is represented as a 2-dimensional array of marker times and a corresponding 2-dimensional
array of marker code values. Each marker channel is exported to a separate variable in the MATLAB workspace.
The fields in the channel structure are:

title a string holding the channel title.

Signal Version 6.06

9-164

units a string holding the channel units, normally blank.

resolution a double holding the underlying timing resolution in seconds.

points an integer holding the maximum number of markers in a frame.

frames an integer holding the number of frames exported.

times a <points x frames> 2-dimensional array of doubles holding the marker times in seconds. Times
for markers not present in a frame are set to zero.

codes a <points x frames> 2-dimensional array of integer values holding the marker codes.

Real marker channels

Real marker channel data is represented as a 2-dimensional array of marker times, a corresponding 2-dimensional
array of marker code values, and a 3-dimensional array of marker floating point values. Each real marker channel is
exported to a separate variable in the MATLAB workspace. The fields in the channel structure are:

title a string holding the channel title.

units a string holding the channel units, normally blank.

resolution a double holding the underlying timing resolution in seconds.

points an integer holding the maximum number of markers in a frame.

reals an integer holding the number of floating-point values attached to each marker.

frames an integer holding the number of frames exported.

times a <points x frames> 2-dimensional array of doubles holding the marker times in seconds.
Times for markers not present in a frame are set to zero.

codes a <points x frames> 2-dimensional array of integer values holding the marker codes.

values a <reals x points x frames> 3-dimensional array of double values holding the marker real
values.

Idealised trace channels

Idealised trace channel data is represented as a 2 dimensional array of structures, with each structure holding
information on one trace segment. Each marker channel is exported to a separate variable in the MATLAB
workspace. The fields in the channel structure are:

title a string holding the channel title.

units a string holding the channel units.

points an integer holding the maximum number of trace segments in a frame.

frames an integer holding the number of frames exported.

values a <points x frames> 2-dimensional array of structures holding the trace segment information.
Each structure contains the following items:
start a double holding the start time of a segment.
period a double holding the length of a segment. This will be zero for segments not in
this frame.
amplitude a double holding the level of a segment.
flags an integer holding the flags set for a segment.
baseline a double holding the baseline level for a segment.
level an integer holding the level of a segment. This is zero for a closed segment, 1 to
n for open levels.

XY channels

XY view channel data is represented as two 1-dimensional arrays holding X and Y data plus ancillary information.
Each marker channel is exported to a separate variable in the MATLAB workspace. The fields in the channel
structure are:

title a string holding the channel title.

yunits a string holding the Y value units.

xunits a string holding the X value units.

File menu

9-165

points an integer holding the number of XY points.

xvalues a <points x 1> array of doubles holding the x values of the data.

yvalues a <points x 1> array of doubles holding the y values of the data.

Script export to mat-files

Export to mat-files is also available from the script language by using the FileExportAs() function with the file
type set to 100. With this type in use, the file name selection dialog (if provided) will use a ‘*.mat’ filename filter, an
extra exp$ argument becomes available to allow MATLAB-export specific options to be set and the time range,
frames and channels to be exported are set by ExportTimeRange(), ExportFrameList() and
ExportChanList(). The extra exp$ argument that sets options is a string of the form:

name=value|name=value|…|name=value

where name specifies some export option and value sets it’s value. You can include as many options as you want,
options that you omit are set to the default value. Option names are not case-sensitive. It is not an error to use an
unknown option.

Data view export options
UseSName selects use of the source name in the channel variable name. Set to 1 if you want to use the

source name, 0 if not. The default is 1.

UseCName selects use of the channel name in the channel variable name. Set to 1 if you want to use the
channel name, 0 if not. The default is 0.

WaveOpts selects generation of an array of waveform error values in the workspace variable, if errors are
available. Set to 1 if you want errors, 0 if not. The default is 0.

WaveData selects the sort of data generated for waveform channels. Set to 1 for single-precision reals and 2
for double-precision reals. The default is 2.

Compat sets the compatibility option. Set to 0 for the most recent MATLAB file version (currently 7.3), 1
for version 4 or earlier, 2 for version 6, 3 for version 7 and 4 for 7.3 or later. The default is 0.

XY view export options
UseSName selects use of the source name in the channel variable name. Set to 1 if you want to use the

source name, 0 if not. The default is 1.

UseCName selects use of the channel name in the channel variable name. Set to 1 if you want to use the
channel name, 0 if not. The default is 0.

Compat sets the compatibility option. Set to 0 for the most recent MATLAB file version (currently 7.3), 1
for version 4 or earlier, 2 for version 6, 3 for version 7 and 4 for 7.3 or later. The default is 0.

Backup sgrx file

You can use this command with any type of data file. Information relating to the current file is stored in an
associated .sgxr resource file, this includes things like the draw modes of the channels but more significantly it
contains any idealised trace data associated with the file. In a lengthy idealised trace editing session you may wish
to backup the .sgrx file to ensure edits are not lost. This option creates a new file called filename.backup.sgrx
where filename is the stem of the original data file name, this file will contain all of the idealised trace data at the time
of backup. In the unlikely event of needing to retrieve the backed-up .sgrx file you should first make sure that the
original data file is not open and then copy the backup .sgrx file to filename.sgrx, it will be automatically
picked up & opened when the data file is opened.

Revert to Saved

You can use this command with a text file, sequencer file or a script file. The file changes back to the state it was in
at the time of the last save to disk and any changes made since then are lost, which can be useful or might be a
disaster - so use this command with care.

Signal Version 6.06

9-166

Data update mode

This command controls how and if changed file view data is written back to the CFS data file. Signal holds the data
for the current frame in memory where it can be accessed and modified by script commands or by the channel data
manipulation commands. When the file is closed, or the view switches to another frame, the data update mode
determines what happens if there is changed data in memory. Changes to the frame data can be written back to the
disk, or they can be discarded, or the user can be asked to choose what is to be done. The Edit menu Preferences
dialog sets the default data update mode for all files, this command changes the mode for the file attached to the
current view.

If Query the user mode is selected, the Save changes dialog will appear
when required. This allows changed frame data to be interactively discarded
or saved, check the Adjust data file update mode to match check box if
you don’t want to see the dialog again for this file.

Send Mail

If your system has support for email installed, you can use this command to send any document from Signal to
another linked computer. The command vanishes if you do not have mail support on your PC. Text-based
documents, XY views and memory views can be sent even if they have not been saved to disk (Signal writes them
to a temporary file if they have not been saved). Signal data files can be sent as long as they have already been
saved to disk.

Load and Save Configuration As

These commands manage Signal configuration files. These hold the sampling parameters, the window arrangement
required during sampling, the output setup and the types of on-line analysis required. Signal always has one
configuration loaded, this is the configuration used for sampling and the sampling configuration dialogs.

Versions of Signal before 5.08 saved sampling configurations in files with a .sgc filename extension. Later
versions of Signal save sampling configurations in XML files with a .sgcx filename extension. Signal is able to
read both types of sampling configuration but it will only save sampling configurations as new-style XML files.

The Load Configuration and Save Configuration As commands transfer the Signal configuration between disk file
and the application. They both open an appropriate file dialog to select a file for loading or saving to.

The Save Default Configuration command saves the current configuration as the default configuration; the one
that will be automatically loaded whenever Signal is started.

Default configuration files: default.sgcx, last.sgcx
If the configuration file default.sgcx is found, it is always loaded when Signal starts. To save the current
sampling configuration as default.sgcx use the Save Default Configuration command. The standard file
last.sgcx holds the last configuration that was used for sampling. If default.sgcx cannot be found, and
last.sgcx exists, last.sgcx is loaded. Signal updates last.sgcx with the current sampling configuration each
time sampling stops.

Where does Signal search for these files?
Now that we offer the option of installing Signal in the Program Files folder, the places where modifiable files can be
stored has changed. As we want to remain compatible with the old system, we have to search a list of places to find
the default and last files (the default file is searched-for first and if it is not found Signal searches for the
last file). The places we search are:

1. The application data directory (but read below for what this means)

2. If the file is not found, then try the directory in which Signal is installed

In each directory we search for the sgcx file first, then for the sgc file (for backwards compatibility).

Application data directory
The application data directory is the first of the following that exists:

1. The current users application data directory

File menu

9-167

2. If that directory does not exist, the all-users application data directory

3. Then if that directory does not exist, the current user's "My Documents" folder

Page Setup

This opens the printer page setup dialog. The dialog varies between operating systems and printers. See your
operating system documentation for more information. The important options that are always present include the
paper orientation (portrait or landscape), the paper source (if your printer has a choice), the printer margins and the
choice of printer.

The Orientation option (portrait or landscape) applies to all
output except the Print Screen command, which has it’s own
selector for the output orientation.

The printer margins will appear in inches or millimetres, depending
upon the locale set for your computer. These margins are used for
all printed output. The left and right margins are applied to
everything including headers and footers. The top and bottom
margins apply to everything except headers and footers which
have their own top and bottom margin settings (see the Page
Headers command). The top and bottom margins set here are
further modified if a header or footer would collide with them.

Most printers have an unprintable area near the paper edge. If
you set margins that are smaller than this unprintable area, the
margins are increased so that all output is visible. If you set
margins that reduce the printable area too much, the margins are
ignored.

Registry use
Signal saves the printer margins in units of 0.01 mm in the system
registry. You can find them in the HKEY_CURRENT_USER\Software\CED\Signal\PageSetup folder as
REG_DWORD values: LeftMargin, RightMargin, TopMargin and BottomMargin.

Page Headers

You can apply headers and footers to all
printed output. The headers set in this
dialog are used with all File, Memory, XY
and text-based views. Other printed output
(for example from the Print Screen
command) uses all of these settings except
for the text, which each command provides
separately.

Header and footer positions
The horizontal position is set by the left
and right margins in the Page Setup
dialog. The vertical positions are set by the
space above the header and the space
below the footer fields in inches or millimetres, depending on the locale. If your header or footer encroaches on the
top and bottom margins set in the Page Setup dialog, the top and bottom values are adjusted to keep the output
clear of the header and footer.

Line thickness
You can choose between: None, Hairline, Thin, Medium and Thick. A Hairline is the thinnest line possible on the
output device. The other settings should be self-explanatory. The header line is drawn below any header text, the
footer line is drawn above any footer text. If there is no header or footer text, no line is drawn.

Signal Version 6.06

9-168

Text
This is the text to display as the header or footer. If this field is empty, the header or footer is omitted (including any
line). You can split the text into left-justified, centred and right-justified sections with the vertical bar character. You
can also insert codes that are replaced by document and time information. The simplest way to do this is by clicking
the >> button to the right of the text and choosing an option.

Set Font
Click this button to choose a font for the header and the footer. Font sizes are limited to the range 2 to 30 points.

File/System Time
You can insert times into both the header and the footer. However, you have to choose between the current time
and the file time. This allows you to display the file time in the header and the current time in the footer, or vice
versa.

Document information
The codes shown below are replaced by the relevant document information. Except where an alternate effect is
shown for the upper case code, upper and lower case are treated alike. A single ampersand (“&”) character can be
inserted using a double ampersand (“&&”) code.

&f File and path &F Upper case file and path

&t Document title &T Upper case document title

&p Page number &n Total number of pages

&a Absolute frame time &s Frame state code

&g Frame flags &c Frame comment

&r Current frame number &l Overdrawn frame list

Time and date codes
You can insert times and dates using % followed by a character code. The combination is replaced as described in
the table. You can also use %#c and %#x for a long version of dates and times. You can remove leading zeros from
numbers with #, for example %#j.

%a Short day of week (Mon) %p Indicator for A.M or P.M.

%A Long day of week (Monday) %S Seconds as number (00-59)

%b Short month name (Jan) %U Week of year, Sunday based (00-53)

%B Long month name (January) %W Week of year, Monday based (00-53)

%c Date and time for locale %w Sunday based weekday (0-6)

%d Day of month (01-31) %x Date formatted for locale

%H Hour in 24 hour format (00-23) %X Time formatted for locale

%I Hour in 12 hour format (01-12) %y Year without century (00-99)

%j Day of year (001-366) %Y Year with century, e.g. 2004

%m Month as number (01-12) %z/Z Time zone name

%M Minute as number (00-59) %% The percent sign

Registry use
Signal saves the header and footer settings in the system registry. You can find them in the
HKEY_CURRENT_USER\Software\CED\Signal\PageSetup folder as strings: Header, Header info, Footer
and Footer info. The Header and Footer items hold the text strings. The two info items are strings that code

File menu

9-169

up the font name, point size, bold and italic settings, distance to the paper edge in units of 0.01 mm, line thickness
(0=none, 1=Hairline, 2=Thin, 3=Medium, 4=Thick), and File time (0) or System time (1).

Print Preview

This option displays the current window as it would be printed by the Print option. You can preview file, memory,
XY and text based windows. You can zoom in and out, view single or two pages, step through pages of multi-page
documents and print the entire document using a toolbar at the top of the screen. Use the Close button to leave
this mode without printing.

In previous version
of Signal, the print
preview window took
over the entire
program and no
other commands
were available apart
from those on the
preview toolbar.
From Signal version
4, the preview takes
place inside the
frame of the data or
XY view. You can
now access the File
menu to change the
headers and footers
and print margins
while within preview.
If you use the menus
to make changes to
the contents of the
displayed data, the screen may not display the changes until you exit from Print Preview mode.

Print visible, Print and Print selection

These commands print data views, XY views and text-based windows. The scroll bar at the bottom of the window is
not printed. Print selection prints the selected area of a cursor or text window. Print visible prints the visible data
in the current window. Print or its Ctrl+P shortcut prints a specified region of a data view at the scaling in the
window (one page of paper holds the same x axis range as the current display, the output spans as many printer
pages as are required to show the data selected). You must set the print range in a dialog, either by typing the start
and end times directly, or by selecting them from the pop-up menus.

To print an entire frame, move to the frame required, set the visible width of
the view to the x axis range per page required in the print, then select Print.
Select Mintime() for the start position and Maxtime() for the end position.
Print doesn’t print multiple frames, this may be provided in later versions of
Signal.

During the print operation (which can take some time, particularly if you have
selected a lot of data) a dialog box appears. If your output spans several
pages, the dialog box indicates the number of pages, and the current page so you can gauge progress. If you
decide that you didn't want to print, click the Cancel button.

Print screen

The Print Screen command prints all file, memory, XY and text based views to one printer page. The views are
scaled to occupy the same proportional positions on the printed page as they do on the screen. The page margins
are those set by the Page Setup and Page Headers dialogs.

Signal Version 6.06

9-170

The command opens a dialog with two regions: Page
and Views. In the Page region you can set a page
header and footer and choose to print in Landscape or
Portrait mode. The header text is printed with an
underline across the width of the page. The footer text
is printed with a line over it across the page width. The
fonts used and line thicknesses are as set in the Page
Headers dialog If the header or footer is blank, both it
and the associated line are omitted.

You can divide the header and footer into a left justified,
centred and right justified sections with the vertical bar
character, for example: Left|Centered|Right. You can include the current date and time in the header or footer by
including, for example %c, as described for the Page Headers dialog. The >> button can be used to insert the time
and date and vertical bar separators into the header and footer.

In the Views region you can choose to print view titles and draw a box round each view. You can also ask Signal to
attempt to preserve the aspect ratio of characters in text windows. Without this, characters are scaled in an attempt
to match the printed output to the text displayed in the view. However, this may not produce a very legible output.

Registry use
Signal saves the Print Screen settings in the system registry. You can find them in the
HKEY_CURRENT_USER\Software\CED\Signal\PageSetup folder. The text strings are saved as PSHeader and
PSFooter. The remaining values are saved as REG_DWORD values of 0 (not selected) and 1(selected):
PSViewTitle, PSBorder, PSScaleText and PSLandscape.

Exit

This command will close all open files and exit from Signal. If there are any data documents or text-based files open
containing changes that have not been saved, you will be prompted to save them before the application terminates.

Edit menu

10-171

Edit menu

This menu holds the standard Edit functions that all programs provide. The majority of the menu is associated with
commands that move data to and from the clipboard and others that configure facilities for text-type views.

Undo and Redo

In a text, script or output sequence window this is used to undo or redo the last text edit operation. You cannot
undo operations that have been saved to disk or text operations that were done by a script.

In File, Memory and XY windows, you can undo most operations that change the appearance of the window.
Cursor movements do not undo; this is by design so you can zoom in, adjust a cursor, then undo to zoom out,
leaving the cursor adjusted.

Cut

You can cut selected portions of editable text to the clipboard from any position in Signal where the text pointer is
visible. This includes any text or numeric fields in dialogs and all text-based views. You cannot use this command in
Signal data document windows.

Copy

You can copy selected portions of editable text to the clipboard. If you use this command from a data document
window, the window contents, less the scroll bar, are copied to the clipboard as text, a bitmap and also as a metafile.
It is also copied as binary data that can be pasted into an XY view or the pulses dialog. See also Copy As Text.

Text output
The visible data is copied to the clipboard as text. The text format used is the same as was last used in Export As
to a text file or the Copy as Text command. If these commands have not been used then the default settings (only
copy waveform data & times, with column headings) is used. See the Copy As Text command for details of the text
output format. The text format used requires that all the visible waveform channels have the same sample interval, if
this is not the case then no text data will be put onto the clipboard.

Bitmap output
Make sure that the window is completely on the screen and that it is not covered by any other window before
copying. Use this option when the required image is an exact copy of the screen. If you need to scale or edit the
image Metafile format is usually better.

Metafile output
The screen display is copied to the clipboard as a Windows Metafile. You can read an exported image into a
drawing program as either a bitmap or as a metafile. Metafiles are often the preferred choice as you can treat the
image as lines and text for editing. Use Paste Special and select Picture in the target application to select the
metafile image.

CED binary format
The visible waveform data is copied to the clipboard as binary (numbers) using a private CED format. This binary
data can be pasted into the arbitrary waveform buffer used by the pulses dialog (see Pulse outputs during
sampling), into another data view or into an XY view. This private clipboard format is not usable by other
applications. The CED private format requires that all of the visible waveform channels have the same sample
interval, if this is not the case then no binary data will be put onto the clipboard.

Signal Version 6.06

10-172

Copy As Text Data view

This command copies data views to the clipboard as text. Text representations of Signal data can be very large and
awkward to manipulate with the clipboard; as an alternative you can write the text output to a file with the File
menu Export As command. The command leads to dialogs that set the text output format and the data to copy.

Text output configuration

This dialog sets the text output format. The first section sets an interpolation
method for Waveform channels. This is because the Waveform channels will be
output in columns with each row showing data sampled at a particular time. If the
data is not sampled in burst mode then the data points in the file will not all be
sampled at the same time. This will result in a small error as data will appear
shifted slightly to bring all the points into line. This can be overcome by using
interpolation to estimate where the waveform on a given channel would have
been at the time a point on another channel was sampled. Linear and Cubic
Spline interpolations are available.

In the next section you can choose whether to output Data, Times values
(where appropriate) and Headings for each of the of Waveform, Errors, Marker,
Fitted, Idealised trace and Real Marker data types by checking the relevant
boxes. Error data is always the standard deviation and is not generated unless
waveform data is dumped.

All output is written in fields that are either numeric or text. A text field is a
sequence of characters that may include spaces. Text fields may hold numbers,
but numeric fields cannot hold text.

Include channel units
If this option is checked then the headings for the Waveform channels will include a second row holding the
channel units, as described below.

Decimal places (data, time)
You can set the number of decimal places to use for both data values and times output.

Field width for all items
This field sets the minimum width of each output field, in characters, leave this set to zero for the default field width.

String delimiter
You can mark the start and end of a text field with special characters (usually ") so that a program reading the field
can include spaces and punctuation within a field without confusion. Use this field to set a one or two character
delimiter, or leave it blank. The example output below uses " as a delimiter.

Separator
Signal outputs a separator between each field. It can be set to Tab, space or comma with the Separator selector.
The examples below use Tab as a separator.

Add header to text block
If you check this box, Signal outputs a header of the file name followed by the frame number and state code (with
state label if available) before the text output. This header is normally disabled as it may interfere with reading
exported Signal data into spreadsheets.

"Noisy.cfs" "Frame 4" "State 0"

Format of generated text
All waveform data is output together, with the first column holding the time values, if enabled, and then one column
per waveform channel, note that this arrangement requires that all the waveform channels have the same sample

Edit menu

10-173

interval. If error channels are enabled any error data for a channel is placed in a separate column after the column
holding that channel's data. Waveform headings are a single line holding a title for each text column with,
optionally, a second line holding channel units. Following this are multiple lines with the waveform data times and
values:

"s" "ADC 0" "ADC 1" "ADC 2" "ADC 3"
"s" " V" "V" " V" "V"
0.23675 1.01074 4.61670 0.46875 0.23438
0.23700 1.37451 4.61182 0.44678 0.27832
...
0.33350 -1.69922 -0.18799 0.43945 0.21729

Each marker channel is output separately. The output starts with the channel headings, if these are enabled. The
data follows in two columns: the marker time and the first marker code as a character or a number if display as a
character is not possible.

"s" "Keyboard"
20.20608 "a"
21.24544 "n"

Fitted data is output with two lines of headings, if enabled, followed by the data. The data values are the
coefficients of the fitted curve.

"Single exponential fit on channel 1"
"Amplitude 1" "Time constant 1" "Offset"
0.27061 0.00575 -0.20811

Each idealised trace channel is output separately with two lines of heading, if enabled, followed by the data in
separate columns.

"Open/closed times on channel 201"
"Start(ms)" "Duration(ms)" "Amplitude(pA)" "Level" "Flags"
0.00000000 0.01019555 0.196095 0 81
0.01019555 0.00141605 1.752232 1 129
0.01161160 0.00128840 0.201009 0 65
0.01290000 0.01020000 1.766908 1 129

Each real marker channel is output separately. The output starts with the channel headings, if these are enabled.
The data follows in columns: the first two columns are the marker time and the first marker code as a character or a
number if display as a character is not possible. The marker real values follow, each value in a separate column.

"s" "Imemb" "pA"
0.45957447 2 0.000000 1.000000 0.000000
0.57811550 0 0.000000 0.000000 0.000000
0.73130699 2 0.000000 0.000000 0.000000
0.78480243 0 2.000000 0.000000 0.000000
0.83708207 0 0.000000 0.000000 0.000000

Copy data selection

Once you have defined the output format, you have to select the data to copy.
This is done using the same dialog that is used to select the data to be
exported to a CFS or text file. You can specify the channels to use, the time
range for the data within each frame and the frames to be used, if you select
Frames with state = xxx a separate field appears to set the state in the usual
manner. The text format used requires that all of the waveform channels
selected have the same sample interval, if this is not the case then no text data
will be put onto the clipboard.

 When you are satisfied with the selection, click on Cancel to quit or Copy to
start the copy process.

Signal Version 6.06

10-174

Copy As Text XY view

This menu item is available in XY views. It copies the XY points for all visible channels to the clipboard. The first
line of output for a channel holds “Channel : cc : nn” where cc is the channel number and nn is the number of
data points. The data points are output, one per line as the X value followed by the Y value, separated by a tab
character.

Paste

You can paste text on the clipboard into any text-based document, or any text or numeric field in a dialog with the
Ctrl+V key combination. Clipboard data using the private CED binary format can be pasted into compatible data
views, an XY view or into the arbitrary waveforms output by the pulse dialog. Data is pasted into views within the
displayed limits, if the clipboard holds more points or channels that the visible data, only the visible data is
modified. This is not true for XY views, where all of the clipboard data is inserted as new channels. If the binary
data holds fewer points or channels than the displayed data, only part of the visible data is modified. Pasting from
the clipboard does not affect the data stored on the clipboard.

Delete

This command is used to delete the current text selection, or if there is no selection, it deletes the character to the
right of the text caret. Do not confuse this with Clear, which in a text field is the equivalent of Select All followed
by Delete.

Clear

When you are working with editable text, this command will delete it all. If you are in a memory data view, this
command will set all the bins in all channels to zero and redraw the window contents. In an XY view whose data is
created by processing, this command will remove all data points. If you are looking at frame zero in sampled data,
Clear erases any overdrawn traces. Clear removes everything, Delete removes the current selection.

Reload frame

This command is only available for File views, where it discards any changed data in the current frame and reloads
the frame from disk. It is only enabled if the current frame is present in the disk file (so not an appended frame) and
the frame data or variables have been changed.

Select All

This command is available in all text-based windows and selects all the text, usually in preparation for a copy to the
Clipboard command. The short-cut keyboard command is Ctrl+A.

Find, Find Next, Find Previous

The Edit menu Find command opens the Find Text dialog. The
dialog is shared between all text-based views. It is closely linked to
the Find and Replace Text dialog and shares all its fields with it;
opening this dialog closes the Find and Replace dialog. Click
Replace... to swap to the Find and Replace dialog. A successful
search moves the text selection to the next matching string.
Searches are line by line; you cannot search for text that spans
more than one line.

Find Next starts a search for the text in the Find what field. The
Mark All button sets a bookmark on all lines that match the search text, but does not move the selection. Searches
are insensitive to the case of characters, unless you check Match Case. Check the Match whole word only box to

Edit menu

10-175

restrict the search so that the first search character must be the start of a word and the last search character must be
the end of a word.

Search direction
Select Up to search backwards, towards the start of the text. Select Down to search forwards towards the end of the
text. Select Wrap to search forwards to the end, then wrap around to the start and stop when you reach the current
position. Searches do not include the currently selected text.

Regular expression
Check this box to search for regular expressions. This disables Match whole word only as regular expressions
have their own way to match word starts and word ends. It also disables Up searches; regular expression searches
are forwards only. It enables the >> button, which displays a list of regular expressions to insert into the search
string. The simplest pattern matching characters are:

^ Start-of-line marker. Must be at the start of the search text or it just matches itself. The following search text will
only be matched if it is found at the start of a line.

$ End-of-line marker. Must be at the end of the search text or it just matches itself. The preceding text will only be
matched if it is found at the end of a line.

. Matches any character.

To treat these special characters as normal characters with regular expressions enabled, put a backslash before
them. A search for “^\^.\.” would find all lines with a “^” as the first character, anything as a second character
and a period as the third character.

You can use \a, \b, \f, \n, \r, \t and \v to match the ASCII characters BELL, BS (backspace), FF (form feed), LF
(line feed), CR (carriage return), TAB and VT (vertical tab). Searching for \n and \r will not normally match
anything as \n or \r\n mark line ends and the search is of complete lines ignoring end of line markers. \xnn can be
used to search for an ASCII character with hexadecimal code nn.

To search for one of a list of alternative characters, enclose the list in square brackets, for example [aeiou] will
find any vowel. For a character range use a hyphen to link the start and end of the range. For example, [a-zA-Z0-
9] matches any alphanumeric character. To include the - character in a search, place it first or last. To include] in
the list, place it first. To search for any character that is not in a list, place a ^ as the first character. For example,
[^aeiou] finds any non-vowel character.

You can search for the start and end of a word with \< and \>. Word characters are the set [a-zA-Z0-9], or [a-
zA-Z0-9%$] in script views. For example, the regular expression \<[a-zA-Z]+\> will match a text word, but not if
it contains numbers. You can also use \w to match a word character and \W to match not a non-word character.
Likewise, \d matches a decimal number and \D to matches a non-number character and \s matches white space
(space, TAB, FF, LF and VT) and \S matches non-white space. You can use \w, \W, \d, \D, \s and \S both inside
and outside square brackets.

There are search characters that control how many times to find a particular character. These characters follow the
character to search for:

* Match 0 or more of the previous character. So 51*2 matches 52, 512, 5112, 51112 and h.*l matches hl, hel, hail
and B[aeiou]*r matches Br, Bear and Beer.

+ Match 1 or more. The same as “*”, but there must be at least one matching character.

You can also tag sections of matched text by wrapping it in \(and \). You can then insert the tagged text later in
the regular expression (or in the replace text in the Find and Replace dialog) using \n, where n is 1 for the first
remembered text, up to 9 for the ninth. For example, \(foo\)-\1 matches foo-foo. More interestingly, the regular
expression \(\<[a-zA-Z]+\>\)-\1 matches Jim-Jim, plum-plum and the like.

Find Next and Find Previous repeat the previous search forwards or backwards.

Signal Version 6.06

10-176

Replace

The Edit menu Replace command is available when the current
view is text-based. It opens the Find and Replace Text dialog in
which you can search for text matching a pattern and optionally
replace it. The search part of the dialog is identical to the Find Text
dialog. The search pattern set by the Find what field can be a
simple match, or can be a regular expression. In regular expression
searches, the replacement text can refer back to tagged matches in
the search text. See the Find Dialog for details of regular expressions
and tagged matches. The >> buttons are also enabled in regular
expression mode and let you insert expressions into the search and
replace text.

Replace with
This field holds the text to replace the matched search text. In a regular expression search, you can include tagged
matches from the search text using \1 to \9 as described for the Find dialog. For example, suppose you have
variables named fred0 to fred17 that you want to convert into an array fred[0] to fred[17]. You can do this by setting
the Find what field to \<fred\(\d+\)\> and the Replace with field to fred[\1].

Replace
The Replace button tests if the current selection matches the Find what field and if it does, the field is replaced by
the Replace with text field and the selection is moved to the next match. If the selection does not match, Replace
is equivalent to Find Next.

Replace All
This button searches for all matches in a forward direction starting from the beginning of the text to the end, and
replaces them.

Edit toolbar

The Edit toolbar gives you access to the edit window bookmarks and short
cuts to the Find, Find next, Find previous and Replace commands. If you are
unsure of the action of a button, move the mouse pointer over the button and
leave it for a second or so; a “ToolTip” will reveal the button function and any short-cut key associated with it.

The four bookmark functions toggle a bookmark on the current line, go to the next or previous bookmark and clear
all bookmarks. You can set bookmarks on all lines containing a search string with the Edit menu Find command.

If the Edit toolbar is not visible, click the right mouse button on an empty area of a toolbar or of the Signal main
window. Then select Edit bar in the pop-up menu. You can use the same procedure to hide it. The bar can be
docked to any side of the application main window or dragged off the application main window as a floating bar.

File comment

This command is available with file and memory
views, it allows you to see and edit the file
comments. The file comments are five lines of
text, each up to 72 characters long, attached to
the data file; it can be entered at the end of
sampling or by using this command.

Edit menu

10-177

Frame comment

This command is available with file and memory views, it allows you to see and edit the frame comment. The frame
comment is a single line of text attached to each frame in the data file that is available for any purpose.

Auto Format

Automatic formatting is available for script views only and applies standard formatting while you type and lets you
reformat entire scripts or selected script regions. Formatting is done by indenting lines of text based on the script
keywords. An indented line is one that starts with white space. The indenting is in units of the Tab size set for the
view in the Script Editor Settings dialog. Indentation is done with Tab characters if you have chosen to keep
Tabs in the view, otherwise indentation is done with space characters. There are two sub-commands:

Apply Formatting
If any text is selected in the current view, all lines included in the selection are formatted. If there is no selection, the
entire document is formatted. If text is selected, you can right-click in the text view and choose Auto Format
Selection from the pop-up menu to activate this option.

Settings...
The Auto Format Settings dialog controls how text is formatted.
Formatting is based on the same scheme that is used for folding text.
Each script keyword that starts a block construction (proc, func, if,
docase, while, repeat, for) increases the indent, and the keywords
that complete blocks decrease the indent. However, many users prefer
the look of the text with some extra outdents.

The standard CED formatting is to have all the boxes checked, however,
it makes no difference to the script operation so, what you choose is a
matter of personal taste. It is a good idea to use consistent indenting as
it helps you to understand the structure of the script.

Proc and Func body
If this box is not checked, all text within a function or procedure is indented. Check the box to outdent the text
between the Proc or Func and the end.

end...next
You can choose to outdent any line starting with one of the keywords end, then, else, endif, case, endcase,
wend, until and next.

Indentation method at end of line
This field determines what happens to the indentation of the current line and the new line when you type the
Enter key. The settings are:

None No automatic formatting is applied. The new line is not indented.

Maintain The new line is indented to match the indentation of the current line.

Automatic The indentation of both the current line and the new line is adjusted based on the Auto Format
settings.

Toggle Comments

This Edit menu command is available in script and text sequencer views, and is also available in the context menu
when there is a selection. It adds or removes a comment marker at the start of the line for all lines in the current
selection. It decides what to do based upon the first character of the first line in the selection.

Signal Version 6.06

10-178

Auto Complete

In any script, you will find that you are typing the same text
items repeatedly. The editor can save you some time by
popping up lists of known words that match your typing. The
matching is done by looking for a word break in the text before
the text caret, then matching your typing against various
categories of words known to the script. Matched words are
displayed in alphabetical order and the current word is
highlighted.

You can use the up and down arrow keys to choose an item in the list and the Enter key to select an item or
double click an item to enter it. The Esc key cancels the list. Alternatively, you can just keep on typing, which will
narrow the choice of words to match. The Edit menu Auto Complete Setup dialog gives you some control over
the words that are matched and when the auto-completion lists appears.

Word lists
The Word lists section of the dialog lets you choose the categories of
words to match your typing against. If you do not want to display auto-
completion lists, clear all the categories.

You can choose from script keywords (Proc, Func, EndCase, ...), built
in functions and procedures (SampleSequencer, NextTime, ...), words
that already exist in the script and user-defined Func and Proc names in
included files and global symbols in included files.

You may wish to disable the Script text option if you are working with a
huge file and you notice an appreciable delay after typing before the list
appears. Similarly, you may wish to un-check the Included files option
if you use a large number of included files and there is a noticeable time
lag before any list appears.

Minimum characters for auto complete display
This sets the number of characters in a name that must be typed before the list will appear. You can set this to 1 to
12 characters. Setting a low value can cause the pop-up display to become annoying. You need to choose a count
that gives you enough help, but not too much. Try a value of 3 to start with.

Initial size (lines) of the matching words list box
This field sets the maximum number of words to display at a time in the range 1 to 40. If there are more matching
words, the list contains a scroll bar. After the list appears, you can re-size it by clicking and dragging on the
horizontal edge furthest away from the matched text.

Do not display if more matching words than
If there are more matching words than you set here, the list is not displayed. You can set this value in the range 1 to
200 words.

Automatically insert when only one matching word
Because of the design of the script language, apart from variable declarations, all words you type in are likely to
have been defined already. If you set this option, once your typing has reduced the list size to 1, the word is
automatically inserted. You may want to increase the Minimum characters for auto complete display if you
enable this option.

Also select when user types (or [
Normally, the list text is inserted when you type the Enter key or double-click the list text. If you check this option,
the text is also inserted when you type an opening round or square bracket, followed by the bracket.

Edit menu

10-179

Enable auto complete in comments
Normally, automatic word completion is disabled in a comment. However, if refer to script functions in your code
documentation you may find it useful to check this box.

Preferences

The Edit menu Preferences dialog has separate tabs for display options, data options, sampling options, script
options, signal conditioner setup, time scheduling, clamping options and compatibility with earlier versions of
Signal. The preferences are stored in the Windows registry and are user specific. If you have several different
logons set for your computer, each logon will have its own preferences. It is possible to change the preferences
from a script; see the Profile() command for details.

Display

This tab contains options relating to the way data
is shown on the screen.

Show time as
The Show time as selector controls the time units
used within Signal, you can select Seconds,
Milliseconds or Microseconds. The selected
units will be used in the sampling configuration,
for all data files with a time-based X axis including
cursors and cursor windows and for all appropriate
dialogs including the various process settings
dialogs. The main area of Signal not affected by
this setting is the script language, which will
always see and use values in seconds, though
script programs can read the current settings and
adjust their behaviour as required. This setting
does not affect any data stored by Signal, just the way time is displayed to the user, so you can switch settings
without causing problems with data collected using another setting. Some time values are saved by Signal as
strings, particularly the parameters for memory view and XY view processing online and active cursors, and these
may be misinterpreted after the time units are changed.

Frame start as
The frame start time shown in the status bar and in printouts may be set to be the time since sampling started in
seconds; the same value shown as hours, minutes and seconds or the absolute time of day also shown as hours
minutes as seconds.

Line width for axes / data
The two Line width items set the line width in points for drawing data and axes respectively. These are relatively
unimportant for displays on the screen, where most reasonable settings will only select between lines one or two
pixels wide and many different settings will produce the same display. The line width controls are particularly
valuable for printing, where the lines drawn can get unsatisfactorily fine. At CED we find that values of 0.75 pt for
data and 1.0 pt for axes look pleasant. The line widths also control various other drawing operations; for example
the axis line width also controls the cursor widths and borders drawn around views and the data line width sets the
basic size of drawn dots and XY view lines and symbols.

Standard display shows lowest numbered channel at the top
You can change the order in which data and memory view channels are drawn by clicking and dragging the channel
numbers. The Standard display shows the lowest numbered channels at the top check box sets the order
when you use the Standard display command or open a new window. If you do not check the box, lower
numbered channels are at the bottom.

Signal Version 6.06

10-180

Do not use the flicker-free drawing method for data
Version 3.04 implemented a new buffered drawing method that reduces screen flicker on updates. However, this
may impact the display speed. Check the box for the old method.

Y axis drag may not invert axis range
Set this check box to prevent a Y axis being inadvertently inverted by dragging it too far.

Do not change colours if they are very similar to the background
Signal normally attempts to avoid your data being invisible by overriding your colour choices if they are very
similar to the view background colour. Set this check box if you want your selected colours to be used regardless.

Use Direct2D in text editors
The text editor we use (Scintilla), can use either the standard GDI method of drawing text or a potentially hardware
accelerated Direct2D method (in Windows Vista onwards). The two methods should appear more or less identical.

Text view settings
These controls configure the appearance of text-based views (script, text sequencer, log views and text views
created by a script) on screen and when printing. The dialogs accessed by the Script, Sequencer and Other files
buttons will apply any changes globally (to all open files of the selected type and to all future files). The same
dialogs can be used from the View menu Font command to make changes to the current view only (there is then an
extra button to apply changes to all views).

Print
This sets how to print coloured text from a text view. The choices are:

Screen colours Use the displayed screen colours. This is very wasteful of ink or toner if the background is
not white.

Invert light If you display your text as a light colour on a dark background, this setting prints on a white
background and inverts the text colours.

Black on White Prints black text on a white background.

Colour on White Prints in screen colours on a white background.

Script files

Open the editor settings dialog from the Edit menu Preferences Display tab to change settings for all views of a
given type, or from the View menu Font command to change the current view only. When used for the current
view, an extra button Apply to All appears at the bottom of the dialog to apply changes to all views. The Reset All
button returns all the dialog values to standard settings.

Edit menu

10-181

The bottom half of the dialog holds example text
suitable for the view type to show the effect of any
changes.

Style
Each view type supports one or more text styles.
For each style you can set a font (including
proportionally spaced fonts). The font includes the
size in points (in the range 2-256) and bold and
italic settings. You can also choose to force upper
or lower case and underlines for all text in the style.
You can set a foreground and background colour
for the style by clicking on the Foreground and
Background rectangles.

All views have the Default style that the remaining
styles are based on; it is used for everything that is
not covered by one of the other styles. The Tab
size is based on the width of a space character in
this style. If you change any aspect of this style, all
the other styles that match that aspect will also
change.

In a Script view, you can control the appearance of
many different aspects of the display, based on the syntax of the language. There are settings for:

White space Style used when drawing spaces and tabs and control characters.

Comment The style used when displaying comments.

Number The style to use when displaying numbers.

Keyword The style to use for script keywords, such as for, next and end.

String The style for literal strings, such as "This is a string".

Function Used for built-in script functions, such as PrintLog().

Operator The style for script language operators, such as +, - and +=.

Identifier The style for function, procedure and variable names created in a script.

Preprocessor The style for special statements such as #include which are handled by the script preprocessor.

Line number The style used for line numbers and the gutter. When you select this item, line numbers will appear
in the example text area.

Call tips The style for pop-up call tips. This style has an extra Tip highlight colour field, used to highlight the
current argument in a function. This replaces the Bold, Italic, Case and Underline fields, which are
not displayed.

Braces The style to use for matched square and round brackets () and []. When the text cursor is next to a
bracket, the editor searches for the matching bracket and applies this style if it is located.

Bad braces The style to use when the text cursor is next to a bracket that does not have a matching bracket.

Reset Style and Reset All
The Reset Style button reverts the current style to standard settings. Reset All reverts all styles.

Tabs
This dialog region controls the size of tabs (set in units of the width of a space character in the Default style) and if
Tabs are implemented by saving a Tab character in the text (check Keep Tabs) or are implemented as multiple
spaces (clear the Keep Tabs check box). If you use a fixed pitch font, such as Courier New, then it does not
matter too much if you choose to keep Tab characters or not. If you use a proportional font for anything except
comments, it is better to keep the Tab characters. When automatically formatting a script, the Keep Tabs setting
determines if indents are generated with Tab characters or spaces.

Signal Version 6.06

10-182

Show
In addition to displaying the text, you can also choose to display information about the white space in your file.
The settings are:

Indents It can be useful when manually lining up indented loops in a script to see the indent level. Check
this box to display vertical lines at each tap stop in the leading white space of each line.

White space Check this box to display spaces with a centred dot and tabs as right arrows.

Line ends Check this box to see the Carriage Return (CR) and Line Feed (LF) characters that mark the end of a
line. This can be helpful to understand what is happening when working with scripts that move the
caret around.

Language settings
This area of the dialog is used by script and output sequencer views. It sets your preferences for call tips,
automatic formatting, automatic text completion and folding. The Format and Auto Complete buttons duplicate
Edit menu commands, and are described separately.

Call tips
A Call tip is a block of text that pops up in a script view when you type the opening brace of a function of
procedure name. The call tip text contains a synopsis of the command and a list of the command arguments, with
the current argument highlighted. You can choose from None (no call tips), Single line (just the command name
and arguments) and Full text (includes a command synopsis).

Folding
Script views and output sequence views can display a folding margin, and allow you to fold the code by clicking in
the margin, from the View menu Folding command, and by right clicking in the view and selecting Expand All
Folds, Collapse All Folds or Toggle all folds (which finds the first fold point in the document, reads its folded or
unfolded state and then sets all folds to the opposite state). In a script view, fold points are based on a lexical
analysis of the script text. You can choose from one of four folding styles, or have no folding margin.

Virtual space
If you check this box, you enable virtual space in the editor. This allows you to move the text caret beyond the end
of a line by clicking with the mouse or by using cursor keys. This can be useful when you want to position text (for
example comments) without the need to use tabs or spaces to position the caret. If the caret is in virtual space and
you enter text, the editor inserts spaces up to the caret position and the position becomes "real". However,
allowing virtual space (which was the default before version 5.08), can force you to use extra key presses to move
to real start or end of a line (Home/End keys) when you press cursor up and down to move vertically through the
text.

Call tip details

A Call tip is a block of text that pops up in a script view
when you type the opening brace of a function or
procedure name or you hover the mouse pointer over a
symbol name or keyword. For function and procedures, the
call tip text contains the command name and arguments and
a synopsis of the command. If the tip appears as a result of typing the opening brace, the editor attempts to
highlight the current argument in the tip and if the command has multiple variants, you can select the variant to
display by clicking on the arrows in the call tip.

In the Script file text settings dialog you can choose from None (no call tips), Single line (just the command name
and arguments) and Full text (includes a command synopsis). In Single line mode (not when opened by hovering
the mouse pointer) you can click on the body of the tip to show the full text.

Call tips for built-in functions
For built-in functions, the call tip text holds the command name and arguments plus one sentence of description.
This information comes from the text file script.tip in the folder where Signal is installed.

Edit menu

10-183

Call tips for user-defined functions
For user-defined Proc and Func items, the arguments are taken from the line containing the Proc or Func keyword
(expected to be the first item on the line). If the line before the Proc or Func is a comment, up to 10 lines of
comment are used as a description. This works for Proc and Func items in the current source and in any included
files. If the line before is blank, and the line after is a comment, up to 10 lines following are used as a description.
Putting the comments after the Proc or Func line has the advantage that the comments can be folded within the
Proc or Func.

The search is terminated by any "divider" lines. A divider line is one that is at least 10 characters long (after
removing the initial comment mark ') and with no more than 2 characters being different. Here are some example
divider lines:

''
'---
'|===|

If you document your functions and procedures as in this example, they will generate tidy call tips:

'This is an example of how to document for a nice call tip
'arg1 If the first word on a line is followed by more than one
' space or a tab, the rest of the line is indented. If a line
' starts with two or more spaces or a tab, it is indented.
'arg2 Description of second argument
'arg3 And something about the third argument
Func Example(arg1, arg2, arg3)
var x,y; 'the start of the code
...

The example text above would produce a call tip looking
like this. The comment markers at the start of each line
are removed, and the multiple spaces after the first word
or at the start of each line are replaced with a Tab
character.

If you do not want a Proc or Func to have a call tip see
the section, below, Disable call tip for an item. If you
disable a call tip in an include file, this will also stop it
appearing in an Auto-completion list.

Call tips for const and var names
From Signal version 6.03 we also provide call tips for names defined in const and var statements and argument
names defined in the first line of a Proc or Func statement. The tip will be the entire text of the line that includes the
definition. Any tab characters in the line are replaced by space characters, then runs of space characters are
replaced by a single space to make the tip a short as possible.

Call tips for included files and Auto Complete
You can have tips for global symbols for items in included files. You must enable this in the Edit menu Auto
Complete command by checking Included files. Call tips and Auto Complete use the same internal logic

Go to declaration
If an item has a call tip, it also will have a right-click menu option. For user-defined items, this will let you Go to the
declaration of the item. For built-in items, this will open Help for the item (as long as the help file is available).

Limitations
Call tips and Auto Complete have to work on scripts that are works in progress and that may not be syntactically
correct (i.e. they may not compile). This means that we cannot use the same syntax analysis engine that the script
compiler uses. To generate a useful result, we make the following assumptions when parsing scripts for user-
defined Proc, Func, const and var statements:

· The Func, Proc, const or var keyword is the first non-white space symbol in a line.

· The end keyword that terminates each Func or Proc is the first non-white space symbol in a line.

Signal Version 6.06

10-184

· For symbol names to be detected, they must be on the same line as the Func, Proc, const or var keyword that
introduces them.

It is important that the end keyword is recognised as we use this to skip over user-defined functions when
searching for a global symbol.

Disable call tip for an item
Although having call tips is generally very useful, you may sometimes want to hide user-defined Func, Proc, var
or const names from the call tip and Go to systems. For example, you might have an include file that implements
some useful functionality through a single user-defined Func, but that has several helper functions and global var
and const items that you do not want to be generally visible as they just cause clutter. There are two ways to do
this. The simplest is to start a comment on the same line with an exclamation mark.

const kPrivateConst := 1.234; '! No call-tip or autocomplete

The second way is to separate the keyword (Proc, Func, const, var) from the symbol names that it introduces.
However, it is possible that we will further develop the parser so it does not rely on text being on a single line, so
this method may not work forever. We mention this as this method was documented in older versions of Signal.

Proc
PrivateFunction() 'This is only used within this file
...
end;

Edit menu

10-185

Sequencer files

The editor settings dialog for output sequencer files is very similar to that for script files. The example text in the
lower half of the dialog displays some typical sequencer code, and there is no support for Call tips, auto formatting
or automatic completion.

Style
Each view type supports one or more text styles.
For each style you can set a font (including
proportionally spaced fonts). The font includes the
size in points (in the range 2-256) and bold and
italic settings. You can also choose to force upper
or lower case and underlines for all text in the style.
You can set a foreground and background colour
for the style by clicking on the Foreground and
Background rectangles.

All views have the Default style that the remaining
styles are based on; it is used for everything that is
not covered by one of the other styles. The Tab
size is based on the width of a space character in
this style. If you change any aspect of this style, all
the other styles that match that aspect will also
change.

There is a list of styles that you can apply to the
different elements of the sequencer text. The
Default style is used in exactly the same way as for
script views as the basis for all other styles and as
the font that is measured to set the Tab size. The
remaining styles are:

White space Style used when drawing spaces and tabs and control characters.

Comment The style used when displaying comments.

Number The style to use when displaying numbers and digital i/o expressions such as [...0101].

Keyword The style to use for standard output sequencer instructions.

Display Text introduced by > for display on screen during sampling.

Directive Items such as SET and VAR that do not generate output instructions.

Operator The style for mathematical operators like +, -, * and /.

Identifier The style for user-defined variable names and labels.

Step The style for the optional step numbers at the start of an instruction line.

Key The style for keyboard links introduced by a single quote, for example 'H

Functions The style for built-in conversion functions like ms().

Deprecated The style to use for outmoded output sequencer instructions like DAC0 that have been
replaced and may not be supported in future revisions.

Line number The style used for line numbers and the gutter. When you select this item, line numbers will
appear in the example text area.

Braces The style to use for matched square and round brackets () and []. When the text cursor is next
to a bracket, the editor searches for the matching bracket and applies this style if it is located.

Bad braces The style to use when the text cursor is next to a bracket that does not have a matching
bracket.

Folding support
The output sequencer editor supports code folding based on the keyboard link entry points. That is, you can fold
up all code from a line holding a keyboard link up to the next line holding a link.

Signal Version 6.06

10-186

Other files

The text editor settings dialog for all views except script and sequencer views is the same as the dialog for script
views, except that there are no language settings and there is only the Default text style.

Data

The Data tab controls the way data is stored and
exported, plus other data-related choices.

Data export format: Save waveform data as
The Save waveform data as field control decisions
on how waveform data is written to CFS files when
no other information is available to help Signal make
this decision. Waveform data in CFS files can be
stored either as floating point numbers or as scaled
integers. Scaled integers are the format of data
sampled by the 1401, occupy less space on disk and
are the only format that can be read by the DOS
SIGAVG software, but can be less accurate and can
overflow (when a data value outside the possible
integer range is required). Floating point numbers are
more bulky on disk, but are more accurate and
cannot overflow. In most circumstances, the format used for waveform data is derived from the data source or set
by the destination file, but when creating a new CFS data file by other mechanisms (saving a some types of memory
view in particular), the format used is controlled by this field. Select Real for maximum data accuracy, Integer to
produce smaller data files or for SIGAVG compatibility.

Data export format: Keep zero at zero
Similarly, this item controls how the scaling factors for integer data are calculated if no other information to aid the
choice is available. Signal tries to use the same integer scaling factors as the previous values for the frame (or the
previous frame where appropriate), but may need to recalculate the factors if the data values become too large for
the existing scaling or too small to represent accurately. If this check box is set, Signal will always calculate scaling
factors that keep zero in the integer data corresponding to zero in the scaled values, which can be convenient in
some circumstances.

Text export: Use locale for number format
Normally, Signal uses standard compatibility options for all text output. If you check this option the local number
formatting settings within the operating system will be used for all text export; data copied to the clipboard as text
and data exported as a text file.

Text export: Maximum numeric accuracy
Normally, when copying Real marker, Memory view and XY view data as text to the clipboard or file, Signal uses
sufficient decimal places to give a reasonable representation of a floating point value. Check this box to force full
accuracy. This may cause numbers you expect to see as 0.1 appear as 0.09999999999999998, however it means that
no precision is lost if you transfer data as text to another program.

Save changed data (default data update)
The Save changed data selector sets the default action for file data that has been changed in memory. For
example, the script language could have been used to differentiate the data in a channel. You can choose to write
changes back always, to only write changes after querying the user or to always discard changed data. This option
sets the default initial state for all data files opened, use the File menu Data update mode command to control
data write-back for a single file.

Edit menu

10-187

Metafile output resolution for picture
Signal saves file, memory or XY views as pictures in either bitmap (screen image) or metafile format. A metafile
describes a picture in terms of lines and text based on a grid of points. Metafiles have the advantage that they can
be scaled without losing resolution.

You can choose the density of the grid. The higher the density, the more detail in the picture. The problem for time
and result views with a lot of data points is that the higher the grid density, the more lines need to be drawn, and
many drawing programs have limits on the number of lines they can cope with.

You can set a grid based on the screen resolution, or a grid such that the width of the image is a fixed number of
points. If you are not sure what setting to use, start with Same as screen image and adjust it as seems appropriate
for your use.

Prompting to save views
Several users pointed out that it was very irritating to be asked if you want to save data that is derived from other
data, and that can easily be derived again. This is especially true when you are developing a new script application.
If you check the Do not prompt me to save unsaved result and XY views box, Signal will close and throw away
result and XY views without requiring a confirmation. As this is potentially destructive, we suggest that you don't
use this option when you care about the result or XY data.

Use enhanced Metafile format
Signal supports two metafile formats: Windows Metafile (WMF) and Enhanced Metafile (EMF). WMF is a relic of 16-bit
Windows and has limitations, but is widely supported. EMF is the standard for 32-bit programs and has many more
features. However, some graphics packages do not support this fully (this was written in late 1998, but is still true in
2007).

Use lines in place of rectangles…
This only affects metafile output. Some graphics programs cannot cope with axes drawn as rectangles; check this
box to draw axes as lines. We use rectangles to make sure that axes drawn with pens of other than hairline
thickness join up correctly.

Do not compress metafile waveform output ...
When generating metafiles (and also when drawing to the screen, though that is not affected by this option) Signal
can save space and time by drawing waveforms with a large number of points per pixel as a series of vertical lines,
one pixel apart. This does not result in drawing errors because there are already many waveform points drawn on
top of each other.

When drawing to a metafile this can cause problems, as there is not the same match between the vertical line width
and vertical line spacing. If you check this box, no such compression is done when you generate a metafile. For the
most precise metafile data, set the Metafile output resolution to screen*16 and check this box.

Signal Version 6.06

10-188

Sampling

The Sampling tab contains user preferences
relevant to the sampling of data.

Directory for new data
When Signal samples data, the new data is stored
in a temporary file while it is being collected and
only stored in a final CFS file when the file is
saved. The Directory for new data field sets the
directory in which Signal puts this temporary file. If
this field is blank, Signal will use the current
directory (which may not be where you expect), so
it is a good idea to set one. If you want to save
over a network, for example, or store new data files
on media that is slow to write, you can use this
field to ensure that the temporary file directory
(which is where all the real-time writing occurs) is
on a fast hard disk.

When you save a new data file, Signal prompts you for the file name. What happens next depends on where you
choose to save the file. If the file is on the same volume (disk drive) as the temporary file, Signal just renames the
file. If the volume is not the same, Signal copies the file, then deletes the original.

Prompt for file comment after sampling
The Prompt for file comment after sampling item is used to encourage entry of a file comment when a new data
document has been created by automatically popping-up the file comment entry dialog.

Assume Power1401 hardware
In order to correctly show the sampling rates attainable and limits to the pulse output resolution, Signal needs to
know if Power1401-class hardware (having a 10 MHz internal clock frequency) is in use. Signal tries to detect the
1401 type automatically when it starts up, this check box sets whether Signal will assume the presence of a
Power1401 if it cannot detect the 1401 type directly. As all modern 1401s have a 10 MHz clock available, you
should leave this checked unless you know you are going to be using a 1401plus or micro1401.

Defer on-line y-axis optimise to sweep end
If a channel display is optimised in the y-direction and this check box is checked, Signal will wait until the sweep
finishes before scanning the data collected in order to perform the optimisation, thereby ensuring that a complete
sweep of data is used. If this box is unchecked then the optimisation will be done using only the data collected so
far in that sweep. This may mean no data has been collected and axes will be set to default limits which may well not
be ideal.

Show decorated states information in window title
When sampling using multiple states, Signal will display the frame state number (with optional state label) in the
window title bar for frame zero. This is intended to make it easier to see what is going on during data acquisition.
Signal can also display extra information showing the progress of the states sequencing or, if an auxiliary states
device is in use, the auxiliary states device settings. This extra information is only shown if this check box is ticked,
otherwise the state number and label only are shown.

Voltage range for 1401 ADC and DACs
Most 1401s have a ±5 Volt input range, but some are set up for ±10 Volts; more modern 1401 hardware can be
switched between these voltage ranges using the Try1401 application. Signal detects the voltage range in use
automatically in recent 1401s, but you must set it manually for the 1401plus. Choose from 5 Volt, 10 Volt and Last
seen hardware, note that this choice is not changing the hardware; it is changing how Signal expects the hardware
to be configured (or, in the case of Last seen hardware, telling Signal to reconfigure itself every time it opens a
1401). You will be warned if Signal detects a conflict between the current preference settings and the installed
hardware, normally you can simply tell Signal to adjust itself to match the hardware now being seen. The voltage

Edit menu

10-189

range setting affects scaling in the sampling configuration and DAC output values in the output sequencer. It has
no effect on scale values in previously sampled data files. If a sampling configuration generated with the voltage
range set to 5 volts is read into a copy of Signal set up for 10 volts or vice versa, the scalings in the configuration
are automatically adjusted to keep things correct. Older sampling configurations (from before Signal version 4.06)
do not include this voltage range information and may need adjusting.

Maintain display of ADC range online
When a programmable signal conditioner settings are changed or a telegraph voltage changes during sampling, the
display y-range for the relevant channel can do one of three things. Never, keep the y-axis limits will keep the y-
axis unchanged. In this case there may be no visible indication that the amplifier gain has changed although the
resolution of the data may change. Maintain it if Showing All range will alter the y-axis when the gain changes to
show the new full range of the ADC provided the full range was previously displayed. Maintain ADC range
percentage will maintain the ADC range previously displayed but show the new values corresponding to the
amplifier settings. In all cases you should note that, for example, data drawn at 3 mV would continue to be drawn at
3 mV. It is only the axis limits that may change.

Auxiliary states device
Auxiliary states devices are optional hardware, normally stimulators, which can be automatically controlled during
sampling and configured differently for each sweep state. You can select an auxiliary states device (or none) for use
during installation; your choice of device can be changed here at any time.

OutputResets...
Press this button to open the dialog for the application-wide output reset settings. These allow you to define DAC
and digital outputs that will be set before and after any sampling, for example to ensure that a stimulator is reliably
turned off.

Output Resets

In most cases, when sampling is not in progress the
signal levels on 1401 outputs are of no interest to the
researcher, but if an output is driving equipment that
needs to be held in an inert state (for example a skin
stimulator) it can be very important (if only for the
peace of mind of the experimental subject) to ensure
that the 1401 outputs are in the 'off' state before
sampling starts and are reliably restored to this state
when sampling finishes. This can be a particularly
difficult problem if sampling stops during the middle of
a sweep as the 1401 outputs will be left in whatever
state they were at the point where sampling stopped.
To avoid such problems, Signal provides mechanisms
to define and apply forced output resets. There are two sets of forced output settings; application-wide settings
which are controlled by this dialog available from the Sampling page in the preferences and a separate set of values
held in the sampling configuration information. The two sets of information are very similar; any reset level defined
for an output in the sampling configuration overrides the corresponding application-wide settings for the same
output. Note that if you do not have outputs that need to be controlled in this manner you do not need to make use
of these settings.

DAC outputs
All reset DAC values are defined in volts, each DAC has a check box which enables the use of the reset value.

Digital outputs
There are separate fields for the main digital outputs used by the pulse outputs and the DIGOUT sequencer
instruction and for the lower digital outputs used by the DIGLOW sequencer instructions. Each field is eight
characters long with the first character controlling the highest output bit and the last character controlling the

Signal Version 6.06

10-190

lowest bit. An 'x' character leaves the corresponding output bit unchanged, a '0' clears the output bit (sets it to TTL
low) while a '1' sets it (TTL high).

Ramp DACs to desired voltage over ...
It may be necessary to avoid simply setting DAC outputs to the required voltage and instead ramp the output level
to the correct level over a period of time. This option is not currently available but if required by significant
numbers of users will be implemented in a future release.

Apply when application starts
If this check box is set then the application-wide output reset settings will be applied when Signal starts.

Apply when sampling starts
If this check box is set then the application-wide output reset settings will be applied when sampling is about to
begin.

Apply when sampling finishes
If this check box is set then the application-wide output reset settings will be applied when sampling has finished.

ADC and DAC range in older sampling configurations

In Signal version 4.06, the sampling configuration information saved on disk was extended to include the 1401 ADC
and DAC voltage range for which it had been generated. This allowed sampling configuration information to be
automatically adjusted for the 1401 ADC and DAC range currently in use so as to maintain correct calibration - the
same voltage on a 1401 ADC input will represent the same calibrated value and the voltages generated on the DAC
outputs will be the same. This will allow sampling configurations to be moved between different systems without
problems.

Older Signal sampling configuration files do not contain any 1401 ADC and DAC voltage range information and
this prevents Signal from making any adjustments - it has to assume the ADC and DAC scaling information is
correct. Usually this presents no problem at all, but if the sampling configuration file was set up with a 1401 ADC
and DAC range which is different from the current 1401 then the calibrations will be incorrect. In most cases, the
issue is simply that the sampled data values will be a factor of 2 too large or too small and this can be corrected-for
in the analysis or by re-calibrating data files. There could be more significant problems if stimulator levels
(controlled by DAC voltages) are incorrect or if your experimental methods depend strongly upon measurements
taken during the experiment - for example if you start by measuring the TMS stimulation level that produces a
threshold response. Because of this, Signal generates a warning message if it encounters a sampling configuration
without 1401 ADC and DAC voltage range information.

If you encounter this warning message you should not assume that there is a problem. Nearly all 1401s use a 5V
ADC and DAC range and, if your 1401 hardware is 5 volt or you have no reason to believe that the sampling
configuration was set up for a different 1401 ADC and DAC range, you can assume that all is well. If you want to be
sure you should check that the ADC and DAC scalings in the sampling configuration are correct, the 1401 voltage
range is shown in the Ports configuration page of the sampling configuration dialog.

If you save the sampling configuration data back to the same disk file, the new data will contain 1401 ADC and
DAC range information and you will not be warned again.

Edit menu

10-191

Conditioner

This tab lets you select the signal conditioning
hardware you wish to use, set the COM port used by
a signal conditioner and provides support for
debugging signal conditioner connections.

Conditioner type
You can select the signal conditioning hardware you
wish to use (or none) during Signal installation; your
choice of hardware can be changed here at any time.

COM port for signal conditioner control
Most, but not all, signal conditioner hardware is
controlled using a serial (COM) port. If the hardware
you have selected is controlled in this way you can
select the COM port used here. You can select any
port in the range COM 1 to COM 19. Every time you change the port, Signal searches for any conditioners
attached to it and will update the status panel.

First channel
This item is used to optimise the search for connected signal conditioners. For the 1902 signal conditioner the
search for connected 1902s will start with the selected First channel so if the lowest channel number in your set of
1902s is higher than zero you can speed things up by setting this to your first 1902 channel number.

Last channel
This item is used to optimise the search for connected signal conditioners. For the 1902 signal conditioner the
search for connected 1902s will continue until at least the selected Last channel and will only stop when a 1902
with a higher channel number than Last channel is not found. Therefore this can be set to your last 1902 channel
number, but you can also leave it set to zero of there are no gaps in your 1902 channels (which is the normal case).

Dump errors to Log window
If you have trouble working out why your signal conditioners are not being detected, check the Dump errors to
Log Window box to have diagnostic messages written to the Signal log window.

Status
The Status panel below gives information on the type of signal conditioner support that is in use. If it can detect
one or more signal conditioners, it also holds information about the channels that have conditioner support.

Signal Version 6.06

10-192

Script

This tab contains items regarding the script editor
and script behaviour.

Save modified scripts and sequences
before they run
Check this box so that any changes to a script will
be automatically committed to disk before the
script is run. This check box also enables
automatic saving of modified sequence text before
sampling is carried out.

Enter the debugger when a script has a
runtime error
If this box is checked then if a runtime error (a fatal
error that stops script execution) occurs while
executing a script happens then the script view will be displayed with the debugger running. This allows the user to
check on the values stored in the variables as well as looking at the call stack.

Maximum text lines in Log window
You can use this field to prevent huge amounts of text accumulating in the Log view. If there are more lines of text
in the Log view than set here, and a script writes more, the oldest lines are deleted to leave room. Set this item to 0
for no limit.

Scheduler

This tab limits the processor time consumed by the
Signal user thread while sampling and idling with a
script running. If Signal takes too much time, the
system feels unresponsive. It does not affect the
time-critical thread that writes sampled data to disk.
You can read more about threads below. Signal
runs a background routine when it has idle time
and also periodically on a timer. The routine
handles the following tasks:

· When sampling, it gives windows a chance to
detect that the maximum time has changed,
which may cause windows to update and
processing to occur. Any invalidated windows
will update the next time Signal gets idle time.

· If a script is running, it gives any "idle function"
in the script a chance to run.

· In automatic file naming mode it starts the next file running.

There are three fields that limit the time used in the background routine. They have no effect on the time used when
Signal runs a script that does not idle (see the Yield() or YieldSystem() script commands for this). The
standard values work for most cases.

Minimum gap between timed update routine end and next start
If the time interval set by this field passes without the background routine running, it is scheduled to run as soon
as possible. You can use values in the range 1 to 200 milliseconds. The standard value is 20 milliseconds. The lower
the value, the more time Signal will spend on background processing relative to other applications. This field also
limits the time that Signal will sleep for (see the discussion of threads, below).

Edit menu

10-193

Maximum duration of script idle before Signal sleeps
When Signal gets idle time (see the discussion of threads, below), you can limit the time it uses before Signal goes
to sleep. Signal uses idle time to run script idle routines, such as those created by ToolbarSet(0,...). You can
set from 0 to 200 milliseconds (0 means no time limit). The standard value is 10 milliseconds. The larger the value,
the more the script idle routine runs at the expense of other applications.

Maximum script idle cycles before Signal sleeps
As an alternative to limiting the script idle routine by elapsed time, you can limit it by the number of times it is
called. You can set from 0 to 65535 times (0 means no limit). The standard value is 0. Setting both this and the
Maximum duration... field to 0 is unkind to other applications. Setting this to 1 is the most generous to other
applications.

About threads
A thread is the basic unit of program execution; a thread performs a list of actions, one at a time, in order. To give
you the impression that a system with one processor can run multiple tasks simultaneously, the system scheduler
hands out time-slices of around 10 milliseconds to the highest priority thread capable of running. Tasks at the same
priority level share time-slices on a round robin basis. Lower priority tasks rely on higher priority tasks "going to
sleep" when they have nothing to do or when they are blocked (for example, waiting for a disk read). If this did not
happen, low priority tasks would not run.

When Signal gets a chance to run, it processes pending messages such as button clicks, keyboard commands,
mouse actions and timer events and then updates invalid screen areas. Finally, Signal is given idle time until it says
it does not need any or new messages occur. If Signal needs no more idle time it sleeps until a new message
appears in the input queue. The Minimum gap... timer wakes up Signal if nothing else happens.

Clamp

This tab is used to control aspects of the clamping
features provided in Signal. There are three
options available.

Use Signal features for patch, voltage and
current clamp
This option controls the availability and visibility
of Signal features used for patch, voltage and
current clamp experiments. The features controlled
by this option are the online clamping support
(including dynamic clamping), leak subtraction
analysis and the generation and analysis of
idealised single-channel traces. If you are not
involved with patch, voltage or current clamping
work then you may want to use this option to turn
off and conceal these features to avoid confusion.

Fully disable dynamic clamping
This option disables the use of dynamic clamping during sampling, even if the sampling configuration contains
dynamic clamp models, it is intended to allow the use of sampling configurations with dynamic clamp settings with
1401 types that do not support dynamic clamping.

Auxiliary telegraph amplifier
This option controls the use of the auxiliary telegraph support which can be used to interface with the Axon
Instruments (now Molecular devices) MultiClamp 700 and AxoClamp 900A amplifiers and the Heka EPC 800
amplifier. The auxiliary telegraph amplifier type to be used can be selected during Signal installation; the installation
choice can be changed here at any time. Note that telegraph support using analogue levels sampled by the 1401 is
always available in addition to any auxiliary telegraphs in use.

Signal Version 6.06

10-194

Compatibility

This tab contains options for reverting Signal
behaviour to that of earlier versions. As stated in
the dialog, please change any scripts that depend
upon the old behaviour provided by these check
boxes - they may be removed in a future release of
Signal. There are currently four options available:

If showing frame zero, switch to frame 1
when sampling finishes
Signal changed in version 4.03 to show the last
sampled frame - the most recent saved data - when
sampling finishes. Checking this box will cause
Signal to revert to showing frame 1.

Don't defer sampling stop until the end of
the current sweep
Signal changed in version 5.09 so that if you pressed Stop while a sampling sweep was in progress, Signal did not
stop sampling until the current sweep had finished. Checking this box will cause Signal to revert to stopping
sampling immediately which can leave a partial sweep behind that will be discarded when sampling finished.

Use old default dialog font for backwards compatibility
Version 6.03 sets the equivalent of DlgFont(1) each time the script starts rather than the old default of
DlgFont(0). This generates better-looking text, however, it is possible that this will change the layout of user-
defined dialogs, which could cause text to vanish, making a dialog difficult to use. Check the box to force the old
behavior.

Allow float script var to be passed as integer reference matching 6.02
In earlier versions of Signal, for historical reasons it was possible to pass a floating-point variable to a function
where a reference to an integer variable was required. This resulted in the function having an integer variable that
was actually floating point and could hold non-integer values. We have prevented this in version 6.03, but provide
this checkbox (for now) so that any old scripts that actually use this will still work. Please, if you find you have to
use this option, change the scripts in question as well!

View menu

11-195

View menu

This menu controls the appearance of the Signal data and XY windows, other menu commands are used to control
the appearance of text-based views.

Toolbar, Edit bar, Status bar

These three commands enable and disable the display of the application toolbar, the edit toolbar
and the status bar. The toolbar is the array of buttons normally displayed below the Signal menu
bar. The edit bar contains buttons for special functions valuable with text views. The status bar is
always at the bottom of the application window and displays information about the current
(highlighted) view. These items display a check mark if the corresponding bar is displayed, click on
the item to toggle the display state.

These bars can also be shown and hidden by right-clicking on an unused area of the application
window to open a pop-up menu. This menu can show and hide other types of toolbar. The script and sample bars
are described in the Script menu and Sample menu sections. The debug bar is described in the script language
documentation.

Next frame, Previous frame

These commands, together with the buttons at the bottom left of the data window and the shortcut keys PgUp and
PgDn, change the current frame to the next or previous frames in the data document. If the current frame is the first
or last frame in the document then the corresponding menu item and button are greyed out. The Ctrl+PgUp and
Ctrl+PgDn shortcuts change to the last or first frame in the document. When sampling is in progress Ctrl+PgUp
switches to always showing the last frame filed, until the frame is manually changed, using PgUp to move to the last
frame does not cause this effect.

Goto frame

This command (shortcut Ctrl+G) opens a dialog to allow you to enter a frame number to move to directly.

Show buffer

This command (shortcut Ctrl+B) toggles between showing the frame buffer and the current frame. When the
buffer is shown, the menu item is shown checked, and the view title is modified to show that the buffer is visible.
The frame buffer is a separate frame of data ‘behind’ each open CFS file which is provided by Signal. See Analysis
menu for more details of the frame buffer.

Overdraw frames

This command (shortcut Ctrl+D) switches the display between normal mode, displaying the current frame only,
and overdraw mode, which displays all of the frames in the frame display list as well, either behind one another or
using a 3-dimensional representation. If the frame display list is empty at the time when overdrawing is enabled it is
set to 'all frames'. When overdraw mode is enabled, this menu item is shown checked.

The frame display list defines frames to display in addition to the current frame, it is set using the Overdraw
settings... option. These additional frames use different colours from the current frame trace. They can either all
have the same colour, set using the View menu Change Colours command, or each frame can have a different
colour.

Signal Version 6.06

11-196

Add frame to list

This adds the currently displayed frame to the frame display list. If overdraw mode is enabled, all frames in the
frame display list are displayed along with the current frame. If the current frame is in the display list, this command
becomes Remove frame from list. Adding or removing a frame from the display list in this way will destroy any
dynamic behaviour of the list. For example: if you have requested to overdraw all tagged frames and then add
another frame using this menu item, the display list will then remain fixed even if you subsequently tag or un-tag a
frame.

Overdraw settings...

This command (shortcut Ctrl+Shift+D) opens a dialog that sets the frame
display list and also controls the manner in which overdrawn frames are
displayed. The upper part of the dialog is used to enable frame list
overdrawing and to define the frames to be overdrawn, the lower part
controls the optional 3D overdraw mode.

At the top of the dialog there are check boxes to turn on frame overdrawing
and to enable 3D overdrawing. There is another check box at the bottom of
the dialog which causes immediate display updates as you change fields in
the dialog; very useful for getting a display just right.

Frame selection
The next items select the data frames to be overdrawn. Set the frames either
by entering a list of frame numbers directly or by using the drop-down list
to select a category of frames from: All frames, Current frame, Buffer,
Tagged frames, Un-tagged frames, Frame state = xxx and Last n
frames. A subsidiary field below allows a subset of these frames to be
defined.

When used during sampling an extra Sampled frames option is available;
this enables a minimum-delay overdrawing mode where the previously sampled frame data is not erased and new
data is simply drawn on top of it. See Overdrawing online below for more about this mode and overdrawing online
in general.

If you select Frame state = xxx the Selected frame state field appears, use this to select the state number to be
displayed. Similarly if you select Last n frames an extra field appears for the number of frames wanted, this selects
the number of frames before the current frame when used offline, and the number of frames most recently filed to
disk when used online.

The frame list is dynamic so that, for example, if you request all tagged frames and subsequently tag a frame it will
be added to the overdrawn frames.

Colour usage
This item selects the colours used for overdrawn frames. You can choose between the following options:

Use overdraw colour Draw all overdrawn (non-current) frames using the Overdraw colour defined in the
colour settings.

Use colour cycling Draw overdrawn frames using the Signal colour cycling table. Each frame is drawn
using the next colour in the table, wrapping round when the end of the table is reached.

Draw at half intensity Draw overdrawn frames using a colour halfway between the channel trace colour and
the channel background.

No colour variation Draw overdrawn frames using the same colour as the current frame – the standard trace
colour.

Fade to background Draw overdrawn frames in a colour that fades from the trace colour to the channel
background colour.

Fade to overdraw colour Draw overdrawn frames in a colour that fades from the trace colour to the defined
overdraw colour.

View menu

11-197

Fade to secondary colour Draw overdrawn frames in a colour that fades from the trace colour to the channel
secondary colour.

Colour by frame state Draw overdrawn frames using a colour taken from the colour cycling table, each frame
is drawn using a table colour indexed by the frame state, wrapping round the end of the
table as necessary.

Frame limits
The next two items, labelled Maximum overdrawn frames and Maximum time range overdrawn, can be used to
set limits to prevent overdrawing from taking too long. Leave these fields set to zero if you do not want to apply
such limits. If applied, these limits will restrict overdrawing to those frames closest in number or frame start time to
the current frame.

3-D overdrawing
If you enable 3D overdrawing using the check box at the top of the dialog, data is drawn as a 3-dimensional ‘stack’
of frames, with the current frame at the front and older (lower-numbered) frames behind (you cannot show frames
after the current frame – we found it made things impossibly confusing). To create the 3D effect, each frame is
drawn inside a rectangle, and the position and size of the rectangle depends on a notional z axis. The z axis can be
based on the frame’s position in the frame display list, the frame number or the trigger time of the frame.

3D drawing rectangles

In this example, there are three frames of data. The Front rectangle, used for the current frame, is always positioned
at the bottom left of the channel area. The Rear rectangle, used for the oldest (lowest-numbered), is always
positioned at the top right of the channel area. The middle frame also has a rectangle that is calculated by a linear
interpolation between the front and rear rectangles based on the z axis position of the frame.

The dialog fields concerned with 3-D overdrawing control the positioning of the front and rear rectangles:

X axis space for 3D effect
This field sets the percentage of the width of the channel area to use for the 3D effect. The larger the value, the
smaller the width of the front rectangle. Set this and the Perspective X size fields to 0 to make all frames draw
vertically aligned.

Y axis space for 3D effect
This field sets the percentage of the entire view vertical space to share between all the channels to generate the 3D
effect. All channels are given exactly the same space so that the 3D effect is the same for all channels. The larger
the value, the smaller the height of the front rectangle.

Perspective X size
This sets the width of the rear rectangle as a percentage of the width of the front rectangle in the range 0 to 100.
Setting a value less than 100 gives a perspective effect.

Signal Version 6.06

11-198

Perspective Y size
This sets the height of the rear rectangle as a percentage of the height of the front rectangle in the range 0 to 100.
Setting a value less than 100 gives a perspective effect.

Z axis is scaled by the frame
The position of each frame of data (between the Front rectangle and the Rear rectangle) can be set by the frame
index within the display list (giving equally spaced frames), the frame number within the file, or by the frame trigger
time (as shown for the current frame in the status bar). Choose from Index, Number or Time.

Notes
The 3D display mode behaves in exactly the same way as ordinary overdrawing except that the overdrawn frames
are offset and scaled. There is one other difference; only frames from earlier in the file than the current frame will be
overdrawn, ensuring that the current frame is at the front and the oldest overdrawn frame is at the back.

The 3D display mode makes no difference to any measurements you may make with cursors, the X and Y axes that
are displayed match the current frame that is displayed at the front.

Overdrawing online
When 3D overdrawing is used on data while it is being sampled the special frame zero behaves as if it is after all the
other frames in the file – where it will be if it is written to disk.

The Sampled frames option is only available during sampling; it enables special behaviour where the previous
sweep's data is not erased at the start of the next sampling sweep but merely redrawn in the overdraw colour so that
the display accumulates sampled traces. This overdrawing method is very fast so as to avoid delays during
sampling, but it is also rather limited by the way it operates and as a result changes to the X or Y axis ranges
(amongst other things) will cause the previously overdrawn data to be erased and overdrawing to start again from
an empty display. The Edit menu Clear option can be used to manually clear the view of Sampled frames
overdrawn data if required. Sampled frames mode is automatically converted to All frames mode when sampling
finishes.

The Last n frames option is renamed Last n frames filed when used online. Overdraw modes that will cause a lot
of frame overdrawing (such as All frames) should be avoided online unless you use the frame limits; the time taken
to redraw many frames will seriously impact on sampling performance.

Enlarge view, Reduce view

These commands, the two buttons at the lower left of data windows and the keyboard shortcuts Ctrl+Right and
Ctrl+Left expand and contract the displayed x axis area. The enlarge command zooms out by doubling the data
region spanned by the x axis. The reduce command zooms in by halving the data region. The left hand edge of the
screen is fixed unless the expand operation would display data beyond the end of the frame, in which case the start
of the displayed area is moved backwards. If the result of expanding would display more data than exists in the
frame, all of the frame data is displayed.

X Axis range

This command, double-clicking the x axis of a data or XY view and the
shortcut key Ctrl+X open the x range dialog, which sets the region of the
view to display. The dialog also gives you the option of setting the x axis
tick spacing.

Left, Right and Width
The Left and Right fields set the window start and end. You can type in
new positions or select values from a drop down list. Each drop down list
contains the initial field value, cursor positions, the minimum and maximum
allowed values and the left and right edges of the window (XLow() and XHigh()). The Width field sets the window
width if the box is checked. Click the Draw button to apply changes without closing the dialog.

Show All expands the x axis to display all the data and closes the dialog. Cancel undoes changes made with the
dialog and closes it. Close accepts any changes and closes the dialog.

View menu

11-199

Tick spacing
Normally, you let Signal organise the x axis style. However, when preparing data for publication you may wish to
set the axis tick spacing. If you prefer a scale bar to an axis, you can select this in the Customise display dialog.

You can control the Large tick spacing (this also sets the scale bar size) and the number of Tick subdivisions by
ticking the boxes. Your settings are ignored if they would produce an illegible axis. Changes to these fields take
effect immediately; there is no need to use the Draw button.

Auto units
The Auto units selector can be used to cause the units displayed on the axis to switch to multiples of powers of
1000 in order to keep the figures sensible when zoomed well in or well out. It is only available when the Logarithmic
option is not checked. This option affects only the axis; the units used by the cursors etc will still be the same.

Logarithmic
Checking the Logarithmic option will switch the axis from linear to logarithmic; modifying the displayed range only
if it included negative values. In logarithmic mode the Auto units selector vanishes and another check box: Show
powers will appear. This allows the big ticks to be labelled with powers of the big tick spacing. As with the tick
spacing options these changes take place immediately with no need to press Draw.

Signal Version 6.06

11-200

Y Axis Range

This command, double-clicking a y axis or using the Ctrl+Y shortcut open
the Y Range dialog. This sets the y axis range and style for data or XY
view channels. The Channel field chooses one, all or selected channels. If
more than one channel is selected, the settings shown are from the first
channel.

Optimise and Show All
Optimise draws the visible data scaled to fill the display, if the channel(s)
in question are part of a group of overdrawn channels with locked axes
then all of the grouped channels are used to determine the optimal Y axis
range. Show All sets the y axis to display the maximum possible range for
waveform channels, for channels without a range limit the available data range is shown. Both buttons close the
dialog. To optimise without opening the dialog, right-click a channel and select the optimise option from the context
menu.

Top and Bottom
The Top and Bottom fields are used to directly enter the limits to the displayed data. The buttons to the right of
these fields are used to set up a symmetrical axis - clicking on one copies the current setting, negated, into the other
field.

Lock Axes and Group offset
The Lock axes and Group offset controls are only visible when the chosen channel shares a y axis with other
channels, and only enabled when the channel is the first in the group. If you check Lock axes, the grouped
channels not only share the same space, they also share the y axis of the first channel in the group. The Group
offset field sets a per-channel vertical display offset for each locked channel to space out channels within the Y
axis.

Draw applies changes to the Top, Bottom, Lock axes and Group offset fields. The axis type can be Linear,
Logarithmic or Square root. The Auto units selector can be used to select between the units displayed on the axis
being static, switching to multiples of powers of 1000 in order to keep the figures sensible when zoomed well in or
well out, or you can select the SI Prefix option which does the same thing by changing the units using SI prefixes,
for example by converting V to mV when you are zoomed in.

Cancel undoes any changes and closes the dialog. Close accepts changes and closes the dialog. The remaining
options are identical to those already described under X Axis Range.

View menu

11-201

File Information

This command (shortcut Ctrl+I) displays
information about a data document. The dialog
has two pages, one showing the overall file
information and one showing information about
the currently displayed frame. Each shows a
selection of useful information plus a list of either
the file or frame variables, for each giving the
variable number, type, name, value and units. Not
all of the file or frame variables are displayed in
this dialog so you will see gaps in the variable
numbers, the variables that are not shown are
either reserved for internal Signal use or unused.

Channel Information

Use this command to view and edit data view channel
information for the current frame. You can open it by
double-clicking a channel title, from the View menu or by
right-clicking the channel to open the context menu. You
can edit the Title of the channel set by the Channel field.
The remaining fields are hidden or displayed depending
on the channel type. For waveform channels the Units
may be changed, and the Full scale and Zero values may
also be edited. These last two are the same as the values
set in the sampling configuration when the file was
sampled originally and can be changed to re-calibrate the data. For real marker channels the Units may be changed.
For an idealised trace channel the Units may also be changed as well as the –3 dB frequency used for drawing the
trace convolution and fitting the trace to the raw data. The Reset, Apply and OK buttons are disabled until you
make a change to one of these fields. The Close button closes the dialog and does not apply any changes.

Signal Version 6.06

11-202

Channel Information (XY view)

Use this dialog to modify the XY channel titles and the X and Y axis titles
and units. You can open the dialog from the View menu, by double-
clicking on the axis title and units area or from the XY view context menu.
The OK button is disabled until you make a change. Changes are not
applied until you click OK, at which point all the changes you have made
are applied. If you click the Cancel button, no changes are applied.
Changes you make in this dialog can be recorded and can be undone.

Channel titles
Each channel in the XY view can be given a title. If a channel does not
have a title, it is listed as Channel n, where n is the channel number. You
can select the channel from the drop down list, or by using the spinner
control. All changes you make are saved in the dialog until you click OK
or press the Enter key. We allow you to enter up to 50 characters.

Y Axis
An XY view draws multiple traces using the same set of x and y axes. The displayed y axis title and units do not
belong to any particular channel, so (unlike Time and Result views), the y axis title and and units are independent
of the channels. You can set titles and units of up to 50 characters, though no more than 10 will display. When a
result view is saved, the text strings for the x and y axis titles and units have to fit in a restricted space (for reasons
of backwards compatibiity). There is sufficient space for 50 ASCII characters, but if you use non-ASCII characters
you will have room for fewer. For example, there is typically space for 17 Japanese or Chinese characters.

X Axis
You have a free choice of text for the x axis title and units in an XY view. The same comments about the length of
the text apply as for the Y Axis.

Experimenter's notebook

This command (shortcut
Ctrl+A) displays the
experimenter's notebook for a
data document. The
experimenter's notebook is a
collection of timed and dated
notes that describe the sampling
configuration settings used to
collect a file, the initial pulse
outputs and dynamic clamp
model settings, changes made
to the pulse outputs and
dynamic clamping models
during sampling, the application
of digital filters to the file and
the use of the Multiple frames
dialog to modify the file data.
Other notes indicate
occurrences during sampling
such as turning writing to disk
on or off. All of these items are
automatically generated by
Signal to record user actions,
users can also add their own
notes to the notebook both
during sampling and afterwards.

View menu

11-203

The notebook information is held in the .sgcx resources file for each CFS data file so you should take care to keep
these two files together if you do not want to lose the notebook information. Versions of Signal before 6.02 did not
generate notebook information so files created with these earlier versions will not have information available on the
sampling configuration used and other online actions, but any relevant offline actions carried out using later
versions of Signal will be recorded.

The notebook display shows the notes as a list, notes are shown along with the time and date on which they were
generated and the type of note. Different types of note are drawn using different background colours to help with
recognition. The notebook display is 'modeless', which means that you can make full use of Signal while the
notebook is being shown, the notebook display will always stay in front of the main Signal windows. Notebook
items can be selected and deselected by clicking on them, double-clicking on a note that was generated generated
during sampling will cause the data view to go to the frame sampled while or immediately after the time that the note
was generated.

Below the list of notebook items are controls used to add user-generated notes to the notebook. The main text area
is used to type the note text, below this is a selector for the note type, you can choose between Normal, Warning,
Error and Critical types. Warning, Error and Critical notes are drawn using increasingly strong background reds
to indicate the presumed increasingly severe nature of the problems being described. The Append button creates a
new note using the selected text and severity at the bottom of the notebook. The Add before button adds a new
note before the currently selected item, it is only enabled when a single note is selected and sampling is in
progress.

Right-clicking inside the notebook window provides a pop-up menu holding additional commands. The first two
commands are Add before and Append note, these carry out the same actions as the Append and Add before
buttons. The other commands available are:

Copy
This command copies all selected notebook items (or all the notebook items if none are selected) to the clipboard as
text.

Spreadsheet copy
This command is the same as the Copy command, but the text fields are inside quotes to make it easier to paste
them into a spreadsheet.

Select All
This command selects all of the notebook items. If some notebook items are already selected it changes to De-
select All.

Print
This command prints all selected notebook items or all of the notebook items if none are selected.

Standard Display

This command sets the current data, memory, XY or text view to a standard state. In file and memory views it turns
on all channels in their standard display mode and size, ordered as set in the display preferences, all special channel
colours are reset, x and y axes turned on and all special axis modes and grids off. In an XY view, all channels are
made visible, the point display mode is set to dot at the standard size, the points are joined and the x and y axis
range is set to span the range of the data.

In a text-based view it removes any maximum line limit except in the Log view, where it applies the line limit set in
the Edit menu Preferences option. It also hides line numbers, displays the gutter and the folding margin (for views
that support folding). All the text styles are set to the default values (equivalent to opening the Font dialog and
using Reset All) and any zooming is removed.

Signal Version 6.06

11-204

Customise display

This command opens a dialog that controls the channels to
display in a data or XY view, the display of x and y axes,
channel numbers, grids and of the horizontal scroll bar, plus
controls for horizontal Y axis labels.

Channel numbers, Y Axis, X Axis
The three check boxes at the top of the dialog control if
channel numbers and the x and y axes are drawn. Channel
numbers are never drawn in an XY view as all channels share
the same y axis.

Channel list, All On, All Off
The channel list contains all the channels that exist in the
view. The check boxes in the list are ticked if the channel is
visible. You can change the state of the check boxes or use
the All On and All Off buttons to set the state of all the
channels.

Draw
Most changes made in this dialog will require the view to redraw, which can take a noticeable time. Because of this,
changes are not applied until you click OK or you can apply changes without closing the dialog with the Draw
button.

Y Axis, X Axis
You also have control over the x and y axis appearance. You can hide or display the grid, numbers on the axes, the
big and small ticks and the axis title and axis units. You can also choose to show the y axis on the right of the data,
rather than on the left and choose if the Scroll bar is visible for the x axis (not in an XY view).

Scale bar
For publication purposes, it is sometimes preferable to display axes as a scale bar. If you check
the Scale only box, a scale bar replaces the selected axis and any grid set for that axis will
vanish. You can remove the end caps from the scale bar (leaving a line) by clearing the Small
ticks check box. The size of the tick bar can set by the Large tick spacing option in the Y Axis
Range or X Axis Range dialogs, or you can let Signal choose a suitable size for you.

A y axis will automatically switch to draw as a scale bar if there is not enough vertical space to
display numbers for the tick marks.

Y axis horizontal labels
Normally, the title and units text for the y axis is presented vertically unless there is very little
vertical space available. If you check Enable, the y axis text is presented horizontally and the other controls in this
region become active. The channel title is left aligned when the axis is on the left and right aligned when the axis is
on the right. The script language equivalent of this dialog section is YAxisMode(). The other controls are:

Centre units
If checked, the units are centred on the channel title. If clear, the units are aligned to match the title.

Label space
You can set the horizontal character space to reserve for the channel title and units. This is in terms of a
representative character width.

Vertical alignment
You can choose to position the text at the top, centre or bottom of the available vertical space.

View menu

11-205

Short cut to display a single channel or channel group
In a data view you can double-click on a channel with a y axis to hide all the other channels; the channel expands to
fill the entire window. A second double-click restores the display. If the clicked channel holds a group of channels,
all channels in the group expand to use the display area.

Draw mode

The Draw mode dialog sets the display mode for
channels. You can set the mode for a single channel, all
channels or any subset of the channels.

The Channel field sets the channels to change. The next
field sets the draw mode to use. Click Draw to change the
draw mode for the selected channels without closing the
dialog, click OK to change the draw mode and close the
dialog.

There are a number of other fields in the dialog, these vary
with the type of channel and the draw mode that is currentyly selected.

Waveform draw modes

There are five drawing modes available for waveform
channels: Line, Histogram, Skyline, Dots and Cubic
Spline. Line mode joins the waveform data points with
straight lines. Histogram mode draws the data as a
histogram, one bin per data point and the bin height set by
the data value. Skyline joints data points with horizontal
and vertical lines. Dots draws a dot at each data point, you
can choose the dot size (small dots can be very difficult to
see on some displays), the size goes up in steps set by the
pen width settings for that channel with zero selecting the
smallest possible dot: one pixel. Cubic Spline mode joins the points with smooth cubic curves based on the
assumption that the first and second derivatives of the data are continuous at the data points.

If your view has associated error information, for example a waveform average with error bars enabled, you can set
the error display mode as: None, 1 SEM, 2 SEM or SD. Error bars only have meaning if the data points that
contribute to the average have a normal distribution about the mean. Given this, 1 SEM shows ±1 standard error of
the mean, 2 SEM is ±2 standard errors of the mean and SD is ± 1 standard deviation. If each point of your data can
be modeled as a constant "real" value to which is added normally distributed noise with zero mean then you would
expect the measured mean value to lie within 1 standard error of the mean (SEM) 68% of the time, or within 2 SEM
95% of the time. The standard deviation represents the width of the normal distribution of the underlying data at
each data point.

Signal Version 6.06

11-206

Marker draw modes

There are three drawing modes available for marker channels; Dots, Lines and Rate. The picture at the right shows
the result of Lines and Dots modes.

The simplest method is to draw the marker channel as dots. You can choose the dot size (small dots can be very
difficult to see on some displays), the size goes up in steps set by the pen width settings for that channel with zero
selecting the smallest possible dot: one pixel.

You can select which marker code byte is displayed with the Use marker code selector, normally marker code byte
index 0 is shown but you can select any of the four code bytes. You can also choose to display the marker code
values as single characters (where the code value is an ASCII displayable character) or as Hexadecimal only (two
base 16 digits) regardless of the code value.

The Show colours for marker codes check box selects drawing the dot using a colour selected by the marker
code, the colours used are the overdraw cycling colours as set in the View menu Choose colours dialog. If the
check box is clear the dot is drawn in the same colour as the marker codes as set in the colours dialog.

You can also select Lines in place of Dots, which draws a small vertical line at the position of each marker. The
picture to the right shows the result of both types of display. If you select lines mode the display of marker values
is suppressed. The Centre line check box selects drawing of a horizontal line through the centre of the vertical
marker lines. The Show colours for marker codes check box selects drawing the vertical lines using a colour
selected by the marker code as for Dots.

The Rate display mode counts how many markers
fall in each time period and displays the result as a
histogram. The result is not divided by the width
of the bin, so strictly speaking it is a count
histogram, not a rate. This form of display is
especially useful when the marker rate before an
operation is to be compared with the rate
afterwards.

View menu

11-207

Real marker draw modes

There are four drawing modes available for marker channels; Dots, Lines, Rate and Waveform, the first three of
these are the same as the normal marker draw modes and have the same options available.

The real marker Waveform drawing mode is rather
different. Here the marker channel has a Y axis and
each marker is drawn at a position set by the
marker time (X) and the marker real value (Y). If the
real marker channel has more than one value per
data item then the real value that is used can be
selected using the Data index field, data indexes
start at 0 for the first real value.

The Marker field sets the symbol drawn at each
marker point, you can choose between None, Dot,
Box, Plus +, Cross x, Circle o, Triangle, Diamond, Horizontal or Vertical, the Size field sets the marker size in
steps set by the pen width for the channel. Similarly, the Line type field sets the type of line connecting the marker
points, you can choose between None, Solid, Dotted and Dashed, the line width is set by the channel pen width.

The Show colours for marker code check box enables drawing of the marker symbols in colours set by the
selected marker code, the colours used are the overdraw cycling colours as set in the View menu Choose colours
dialog. If the check box is clear the marker symbol is drawn in the same colour as any connecting lines as set in the
colours dialog.

Idealised trace draw modes

There are three drawing modes for idealised traces: Basic,
Convolution and Both. Basic mode draws the trace as
horizontal lines representing event amplitudes separated
by vertical lines for the transitions. Closed states are
drawn in a different colour. There is an optional Trace
offset to allow the trace to be drawn below or above the
raw data when displayed with a shared locked axis.

The Convolution is a continuous curve formed by the
convolution of the Basic idealised trace and the step
response function. The step response function is the error function erf() defined as the integral of the Gaussian
function. This is because it is assumed that the raw data was filtered using a close approximation to a Gaussian
filter. The cut-off frequency for this filter can be changed by using the channel information dialog. For an idealised
trace generated using threshold crossing the cut-off frequency will be set to the Nyquist frequency by default.
There is also an optional baseline indicator which will show the level of the baseline for a selected event.

Drawing Both shows both the Basic display and the Convolution at the same time. It is possible to "break" the
drawing of an idealised trace if it is taking too long; hit Ctrl+Break and the drawing will be abandoned.

Channel Pen Width

The Pen Width dialog in a data or memory view allows you to override the
standard pen width set for data in all channels in the Edit menu
Preferences dialog. The dialog can be opened as a context menu when
right-clicking on a channel, or from the View menu. Changes made with
this dialog can be undone and recorded as a script. For XY views, use the
XY Draw Mode dialog to set the pen width of a channel.

Channel
You can select a channel from the drop-down list or type in a channel or a list of channels. If more than one channel
is set, the displayed information will be for the first channel in the list.

Signal Version 6.06

11-208

Pen Width
If you check the box, you can type in a pen width in points and when you click OK, this will be applied to all the
channels in the list. If you clear the box, the standard pen width for data that you can set in the Edit menu
preferences tab will be applied on OK and you will not be able to edit the value. A point is 1/72 of an inch, which is
about the same size as a pixel. If you set a size of 0, the pen size will be 1 pixel on all devices (which can be very thin
on a printer). You can set a fractional point size, but the output pen will always be at least 1 pixel wide.

Channel Image

You can set an image file to provide the background to any channel in a data or XY view. This can be very useful in
an XY view when the XY view is being used to map activity. For example, when the view is showing where spiking
activity occurred in a maze, or when tracking a target. The menu command opens a dialog:

The dialog is used to select a channel and then link the
channel to a suitable file on disk. Any channel in the
view can be associated with an image. The name of the
file appears in the Image file section of the dialog. The
image is rendered on top of the channel background
colour, but below all other items that are drawn. When
channels are overdrawn, the image appears when the
background colour of the channel would be drawn. The
dialog fields are:

Channel
You can select any channel in the current view.
However, if you are in an XY view, all channels share
the background, so the choice of channel makes no
difference. When you change channel, any Rectangle
region changes that have not been applied will be lost and the current settings for the new channel will appear in
the dialog.

Mode
There are three mode settings: No display, Fill Background and Fill Rectangle.

No display No image is displayed. This allows you to have an image loaded, ready to display. This will save
the time needed to load the image from a disk file.

Fill Background The image is scaled so that it fills the available channel rectangle. You would use this when you
want to display the entire image as a background for the channel.

Fill Rectangle The image is scaled so that it fills a rectangle defined in channel x and y axis units. You would
use this when the image must be aligned with the axes. For example, if the x and y axes
represented co-ordinates in a maze, the image could be a picture of the maze.

Changes made to the mode field are applied immediately, so you can see the effect.

Opacity
This field is a slider control that you can drag to the left to make the image transparent and to the right to make it
opaque. Changes made by dragging are applied immediately.

Rectangle
The fields within this area are disabled unless the mode field is set to Fill Rectangle. The Left, Right, Top and
Bottom fields refer to the x axis and y axis co-ordinates of the image. In the current implementation, you cannot
invert or reflect the image; if you do it will not appear.

Fetch
This button sets the Left, Right, Top and Bottom fields to the values that would make the image fill the channel
background.

View menu

11-209

Apply
This button is enabled when in Fill Rectangle mode and the current rectangle settings are legal number and do not
match those of the channel. Click the button to apply the new values.

Clear
Click this button to clear any image set for the channel. This releases any resources used to hold the bitmap.

Paste
This button is enabled when the clipboard holds suitable image information, it saves the clipboard information as
the background image for the channel, the image file name is set to <CB> to indicate that the background image is
taken from the clipboard. The image information is not stored and will not be reliably restored when the file is
closed and re-opened, but as the <CB> 'filename' is stored, the background image is refreshed with any suitable
data that happens to be on the clipboard when the file is re-opened.

Browse...
Click this button to open a file dialog in which you can browse for a suitable .bmp, .jpg, .png or .tif file.

Cancel
Click this button to close the dialog and undo any changes made since the last channel change.

Close
Close the dialog, leaving the associated channel in the current state.

This command is experimental and is implemented in a simplistic manner. If you reuse the same image for multiple
channels we do not notice, and store the image multiple times, which could be a problem if you use huge images on
many channels.

Signal Version 6.06

11-210

XY Draw Mode

This command is used in XY windows to set the drawing
style of the XY data channels. Click OK to make changes
and close the dialog, click Apply to make changes without
closing the dialog. Cancel closes the window and ignores
any changes made since the last Apply. The Channel field
sets the channel to edit. If you change the channel, the
dialog remembers any changes you have made so there is
no need to use the Apply button before changing channel unless you want to see the change immediately. The
settings available are:

Join style
You can set six join styles for a channel. In Not joined style, no lines are drawn between data points.
In Joined style, each point is linked to the next by a straight line. In Looped style, the points are
joined and the final point is linked back to the first point. In Filled style, the data points are not joined,
but they are filled with the XY channel fill colour. In Fill and frame style, the first and last points are
joined and linked by a line and the channel is filled. In Histogram style, the XY data is drawn as a

histogram with a baseline at zero, each XY point defining the left edge of a histogram bin with the bin extending to
the next XY point and the histogram bins filled with the XY channel fill colour. The Line type and Width fields set
the kind of line that joins the points in Joined, Fill and Frame and Histogram styles.

Line type and Width
These two fields set the type of line used to join data points. The Width field determines how wide the line is, in
units of half the data line width set in the Signal Preferences dialog. If you set a Width of other than 1, the Line
type field is ignored and a solid line is drawn.

Marker and Size
The Size field sets how far, in points, the markers extend around their screen position. A size of 0 makes the
markers invisible. There is a wide range of marker styles to choose from, including boxes, circles, triangles and
vertical and horizontal bars.

The picture to the right shows a screen dump of all the marker styles in sizes 1 to 10. If you need to tell them apart
on screen, sizes below 3 should be avoided. If you have excellent eyesight and a high-resolution printer, size 1 is
viable in printed output.

Options

This command is for XY windows only and opens the XY options dialog. This dialog
controls the XY window “key”. The key is a small region to identify the data channels
that you can drag around within the XY window. For each visible channel it displays
the channel name and draws the line and point style for the channel. The dialog also
has a check box that controls the automatic expansion of the axes when new data is
added. The equivalent script language command is XYKey().

This example (made by the clock.sgs script in the Scripts folder) shows the key.
You can choose to make the key background transparent or opaque and choose to
draw a border around the key. If you move the mouse pointer over the key, the pointer changes to show that you
can drag the key around the picture. Double-click the key to open the Options dialog.

View menu

11-211

Font

This command sets the font that is used for
the current view and in other windows
connected to the current view. The font
selection dialog is generated by the
operating system, and varies with the
version of Windows.

The font size changes the space allocated to
data channels in a data view. Smaller fonts
give more space to the channels, however
fonts need to be large enough to read
easily. You can set different fonts in each
data or text window.

 In a text-based view, this command opens
the text editor settings dialog for the current
text view type where you can set fonts and
text styles for view. This is described in the
Edit menu Preferences dialog under the
Display tab.

Use Colour and Use Black And White

If you have a colour monitor, you can choose to display your data files in colour. The Use Colour menu item
switches from black and white data displays to colour. If you change to colour, the menu item changes to Use To
Black And White. You may prefer to work in monochrome if you have to print the end result in black and white.

Change Colours

You can choose the colours that are used for almost everything in Signal. The Change Colours dialog controls
data and XY view colours (use the Font dialog to controls colours in text-based views). To open the Change
Colour dialog, use the View menu Change Colours command or click on the palette in the main toolbar. The dialog
has multiple sets of colour selections which are selected using the drop-list at the top left, plus a palette of
generally useful colours on the right. The colour sets available are: Application colours, Overdraw cycling colours,
View colours, Channel primary colour, Channel secondary colour, Channel background colour. The Application
and Overdraw cycling colours pages are always available, the others are only available when a data or XY view is
active and act to optionally override the application colours for that view only.

Colour choice overrides
To avoid your data, axes and other items becoming invisible if you choose a colour for them that is the same (or
very similar to - the minimum allowed contrast varies with what is being drawn) the background colour, Signal will
on occasion override your selected colours and replace them with colours that are certain to be visible. This colour
choice override can be disabled in the display preferences if necessary.

There are two ways to assign a colour to an item in the currently displayed colour set:

1. Select an item by clicking on it (or select multiple items by holding down the Control key while clicking) and
then click on the palette to the right to assign a palette colour to the list item(s).

2. Double-click on a list or palette item to open a colour picker that is used to directly choose a colour for that
item. You can also right-click on a palette item to edit it without affecting any selected list items.

The colour palette, application colour and overdraw cycling colour tables apply globally to the Signal application
and are stored in the Windows registry so that they can vary from user to user. The view and channel colour
overrides are specific to a data file and are stored in the .sgrx resources file associated with the data file or in the
sampling configuration information for new data files.

Signal Version 6.06

11-212

Application colours
The application colour set is a list of data and XY view items to which
colours are assigned, these are used throughout Signal unless they are
overridden by view or channel-specific colours. You can check the
result of your action with the Draw button, while the Reset All button
returns the colour list and the palette to a standard set of colours. You
can set the following (bracketed text means it can be overridden):

Channel
numbers

The channel number, used to identify and select data
channels and drag them.

Data view
background

Background colour of the entire data view (view
background)

Waveform as
line

Waveform data drawn as lines (primary).

Waveform as
dots

Waveform data drawn as dots (primary).

Waveform as
skyline

Waveform data drawn as skyline (primary).

Waveform as
histogram

Border colour for waveform data drawn as a
histogram (primary).

Waveform
histogram fill

Fill colour for waveform data drawn as a histogram
(secondary).

Markers as dots Markers drawn as dots (primary).

Markers as lines Markers drawn as lines (primary).

Marker text Marker code values (secondary).

Rate histogram
outline

Border colour for markers drawn as a rate histogram
(primary).

Rate histogram
fill

Fill colour for markers drawn as a rate histogram
(secondary).

Text labels (not
used)

Cursors & cursor
labels

All data view cursors and cursor labels.

Controls (not
used)

Data display gridAll axis grids.

Axis markings &
text labels

All axis lines, ticks and labels.

Tagged frames
background

The background colour used for tagged frames (view
background).

Overdrawn data Overdrawn frame data with overdraw colour selected
and original data in filter dialogs.

XY view
background

The XY view background colour (view background).

Standard
deviation/SEM

All data view error bars and envelopes (secondary).

Fitted data Fitted curves (secondary).

Convoluted trace Convoluted idealised trace data that has not yet been
fitted (secondary).

Closed state Idealised traces that correspond to the closed state
(secondary).

XY channel data XY view data channels (primary).

XY channel fill XY view fill colour (secondary).

XY key XY view key.

View menu

11-213

Fitted convoluted
trace

Convoluted idealised trace data that has been fitted
(primary).

Open state Idealised traces that correspond to open states
(primary).

Use the Edit menu Preferences dialog for text view colours. If you set a channel or text colour that is too similar to
the background, Signal will change the colour to keep the item visible; there is an option to defeat this in the Edit
menu Display Preferences. Script users can set application colours with the ColourSet() command.

Overdraw cycling colours
This colour set is used with overdrawn frames with colour cycling
selected in the overdraw settings. In this mode each frame is drawn
using a separate colour taken from this colour table, starting again at
the beginning when the end of the table is reached. The length of the
colour table is variable. These colours are also used when marker or real
marker data are drawn using colours set by the marker code values, here
marker code zero selects cycling colour 1, code one selects cycling
colour 2 and so forth. Again, once the end of the table is reached the
colour sequence restarts at the start of the table.

Click the Set... button to change the number of overdraw cycling
colours in the range 8 to 100. If you increase the number of colours, the
new colours will be set to black. Script users can set the overdraw
cycling colours with the ColourSet() command.

View colours
This colour set overrides the application colour set for the current view, at the moment you can only override the
view background colour. The equivalent script command for this is ViewColourSet().

Changes made on this page are applied immediately, so there is no Draw button, the Reset button returns the
selected items back to the standard colours as set in the Application colours.

Signal Version 6.06

11-214

Channel primary colour
Channel secondary colour
Channel background colour
These colour sets assign colours to data channels in the current data or
XY view which override any application or view colours. The primary
colour is used as the drawing colour for lines, waveforms, and
histogram outlines. The secondary colour is for filling histograms and
XY channels and for drawing error bars. The channel background
colour overrides the view background for the area occupied by the
channel data, for an XY view all channels share the same background.
An X in a box marks a channel with no colour override.

Changes made on this page are applied immediately, so there is no
Draw button. You can Reset the selected channels back to the
standard colours set in the Application colours page. Script users can
set channel colours with the ChanColourSet() command.

Directly changing a palette or item colour
To change a palette colour or directly edit an item
colour, double click on it to open the colour picker and
select a replacement colour.

The first seven palette colours form a grey scale from
black to white and cannot be changed. You can
replace the palette colour with any standard colour, or
you can click the Define Custom Colours... button to
select an arbitrary colour. Click OK or Cancel to exit.
You can also right-click on a palette colour entry to
change the palette colour without also changing any
selected colour item on the left.

The colour palette and application colour tables are
owned by the Signal application, not by the data file
and are stored in the registry. When Signal starts, the
palette, application, view, channel and overdraw
cycling colours are read from the registry; if there are no colours to read Signal uses defaults.

Show indices
Check this box to display the colour table index for the application colours (main and colour cycling) and for each
colour in the palette - this is a convenience for script programmers.

Script language
The script language function ColourSet() controls the palette, application and overdraw cycling colours. The
ChanColourSet() function controls the Channel primary, secondary and background colours and The
ViewColourSet() command controls the view colours.

Changes at version 5.02

Prior to version 5.02, the application, view and channel colours were all controlled by the colour palette. All
colourable items had an index into the palette and were displayed with whatever colour was at that index. This made
sense when Signal was originally written as most systems had 16 colours, some had 4 and some had only 2. It was
possible to generate intermediate colours by mixing dots of different hues, but this led to unpleasant screen effects.
Apart from limiting the available colour choice to the colours in the palette, using palette indices had the additional
effect that a change to a palette colour might change items other than those that were intended.

At version 5.02, all items now have a free choice of colour, defined by RGB (Red, Green and Blue) values in the
range 0 to 1. For example, RGB values of 1,0,0 are bright red, values of 0,0,0 generate black, 1, 1, 1 generates white
and 0.5, 0.5, 0.5 displays as a mid grey. We have preserved the palette as it is useful to have a set of colours that are

View menu

11-215

quick and easy to apply, but a colour set by clicking in the palette sets the RGB value of the palette colour; the
index into the palette is of no consequence.

We have tried very hard to make the colour system fully backwards compatible. The only difference is that if you
double click in the palette to change the colour, this only effects the currently selected item in the list on the left of
the dialog. Previously, if you changed palette item n, this would change the colour of any Application, View or
Channel colour that happened to be pointing at palette index n.

The changes should make it much easier to set colours using a script. However, we have preserved the old script
commands so that old scripts will continue to work. We very much encourage you to avoid the old script
commands in new scripts (unless they must also run in older versions of Signal). The new script commands that
allow you to set and read back colours using RBG values are: ColourGet(), ColourSet(), ChanColourGet(),
ChanColourSet(), ViewColourGet() and ViewColourSet(). You can still use the following commands, but
we suggest that your avoid them in new code: Colour(), ChanColour(), ViewColour(), XYColour(),
PaletteGet() and PaletteSet().

We have also separated out the overdraw cycling colours, which can be used used when overdrawing frames. This
allows users to customise these colours and also to us to provide more overdraw cycling colours, if needed.

The new system is more open-ended than the old, and allows us to add further colours and colour overrides in the
future.

Folding

This item, which is available for script and sequencer views, allows you to select the style of code folding margin
(including disabling code folding), while the Expand All Folds command unfolds all fold points, Collapse All
Folds folds all fold points, and Toggle All Folds finds the first fold point in the document, reads its folded or
unfolded state and then sets all folds in the document to the opposite state.

Show Gutter

The gutter is an area to the left of the text in a text view, usually with a grey background, that can be used to select
lines of text, except in a script view where clicking on it sets break points. The gutter is also used in script views to
display the current line pointer. This menu command shows and hides the gutter, equivalent to the Gutter() script
command. The gutter shares the same display background colour as line numbers. The gutter is normally visible.

Script view showing the Gutter, folding margin and selection margin

If you turn the gutter off, there is a selection margin to the left of the text that can be used to select lines of text by
clicking and dragging.

Show Line numbers

You can choose to display line numbers in any text view. Line numbers usually have space for up to 5 digits, but if
you need more than 99,999 lines of text you can use the ViewLineNumbers() script command to increase the
displayed digits. This menu command makes the line number area visible if it is invisible and hides it if it is visible.
You can change the appearance of the line number region with the View menu Font command. Select the Line
number style, and a line number will appear in the example window so you can preview any changes.

Signal Version 6.06

11-216

If you display line numbers, you will usually want to turn off the gutter, except in a script view, where the gutter is
used for break points and to display the current line marker. You can use the line number margin to select complete
lines of text.

Mouse display control

There are a number of ways that you can use the mouse to interactively adjust the display:

The X and Y axes can be shifted and zoomed by dragging on the axis ticks and axis numbers respectively.

You can zoom in or out on the X axis, Y axis or both by dragging rectangles with the cursor. Dragging only in the X
direction or across multiple channels zooms in on the X axis to show the range dragged, dragging in the Y direction
on a channel zooms the channel Y axis range to show that range and dragging in both zooms in in both directions.
If you hold down the Ctrl key while dragging, the display will zoom out instead of in.

If you hold down the Alt key while dragging a rectangle the X and Y size of the area dragged is shown to allow
quick measurements to be taken.

You can click on the channel number shown adjacent to a channel Y axis to select or de-select the channel. Holding
down the Ctrl key allows you to select multiple channels, holding down Shift allows selection of ranges of
channels.

You can drag a channel number to adjust the order of the channels, or drop the channel number on top of another
to overdraw channels.

Holding down the Shift key and clicking on a channel data area, then dragging, will adjust the vertical size provided
for the channel and its neighbour. Holding down Ctrl as well as Shift allows you to adjust the space allocated to all
channels.

Right-clicking on a data or XY view will provide a context menu with generally useful options and options specific
to the data channel (& cursor) clicked-upon.

In an XY view the position of the optional key can be adjusted by dragging it using the mouse.

Keyboard display control

Windows software is usually orientated towards control by means of the mouse and menus, but it is often
convenient to use the keyboard instead. For interactive adjustments of the data or display, keyboard control can
also be much faster. With this in mind, Signal includes keyboard shortcuts to handle most display manipulation
requirements:

Scroll data down / up Cursor Down / Cursor Up
Decrease Y range / increase range Ctrl+Down / Ctrl+Up
Optimise Y range End
Show all Y range Home
Y axis dialog Ctrl+Y

Scroll left / right Cursor Left / Right
Decrease X range / increase range Ctrl+Left / Ctrl+Right
Show all X range Ctrl+Home
X axis range dialog Ctrl+X

Next frame / previous frame PgUp / PgDn
First frame / last frame Ctrl+PgDn / Ctrl+PgUp

Zoom / un-zoom channel Double-click
Hide selected channels Del
Customise display Ctrl+Del
Undo changes Ctrl+Z

Some of these shortcuts are documented with the appropriate menu command, others do not have an equivalent
command. All display shortcuts are listed here for convenience. There are more shortcuts provided for data
manipulation; see under Analysis menu.

View menu

11-217

Annotate

This menu item is visible if the current view is a script and is enabled if the script is compiled. Select the option to
display the compiled script code below each script line. Select it again to hide the compiled code. We use this
annotated view to diagnose script compiler problems.

Grid view commands

These are the View menu commands that apply to Grid views.

Optimise Widths
This command scans all the data in the grid and sets each column to be wide enough to display all the data in each
cell. The script language equivalent is GrdColWidth().

Align Column
Each column has an alignment of Left, Centre or Right. The script language equivalent is GrdAlign().

Show Column/Row Header
You can turn off and on the column and row headers. The script language equivalent is GrdShow().

Signal Version 6.06

12-218

Analysis menu

This menu creates memory and XY windows that hold analysed data from data views, fits curves to data, manages
the frame buffers and frame manipulation and provides channel data modification mechanisms. It also holds the
digital filtering command, and commands for single channel analysis (these are documented separately and will not
be visible unless clamping features are enabled).

New Memory View

This command is enabled when a file view is selected. It opens a pop-up menu in which you can select a memory
view generating analysis type. The analysis types available are: Waveform Average, Auto-Average, Amplitude
histogram, Power Spectrum and Leak Subtraction (this last only if you have clamping enabled).

Selecting an analysis opens a Settings dialog where you set the analysis parameters and other information needed
to construct a memory view to hold the analysis results. This dialog can be recalled from the memory view to
change the analysis parameters.

Click New in the Settings dialog box to create a memory view with all data values set to zero and to open the
Process dialog, in which you select the source data frames to analyse. The results of analysing different sets of
frames can be summed by repeatedly using the Process dialog to select different frames.

Waveform Average

This analysis averages waveform data channels across multiple
frames. The Channels field sets the waveform channels to average.
The Width of average field sets the width of the new memory view.
The Offset field sets the start time for the data as an offset from the
start of the frame. An offset of zero selects data from the start of the
frame, regardless of the frame start time. The data from each frame to
be analysed starts at Frame start + Offset and runs up to Frame
start + Offset + Width. If this data range extends beyond the end
of the frame data for any sweep, the sweep is not added into the
average and an error message is generated.

If you check Average x axis starts at zero, the X axis of the
memory view created by this analysis starts at zero, otherwise the x
axis starts at the start time of the first section of data added into the
average. This is Frame start + Offset for the first frame analysed.

The Display mean of data check box selects between displaying the mean data value or the sum of all sweeps
added into the average. It can be changed after the data has been generated.

If you check the Error bars check box, extra information is saved with the averaged data so that Signal can display
the standard deviation and standard error of the mean of the resulting data. The Waveform Draw Mode dialog
controls the display of the error information.

The New button (or Change if the memory view already exists) closes the dialog, creates the new memory view and
opens the Process dialog, described here.

Auto Average

This form of analysis averages waveform channels in the same manner as standard waveform average processing,
but automatically produces a memory view with multiple frames, each frame holding a separate average. Memory
view frames can be generated from a preset pattern of groups of source frames, or they can be generated according
to the source frame state. When using a pattern of source frames, the groups of frames used can overlap, be
adjacent, or can have gaps of unused data between them.

Analysis menu

12-219

The Settings dialog holds fields for the channels, the width of the
average, the data start offset and the number of frames and frame
separation per average. The Channels, Width of average and
Offset fields are all the same as for standard waveform average
processing, as are the Average x axis starts at zero, Display
mean of data and Error bars check boxes at the bottom of the
dialog.

The Auto-average mode selector chooses how Signal works out
which destination frame receives the data for a given source frame,
you can choose between Standard or By State. In Standard
mode source frames are grouped sequentially and each group is
added into the next destination frame. In By State mode the
source frame state number determines the destination frame;
frames with state number 0 are averaged into destination frame 1,
state 1 into destination frame 2 and so on.

The Maximum generated frames item sets an optional limit on
the number of frames (holding averaged data) that will be
produced. In Standard mode once the limit is reached the averaging wraps round frame 1 again and adds further
data to the existing averages, if Maximum generated frames is zero then no limit is imposed and the averaged
data file grows larger forever. In By State mode this item becomes Maximum state number and any source
frames with state numbers higher than this limit are discarded, again a value of zero is treated as 'no limit'.

The Frames per average item sets the number of source frames that are used to make up each average in
Standard mode, the Frames between averages item sets the number of frames in the source between the start of
one average and the start of the next, again for Standard mode only.

Thus if you want 4 frames to make up each average you would set Frames per average to 4. If you set Frames
between averages to 4, Signal will use frames 1, 2, 3 and 4 for the first average, 5, 6, 7 and 8 for the second average
and so on. Setting Frames between averages to 6 would mean that frames 1, 2, 3 and 4 generate the average frame
1 as before, but now frames 7, 8, 9 and 10 are used for the next average and frames 5 and 6 are not used. Then again,
if you set Frames between averages to less than Frames per average then the data for each average will
overlap, with some frames being included in more than one average.

The Count excluded frames check box (Standard mode only) controls whether the frames used are determined
only on frame numbers or if they take into account the subset of frames selected for processing. For example, with 4
frames per average, 4 frames between averages and processing tagged frames only, if Count excluded frames is
not checked then the first 4 tagged frames will make up the first average, the next 4 tagged frames the next average
and so on. Alternatively if Count excluded frames is checked then those of frames 1 to 4 that are tagged will make
up the first average, any tagged frames from frames 5 to 8 make up the second average and so on. In this case some
of the averages would be formed from fewer than four frames, any averages formed from no frames are left set to
zero.

The New button (or Change if from the Process Settings command) closes the dialog, creates the new memory
view and opens the standard Process dialog, described here.

Amplitude Histogram

This analysis creates a memory view showing a histogram of the number of
points of a waveform channel that lie within particular amplitude ranges. This
analysis option is not available for log-binned data. The processing reads
data for the channel being analysed that covers a set time range, and for
each data point read the waveform level is used to calculate the
corresponding histogram bin. If this bin number exists within the histogram
then the bin data is incremented. This process is repeated for every data
point read from every frame, the resulting histogram shows the relative
frequency of occurrence of the different waveform levels. For example, if
your data waveforms were generally at one of two levels then the amplitude
histogram of the data would show two peaks with (probably) Gaussian
distributions.

Signal Version 6.06

12-220

The Channel item sets the waveform channel to be analysed, only a single
channel can be selected. The Data start time and Data end time items define the time range over which the
source data will be analysed. The Maximum amplitude and Minimum amplitude items set the range of X values
that the histogram will cover. These items are linked to the Bin size and Number of bins items, both of which set
the number of histogram bins. If either of the amplitude range items are changed the Bin size will be adjusted to fill
the new range and keep the Number of bins constant, this also happens automatically if the amplitude depends
upon the drawn Y range and this drawn Y range changes. If the Bin size is changed then the Number of bins is
adjusted to keep the amplitude range constant. Finally if the Number of bins is changed then the Bin size
changes, again keeping the amplitude range constant.

Power Spectrum

This analysis creates a memory view that holds the power spectrum of a section or sections of waveform data. The
option will not appear for log-binned data. If multiple sections are processed the result is an averaged power
spectrum. The results of the analysis are scaled to RMS power (where power is amplitude squared), so they can be
converted to energy by multiplying by the time over which the transform was done. Signal uses a Fast Fourier
Transform (FFT) to convert the waveform data into a power spectrum.

The channels and offset items in the settings dialog behave the same way as
they do in the Waveform Average settings dialog.

The FFT is a mathematical device that transforms data between a waveform
and an equivalent representation as a set of cosine waves each with an
amplitude and relative phase angle. The version of the FFT that we use
limits the size of the blocks to be transformed to a power of 2 points in the
range 16 to 262144. You set the FFT block size from a drop down list in the
dialog, the dialog will automatically update to show the time range that this
block size covers. The way the maths works out, the resulting memory view
data ends up with half as many bins as the FFT block size. As for waveform
averaging, if the block of data starting at the offset specified runs past the
end of the frame the sweep is discarded and no analysis is done.

The data in the memory view spans a frequency range from 0 to half the sampling rate of the source waveform
channel. The width of each bin is given by the waveform channel sampling rate divided by the FFT block size. Thus
the resolution in frequency improves as you increase the block size. However, the resolution in time decreases as
you increase the block size as the larger the block, the longer it lasts.

Windowing of data
The mathematics behind the FFT assumes that the input waveform repeats cyclically. This means that the maths
treats the block of data as though it was taken from an input consisting only of that block, repeated over and over
again. In most waveforms this is far from the case; if the block was spliced end to end there would be sharp
discontinuities between the end of one block and the start of the next. Unless something is done to prevent it,
these sharp discontinuities cause additional frequency components in the result.

The standard solution to this problem is to taper the start and end of each data block to zero so they join smoothly.
This is known as windowing and the mathematical function used to taper the data is the window function. The use
of a window function causes smearing of the data, and also loss of power in the result.

You can find all sorts of windows discussed in the literature, each with its own advantages and disadvantages;
windows shaped to have the smallest side-lobes spread the peak out the most. By reducing the side-lobes you
decrease the certainty of where any frequency peak actually is (or the ability to separate two peaks that are close
together). Signal implements the following windows:

No Window Use this if there is one sine wave, or if more than one, they all have similar amplitude. This has the
sharpest spectral peaks, but the worst side-lobes.

Hanning This is a good, general purpose, reasonable compromise window. However, it does throw away a lot
of the signal. It is sometimes called a “raised cosine” and is zero at the ends. If you are unsure about
which window would be best for your application, try this one first.

Hamming This preserves more of the original signal than a Hanning window, but at the price of unpleasant
side-lobes.

Analysis menu

12-221

Kaiser These are a family of windows calculated to have known maximum side-lobe amplitude relative to the
peak. Of course, the smaller the side-lobe, the more signal is lost and the wider the peak. We provide
a range of windows with side-lobes that are from 30 to 90 dB less than the peak.

Leak Subtraction

This analysis creates a multi-frame memory view by carrying out a leak subtraction analysis on the source data.
Leak subtraction is a specialised analysis used by voltage and patch clamp researchers, this analysis will not be
available unless clamping support has been enabled in the Edit menu Preferences dialog.

The leak subtraction method used in Signal is based upon the use
of a small stimulus, one that does not cause the cell membrane ion
channels to turn on, and measuring the current flow through the
membrane made up from resistive and capacitive components
caused by this stimulus. If possible a number of these low
amplitude stimulus frames are recorded and averaged together to
minimise the effect of noise. This gives us a current waveform
representing the resistive and capacitive response of the cell to the
low amplitude stimulus. This leak measurement is then scaled by
the stimulus amplitude used in following frames to generate the
leakage currents that will be generated by these stimuli and this
scaled leak current is subtracted from the recorded traces to leave
only the ion-channel effects.

This technique is very satisfactory in many circumstances because
it measures the actual response of the cell to stimuli, which in
particular allows it to compensate for whatever capacitive
behaviour the cell exhibits without making any particular
assumptions about what this capacitive behaviour is. However the
analysis does make a number of assumptions which you should bear in mind before using it:

1. The times and duration of the stimulus pulse(s) are the same in all frames, because if the pulse times in the
averaged low-stimulus data are not the same as the times in the data that is to be modified then the subtraction
of the scaled low amplitude response cannot work correctly. So this mechanism is not suitable for protocols
using stimuli that start at varying times or varying duration stimuli.

2. The stimuli are simple square pulses. The stimulus amplitude is measured by averaging over a specified time
range but this measurement will not work correctly if the stimulus is not all at this measured level. So this
mechanism is not suitable for protocols using arbitrary waveform stimuli and would have to be used with great
care with ramps and sine waves - you would have to make sure that the measured amplitudes gave an accurate
estimation of the relative scale of the stimuli.

3. There are only two stimulus levels in each frame; the baseline or holding potential and the stimulus potential.
This is because of the scaling, which measures the stimulus amplitude used and scales the low amplitude
response accordingly, obviously cannot scale by two different values at once. This restriction gives the most
difficulty as it makes it very hard if not impossible to use leak subtraction with paired pulse protocols. In order
to use this mechanism with multiple pulses that are at different amplitudes (if they are all at the same amplitude
there is no problem) you have to ensure that you are measuring the amplitude of the pulse giving the response
that you are interested in, and that this measured amplitude and the measured baseline level correctly describe
the start and end transitions of the stimulus in question.

So a paired-pulse protocol with two pulses that are separated by a section of baseline and where you are only
interested in the response to the second pulse will be OK as long as you set the pulse time setting to the time of
the second pulse (and as long as you realise that the analysis will mess up or ruin the responses to the first
pulse and are OK with that). However if there was no gap between the two pulses the scaling of the low
amplitude stimulus recording would not work as it would not give a correct estimate of the capacitive transient
at the start of the second pulse (because it did not start from the baseline level and therefore is not scaling
relative to the pulse amplitude measured from the baseline).

Leak subtraction makes special use of two channels; the stimulus channel which is used to measure the amplitude
of the stimulus pulse so that the leak can be scaled (but which is not modified by the analysis) and the response
channel which is the only channel modified by the leak subtraction process. All other channels are ignored and
copied into the memory view unchanged.

Signal Version 6.06

12-222

The Settings dialog holds fields for the leak subtraction mode and to define the channels for the stimulus and the
response signals. Baseline time defines a time within the sweep where there will be no stimulus and the Pulse
time is a time where there is a stimulus. These two times are used to measure the stimulus amplitude from the
relevant channel; the measurements are averaged over the Measurement width (using the time range from time-
width/2 to time+width/2).

The following two edit fields are used to specify the frames used to generate the leak measurement and the frames
from which the leak is subtracted. These fields are interpreted in different ways depending on the leak subtraction
method (see below). If Base line correction is on, the corrected response will also have a DC offset removed so
that at the baseline time the response level will be unchanged.

The Leak subtraction method can be set to Basic, P/N, or States. These three modes are very similar, the only
real difference being how frames used to generate the leak trace are selected:

Basic here the leak measurement is generated from a fixed contiguous set of frames regardless of which frames
are being processed, these frames are set using the First frame for leak and Last frame for leak items.
All of the frames processed use this single leak measurement, frames contributing to the leak data are
automatically skipped during processing.

P/N here the leak measurements are extracted from the frames that are being processed. The first n frames
processed are used to make the leak data, then the next m frames are processed using this leak data. Then
the next n frames are used to make a new leak data set and the following m frames are processed using
this new leak data, this cycle continues throughout the frames being processed. The values for n and m
are entered in the settings dialog using the Form from first and Subtract from next items respectively.

States here the leak data is assembled from all frames within the file with a given state, the state number is
entered in the settings dialog. All the frames processed use this set of leak data, frames contributing to the
leak data are automatically skipped.

As in Auto-Average processing if, for instance, we only process un-tagged frames and there are some tagged
frames in the file, the process will continue to search for un-tagged frames until the required number have been
found to complete the formation or subtraction of the leak. If Count excluded frames is turned on, however, then
even frames that are excluded from the process will still be counted as part of the frames used.

The New button (or Change if this is used from the Process Settings command) closes the dialog, creates the
new memory view and opens the Process dialog, described here. Leak subtraction processing uses the same
process dialog, but because leak subtraction creates a set of frames in the memory view the behaviour is subtly
different; the Clear bins check box, if set, clears out the entire memory view (deleting all frames apart from the first
one) and if not set does not accumulate more data into the existing memory view frames but rather appends more
frames to the view. For similar reasons the Analysis menu Append Frame command does not create a second set
of process parameters; all frames use the same process parameters.

Interval Histogram

This analysis creates a memory view holding a histogram showing the intervals between markers on one or more
channels, either simple markers or real markers can be analysed. The processing reads data for the channels being
analysed and for each marker item calculates the interval since the previous item and calculates the corresponding
histogram bin. If this bin number exists within the histogram then the bin data is incremented. This process is
repeated for every marker from every frame that is processed, the resulting histogram shows the relative frequency
of occurrence of different intervals between markers. For example, if your data generally has marker intervals of 25
milliseconds histogram of the data would show a peak at about this point with (probably) a Gaussian distribution.
The analysis normally ignores the first marker in each frame as there is no previous marker, but you can optionally
measure intervals that cross frame boundaries.

Analysis menu

12-223

The Channel item in the settings dialog sets the marker channels to be
analysed, each analysed channel generates a separate channel in the
memory view that is generated. The Width, Bin size and Minimum
interval items define the histogram that will be generated; the number of
histogram bins is Width / Bin size, while the range of marker intervals
covered runs from Minimum interval to Minimum interval + Width.

The Use intervals that cross frame boundaries check box allows
interval generation for the first marker in each frame by remembering the
time of the last marker seen in the previously processed frame. The
calculation makes use of the absolute frame start time recorded by Signal,
this value is completely accurate for data files recorded using Gap-free
mode but is rounded down to the previous outputs timing interval for other sampling modes and may therefore lead
to slight inaccuracies in the histogram data. More seriously, with non-gap free sweeps markers falling in the gap are
not logged, which would give an incorrect large interval. For these reasons the use of this option with non-gap free
data is not recommended.

Process

This command is available when a memory view created using the New
Memory View command or an XY created using New XY view is the
current view, or when a data view containing a data channel created by
measurement processing is current. When you use it a dialog prompts you
to select the frames of the source data document to be processed. The
Process dialog is also provided automatically when you use the New or
Change button from the Process Settings dialog to create or rebuild a
memory view.

The dialog contains a number of items used to select the source data frames
that will be processed, plus check boxes controlling what happens when
data is processed.

The Frames and Frame subset items are the main controls used to select
source frames. The simplest way to use these is to type in a frame list directly. You can also select the current
frame, all frames, tagged or untagged frames or frames with a given state code. If you choose the state code option,
the dialog also displays a field into which you can enter the state code to use. The Frame subset selector can be
used to further qualify the frames which are wanted.

The frame list values are evaluated when the Process button is used, then the frames are processed and the results
added into the memory view data.

If you check the Clear memory view before process check box, the memory or XY view or destination channel
data is cleared before the results of the processing are added. The Reprocess if source data changes check box
enables automatic re-processing. Automatic re-processing is optimised to try to prevent unnecessary work, but can
still slow Signal significantly on occasion, particularly with large files. If you check the Optimise Y axis after
process check box, the memory or XY view or destination channel y axes will be re-scaled after the new results are
added into the destination so as to display the data as well as possible. If you are processing data to generate
points in an XY view, an extra check box provides automatic X axis optimisation.

If the Settings button is pressed, the process dialog is removed and replaced by the settings dialog.

Breaking out of Process
Processing operations can take quite a time, especially in large data documents. You can stop a processing
operation early with the Esc key.

Multiple frame processes
For Waveform average, Amplitude histogram and Power spectrum processing, you can use the Append frame
command to add more frames to the memory view created by processing. This new frame will have the same
process settings as the original frame, but will have its own separate Process dialog so that you can analyse a
different set of source frames for each memory view frame.

Signal Version 6.06

12-224

Process command with a new file

The Process dialog is slightly different when used on data from a sampling
document. The dialog is also activated automatically when you create a new
memory view from a sampling document or when you press the Change
button in the Process settings dialog for a similar memory view.

This form of the Process dialog gives you control over when and how the
destination memory view is updated during sampling. The Frames field
contains extra items that are suitable for processing sampled data: Sampled
frames and Last n frames filed. The contents of the dialog change
depending upon which frame option is selected. In addition there is a new
field: Frames between updates.

Sampled frames all frames that are sampled will be processed. This
option is not available in Fast triggers, Fast fixed interval or Gap free sampling modes
because unwritten frames will be discarded before Signal has a chance to process them.

All filed frames all sampled frames that are saved to disk are processed.

Last n frames filed process the most recent frames saved to disk; the dialog displays a field in which you can
enter the number of frames required. The Clear memory view check box is ignored as the
memory view is always cleared before processing.

The Frames between updates field sets how often the processing of filed frames occurs. Set this to zero to
process as often as possible. If you are processing Sampled frames, then this field is ignored and the memory
view is updated for each frame.

Processing to a data channel
When online processing is generating measurements to a data channel the dialog has a different item: Leeway for
processing, which replaces Frames between updates. This is used to avoid processing right up to the latest
data, as you may want to take a measurement that includes data after cursor 0 or position active cursors after the
latest feature found by cursor 0 iteration and if the data has not yet been sampled the cursors will not position
correctly. Set the leeway value to the amount of data you want to be present after the cursor 0 position.

Process settings

This menu command re-opens the analysis settings dialog for the current memory or XY view. This is the same
dialog as the one used to define and create the new view except that the New button is now a Change button. The
Change button accepts the changed settings, if the changes are significant enough to make any previous analysis
incompatible the destination memory view will be cleared and re-initialised.

Measurements

This command, analogous to the New Memory View command, is available when a file or memory view is selected.
It provides a pop-up menu from which you can select a measurement-generating analysis type, the types of
analysis available are XY View, Data Channel and XY View (Trend plot). The major difference between these
types of analysis is that XY View and Data Channel analysis use cursor zero iteration through points of interest to
generate one or more measurements per data file frame, while XY View(Trend plot) analysis does not iterate and
generates just one measurement per frame. Selecting an analysis opens a Settings dialog where you set the
analysis parameters and other information needed to construct the XY view or data channel to hold the analysis
results. This dialog can be re-opened from the XY view, right-clck context menu or analysis menu to change the
analysis parameters.

Click New in the Settings dialog box to create the empty XY view or data channel and open the Process dialog, in
which you select the data file frames to analyse. The results of analysing different sets of frames can be summed by
repeatedly using the Process dialog to select different frames.

Analysis menu

12-225

XY View

Measurement generation to an XY view generates multiple measurements from each data frame by using a special
cursor, cursor 0, which is used to iterate through each frame searching for features of interest. Multiple XY
channels (up to 32) can be created, a separate XY data point is generated for each channel for each feature found
by the cursor 0 search. The X and Y measurements are defined separately, allowing great flexibility of operation.

When Measurements to XY View analysis is
used Signal provides a Settings dialog used to
define the various analysis parameters. This dialog
has three separate sections controlling Cursor 0
stepping, X measurements and Y measurements
plus a few extra controls.

Cursor 0 stepping
The Cursor 0 stepping section of the dialog is at
the top of the dialog and contains items that define
how cursor zero searches through each processed
frame to find features in the data. When a frame is
processed, cursor zero is initially positioned at the
Start at time. Then (except for Expression mode,
where a measurement is generated at the initial
position) the feature is searched-for, other cursors
are positioned and a measurement is taken if the
search has been successful and the other active
cursors have also succeeded in their searches (are
valid). This search-and-measure process is repeated
until the search fails or the End at time is reached.
An XY data point is generated for each feature found; there may be no features found in a given frame of data and
in that case no measurements will be generated for that frame. The available cursor 0 stepping methods are:

Peak find local maxima in the data are found. The data must rise and fall again by the set
amplitude, a maximum allowed width for the peak can be set.

Trough find local minima in the data are found. The data must fall and then rise again by the set
amplitude, a maximum allowed width can be set.

Rising threshold upwards crossings through a threshold level are found. The data must first fall far
enough below the threshold level as set by a hysteresis value, a delay value sets how
long it must remain above the threshold.

Falling threshold downwards crossings through a threshold level are found. The data must first rise far
enough above the threshold level as set by a hysteresis value, a delay value sets how
long it must remain below the threshold.

Outside dual thresholds transitions from within a pair of levels to outside the levels are found.. The data must
first of all lie sufficiently far within the levels as set by a hysteresis value, a delay value
sets how long it must remain outside the levels.

Within dual thresholds transitions from outside a pair of levels to within the levels are found.. The data must
first of all lie sufficiently far outside the levels as set by a hysteresis value, a delay value
sets how long it must remain within the levels.

Slope peak local maxima in the slope of the data (steeply rising data values) are found. The slope
measured must first rise and then fall again by the set amplitude, a width value sets the
time range over which the slope is measured.

Slope trough local minima in the slope of the data (steeply falling data values) are found. The slope
measured must first fall and then rise again by the set amplitude, a width value sets the
time range over which the slope is measured.

+ve slope threshold upwards transitions of the slope through a threshold level are found. The slope value
must first be sufficiently below the threshold level as set by a hysteresis value, a width
value sets the time range over which the slope is measured.

-ve slope threshold downwards transitions of the slope through a threshold level are found. The slope
value must first be sufficiently above the threshold level as set by a hysteresis value, a
width value sets the time range over which the slope is measured.

Signal Version 6.06

12-226

Turning point points at which the slope changes sign in either direction (peaks and troughs in the
data) are found. A width value sets the time range over which the slope is measured.

Data points a specified number of data points or markers.

Expression a string specifying a time such as “Cursor(0)+0.1” is evaluated and cursor 0 set to the
position generated. This is most useful for stepping cursor 0 through the data by a fixed
amount, but other effects are possible. Iteration stops when the cursor passes the End
at location, if the expression used does not move cursor zero onwards through the data
then the analysis will hang.

These stepping methods and nearly all of the parameters controlling them are identical to the active cursor modes
for cursor zero, see the active cursor documentation under Cursor menu for complete details of these. If cursor zero
is already set up as an active cursor when a Measurements analysis is created the current active cursor parameters
are copied into the settings dialog.

The Skip if parameter can contain a string such as “Cursor(1) < Cursor(2)” that is evaluated after each cursor zero
iteration and other cursor placement. If the result of evaluation is non-zero then no measurement will be taken for
this cursor zero position. The User check position check box, if set, allows the user to check each cursor
positioning and accept or reject them individually, or cancel further measurements.

XY Channel management
Below the cursor 0 stepping settings is a region holding controls to manage the XY channels generated. At the left
is the Plot Channel control which selects the currently viewed channel, you can set the XY view channel title by
typing into the Plot Channel selector and create additional channels by using the Add Channel button. The
Delete Channel button deletes the current channel; you cannot delete the last remaining channel.

X and Y measurements
The X measurements and Y measurements sections are the same as each other. Both hold a selector for the
type of measurement plus a variety of other parameters used by the measurement process; another for the channel
to take measurements from, items for the one or two time values needed, a measurement width and a fit coefficient
number. These additional parameters are shown and hidden according to the type of measurement selected. The
types of measurement available are:

Value at point the value on the channel specified at the time specified, measured using the set width. A
non-zero Width will give a measurement averaged over Time–Width/2 to Time+Width/2, a
zero width reads the value of the nearest available waveform data point.

Value difference the difference between the value on the channel at the time specified and the value at the
reference time, both measurements using Width as for Value at point.

Value above baseline the difference between the channel value at the time specified and the value at the
reference time. Only the reference time measurement uses the specified width, the other is
always a single-point measurement.

Value ratio the channel value at the time specified divided by the value at the reference time, both
using the specified width.

Value product the product of the channel value at the time specified and the value at the reference time,
both using the specified width.

Time at point the time specified. This can be a cursor position; if that cursor's mode is set to move to a
feature, it measures the feature position in each frame.

Time difference the difference between the time specified and the reference time. Either or both of these
can be a cursor position that can vary.

Frame number the frame number. This is often used as the X measurement to give a plot of ‘measurement
against frame’.

Absolute frame time the absolute start time of the frame. Often used as an alternative to the frame number to
give a ‘measurement against time’.

Frame state value the frame state value for the frame in question.

Fit coefficients the value of a coefficient generated by fitting on the specified channel, you should select
the coefficient you want from the list provided. If the channel selected has no fit the list
shows coefficients by number (a0, a1 and so forth).

User entered value a value entered by the user. A dialog opens to read the value.

Analysis menu

12-227

Iteration count the count of cursor 0 positions that were found. When used with averaged measurements
(which only produce a single measurement per frame), this generates a count of how many
features the cursor 0 stepping found in the frame.

Expression a string entered by the user is evaluated and the result used.

Cursor regions any measurement available in the cursor regions window can be used. Not all types of
measurement will operate on all channel types; all of them are available on waveform data.

Frame variables a range of frame variables can be selected, some variables are hidden because they are
reserved for system purposes. Many of the available variables may not hold useful
information but they include the user frame variables accessible from the script language,
any membrane measurements results generated by the clamping system and (if in use)
Magstim settings.

The channel selector and time entry fields are as standard for Signal and should be familiar to you and easy to use.
Don’t forget that, in addition to entering a time value directly or selecting an item such as “Cursor(2)” or
“XLow()”, you can apply an offset to these selected value allowing you to enter “Cursor(2)-0.1” or “XLow()+1”.

Other options
The Average measurements within frame check box at the bottom of the dialog applies to all measurement
channels. If set then only a single XY data point is generated per frame, this being the average of the data values
measured. So, for example, you could use this to produce a plot of mean response amplitude against frame number.

The All channels use same X check box below disables the X measurement for all XY view channels apart from
the first one, and uses this X measurement for all XY channels. If appropriate this makes the setup quicker and
easier and when the XY data is converted to text only a single column of X values is created which makes it easier
to handle in spreadsheets.

The Points item allows you to specify the maximum number of points the currently selected XY channel can
contain before old points are deleted to make way for new data. Set this field to zero if you want all data points to
be retained.

The New button (or Change if this is used from the Process Settings command) closes the dialog, creates the
new XY view and opens the Process dialog, described here. Processing for measurements is very similar to
standard memory view processing; the frames specified are used to generate measurements which are added to the
view data. If the Clear XY view data before processing check box is checked, all of the data points in the XY view
will be deleted first. In addition to the Y axis optimisation control, there is also an extra check box for view X axis
optimisation after processing.

Data Channel

Measurement generation to a data channel generates a single memory channel, either a marker channel or a real
marker channel can be created. Multiple measurements are taken from each frame using cursor 0 iteration in the
same manner as measurement generation to an XY view. A separate data point is generated for each feature found
by the cursor 0 search. The analysis is extremely similar to measurement generation to an XY view, only the
differing aspects of this analysis will be described here.

Signal Version 6.06

12-228

When Measurements to Data Channel
analysis is used Signal provides a Settings
dialog used to define the various analysis
parameters. This is very similar to the
Measurements to XY View settings.

Channel settings
The most important difference in the settings
dialog is the addition of Channel type and
Channel name items at the top of the dialog.
The channel type item sets the type of channel to
be generated, you can choose between marker or
real marker data. This measurement process only
creates real marker data that holds a single real
data value. The channel name item allows you to
set the title of the generated channel, the channel
units is automatically generated if necessary. The
Overdraw Y source channel check box below
the channel name is enabled for real marker data
when using a suitable Y measurement. If set it
causes the newly created real marker channel to
be drawn on top of the channel used to generate the Y value measurement.

Cursor 0 stepping
The Cursor 0 stepping section of the dialog is identical to the same section in the Measurement to XY View
settings dialog.

X and Y measurements
The X measurement part of the settings is much simplified as it generates the time for each marker and therefore
contains only a single field, which defines the time at which each marker is generated. For most purposes the
default value of "Cursor(0)" will be appropriate but any other time calculation such as "Cursor(1)-25ms"
could be used.

The Y measurement part of the dialog is only available when real marker data is selected as the new channel data
type and specifies the measurement used to generate the real value that is held in the real marker. It is almost
identical to the Measurement to XY View Y measurement options but the Iteration count measurement type is
not provided.

The New button (or Change if this is used from the Process Settings command) closes the dialog, creates the
new memory channel and opens the Process dialog, described here. Processing for measurements is very similar to
standard memory view processing; the frames specified are used to generate measurements which are added to the
channel data. The options to clear channel data and to optimise after processing are not provided.

XY View(Trend plot)

Measurement generation to an XY view for trend plot analysis generates only a single measurements from each
data frame. Separate X and Y measurements are defined, the measurements available are the same as for the other
types of measurement analysis. Multiple XY channels (up to 32) can be created, a separate XY data point is
generated for each channel for each frame analysed.

Analysis menu

12-229

Selecting Trend plot analysis provides a
Settings dialog where you define the
analysis parameters, this dialog is also
available later on to change the analysis
parameters. The dialog is similar to the
lower part of the Measurements to XY
View settings dialog; as only one
measurement is generated per frame no
cursor 0 stepping settings are needed.

XY Channel management
At the top of the dialog are controls to
manage the XY channels generated. At
the left is the Plot Channel control which
selects the currently viewed channel, you
can set the XY view channel title by typing into the Plot Channel selector and create additional channels by using
the Add Channel button. The Delete Channel button deletes the current channel; you cannot delete the last
remaining channel.

X and Y measurements
The X measurements and Y measurements sections are the same as the Measurement to XY View Y
measurement options but the Iteration count measurement type is not provided. Both hold a selector for the type
of measurement plus a variety of other parameters used by the measurement process; a channel to take
measurements from, items for the one or two time values needed, a measurement width and a fit coefficient number.
These additional parameters are shown and hidden according to the type of measurement selected.

Other options
The User check positions check box below the X measurements will, when checked, cause Signal to pause on
each frame after positioning any active cursors. This allows you to check that the cursor positions are correct and
to skip individual measurements or cancel all further measurements.

The All channels use same X check box below disables the X measurement for all XY view channels apart from
the first one, and uses this X measurement for all XY channels. If appropriate this makes the setup quicker and
easier and when the XY data is converted to text only a single column of X values is created which makes it easier
to handle in spreadsheets.

The Points item below the X and Y measurements allows you to specify the number of points the currently
selected XY channel can contain before old points are deleted to make way for new data. Set this field to zero if you
want all data points to be retained.

The New button (or Change if this is used from the Process Settings command) closes the dialog, creates the
new XY view and opens the Process dialog, described here. Processing for trend plots is very similar to standard
memory view processing; the frames specified are used to generate measurements which are added to the view
data. If the Clear XY view data before processing check box is checked, all of the data points in the XY view will
be deleted first. In addition to the Y axis optimisation control, there is also an extra check box for view X axis
optimisation after processing.

Measurements and active cursors

All forms of measurement analysis can be made a great deal more powerful by the use of active cursors. Active
cursors can be set up to move to features in the data such as a maximum or a threshold crossing, so that they are
automatically aligned to significant features in each data frame. By using the cursor position to specify a time or
time range for a measurement, many useful effects can be achieved. For example, with cursor 1 set to find the
maximum value between a preset time range within the frame, you could have the X measurement being the frame
number and the Y measurement being Time at point. With the time field set to “Cursor(1)”, you would get a graph
of time for the maximum versus the frame number. See under Cursor menu for complete details of active cursors.
Active horizontal cursors are also supported by measurement processing.

Signal Version 6.06

12-230

Measurement processing online

The Process dialog for measurement processing is slightly different when used on a sampled data view or on a
memory view which is itself being created by online processing from a sampled data view. There are a number of
different situations, except where specified the various types of measurement processing will behave in the same
manner:

Processing a sampled data file
The Process dialog is basically the same as when processing to a memory view online, the Frames between
updates field controls how often the measurement data is updated. Each frame sampled and processed generates a
new trend plot point or set of measurements. For measurements to a data channel the process dialog shows the
extra leeway item.

Processing a memory view generated by online Auto Average analysis
The Process dialog is as above, the measurements are taken when a new averaged frame is completed - when the
required number of source frames have been averaged into the frame.

Processing a memory view created by online Leak Subtraction analysis
The Process dialog is as above, the measurements are taken whenever a new frame is added into the leak
subtracted data. This is essentially the same as when processing a sampled data file.

Processing a memory view created by other online analyses
The Process dialog is as above, all of the available memory view frames are re-processed in a manner very similar
to offline analysis whenever any of the memory view data is changed so that the XY view or memory channel data
automatically updates to reflect the changing memory view contents.

Fit data

This command opens a tabbed dialog from which you can fit mathematical functions to channels in a file, memory
or XY view. If you fit data to a channel in a file or memory view and error bars are displayed, the fit minimises the
chi-squared value, otherwise the fit minimises the sum of squares of the errors between the data and the fitted
curve.

In addition to best-fit coefficients and an estimate of how much confidence to place in them, you also get an
estimate of how likely it is that the model you have fitted to your data can explain the size of the chi-squared value
or sum of errors squared. If your data does not have error bars, these estimates are based on the assumption that all
data points have the same, normally distributed error statistics.

The dialog has three tabs:

Fit settings Set the fit type and range of data to fit and range to display

Coefficients Set the starting point for your fit and optionally fix coefficients

Results Display the fitting results and residual errors

The three buttons at the bottom of the dialog are common to all pages. The Help and Close buttons do what they
say. Do Fit attempts to fit with the current fit settings.

Analysis menu

12-231

Fit settings

This page of the Fit Data dialog controls the type of fit, the data
to fit and what to display. The area at the bottom of the window
gives a synopsis of the current fit state. Fields are:

Channel
You can select a single channel from the current view. If this is a
file or memory view, the channel must have a y axis. If you
change the display mode of a marker-based channel, any fit
associated with the channel will most likely become invalid.

Fit
The fit to use is defined by its name and the order of the fit (a
number). For example, an exponential fit allows single exponents
or double exponents. The window at the top of the dialog
displays the mathematical formula for the fitting function. The
following fits are currently supported (N is the maximum order
allowed):

Name N Comments

Exponential 2 This fit includes an offset. You can force a zero offset in the
coefficients page. Set a local reference point for the fit, otherwise the
even-numbered coefficients may become too large to be useful.

Polynomial 5 These fits do not require starting values for the coefficients.

Gaussian 2 If you attempt to fit two overlapping peaks you may need to
manually adjust the guesses for the peak centres to get
convergence.

Sine 1 You can fit a single sinusoid with an offset. If the frequency guess
(in radians) is not reasonably close, the fit may not converge.

Sigmoid 1 A single sigmoid may be fitted.

Range
You fit data over a defined x axis range, set by the between and and fields. You can choose values from the drop
down list or type in simple expressions, for example Cursor(1)+1. There must be at least as many data points to fit
as there are coefficients. For example, to fit a double exponential, which has 5 coefficients, you need at least 5
points. Most fits will use many more points than coefficients.

Reference
This is the x axis position to use as the zero value of x in the fitting function. The most common value for this would
be the start point of the fit. However, in some cases you may want this to be elsewhere. For example, in exponential
fitting, you may want to calculate the likely amplitude of a trace at some position. Making this position the
reference point makes it easy to calculate the amplitude (it is the sum of the even-numbered coefficients).

Maximum iterations
All fits except the polynomial are done by an iterative process. Each iteration attempts to improve the coefficient
values. The iterating stops when improvements in the fit become insignificant, the iteration count is exceeded, the
mathematics of the fitting process suggests that the fit is not going to improve or there is a mathematical problem.
This field sets the maximum number of iterations to try before giving up.

for frames
It is possible to have the fit run automatically across several frames at once. Choose the frames whose data you
wish to fit here. If you select Frame state = xxx, an extra field is provided for entry of the state code value.

Signal Version 6.06

12-232

Use maximum likelihood fitting
This option is only available when fitting exponential curves to data derived from a single-channel idealised trace
by generating open/closed time or burst duration histograms and when the processing link between the original
trace data and the binned histogram data being fitted is still present. When these conditions apply Signal can use
maximum likelihood fitting techniques (which require access to the original, unbinned, trace data). The details of
maximum likelihood fitting are a topic beyond the remit of this manual; suffice it to say that by using the original
idealised trace data you avoid mathematical complexities and errors caused by the histogram binning process.

Make an initial guess
The iterative fits need a starting point. There are built-in guessing functions that usually generate a starting point
near enough to the solution that the fitting process can converge. If you check this box, these guessing functions
are used each time you click the Do Fit button. Otherwise, each fit starts with the current values.

Show fit
Check this box to display the current fit for the current channel. If the From box is checked, you can also choose
the range over which to display the fitted data. If this box is not checked, the fit is displayed over the range that the
data was fitted.

Coefficients

This page of the Fit Data dialog lets you set the starting values
for iterative fits. You can also use this page to hold some of the
coefficients to fixed values and you can set the allowed range of
values for fitting.

If you know the value of one or more of the coefficients, type the
value in and check the Hold box next to it. For example, in an
exponential fit you may know that the final coefficient (the offset)
is zero.

The limit values are applied after each iteration. The fit may have
to follow a convoluted path before it converges on a solution, so
do not set the fit limits too close to an expected solution as this
may prevent convergence.

The Estimate values button can be used to guess initial values
for fitting based on the raw data. The Clear fit button removes
the fit from the channel.

Results

The results page of the Fit Data
dialog holds information about the
last successful fit done with the
dialog The page has three regions:
coefficient values at the top, a
message area at the bottom, and a
plot of the residuals (differences
between the fit and the data) in the
middle. The residuals are displayed
immediately after a fit but will not be
displayed if you close the dialog and
reopen it.

Coefficient values
The Value column holds the fitted value that minimised the chi-squared or sum of squares error for the fit. The
Sigma column is an estimate of how the errors between the fitted curve and the original data translates into
uncertainty in the fit coefficients given that the model fits the data and that the errors in the original data are

Analysis menu

12-233

normally distributed. If a coefficient is held, the Sigma value will be 0. For Sigmoid and Sine fits, extra information
derived from the fitted coefficients are also displayed. The Testing the fit section gives more information on the
derivation of these values and how to interpret them. You can select rows, columns or individual cells in this area,
the use Ctrl+C to copy them to the clipboard. This also copies a bitmap image of the page to the clipboard.

Residuals
This section of the page displays the differences between the data points and the fitted curve in the large rectangle
and a histogram of the error distribution on the right. The error plot is self-scaling based on the distribution of
errors; the plot extends from +3 at the top to –3 at the bottom times the RMS (root mean square) error. The grey line
across the middle of the plot indicates an error of zero.

In the case that the data can be modelled by the fitting function
plus normally-distributed noise, you would expect to see
residuals distributed randomly around the 0 error line and the
histogram on the right should resemble a normal curve.

If the data cannot be modelled in this way, you would expect to
see evidence of this in the residuals. In this example (generated
by fitting a cubic to data that was actually a double exponential),
you can see that there are clear trends in the errors.

In extreme cases, the error due to the wrong model being used
becomes much larger than the errors due to uncertainty in the
data values, and you get a residual plot like this one.

Message area
This area displays a summary of the fit information that you can select with the mouse and copy to the clipboard.
The first line holds the type of the fit, the channel number, the ordinate range and the number of points in this
range. For example: "Double exponential fit, channel 1, 0 to 50, 50 points".

The contents of the second line depend on the source of the data. If you are fitting a result view channel that has
error information displayed, the second line displays the chi-squared error value for the fit, the probability that you
would get a chi-squared value of at least that size if the function fits the data and the errors are normally distributed
and the . For example: "Chi-square value 58.6 with probability 0.5867 and R-square 0.998 (0.96 adjusted)".

In all other cases, the second line displays the sum of the squares of the errors between the data and the fitted
function and an estimate of the probability that you would get a sum of squares of errors of at least this size based
on the assumptions that the errors in the original data had a normal distribution that was the same for all points. For
example: "Sum of errors squared 1.22, estimated probability 0.8553 and estimated R-square 0.998 (0.96 adjusted)".

If the probability value is very low or very high, there are extra lines of information warning that the fitted function
plus normally-distributed noise is unlikely to model the data, or that the errors in the original data have probably
been over-estimated. The R-square value is a measure (or estimate) of the proportion of the variation in the data is
explained by the fitted equation, the adjusted R-square value has been adjusted for the degrees of freedom
available in the data and is normally a more useful form of this value.

The R-square value is the standard "goodness of fit" value, which is the proportion of the variance of the data that
can be explained by the fit, so a larger value is better. If you want to compare fitting different orders of polynomials
or exponents you should use the adjusted values as these discount the improvement you would expect just
because you increase the number of coefficient.

Context menu
If you right click on this page you are offered a context menu that contains Copy, Log and Log Titles commands.
The Copy command copies selected sections of the results, or all the results if there is no selection to the clipboard
as text. It also copies the page as a bitmap. The Log command prints a one-line synopsis of the current fit to the log
window. The Log Titles command copies a suitable set of titles for the logged data.

http://en.wikipedia.org/wiki/Coefficient_of_determination

Signal Version 6.06

12-234

Testing the fit

When you fit a model to measured data to obtain the best-fit coefficients, there are two questions you would like
answered:

1. How well does this model fit the data? Put another way, how likely is it that this model plus some degree of
random variation can explain my data set?

2. Given that the model does fit the data, how much confidence can I place in each of the fitted coefficient
values?

When we talk about fitting curves to data, we are making the implicit assumption that you took measurements from
some process that follows a model, and that this model can be expressed as a mathematical function with adjustable
parameters, which are our fitting coefficients. Further, we assume that the measurements you make are not perfect;
they have random variations with a known probability distribution about the correct value. To allow us to calculate
likelihoods, we assume that this probability distribution is a normal (Gaussian) distribution. In the real world, or
course, only some of this may apply. You may have no a priori knowledge of the distribution of errors in your
original data, and this distribution may be anything but normal.

(Estimated) probability
This value is an attempt to say how likely the model you have chosen plus normally distributed noise is to explain
the measured data. If the residuals of your data show other than a random distribution around the zero line, the
probability will be 0 (or close to it).

R-square (R2 or R2 or r2) value
This is a simple measure of the "goodness of fit" and describes what proportion of the variance of the original data
is explained by the model. One would expect values in the range 0 (meaning that the model accounts for none of the
variation) to 1 (the model accounts for everything). With non-linear fits, it is possible to get a negative result,
meaning that a horizontal line through the mean of the data is a better fit than the model.

We also give an adjusted R-square value. This is useful when you have a model that allows you to choose the
order of the fit and you are not sure what order is appropriate. For example, when fitting polynomials you have a
choice of order 1 through 5. When you increase the order, you make it easier for the model to fit random changes in
the data, so the R-square value will improve as the order increases. The adjusted R-square value is less than the R-
square value by an amount that quantifies how much we would expect the R-square value to increase by chance
due to having more fitting coefficients.

You can read more about R-square here.

Chi-square fits
In the ideal case, where you know the standard deviations of each data point, the fitting minimises the chi-squared
value, which is the sum of the squares of the differences between the model and the data points divided by the
standard deviation of data point values. Given a chi-squared value and the number of points it was measured from,
we can calculate that probability of getting a chi-squared value at least this large, due to random variations in the
data. This is the value given in the Results tab. Ideally, you would like to see a value around 0.5, meaning that you
were equally likely to get a larger value as a smaller one. Values very close to 1 mean that, given the errors in each
point, the data is too close to the model. Either the error estimates are too large, or the data has been "improved".
Although you can hope for probabilities in the range 0.1 to 0.9, values down to 0.01 may occur for acceptable fits,
and even smaller values can occur if your error distribution is not as normal as you thought.

Very low fit probabilities will occur if your data contains
variations that are significant compared to the errors in the input
values and that are not included in the model. For example, if you
are fitting exponents to a sampled waveform that includes
perceptible mains interference, you can get a good fit (by eye) to the exponential data, but with a probability of
0.0000 as far as the mathematics is concerned because the model does not include the mains hum and cannot
explain why the chi-squared value is so high.

If we assume that the model fits the data, we can make an estimate of the standard deviation of the fitted
coefficients. This means, that if we re-ran the experiment many times and fitted the data to each set of results, what
would be the likely variation in the fitted coefficients. This is presented as the Sigma value in the results tab.

http://en.wikipedia.org/wiki/Coefficient_of_determination

Analysis menu

12-235

Least-square fits
If there is no error information for each point, we assume that all the points have the same, normal error distribution
and the fit minimises the sum of squares of errors between the model and the data. Because there is no independent
estimate of the likely spread of the errors in the original data, strictly speaking, there is no way to give a probability
of getting an error of at least this size.

However, we can say (though statisticians may shudder), "Given that the model does fit the data, and that the
errors all have the same, normal distribution, then the differences between consecutive errors should also be
normally distributed with twice the variance of the errors". We use this to estimate the standard deviation of the
data and then we apply the probability test. We label this as estimated probability. The same comments about
likely values apply as for the Chi-square fits, except that very small values may just mean that our estimation
process fails for your data.

The coefficient Sigma values are calculated on the assumption that the model fits the data, that all the original
points have the same standard deviation, and that the standard deviation of the original data can be deduced from
the residual sum of squares errors.

Memory Channels

Memory channels hold data that is not part of the CFS data file. While this does not seem very useful at first sight
it allows these channels to be more flexible; it is easy to add or delete memory channels and to add or remove data
items from them. Memory channel data is held in the resources file associated with the CFS data file, any changes
made to memory channels are automatically saved in the resources file when the file is closed.

Memory channels can hold marker or real marker data, waveform data is not supported because of the excessive
amount of space this would use up in the resources file. While marker data can also be held in a CFS file, currently
real marker data can only be held in memory channels. Idealised trace data is also held in memory channels and can
be manipulated by these methods but this is a very specialised form of data and is generally best handled by
special analysis menu commands. Memory channels use a separate range of channel numbers but generally you do
not need to use these as you can use 'm' followed by a number to indicate them thus: "m1" or "m1..m3".

There are Analysis menu commands to create a new memory channel, to add items to a memory channel, to delete
items from a memory channel and to create memory channel data by importing from other channels.

Memory channels can also be created by processing or by using the Signal script language.

Create New Channel

The create new memory channel dialog is used to create a new memory
channel in the current data file. The new channel will be created using the
next free memory channel number, if required the memory channel import
channel dialog can be automatically provided.

The fields in the dialog change depending on the type of memory channel
you choose to create. The example shown is for a real marker channel. The
fields are:

Channel type
You can create a channel of type: Marker, Real marker or Idealised trace.

Channel title
This sets the title of the new channel.

Units
This sets the units of the new channel, it is not shown if you have selected the marker channel type.

Number of reals
This field is present for real marker data where it sets the number of real values to store with each marker and for
WaveMark data where it sets the number of waveform points to store with each mark.

Signal Version 6.06

12-236

Press the Create button to create the new memory channel, press the Import button to create the new channel and
move directly to the memory channel import channel dialog.

Add Items

This command opens a dialog used to add data items to a
memory channel. As many items as are desired can be added to
marker-type channels but only one idealised trace event can be
added as otherwise the idealised trace channel could easily
become corrupted and unusable. The dialog is modeless,
allowing you to (for example) alter cursor positions while the
dialog is in use. The items shown in the dialog vary according to
the channel type.

Channel
This chooses the memory channel to be modified.

Data time
This sets the time at which the new data will be created

Marker codes
This sets the four code bytes for new marker data

Real index
This selects between the various real marker real values, it is disabled if there is only one real value per marker. The
first real value is at index 0.

Data
This sets the value of the selected real marker channel real value.

Idealised trace data
The dialog shows very different information for an idealised
trace channel, the fields here are the event baseline value, the
event amplitude and the event period.

Delete Items

This command opens a dialog in which you can delete one or more
data items or a time range from a memory buffer. The dialog is
modeless, allowing you to (for example) alter cursor positions while
the dialog is in use. The Delete button removes one or more items as
set in the dialog. The Empty buffer button deletes all data for this
channel (it does not delete the channel). Close removes the dialog.
The MemDeleteTime() script command has the same functions.

Channel
The memory channel to use.

Analysis menu

12-237

Mode
There are four modes: Delete nearest to Start within Range, Delete all round Start within range, Delete first in
range Start to End, Delete all from Start to End. The first two modes delete one or more data items around a
time, the other two modes delete the first or all data items in a time range.

Start time
The time range used is Start time – Time range to Start time + Time range in the first two modes, and Start
time to End time for the last two modes.

End time
The end of the time range used. This field appears in the second two modes.

Time range
The time range around the Start time to search for data to delete. This field appears in the first two modes. This
field is usually set to a small value so that you can delete events close to the position of a cursor.

Idealised trace data
The dialog behaves differently for an idealised trace channel, the
modes here are Delete the first event before time, Delete the
nearest event to time and Delete the first event after time. Only a
single time value is shown.

Import Channel

You can import data into a memory buffer selected by the Memory field
from a channel set by the Source field (you may not import data from a
memory buffer to the same memory buffer). The Start time and End time
fields set the time region to import data from.

The Frames and Frame subset items are the main controls used to
select frames for the import operation. The simplest way to use these is
to type in a frame list directly. You can also select the current frame, all
frames, tagged or untagged frames or frames with a given state code. If
you choose the state code option, the dialog also displays a field into
which you can enter the state code to use. The Frame subset selector
can be used to further qualify the frames which are wanted.

During data import, values that cannot be extracted from the source are
set to 0. For example, when importing a marker channel into a real marker
channel, there are real values in the source so these are set to 0.

When importing to a marker or real marker channel from a marker or real
marker channel, or when importing to an idealised trace channel from an
idealided trace channel, a simple copy operation is carried out. When
importing to a marker or real marker channel from a waveform channel a more complex feature detection process is
carried out (see below).

The Apply button imports data and leaves the dialog open. The OK button imports data and closes the dialog. The
Close button closes the dialog without importing. The Help button or using the F1 key displays this page of help.

Signal Version 6.06

12-238

Extract markers from Waveform channels
You can also extract marker data from waveform channels. The Mode
field is present if the source is a waveform channel and sets the method
used to extract marker times from the waveform, there are four modes
available: Peaks, Troughs, Data rising through level and Data falling
through level. Detected times are added to the memory channel as
markers with codes 2 (Peaks), 3 (Troughs), 4 (rising data) or 5 (falling
data).

These modes use the Minimum interval field as the minimum separation
of detected times, to filter out times caused by noise in the input
waveform. Set this to 0.0 if you do not want to set a minimum period
between detected times. The peak search mode looks for a peak followed
by a fall of at least the Size field. The trough search mode looks for a
minimum, followed by a rise of at least the Size field. The rising and
falling level modes detect events when the signal crosses the Level in the
selected direction.

When importing to a real marker channel each first real marker value is set
to the source data value at the marker time.

Virtual Channels

Virtual channels hold waveform data derived using a mathematical expression from existing waveform channels
(including other virtual channels as long as they have a lower channel number) and built-in function generators. No
data is stored on disk; the virtual channel data is recalculated as required. You can match the sample interval and
data alignment to an existing channel, or type in your own settings. Channel sample intervals and alignments are
matched by cubic splining of the source waveforms. The script language equivalent of this command is
VirtualChan().

You can use virtual channels to carry out a wide variety of channel arithmetic (for example sums and differences of
channels), to linearise non-linear transducers, to process channel data in various ways (for example DC offset
removal or smoothing), to generate waveform data from scratch (for example, to copy into a sampling configuration
as a waveform stimulus) and to convert marker channels into waveforms proportional to the marker rate. Virtual
channels use a separate range of channel numbers but generally you do not need to use these as you can use 'v'
followed by a number thus: "v1" or "v1..v3".

There are Analysis menu commands to create a new virtual channel and to edit the settings of existing virtual
channels. Both commands open the Virtual channel dialog:

Virtual channel
Use this field to select the virtual channel
to work with when you have more than one
virtual channel. The New Virtual Channel
button creates a new channel.

Match to channel
You can select an existing waveform-based
channel (but not a virtual channel) from
which to copy the sample interval and data
alignment, the virtual channel first point
time, sample interval and point count will all
be set to match the designated channel.
Alternatively, you can select Use manual settings and type in the interval and alignment yourself.

Sample Interval
This field sets the sample interval between data points in the virtual channel in seconds. You can edit the sample
interval if you select Manual Settings in the Match to channel field. This field accepts expressions; for example,

Analysis menu

12-239

to set 27 Hz you can type 1/27. The number of data points in the virtual channel will be set to the frame width
divided by the interval.

Align to time
This field sets the time of a data point in the virtual channel. The time of any point and the sample interval
completely defines all the sample times for the channel - the first point for the channel will be at the time Align
mod Interval. You can edit the alignment if you select Manual Settings in the Match to channel field.

Expression
This field holds an expression that defines the virtual channel. Expressions are composed of scalars, vectors,
operators, channel functions, spectral functions, marker kernel functions, waveform generation, mathematical
functions, channel processes and frame information functions.

A scalar is a number, such as 4.6 or Sqrt(2). A vector is a list of data values that are derived from a channel or
generated by a waveform function. A function can be applied to a vector or a scalar to yield a result that is a vector
or a scalar. An operator combines vector and scalars, for example 1 + 2 combines the scalars 1 and 2 to generate the
scale 3. Ch(1)+1 combines the vector Ch(1) with the scalar 1 to give a vector that is the waveform from channel 1
increased by 1. Select one of the following for more information:

Example expressions
If channels 1 to 3 hold waveforms, then Ch(2) – 2*Ch(1) displays the difference between channel 2 and twice
channel 1.

Sqrt(Sqr(Ch(1))+Sqr(Ch(2)+Sqr(ch(3))) displays the square root of the sum of squares of three channels.
You could use this to display the magnitude of the resultant of three perpendicular forces or movements.

Sqr(Ch(1)) is the same as Ch(1)*Ch(1), but Sqr() is faster. To generate a polynomial function of the input it is
much quicker to use Poly() than to use Ch(), Squ(), Cub() and so on to generate a power series.

>>
Click this button to open the Build expression drop-down list, which helps you to construct expressions
interactively without needing to know the virtual channel expression syntax.

Optimise display when expression changes
If this button is checked then the virtual channel Y axis range will be optimised every time the expression changes
to make it easier to see what the virtual channel expression is doing.

Save expression
There is a list of saved expressions in the Build expression drop-down list. Valid expressions are added to the list
when you click the Save expression button, when you change to a different virtual channel and when you close
the dialog with the Close button. The expressions are stored in the system registry.

Operators

Arithmetic operators
You can use the four standard arithmetic operators plus (+), minus (-), multiply (*) and divide (/) and comparison
operators together with numbers, round brackets and some mathematic and channel functions. The result of
combining a vector and scalar with an operator is a vector, for example, the expression Ch(1)+1 is a vector, being
the data points of channel 1 with 1.0 added to each of them.

Dividing by a scalar value of zero is an error. Dividing by a vector holding zeros is not an error and generates
special floating-point numbers for positive and negative infinities. These can cause problems in subsequent
calculations (and they are difficult to display).

Comparison operators
You can also use comparison operators less than (<), less than or equal (<=), equal (=), not equal (<>), greater than
or equal (>=) and greater than (>); the result of these is 1.0 if the comparison is true and 0.0 if it is false. In the
expression a op b, where a and b are vectors and/or scalars and op is a comparison operator, if either a or b is a
vector, the result is a vector with value 1.0 at points where the comparison is true and 0.0 where it is false. For

Signal Version 6.06

12-240

example Ch(1)>1 has the value 1.0 where channel 1 is greater than 1.0 and 0.0 elsewhere. Ch(1)<>Ch(2) is 1
wherever channels 1 and 2 are not the same. Be cautious using <> (not equals) and = (equals) as we are dealing
with floating point numbers and exact equality may be compromised by arithmetic rounding.

Operator precedence
Multiply and divide have a higher precedence than all the other operators which all have the same precedence. You
can use round brackets to force other evaluation orders. Apart from that, evaluation is from left to right, so
a>b*c+d is interpreted as (a>(b*c))+d.

You can insert spaces between operators and numbers and between round brackets and the items within them. You
may not insert spaces between a function name and the opening bracket that follows it.

Waveform from channel

The following functions take a channel of data (including virtual channels with a lower channel number than the
channel being configured) and create a vector holding waveform data at the specified sample interval and
alignment.

Ch(n) n is a waveform or lower-numbered virtual channel. Copy data from channel n into the virtual
channel.

If(n) n is a a marker channel to convert to a waveform by linear interpolation of the instantaneous
frequency.

Ifc(n) The same as If() except that cubic spline interpolation is used if there are at least three marker
points available.

Rm(n,i) n is a real marker channel to convert to a waveform by linear interpolation of the real data values, i is
the real data item to use (the first item is 0). You can omit i, omitted values are treated as 0.

Rmc(n,i) The same as Rm() except that cubic spline interpolation is used.

You can use channel expressions like m1, v2, 1a in places where a channel number is expected.

Use of virtual channel numbers in an expression
To prevent recursive references, you can only use a virtual channel in an expression if it refers to a lower-numbered
virtual channel than the channel being defined. Although this can sometimes make things easier to visualise and
allows common sub-expressions to be used by other virtual channels, this does not save you any calculation time
(any may even be slower) than writing out the full expression. This is because the virtual channel is calculated
whenever it is needed; it is not cached.

Marker kernel functions

The Ec(n,w,r), Et(n,w,r), Es(n,w,r), Eg(n,w,r) and Ee(n,w,r) functions convert data from marker
channel n into a virtual waveform and can be used anywhere in an expression that you can use the Ch() function.
They replace each marker by a kernel (shape), centred on the marker time. For a marker at time t, the kernel extends
from t-w to t+r seconds except for Ee(), which extends from t-8w to t+8w seconds. Normally you will omit r, in
which case the shapes are symmetrical with r set equal to w. The resulting waveform is the sum of the kernels for all
the markers. The area of each kernel is unity, so the area under the waveform between any two times is the number
of markers within that time interval.

Ec(n,w,r)

w

Et(n,w) Es(n,w) Eg(n,w)

r

Ee(n,0,r)

Ec(n,w{,r}) The replacement shape is a rectangle, think Event Count, running from w to the left to r to the
right.

Et(n,w{,r}) The replacement shape is a Triangle running from w to the left to r to the right.

Analysis menu

12-241

Es(n,w{,r}) The replacement shape is a Sinusoid running from w to r to the right.

Eg(n,w{,r}) The replacement shape is a Gaussian with a sigma (standard deviation) of w/4 to the left and
r/4 to the right.

Ee(n,w{,r}) The replacement is an exponential function with a time constant of w to the left of each event
and r to the right. The kernel extends to 8 times the time constant in each direction.

The Ec() function simply counts the markers in the time range. This is the fastest analysis method, but produces
the most jagged output. The Et() function weights the markers with a triangle function. This is slower than Ec(),
but much faster than Es() and Eg(). The Es() function weights the markers with a raised cosine. The Eg()
function weights the markers with a Gaussian curve extending to 4 sigmas.

The Ee() function is rather different from the others as it is not suitable for use as a smoothing function and is
more likely to be used in a single-sided form. It weights the markers with an exponent exp(-t/r) to the right and
exp(-t/w) to the left (t stands for the time difference between the point and the time). The exponent extends to 8w
to the left and to 8r to the right.

Spectral functions

The following functions all calculate the power spectrum of an input channel and generate a waveform illustrating
how some feature of the power changes with time. These functions are particularly useful in EEG and EMG
analysis. The power spectrum is calculated using the Fast Fourier Transform (FFT), applied many times to span the
data. These functions can take some time to calculate. Arguments in common to all spectral function commands are:

n The input waveform channel. The maximum frequency for use in bands available to any of the
commands is half the sample rate of this channel. Missing data values (gaps) in the input channel are
treated as zero values.

f The desired frequency resolution of the output. For a resolution of f Hz, the FFT used to calculate the
power must span at least 1/f seconds of the input data. So 0.1 Hz resolution implies an FFT spanning
10 or more seconds of input data. The FFT we implement uses a power of 2 data points, which
constrains the available resolutions; we round f down to the nearest available value. There is a tradeoff
between frequency and timing resolution. If the virtual channel sample rate is more than 8 times the
frequency resolution we calculate the output for 8 times the resolution and interpolate the result. If you
set f to 0, the FFT size is 256 points.

l The low edge of a frequency range, in Hz. If this is an optional argument and you omit it, 0 is used.

h The high edge of a frequency range, in Hz. if this is an optional argument and you omit it, half the
sampling rate of channel n is used.

The available functions are:

Pw(n,f,l,h) Calculate the power in a frequency band from l to h Hz. There is a dialog to help
you build the expression.

Pw(n,f,l,h,r{,s}) Calculate the power in the frequency band from l to h Hz divided by the power in
the band from r to s Hz. If s is omitted, the band extends from r to half the sample
rate of the input channel. There is a dialog to help you build the expression.

SpE(n,f,p{,l{,h}}) Calculate the frequency at which p percent of the power in the band from l to h Hz
lies below. If l is omitted, 0 Hz is used, if h is omitted, half the sample rate of the
input is used. There is a dialog to help you build the expression.

MF(n,f{l{,h}}) Calculate the mean frequency in the band from l to h. If l is omitted, 0 Hz is used,
if h is omitted, half the sample rate of the input is used. The mean frequency is sum
of products of frequency times power divided by the sum of the power. There is a
dialog to help you build the expression.

DF(n,f{,s{,l{,h}}}) Calculate the Dominant Frequency. We search the band from l to h Hz for the
frequency region with the maximum power. s sets the distance in Hz to smooth the
data either size of each. There is a dialog to help you to build the expression.

Signal Version 6.06

12-242

Waveform generation

These functions generate waveforms without the need for an input channel, they all produce output from the start
to to the end of the frame. All the arguments are in units of seconds, except the sine wave frequency, which is in
Hz. All these waveforms have unit amplitude. You can use the standard maths operators */+ and - to scale and
shift the output to different values.

Generated waveforms and their alignment points

If you attempt to create a cyclic waveform with a frequency above half the channel sample rate, no output will be
generated. You can generate the following outputs:

WLev(v) A constant level of value v running from the start of the frame up to the end.

WSin(f,a) Sine wave of frequency f Hz running from the start to the end of the frame and aligned
so that phase 0 (the point where the rising sinusoid crosses 0) is at time a seconds.
The amplitude of the output runs from -1.0 to +1.0. The sinusoid is most accurate at the
start of a frame; the accuracy falls off as the number of cycles increases (this is highly
unlikely to be noticeable).

WSqu(l,h,a) Square wave with low period l seconds and high period h seconds aligned so that a
low period starts at time a seconds. Both l and h must be greater than 0 seconds. The
output level of the low section is 0, the output level of the high section is 1.

WTri(r,f,a) Triangle wave with a rise time of r seconds and a fall time of f seconds aligned so that
a rise starts at time a seconds. Either of r or f may be zero, but not both. The triangle
output level is from 0 to 1.

WEnv(r,h,f,a) Envelope with a rise time of r seconds, a hold time of h seconds, a fall time of f
seconds with the rise starting at time a seconds. The output waveform is 0 before time
a and after time a+r+h+f and is 1 during the hold time. At least one of r, h or f must
be non-zero.

WPoly(s,e,r,L) Polynomial in time from s to e seconds, the data is 0 before s and after e. The value at
time t is a function of (t-r) where r is a reference time. L is a list of 1 to 6 coefficients.
WPoly(f,t,r,a,b,c,d,e,f) is:

y(t) = a + b*(t-r) + c*(t-r)^ 2 + d*(t-r)^ 3 + e*(t-r)^ 4 + f*(t-r)^ 5

WT(s,e) Ramp of time starting at time s and running up to up to time e. The ramp value at time t
is (t-s) with value 0 before s and from e onwards. Omit e to run to the end of the frame,
omit both e and s to start from the beginning and run to the end.

WExpD(s,e,r,tc) Decaying exponential curve starting at time s and ending at time e, the data is 0 before
s and from e onwards. The decay curve data is 1.0 at the reference time r and decays
to zero with the time constant tc.

WGaus(s,e,c,sd) Gaussian curve starting at time s and ending at time e, the data is 0 before s and from e
onwards. The gaussian curve data is at 1.0 at the centre time c and has a standard
deviation sd.

Channel process functions

The channel process functions all have the form Func(x) where x can generally only be a vector and Func() is
the operation. The result is a vector. Many of these functions use a time constant to specify a range of data values
that will be use to produce the result, the first and last frame points are duplicated to provide the extra data needed
at the edges of the frame. This duplication gives reasonable behaviour but can give odd effects if the first or last
frame point is atypical; you should if possible avoid using the resulting data within one time constant of the ends
of the frame. Note that the vector that is operated on will have the sample interval and offset set for the virtual
channel so the data points that the Int(), Dif(), Smth3() and Smth5() functions operate on match the resulting
virtual channel, not the source for the vector x.

Analysis menu

12-243

Abs(x) The absolute value of x (negative values are replaced by positive values of the same size).
This can also be used to generate the absolute value of a scalar.

Hwr(x) Half wave rectify x (negative values are replaced by zeros). This function can also be used
on a scalar quantity.

Int(x) The integral of x, where the value at position p is replaced by the sum of all values from the
start of vector x up to and including p, multiplied by the sample interval. This gives the total
area from the start of the data.

Dif(x) The slope of x calculated by differences, where the value at position p is replaced by the
difference between the current value and the preceding value in vector x divided by the
sample interval.

Smth3(x) A 3-point smoothing of x, where the value at position p is replaced by the average of the 3
points in vector x around that position.

Smth5(x) A 5-point smoothing of x, where the value at position p is replaced by the average of the 5
points in vector x around that position.

Smooth(x, tc) Smoothing of x with time constant tc. The value at position p is replaced by the mean of the
data in vector x over the range p-tc to p+tc.

DCRem(x, tc) DC offset removal of x with time constant tc. The value at position p is replaced by the
value at p minus the mean of the data in vector x over the range p-tc to p+tc.

Slope(x, tc) Slope measurement of x with time constant tc. The value at position p is replaced by the
slope measured using least-squares fitting over the range p-tc to p+tc.

RMSAmp(x, tc) RMS amplitude of x with time constant tc. The value at position p is replaced by the RMS
value of the data over the range p-tc to p+tc.

Median(x, tc) Median filter of x with time constant tc. The value at position p is replaced by the median
value (the middle point after the data has been sorted into order) of the data over the range
p-tc to p+tc.

Mathematical functions

The mathematical functions all have the form Func(x), where x can be either a scalar or a vector and Func() is the
operation. If x is a vector, the result is a vector with the function applied to each value otherwise the result is a
scalar.

Max(x,y) The maximum of x and y. This can be used to set a lower limit, for example Max(Ch(1),1) is
a vector with minimum value 1.

Min(x,y) The minimum of x and y. This can be used to set an upper limit, for example
Min(Ch(1),Ch(2)) can be thought of as the value of channel 1 with the maximum value
limited by the value of channel 2 (or vice versa).

Sqr(x) This calculates the square of x. Sqr(x) is the same as x*x, but is faster, particularly when x
is a vector.

Sqrt(x) This calculates the square root of x. When x is a vector, negative values are set to 0. If x is a
scalar, negative values cause an error.

Cub(x) This calculates the cube of x. Cub(x) is the same as x*x*x but is much faster, particularly
when x is a vector.

Poly(x,L) Replace x with a polynomial in x of order 1 to 5; L is a list of 1 to 6 coefficients. Use this to
apply a non-linear calibration to a signal. For example: Poly(x,a,b,c,d) = a + b*x +
c*x*x + d*x*x*x

Sin(x) Calculates the sine of x (x is in radians).

Cos(x) Calculates the cosine of x (x is in radians).

Tan(x) Calculates the tangent of x (x is in radians). The result can be infinite.

ATan(x) The arc tangent of x. The result is in radians in the range -pi/2 to pi/2.

ATan(s,c) Both s and c must be vectors or both must be scalars. The result is the arc tangent of s/c
with the quadrant set by the signs of s and c. The result is in the range -pi to pi.

Signal Version 6.06

12-244

Ln(x) Natural logarithm of x. Negative or zero x values generate -100 when x is a vector and an
error when x is a number.

Exp(x) Exponential of x. If the result overflows, this is an error when x is a number and sets the
largest allowed result when x is an array.

Frame, tag and state functions

These functions all generate a scalar quantity based upon an aspect of the current frame, which makes is possible
for the virtual channel behaviour to vary with the frame.

Frm() The result of this function is the current frame number.

Tag() The result of this function is 1 if the current frame is tagged, 0 if it is not.

State() The result of this function is the state code number (0 to 255) of the current frame.

Build expression

There is no need to remember all the expression functions; just click the >> button and choose from a list of
possible items to add. All the commands in this section generate a text string that is inserted at the caret position
(replacing or including where appropriate the current selection) in the Expression field. Simple commands insert
the text immediately; more complex commands open a dialog to build the expression. Commands that open dialogs
display the expression at the lower left corner. You can choose from:

Waveform from channel Use this to generate commands that create a waveform from an
existing channel.

Spectral functions Select this to generate commands that create waveforms based on the
spectral content of a waveform. You can choose from Power in band or
ratio of bands, Spectral edge, Mean frequency and Dominant
frequency.

Generate waveform Create a waveform independently of any channel, for example a
sinusoid or a triangle wave or an envelope function.

Channel processes These commands carry out various processes upon channel data, for
example rectifying, smoothing and slope measurement. Many of these
operate over a specified time range, in which case a dialog is provided
to set the time constant.

Mathematical functions These commands insert general mathematical functions (Sqrt(), Sin(),
Cos() etc and also the Poly() command which generates a poylnomial
of a vector or scalar and that opens a new dialog.

Frame, tag and state functions These commands provide single values derived from the current frame
information.

Mathematical operators Select one of these to insert the operator to replace the selection..

Previous virtual channel expressions
This option lists expressions that you have used previously. Valid expressions are added to the list when you click
the Save expression button, when you change to a different virtual channel and when you close the dialog with
the Close button. The expressions are stored in the system registry. The most recently used expression is at the
top of the list.

Waveform from channel

Select one of these items to generate the commands that create a waveform from an existing channel. You build the
commands using a dialog, all dialogs display the equivalent command in their lower left corner. The result from the
dialog replaces the selection in the Expression field.

Analysis menu

12-245

The commands in the Waveform from Channel section of the Virtual channel dialog expression field generate
waveforms directly from data channels. The commands all open a dialog to select the source channel and set the
parameters.

Copy waveform
This dialog builds the Ch() command, allowing you to copy data from a
waveform channel.

Marker channel using kernel
This dialog lets you
choose between the
various Marker kernel
functions: Rectangular,
Triangular, Raised
Sinusoid, Gaussian and
Exponential. Normally you
will leave the Asymmetric
kernel box unchecked so
that the shape that replaces each event is symmetric about the event time. The shape is scaled so that the area
under it is unity (time measured in seconds).

Marker instantaneous frequency
This dialog generates the If() and Ifc() commands, which convert a
channel of marker times into a waveform of the channel instantaneous
frequency. The frequency points at the markers can be linked by a straight line
(linear) or by a cubic spline.

Real marker data item
This dialog generates the Rm() and Rmc() commands, which convert a real
marker channel into a waveform using the specified real marker value. The
values at the marker times can be linked by a straight line (linear) or by a cubic
spline.

Signal Version 6.06

12-246

Power in Band

This dialog (accessed from the Virtual Channel build
expression dialog) generates a waveform channel
representing either the power in a frequency band, or the
ratio of power in a band to the power in another band. The
fields are:

Input waveform or RealWave Channel
Use this to select a suitable input channel to be analysed.
The maximum values you can set for the frequency band is
half the sample rate of this channel. If you change the
channel, the frequency resolution field and the frequency
range are reset to default values.

Frequency resolution should be no worse than ... Hz
When you open the dialog or change the channel, this value is set to the frequency resolution you would get for a
FFT size of 256 points (which is usually a sensible value). Follow this link for more information about the frequency
resolution. The actual frequency resolution and FFT size that will be used to achieve it are displayed in the dialog.

Frequency range for Power from ... to ... Hz

These fields set a frequency range where the power is to be calculated. The lower frequency must be less than half
the sample rate of the source channel, the upper frequency must be greater than the lower. The results of the power
calculation are in bins of fixed frequency width so it is unlikely that the frequencies you set will match the edges of
the power bands. The power is calculated starting at the lower frequency and extending up to the upper one. If a
band starts or ends with a fraction of a bin, then that fraction of the power in the bin is included.

Divide power by power in band from ... to ... Hz
If you check the box, the result is not power, but is the ratio of the power in two bands. Usually, the second band is
set from 0 to half the sampling rate, giving a measure of the proportion of the total power, but you can set any
frequency range you like as long as the lower frequency is less than half the sample rate. If the band used for
division does not completely overlap the first band there is the possibility of division by zero. If this occurs, the
result is set to 1000000 (rather than setting infinity, which is difficult to draw).

If you do not check the box, the output waveform is calibrated in power such that the output is the mean square of
the data in the frequency band. That is, if the input data were a sinusoid of amplitude A units of a frequency in the
band, the output would be A2/2 units squared. Put another way, if the frequency band was set to include all
frequencies, the output would be more or less that same as the input channel squared and then smoothed over a
time of the FFT size.

Analysis menu

12-247

Spectral Edge

This dialog (accessed from the Virtual Channel build
expression dialog) generates a waveform channel holding
the frequency at which the sum of the power starting at 0
(or the low edge of a defined band) is a used defined
percentage of the total power (or the total power in a
defined band). The fields are:

Input waveform or realwave channel
Use this to select a suitable input channel to be analysed.
The maximum values you can set for the frequency band is
half the sample rate of this channel. If you change the
channel, the frequency resolution field and the frequency range are reset to default values.

Frequency resolution should be no worse than ... Hz
When you open the dialog or change the channel, this value is set to the frequency resolution you would get for a
FFT size of 256 points (which is usually a sensible value). Follow this link for more information about the frequency
resolution. The actual frequency resolution and FFT size that will be used to achieve it are displayed in the dialog.

Spectral edge as a percentage of power (in band) ... %
You set the proportion of the signal as a percentage in the range 0 to 100. If you want the Median frequency as
used in some EMG work, set the percentage to 50.

Limit calculation to band from ... to ... Hz
If you check the box, you can set limits for the band of frequencies that are used in the calculation. The range of
bins used is inclusive from the nearest bin to the low frequency in the power spectrum, up to the nearest bin to the
high frequency.

Mean frequency

This dialog (accessed from the Virtual Channel build
expression dialog) generates a waveform channel holding
the mean frequency, defined as the sum of the product of
Power and frequency divided by the sum of the power.
You can limit the calculation to a range of frequencies. The
fields are:

Input waveform or RealWave Channel
Use this to select a suitable input channel to be analysed.
The maximum values you can set for the frequency band is
half the sample rate of this channel. If you change the channel, the frequency resolution field and the frequency
range are reset to default values.

Frequency resolution should be no worse than ... Hz
When you open the dialog or change the channel, this value is set to the frequency resolution you would get for a
FFT size of 256 points (which is usually a sensible value). Follow this link for more information about the frequency
resolution. The actual frequency resolution and FFT size that will be used to achieve it are displayed in the dialog.

Limit calculation to band from ... to ... Hz
If you check the box, you can set limits for the band of frequencies that are used in the calculation of mean
frequency. You could use this to exclude a DC offset from the calculation.

Signal Version 6.06

12-248

Dominant frequency

This dialog (accessed from the Virtual Channel build
expression dialog) generates a waveform channel holding
the frequency at which the most power was found. You
can limit the search to a range of frequencies. The fields
are:

Input waveform or RealWave Channel
Use this to select a suitable input channel to be analysed.
The maximum values you can set for the frequency band is
half the sample rate of this channel. If you change the
channel, the frequency resolution field and the frequency
range are reset to default values.

Frequency resolution should be no worse than ... Hz
When you open the dialog or change the channel, this value is set to the frequency resolution you would get for a
FFT size of 256 points (which is usually a sensible value). Follow this link for more information about the frequency
resolution. The actual frequency resolution and FFT size that will be used to achieve it are displayed in the dialog.

Frequency smoothing either side of each power bin ... %
If you leave this value as 0, the result is the power bin with the largest power and the result is quantised to the
frequency resolution. The value you set here is divided by the frequency smoothing to give the number of extra
bins either side of the each searched bin to include when looking for the maximum. If the extra bins would extend
before 0 Hz or after the bin corresponding to half the sampling rate, these non-existing bins are presumed to hold 0
power. When a maximum is found, the result is the weighted mean frequency in the range of bins.

Limit calculation to band from ... to ... Hz
If you check the box, you can set limits for the band of frequencies that are used as the centre of the search for the
dominant frequency. The actual result can be outside this range if the frequency smoothing is set and a large power
peak is just outside the range.

Spectral frequency resolution

The four virtual channel functions that generate spectral functions all have a frequency resolution parameter. To
best use this you need to understand how the spectral functions are calculated. Signal converts from a waveform
(the time domain) to power at a given frequency (the frequency domain) using a radix 2 Fast Fourier Transform
(FFT). The analysis we do takes a sequence of n input data points and generates n/2+1 output points that describe
the power, spanning the frequency range 0 to half the waveform sampling rate. The output points are equally
spaced in frequency.

The frequency spacing of the output points is thus the input waveform sample rate divided by the number of
points, n in the transform. However, the sample rate is also the reciprocal of the sample interval, and n times the
sample interval is the time duration of the input n points:

Frequency resolution = sample rate / n = 1 / (n* sample interval) = 1/(input duration)

Notice that this is independent of the sampling rate of the data. When you specify the frequency resolution, you
are also specifying the time duration of the FFT transform. This means that if you want the power at time t, with a
frequency resolution of f Hz, we must transform the data from time t-1/(2*f) to t+1/(2*f) seconds. That is,
the more accurately you want to determine frequency, the less accurately the position in time where the frequency
occurred can be known.

The details
The FFT we use does not accept arbitrary lengths of input data; it works with powers of 2 data points. If the
number of samples set by a duration of 1/f seconds is not a power of two (as is generally the case), it is rounded up
to the next power of two, which means that the value of f used will always be less than or equal to the value that
you request.

Analysis menu

12-249

The actual value of the resolution, the FFT size used and the time period that the FFT spans are all displayed in the
dialog so you can make sure that the resolution makes sense. Each waveform section that is transformed is first
multiplied by a Hanning window. This weights the input data so that the values nearer to the centre get more
weight in the result that those at the edges; it also prevents artefacts in the result.

If the sample interval for the virtual channel is more than half the FFT size in seconds, the result for a particular
point is calculated by using overlapped transforms (the overlap factor is at least half the FFT width) of the input
data from half an output sample interval before the point to half a sample interval after.

If the sample interval for the virtual channel is half the FFT size down to 1/8 the FFT size, each output point is
calculated from one transform with the data centred on the output point.

If the sample interval for the virtual channel is less than 1/8 the FFT size, we calculate the power spectrum for an
interval of 1/8 of the FFT size, then interpolate the values.

Generate Waveform

The commands in the Generate Waveform section of the Virtual channel dialog expression field generate
waveforms without any reference to data channels. Note that these commands generate data that coveres the entire
width of the data frame as defined by other channels. If you have a completely empty data file you will need to add
a channel with some data time you want to generate data for. You can generate:

Level
This generates a WLev() command that extends for the entire width of the frame.

Sinusoid
This generates a WSin() command that extends for the entire
width of the frame. You set the frequency in Hz and a point in
time at which the sinusoid rises through zero. The generated
waveform has mean value of 0 and a peak to peak amplitude of 2.
The waveform frequency must be less than twice the sampling
rate set for the channel.

Square wave
This generate a square wave that extends for the entire width of the frame with the WSqu() command. You define
the wave by setting the low (waveform value 0) and high (waveform value 1) time periods and an alignment point
where the waveform rises from zero. The period of the waveform (low plus high time) must be at least two sample
periods of the virtual channel.

Triangle wave
This generates a triangle wave that extends for the entire width of the frame with the WTri() command. The
waveform is defined by a rise time and a fall time in seconds and by a time at which a rise starts. The period of the
wave must be at least two sample periods of the virtual channel.

Signal Version 6.06

12-250

Envelope
An envelope is zero everywhere except in one region
where the value rises linearly to 1, then holds at 1, then
falls linearly back to 0. It is implemented by the WEnv()
command. It is defined by the start time, rise time, hold
time and fall time, all in seconds.

Polynomial of time
The WPoly() command generates polynomials in time relative to a
reference time, time being measured in seconds. The polynomial has a
value in a defined time range and is zero elsewhere. Such curves can be
used to create complex envelopes, or to subtract out a curve generated
by the interactive curve fitting routines. The order of the polynomial can
be set to: Constant, Linear, Quadratic, Cubic, Quartic or Quintic,
representing the highest power of the time used. The Coefficient field
selects the coefficient to set in the Value field.

Ramp of time
The WT() command generates
a ramp from a start time up to,
but not including an end time.
The data is zero outside this
time range. Within the time
range, the ramp value is the
current time minus the start
time.

Decaying exponential
The WExpD() command generates a decaying exponential from a start
time up to, but not including an end time, the data is zero outside this
time range. The curve is 1.0 at the reference time and decays with the
specified time constant, note that a negative time constant gives you
exponential growth and that the curve can be greater than 1.0 if the
reference time is after the start time (or before the end time if the time
constant is negative).

Gaussian
The WGaus() command
generates a Gaussian curve
from a start time up to but not
including an end time, the
data is zero outside this time
range. The maximum value is
1.0 at the defined centre point
and the curve exhibits the
specified standard deviation.

Analysis menu

12-251

Channel process

This dialog is provided to help you set up the various channel process
functions that use a time constant:

Smooth(,tc) Apply smoothing with time constant tc to the selection.

DCRem(,tc) Apply DC offset removal with time constant tc to the
selection.

Slope(,tc) Running slope measurement with time constant tc to the
selection.

RMSAmp(,tc) Running RMS amplitude measurement with time constant tc to the selection.

Median(,tc) Apply a median filter with time constant tc to the selection.

For all of these, the dialog provided allows you to enter the time constant in your preferred X axis units. For
example, if the Expression field holds Ch(1) + Ch(2) and you want to smooth the channel 1 data before adding
it, select Ch(1), click the >> button, select Channel process functions, select Smooth with time constant the
selection and enter the time constant required for the smoothing.

Apply polynomial to data

This dialog is opened from the Virtual channel expression field and builds
a Poly() expression. The Vector expression field is set to whatever was
selected when this dialog was opened, or is set to Ch(1) if nothing is
selected. This field is not tested for validity. Each element x of the vector
is replaced by a polynomial in x. You can set the order of the polynomial
(order means the highest power of x used) in the range 1 to 5. The
command is:

Poly(x, a0, a1, a2, a3, a4, a5)

where x is the vector expression (you can also use a scalar, but this is not
very useful) and the a0 to a5 are the coefficients of the polynomial. This
expression generates the quintic:

y = a0 + a1 x + a2 x
2 + a3 x

3 + a4 x
4 + a5 x

5

For lower order polynomials, omit the coefficients from the right. For example, for a quartic (fourth order
polynomial), omit a5, for a cubic omit a5 and a4. To set coefficient values in the dialog, use the Coefficient field to
select the required coefficient and then set its value.

Append frame

This command appends a new, blank, frame to the end of a file or memory view. This command can be used on a file
view to generate an extra frame that will be used to hold processed data; for example a frame containing leak
subtraction data that will be subtracted from other frames in the file. The extra frame can be used as part of a script,
or it can be manipulated via the frame buffer.

If the command is used to append a frame to a memory view created by processing, the new frame will have its own
processing parameters. When the frame is appended, the process dialog is provided to define the new frame’s
processing parameters. This allows for result views with different frames holding the results of processing different
sets of source frames. For example, if you were sampling with multiple states, you might want to produce a multiple
frame average with each frame holding the results of averaging source frames with a different state. Multiple-frame
memory views, with attached processing parameters, can be saved as part of a Signal sampling configuration.

Append frame copy

This command appends a new frame, containing a copy of the data in the current frame, to the end of a file or
memory view. This command is not available for memory views created by processing.

Signal Version 6.06

12-252

Delete frame

This command removes the current frame from the file or memory view. It is only available if the current frame has
been appended and not yet written to disk. The last frame in a memory view and file view frames stored on disk may
not be deleted.

Delete channel

This command provides a dialog that can be used to remove a channel permanently from an XY data document or a
virtual channel or idealised trace from a file view. Once the channel has been deleted, it cannot be retrieved.

The frame buffer

The frame buffer is an extra frame of data that is automatically provided by Signal. Every open data file and memory
document has a separate frame buffer that is used in conjunction with the document data, this buffer is shared by
all of the views of that document. The frame buffer can be used to carry out arithmetic on frames (for example,
subtract the average of frame 1 to 4 from all frames), either interactively via the commands described via the links
below or by using the multiple frames dialog.

The way to think of the frame buffer is as an extra frame of data that is behind the current frame in the view. When
you change to a different current frame, the buffer moves too so that it is always associated with the current frame.
Understanding this association is important because all of the frame buffer arithmetic commands work with the
current frame. If you are displaying the frame buffer the buffer moves so that it is in front of the current frame, but it
is still closely associated with the current frame. When the buffer is shown the view title changes to show that the
buffer is visible, the current frame number is still shown in brackets because the user still needs to be aware of
which frame is current in order to use the buffer.

Clear buffer

This command (keyboard shortcut Ctrl+0) clears the data in all channels of the frame buffer to zero. This is the
initial state of the buffer after a CFS data file has been loaded.

Copy to buffer

This command (keyboard shortcut Ins) copies the data in the current frame into the frame buffer.

Copy from buffer

This command (keyboard shortcut Ctrl+Ins) copies the data in the frame buffer, and any count of sweeps
averaged, to the current data frame.

Exchange buffer

This command (keyboard shortcut Shift+Ins) exchanges the data in the frame buffer, and any count of sweeps
averaged, with the data in the current frame.

Add to buffer

This command (keyboard shortcut +) adds the data in the current frame to the data in the frame buffer. There is an
alternative form of this command, available only through the Ctrl++ shortcut and the Multiple frames dialog,
which adds the buffer data to the data in the current frame.

Analysis menu

12-253

Subtract buffer

This command (keyboard shortcut -) subtracts the data in the frame buffer from the current frame. There is an
alternative form of this command, available only through the Ctrl+- shortcut and the Multiple frames dialog,
which subtracts the current frame data from the buffer.

Average into buffer

This command (keyboard shortcut Enter) adds the data in the current frame into an average accumulating in the
frame buffer. The addition is carried out in such a way that the buffer holds the average of frames accumulated. If
the buffer contains data before averaging starts, this will be included as the first frame of the average. There is an
alternative form of this command, available only through the Ctrl+Enter shortcut and the Multiple frames dialog,
which removes the current frame data from an average in the buffer - this will not work correctly if the frame was not
accumulated into the buffer average in the first place.

If you mix the buffer averaging commands with the normal addition and subtraction operations, you will find that
normal addition and subtraction on the buffer ‘resets’ the average by setting the count of sweeps so far to one.
The actual addition and subtraction act as you would expect.

Signal Version 6.06

12-254

Multiple frames

This command (keyboard shortcut Ctrl+M) provides a dialog that can be
used to carry out numerous operations on multiple frames in the
document. The dialog contains a selector for the operation to be carried
out, a field to enter any operation data required (this is hidden if the
operation does not need it) plus a standard set of controls to specify
frames in the data document to be used. The dialog can be used
repeatedly by pressing the Apply button, it doesn’t disappear until Close
is clicked.

The operations available from the dialog include all of the frame buffer
operations, all of the channel data modification options, plus tag and un-
tagging frames and clearing any fits.

For operations that modify the frame buffer, such as accumulating an
average or summing frames, the effect is straightforward. For operations that modify file view data, such as
rectifying channels or subtracting buffer data from frames, the changed data must be saved to disk if the action is
to have an effect (otherwise the changed file data will be discarded). This is because Signal only holds one frame
from a data file in memory at a time; frames are loaded from disk as required and discarded when another frame is
wanted. Use the File menu Data update mode option to ensure that changed frame data is saved, either
unconditionally or by querying the user. For memory views, all of the document data is held in memory and
changes to frame data are always saved.

Modify channels

This command provides a pop-up menu specifying the data modifications that are available. All of these
modifications operate on the selected waveform channels or on all visible waveform channels if none are selected.
If the frame buffer is being shown then they operate on frame buffer data. In either case, all data points in the
channels are modified regardless of the displayed X range. Most of the modifications are also available via the
keyboard shortcuts shown in the menu. As for the frame buffer operations, changes to the frame data will be saved,
or not, according to the file data update mode.

The behaviour of the modifications themselves are mostly straightforward. Subtract DC measures the mean value of
the channel data, then subtracts this DC offset value from all data points. Normally, the DC level is measured over
the visible frame area, the X range for the DC measurement can be set using the Area of DC item. Differentiation
replaces each data point with the difference between that point and the previous point and divides the result by the
sample interval; the first data point is set to zero. Integration replaces each data point with the sum of all data
points up to and including that point multiplied by the sample interval. Neither integration nor differentiation are
available for log-binned data. 3-point and 5-point smoothing replace each point with the average of the 3 or 5 points
centred on that point. The scale and offset data options provide a dialog in which a numeric value can be entered.
Scaling the data multiplies each data point by the number entered, offsetting adds the number entered to each data
point.

The shift data option rotates data points by shifting data from one time to another within the frame. Note that this
operation rotates; data points that fall off one side of the frame are shifted back in on the other side, so the
operation can be reversed without loss of data. There are special shortcuts Shift+< and Shift+> to shift left and
right by one point.

The last four options are for inter-channel arithmetic. A channel will be prompted for and this channel will be
applied with the appropriate operand to the other channels on a point by point basis.

Tag frame

This command (keyboard shortcut Ctrl+T) is used to tag or untag the current frame in the current view. When the
current frame is tagged, this menu item is shown checked. All data frames in files handled by Signal can be tagged
or untagged, the tagged status of a frame is displayed as part of the application status bar and can be interrogated
by scripts. Frame tagging can be used for any purpose you require; all commands requiring a frame selection are
able to operate on all tagged frames or all untagged frames. The command toggles the tag state of the current frame,
changing tagged frames to untagged and vice-versa.

Analysis menu

12-255

Digital filters

This option provides the FIR and IIR digital filtering dialogs, which can create filters and apply them to waveform
channels. See Digital filtering for details of these. This option will be greyed out for log-binned data

Keyboard analysis control

Windows software is usually orientated towards control by means of the mouse and menus, but it is often
convenient to use the keyboard instead. For interactive analysis of the data, using the keyboard can often be much
faster. With this in mind, Signal includes keyboard shortcuts designed to handle most common data manipulation
requirements:

Channel arithmetic Key Frame buffer operations Key

Zero channels Shift+Z Toggle display of frame buffer Ctrl+B

Negate data Shift+N Add frame to buffer (average) Enter

Rectify data Shift+R Add frame to buffer +

Subtract DC level Shift+O Add buffer data to frame Ctrl+'+'

Differentiate data Shift+D Subtract frame from buffer (average) Ctrl+Enter

Integrate data Shift+I Subtract buffer data from frame -

3-point smooth Shift+3 Subtract frame from buffer Ctrl+'-'

5-point smooth Shift+5 Copy frame data to buffer Insert

Shift 1 point left Shift+< Copy buffer data to frame Ctrl+Ins

Shift 1 point right Shift+> Exchange buffer and frame data Shift+Ins

Multiple frames dialog Ctrl+M

All of these shortcuts are documented with the appropriate menu commands. All analysis shortcuts are listed here
for convenience. There are more keyboard shortcuts for data view and text view manipulation, and for control of
sampling.

Signal Version 6.06

13-256

Single-channel analysis

The Analysis menu for file and memory views contains a separate section, Open/Closed times, that is dedicated
to facilities used by patch clamp researchers to analyse single channel data. To avoid confusion among non-
clampers, these features will be hidden unless clamping support is enabled in the Edit menu Preferences dialog.
With clamping support enabled, the Open/Closed times item is visible in the analysis menu and the available
commands for analysis and interaction will be displayed in an attached sub-menu.

The currently available single-channel analysis commands are New idealised trace (SCAN), New idealised trace
(Threshold), which generate idealised trace data from a waveform channel and Open/Closed time histogram,
Open/Closed amplitude histogram and Burst duration histogram, which process previously generated idealised
trace data. A final command; View and modify event details, provides the Event details dialog used for
interactive generation and editing of idealised traces.

About idealised traces

An idealised trace represents the
opening and closing (assumed
to be instantaneous) of an ion
channel in a membrane or
artificial bilayer. It shows the
noise-free underlying current
through the membrane that,
processed though imperfect
transducers and amplifiers,
would generate the distinctly
non-ideal signal that is actually
sampled. Idealised trace data is
generated by fitting the trace to
the sampled data in such a manner as to most accurately represent the behaviour of the actual ion channel, taking
into account such things as the sampling rate, the average level of sections of the data and the frequency response
of the signal amplifiers.

Idealised trace data is very different in a number of ways from other Signal data. Whereas normal waveform data
consists of a series of measurements equally spaced through time, an idealised trace is a sequence of levels, called
events, of arbitrary duration, each running from the end of the previous level up until the start of the next one. Each
event has a start time, an amplitude, a duration and a set of flags to identify the type of event: a closed time; first
latency etc. Because this is rather different from a sampled waveform many analyses such as waveform averaging
and the cursor regions measurements are not available for idealised trace data. On the other hand other analyses
such as open\closed time histograms are possible with idealised traces.

An idealised trace must be generated from a waveform before histograms based upon the trace data can be built. If
you set up histograms based on an idealised trace channel where the trace has not yet been generated the
histograms will still be created, but will not contain any data. If you are working on-line, it is worth noting that
idealised trace data will be generated first for newly sampled data so that other analyses that depend on it will work
correctly. Once an idealised trace exists, it is stored in the .sgrx file associated with the data file and will be re-
loaded each time the data file is opened.

New idealised trace SCAN

This analysis generates idealised trace data from a waveform using the SCAN technique which was developed by
Professor David Colquhoun, to whom we owe thanks for his assistance in implementing this technique within
Signal. The settings dialog provided when you use this command holds fields to determine how the trace should be
generated.

Note that before you can use the SCAN method you must first perform the Baseline measurements option available
in the same sub-menu.

Single-channel analysis

13-257

SCAN analysis makes use of an assumption that a Gaussian filter was used to
remove noise from the signal to produce a high time resolution guess of what the
original unfiltered, noise free waveform was. This is a form of reverse convolution
of the idealised trace using the step response function for the amplifier and other
electronics. It is worth noting that the usual multiple poles Bessel filter used by
most patch clamp amplifiers is a good approximation to a Gaussian filter so
produces quite satisfactory results with this technique. The default draw mode for
the analysis is to show the convolution over the top of the raw data with the
idealised trace drawn below. Once this process has been used to produce a rough
idealised trace, the trace will need to be fitted to the data using the Event details
dialog to achieve maximum accuracy.

The Channel field sets the waveform channel to be fitted. The time range to be
fitted is then defined by the Data start time and Data end time fields. If you are
analysing voltage activated channels then you should set these times to be the
start and end times of the stimulus. The first event generated by the analysis will be flagged as a first latency so if
you are interested in first latency times you will need to make sure that the first event starts when the stimulus
does. You should note however, that the transition times calculated will be skewed by the effects of the filter. This
does not affect the durations of most of the events as they are all skewed by the same amount but first latencies
will be slightly extended. If you are analysing a spontaneously active channel you should set the end time to be
XHigh() as you will need to process small chunks of data at a time to keep a check on progress through the file.
More details of how to do this are given at the end of this chapter.

The Baseline field is used at the start of the analysis to tell the event detection where the closed state is expected
to fall. Using a horizontal cursor here will allow rhe cursor to be moved by the analysis routines to update their
positions as the baseline is tracked. Baseline track will keep a running average of points in the closed state in
order to correct for baseline drift during the recording.

The next field will be either Open below for an inward current where an opening is downwards on the display or
Open above for an Outward current where an opening is upwards on the display. This field should be set to just
outside the noise level. It is used to determine when an event is too short to be distinguished from noise.

Open Level defines the full open level. It is used in conjunction with the Advanced parameters to determine what
amplitude change is significant enough to constitute a transition.

The Filter cut-off frequency is the –3 dB frequency of the Gaussian filter. If an analogue Bessel filter is used it is
worth noting that the –3 dB frequency is often about half the cut-off frequency set on the front panel of the filter
which uses a different definition for the cut-off.

Sometimes a transition takes longer than expected for a given filter cut-off. When this happens Signal can either
insert an event at a sub-level or insert two full height transitions in opposite directions in order to make the
resulting convolution approximate to the raw data. With the Avoid sublevels check box checked then the latter
option will be used whenever appropriate though it does not guarantee that no sub-levels will be fitted.

The New button generates the channel to hold the idealised trace and provides the standard process dialog where
you can control the processing. The idealised trace data channel is originally positioned in the file view on top of
the original waveform channel, the drawing is set up so that the convoluted trace is shown on top of the waveform,
with the idealised trace itself offset below.

Signal Version 6.06

13-258

Advanced

The algorithm used by the SCAN technique is highly complex.
The Advanced button allows various parameters used in the
trace formation to be changed. The basic principle of the trace
formation is that an average is kept of the point amplitudes of
the data. When a number of consecutive points fall outside a
critical level then a transition is deemed to have taken place.
The critical level is defined as a percentage of the difference
between the baseline and the full open level. To begin
scanning for the next transition imediately would probably
result in another transition being detected straight away when
in fact it was just part of the same transition already found.
For this reason the scanning jumps ahead by an amount to
get past the transition just found. This amount is specified as
a percentage of the filter length; the filter length being defined as the time taken for the step response to get from
1% to 99% of the step amplitude. For a Gaussian filter this turns out to be 0.6165062/fc where fc is the –3 dB filter
cut-off frequency. Rise time is defined as 0.3321412/fc.

An average of the data point values found while looking for a transition is kept and used as the default amplitude
for an event. If this amplitude is less than the critical level from the baseline then the event is flagged as closed. The
data skipped over by the transition detection is checked for turning points that might indicate that a transition in
the oposite direction to the previously detected one had been missed. If a turning point is found, a transition is
inserted at a time calculated from the amplitude of the turning point and an assumption that the original data
reached full amplitude or was closed.

Consecutive transitions in the same directions can either mean a sub-conductance level or a pair of transitions have
been missed. If the Avoid sublevels box has been checked then by looking for turning points in the first derivative
of the raw data the times of transitions can be deduced or their presence eliminated. Any missed events are
assumed to be of full amplitude or closed and are flagged as assumed amplitude.

Transitions having less than a certain amplitude are stripped out in a final pass. At the fitting stage in the Event
details dialog amplitudes having the assumed amplitude flag set are held fixed then a second pass of fit is made
freeing up assumed amplitudes above a certain duration. The Advanced parameters dialog can be accessed
from the Event details dialog by clicking the Parameters button.

New idealised trace Threshold

This analysis generates idealised trace data from a waveform using a threshold
crossing technique. Threshold crossing as a method for generating an idealised
trace is needed if you have more than one channel in your patch or if you want to
make use of a simpler technique and are not concerned with a very high time
resolution result.

The first three fields in the setting dialog set the channel to be analysed and the
time range to analyse in exactly the same way as for the SCAN method settings.

The next two fields set the thresholds to use for detecting openings. These are
labelled Open above and Close below for outward currents or Open below and
Close above for inward currents. Having two thresholds in this way provides
some protection against false events being detected, which are actually noise. It is
assumed that these thresholds will be positions approximately around the half-way
mark between the baseline level and the open level, so if the open level was
approximately 1.8 pA then the thresholds would be placed around 0.9 pA; at 0.8
and 1.0 pA for example.

The Base level field is mostly used in multiple level analysis, where the thresholds for subsequent levels are
calculated by averaging the two thresholds and then doubling the difference between this average and the base
level. The result is assumed to be the current per channel opening for subsequent levels and so subsequent
thresholds are calculated by adding multiples of this value to the original thresholds. This value also sets the
reference (baseline) level for event amplitude measurements when baseline tracking is not in use.

Single-channel analysis

13-259

Transition points can be set to a number greater than zero to provide a ‘dead time’ after a transition before another
transition can be detected. This allows for settling of data which has been filtered.

The Baseline track field sets the number of points over which the baseline level is averaged to produce a current
baseline level. The current baseline level is used to set the level for closed events and baseline level for all events,
plus all thresholds are shifted to match shifts in the current baseline level. Set this field to zero to disable baseline
tracking, in which case the level of a closed event is set by the average value of the waveform making up this event
and the baseline level for all events is set by the Base level field.

By default an event will start at the first data point found to be across a threshold and will have an amplitude which
is the average amplitude of all the data point within the event period. The Interpolation field allows the start time of
the event to be calculated by extrapolating the data around the transition to find the exact time that the threshold
was crossed. Currently only linear interpolation is available, this assumes that a straight line can represent what
happens between sample points.

Select Multiple level if you have more than one channel in your patch or if other circumstances give your
preparation more than one open level. Outward current means that a channel opening produces a more positive
current; a commonly used convention. An inward current would produce a more negative current when a channel
opens.

The New button generates the channel to hold the idealised trace and provides the standard process dialog where
you can control the processing. The idealised trace data are originally positioned in the file view on top of the
original waveform.

Open Closed time histogram

This analysis generates a histogram showing the relative frequency of
events of various durations, the flags associated with trace events are
used to select which events are included in the analysis. The command
opens a settings dialog which defines the analysis and histogram
parameters.

The Channel field selects the idealised trace channel that will be
analysed. The Bin width, Number of bins and Maximum duration
fields define the histogram that will be created; the x-axis of the result
starts at zero (unless log binning is used) and the Bin width and
Number of bins fields are linked so as to remain consistent with
Maximum duration.

If the check box marked Use log binning is checked then the Bin width
field changes the Minimum duration. Log binning means that the width
of each bin increases geometrically so that when the resulting histogram is drawn with a log x-axis, the bins appear
to occupy a constant number of pixels across the histogram. The contents of each bin are divided by the bin width
to maintain the overall shape of the histogram as if it were binned normally.

The two sections labelled Include and Exclude represent the flags associated with each event and are used to
control which events are included in the histogram and which are not. An event will be included in the histogram if
at least one flag set for the event matches the Include set specified and none of the event flags match the Exclude
set. The flags are:

Open time An event where the channel is open.

Closed time An event where the channel is closed.

First latency The first idealised trace event in the frame.

Truncated The last idealised trace event in the frame.

Assumed amp. An event where the amplitude is not an average of the raw data points.

Bad data Event flagged as not suitable for analysis.

Level n Six flags, one for each level of multiple level data. The Level 1 flag is set for all closed times as
well as the first open level.

Signal Version 6.06

13-260

Open Closed amplitude histogram

This analysis generates a histogram showing the relative frequency of
occurrence of events with specific levels, the flags associated with trace
events select which events are included in the analysis. This analysis is
almost identical in concept to the amplitude histogram for waveform
data described previously. The differences are that the y-axis is a count
of trace events at a level rather than the time spent at that level and that
the analysis can select events for analysis using the Include and
Exclude flags for the analysis in the same manner as the Open/Closed
time histogram.

The Channel field in the settings dialog selects the idealised trace that
will be analysed.

The Maximum amplitude and Minimum amplitude fields set the
amplitude range that will be divided into bins and thereby set the x axis
range in the memory view holding the histogram. TheBin size and
Number of bins fields both set the number of bins that cover the
amplitude range, whenever you change one of these items the other one will change to match.

By default, the amplitudes added to the histogram will be absolute amplitudes as measured by Signal. The
amplitudes can be measured relative to the baseline by checking the box labelled Amplitudes relative to baseline.

The Include and Exclude sections control which events are included in the analysis in exactly the same manner as
for the Open/closed time histogram analysis.

Burst duration histogram

This analysis generates a histogram showing the relative frequency
of occurrence of event bursts of different durations, the flags
associated with trace events are used to select which events are part
of a burst and which events can terminate a burst. The command
opens a settings dialog which defines the analysis and histogram
parameters.

The Channel field selects the idealised trace channel to be analysed.
The Bin width, Number of bins and Maximum duration fields
define the histogram that will be created; the x-axis of the result starts
at zero (unless log binning is used) and the Bin width and Number of
bins fields are linked so as to remain consistent with the Maximum
duration.

If the check box marked Use log binning is checked then the Bin
width field changes to Minimum duration. Log binning means that
the width of each bin increases geometrically so that when the
resulting histogram is drawn with a log x-axis, the bins appear to occupy a constant number of pixels across the
histogram. The contents of each bin are divided by the bin width to maintain the overall shape of the histogram as
if it were binned normally.

The Critical interval field defines how an event burst can be terminated; a burst is terminated by a non-included
event whose duration is longer than the critical interval.

The Include and Exclude sections control which events can start or terminate a burst. An event can start a burst if
at least one flag set for the event matches the Include set specified and none of the event flags match the Exclude
set. All events that cannot start a burst are capable of terminating it. A burst begins with any suitable event and is
terminated by any suitable event whose duration is greater than the critical interval. The burst duration runs from
the start of the first event in the burst to the start of the event that terminated it.

Single-channel analysis

13-261

Baseline measurements

The Baseline measurements command must be used before any SCAN analysis can be carried out. When the
command is use a dialog is presented asking for a time range over which the baseline is to be measured and the
channel on which to carry out measurements. Clicking OK produces a message window showing the mean data
point value in the time range; the standard deviation of the measured values and the standard deviation of the first
derivative of the measured values. This information is also be written to the log window and saved internally for
use by the SCAN analysis.

View and modify event details

The View and modify event details command is available when the current view contains idealised trace data. It
opens a dialog that allows information about individual events to be viewed and changed. Click on a horizontal
portion of the idealised trace to select an event or on a vertical section to select the following event. You can also
click and drag the idealised trace to change transition times and levels. The event whose details are displayed in the
dialog will have a small box drawn at both ends to indicate that it is the current event.

The event details dialog shows information about the
current event. The Start time, Duration and Amplitude
items and all of the Flags can all be changed manually. Any
start time you enter must be between the start times of the
neighbours. Changing the start time adjusts the event
duration so that the end time remains unchanged. The
duration must be a positive value and cannot extend the
event beyond the end time of the following event. The
Baseline level, normally calculated by averaging points in
the closed state, is also displayed. The Resolution item will
be shown if the idealised trace has a SCAN process attached
to it. It shows the minimum duration of full amplitude
opening needed for the data trace to reach the trigger level.
Each event also has a number of flags associated with it and
these may be set or unset using this dialog. These flags and
their uses are explained in the documentation of Open/Closed time histogram generation. The buttons below the
event details provide many useful functions:

Merge
Merge combines the current event with the one to the right to produce a single event with the combined duration
of the two events but the attributes of the first.

Chop
Chop will break the current event in two. If the current event has an amplitude between those before and after then
the first and second new events created by the break will be given amplitudes and attributes from the following and
preceding events respectively.

Delete
The Delete button will delete both the current and following event and extend the preceding event to cover the
time gap created. This event will have an amplitude adjusted to the weighted average of all the events previously
covering the time period.

Split
Spilt will divide the current event into three separate events all having the same amplitude and duration.

Fetch Amp
Fetch Amp will scan backwards through the trace to find an event of the same type and copy the amplitude of this
previous event to the current event.

Signal Version 6.06

13-262

Scroll On and Scroll Back
Scroll On and Scroll Back will do the same thing as Previous and Next but will do so using a smoothly scrolling
display. Repeatedly hitting the scroll buttons will double the scroll speed each time. To stop the scrolling either
click on the Next, Previous or the other scroll button or simply click on the data window.

Fit Visible
The Fit Visible button will adjust the time and amplitude of the transitions using the filter cut-off frequency defined
during the SCAN process to build a step response function to fit. Idealised traces created using threshold
crossings will be fitted using the Nyquist frequency as the cut-off frequency unless this frequency is changed in
the Channel information dialog. Amplitudes having the assumed amplitude flag set are held fixed then a second
pass of fit is made freeing up assumed amplitudes above a certain duration. This duration is defined in the
Advanced Parameters dialog, which can be accessed by clicking the Parameters button. If you do Fit Visible
when the end of the display is beyond the least event of the idealised trace then a process will be done to extend
the idealised trace before a fit is done. After fitting either the first event to fail to be fitted will be made the current
event or the last displayed event will be.

Undo
Press this button to undo the last operation. Up to 100 operations can be undone.

Previous and Next
The Previous and Next buttons step the current selection of event through the idealised trace forwards and
backwards respectively. Stepping past the end of the idealised trace will cause the display to jump on to the next
possible opening ready for processing. If this is done there is then a short "dead" period during which the Next or
Scroll On keys do nothing after that pressing either Next or Scroll On will extend any closed time terminating the
idealised trace to include the displayed data.

Parameters
The parameters button displays the advanced parameters dialog for SCAN processing. Though the button and
dialog are still available for threshold analysis, the settings do not affect the processing.

Process
This button causes the process for generating the idealised trace to be called. If the process settings are such as to
process Mintime() to XHigh() then the trace will be extended from the current end time to the end of the
displayed data.

View event list

The View event list command
opens a new window showing a
list of idealised trace event
durations and amplitudes. Up to 10
events are shown (drag the right
edge of the window to change the
number of events visible) with the
currently selected event on the trace being shown highlighted in the list. Information for events in the closed state
is shown using the colour set for drawing such events. You can click on an event in the list to select it and this will
be reflected in the data trace as well as the Event details dialog.

Export to HJCFIT

This command exports idealised trace data to a .scn data file suitable for use by HJCFit and EKDIST. HJCFit is an
analysis program used for modelling channel states and calculating the rate constants for each possible state
change. EKDIST is a separate program used to build and plot histograms. These applications take an idealised trace
as input, this needs to be in a .scn format file. HJCFIT and EKDIST are not CED software, they are written and

Single-channel analysis

13-263

maintained by Prof. David Colquhoun of UCL. For more information on these programs see
http://www.ucl.ac.uk/Pharmacology/dcpr95.html.

Short cuts

Because of the intensely interactive nature of idealised trace generation using
the event details dialog, you can set keyboard shortcuts so that a single
keypress is the equivalent of clicking on a button. These shortcuts can be freely
adjusted to match your preferences, the settings are saved in the user-specific
application data directory so that they can be different for each user. Two
standard configurations of shortcuts can also be set using the Numeric Defs and
the Letter Defs buttons. Letter Defs will set the standard shortcuts as indicated
by the underlines on the event details dialog. Numeric Defs will select a set of
shortcuts that uses the numeric keypad. This is to provide the keys close
together by the right hand to speed up interaction as much as possible. If you
use numeric shortcuts you should remember to have Num Lock on.

Tips for fitting

Occasionally the fitting routines may produce unexpected results and there can be a number of reasons for this.

1. There is too much level data at the start and end of the fit. Restrict the visible area to only view the transitions
you are interested in fitting.

2. The initial guess is too good. When the initial guess for the fit is so close to the “correct” solution the fitting
routines can be unable to detect which direction to move the parameters to improve the result. This can be
overcome by worsening the initial guess manually first. Dragging the amplitude of a principle event usually
works best.

3. The initial guess is too poor. Use the other edit functions to produce a more plausible guess.

4. An amplitude needs fixing. If you flag an event as having an assumed amplitude it will be held fixed for the fit. If
it is a very short event the assumed amplitude flag will remain set otherwise the fit routine will clear the flag.

Strategy for long recordings

Although it is possible to analyse a long single channel recording by simply zooming all the way out and
processing the entire recording in one go then hitting Fit Visible to give your result, this is not to be recommended.
Subtle changes in conditions throughout the file combined with mistakes in the processing caused by noise
conspire to make this an error prone strategy. An incremental approach is needed and here is a suggested approach
for doing this.

The SCAN method is by far the superior method for event detection. It copes well with sub-conduction bands and
can detect events far shorter and with far higher time resolution than would be possible with threshold crossing. To
begin with, select an area of data near the start of the recording with a full opening and an area of baseline showing.
Place a horizontal cursor on the baseline, another on the full open level and a third between the two towards the
baseline but out of reach of the noise. Once these have been set up you can now evoke the SCAN settings dialog
via the analysis menu. Use the drop downs in the dialog to select the relevant horizontal cursors for the different
levels. Select a Data Start Time of Mintime() and a Data End Time of XHigh(). Long recordings will normally only be
a single frame of data, however, if there are multiple frames you will want to process just the first one to start with.
Once the initial process has been done an idealised trace will appear. This is just the initial guess and will now need
refining. Zoom in on the first opening or burst so you can see the transitions in more detail.

The convolution of the idealised trace with the step response function for the amplifier will be drawn on top of the
data. By default this will be in blue; indicating that the trace has not yet been fitted. At this stage you may decide
that the initial guess is poor and edit the trace to something more plausible. Once you are happy with the guess,
click on Fit Visible and the convolution should jump to fit the data and turn black; indicating the fit was successful.
If it does not then the initial guess may need to be refined further (See Tips for Fitting).

http://www.ucl.ac.uk/Pharmacology/dcpr95.html

Signal Version 6.06

13-264

Once you are happy with the idealised trace on the screen, step forward using either the Next or Scroll On buttons.
These will take you either to the next part of the idealised trace to work on or to the next possible opening past the
end of the idealised trace. If it is the latter you can then decide if this possible opening is real or just an artefact. If it
is an artefact you can step past it using either the Next or Scroll On buttons, optionally setting the Bad data flag. If
a possible opening extends past the end of the display you may like to adjust the display range to include the full
open time. The incremental analysis will work better if breaks in the middle of openings are avoided though if this is
not possible you can still edit any discontinuity that appears as a result and re-run the fit. A fit done on a section of
data with no idealised trace fitted will generate a guess first. Closing the data file at any time will save the idealised
trace and process settings to disk allowing the analysis to be spread over several sessions.

Cursor menu

14-265

Cursor menu

The cursor menu creates and destroys vertical and horizontal cursors, changes the display to make them visible,
changes their labelling mode and obtains the values of channels where they cross vertical cursors and between
vertical cursors. Up to 10 cursors of each type, numbered 1 to 10, can be present in each data view, there is also an
extra vertical cursor, number 0, which is used for special purposes. Cursors can be dragged over and past each
other using the mouse. Cursors in separate windows are independent of each other. When a window is duplicated,
the cursors are also duplicated.

Cursors can also be active so that they automatically position themselves by searching or measuring the channel
data.

Options within the cursor menu allow you to take measurements at the cursor positions or between pairs of
cursors.

Cursors and their labels can be dragged using the mouse, right-clicking on a cursor will provide a popup menu
offering useful options including label control and setting the cursor position.

Mechanisms for keyboard control of the cursors are also available:

New vertical cursor Ctrl+|
Show cursor number n Ctrl+n (0 to 9)

Vertical cursors

The following commands in the Cursor menu are used to control and interact with the vertical cursors. There are
also vertical cursor context commands available by right-clicking on a vertical cursor.

New Cursor

This menu command (keyboard shortcut Ctrl+|) duplicates the action of the new cursor button at the bottom left
of data views. The command is available when a data view is the current window and there are less than ten cursors
already active in the view. A new vertical cursor is added at the centre of the window. The cursor is given the
lowest available cursor number and is labelled with the cursor label style for the window.

Delete

This command opens a pop-up menu in which you select a cursor to remove, or you can delete all cursors. The
cursors are listed with their number and position as an aid to identification. Deleting a cursor removes it from the
view; other cursors are not affected.

Fetch

This opens a pop-up menu where you select a cursor to place in the centre of the x axis.

Move To

This command activates a pop-up menu from which you can select the cursor to move to. The cursors are listed
with their number and position as an aid to identification. The window scrolls to show the cursor in the screen
centre, or as close to it as possible.

Position Cursor

This command opens a pop-up menu to select a cursor and then opens a dialog in which you can type or select a
cursor position. You can also activate this dialog by right clicking on a vertical cursor and selecting Set Position
from the cursor context menu.

Signal Version 6.06

14-266

Display All

This command has no effect if there are no cursors. If there is a single cursor, the command behaves as though you
had used the Move To command and selected it. When there are multiple cursors, the window is scrolled and
scaled such that the earliest cursor is at the left-hand edge of the window and the latest is at the right-hand edge.

Label Mode

Each cursor has an optional label used to identify it. You can drag the cursor
labels up and down the cursor with the mouse to suit the data. There are five
cursor label modes: None, Position, Position and Number, Number and
User-defined. Select the most appropriate mode for your purposes from the
pop-up menu. To avoid confusion between the cursor number and the
position, the number is displayed in bold type when it appears alone and
bracketed with the position. The style applies to all the cursors in the
window. You can drag the cursor labels up and down the cursor with the

mouse to suit the data.
Each cursor stores its own mode and label, and the view has a mode that is applied to new cursors. The first four
items in the menu set the view mode and the mode of all cursors. You can also set a user-defined label for cursors
(but not for the view) with the Set Label command.

Set Label

You can open the cursor label dialog from the Label Mode and Horizontal
Label Mode cursor menu commands or by right-clicking on a cursor and
using the Set Label command from the cursor pop-up menu.

From this dialog you can set the cursor label mode for one or all cursors. The
Cursor field can be set to the number of any cursor in the view, or All. If you
choose All, any change applies to all cursors and sets the view mode except
in User-defined mode, where the view mode does not change.

The Label Mode field lets you choose one of None, Position, Number, Position and Number, and User-defined
as the cursor mode. If you select User-defined, the Label field appears together with the >> button and you can
set a label of your choosing.

User-defined labels
User-defined labels display the text you type, except that text sequences introduced by % are replaced:

%p Replaced by the cursor position

%u Replaced by the position units as displayed on the axis

%q Equivalent to %p %u (position followed by units)

%n Replaced by the cursor number

%v(n) Replaced by the value of channel n where it is crossed by the cursor. This is not valid for horizontal
cursors or in an XY view.

%w(n) The same as %v(n) but followed by the units of the value.

You can also stipulate the width (W) and the number of decimal places (D) used for the position and value by using
%W.Dp and %W.Dv(n). For example: %n at %6.4p %u, %v(2) might display: 1 at 2.2346 s, 87.128756 if
cursor 1 was at 2.2346 seconds and channel 2 had the value 87.128756 at this point. The %v(n) option is not
allowed for horizontal cursors or for vertical cursors in an XY view. The value returned by %v(n) is the same value
as displayed on the axis for that cursor and channel.

The >> button pops up the list of replacements, and if you choose one, it replaces any selection in the Label field.
If you choose the %v(n) option, you are prompted to select a channel to measure.

We allow you to type in quite long labels. However, when you close a data file, only the first 19 characters of a
user-defined label are saved and long labels look messy, so it is usually a good idea to keep labels short.

Cursor menu

14-267

Renumber

This command renumbers vertical cursors 1 to 10 by position, with cursor 1 on the left.

Horizontal cursors

In many respects, horizontal cursors are similar to vertical cursors. However, they differ significantly in that each
horizontal cursor is attached to a channel, or more accurately, to the y axis of a channel. If you change the drawing
mode of an event channel with a horizontal cursor to a mode that has no y axis, the horizontal cursor will treat the
available vertical space as if it runs from 0 at the bottom to 1 at the top.

If you drag channels with horizontal cursors on top of each other, only the horizontal cursor for the topmost
channels (i.e. the channel with a valid y axis) is visible. In the special case of channels drawn with a locked y axis
and a group offset of 0, all horizontal cursors for all channels are visible because the y axis is valid for all the
channels.

These commands in the Cursor menu let you control and interact with the horizontal cursors. There are also
horizontal cursor context commands available by right-clicking on a horizontal cursors.

New Horizontal Cursor

This menu command duplicates the action of the new horizontal cursor button at the bottom left of data views. The
command is available when a data view is the current window and there are less than ten horizontal cursors in the
view. A new horizontal cursor is added at the centre of the data for the lowest numbered visible channel. The
cursor is given the lowest available number and is labelled using the horizontal cursor label style for the window.

Fetch Horizontal

This opens a pop-up menu where you select a horizontal cursor that is placed in the centre of the visible y axis for
the relevant channel.

Delete Horizontal

The delete command activates a pop-up menu from which you can select a horizontal cursor to remove, or you can
delete all of them. The available cursors are listed with their number, position and channel number as an aid to
identification. Deleting a cursor removes it from the window; other cursors are not affected.

Move To Level

This command activates a pop-up menu from which you can select the horizontal cursor to move to. The cursors
are listed with their number, positions and channel as an aid to identification. The Y axis of the relevant channel will
be scrolled to display the nominated cursor in the centre of the axis, or as close to the centre as possible. This
command does not change the y axis scaling.

Position Horizontal

This command opens a pop-up menu in which you can choose a horizontal cursor and then opens a dialog in which
you can set the position and channel for the cursor. You can also open the dialog by right clicking on a horizontal
cursor and selecting Set Position from the cursor context menu.

Display All Horizontal

This command is the equivalent of using the Fetch Horizontal command for all cursors.

Signal Version 6.06

14-268

Horizontal Label Mode

Each cursor has an optional label used to identify it. You can drag the cursor labels to the left and right with the
mouse to suit the data. There are five cursor label modes: None, Position, Number, Position and Number, and
User-defined. You select the most appropriate for your application using the pop-up menu or by right clicking on a
cursor and choosing to set the cursor label from the context menu. To avoid confusion between the cursor number
and the position, the number is displayed in bold type when it appears alone and bracketed with the position.

Each cursor stores its own mode and label, and the view has a mode that is applied to new cursors. The first four
items in the menu set the view mode and the mode of all cursors. You can also set a user-defined label for cursors
(but not for the view) with the Set Label command.

Renumber Horizontal

When created, cursors take the lowest available cursor number rather than being ordered by position. You can also
drag cursors over each other, confusing the ordering further. This command renumbers the cursors by position,
with cursor 1 at the bottom.

Active cursors

Normally, Signal cursors are static; they stay where they are put. Using the active cursor dialog, cursors in time and
memory views can be made active; they will move to the position of a data feature, if it can be found. This search is
repeated whenever the view data changes, cursor 0 is iterated, or the view switches to a different frame. This
repositioning is carried out in order of cursor number so cursor 2 can reliably make use of the current position of
cursor 1 but not vice-versa. Active cursors can be used as a simple way of quickly finding features within your
data; they are also very powerful tools for extending the capabilities of analyses that generate measurements from
data files.

Cursor 0
Vertical cursor 0 is special. It always exists and cannot be deleted, but it can be hidden (and will normally be initially
hidden by Signal). Unlike the other cursors, when cursor 0 is active it is designed to iterate through the data to
repeatedly find features in the waveform. Whenever cursor 0 is moved, all of the other active cursors will
recalculate their positions in order of cursor number. To hide cursor 0, right-click on it and select Hide in the cursor
0 context menu. Script users can cause a nominated range of cursors to search with the CursorSearch() command.

Valid and invalid cursors
Active cursor positions are either valid or invalid; invalid cursors have an exclamation mark at the end of the label.
The cursor position is invalid if the active search fails and the Position if search fails field is empty or does not
contain a valid expression. Expressions that use invalid cursor positions are also invalid. The XY Trend plot and
Measurements analyses reject points that come from invalid measurements. Cursor positions are made valid by any
operation that moves them to a specific place such as dragging. If a search results in an invalid position, the cursor
is not moved. Script users can test if a cursor has a valid position with the CursorValid() command.

Previous cursor position
From Signal version 6.05, each time a cursor moves we save the old position. You can access this with the CnX
dialog expressions and the CursorX() script command. This can be useful with iterative searches and also to
position a cursor the same distance from cursor 0 (for example) as it was in the previous search.

Cursor positions after a failed search
Cursor 0 does not move after a failed search. The remaining cursors are set to result of evaluating the Position if
search fails field. If this field is empty, or if the expression fails to evaluate, the cursor is set to the mid-point of the
search region(which may be inconveniently far away). A useful trick is to position a failed search cursor at the same
relative position to cursor 0 as for the previous search, for example by setting the Position if search fails for
cursor 1 to C0-C0X+C1. This takes advantage of the fact the at the time of the cursor 1 search, C1 is the old cursor
1 position, and C0-C0X is the distance that cursor 0 moved.

Cursor menu

14-269

Active mode

A wide variety of active cursor search modes are available and can be
used to find many types of feature in your data including spike peaks,
other nervous system signals such as EPSPs, evoked responses and
periods of data without activity (silent periods). This command opens a
dialog from which you can select a cursor and set up its active search
mode. The contents of the dialog depends upon the Search method
field and the selected cursor. An active cursor has an associated Search
channel and start and end positions for the search that define the data
within a frame that is searched. To make it easier to keep track of which
cursor is which the cursor selection control displays the cursor label and
the '...' button to the left of the cursor selector provides the cursor
label mode dialog for the currently selected cursor.

Cursor 0 does not have a Position if search fails parameter. However, it
does have a Minimum step field; iterations of cursor 0 forwards or
backwards will reject features that are closer to the previous feature than
this limit. Cursor 0 also has a restricted range of search methods: Peak find, Trough find, Rising threshold, Falling
threshold, Outside dual thresholds, Within dual thresholds, Slope peak, Slope trough, +ve slope threshold, -
ve slope threshold, Turning point and Expression.

The start and end search positions can be a fixed time, but they will often be expressions that involve the positions
of other active cursors, particularly when cursor 0 is being used to iterate through features. For cursor n, an
expression that refers to an active cursor less than n refers to the new cursor position. An expression that refers to
a cursor greater than or equal to n refers to the old position – this is to be avoided as it will cause odd effects when
switching between data frames.

If the End position for search is less than Start position for search, searches go backwards through the data. If a
search is backwards, read previous for next and last for first in the descriptions of the search methods. As far as is
possible, we have designed searches that run backwards to work in a similar manner, and to find the same
positions, as searches that run forwards. However you will find that threshold crossing searches that use the
Delay after crossing parameter will behave differently when running backwards.

Several modes use the slope of a waveform. These methods all have the field Width for slope measurement,
which sets the time range over which slopes are calculated. Signal uses the data points from Width/2 before the
current point to Width/2 after to calculate the slope unless there are more than 2000 points, in which case 1000
points before and after are used. The contribution of each point to the slope is proportional to the distance of the
point from the current position. Because the slope at any point uses data around it, the slope within Width/2 of the
ends of the data frame cannot be relied upon.

The active cursor modes that are available are:

Static
When you add a new cursor, it starts off in Static mode. In this state, the cursor stays where you put it; it is not
changed by a change in the data or the position of a lower numbered cursor.

Maximum and Minimum
This finds the position of the maximum or minimum value found within the search range.

Extreme

This finds the position of the data point that is the maximum distance in the y
direction (either above or below) away from a reference level. There is an extra field
in this mode for the Reference level.

Signal Version 6.06

14-270

Peak, Trough

The Minimum amplitude field sets the minimum acceptable size of the peak or
trough; by how much the data must rise before a peak and fall after it (or fall
before a trough and rise after it), to be accepted. In the diagram of a peak search,
the first peak is not detected because the data did not rise by Minimum
amplitude within the time range of the search. The Maximum width for peak
field rejects peaks that are too broad (set it to 0 for no width restriction). The peak
position is located by fitting a parabola through the highest point and the points
on either side.

Rising threshold, Falling threshold, Threshold
The data must cross Threshold from a level that is at least Noise
rejection/hysteresis away from it and stay crossed for a time of at least Delay
after crossing. For a Rising threshold mode, the data must increase through the
threshold, for a Falling threshold mode it must fall through the threshold. In
Threshold mode the crossing can be in either direction. The picture shows a rising
threshold. The crossing point is found by linear interpolation of the data points on
each side of the crossing.

Outside dual thresholds, Within dual thresholds
These two modes are similar to the rising and falling threshold modes except that they search for the data being
outside or within two threshold levels. In addition to the First threshold, Delay after crossing and Noise
rejection/hysteresis fields there is a Second threshold which sets the other threshold level. The data must cross
a threshold from a level that is at least Noise rejection away from it.

Steepest rising, Steepest falling, Extreme slope (+/-)
This finds the position of the maximum, minimum or the largest absolute value of
the waveform slope. The Width for slope measurement field sets the length of
data used to calculate the slope.

Slope threshold, +ve slope threshold, -ve slope threshold
This finds the position at which the slope crosses a particular threshold level. The
Width for slope measurement field sets the length of data used to calculate the
slope. The Threshold units are y axis units per second.

Slope peak, Slope trough
These modes calculate the slope of the data in the search range, and then find the
first peak or trough in the result that meets the Amplitude limit. The Width for
slope measurement field sets the length of data used to evaluate the slope at
each data point. The Amplitude field sets how much the slope must rise before a
peak and fall after it (or fall before a trough and rise after it), to be accepted. The
Amplitude units are y axis units per second.

Turning point

This mode finds the first point in the search range where the slope changes
sign. Put another way, it finds a localised peak or trough. The Width for slope
measurement field sets the data range to calculate the slope. The picture
shows this method used to find the top of a sharp rise where Maximum mode
would get the wrong place. To use this you would probably set a cursor on the
peak slope and start the search from that point

Cursor menu

14-271

Slope%
This method finds the start and end of a fast up or down stroke in a waveform. The
Width for slope measurement field sets the time width used to calculate the
slope. The Slope% field sets the percentage of the slope measured at the start of
the search that we want to find. To use this mode, set a cursor at the peak slope,
then use it as the start point and search forwards or backwards for the required
percentage. 15% usually works well.

Repolarisation %

This mode finds the point at which the waveform returns to a set percentage of
the distance to a baseline. The search start position defines the 0% repolarisation
level. The 100% position and 100% measurement width fields set the position of
the 100% level (this can lie outside the search range) and the width over which it
is measured. Repolarisation percentage (drawn at 80% in the picture) sets a
threshold relative to the measured 0% and 100% levels. The position is the first
point in the search range to cross it.

Data points
Moves on by a specified number of data points. This is most useful for stepping through marker data.

Expression
The cursor position is obtained by evaluating the Expression field. This field will normally hold an expression
based on cursor positions, for example "Cursor(1)+2.5".

Search Right, Search left

If cursor 0 is active, these two commands cause the cursor to search for the next or previous position that satisfies
the active mode. If the cursor active mode is Expression, the cursor goes the same way for both commands.

Active horizontal cursors

Normally, Signal horizontal cursors are static; they stay where they are put. Using the active horizontal cursor
dialog horizontal cursors in time and memory views can be made active; they will move to a level found by a
measurement (normally taken from the channel on which the cursor is located). This search is repeated whenever
the view data changes, cursor 0 is iterated, a relevant vertical cursor is moved, or the view switches to a different
frame. This repositioning is normally carried out after all the vertical cursors whose position is used have been
repositioned. Active horizontal cursors can be used as a simple way of marking levels within your data; they are
also useful for extending the capabilities of analyses that generate measurements from data files.

Vertical cursors
Active horizontal cursors are normally treated as being subsidiary to vertical cursors and are normally automatically
repositioned after all vertical cursors upon which they depend (for definition of the measurement time range,
normally) have themselves been repositioned. It may be useful to override this positioning - for example so that all
vertical cursors can make use of the horizontal cursor position - so mechanisms are provided to allow you to force a
horizontal cursor to be repositioned before or after the vertical cursors.

Valid and invalid horizontal cursors
Active horizontal cursor positions are either valid or invalid; invalid cursors have an horizontal exclamation mark at
the end of the label. The cursor position is invalid if the active search fails or is based upon an invalid expression.
Expressions and measurements that use invalid cursor positions are also invalid, the measurement analyses all
reject points that come from invalid measurements. Horizontal cursor positions are made valid by a successful
active mode search or by any operation that moves them to a specific place such as dragging.

Signal Version 6.06

14-272

Active horizontal mode

A variety of active horizontal cursor modes are available and
can be used to show various levels in your data including the
mean plus or minus various error values. This command opens
a dialog from which you can select a horizontal cursor and set
its active measurement mode. The contents of the dialog
depends upon the Active mode field.

Horizontal cursor
This control selects a horizontal cursor. The control displays
the cursor number, label and the channel on which the cursor
is placed as "n: At label, channel c" where n is the cursor
number, label is the cursor label and c is the channel number.
The '...' button to the left of the cursor selector opens the
horizontal cursor label mode dialog for the current cursor to make it easy to change the label.

Active mode
This field sets the active mode of the cursor, which in turn determines the other dialog fields that are displayed. The
modes available are:

The active horizontal cursor modes that are available are:

Static When you add a new horizontal cursor, it starts off as Static, that is, not an active cursor.
In this state, the cursor stays where you put it; it is not changed by a change in the data or
the position of other cursors.

Value at point This measures the channel value at a specified single position. If this is a vertical cursor
position, the horizontal cursor will track the intersection of the vertical cursor with the data
channel.

Mean level This finds the mean channel data value within the specified time range.

Maximum This finds the maximum channel data value within the specified time range.

Minimum This finds the minimum channel data value within the specified time range.

Extreme This finds the absolute maximum channel data value (the largest value ignoring the sign)
within the specified time range.

Mean + (SD*factor) This calculates the mean and standard deviation of the data around the mean in the time
range. This can be used to detect significant changes from an otherwise flat (but noisy)
baseline.

Expression The horizontal cursor position is set by an expression string such as "HCursor(2)+1".
If you use an expression such as At(c1) and do not supply a channel, the optional
channel number is the channel of the horizontal cursor.

Active horizontal cursors generally use a data channel for the measurement that sets their position. The channel on
which the horizontal cursor is placed is used for all such measurements; if you move the horizontal cursor to a new
channel then it is used thereafter for the measurements.

Position in sequence
This field is present for all active modes. It controls when Signal repositions the horizontal cursor with respect to
any active vertical cursors. The order is important, as active cursor measurements may depend on other active
cursor positions. You can choose from:

Automatic After all the vertical cursors upon which it depends. Active vertical cursors are positioned
in ascending numerical order, so if the highest vertical cursor used in the calculating the
position of this horizontal cursor in n, vertical cursor n+1 can use the new position of this
cursor to calculate its position.

First of all Before the active vertical cursors move. This allows you to find a level with respect to the
old vertical cursor positions.

Last of all After all vertical cursors have been positioned. This means that any active vertical cursors
that use horizontal cursor values will all use the previous positions, not the new ones.

Cursor menu

14-273

When following these rules, if multiple horizontal cursors would update at the same time, they update in rising
numerical order.

Note that from Signal 6.05, each time a horizontal cursor moves, it saves the place it moved from, and this position
is available with the script command HCursorX() and with the dialog expression commands HCursorX() and
HnX.

Measure from, Measure to, Position
These can be any View-based time expression, and will usually involve the positions of vertical cursors, particularly
when cursor 0 is being used to iterate through features. If Measure to is less than Measure from then they are
reversed so that they still specify a sensible X axis range.

Scaling factor
This field is used with commands that calculate a level as a measure of the signal mean plus some multiple of a
measure of the signal width. This will usually be a number in the range -5 to +5, but we do not place any restriction
on the range of allowed values.

Display Y values

This command opens a new window containing the
values at the position of any cursors in the current data
view. Columns for cursors that are absent, or for which
there is no data, are blank.

The values displayed depend upon the channel type and
display mode. There is an entry in the table showing the
time for each cursor, plus entries for each channel
displayed. The displayed values are as follows:

Waveform The y axis value of the nearest data
point that is within one sample period
of the cursor, or nothing if there is no data point close enough. Waveform measurements are not
affected by the drawing mode.

Marker as Rate The height of the rate bin that the cursor crosses. If the cursor lies on a bin boundary, the cursor
is considered to lie in the bin to the right.

Marker The time of the next marker at or to the right of the cursor.

The X zero check box enables relative cursor time measurements. If checked, the cursor marked with the radio
button is taken as the reference time, and the remaining cursor times are given relative to it. The reference cursor
displays an absolute time, not 0.

The Y zero check box enables relative cursor value measurements. The radio buttons to the right of the check box
select the reference cursor. The remaining channels display the difference between the values at the cursor and the
values at the reference. The values for the reference cursor are not changed.

Selecting and copying data
You can select areas of this window by clicking on them. Hold down the Shift key for extended selections. You
can select entire rows and columns by clicking in the cursor and channel title fields. Use the Ctrl key to select
non-contiguous rows and columns.

To copy selected rows and columns to the clipboard, by right-click the values window and use the Copy command
in the popup menu. If you use the Log command the selected text is copied and pasted directly into the log window
in one operation. You can also print the selected portions of the window by right-clicking and using the Print
command in the popup menu, or use the Font command to change the window font.

Signal Version 6.06

14-274

Cursor Regions

This command opens the Cursor regions dialog for
the current data view. The dialog displays values
for data regions between cursor pairs. At the top of
the dialog is a row of cells showing the separation
in time of each cursor pair, and a second row
showing the inverse of the separation as Hz. One
pair can be designated the Zero region by checking
the box and selecting the column with a radio
button. The value in this column is then subtracted
from the values in the other columns. The pop-up
menu in the bottom-left corner indicates and
controls how the values are calculated.

Cursor region measurements

The region set by a pair of cursors is the data starting at the first cursor up to, but not including, the data at the
second cursor. For a waveform channel (including one drawn as histogram etc), the measurements are:

Curve area Each data point makes a contribution to the area of its amplitude above a line joining the
endpoints multiplied by the x axis distance between the
data points. The X axis distance is measured in seconds
regardless of the time display mode (s, ms or us) selected
in the preferences giving an area measured in Y axis
units*seconds. The picture makes this clearer. This
measurement cannot be made on log-binned data.

Mean The mean value of all the waveform points in the region. If there are no samples between the
cursors the field is blank.

Slope The slope of the least squares best fit line to waveform points in the region.

Area The area between the data points and the y axis zero. The X axis distance is measured in
seconds regardless of the time display mode (s, ms or
us) selected in the preferences giving an area measured
in Y axis units*seconds. Area is positive for sections
above zero and negative for sections below zero. Use
Modulus if you want areas below the y axis to be
treated as positive.

Sum The sum of all the waveform points in the region. If there are no samples between the cursors
the field is blank.

Modulus Each waveform point makes a contribution to the area of its absolute amplitude value
multiplied by the time between samples on the channel.
This is equivalent to rectifying the data, then measuring
the area over zero. The X axis distance is measured in
seconds regardless of the time display mode (s, ms or
us) selected in the preferences giving an area measured
in Y axis units*seconds. If a zero region is specified, the
amount subtracted from the other regions is scaled by
the relative width of the regions.

Maximum The value shown is the maximum value found between the cursors.

Minimum The value shown is the minimum value found between the cursors.

Peak-Peak The value shown is the difference between the maximum
and minimum values found between the cursors.

RMS amplitude The value shown is the RMS level of the values found
between the cursors. If there are no values between the
cursors the field is blank.

Cursor menu

14-275

SD The value shown is the standard deviation from the mean of the values between the cursors.
If there is no data, the field is blank.

Extreme The value shown is the maximum absolute value between
the cursors. If the maximum was +1, and the minimum was
-1.5, this mode would display 1.5.

Peak The value shown is the maximum found between the
cursors measured
relative to the
baseline formed by
joining the two
points where the
cursors cross the
data.

Trough The value shown is the minimum value found between the cursors measured relative to the
baseline formed by joining the two points where the cursors cross the data.

Point Count The number of waveform or marker channel data points, or idealised trace channel
transitions.

SEM The value shown is the standard error in the mean of the values between the cursors. If there
is no data, the field is blank.

RMS error The value shown is the RMS error relative to the mean of the values between the cursors. If
there is no data, the field is blank.

The measurements available for marker channels are Mean, Sum, Maximum, Minimum, Peak-Peak and Extreme.
If you select other measurements the result is a blank field. The values calculated for the measurements are:

Mean The count of markers between the cursors divided by the time difference between the
cursors. This could be thought of as the mean marker rate.

Sum The total number of markers between the cursors.

Maximum The maximum inter-marker interval, or the maximum histogram value for Rate display mode.

Minimum The minimum inter-marker interval, or the minimum histogram value for Rate display mode.

Peak-Peak The difference between the Maximum and Minimum values.

Extreme The largest absolute value of Maximum and Minimum, this will always be the same as
Maximum for marker channels.

Selecting and copying data

You can select areas of this window by clicking them. Hold down the Shift key for extended selections. You can
select entire rows and columns by clicking in the cursor and channel title fields. Use the Ctrl key to select non-
contiguous rows and columns.

To copy selected rows and columns to the clipboard, right-click in the values window and use the Copy command
in the popup menu. If you use the Log command the selected text is copied and pasted directly into the log window
in one operation. You can also print the selected portions of the window by right-clicking and using the Print
command in the popup menu, or use the Font command to change the window font.

The above popup menu commands are also available via the following keyboard shortcuts:

Ctrl+C Copy
Ctrl+P Print
Ctrl+F Font
Ctrl+L Log

Signal Version 6.06

14-276

Cursor context menus

In addition to the main menu commands it is also possible to access some commands by right-clicking on a cursor.
This produces a popup menu which has a sub-menu specific to the cursor which has been clicked on. For vertical
cursors the sub-menu has the following items:

Active mode… Puts up the active cursor mode dialog for the cursor.
Set position … Puts up the position cursor dialog for the cursor.
Set Label … Puts up the cursor label mode dialog for the cursor.
Copy Position=xxx uu Copies the position (xxx with units uu) of the cursor to the clipboard.
Lock to cursor Provides a list showing available (lower-numbered) vertical cursors and sets up

this cursor's active mode so it is moved to maintain the current separation with the
selected vertical cursor whenever the selected vertical cursor is moved.

Delete Deletes the cursor (this is Hide for cursor 0).

For horizontal cursors the sub-menu items are as follows:

Active mode… Puts up the active horizontal cursor mode dialog for the cursor.
Set position … Puts up the position cursor dialog for the cursor.
Set Label … Puts up the cursor label mode dialog for the cursor.
Copy Position=xxx uu Copies the position (xxx with units uu) of the cursor to the clipboard.
Copy Position-HCursor(n)=Y Subtract the position of horizontal cursor n from the cursor position and copy the

result (Y with units uu) to the clipboard. Only available if there are multiple
horizontal cursors on this channel.

Lock to cursor Provides a list showing available vertical cursors and sets up this cursor's active
mode so it shows the channel data level at the point where the selected vertical
cursor crosses the channel data.

Delete Deletes the selected cursor.

Sampling menu

15-277

Sampling menu

The sampling menu controls the sampling configuration, and can start, stop and pause data capture.

Sampling configuration

This command opens the Sampling Configuration dialog, which sets the data capture parameters used when you
select the File menu New command (see under File menu for details). You can load and save the sampling
configuration with the File menu Save Configuration and Load Configuration commands. You can also access this
command from the Signal toolbar.

Sample Bar

The Sample Bar is a dockable toolbar with up to
40 user-defined buttons, each button is linked
to a Signal configuration file. When you click a
button, the associated configuration file is loaded and a new data file is opened, ready for sampling and optionally,
the sampling is automatically started. There is also a user-defined comment associated with each button which
appears as a tool-tip when the mouse pointer lingers over a button. You can show and hide the Sample Bar and
manage the Sample Bar contents using the Sample menu. You can also show and hide the Sample Bar by clicking
the right mouse button on the Signal toolbar, on a blank bit of the Signal toolbar area or on the Signal background.

If you right-click on a button in the Sample Bar, you will get a small popup menu that allows you to change the
Immediate start and Write to disk options for that button, to load the relevant sampling configuration and open the
sampling configuration dialog so that it can be viewed or edited, to remove the button, or to open the Sample Bar
List dialog.

Sample Bar List

The Sample menu Sample Bar List… command
opens the Sample Bar List dialog in which you
control the Sample Bar contents.

The Add button opens a file dialog in which you
can choose Signal configuration files (*.sgcx or
*.sgc) to add to the bar. The first 8 characters of
the file name form the initial sample bar button
label and the comment is initially blank. Delete
removes the currently selected item, Clear All
deletes all items. You can select an item in the list
and edit the label and comment, and re-order
buttons in the bar by dragging items in the list. An
Alt+key shortcut can be assigned to a button by
putting the ampersand character (&) into the
button label before the required character.

The Immediate start check box, if set, will cause
sampling to begin immediately when the
corresponding button in the sample bar is pressed.
Similarly, the Write to disk check box can be used to force the write to disk check box in the sampling control
panel on.

The Sample Bar state is saved in the registry when Signal closes and is loaded when Signal opens. Each
Windows logon account has a different registry configuration. If your system has three user accounts, each will
have its own Sample Bar settings.

Signal Version 6.06

15-278

Signal conditioner

Signal supports serial line controlled programmable signal conditioners. These devices amplify and filter waveform
signals and can provide other specialist functions. If a suitable conditioner is installed in your system, this
command is available during sampling to open the conditioner dialog so that you can view and change the amplifier
settings online (see Programmable signal conditioners for a full description).

Show Sampling controls

This command, or its toolbar equivalent, hides and shows the sampling control panel; the menu item is checked
when the control panel is visible. The main controls within the control panel are duplicated in this menu as the
Start sampling, Continue sampling, Triggered sweeps, Write to disk at sweep end, Pause at sweep end,
Abort sampling and Restart sampling commands, (see Sampling data for full details of the control panel
commands). In summary, the commands are:

Start sampling
This command starts sampling. It is the same as the sampling control panel Start button.

Stop sampling
When sampling has started, the Start sampling command changes to Stop sampling. This is equivalent to the
sampling control panel Finish button. There is no warning before this command takes effect.

Continue sampling
This command enables sampling of the next sweep when sampling is paused after collecting a sweep. It is
equivalent to the sampling control panel Continue button.

Triggered sweeps
This command toggles the state of the Sweep trigger check box in the sampling control panel. The menu item
displays a check box when this option is selected.

Write to disk at sweep end
This command toggles the state of the Write to disk at sweep end check box in the sampling control panel. The
menu item displays a check box when this option is selected.

Pause at sweep end
This command toggles the state of the Pause at sweep end check box in the sampling control panel. The menu
item displays a check box when this option is selected.

Abort sampling
This command aborts sampling and discards any sampled data. It is equivalent to the Abort button in the sampling
control panel.

Restart sampling
This command discards all data, returns sampling to the state it was in before sampling started and restarts
sampling. It is the same as the sampling control panel Restart button.

Sampling menu

15-279

Show Pulse controls

This command, and its toolbar equivalent, hides and shows the pulse definition dialog that
is available during sampling if pulse output is in use. This dialog can be used to change the
output pulses while data acquisition is in progress, changes made will be saved in the
current sampling configuration. The menu item is checked when the control panel is visible.
(see Pulse outputs during sampling for details of the panel).
The sampling control panel, pulse controls and states control bar can all be shown and
hidden by using the popup menu generated by clicking the right mouse button on an
unused part of the Signal window (the blank parts of the toolbar area are suitable and
always visible) during sampling.

Sample now

This command is only available on the toolbar. It is equivalent to selecting New in the File menu then choosing
Data Document. That is to say: it prepares Signal to start sampling with the current sampling configuration.

Show Sequencer controls

This command hides or shows the sequencer control panel that is available during sampling if the output
sequencer is in use.

Keyboard sampling control_2

Windows software is usually orientated towards control by means of the mouse and menus, but it is often
convenient to use the keyboard instead. For quick control of sampling, using the keyboard can often be much
faster. With this in mind, Signal includes keyboard shortcuts designed to handle the most common sampling
control commands, see the information on controlling sampling for more information about what these commands
do :

Key Operation

Ctrl+Alt+S Start, Stop, or Finish sampling as appropriate.

Ctrl+Alt+C Continue sampling (when paused) or More sampling (after it has stopped but not finished).

Ctrl+Alt+R Restart the sampling that is in progress, discarding any collected data.

Ctrl+Alt+A Abort sampling that is in progress, discarding any collected data.

Ctrl+Shift+W Toggle writing sampled data to disk at the frame end.

Note that the Ctrl+Alt+S shortcut does a number of different things according to the current situation so do use
it with a certain amount of care!

There are more keyboard shortcuts for data view and text view manipulation, and for data analysis.

Signal Version 6.06

16-280

Script menu

The script menu gives you access to the scripting system. From it you can compile a script, run a loaded script,
evaluate a script command for immediate execution and record your actions as a script.

Compile Script

This command is enabled when the current view holds a script. It is equivalent to the Compile button in the script
window. Signal checks the syntax of the script, and if it is correct, it generates a compiled version of the script,
ready to run.

Run Script

This command pops-up a list of all the scripts that have been loaded so
that you can select a script to run. Signal compiles the selected script and
if there are no errors, runs the script. If you run a script twice in
succession, Signal only compiles it for the first run, saving the
compilation time. If a script stops with a run time error, the script window
is brought to the front and the offending line is highlighted.

You can also select the Load and run… option from which you can
select a script to run. The script is hidden and run immediately (unless a
syntax error is found in it).

Evaluate

This command and the Ctrl+L keyboard
shortcut open the Evaluate dialog where
you can type a line of script commands
for immediate execution. The window
remembers the last ten lines of script
entered, which are shown in the drop-
down list. You can cycle round the saved lines using the buttons. The Execute button executes the line entered,
Eval(...) adjusts the line internally to include an Eval() on the last statement so that you can see the result. You
can execute any script that can be typed in one line, which can include variable declarations.

Turn Recording On/Off

You can record your actions into a script that will produce equivalent actions. Use this command to turn recording
on and off. When you turn recording on, Signal begins to save script commands corresponding to your actions.
While script recording is in progress, the rightmost indicator in the Signal status bar will display the text REC as a
reminder. When you turn recording off, a new script window opens that holds the saved script commands. If you
then compile and run this script, the actions that you performed while recording was on will be repeated.

You can use this mechanism to record a sequence of actions that you wish to rerun at some later date, to find out
what script commands correspond to a given menu command or user action or to record a sequence of actions that
can be copied into another script or edited to produce a complete scripted ‘application’.

Debug Bar

You can show and hide the debug bar from this menu when the
current view is a script. You can also show and hide the debug bar
by clicking the right mouse button on any Signal toolbar or on the
Signal background.

Script menu

16-281

Script Bar

The Script Bar is a dockable toolbar with up to 40 user-defined
buttons, each button is linked to a Signal script file. When you
click a button, the associated script is loaded and run. There is
also a user-defined comment associated with each button which
appears as a tool-tip when the mouse pointer lingers over a button. You can show and hide the Script Bar and
manage the Script Bar contents from the Script menu. You can also show and hide the Script Bar by clicking the
right mouse button on any Signal toolbar or on the Signal background.

If you right-click on a button in the Script Bar, you will get a small popup menu that allows you to to load the
relevant script so that it can be viewed or edited, to remove the button, or to open the Script List dialog.

Script Bar List

This command opens the Script List dialog from where
you can control the contents of the Script Bar.

The Add button opens a file dialog in which you can
choose one or more Signal script files (*.sgs) to add to
the bar. If the first line of a script starts with a single quote
followed by a dollar sign, the rest of the line is interpreted
as a label and a comment, otherwise the first 8 characters
of the file name form the label and the comment is blank.
The label is separated from the comment by a vertical bar.
The label can be up to 8 characters long and the comment
up to 80 characters. A typical first line might be:

'$ToolMake|Write a toolbar driven script skeleton

You can select an item in the list and edit the label and comment, this does not change the contents of the script
file. An Alt+key shortcut can be assigned to a button by putting the ampersand character (&) into the button label
before the required character.

You can re-order buttons in the bar by dragging items in the list. The Delete button removes the selected item.
Clear All removes all items from the list.

The list of files in the Script Bar is saved in the registry when Signal closes and is loaded when Signal opens. Each
different logon to Windows has a different configuration in the registry, so if your system has three different users
each has their own Script Bar settings. Alternatively, you can have different experimental configurations by
logging on as a different user name.

Signal Version 6.06

17-282

Window menu

The window menu provides facilities for managing the windows that Signal displays.

Duplicate window

This command creates a duplicate file or memory view window with all the attributes (list of displayed channels,
display modes, colours, cursors and size) of the original window. Once you have created the new window, it is
independent of the original. Duplicating a window allows you to have different views of the same data showing
different frames or with different scales and different channels visible.

You can close all windows associated with a data document using the File menu Close All command (see File
menu). This will remember the position and state of all windows associated with the document.

Hide

This command makes a window invisible. This is often used with script windows and sometimes is used to hide
data windows during sampling when only the memory views with analysis results are required.

Show

This command lists all hidden windows. Select a hidden window to make it visible.

Window Title

The data document maintains both a file name and a window title. If the file has been saved, the window title is
usually set to the name of the file (without the file path). When you open a new window, the title is set to the type
of the window followed by a sequence number, for example Data2 or Grid23. The window title is mainly cosmetic,
but it is used to suggest a file name when you save an unsaved document.

You can change the window title with the script WindowTitle$() command, and also from the Window Title
dialog. The dialog is available from the Window menu and also from the context menu that appears when you right-
click on the window title.

Title
This field shows the original title when the dialog opens and you can edit it to a new title.

OK
This button is enabled if you make a change to the text. Click the button to apply the change and close the dialog.
Note that changes made to a title are not undoable (but see Reset).

Cancel
Close the dialog without making any change to the title.

Window menu

17-283

Reset
This sets the title back to the default window title. If the associated document has been saved, the default title is
the file name. Otherwise, the default title is the type of the window (Data, Text, Grid...) plus a sequence number.

Tile Horizontally

You can arrange all the visible Signal windows so that they are arranged in a horizontally tiled pattern by using this
command. Horizontal tiling arranges the windows so that they tend to be short and wide, the exact arrangement
depends upon the number of windows.

Tile Vertically

You can arrange all the visible Signal windows so that they are arranged in a vertically tiled pattern by using this
command. Vertical tiling arranges the windows so that they tend to be tall and thin, again the exact arrangement
depends upon the number of windows.

Cascade

All windows are set to a standard size and are overlaid with their title bars visible.

Arrange Icons

You can use this command to tidy up the windows that you have iconised in Signal.

Close All

This command closes all windows in the Signal application. You are asked if you want to save the contents of any
text windows that have changed. The positions of data document windows are all saved.

Signal Version 6.06

17-284

Windows

This dialog lists all the document-
related windows that are open and
lets you apply common window
operations to one or more of the
windows. You can sort the list
based on the window title, type,
view number (as seen by the script
language) and window state by
clicking the title bar at the top of
the list.

The operations available depend
on the type and numbers of the
selected windows. For example, the
Activate and Maximize buttons
are only enabled when a single
view of a suitable type is selected.

Show all
Normally, the only windows displayed are for windows that own documents (script, output sequencer, and text
views, the log view, file views, memory views and XY views). However, if you check the Show all box, the window
lists all windows that have a view handle that the script language can manipulate.

Help menu

18-285

Help menu

The help menu is used to provide access to the online help system (this information) and to get program
information.

Help Index

This command provides the main help index.

Using help

This command provides online help information on how to use the online help system.

Signal supports context sensitive help and also duplicates the contents of this manual in the help file. You can
activate context sensitive help with the F1 key, or by pressing the Help button, from most dialogs to get a
description of the dialog and its fields. You can use the Help menu Index command to get a dialog holding the help
contents, an index to help keywords and a word search system to find topics that are not covered by the contents
and index.

From a script view or the script evaluate dialog you can obtain help by placing the cursor on any keyword in the
script and pressing F1. To get help on a script function, type the function name followed by a left hand bracket, for
example FileOpen(, then make sure that the cursor lies to the left of the bracket and in the function name and press
F1. Pressing the help button (the button with a question-mark) at the top right of the script window provides overall
script language help.

The help is implemented using the standard Windows help system, with contents, indexes, hypertext links,
keyword searches, help history, bookmarks and annotations. If you are unsure about using Windows help, use the
Help menu Using help command to get detailed instructions.

Tip of the day

This command provides a dialog with a small piece of information in a “Did you know?” form. Further details can
then be requested. This dialog can also be set to appear when Signal is first run or, if you hate this sort of thing,
prevented from running.

View web site

If you have an Internet browser installed in your system, this command will launch it and attempt to connect to the
CED web site (www.ced.co.uk). The site contains down-loadable scripts, updates to Signal and information about
CED products.

Getting started

This command runs a demonstration script that gives a quick tour of Signal basics. The option is disabled if the
script is not present or if you are sampling data.

http://www.ced.co.uk

Signal Version 6.06

18-286

About Signal

The About Signal command is found in the Help menu. It opens an
information dialog that contains the serial number of your licensed copy of
Signal, plus your name and organisation. The dialog also display
information about the 1401 device driver and your 1401. If you contact us
for assistance we will need the information in this dialog. The Copy button
writes the Signal version and serial number, your user name and
organisation (that was entered when you installed Signal), the device
driver and 1401 information and your working set size to the clipboard.
You can then paste this into an email or other text document.

Signal version information
The top line of text identifies the version of Signal that you are running,
the target platform (x86 for a 32-bit build or x64 for a 64-bit build), Unicode
or Ascii and the date when we built the code. This is followed by our
copyright statement. The third line is present if Signal can contact the CED
website. If there is a more recent version available, there will be a message
of the form: Version 6.nn is available for download. If your version is up
to date, we display 'Signal is up to date'. If we could not contact the site,
or if the information we read makes no sense, the line is blank. If there is an update available you can click the Web
Site button to go to our general update page to collect it.

1401 device driver
If there is a 1401 device driver installed, the driver revision is displayed. If the driver is older than Signal expects,
you will be warned. Signal displays the type of 1401 and the monitor version if a 1401 is connected and powered up.
If you have installed Signal correctly, you should not have any problems as Signal comes with the latest 1401
drivers available at the time we generated the release. If you really need to update the drivers independently of
Signal you use the 1401 Windows installer link on our web site.

1401 firmware revision
If the 1401 monitor or 1401 firmware is not the most recent at the time this version of Signal was released, an asterisk
follows the version. If it is so old that it compromises data sampling, two asterisks follow the version.

The Power1401 and Micro1401 mk II and -3 have firmware in flash memory. Flash updates and instructions for
applying them are available as downloads from the CED web site; you can update the flash firmware without
opening the 1401 case. There are downloads for all current 1401 types on our web site.

To fix this, you should follow the link for your 1401, go to the download and follow the detailed instructions to
update your 1401. The update is done by the Try1401 program that is installed at the same time as Signal, so you
already have all the tools you need to complete the task.

1401: Monitor or firmware too old or interface problem
This message appears if we detect that the 1401 monitor ROM is too old to run Signal safely or if there is a problem
with 1401 communications such that the 1401 is detected but communications are garbled.

Working set size
Information about the Signal application Working Set Size is shown at the bottom of the About box. The two
numbers describe the minimum and maximum physical memory that the operating system allows Signal to use. If
you suffer from error -544 when you sample data, these numbers are important, there is more information about error
-544 in the Common Questions section.

http://ced.co.uk/downloads/latestsoftware
http://ced.co.uk/downloads/1401downloads
http://ced.co.uk/downloads/1401downloads

Help menu

18-287

Other sources of help

If you are having trouble using Signal, please do the following before contacting the CED Software Help Desk:

1. Read about the topic in the manual. Use the Index to search for keywords related to the topic.

2. Try the help system for more information. Use the Search facility to find related topics.

3. Try using the CED user forums. This section of the CED web site is a discussion board system where
users of CED software (and CED personnel) can post questions, expand on existing queries or answer
queries. You can search the forums to see if somebody has already come up with an answer to your
problem, or post a new question. You have to join the forum in order to post questions (joining is a
painless process) but can search the forums as a non-member guest.

4. If none of the above helps email (softhelp@ced.co.uk) or call the CED Software Help Desk (telephone
numbers and addresses are to be found at the front of the Signal manual and in the Contacting CED help
page). Please include a description of the problem, the Signal serial number and program version number
and a description of the circumstances leading to the problem. It would also help us to know the type of
computer you use, how much memory it has and which version of Windows you are running.

http://www.ced.co.uk/phpBB3/index.php
mailto:softhelp@ced.co.uk

Signal Version 6.06

19-288

Script language

The script language integrated into Signal can be used to customise Signal, provide specialised analyses or
automate various tasks.

Script introduction

For many users, the interactive nature of Signal may provide all the functionality required. This is often the case
where the basic problem to be addressed is to present the data in a variety of formats for visual inspection with,
perhaps, a few numbers to extract by cursor analysis and a picture to cut and paste into another application.
However, some users need analysis of the form:

1. Find the peak after the stimulus pulse.
2. Find the trough after that.
3. Compute the time difference between these two points and the slope of the line.
4. Print the results.
5. Next frame. If not at the end, go back to step 1.

This could all be done manually, but it would be very tedious. A script can automate this process, however it
requires more effort initially to write it. A script is a list of instructions (which can include loops, branches and calls
to user-defined and built-in functions) that control the Signal environment. You can create scripts by example, or
type them in by hand.

Hello world

Traditionally, the first thing written in every computer language prints “Hello world” to the output device. Here is
our version that does it twice! To run this, use the File menu New command to create a new, empty script window.
Type the following:

Message("Hello world");
PrintLog("Hello world");

Click the Run button to check and run your first script. If you have made any typing errors, Signal will tell
you and you must correct them before the script will run. The first line displays “Hello world” in a box and you
must click on OK to close it. The second line writes the text to the Log view. Open the Log view to see the result (if
the Log window is hidden you should use the Window menu Show command to make it visible).

So, how does this work? Signal recognises names followed by round brackets as a request to perform an operation
(called a function in computer-speak). Signal has around 400 built-in functions, and you can add more with the
script language. You pass the function extra information inside the round brackets. The additional information
passed to a function is called the function arguments.

Signal interprets the first line as a request to use the function Message() with the argument "Hello world". The
message is enclosed in double quotation marks to flag that it is to be interpreted as text, and not as a function name
or a variable name.

An argument containing text is called a string. A string is one of the three basic data types in Signal. The other two
are integer numbers (like 2, -6 and 0) and real numbers (like 3.14159, -27.6 and 3.0e+8). These data types can be
stored in variables.

Signal runs your script in much the same way as you would read it. Operations are performed in reading order (left
to right, top to bottom). There are also special commands you can insert in the script to make the it run round loops
or do one operation rather than another. These are described under Script language syntax.

Signal can give you a lot of help when writing a script. Move the text caret to the middle of the word Message and
press the F1 key. Help for the Message() command appears, and at the bottom of the help entry you will find a list
of related commands that you might also find useful.

Script language

19-289

Views and view handles

The most basic concept in a script is that of a view and the view handle (an integer number) that identifies it. A
view is a window in Signal that the script language can manipulate. Views fall into one of the following categories:

· The Signal application window

· Time, result, XY or text-based views

· Dialog based views and toolbars

Whenever you use a built-in function that creates a new view, the function returns a view handle. View handles run
from 1 to 32767; each time you open a new view you get a different handle until all 32767 have been used, at which
point we start from the lowest unused handle again. The only exception to this is when you set a sampling
configuration to automatically sample a sequence of data files; in this case, all files in the sequence share the same
view number (as each file is closed before the next opens). The view handle is used most commonly with the
View() and FrontView() functions to specify the current view and the view that should be on top of all
windows.

All views have a parent and an owner. These are often the same thing. For example, a File view is a child of the
application (so the application window is the parent) and it is owned by the application. However, a cursor regions
window is owned by a File or Memory view, but is a child of the Windows Desktop (so it can be moved anywhere
on the Desktop, independently of the position of the Signal application). You can find the view handle of the owner
of a view with the ViewLink() command.

There is also a concept of the input focus. The view with the input focus gets the first shot at deciding what to do
with keyboard characters and mouse messages. Use FocusHandle() to get the view with the input focus.

The current view
There is always a current view. Even if you close all windows the Log view, used for text output by the
PrintLog() command, remains. The current view is an important concept as many of the built-in script commands
apply to the current view. You get the view handle of the current view with the View() command with no
arguments; use the View(handle%) command to set the current view. Do not confuse the current view (which is
the view that script commands will use) with the Active window (the one with the highlighted title bar, usually the
last window where the user clicked the mouse). The current view and the Active view will often be the same, for
example after the FrontView() script command has set it, but can be different, for example after the View()
command has been used.

Whenever a script creates a new view, it becomes the current view. Views are usually created invisibly so that they
can be configured before appearing (which prevents unsightly screen flashes). You can use WindowVisible(1)
to display a new window.

When debugging a script, you can see the current view handle by opening the Global variables window.

The front view
The FrontView() script command with no arguments returns the File, Memory, XY or text-based view that is the
Active view of the application. The Active view has a highlighted title bar and if the application has the input
focus, either it or one of its children or a view it owns has the input focus. You can also use the
FrontView(handle%) command to bring any script-controllable view to the front (or as near to the front as is
possible) and make it the current view.

The Signal application window
This view always exists and the handle can be obtained with the App(0) command. You can use this view handle
to position, show and hide the application window. You cannot close this window with FileClose(), use the
FileQuit() command to do this. The application window is a top-level window and is a child of the Desktop.

File, memory, XY and text-based views
These are all views with an associated document that can be saved as a file on disk. They are special in the sense
that one of them is always the Active view of the application. Use FrontView() to return the Active view.

Text-based views are: simple text windows, the Log view, output sequencer views and script views. The running
script view is hidden from most script commands, however you can obtain its view handle with App(3) so you can

Signal Version 6.06

19-290

show and hide it. Closing the Log view hides it as it always exists. You can get the Log view handle with
LogHandle().

You can see a list of File, Memory, XY and text-based view handles by using the Window menu Windows...
command.

Dialog-based views and toolbars
These cover all the script-controllable views that do not fall into one of the other categories: Cursor windows (see
CursorOpen()), the sampling control panel, Sequencer control panel and the Sample Status bar (see
SampleHandle()). The App() command gives you access to: the System toolbar, the status bar, the Edit toolbar,
the Script bar, the Sample bar, the sample control panel, the Sequencer control panel, the states bar and the
clamping control bar.

Writing scripts by example

To help you write scripts Signal can monitor your actions and write the equivalent script. This is often a great way
to get going writing scripts, but it has limitations. Scripts generated this way only repeat actions that you have
already made. The good point of recording your actions is that Signal shows you the correct function to use for
each activity.

For example, let us suppose that you have opened a data file. Use the Turn Recording On option of the Script
menu. Click on the data file view, then select Analysis, New memory view, Waveform average, and with the default
settings, process all the frames in the file. Finally you use the Stop recording command in the Script menu. Signal
opens a new window holding the equivalent script:

var v3%;
var v4%;
v3%:=ViewFind("Example.cfs");
FrontView(v3%);
v4%:=SetAverage(-1,0.04,0,0,0);
WindowVisible(1);
ProcessFrames(1,-1,-1,0,1);

The ViewFind(), FrontView(), SetAverage(), and ProcessFrames() functions are described in this manual
and they reflect the actions that you performed. The v3% and v4% variables hold view handles. The script needs to
save these handles in unique variables. To do this it generates variable names based on the internal view number.

The WindowVisible(1) command is present because new windows are hidden when they are created by the
script. Signal creates invisible windows so that you can size and position them before display to prevent excessive
screen repainting.

The script recorder produces all the optional arguments for ProcessFrames(), to process all the frames from 1 to
the last frame in the file, and to optimise the y axes after processing. The memory view is not cleared before
processing, which in this case makes no difference as the new memory view is created with zero data.

Now do the same again, using the Turn Recording On option of the Script menu, clicking on the data file view,
selecting Analysis, New memory view, Waveform average, as before, but this time change the settings to select
channel 3, width 0.02 and start offset of 0.01, then process. When you use the Stop recording command you will
see a similar script, but with different arguments for SetAverage(). In this example we did not change the options
in the Process dialog.

var v5%;
var v8%;
v5%:=ViewFind("Example.cfs");
FrontView(v8%);
v4%:=SetAverage(-1,0.02,0.01,0,0);
WindowVisible(1);
ProcessFrames(1,-1,-1,0,1);

You can use the Turn Recording On option of the Script menu before any small sequence of operations. Then use
the Stop recording command in the Script menu to see the script commands generated.

Script language

19-291

Using recorded actions

You can now run the recorded script, using the control buttons at the upper right of the script window. The script
runs and generates a new memory view, repeating your actions. Now suppose we want to run this for several files,
each one selected by the user. You must edit the script a bit more and add in some looping control. The following
script suggests a solution. Notice that we have now changed the view handle variables to names that are a little
easier to remember.

We simplify the ProcessFrames() command to replace start frame by -1 for all frames in the data file. Without the
optional arguments, the y axis will not be optimised after the processing. SetAverage(1) also needs no extra
arguments to average data in channel 1 for the whole frame.

var fileH%, aveH%; 'view handle variables
fileH% := FileOpen("", 0, 1); 'blank for dialog, single window
while fileH% > 0 do 'FileOpen returns -ve if no file
 aveH% := SetAverage(1);
 WindowVisible(1); 'Average channel 1
 ProcessFrames(-1); 'Process all frames in the file
 Draw(); 'Update the average display
 fileH% := FileOpen("", 0, 1); 'ask for the next file, or cancel
wend;

This time, Signal prompts you for the file to open. The file identifier is negative if anything goes wrong opening the
file, or if you press the Cancel button. We have also included a Draw() statement to force Signal to draw the data
after it calculates the average. There is a problem with this script if you open a file that does not contain a channel 1
that holds waveform data although this is unlikely in Signal. We will deal with this a little later.

However, you will find that the screen gets rather cluttered up with windows. We do not want the original window
once we have calculated the average, so the next step is to delete it, adding the line

View(fileH%).FileClose(); 'Shut the old window

The View(). syntax allows a function to access data belonging to a view other than the current view. The fileH%
argument, and the dot after the command, tell the script system that we want to change the current view to the data
file view temporarily, for the duration of the FileClose() function.

We have also added a line to close down all the windows at the start, to reduce the clutter when the script starts.

var fileH%, aveH%;
FileClose(-1); 'close all windows to tidy up
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 aveH% := SetAverage(1); 'set up average on selected chan
 WindowVisible(1); 'make average visible
 ProcessFrames(-1); 'do the average
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the average display
 fileH% := FileOpen("", 0, 1); 'ask for the next file, or cancel
wend;

This seems somewhat better, but we still have the problem that there will be an error if the file does not hold a
channel 1, or it is of the wrong type. The solution to this is to ask the user to choose a channel using a dialog. We
will have a dialog with a single field that asks us to select a suitable channel:

Signal Version 6.06

19-292

var fileH%, aveH%, chan%; 'Add a new variable for channel
FileClose(-1); 'close all windows to tidy up
fileH% := FileOpen("", 0, 1); 'use a blank name to open dialog
while fileH% > 0 do 'FileOpen returns -ve if no file
 DlgCreate("Channel selection"); 'Start a dialog
 DlgChan(1, "Choose channel to average", 1); 'all waveform
 if (DlgShow(chan%) > 0) and 'User pressed OK and...
 (chan% > 0) then '...selected a channel?
 aveH% := SetAverage(chan%); 'set up average on selected chan
 WindowVisible(1); 'make average visible
 ProcessFrames(-1); 'average all the frames
 View(fileH%).FileClose(); 'Shut the old window
 Draw(); 'Update the display
 endif
 fileH% := FileOpen("", 0, 1); 'ask for the next file
wend;

The DlgCreate() function has started the definition of a dialog with one field that the user can control. The
DlgChan() function sets a prompt for the field, and declares it to be a channel list from which we must select a
channel (or we can select the No channel entry). The DlgShow() function opens the dialog and waits for you to
select a channel and press OK or Cancel. The if statement checks that all is well before making the histogram.

Derived views

The current view when the ProcessFrames() command is used is the memory view and we may want to access
information about the data file, such as the maximum frame number in the original time view. The View(). syntax
allows a function to access data belonging to a view other than the current view.

var fileV%;
var aveV%;
fileV%:=ViewFind("Example.cfs");
FrontView(fileV%);
aveV%:=SetAverage(-1,0.04,0,0,0);
WindowVisible(1);
ProcessFrames(1, View(fileV%).FrameCount(),-1,0,1);

In this example we replaced -1 for last frame in file with the actual frame number returned by the FrameCount()
function. The fileV% argument, and the dot after the command, tell the script system that we want to change the
current view to the data file view temporarily, for the duration of the FrameCount() function.

In many scripts we will have a variable such as fileV% holding the data view handle, but you can also use the
function ViewSource() to access it directly. The following script shows how you would ensure that when you
present this message you are counting frames in the data view associated with the current memory view.

var fileV%, aveV%;
fileV%:=ViewFind("Example.cfs"); 'view data file
if fileV%>0 then
 FrontView(fileV%);
 aveV%:=SetAverage(3); 'set up average of channel 3
 WindowVisible(1);
 ProcessFrames(-1); 'process all frames in the file
 Message("We averaged %d frames",View(ViewSource()).FrameCount());
endif

In this example the Message() command displays a string in which %d is replaced by the value for the frame count.

Notation conventions

Throughout this manual we use the font of this sentence to signify descriptive text. Function declarations,
variables and code examples print in a monospaced font, for example a% := View(0). We show optional
keywords and arguments to functions in curly braces:

func Example(needed1, needed2 {,opt1 {,opt2}});

Script language

19-293

In this example, the first two arguments are always required; the last two are optional. Any of the following would
be acceptable uses of the function:

a := Example(1,2); 'Call omitting the optional arguments
a := Example(1,2,3); 'Call omitting one argument
a := Example(1,2,3,4); 'Call using all arguments

A vertical bar between arguments means that there is a choice of argument type:

func Choice(i%|r|str$);

In this case, the function takes a single argument that could be an integer, a real or a string. The function will detect
the type that you have passed and may perform a different action depending upon the type.

Three dots (...) stand for a list of further, similar items. It is also used when a function can accept an array with
any number of dimensions:

Func Sin(x|x[]{[]...});

This means that the function Sin() will accept a real value or an array with one or more dimensions.

Sources of script information

This continues with information about the script window and debugging, followed by a reference for the script
language syntax and then documentation for the built-in script functions, first with functions grouped by topic, and
then a full alphabetical list.

When you are in the script editor, there are several features designed to help you write script code. These include
pop-up help tips, right-clicks to take you to the help for a specific function, pop-up help when adding arguments to
functions, automatic formatting and auto-complete of typed names.

There are example and utility script provided with Signal. These are copied to the scripts folder within the user data
folder created by the Signal installer.

Our web site at www.ced.co.uk has example scripts and script updates that you can download.

There is also a manual that has been used for our Signal training courses, held at CED and around the world. This
Training Day manual contains many annotated examples and tutorials. Some of the scripts in this manual are useful
in their own right; others provide skeletons upon which you can build your own applications. You can get a PDF of
this manual from our web site on the Downloads page (follow the links Software manuals, Signal V6, Training).

Script window and debugging

Script editor

You use the script window when you write and
debug a script. Once you are satisfied that your
script runs correctly you would normally run a script
from the script menu without displaying the source
code. You can have several scripts loaded at a time
and select one to run with the Script menu Run
Script command.

If a script is read from a read only medium or is write protected you cannot make changes to it in the Signal script
editor.

The script window is a text window with a few extra controls including a folding margin that allows you to fold
away inner loops, function and procedures. The folding margin can be hidden; see the Edit menu Preferences for
details of configuring the script view folding margin.

To the left of the text area is a margin where you can set break points (one is shown already set), bookmarks and
where the current line of the script is indicated during debugging. Above the text area is a message bar and several
controls. The controls have the following functions:

http://www.ced.co.uk

Signal Version 6.06

19-294

Function

This control is a quick way to find any func or proc in your script. Click on this to display a list, in alphabetical
order, of the names of all user-defined routines. Select one, and the window will scroll to it. To be located, the
keywords func and proc must be at the start of a line and the name of the routine must be on the same line.

 Compile
The script compiler checks the syntax of the script and if no errors are found it creates the compiled version, ready
to run. If the script has not been changed since the last compile and no other script has been compiled, the button
is disabled as there is no need to compile again. Signal can have only one compiled script in memory at a time.

 Run
If the script has not been compiled it is compiled first. If no errors are found, Signal runs the compiled version,
starting from the beginning. Signal skips over proc ... end; and func ... end; statements, so the initial code
can come before, between or after any user-defined procedures and functions. This button is disabled once the
script has started to run.

 Set break point
This button sets a break point on the line containing the text caret, or clears a break if one is already set. A break
point stops a running script when it reaches the start of the line containing the break point. You can also set and
clear break points by clicking the mouse pointer in the margin or by right clicking the line and using the Toggle
break command. A break point is indicated by a red marker in the gutter (between the optional line number and
folding margins). You can set and clear break points by clicking in the gutter, or using the context menu (right-click)
in a script view.

Not all statements can have break points set on them. Some statements, such as var, const, func and proc
compile to entries in a symbol table; they generate no code. If you set a break point on one of them the break point
will appear at the next statement that is “breakable”. If you set break points before you compile your script, you
may find that some break points move to the next breakable line when you compile.

Once a script has been compiled, all breakpoints in it and in any included files are remembered. You can close and
open the files and the break points will still be visible. However, break points are reassessed when you click on the
run button to start a script. This means that if you want to have a break in an included file you must have the file
open and the break point set when you hit run. Once the script has started to run you can close any or all of the
script files and break points will still work and automatically open the source file when they are hit.

 Clear all break points
This button is enabled if there are break points set in the script. Click this button to remove all break points from the
script. Break points can be set and cleared at any time, even before your script has been compiled.

 Help
This button provides help on the script language. It takes you to an alphabetic list of all the built-in script
functions. If you scroll to the bottom of this list you can also find links to the script language syntax and to the
script language commands grouped by function. Within a script, you can get help on keywords and built in
commands by clicking in the keyword or command and pressing the F1 key or by right-clicking on a name and
selecting Help for name from the context menu.

Go to user-defined Proc or Func
You can navigate to the start of a user-define Proc or Func by right-clicking on the name and selecting Go to
name from the context menu. This works, even if the named item is defined in an included file (as long as the
included file can be located).

Script language

19-295

Syntax colouring

Signal supports syntax colouring for both the script language and also for the output sequencer editor. You can
customise the colouring (or disable it) from the Script files settings section of the Edit menu Preferences in the
Display tab. The language keywords have the standard colour blue, quoted text strings have the standard colour
red, and comments have the standard colour green. You can also set the colour for normal text (standard colour
black) and for the text background (standard colour white).

The syntax colouring options are saved in the Windows registry. If several users share the same computer, they
can each have their own colouring preferences as long as they log on as different users.

Editing features for scripts

There are some extra editing features that can help you when writing scripts. These include automatic formatting,
commenting and un-commenting of selected lines, indent and outdent of code, code folding, auto-complete of
typed words and pop-up help for built-in and user-defined functions. These are described in the documentation for
the Edit menu.

Debug overview

Despite all our attempts to make writing a script easy, and all your attempts to get things right, sooner or later
(usually sooner), a script will refuse to do what you expect. Rather than admit to human error, programmers attribute
such failures to “bugs”, hence the act of removing such effects is “debugging”. The term dates back to times when
an insect in the high voltage supply to a thermionic valve really could (and on one documented occasion did)
cause hardware problems.

To make bug extermination a relatively simple task, Signal has a “debugger” built into the script system. With the
debugger you can:

· Step one statement at a time
· Step into or over procedures and functions
· Step out of a procedure or function
· Step to a particular line
· Enter the debugger on a script error to view variable values
· View local and global variables
· Watch selected local and global variables
· Edit variable values
· See how you reached a particular function or procedure
· Set and clear break points

With these tools at your disposal, most bugs are easy to track down.

See also:
Introduction, Syntax colouring, Editing features, Preparing to debug, Enter debug on error, Inspecting variables,
Call stack

Preparing to debug

Unlike most languages, the Signal script language does not need any special preparation for debugging except that
you must set a break point or include the Debug(); command at the point in your script at which you want to enter
the debugger.

Alternatively, you can also enter the debugger by pressing the Esc key (you may need to hold it down for a
second or two, depending on what the script is doing). If the Toolbar(), DlgShow() or Interact() commands
are active, hold down the Esc key and click on a button. This is a very useful way to break out of programs that are
running round in a loop with no exit! You can stop the user from entering the debugger with the Debug(0)
command, but we suggest that this feature is added after the script has been tested! Once you have disabled
debugging, there is no way out of an infinite loop.

Signal Version 6.06

19-296

You can also choose to enter the debugger on a script error by checking the Enter debug on script error box in
the Script page of the preferences dialog (accessed from the Edit menu). Depending upon the error, this may let you
check the values of variables to help you find how to fix the problem.

The debug toolbar contains buttons for functions that are useful
for debugging a script. The debug toolbar is normally disabled,
when your script enters the debugger the toolbar opens if it was
not already visible, the toolbar is enabled, and any debug
windows that were open when the last debug session ended are restored. The picture shows the toolbar as a
floating window, but you can dock it to any side of the Signal window by dragging it over the window edge and
releasing. The buttons available on the debug toolbar are:

Stop running the script (Ctrl+Alt+Shift+F5). There is no check that you really meant to do this; we
assume that if you know enough to open the debugger, you know what you are doing! You can use the
Debug() command to disable the debugger. This also cancels any chained script set with ScriptRun().

Display the current script line (Ctrl+Alt+F2). If the script window is hidden, this makes it visible, brings it
to the top and scrolls the text to the current line.

If the current statement contains a call to a user-defined Proc or a Func, step into it, otherwise just step
(Ctrl+F5). This does not work with the Toolbar() command which is not user-defined, but which can
cause user-defined routines to be called. To step into a user-defined Func that is linked to a Toolbar()
command, set a break point in the Func.

Step over (execute) this statement and move on to the next statement (Shift+F5). If you have more than
one statement on a line you will have to click this button once for each statement, not once per line.

Step out of a procedure or function (Alt+F5). This does not work if you are in a function run from the
Toolbar() command as there is nowhere to return to. In this case, the button behaves as if you had
pressed the run button.

Execute the script up to the start of the line with the text caret (Ctrl+Alt+F2). This is slightly quicker than
setting a break point, running to it, then clearing it (which is how this is implemented).

Run the script (Ctrl+Shift+F5). This disables the buttons on the debug toolbar and the script runs until
in reaches a break point or the end of the script.

Show the local variables for the current user-defined func or proc (F7). If there is no current routine, the
window is empty. You can edit a value by double clicking on the variable. Elements of arrays are displayed
for the width of the text window. If an array is longer than the space in the window, the text display for the
array ends with … to show that there is more data.

Show the global variable values in a window (Ctrl+F7). You can edit a global variable by double clicking
on it. The very first entry in this window lists the current view by handle, type and window name.

Display the call stack (list of calls to user-defined functions with their arguments) on the way to the current
line in a window (Ctrl+Shift+F7). If the Toolbar() function has been used, the arguments for it appear,
but the function name is blank.

Open the Watch window. This displays globals and locals that were selected in the global or local variables
windows. Local variables are displayed with values when the user-defined Proc or Func in which they
are defined is active.

The debug toolbar and the locals, globals and the call window close at the end of a script. The buttons in the
debug toolbar are disabled if they cannot be used. If you forget what a particular button does, move the mouse
pointer over the button. A “Tool tip” window will open next to the button with a short description; if the Status bar
is visible, a longer description can be seen there.

Enter debug on error

There is an option in the Edit menu Preferences dialog Script tab that allows you to enter the debugger if an error
occurs. After an error you can inspect the values of local and global variables and the contents of the call stack,
but you are not allowed to continue running the script.

Script language

19-297

Inspecting variables

If the watch, locals or globals windows are open, they display a list of variables. If there are more variables than
can fit in the window you can scroll the list up and down to show them all. Simple variables are followed by their
values, a line is highlighted if the variable value was changed by the last step. If you double click on one a new
window opens in which you can edit the value of the variable.

If you double click on an array, a new window opens that lists the values of the elements of the array. You choose
the element by editing the index fields, one for each dimension.

Menu commands
The variable windows contain a menu with the following commands:

File Close Closes the debug window

Edit Copy Copy selected text to the clipboard

Log Copy selected text to the Log view

Select All Select all windows text

Find... Open the Find text window

Find Next Repeat the last find operation

Find Previous Repeat last find operation searching backwards

Toggle Bookmark Set/clear bookmark in Global variable window

Next Bookmark Jump to the next bookmark in the Global variable window

Previous Bookmark Jump to previous bookmark in the Global variable window

Clear All Bookmarks Remove all bookmarks from the Global variable window

View Font Open the Font dialog to change the window settings

Watch Add to the Watch window Globals and Locals only: add selected items to the end of the
Watch window

Delete from the Watch window Watch window only: remove selected item from the window

Delete all watched variables Watch window only: remove all items from the window

Signal Version 6.06

19-298

Delete 'Not found' variables Watch window only: remove all items that are not in the
current script

Sort variables into alphabetic order Watch window only: sort items into alphabetic order

Most commands have keyboard shortcuts listed in the menu. The Watch menu items are also available on a right-
click context menu, where appropriate.

Watch window
You can add variables to the watch window by right-clicking on them in the locals or globals window and choose
the option to copy the selected variables to the watch window. In the watch window, right-click to see available
options to control the watched variables. The watch window remembers the watched variables between debugging
sessions. If a variable does not exist in the current script, it is still remembered, but is marked as not existing.

Call stack

The call stack can sometimes be useful to figure out
how your script arrived at a position in your code.
This is particularly true if your script makes recursive
use of functions. A function is recursive when it calls
itself, either directly, or indirectly through other
functions. Recursive functions can be very useful,
but must be used with care.

A tricky fault to diagnose is a script that has
mutually recursive functions. If there is no way out,
the script gets deeper and deeper into the call stack
until it runs out of memory. The call stack window
can help to detect such problems. The example to the
right demonstrates the use of a recursive function to
generate a factorial (but see LnGamma() and
BinomialC() for large factorials). From Signal
version 6.03 onwards, excessive call stack use is
trapped and will stop a runaway recursive script
(unless it runs out of memory before hitting the stack limit).

Script language syntax

A Signal script is composed of lines of text. Each line can be up to 240 characters long (this is an arbitrary limit -
most lines will be much shorter). Scripts are usually written in the script editor, but can be written with any editor
and imported. The script uses 8-bit UTF-8 characters.

A script consists of program statements. Statements that generate looping or branching constructs include other
statements within them. A statement is terminated by a semicolon or by a keyword that is part of an enclosing
statement. Statements are not terminated by an end of line character, so a statement can be spread over multiple
lines. Two semicolons in a row generate an empty statement, which generates no code.

Within a statement, white space of any length is treated as a single space character, and white space between script
tokens is ignored unless is it is required to separate two tokens. White space consists of the space and tab
characters and end of line characters.

A token is an indivisible entity such as a script keyword, the name of a constant, variable, procedure or function or
a numeric or string constant. White space can be added anywhere without changing the meaning of a script except
in the middle of a token.

Keywords and names

All keywords, user-defined functions and variable names in the script language start with one of the letters a to z or
_ (underscore) followed by the characters a to z, 0 to 9 and underscore. Keywords and names are not case
sensitive, however users are encouraged to be consistent in their use of case as it makes scripts easier to read. We
reserve starting a symbol name with underscore for CED use. There is nothing to stop you using it, but we will use

Script language

19-299

a leading underscore for future constant names, so your use might collide with ours. Underscore was added as an
acceptable character at Signal versions 6.03 and 5.12.

Variables and user-defined functions use the characters % and $ at the end of the name to indicate integer and
string type. The % or $ is considered part of the name.

User-defined names can extend up to a line in length. Most users will restrict themselves to a maximum of 20 or so
characters.

The following keywords are reserved and cannot be used for variables or function names:

and band bor breakbxor case
const conti

nue
diag do docas

e
else

end endca
se

endiffor func halt

if mod next not or proc
repea
t

resiz
e

retur
n

step then to

trans until var view wend while
xor

In addition, names used by Signal built-in functions cannot be redefined as user functions or global variables. They
can be redefined as local variables (not recommended at all).

Data types

There are three basic data types in the script language: real, integer and string. The real and integer types store
numbers; the string type stores characters. Integer numbers have no fractional part, and are useful for indexing
arrays or for describing objects for which fractions have no meaning. Integers have a limited (but large) range of
allowed values.

Real numbers span a very large range of number and can have fractional parts. They are often used to describe real-
world quantities, for example the weight of an object.

Strings hold text and automatically grow and shrink in length to suit the number of text characters stored within
them.

Real data type

This type is a double precision floating point number. Numbers are stored to an accuracy of at least 16 decimal
digits and can have a magnitude in the range 10^-308 to 10^308. Variables of this type have no special character to
identify them. Real constants have a decimal point or the letter e or E to differentiate from integers. White space is
not allowed in a sequence of characters that define a real number. Real number constants have one of the following
formats where digit is a decimal digit in the range 0 to 9:

{-}{digit(s)}digit.{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}.digit{digit(s)}{e|E{+|-}digit(s)}
{-}{digit(s)}digitE|e{+|-}digit(s)

A number must fit on a line, but apart from this, there is no limit on the number of digits. The following are legal real
numbers:

1.2345 -3.14159 .1 1. 1e6 23e-6 -43e+03

E or e followed by a power of 10 introduces exponential format. The last three numbers above are: 1000000
0.000023 -43000.0. The following are not real constants:

1 e6 White space is not allowed 1E3.5 Fractional powers are not allowed
2.0E Missing exponent digits 1e500 The number is too large

Technical stuff
Real numbers in Signal are stored in the double format defined in IEEE 754-1985, which is a standard format used in
most computers. Each number uses 64 bits, of which 11 hold an exponent, there is one sign bit, and 52 bits hold the
magnitude of the data, making 64 bits. The format manages to squeeze one extra bit out of the magnitude by stating

Signal Version 6.06

19-300

that all normalised numbers start with a 1 bit that need not be supplied. You can find more information and further
links here.

Unlike integer numeric expressions, which have a constant precision unless you overflow their value range, the
precision of a calculation involving real numbers may be problematic. Multiplication and division do not cause any
degradation in precision other than a rounding effect in the least significant bit of the result. However, addition and
subtraction can cause significant loss of precision. For example, the expression: 1e15 + (1.0/3.0) - 1e15
does not have the value 0.33333333... as you might hope, but 0.375. The expression 1e16 + (1.0/3.0) - 1e16
has the value 0. If you are forming the difference of numbers of similar sizes, the precision of the result is limited by
the precision of the larger number. You can sometimes reduce the loss of numerical accuracy by rearranging the
expressions to be evaluated.

When comparing real numbers that are the results of calculations, it is a good idea to avoid testing for exact
equality. For example, the following will never end:

var a := 0.0;
repeat
 a += 1/999.0;
until a = 1.0;

The problem is that 1/999.0 cannot be represented exactly in the real number format, the closest that can be stored
is 0.00100100100100100100; this is slightly less than the exact result. It is easy to see that after adding this up 999
times, the result is 0.99999999999999999900, which is not 1. Changing the last line to:

until a >= 1.0;

guarantees that the loop will terminate.

If you want to store integral numbers in a real data type, you can store integral values in the range -
9007199254740992 to 9007199254740992 (this is 2 to the power 53). Beware that the functions Ceil(), Floor(),
Trunc() and Round() have no effect on numbers greater in magnitude than 9007199254740992 as they have no
fractional part.

Integer data type

The integer type is identified by a % at the end of the variable name and stores 32-bit signed integer (whole)
numbers in the range -2,147,483,648 to 2,147,483,647. There is no decimal point in an integer number. An integer
number has the following formats (where digit is a decimal digit 0 to 9, and hexadecimal-digit is 0 to 9 or a to
f or A to F, with a standing for decimal 10 to f standing for decimal 15):

{-}{digit(s)}digit
{-}0x|X{hexadecimal-digit(s)}hexadecimal-digit

You may assign real numbers to an integer, but it is an error to assign numbers beyond the integer range. Non-
integral real numbers are truncated (towards zero) to the next integral number before assignment. Integer numbers
are written as a list of decimal digits with no intervening spaces or decimal points. They can optionally be preceded
by a minus sign. The following are examples of integers:

1 -1 -2147483647 0 0x6789abcd 0X100 -0xced

Integers use less storage space than real numbers and are slightly faster to work with. If you do not need fractional
numbers or huge numeric ranges, use integers.

String data type

Strings are lists of characters. String variable names end in a $. String variables can hold strings up to 65534
characters long. Literal strings in the body of a program are enclosed in double quotation marks, for example:

"This is a string"

A string literal may not extend over more than one line. Consecutive strings with only white space between them
are concatenated, so the following:

"This string starts on one lin"
"e and ends on another"

http://en.wikipedia.org/wiki/Double_precision

Script language

19-301

is interpreted as "This string starts on one line and ends on another". Strings can hold special
characters, introduced by the escape character backslash:

\" The double quote character (this would normally terminate the string)

\\ The Backslash character itself (beware DOS paths)
\t The Tab character
\n The New Line character
\r The Carriage Return character (ASCII code 13)

Unicode
If you are using a Unicode build of Signal (look in the About Signal dialog if you are not sure), there are additional
escape sequences to allow you to embed Unicode characters into the string literal:

\uxxx xxxx stands for up to 4 hexadecimal digits that specify a Unicode character in the range 0x0000 to 0xffff.
However, characters in the range 0xd800 to 0xdfff are not allowed (these are reserved for UTF-16 lead and
trail codes). You can use this to input characters that are not easily available from your keyboard. For
example, the Greek letter π is \u03c0. In reference material, Unicode characters are often written as U+03CO,
and the hexadecimal digits after the U+ are the ones you need. You can omit leading 0s as long as the
following character is not hexadecimal; you could write π as \u3c0.

\Uxxxxx
x

Although most common characters in most languages can be represented by a 4 digit hexadecimal code, the
full Unicode code range if from 0x000000 to 0x10ffff. To represent these characters you can use \U followed
by up to 6 hexadecimal characters. You can use fewer if the following character is not hexadecimal. For
example the Unicode character for a music notation treble clef is code U+1D11E, so we could write this as
\U01d11e or \U1d11e.

In addition to using an escape sequence, you can type in all the characters that your keyboard supports and you
can also use Input Method Editors.

There is no guarantee that all Unicode codes exist in the fonts on your computer. Characters that are missing from
the font are usually rendered in a fall-back font (so may not match the style of the selected font), and failing that, as
an empty square box. For example the treble clef character mentioned above is not present on my computer in a fall-
back font.

Unicode surrogate characters
Signal strings in Unicode mode use the same underlying encoding as Windows does to store characters. Most
characters fit in 16-bits of data, and the text strings are organised as arrays of 16-bit numbers. Characters with code
points greater than 0xffff are represented by two consecutive characters known as surrogates. The string
manipulation routines that use indices, such as Left$(), Mid$(), Right$(), DelStr$() and InStr(), use an
index to these 16-bit elements. The routines that extract strings will never return a string that starts or ends half-way
through a surrogate pair. They achieve this by moving on by one 16-bit element to the next. It would be possible
for us to hide this from all users by making all indices into strings indices to characters, not to the underlying 16-bit
codes. However, there would be a performance penalty for doing this and as surrogate pairs are usually very rarely
encountered, it does not feel worth doing. We may review this in the future.

See also:
Real data type, Integer data type, Conversion between data types

Conversion between data types

You can assign integer numbers to real variables and real numbers to integer variables (unless the real number is
out of the integer range when a run-time error will occur). When a real number is converted to an integer, it is
truncated. You can use the Round(), Trunc(), Floor() and Ceil() functions to convert floating point values to
integral floating point values. The Asc(), Chr$(), Str$(), Print$() , ReadStr(), and Val() functions convert
between strings and numbers.

http://en.wikipedia.org/wiki/Input_method

Signal Version 6.06

19-302

Variable declarations

Variables are created by the var keyword. This is followed by a list of variable names. You must declare all variable
names before you can use them. Arrays are declared as variables with the size of each dimension in square
brackets. The first item in an array is at index 0. If an array is declared as being of size n, the last element is indexed
n-1.

var myInt%,myReal,myString$; 'an integer, a real and a string
var aInt%[20],arl[100],aStr$[3] 'integer, real and string vectors
var a2d[10][4]; '10 rows of 4 columns of reals
var square$[3][3]; '3 rows of 3 columns of strings

You can define variables in the main program or in user-defined functions. Those defined in the main program are
global and can be accessed from anywhere in the script after their definition. Variables defined in user-defined
functions are local and exist from the point of definition to the end of the function and are deleted when the
function ends. If you have a recursive function, each time you enter the function you get a fresh set of variables.

The dimensions of global arrays must be constant expressions (but see resize). The dimensions of local arrays
can be set by variables or calculated expressions. Simple variables (not arrays) can be initialised when they are
declared. Uninitialised numeric variables are 0; uninitialised strings are empty.

var Sam%:=3+2, pi:=4*ATan(1), sal$:="I am \"Sally\"";

Compatibility with previous versions of Signal
 Before Signal version 5, the initialising expression could not include variables or function calls. If you want to write
a script that is compatible with version 4, the previous example must be written as:

var Sam%:=3+2, pi, sal$:="I am \"Sally\"";
pi := 4*ATan(1);

Constant declarations

Constants are created by the const keyword. A constant can be of any of the three basic data types, must be
initialised in the declaration with a constant expression and (before Signal version 6.03) cannot be an array. A
constant expression is composed of previously defined numeric constants, numbers and the operators add,
subtract, multiply and divide (+-*/) or is a string constant. The syntax and use of constants is the same as for
variables, except that you cannot assign to them or pass them to a function or procedure as a reference parameter.

const Sam%:=3+2, jim := 2.3214, sally$:= "My name is \"Sally\"";

Constant arrays
From Signal 6.03 onwards you can declare a constant array. This is only useful if the array is initialised:

const day$[] := {"Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"};
const prime%[10] := {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};

The syntax for initialising a const array is the same as for a var. If you do not initialise the values, a const array has
zero values or permanently empty strings. You cannot resize a const array. A const array may only be passed to a
func or proc or built-in function that declares the argument as const.

Built-in constants
From Signal 6.03 onwards the following named constants are pre-defined. They were also added to Version 5.12
onwards. You will get a compilation error if you attempt to redefine them to anything else:

Name Type Use

 _Versi
on

Integer The program version number times 100 as a constant. So for version 6.03 this has the value 603.
This is the same value as returned by App(-1), but it is known at compile time. This means that if
a new built-in function MagicFunc() was added at version 6.05 you could write:

if _Version >= 605 then MagicFunc(23) else WorkAround(23) endif;

Script language

19-303

Where WorkAround() stands for code to emulate what the new function does. This works in
version 6.03 and 6.04 (where the new function does not exist) because the compiler first builds an
internal representation of the program in which MagicFunc() is assumed to be a user-defined
function that it has not yet found. Then the compiler notices that the then condition will never be
run, so it converts the entire line to WorkAround(23), and then it checks for undefined functions.
This is no longer a problem as MagicFunc() is no longer used.

_VerMi
nor

Integer For version 6.03 this is 0, for 6.03a it would be 1, for 6.03b it would be 2, and so on.

_pi Real The value of the mathematical constant π (3.141592653589...) as accurately as can be stored in a
real number.

_e Real The value of the mathematical constant e (2.718281828459...) as accurately as can be stored in a real
number.

Arrays of data

The three basic types (integers, reals and strings) can be made into arrays with from 1 to 5 dimensions. Before
Signal version 3.07, the maximum number of dimensions allowed was 2). We call a one-dimensional array a vector
and a two-dimensional array a matrix to match common usage. Declare arrays with the var statement:

var v[20], M[10][1000], nd[2][3][4][5][6];

This declares a vector with 10 elements, a matrix with 10 rows and 1000 columns and a 5-dimensional array with 720
elements. To reference array elements, enclose the element number in square brackets (the first element in each
dimension is number 0):

v[6] := 1; x := M[8][997]; nd[1][0][0][0][2] := 4.5;

You can declare an array with one or more dimensions set to 0! However, such an array cannot be used in this
state. You can resize an array with the resize statement. All dimensions must have non-zero size before you can
refer to an array in anything other than a var or resize statement.

There is a maximum number of elements (product of the sizes of the dimensions) that you are allowed in an array.
This is currently set to 100,000,000 in an attempt to prevent operations that would likely take a very long time.

The dimension sizes for an array declared outside a Proc or Func (a global array) must all be constant; inside a Proc
or Func they can be variables. For example:

Proc VariableSizeArray(n%)
var x[n%];
...

You cannot have two var statements that refer to the same variable in the same context. That is, you cannot have
code like:

var fred[23][32];
...
var fred[23[48]; 'This line will generate an error

as this will generate a "Name multiply defined or redefined" error. In a Proc or Func, you can declare an array inside
a loop, and change the size of the dimensions each time around the loop. However, version 4.06 provided the resize
statement, and we urge you to declare arrays outside loops and use resize to do any required size changes.

Signal Version 6.06

19-304

Proc BadStyle()
var i%;
for i% := 1 to 100 do
var arr[i%]; 'this has always been allowed...
...
next;
end;

Proc BetterStyle()
var arr[0], i%; 'declare the array once
for i% := 1 to 100 do
resize arr[i%]; 'resize it
...
next;
end;

We may make resizing an array using var illegal in the future. Note that before Signal version 4.06, resizing with var
preserved the original data when the last dimension was changed, but changes to any other dimension would not
preserve the data.

Vector subsets
Use v[start:size] to pass a vector or a subset of a vector v to a function. start is the index of the first element
to pass, size is the number of elements. Both start and size are optional. If you omit start, 0 is used. If you
omit size, the sub-set extends to the end of the vector. To pass the entire vector use v[0:], v[:], v[] or just v.

For example, consider the vector of real numbers declared as var data[15]. This has 15 elements numbered 0 to
14. To pass it to a function as a vector, you could specify:

data or data[] This is the entire vector. This is the same as data[:] or data[0:15].
data[3:9] This is a vector of length 9, being elements 3 to 11.
data[:8] This is a vector of length 8, being elements 0 to 7.

Matrix subsets
With a matrix you have more options. You can pass a single element, a vector sub-set, or a matrix sub-set. Consider
the matrix of real numbers defined as var sq[6][7]. You can pass this as a vector or a matrix to a function as (a,
b, c and d are integer numbers):

sq[a][b:c] a vector of length c
sq[a][] a vector of length 7
sq[a:b][c] a vector of length b
sq[][c] a vector of length 6
sq[a:b][c:d] a matrix of size [b][d]
sq or sq[][] a matrix of size [6][7]

Script language

19-305

This diagram shows how sub-sets are constructed. sq[1:4][0] is a 4 element vector. This could be passed to a
function that expects a vector as an argument. sq[5][1:6] is a vector with 6 elements. sq[2:2][2:4] is a matrix,
of size [2][4].

N-Dimensional array subsets
With more than 2 dimensions, you can make a subset of any number of dimensions up to the size of the original
array. These examples show some of the possibilities for passing a source array with 5 dimensions defined as var
nd[4][5][6][7][8];

nd or nd[][][][][] The entire 5 dimensional array
nd[0][][][][] A 4 dimensional array of size [5][6][7][8]
nd[1:2][][2][][] A 4 dimensional array of size [2][5][7][8]
nd[1][2][3][4][] A vector of size [8]
nd[][][0][0][0] A matrix of size [4][5]

Transpose of an array
You can pass the transpose of a vector or matrix to a function with the trans() operator, or by adding ` (back-
quote) after the array or matrix name. The transpose of a matrix swaps the rows and columns. To be consistent with
normal matrix mathematics, a one-dimensional array is treated as a column vector and is transposed into a matrix
with 1 row. That is given var data[15], trans(data) is a matrix of size [1][15].

var M[5][3], v[5], W[5][5];
PrintLog(M, M`); 'Print M and its transpose
PrintLog(M[][], trans(M[][])); 'Exactly the same as last line
MatMul(W, M, M[][]`); 'set W to M times its transpose
MatMul(W, v, v`); 'set W to v times its transpose

From Signal version 3.07 onwards you can apply the transpose operator to arrays of higher dimensions. The result
is an array with the dimensions and indexing reversed. That is, the transpose of x[2][3][4] is an array of size [4]
[3][2]. The element x[i][j][k] in the original becomes the element at index [k][j][i] in the transposed
array.

Diagonal of a matrix or array
You can pass the diagonal of a matrix to a function using the diag() operator. This expects a matrix as an
argument and produces a vector whose length is the smaller of the dimensions of the matrix. Given a matrix M[10]
[10], diag(M) is a 10 element vector.

From version 3.07 of Signal you can take the diagonal of any array with more than 1 dimension. The result is a
vector with the length of the smallest dimension of the array. For example, given var a[4][5][6], diag(a) is a
vector of length 4 holding the elements: a[0][0][0], a[1][1][1], a[2][2][2] and a[3][3][3].

Memory usage of arrays
Each element of a real array uses 8 bytes of memory. Each element of an integer array uses 4 bytes of memory and
each element of a string array uses 16 bytes, plus the memory to hold the text in the string (one byte per character)
plus a terminating 0. Each array is held in contiguous memory (except that each string element holds a pointer to
the string text that is not in this contiguous memory). An array can require a lot of memory. For example, a real array
with three dimensions of 1000, 100 and 10 has 1 million elements, each using 8 bytes. If you use many, large arrays,
it is possible to run out of system memory. When this will happen is difficult to predict as it depend on many
system settings, on how much physical memory your system has and how much virtual memory space the system
will allocate to you. Once you exceed the limits of available physical RAM, random array access can become very
slow as data is swapped between memory and disk. Adding more physical memory to your system can help if this
is a problem. Signal scripts will stop with an error if you request more memory than the system can allocate to you.

Changes to arrays at version 5.09
Global arrays can be defined with a variable size. The following would not have compiled in previous versions:

var n% := 10, x[n%];

You can now pass arrays of zero size to user-defined functions; previously this caused a fatal error. You can also
pass zero-sized arrays to some built-in functions, for example ArrConst().

Signal Version 6.06

19-306

Initialise an array

At the point where an array is declared it can also be initialised. The following examples show how you initialise
integer arrays, but the same syntax holds for real arrays and for string arrays (but replacing the numbers with literal
strings). All the data used to initialise the arrays must be known at compile time. The syntax for var and const
arrays is the same, so they are used interchangeably in the examples. Any data in the array that is not explicitly
initialised is set to 0 (or an empty string).

If you need to set the values in an array (to other than 0 or empty strings) and ArrConst() and its friends will not do
the job, it is usually more convenient (less typing) and faster at run time to initialise them than to write out
assignment statements.

Vectors
These are the simplest to initialise. The syntax for a vector is:

var name[optional size] := {list of items separated by commas};

If the size of the vector is specified, it must be a constant expression (known at compile time) and the list of items
must be no longer that the size. If the size is not specified, the vector length is set by the initialisation list size.

var data%[] := {0, 1, 2, 3, 4};
const c%[10] := {,,,,1,1};

In the first example, no array size is specified, so the size is defined by the initialisation data. In the second example,
the size is specified, but values are provided only for the fourth and fifth elements. Any unspecified elements are
set to 0 (or to an empty string in the case of an array of strings), so the initialiser is equivalent to:

{0,0,0,0,1,1,0,0,0,0}

If the size of an array dimension is declared, it is an error to give more initialisation data than can fit:

var bad%[4] := {1, 2, 3, 4, 5};
const JustAsBad%[4] := {,,,,};

Matrix
These are a little more complicated: The syntax for a matrix is:

var name[rows][cols] := {{list of row 0 data}, {list of row 1 data}, ... ,{list of cols-1 data}};

Where ... means continue in a like manner. Both rows and cols are optional, but must be constant expressions if
they are supplied. If either is missing, the size is set by the largest row or column of the initialisation data. Within
the list of row data, you may omit values by having two consecutive commas, and the missing value will be set to 0.
You can also set an entire row to 0 (or empty strings) by omitting it:

var name[rows][cols] := { , {list of row 1 data}, ... ,{list of cols-1 data}};

In this case, row 0 is initialised to zeros. The next example sets up two arrays to hold the same data.

var d2d%[2][3] := {{1, 2}, ,{5,6}};
var same%[][] := {{1,2}, {0,0}, {5,6}};

3 or more dimensions
The syntax continues in a logical sequence. So to initialise a 3D array:

var d3d%[2][3][4] := {{{1, 2}, {3, 4}, {5, 6}},

 {{7, 8}, {9, 10}, {11, 12}},

 {{13, 14}, {15, 16}, {17, 18}},

 {{19, 20}, {21, 22}, {23, 24}}};

You can think of this as a 4 x 3 matrix of vectors of length 2. To handle a 4D one:

const d4d%[1][2][3][4] := {{{{ 1},{ 2}}, {{ 3},{ 4}}, {{ 5},{ 6}}},
 {{{ 7},{ 8}}, {{ 9},{10}}, {{11},{12}}},
 {{{13},{14}}, {{15},{16}}, {{17},{18}}},
 {{{19},{20}}, {{21},{22}}, {{23},{24}}}};

Script language

19-307

You can think of this as a 4 x 3 matrix of 2 x 1 matrices. We leave the 5D array as an exercise. You can zero fill (or fill
with empty strings) any region by omitting the contents of any pair of matching curly braces, you can even omit
the curly braces (except the outermost pair). If we wanted to zero the elements with values 1-6 and 13-18 in the d3d
% array we could have written:

var d3d%[2][3][4] := { ,
 {{7, 8}, {9, 10}, {11, 12}},
 {},
 {{19, 20}, {21, 22}, {23, 24}}};

In the first case we have omitted everything, and in the second case we have omitted the contents of the curly
braces.

Resize array

You cannot change the number of dimensions of an array, but you can change the size of the dimensions. This is
done with the resize statement (added at Signal version 4.06), which has a syntax that is very similar to var:

resize v[24], M[2][3000], nd[6][5][4][3][2], text$[923];

When used in this way, the values in the square brackets, which can be expressions or constants, set the new size
for each dimension. However, if you want to leave a dimension at the current size, you can use:

resize nd[][][][][n%]; 'change last dimension only

A pair of empty square brackets means that you want to preserve the current size of the corresponding dimension.
The resize statement preserves data in the array (unless you make one or more dimensions smaller, when data is
omitted). When you make dimensions larger, new numeric array elements are set to 0; new string elements are set to
an empty string (""). If the new array dimensions are the same as the existing ones, nothing is done and no time is
wasted.

In most cases, you will only want to change one dimension to cope with adding more items to an array. It is more
efficient to increase the last dimension as in this case it is often possible to extend (or reduce) the memory allocated
to the array without physically moving it in memory. If you change any other dimension than the last, the resize
statement allocates a new array of the required size, copies data into it, replaces the original array with the new one
and releases the memory used by the original array.

You can always resize a global or local array unless a sub-array, transpose or diagonal of it has been passed to a
Proc or Func and is currently in use. You will get the error message: "Attempt to index non-array or resize sub-
array or result view" if you break this rule. Here are some examples to make this clearer:

var global[2][3];
Level1(global); 'pass entire global array
resize global[3][3]; 'OK

proc Level1(g[][]) 'g is entire global array
var local[3][4];
TryResize(local); 'this is OK, passing entire array
TryResize(g); 'this is OK, passing entire array
TryResize(global); 'this is OK, passing entire array
TryResize(local[:2][]); 'will fail as is a sub-array
ObscureError(local[:2][]); 'pass sub-array of local, OK
ObscureError(g[:1][:1]); 'pass sub-array of global, not OK
end;

Proc TryResize(arr[][])
resize arr[][2];
end;

Proc ObscureError(h[][]) 'will fail in the resize...
resize global[4][]; '...if h is a sub-array of global
end;

When you create a sub-array, transpose or diagonal of an existing array, a temporary array construct is created that
depends on the original. If you were to resize the original, all the dependant arrays that referred to it would become
invalid, so we do not allow you to make such a change. You cannot resize an array derived from a result view.

Signal Version 6.06

19-308

Efficiency
If you are adding items to an array, it is very inefficient to increase the array size for each item added. Apart from
being very slow, this will cause a pattern of memory allocation that is about the worst possible for the performance
of the system. The standard solution in this case is to start with a reasonable size, one that will be big enough for
most situations, then when you need more, to allocate a sensible extra portion of space. If you have no idea how
big the target is, the best algorithm (best in terms of reducing the number of reallocations and memory
fragmentation) is to double the size each time you run out. However, this is also the most wasteful of memory.
Increasing by a fixed amount or a fixed proportion of the existing size may work. Do NOT increase by one each time
unless the array is very small and is never going to get very big.

Data views as arrays

The script language treats a data view as vectors of real numbers, one vector per channel. To access a vector
element use View(v%,ch%).[index] where v% is the view, ch% is the channel and index is the bin number,
starting from 0. You can pass a channel as an array to a function using View(v%, ch%).[], or View(v%, ch%).
[a:b] to pass a vector subset starting at element a of length b. You can omit ch%, in which case channel 1 is used.
You can also omit View(v%,ch%), in which case channel 1 in the current view is used.

If you change a visible data view, the modified area is marked as invalid and will update at the next opportunity.

Closing referenced result view
If you pass a result view as an array as a reference argument to a user-defined func or proc, then close the result
view, you will get a fatal script error:

A result view was closed that was aliased by a script array or variable

If the result view was closed by the user (for instance during Interact()) rather than by a script you will get the
error when the script resumes. This error is fatal as there is no way for the script to continue if it holds references to
something that no longer exists. The following minimal code demonstrates both ways of generating this error.

var rv% := SetMemory(1, 100, 0.01, 0, 0, 0, 0, "test", "x");
Err0(view(rv%, 1).[]); 'Pass as an array
Err1(view(rv%, 1).[10]); 'Pass an element as a reference

proc Err0(data[])
FileClose(); 'Error if data[] is the memory view array
end;

proc Err1(&v) 'v is passed by reference
FileClose(); 'Error if v is part of the memory view
end;

Statement types

The script language is composed of statements. Statements are separated by a semicolon. Semicolons are not
required before else, endif, case, endcase, until, next, end and wend, or after end, endif, endcase, next
and wend. White space is allowed between items in statements, and statements can be spread over several lines.
Statements may include comments. Statements are of one of the following types:

· A variable or constant declaration

· An assignment statement of the form:
 variable := expression; Set the variable to the value of the expression
 variable += expression; Add the expression value to the variable
 variable -= expression; Subtract the expression value from the variable
 variable *= expression; Multiply the variable by the expression value
 variable /= expression; Divide the variable by the expression value

The +=, -=, *= and /= assignments were added at version 3.02. += can also be used with strings (a$+=b$ is the
same as a$:=a$+b$, but is more efficient).

· A flow of control statement, described here.

Script language

19-309

· A procedure call or a function with the result ignored, for example View(vh%);

Comments in a script

A comment is introduced by a single quotation mark. All text after the quotation mark is ignored up to the end of
the line.

View(vh%); 'This is a comment, and extends to the end of the line
'This is a whole line comment that includes Japanese () text

Expressions and operators

Anywhere in the script where a numeric value can be used, so can a numeric expression. Anywhere a string
constant can be used, so can a string expression. Expressions are formed from functions, variables, constants,
brackets and operators. In numerical expressions, the following operators are allowed (listed in order of
precedence):

Numeric operators

String operators

The ternary operator

Examples of expressions

Mathematical constants

Numeric operators

Operators Names

Highest `, [], () Matrix transpose, subscript, round brackets

-, not Unary minus, logical not

*, /, mod Multiply, divide and modulus (remainder)

+, - Add and subtract

<, <=, >, >= Less, less or equal, greater, greater or equal

=, <> Equal and not equal

and, band Logical and, bitwise and

or, xor, bor, bxor Logical or, exclusive or and bitwise versions

Lowest ?: Ternary operator

The order of precedence determines the order in which operators are applied within an expression. Without rules on
the order of precedence, 4+2*3 could be interpreted as 18 or 10 depending on whether the add or the multiply was
done first. Our rules say that multiply has a higher precedence, so the result is 10. If in doubt, use round brackets,
as in 4+(2*3) to make your meaning clear. Extra brackets do not slow down the script.

The divide operator returns an integer result if both the divisor and the dividend are integers. If either is a real
value, the result is a real. So 1/3 evaluates to 0, while 1.0/3, 1/3.0 and 1.0/3.0 all evaluate to 0.333333…

The minus sign occurs twice in the list because minus is used in two distinct ways: to form the difference of two
values (as in fred:=23-jim) and to negate a single value (fred :=-jim). Operators that work with two values
are called binary, operators that work with a single value are called unary. There are four unary operators, [], (), -
and not, the remainder are binary.

There is no explicit TRUE or FALSE keyword in the language. The value zero is treated as false, and any non-zero
value is treated as true. Logical comparisons have the value 1 for true. So not 0 has the value 1, and the not of
any other value is 0. If you use a real number for a logical test, remember that the only way to guarantee that a real
number is zero is by assigning zero to it. For example, the following loop may never end:

Signal Version 6.06

19-310

var add:=1.0;
repeat
 add := add - 1.0/3.0; ' beware, 1/3 would have the value 0!
until add = 0.0; ' beware, add may never be exactly 0

Even changing the final test to add<=0.0 leads to a loop that could cycle 3 or 4 times depending on the
implementation of floating point numbers.

The result of the comparison operators is integer 0 if the comparison is false and integer 1 if the comparison is true.
The result of the binary arithmetic operators is integer if both operands are integers, otherwise the result is a real
number. The result of the logical operators is integer 0 or 1. The result of the exclusive or operator is true if one
operand is true and the other is false.

The bitwise operators band, bor and bxor treat their operands as integers, and produce an integer result on a bit
by bit basis. They are not allowed with real number operands.

String operators

Operators Names

Highest + Concatenate

<, <=, >, >= Less, less or equal, greater, greater or equal

=, <> Equal and not equal

Lowest ?: Ternary operator

The comparison operators can be applied to strings. Strings are compared character by character, from left to right.
The comparison is case sensitive. To be equal, two strings must be identical. You can also use the + operator with
strings to concatenate them (join them together). The character order for comparisons (lowest to highest) is:

space !"#$%&'()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

Do not confuse assignment := with the equality comparison operator, =. They are entirely different. The result of
an assignment does not have a value, so you cannot write statements like a:=b:=c;.

The ternary operator

The ternary operator ?: was added to the script language at Signal version 3 and has the following format:

numeric expression ? expression1 : expression2

The result of the ternary operator is expression1 if numeric expression evaluates to a non-zero result
otherwise it is expression2. You can use this anywhere that an expression would be acceptable, including when
passing arrays as arguments to functions. However, expression1 and expression2 must be type compatible in
the context of their use. For example, if one is a string, then the other must also be a string. If they are arrays passed
as arguments, they must have the same type and the same number of dimensions. If they are arguments passed by
reference, they must have identical type. In an expression, one can be integer and the other real, in which case the
combined type is treated as real.

You are not allowed to use this operator to choose between function or procedure names passed as arguments into
functions or procedures.

Script language

19-311

Examples of expressions

The following (meaningless) code gives examples of expressions.

var jim,fred,sam,sue%,pip%,alf$,jane$;
jim := Sin(0.25) + Cos(0.25);
fred := 2 + 3 * 4; 'Result is 14.0 as * has higher precedence
fred := (2 + 3)* 4; 'Result is 20.0
fred += 1; 'Add 1 to fred
sue% := 49.734; 'Result is 49
sue% := -49.734; 'Result is -49
pip% := 1 + fred > 9; 'Result is 1 as 21.0 is greater than 9
jane$:= pip% > 0 ? "Jane" : "John"; 'Result is "Jane"
alf$:= "alf";
sam := jane$ > alf$; 'Result is 0.0 (a is greater than J)
sam := UCase$(jane$)>UCase$(alf$); 'Result is 1.0 (A < J)
sam := "same" > "sam"; 'Result is 1.0
pip% := 23 mod 7; 'Result is 2
jim := 23 mod 6.5; 'Result is 3.5
jim := -32 mod 6; 'Result is -2.0
sue% := jim and not sam;'Result is 0 (jim = -2.0 and sam = 1.0)
pip% := 1 and 0 or 2>1; 'Result is 1
sue% := 9 band 8; 'Result is 8 (9=1001 in binary, 8=1000)
sue% := 9 bxor 8; 'Result is 1
sue% := 9 bor 8; 'Result is 9

Mathematical constants

Before Signal version 6.03 and 5.12 we didn't provide maths constants e and π as built-in constants _e and _pi. If
you need to write a script that will also work with older version of Signal, e is Exp(1.0) and p (pi) is
4.0*ATan(1.0). Alternatively, here are their values to as much accuracy as you can store in a double :

p 3.141592653589793
e 2.718281828459045

Flow of control statements

If scripts were simply a list of commands to be executed in order, their usefulness would be severely limited. The
flow of control statements let scripts loop and branch. It is considered good practice to keep flow of control
statements on separate lines, but the script syntax does not require this. There are two branching statements,
if...endif and docase...endcase, and three looping statements, repeat...until, while...wend and
for...next. You can also use user-defined functions and procedures with the Func and Proc statements.

if...endif

The if statement can be used in two ways. When used without an else, a single section of code can be executed
conditionally. When used with an else, one of two sections of code is executed. If you need more than two
alternative branches, the docase statement is usually more compact than nesting many if statements.

if expression then 'The simple form of an if

 zero or more statements;

endif;
if expression then 'Using an else

 zero or more statements;

else
 zero or more statements;

endif;

Signal Version 6.06

19-312

If expression is non-zero, the statements after the then are executed. If expression is zero, only the statements
after the else are executed. The following code adds 1 or 2 to a number, depending on it being odd or even:

if num% mod 2 then
 num%:=num%+2; ' the semicolons before...
else '...else and endif are optional.
 num%:=num%+1;
endif;

'The following are equivalent
if num% mod 2 then num%:=num%+2 else num%:=num%+1 endif;
num% += num% mod 2 ? 2 : 1;'An alternative using ?:

docase...endcase

These keywords enclose a list of case statements forming a multiway branch. Each case is scanned until one is
found with a non-zero expression, or the else is found. If the else is omitted, control passes to the statement after
the endcase if no case expression is non-zero. Only the first non-zero case is executed (or the else if no case is
non-zero).

docase
 case exp1 then

 statement list;

 case exp2 then

 statement list;

 ...
 else
 statement list;

endcase;

This example displays the type of a file handle:

'case.sgs
var i%,m$;
i% := ViewKind(); 'get type of the current view
docase
 case i% = 0 then m$:= "file";
 case i% = 1 then m$:= "text";
 case i% = 2 then m$:= "output sequence";
 case i% = 3 then m$:= "script";
 case i% = 4 then m$:= "memory";
 case i% = 8 then m$:= "external text";
 case i% = 9 then m$:= "external binary";
 case i% = 10 then m$:= "Signal";
 case i% = 12 then m$:= "XY view";
 else m$:= "something else...";
endcase;
message("Current window is of type "+m$);

The following example sets a string value depending on the value of a number:

var base%:=8,msg$;
docase
 case base%=2 then msg$:= "Binary";
 case base%=8 then msg$:= "Octal";
 case base%=10 then msg$:= "Decimal";
 case base%=16 then msg$:= "Hexadecimal";
 else msg$:= "Pardon?";
endcase;

Script language

19-313

repeat...until

The statements between repeat and until are repeated until the expression after the until keyword evaluates to
non-zero. The body of a repeat loop is always executed at least once. If you need the possibility of zero executions,
use a while loop. The syntax of the statement is:

repeat
 zero or more statements;

until expression;

For example, the following code prints the times of all data items on channel 3 (plus an extra -1 at the end):

var time := -1; 'start time of search
repeat
 time := NextTime(3, time); 'find next item time
 PrintLog("%f\n", time); 'display the time to the log
until time<0; 'until no data found

You can break out of a repeat loop early using the break statement. You can skip to the until statement with the
continue statement.

var t;
repeat
 t := NextTime(3, t); 'get a time
 if (t<0) then break endif; 'stop if time not found
 if (t<10) then continue endif; ' skip if not enough time yet
 PrintLog("At time %5.2f 10 second count = %d\n", t, Count(3, t-10, t));
until t >= MaxTime(3);

while...wend

The statements between the keywords are repeated while an expression is not zero. If the expression is zero the first
time, the statements in between are not executed. The while loop can be executed zero times, unlike the repeat
loop, which is always executed at least once.

while expression do

 zero or more statements;

wend;

The following code fragment, finds the first number that is a power of two that is greater than or equal to some
number:

var test%:=437, try%:=1;
while try%<test% do 'if try% is too small...
 try% := try% * 2; '...double it
wend;

You can break out of a while loop early using the break statement. You can skip back to the start of the loop with
the continue statement.

var i% := 0;
while i% <= 999 do
 ...
 if StopEarly() then
 break
 else
 if SkipRestOfLoop() then continue endif;
 endif;
 ...
wend;

Signal Version 6.06

19-314

for...next

A for loop executes a group of statements a number of times with a variable changed by a fixed amount on each
iteration. The loop can be executed zero times. The syntax is:

for v := exp1 to exp2 {step exp3} do

 zero or more statements;

next;

v This is the loop variable and may be a real number, or an integer. It must be a simple variable, not an
array element.

exp1 This expression sets the initial variable value before the looping begins.

exp2 This expression is evaluated once, before the loop starts, and is used to test for the end of the loop. If
step is positive or omitted (when it is 1), the loop stops when the variable is greater than exp2. If step
is negative, the loop stops when the variable is less than exp2.

exp3 This expression is evaluated once, before the loop starts, and sets the increment added to the variable
when the next statement is reached. If there is no step exp3 in the code, the increment is 1. The value
of exp3 can be positive or negative.

The following example prints the squares of all the integers between 10 and 1:

var num%;
for num% := 10 to 1 step -1 do
 PrintLog("%d squared is %d\n", num%, num% * num%);
next;

This is a more complicated example which prints prime numbers:

const MaxN% := 1000; 'the maximum number to search
var prime%[MaxN%],i%,t%; 'the "Sieve" and loop variables
for i%:=1 to MaxN%-1 do 'ignore 0 as not included in search
 prime%[i%] := 1 'mark all numbers as possible primes
next;
for t%:=2 to MaxN%-1 do 'start search at 2 as 1 is special case
 if prime%[t%] then 'if number remains, must be prime
 for i% := 2*t% to MaxN%-1 step t% do
 prime%[i%]:=0 'remove all multiples of prime number
 next;
 endif;
next;
t% := 0; 'use this to put output in columns
for i% := 1 to MaxN%-1 do 'search the "sieve" for next prime
 if prime%[i%] then 'have we found one?
 if t% mod 10 = 0 then PrintLog("\n") endif;
 t% := t% + 1; 'count the number
 PrintLog("%5d", i%);'output the prime
 endif;
next;

If you want a for loop where the end value and/or the step size are evaluated each time round the loop you
should use a while…wend or repeat…until construction. You can break out of a for loop early using the break
statement. You can skip to the next statement with the continue statement.

continue & break

Within the three looping statements (for...next, repeat...until and while...do) you can use the break
and continue statements. The break statement jumps out of the enclosing looping statement; the continue
statement jumps to the evaluation of the expression that determines if a repeat or while will run again and to the
next in a for loop. For example:

Script language

19-315

var i%;
for i% := 0 to 1000 do
 if StopEarly() then break endif;
 if SkipToNext() then continue endif;
 DoSomething(i%);
next; 'continue jumps here

DoSomethingElse(); 'break jumps to this statement

It is an error to use either of these statements outside a loop. If you need to jump out of more than one level of
looping statements, put the code in a Proc or Func and use the return statement to jump out.

The break and continue statements are useful because they give you a tidy way of interfering with the execution of
a loop and a way to jump out of deeply nested if or docase statements inside a loop in a similar way that the
return statement allows you to jump out of the middle of a Proc or Func.

The break and continue statements are new in Signal version 4.06; if you use them your script will not compile in
older versions of Signal.

halt

The Halt keyword terminates a script. A script also terminates if the path of execution reaches the end of the
script. When a script halts, any open external files associated with the Read() or Print() functions are closed
and any windows with invalid regions are updated. Control then returns to the user unless ScriptRun() has been
used to set the next script to run. The Halt statement can occur at the outer level of a script or in a function or
procedure. For example:

Proc DoSomething(arg)
if arg < 0 then
 Message("Bad argument to DoSomething(%g)", arg);
 Halt;
endif;
 ...
end;

Functions and procedures

A user-defined function is a named block of code. It can access global variables and create its own local variables.
Information is passed into user-defined functions through arguments. Information can be returned by giving the
function a value, by altering the values of arguments passed by reference or by changing global variables.

User-defined functions that return a value are introduced by the func keyword, those that do not are introduced
by the proc keyword. The end keyword marks the end of a function. The return keyword returns from a function.
If return is omitted, the function returns to the caller when it reaches the end statement. Arguments can be
passed to functions by enclosing them in brackets after the function. Functions that return a value or a string have
names that specify the type of the returned value. A function is defined as:

func name({argument list}) or proc name({argument list})

{var local-variable-list;} {var local-variable-list;}

statements including return x; statements including return;

end; end;

There is no semicolon at the end of the argument list because the argument list is not the end of the func or proc
statement; the end keyword terminates the statement. Functions may not be nested within each other.

This example function finds the greatest common divisor of two integers:

Signal Version 6.06

19-316

var n1%, n2%;
n1% := Input("First number", 10000, 1, 2000000000);
n2% := Input("Second number", 30000, 1, 2000000000);
Message("Greatest common divisor of %d and %d is %d", n1%, n2%, gcd%(n1%, n2%));
halt;
func gcd%(m%, n%) 'm% and n% both > 0!
var d%;
while n% do
 d% := Max(m%, n%) mod Min(m%, n%);
 m% := Min(m%, n%); 'get smaller value
 n% := d%
wend;
return m%;
end;

return
The return keyword is used in a user-defined function to return control to the calling context. In a proc, the
return must not be followed by a value. In a func, the return should be followed by a value of the correct type to
match the function name. If no return value is specified, a func that returns a real or integer value returns 0, and a
func that returns a string value returns a string of zero length.

You can use a return statement in a function or procedure to break out of a loop or an if or case statement. If you
are using a return to break out of a loop early and do not need to be compatible with version 3, you could consider
using the break statement.

Call tips
You can define pop-up call tips that appear when you hover the mouse over a user-defined Proc or Func name.
These are enabled in the script file settings dialog.

Argument lists

The argument list is a list of variable names separated by commas. There are two ways to pass arguments to a
function: by value and by reference:

Value Arguments passed by value are local variables in the function. Their initial values are passed from the
calling context. Changes made in the function to a variable passed by value do not affect the calling
context.

Reference Arguments passed by reference are the same variables (by a different name) as the variables passed
from the calling context. Changes made to arguments passed by reference do affect the calling
context. Because of this, reference arguments must be passed as variables (not expressions or
constants) and the variable must match the type of the argument.

Simple (non-array) variables are passed by value. Simple variables can be passed by reference by placing the &
character before the name in the argument list declaration.

Arrays and sub-arrays are always passed by reference. Array arguments have empty square brackets in the
function declaration, for example one[] for a vector and two[][] for a matrix. The number of dimensions of the passed
array must match the declaration. The array passed in sets the size of each dimension. You can find the size of an
array with the Len() function. You can declare an array argument as const and the compiler will detect an error if
you attempt to modify the array or pass it as a non-const argument to another function. An individual array element
is a treated as a simple variable.

If you use the trans() or diag() operators to pass the transpose or diagonal of an array to a function, the array is still
passed by reference and changes made in the function to array elements will change the corresponding elements in
the original data.

const arguments
You can place the keyword const before any argument. If you do this, it becomes an error to modify the variable
within the func or proc.

Script language

19-317

Default arguments
Simple (non array) arguments that are passed by value can also specify a default value. This is done by following
the variable name by := value, for example:

func fred(a := 1, b$:= "", c% := 0)
...
return a;
end;

When arguments are defined with default value you can omit them entirely when they are trailing arguments, or
skip over them if they are not. For example, all the following are legitimate:

'call as equivalent to
fred(); 'fred(1,"",0)
fred(2); 'fred(2,"",0)
fred(,"x"); 'fred(1,"x",0)
fred(,,6); 'fred(1,"",6)

Default arguments are just a convenience. The code is generated exactly as if you had supplied the arguments. A
common use is to extend an established command to cover a special case. By adding an addition argument with a
default value you can leave all your existing code unchanged and then use the extra argument only when required.

return

The return keyword is used in a user-defined function to return control to the calling context. In a proc, the
return must not be followed by a value. In a func, the return should be followed by a value of the correct type to
match the function name. If no return value is specified, a func that returns a real or integer value returns 0, and a
func that returns a string value returns a string of zero length.

Examples of user-defined functions

proc PrintInfo() 'no return value, no arguments
PrintLog(ChanTitle$(1)); 'Show the channel title
return; 'return is optional in this case as...
end; '...end forces a return for a proc

func sumsq(a, b) 'sum the square of the arguments
return a*a + b*b;
end;

func removeExt$(name$) 'remove text after last . in a string
var n := 0, k := 1;
 repeat
 k:=InStr(name$,".",k); 'find position of next dot
 if (k > 0) then 'if found a new dot...
 n := k; '...remember where
 endif
 until k=0; 'until all found
if n=0 then
 return name$; 'no extension
else
 return Left$(name$,n-1);
end;

proc sumdiff(&arg1, &arg2) 'returns sum and difference of args
arg1 := arg1 + arg2; 'sum of arguments
arg2 := arg1 - 2*arg2; 'original arg1-arg2
return; 'results returned via arguments
end;

Signal Version 6.06

19-318

func sumArr(data[]) 'sum all elements of a vector
var sum:=0.0; 'initialise the total
var i%; 'index
for i%:=0 to Len(data[])-1 do
 sum := sum + data[i%]; 'of course, ArrSum() is much faster!
 next;
return sum;
end;
Func SumArr2(data[][]) 'Sum of all matrix elements
var rows%,cols%,i%,sum; 'sizes, index and sum, all set to 0
rows% := Len(data[0][]) 'get sizes of dimensions...
cols% := Len(data[][0]); '...so we can see which is bigger
if rows%>cols% then 'choose more efficient method
 for i%:=0 to cols%-1 do sum += ArrSum(data[i%][]) next;
else
 for i%:=0 to rows%-1 do sum += ArrSum(data[][i%]) next;
endif;
return sum;
end;

Variables declared within a function exist only within the body of the function. They cannot be used from
elsewhere. You can use the same name for variables in different functions. Each variable is separate. In addition, if
you call a function recursively (that is it calls itself), each time you enter the function, you have a fresh set of
variables.

Scope of user-defined functions

Unlike global variables, which are only visible from the point in the script in which they are declared onwards, and
local variables, which are visible within a user-defined function only, user-defined functions are visible from all
points in the script. You may define two functions that call each other, if you wish.

Mutually recursive functions
Because functions are globally visible, you may define two functions that call each other (mutually recursive). If
you do this it is your responsibility to ensure that there is a way out of the mutual recursion. If you do not, the
script will compile, but will crash at run time as it will (eventually) exhaust system memory.

Functions as arguments

The script language allows a function or procedure to be passed as an argument. The function declaration includes
the declaration of the function type to be passed. Functions and procedures can occur before or after the line in
which they are used as an argument.

proc Sam(a,b$,c%)
...
end;

func Calc(va)
return 3*va*va-2.0*va;
end;

func PassFunc(x, func ff(realarg))
return ff(x);
end;

func PassProc(proc jim(realarg, strArg$, son%))
jim(1.0,”hello”,3);
end;

val := PassFunc(1.0, Calc); ’pass function
PassProc(Sam); ’pass procedure

Script language

19-319

The declaration of the procedure or function argument is exactly the same as for declaring a user-defined function
or procedure. This means you can also define default arguments. When passing the function or procedure as an
argument, just give the name of the function or procedure; no brackets or arguments are required. The compiler
checks that the argument types of a function passed as an argument match those declared in the function header.
See the ToolbarSet() function for an example.

Although user-defined functions and built-in functions are very similar, you are not allowed to pass a built-in
function as an argument to a built-in function. Further, you cannot pass a built-in function to a user-defined
function if it has one or more arguments that can be of more than one type. For example, the built-in Sin() function
can accept a real argument, or a real array argument, and so cannot be passed. If you need to pass such a function
you must wrap it in a user-defined function:

func USin(x) return Sin(x) end; 'USin(x) has an unambiguous signature

Channel specifiers

Many built-in script commands use a channel specifier to define one or more channels. This argument is always
called cSpc in the documentation. This argument stands for a string, an integer array or a single integer.

cSpc$ A string channel specifier holds a list of channel numbers and channel ranges, separated by commas.
A channel range is a start channel number followed by an end channel number separated by two dots.
The end channel number can be less that the start channel number. For example "1,3,5..7,12..9"
is a list of channels 1, 3, 5, 6, 7, 9, 10, 11 and 12. Virtual channels can be specified using the vn channel
numbers shown by Signal, for example "1, 5, v1,v3-v5".

cSpc%[] An array channel specifier uses the first element of the array to hold the number of channels. The
remaining elements are channel numbers. It is an error for the array to be shorter than the number of
channels+1. This matches the data that is returned by ChanList().

cSpc% An integer channel specifier is either a channel number from 1 upwards, or –1 for all channels, -2 for
visible channels, –3 for selected channels, -4 for waveform channels, -5 for all marker channels, -6 for
all selected (or visible if none are selected) waveform channels, -7 for all visible waveform channels, -8
for all selected waveform channels, -9 for all idealised trace channels, -10 for all selected (or visible if
no selection) channels of any type, -11 for all real marker channels and -12 for all marker and real
marker channels.

Some commands expect channels of specific types; channels that do not meet the type requirements are removed
from the list. It is usually an error for a channel specification to generate an empty list.

Include files

There are times when you will want to reuse definitions or user-defined procedures and functions in multiple
projects. You can do this by pasting the text into your script, but it can be more convenient to use the #include
command to include script files into a script. A file that is included can also include further files. We call these
nested include files. Only the first #include of a file has any effect. Subsequent #include commands that refer to
the same file are ignored. This prevents problems with script files that include each other and stops multiple
definitions when two files include a common file. A #include command must be the first non-white space item on
a line. There are two forms of the command:

#include "filename" 'optional comment
#include <filename> 'optional comment

where filename is either an absolute path name (starting with a \ or / or containing a :), for example C:
\Scripts\MyInclude.sgs, or is a relative path name, for example include.s2s. The difference between the two
command forms lies in how relative path names are treated. The search order for the first form starts at item 1 in the
following list. The search for the second form starts at item 3.

1. Search the folder where the file with the #include command lives. If this fails...

2. Search the folder of the file that included that file until we reach the top of the list of nested include files. If this
fails...

3. Search any \include folder inside the Signal6 folder inside your My Documents folder (this location
was added at version 5.08). If this fails...

4. Search the \include folder inside the Signal6Shared folder inside the Public Documents folder
(this location was added at version 5.08). If this fails...

Signal Version 6.06

19-320

5. Search any \include folder in the folder in which Signal is installed. If this fails...

6. Search the current folder.

Included files are always read from disk, even if they are already open. If you have an included file open and have
modified it, but not saved it, the script compiler will detect this and stop the compilation with an error. You must
save the included file to compile your script.

There are no restrictions on what can be in an included file. However, they will normally contain constant and
variable definitions and user-defined procedures and functions. It is usually a good idea to have all your #include
commands at the start of a script so that anyone reading the source is aware of the scope of the script.

The #include command was added to Signal at version 4.00 and is not recognised by any version before this. A
typical file using #include might start with:

'$Example|Example of use if include files
#include <sysinc.s2s> 'my system specific includes
#include "include\proginc.s2s" 'search script relative folder
var myvar; 'start of my code...

Opening included files
If you right-click on a line that holds an include command, and Signal can locate the included file, the context menu
will hold an entry to open the file. The search for the file follows that described above, except that it omits step 2.

You can also open an include file by right-clicking on the name of any user-defined Proc or Func that is defined in
an included file and selecting the Go to command. This will open the include file with the text caret at the start of the
Proc or Func.

Include files and debugging

You can debug a script that uses included files in exactly the same way as one that does not. If you step into a
user-defined function or procedure that is in an included file, the included file will open and the stepping marker will
show where you have reached. If you want to set a break point in an included file before you run the script, open
the included file, set the break point and then run the script (leaving the included file open).

Included files that are open within Signal are hidden from the script ViewList() command in the same way that
the running script is not visible. However, unlike the running script, whose view handle can be obtained with the
App() command, there is currently no mechanism built into the system to let you find the handles of included files.

If you want Auto complete to work with included files you must check the Included files checkbox in the Edit menu
Auto Complete... command.

Program size limits

The use of #include makes it much easier to construct very large scripts. However, there are some limits on the
size of a script that you should bear in mind before trying to amalgamate every script you have ever written into
one "superscript":

· The maximum instructions in a compiled script is currently set at 1000000. The number of instructions your script
uses is displayed when you compile a script.

· A script file can contain up to 1000000 lines and you can have up to 4095 included files. However, you will almost
certainly run out of instruction space before you hit these limits.

· Every variable, constant, procedure and function you declare generates a script object. The maximum number of
objects is currently around 32767.

· The maximum number of global objects (variables and constants that are visible throughout the script) is 10000
(was 15000 before version 4.00). Note that there are about 500 global objects defined before any you create with a
script, so you only have space for some 9500.

· The maximum number of local variables in all proc and func items is 12000 (was 7000 before version 4.00).

· The maximum number of strings that are longer than a few characters is 7000.

· The maximum number of proc and func items is 2767.

· The maximum number of characters in distinct literal strings is around 1000000. Before version 4.00 the limit was
around 65000 characters.

Script language

19-321

· The maximum size of an array (product of all the array dimensions) is 100,000,000 elements.

We can expand these limits if anyone manages to hit them.

Script functions by topic

This section lists script commands by function.

Windows and views

These commands are used to manipulate windows (views) to position them, display and size them, colour them and
create them.

App Get the application window view handle
ChanNumbers Show or hide channel numbers
Colour Get or set the palette entry associated with a screen item
ColourGet Get the colour associated with a screen item
ColourSet Set the colour associated with a screen item
Dup Get the view handle of one of the duplicates of the current view
Draw Draw invalid regions of the view (and set x axis range)
DrawAll Update all invalid regions in all views
FileClose Closes a window or windows
FileComment$ Gets and sets the file comment for time views
FileConvert$ Convert a foreign file to a Signal file and open it
FileName$ Gets the file name associated with a window
FileNew Opens an output file or a new text or data window
FileOpen Opens an existing file (in a window)
FilePrint Prints a range of data from the current view
FilePrintVisible Prints the current view
FilePrintScreen Prints all text-based and data views
FileQuit Closes the Signal application
FileExportAs Export from a data view in a variety of formats
FileSave Save a view with same name
FileSaveAs Save a view with specified new name
FocusHandle Get the view handle of the window which has the input focus
FontGet Read back information about the font
FontSet Set the font for the current window
FrontView Get or set the front window on screen
Grid Get or set the visibility of the axis grids
LogHandle Gets the view handle of the log window
PaletteGet Get the RGB colour of a palette entry
PaletteSet Set the RGB colour of a palette entry
SampleHandle Gets the view handle of sampling windows and controls
ViewColour Override application colours for a view
ViewColourGet Get colour override settings for a view
ViewColourSet Override application colours for a view
View Change or override current view and get view handle
ViewFind Get a view handle from a view title
ViewKind Get the type of the current view or other view
ViewLineNumbers Enable or disable line number display in text view
ViewLink Get the view that owns the current view
ViewList Form a list of handles of views that meet a specification
ViewMaxLines Sets the maximum lines for a text view
ViewStandard Returns a window to a standard state
ViewUseColour Get and set monochrome/colour use for view
ViewZoom Increases and decreases text view font size
Window Sets the window size and position
WindowDuplicate Duplicate a time view
WindowGetPos Get window position
WindowSize Changes the window size
WindowTitle$ Gets or changes the window title
WindowVisible Sets or gets the visibility of the window (hide/show)

Signal Version 6.06

19-322

XAxis Get or set the visibility of the x axis
XAxisAttrib Get or set x axis attributes such as logarithmic
XAxisMode Get or set the visibility of the x axis’ features (eg large ticks)
XAxisStyle Get or set the x axis major and minor tick spacing
YAxis Get or set the visibility of the y axis
YAxisAttrib Get or set y axis attributes such as logarithmic
YAxisMode Get or set the visibility of the y axis’ features (eg large ticks)
YAxisStyle Get or set the y axis major and minor tick spacing

Data views

These commands operate on any data view, whether a file view, memory view or sampling document view.

AppendFrame Add a new data frame to end of data
DeleteFrame Delete a data frame if not on disk
ExportChanFormat Set channel format for export
ExportChanList Set list of channels for export
ExportFrameList Set a list of frames for export
ExportTextFormat Set format for text output of channels
ExportTimeRange Set x axis range for export of data
FileExportAs Export from a data view in a variety of formats
FileApplyResource Apply a resource file to the current time view
FileGlobalResource Set a global resource file
FileSaveResource Create a resource file matching the current time view
Frame Get or set the current frame
FrameAbsStart Get or set the current frame absolute start time
FrameComment$ Get or set the comment with the current frame
FrameCount The number of frames in the file or memory view
FrameFlag Gets or sets a frame flag
FrameList Fills an array with frame numbers according to a frame spec
FrameMean Gets or sets the flag saying if the frame shows a mean or a total
FrameSave Saves changed frame data or discards changes
FrameState Gets or sets the frame state value
FrameTag Gets or sets the frame tag
FrameUserVar Gets or sets a frame user variable
Maxtime Maximum x axis value in the current frame
Mintime Minimum x axis value in the current frame
Overdraw Enables or disables drawing the frame display list
Overdraw3D Controls the 3D overdrawing the frame display list
OverdrawFrames Sets a frame display list for the view
OverdrawGetFrames Gets the frame numbers from the display list for the view
ShowBuffer Get or set the frame buffer display state
Sweeps Number of items processed into memory view
TimeRatio Get the scaling factor from X units to seconds
TimeUnits$ Get the current time units
XLow The start of the displayed area in x axis units
XHigh The end of the displayed area in x axis units
XRange Set the x axis range for next draw
XScroller Show or hide the x axis scroll bar and controls
XTitle$ X axis title. Can be set, in a memory or sampling document view
XUnits$ X axis units. Can be set, in a memory or sampling document view

XY views

These commands specifically manipulate XY views. XY views have from 1 to 100 channels of data. Each channel
holds a list of (x, y) co-ordinate pairs that can be displayed in a variety of styles. Most functions that work on
views in general will also work on an XY view.

MeasureToXY Create an XY view and associated measurement process
XYAddData Add data points to a channel of an XY view
XYColour Set the colour of a channel
XYCount Return the number of XY data points in a channel

Script language

19-323

XYDelete Delete one or more data points from a channel
XYDrawMode Control how a channel is drawn
XYGetData Read data back from an XY channel
XYInChan Count XY points inside polygon defined by a channel
XYInCircle Count the number of XY points within a circle
XYInRect Count the number of XY points inside a rectangle
XYJoin Get or set the point joining method
XYKey Control the display of the XY view channel key
XYOffset Set a drawing offset for an XY view channel
XYRange Get rectangle containing one or more channels
XYSetChan Create or modify an XY channel
XYSize Get or set maximum size of an XY channel
XYSort Change the sort (and draw) order of a channel

Grid views

Grid views hold a rectangular array of cells.

Draw Set the first column to display
EditClear Clear selected cells
EditCopy Copy selected cells to the clipboard
EditCut Cut selected cells to the clipboard
EditPaste Replace selection with clipboard contents
EditSelectAll Select entire grid
FileName$ Get associated file name
FileNew Create a new grid view
FileOpen Open an existing grid view
FilePrint Print current file
FileSave Save as current name
FileSaveAs Save with a different name
FontGet Get the current font characteristics
FontSet Set the current font characteristics
GrdAlign Set the alignment of grid columns
GrdColWidth Set the width of grid columns
GrdGet Read back the contents of grid cells
GrdSet Set the contents of grid cells
GrdShow Show and hide column and row headers
GrdSize Get and set the rows and columns in the grid
Modified Get and set the modified and read-only state of views
MoveBy Move the selection relative to the current position
MoveTo Move the selection to an absolute position
ViewStandard Reset the formatting to the standard state
XRange Set the first column to display
YRange Set the top row to display

Channels

These commands operate on channels in a data or XY view. Channel data can also be treated as an array, so you
can use all the array arithmetic commands. In a memory view, you can use the commands BinSize and BinZero
to get or set x axis scale and offset, but in any other data view you can use these commands only to get x axis
values.

BinError Error value for a given bin
BinSize X axis interval for waveforms or resolution for markers
BinToX Bin or item number at x axis position
BinZero X axis position of the first bin on the channel
Chan$ Converts a channel number or list into a string
ChanColour Override channel colours
ChanColourGet Get channel colour override settings
ChanColourSet Set channel colour overrides
ChanCount Count channels of a given type
ChanDelete Delete a channel from an XY view or an idealised trace

Signal Version 6.06

19-324

ChanDiff Differentiate data in specified channels
ChanImage Set a bitmap file to be used as the channel background
ChanIndex Select the real marker value to be drawn & used
ChanIntgl Integrate data in specified channels
ChanItems Count items in a channel within an x axis range
ChanKind Get the type of a channel
ChanList Get a list of channels meeting a specification
ChanMean Mean of waveform level within an x axis range
ChanMeasure Take a variety of measurements on channel data
ChanNegate Negate (invert) data in specified channels
ChanOffset Offset data in specified channels by a constant value
ChanOrder Modify and retrieve the channel order and y axis grouping
ChanPenWidth Set the pen width for a data view channel
ChanPixel Get the pixel size in channel units
ChanPoints Number of data items in the channel in the frame
ChanRectify Rectify data in specified channels
ChanScale Scale data in specified channels by a constant value
ChanSearch Scan a channel of data for a particular feature
ChanSelect Select and report on selected state of channels
ChanShift Shift data in specified channels left or right
ChanShow Make a channel visible or invisible
ChanSmooth Smooth (3 or 5 point) data in specified channels
ChanSubDC Remove DC offset from data in specified channels
ChanRange Get start and count of items in an x axis range
ChanTitle$ Get or set the channel title string
ChanUnits$ Get or set the channel units
ChanValue Get channel data at a particular time or x axis position
ChanVisible Get the visibility state of a channel
ChanWeight Change the relative vertical space of a channel
ChanZero Clear data in specified channels
DrawMode Get or set display mode for a channel
LastTime Find the previous item in a channel (and return values)
MarkCode Get a marker code(s)
MarkEdit Edit a marker code(s)
MarkShow Select the marker code to be used for drawing
MarkTime Change position of a marker
MaxTime Time of last item on the channel
MemChan Create a memory channel
MemDeleteItem Delete one or more items from a memory channel
MemDeleteTime Delete one or more items based on time in a memory channel
MemGetItem Get information on item in memory channel
MemImport Import items into a memory channel
MemSetItem Edit or add an item in a memory channel
MinMax Find minimum and maximum values (and positions)
MinTime Time of first item on the channel
NextTime Find the next item in a channel (and return values)
Optimise Set reasonable y range for channels with axes
VirtualChan Create virtual channel using expression
XToBin Convert x axis value to bin number
YLow Get lower limit of y axis for a channel
YHigh Get upper limit of y axis for a channel
YRange Set y axis range for a channel

Buffer

These commands operate on the frame buffer that is attached to each file or memory view. The buffer can be shown
or hidden using the ShowBuffer function. These commands perform arithmetic between the buffer and a frame in
the data view. These functions operate on all points in all waveform channels in the buffer. The functions that
modify a frame in the data document have names such as BuffAddTo or BuffMulBy, while functions that change
the frame buffer are called BuffAdd or BuffMul. Note that you can use the channel data manipulation commands
to change buffer data, as well as accessing the buffer data directly.

Script language

19-325

BuffAdd Add data to the frame buffer
BuffAddTo Add frame buffer to a data framer
BuffAcc Add data to average in frame buffer
BuffClear Clear all channels in the frame buffer
BuffCopy Copy data to the frame buffer
BuffCopyTo Copy frame buffer to the data frame
BuffDiv Divide frame buffer by data
BuffDivBy Divide data frame by the frame buffer
BuffExchange Exchange data in the frame buffer and data frame
BuffMul Multiply frame buffer by data
BuffMulBy Multiply data frame by frame buffer
BuffSub Subtract data from frame buffer
BuffSubFrom Subtract frame buffer from a data frame
BuffUnAcc Remove data from average in frame buffer

Vertical cursors

The following commands control the vertical cursors. Where possible, changes to cursors cause immediate screen
changes; changes do not wait for the next Draw command. This is unlike almost all other commands, which save up
changes until the next draw.

Cursor Set or get the position of a cursor
CursorActive Set and get active cursor parameters
CursorDelete Delete a designated cursor
CursorExists Test if a cursor exists
CursorLabel Set or get the cursor label style
CursorLabelPos Set or get the cursor label position
CursorNew Add a new cursor (at a given position)
CursorOpen Open the cursor value and cursor region dialogs, test if open
CursorRenumber Renumber the cursors in ascending position order
CursorSearch Cause active cursors to execute a search
CursorSet Set the number (and position) of vertical cursors
CursorValid Test if an active cursor search succeeded
CursorVisible Get or set cursor visibility

Horizontal cursors

Horizontal cursors belong to a channel, but can be dragged to different channels within a view by the user.
Horizontal cursors have a value and are drawn at the y axis position corresponding to the value. If the value is
beyond the range of the y axis, the cursor is invisible. If you delete a channel with horizontal cursors, the cursors
are deleted.

HCursor Set or get the position of a horizontal cursor
HCursorActive Set or get horizontal active cursor parameters
HCursorChan Gets the channel that a horizontal cursor belongs to
HCursorDelete Delete a designated horizontal cursor
HCursorExists Test if a horizontal cursor exists
HCursorLabel Gets or sets the horizontal cursor style
HCursorLabelPos Gets or sets the horizontal cursor position
HCursorNew Add a new horizontal cursor on a channel (at a given position)
HCursorRenumber Renumbers the cursors from bottom to the top of the view
HCursorValid Test if an active horizontal cursor search succeeded

Sampling configuration commands

These commands correspond to actions on the Sampling configuration dialog. They get or change the sampling
configuration settings that will be used the next time you create a new Signal data file for sampling.

These commands correspond to the General page of the configuration, or are general-purpose in intent. A few of
these can also interact with sampling in progress.

SampleBurst Set or get the burst mode flag

Signal Version 6.06

19-326

SampleClear Set the Sampling configuration to a known state
SampleDigMark Add or remove the digital marker channel
SampleKeyMark Add or remove the keyboard marker channel
SampleMode Set or get the sweep mode for sampling
SamplePause Set or get pause at sweep end flag
SamplePoints Set or get the number of data points per ADC port
SamplePorts Set or get which ADC ports to sample from
SampleRate Set or get the ADC sample rate per channel in Hz
SampleTrigger Set or get the triggered sweeps flag
SampleVaryPoints Set or get the variable sweep points flag
SampleWrite Control writing data to sampling file
SampleZeroOffset Set or get the x-axis zero offset.

These commands correspond to the Ports page of the sampling configuration.

SamplePortFull Set ADC port value for full input
SamplePortName$ Set ADC port title
SamplePortOptions$ Set ADC port online processing options
SamplePortUnits$ Set ADC port units
SamplePortZero Set ADC port value for zero on the input
SampleTel Set up of telegraph gains for an amplifier

These commands correspond to the Clamp page of the sampling configuration.

SampleClamp Set up or read back clamp settings and clamping sets

These commands correspond to the Outputs page of the sampling configuration.

SampleDacFull Set or get a DAC full-scale value
SampleDacMask Set or get the DAC output enable mask
SampleDacUnits$ Set or get a DAC units string
SampleDacZero Set or get a DAC zero value
SampleDigOMask Set or get the digital outputs enable mask
SampleOutClock Set or get the outputs clock period
SampleOutMode Set or get the outputs mode

These commands correspond to the States page of the sampling configuration.

SampleAuxStateParam Set or get parameters for the auxiliary states device
SampleAuxStateValue Set or get auxiliary states device settings
SampleDigIMask Set or get digital inputs enable mask
SampleStates Set or get states enable and number of extra states
SampleStatesIdle Set or get states ordering cycles before idling
SampleStatesMode Set or get multiple states mode
SampleStatesOrder Set or get multiple states ordering mode
SampleStatesOptions Set or get the multiple states options flag.
SampleStatesRepeats Set or get multiple states repeats count
SampleStateDac Set or get DAC data for individual state
SampleStateDig Set or get digital bits for individual state
SampleStateRepeats Set or get repeats for individual state

These correspond to the Protocols dialog available from the States page.

Protocols Get number of protocols set up
ProtocolAdd Add a new protocol to list
ProtocolClear Initialise a protocol
ProtocolDel Delete a protocol from list
ProtocolEnd Set or get what happens when the end of a protocol is reached
ProtocolFlags Set or get protocol flags
ProtocolName$ Set or get protocol name
ProtocolStepGet Get information on protocol step
ProtocolStepSet Set protocol step values

These commands correspond to the Automation page of the sampling configuration.

Script language

19-327

SampleArtefactGet Get the artefact rejection settings
SampleArtefactSet Set the artefact rejection settings
SampleAutoFile Set or get the automatic file save flag
SampleAutoName$ Set or get the template for automatic file naming
SampleLimitFrames Set or clear the limit on the number of frames in the new file
SampleLimitSize Set or clear the size limit of the new file
SampleLimitTime Set or clear the limit on the overall sampling time

These commands correspond to the Peri-trigger page of the sampling configuration.

SamplePeriDigBit Set digital bit for peri-trigger digital type
SamplePeriBitState Set digital triggering to be on bit high or low
SamplePeriHyst Set hysteresis value for peri-trigger + or - analog type
SamplePeriLevel Set threshold level for peri-trigger analog types
SamplePeriLowLev Set lower threshold level for peri-trigger =analog type
SamplePeriType Set type of peri-trigger
SamplePeriPoints Set peri-trigger pre-trigger points

These commands correspond to the pulse dialog or to outputs page items that specifically interact with the pulses
output. The pulse functions can all be used while sampling is in progress to alter the pulses in use.

SampleAbsLevel Set or get the pulses absolute levels flag (in outputs page)
SampleFixedInt Set or get the fixed interval sweep mode interval
SampleFixedVar Set or get the fixed interval percentage variation
SampleOutLength Set or get the pulses output frame length
SampleOutTrig Set or get the pulses sampling sweep trigger time
SampleSweepPoints Set or get the number of points for a state.
Pulses Get the number of pulses for an output port
PulseAdd Add a new pulse to the outputs for a port
PulseClear Remove all pulses from the outputs for a port
PulseDel Remove a pulse from the outputs for a port
PulseFlags Set or get the options flags for a pulse
PulseName$ Set or get a pulse name
PulseType Get a pulse type code
PulseDataSet Set the amplitude and other values for a pulse
PulseDataGet Get the amplitude and other values for a pulse
PulseVarSet Set the variation parameters for a pulse
PulseVarSet Get the variation parameters for a pulse
PulseTimesSet Set the times for a pulse
PulseTimesGet Get the times for a pulse
PulseWaveSet Set the waveform output parameters
PulseWaveGet Get the waveform output parameters
PulseWaveformSet Set the waveform output data for a DAC
PulseWaveformGet Get the waveform output data for a DAC

These commands correspond to the outputs sequencer.

SampleSeqCtrl Sets where a sequencer can be controlled from
SampleSeqStep Gets the current sequencer step
SampleSeqTable Gets the size of any table set in the sequencer
SampleSequencer Sets the sequencer file to use
SampleSequencer$ Gets the sequencer file name in use
SampleSeqVar Sets variable values used in the sequencer
SampleSeqWave Sets up waveform output for use from the sequencer

Runtime sampling commands

These commands control and interact with the data sampling process. Signal samples into one data file at a time,
and these commands refer to it, regardless of the current view. The commands can also be used to retrieve the
current settings.

SampleAbort Exit from sampling and throw data away
SampleAccept Accept or reject the current sweep

Signal Version 6.06

19-328

SampleHandle Gets the view handle of sampling windows and controls
SampleKey Adds to the keyboard marker channel, controls output sequencer
SamplePeriHyst Alter hysteresis for peri-trigger + or - analog types
SamplePeriLevel Alter threshold level for peri-trigger analog types
SamplePeriLowLev Alter lower threshold level for peri-trigger =analog type
SampleProtocol Set protocol to be used for state sequencing
SampleReset Clear all data from the new file and get ready to start again
SampleStart Start sampling after creating a new time view
SampleState Set state for next frame to be sampled a new time view
SampleStatesPause Set or get the current sample state sequencer pausing
SampleStatesReset Reset states sequencing and pulse variations
SampleStatesRun Set state sequencing run mode or manual
SampleStatesStep Get the current states sequencing step counter.
SampleStatus Get the current sampling state
SampleStop Stop sampling and keep the data
SampleSweep Start another sampling sweep

Analysis

These functions create new memory or XY views or memory channels and define an analysis process for them.

MeasureToChan Create a memory channel holding marker data and associated measurement process
MeasureToXY Create an XY view and associated measurement process
SetAmplitude Set up an amplitude histogram view derived from a file view
SetAutoAv Set up an auto-average multi-frame view derived from a file view
SetAverage Set up a waveform average view derived from a file view
SetLeak Set up a leak-subtracted view produced from a file view
SetOpCl Set up an idealised trace using threshold crossings
SetOpClScan Set up an idealised trace using the SCAN method
SetOpClAmp Set up an amplitude histogram formed from an idealised trace
SetOpClBurst Set up a burst time histogram formed from an idealised trace
SetOpClHist Set up a dwell time histogram from an idealised trace
SetPower Set up a power spectrum view derived from a file view

These functions create new memory views without an attached analysis process.

SetCopy Set up a memory view copied from a file view
SetMemory Set up a memory view for user-defined data

The Process commands work with views with an attached analysis process. They carry out the analysis process
defined when setting up the memory view, processing data from the source view into the memory or XY view
attached to it.

Process Carry out the analysis process on the current frame from file
ProcessAll Process all memory views attached to a file view
ProcessFrames Carry out the analysis process on multiple frames from file
ProcessOnline Carry out the analysis process during sampling
OpClFitRange Fits an idealised patch clamp trace to observed data
OpClNoise Makes baseline measurements to single channel data to allow SCAN analysis to be done
Sweeps Number of items processed into memory view

Signal conditioner control

These functions control serial-line controlled signal conditioners.

CondFeature Get and set special signal conditioner features
CondFilter Get or set the conditioner low-pass or high-pass filter
CondFilterList Get a list of possible low-pass or high-pass filter settings
CondFilterType Get the list of low-pass or high-pass filter types available
CondGain Get or set the conditioner gain
CondGainList Get a list of the possible gains for the conditioner
CondGet Get all the settings for one channel of the conditioner

Script language

19-329

CondOffset Get or set the conditioner offset for a channel
CondOffsetLimit Get or set the conditioner offset range for a channel
CondRevision$ Get or set the conditioner offset for a channel
CondSet Single call to set all channel parameters
CondSourceList Get names of the signal sources available on the conditioner
CondType Get the type of signal conditioner

Editing operations

These functions mimic the Edit menu commands and provide additional functionality.

EditClear Delete text from a text window at the caret
EditCopy Copy the current selection to the clipboard
EditCut Delete the current selection to the clipboard
EditFind Find text
EditPaste Paste the clipboard into the current text field
EditReplace Find and replace text
EditSelectAll Select the entire text or cursor window contents
MoveBy Move relative to current position
MoveTo Move to a particular place
OpClEventChop Splits an event from an idealised trace in two
OpClEventDelete Deletes an event from an idealised trace
OpClEventGet Gets the details of an event in an idealised trace
OpClEventMerge Merges two events from an idealised trace
OpClEventSet Sets the details of an event in an idealised trace
OpClEventSplit Splits an event in an idealised trace into three
Selection$ This function returns the text that is currently selected

1401 access functions

These functions communicate with a 1401 when Signal is not sampling.

U1401Close Release the 1401 for use by Signal sampling.
U1401Ld Load 1401 commands into the 1401 from disk files.
U1401Open Open a 1401 for use by the other U1401xxx commands.
U1401Read Read a text response from a 1401, optionally convert to numbers.
U1401To1401 Transfer an integer array to the 1401 from the host.
U1401ToHost Transfer an integer array to the host from the 1401
U1401Write Write a text string to the 1401

CFS variables

The following script commands read file and frame variables from CFS files written by other software. For those
familiar with the CFS library for programming in DOS, the frames were referred to as data sections (DS).

FileGetIntVar Read the value of an integer file variable
FileGetRealVar Read the value of a floating point file variable
FileGetStrVar$ Read a string file variable
FileVarCount Get the number of file variables in the file
FileVarInfo Get the type and name of a numbered file variable
FrameGetIntVar Read the value of an integer frame variable
FrameGetRealVar Read the value of a floating point frame variable
FrameGetStrVar$ Read a string frame variable
FrameVarCount Get the number of frame variables in the file
FrameVarInfo Get the type and name of a numbered frame variable

Signal Version 6.06

19-330

String functions

These functions manipulate strings and convert between strings and other variable types.

Asc ASCII code of first character of a string
Chr$ Converts a code to a one character string
DelStr$ Returns a string minus a sub-string
InStr Searches for a string in another string
LCase$ Returns lower case version of a string
Left$ Returns the leftmost characters of a string
Len Returns the length of a string or array
Mid$ Returns a sub-string of a string
Print$ Produce formatted string from variables
ReadStr Extract variables from a string
ReadSetup Set separators and delimiters for ReadStr() and Read()
Right$ Returns the rightmost characters of a string
Str$ Converts a number to a string
Trim Remove leading and trailing white space or user-defined characters
TrimLeft Remove leading white space or user-defined characters
TrimRight Remove trailing white space or user-defined characters
UCase$ Returns upper case version of a string
Val Converts a string to number

Array and matrix arithmetic

These functions can be used with arrays and channel data to speed up data manipulation. In this section, the word
“array” can be applied to an array declared with the var or proc or func statements, or to channel data in a file or
memory view. Integer arrays can be used where indicated, but beware of overflow.

The functions all return a negative error code if there is a problem or zero if the function completes without error.
The array arithmetic attempts to fix problems by setting the result element to a (possibly) useful value.

You can apply built-in mathematical functions directly on an array. For example, to form the square root of all the
elements of array fred[] use Sqrt(fred[]). To access data in channel c of view v use View(v,c).[{aExp}]
in place of fred[{aExp}] where aExp is an optional expression to specify elements as described in the script
language syntax. For example, to subtract channel 2 from channel 1 in view v1%, use ArrSub(View(v1%,1)
[],View(v1%,2).[]).

ArrAdd Adds an array or constant to an array
ArrConst Copies an array, or sets an array to a constant value
ArrDiff Replaces an array with an array of simple differences
ArrDiv Divides an array by another array or a constant
ArrDivR Divides array into another array or constant
ArrDot Forms the dot product (sum of products) of two arrays
ArrFFT Fourier transforms and related operations
ArrFilt Applies a FIR filter to an array
ArrIntgl Integrates array; inverse of ArrDiff()
ArrMul Multiples an array by another array or constant
ArrSort Sort an array and optionally order others in the same way
ArrSpline Interpolate one array to another using cubic splines
ArrSub Subtract constant from array, or difference of two arrays
ArrSubR Subtract array from constant, or reversed difference of arrays
ArrSum Sum, mean and standard deviation of an array
Len Returns the length of a string or array
MATDet Calculate the determinant of a matrix
MATInv Invert a matrix
MATMul Multiply matrices and vectors.
MATSolve Solve a set of linear equations
MATTrans Transpose a matrix (also see the trans() operator)
PCA Principal component analysis (singular value decomposition)

Script language

19-331

Mathematical functions

The following mathematical functions are built into Signal. You can apply many of these functions to real arrays by
passing an array to the function.

Abs Absolute value of a number or array
ATan Arc tangent of number or array
Ceil Ceiling of a number or array (next highest integral value)
Cos Cosine of a number or array
Cosh Hyperbolic cosine or a number or array
Exp Exponential function of a number or array
Floor Floor of a number or array (next lowest integral value)
Frac Remove integral part of a number or array
GammaP Incomplete Gamma function, used to calculate probabilities
LinPred Use linear prediction to predict values or estimate spectra
Ln Natural logarithm of a number or array
LnGamma Natural logarithm of the Gamma function (use for big factorials)
Log Logarithm to base 10 of a number or array
Max Finds maximum of array or variables
Min Finds minimum of array or variables
Pow Raise a number or an array to a power
Rand Generate pseudo-random numbers with uniform density
RandExp Generate random numbers with exponential density
RandNorm Generate random numbers with normal density
Round Round a real number to the nearest integral value
Sin Sine of a number or array
Sinh Hyperbolic sine of a number or array
Sqrt Square root of a number or an array
Tan Tangent of a number or array
Tanh Hyperbolic tangent of a number or array
Trunc Remove fractional part of number or array
ZeroFind Find a zero (root) of a user-defined continuous function

MatLab interaction

The following functions that can be used to make use of MatLab are built into Signal.

MatLabOpen Open a copy of MatLab for use
MatLabClose Close a previously opened copy of MatLab
MatLabPut Copy script data into a MatLab workspace
MatLabGet Copy MatLab workspace data into script variable
MatLabEval Cause MatLab to evaluate a command line or function
MatLabShow Show and hide an open copy of MatLab

Digital filtering

These functions create and apply digital filters and manipulate the filter bank.

ArrFilt Array arithmetic routine to apply FIR coefficients to an array
FiltApply Apply a set of coefficients or a filter bank filter to a waveform
FiltAtten Set the desired attenuation of a filter in the filter bank
FiltCalc Force coefficient calculation of a filter in the filter bank
FiltComment$ Get or set comment for a filter in the filter bank
FiltCreate Create a new filter definition in the filter bank
FiltInfo Retrieve information about a filter in the filter bank
FiltName$ Get or set the name of a filter in the filter bank
FiltRange Get the useful sampling rate range for a filter bank filter
FIRMake Generate FIR filter coefficients in an array
FIRQuick Generate FIR filter coefficients with desired attenuation
FIRResponse Calculate frequency response of array of coefficients
IIRApply Apply an IIR filter bank filter to a waveform channel.

Signal Version 6.06

19-332

IIRBp Create and/or apply an IIR bandpass filter
IIRBs Create and/or apply an IIR bandstop filter
IIRComment$ Get or set the comment for an IIR filter in the filter bank
IIRCreate Create a new IIF filter definition in the filter bank
IIRHp Create and/or apply an IIR highpass filter
IIRLp Create and/or apply an IIR lowpass filter
IIRName$ Get or set the name of an IIR filter in the filter bank
IIRNotch Create and/or apply an IIR notch filter
IIRReson Create and/or apply an IIR resonator filter

Fitting functions

The following fitting functions are built into Signal.

ChanFit A higher level fitting routine to emulate the fit dialog
ChanFitCoef Get or set a fit coefficient
ChanFitShow Show or hide a fit to a particular channel
ChanFitValue Get the value of a fitted function
FitData Fit a selected function to arrays of x,y data points
FitExp Fit to multiple exponentials
FitGauss Fit to multiple gaussians to data
FitLine Fit a straight line to waveform channel data
FitLinear Fit to linear combination of user-defined functions
FitNLUser Fit to non-linear user-defined function
OpClFitRange Fits an idealised trace using the filter characteristics
FitPoly Fit to a polynomial
FitSigmoid Fit to a sigmoid
FitSin Fit to multiple sinusoids

User interaction commands

These commands allow you to give information to, or get information from the user. They also let the user interact
with the data.

Input Prompt user for a number in a defined range
Input$ Prompt user for a string with a list of acceptable characters
Interact Allow user to interact with data
Message Display a message in a box, wait for OK
MousePointer Control the mouse pointer that is in use
Print Formatted text output to a file or window
PrintLog Formatted text output to the Log window
Print$ Formatted text output to a string
Query Ask a user a question, wait for response
Sound Play a tone or a .wav file
Speak Convert text to speech on systems that support this
Yield Give idle time to the system; delay for a time
YieldSystem Surrender current time slice and sleep Signal

You can build simple dialogs, with a set of fields stacked vertically or you can build free-format dialogs (but with
more work to define the positions of all the dialog fields):

DlgAllow Set allowed actions and change and idle functions
DlgButton Add buttons to the dialog and modify existing buttons
DlgChan Define a dialog entry as prompt and channel selection
DlgCheck Define a dialog item as a check box
DlgCreate Start a dialog definition
DlgEnable Enable and disable dialog items in change or idle functions
DlgFont Set the font to be used in all script-created dialogs.
DlgGroup Position a group box in the dialog
DlgInteger Define a dialog entry as prompt and integer number input
DlgLabel Define a dialog entry as prompt only
DlgList Define a dialog entry as prompt and selection from a list

Script language

19-333

DlgMouse Set the mouse position, link user functions to mouse actions
DlgReal Define a dialog entry as prompt and real number input
DlgShow Display the dialog, get values of fields
DlgSlider Define a dialog entry as a slider with optional prompt
DlgString Define a dialog entry as prompt and string input
DlgText Define a fixed text string for the dialog
DlgValue Gives access to dialog fields in change and idle functions
DlgVisible Show and hide dialog items in change or idle functions
DlgXValue Define a dialog entry to collect an x axis value

These commands control the various toolbars and link script functions to the toolbar.

App Get the view handle of the toolbars
Toolbar Let the user interact with the toolbar
ToolbarClear Remove all defined buttons from the toolbar
ToolbarEnable Get or set the enable state of a toolbar button
ToolbarMouse Link user functions to mouse actions
ToolbarSet Add a button (and associate a function with it)
ToolbarText Display a message using the toolbar
ToolbarVisible Get or set the visibility of the toolbar
SampleBar Controls the sample bar buttons
ScriptBar Controls the script bar buttons

File system

Signal can read information about files and directories and also change the current directory and delete or copy
files.

FileConvert$ Convert a foreign file to a Signal CFS file and open it
FileCopy Copies a file from one place to another
FileDate$ Retrieve date of creation of a Signal data file
FileDelete Delete one or more files
FileList Get a list of files or directories
FilePath$ Get the current directory or other special directories
FilePathSet Change the current directory or directory for new data files
FileSize Retrieve the size of a data file associated with a view
FileTime$ Retrieve the time of creation of a Signal data file
FileTimeDate Retrieve the time and date of creation of a Signal data file as numbers

Text files

Signal can create text files and read from them. You can also open a text file into a window.

FileNew Open a new text file in a window
FileOpen Open a text file in a window or for reading and writing
FileSaveAs Save a view in a variety of formats, including text
Print Write formatted output to a file or log window
Read Extract data from a text file
ReadSetup Specify what characters will delimit read text
TabSettings Get or set the tab and indent settings for a text view
ViewMaxLines Get or set the maximum nimber of text lines allowed

Binary files

Signal can read and write binary files. These provide links to other software and are generally more efficient than
text for passing large quantities of data between programs.

FileClose Close a file opened in binary mode
FileOpen Open an external file in binary mode
BRead Extract 32-bit integer, 64-bit real and string data from a file
BReadSize Extract 8 and 16-bit integer and 32-bit real data from a file

Signal Version 6.06

19-334

BRWEndian Change the byte order for data in the file
BSeek Change the current file position for next read or write
BWrite Write 32-bit integer and 64-bit real data to a file
BWriteSize Write 8 and 16-bit integer, 32-bit real and string data to a file

Serial line control

These functions let the script writer read to and write from serial line ports on their computer. This feature can be
used to control equipment during data capture, although they are not needed for controlling the signal conditioners
for which the CondXXX family of commands are provided.

SerialOpen Open a serial port and configure it (set Baud rate, parity etc.)
SerialWrite Write characters to the serial port
SerialRead Read characters from the serial port
SerialCount Count the number of data items available to read
SerialClose Release a previously opened serial port

Debugging operations

These functions can be used when debugging a script.

App(-4) Get the number of system handles held by Signal
Debug Set a permanent break point and disable/enable debugging
DebugHeap() Get information about Signal memory usage
DebugList List internal Signal script objects
DebugOpts Gets and optionally sets system level debugging options
Eval Convert the argument to text and display

Environment

These functions don't fit well into any of the other categories!

Date$ Get system date in a string in a variety of formats
DebugHeap Get system heap and resource information
Error$ Convert a runtime error code to a message string
Profile Read or write the registry entries used by Signal
ProgKill Kill an application started with ProgRun()
ProgRun Start another application running
ProgStatus Check on a program started using ProgRun()
ScriptRun Set the next script to run automatically
Seconds Get or set current relative time in seconds
Sound Play a tone or a .wav file
Speak Convert text into speech
System Get system revision as number
System$ Get system name as a string
Time$ Get system time in a string in a variety of formats
TimeDate Get system date and time as numbers

Multiple monitor support

These functions give the script writer control over positioning the Signal application and Signal windows in a
multiple monitor environment.

DlgCreate Position a script-controllable dialog relative to monitors
DlgMouse Set mouse position relative to dialog (useful with multiple monitors)
System Get monitor count, positions and identify the primary monitor
Window Position a script-controllable window relative to monitors
WindowGetPos Get position of a window, optionally including screen information
WindowVisible Maximise the application over the entire desktop

Script language

19-335

Alphabetical script function index

A

Abs()

This evaluates the absolute value of an expression as a real number. This can also form the absolute value of a real
or integer array.

Func Abs(x|x[]{[]...});

x A real number, or a real or integer array

Returns If x is an array, this returns 0 if all was well, or a negative error code if integer overflow was detected.
Otherwise it returns x if x is positive, otherwise -x.

See also:
ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min()
Pow(), Rand(), Round(), Sin(), Sqrt(), Tan(), Trunc()

App()

This function returns the application window handle, and some special Signal view handles. Other Signal view
handles are returned by functions creating or by finding them. Other sampling-related special window handles can
be obtained by using SampleHandle().

Func App({type%});

type% This specifies the window handle to return, or a negative value can be used to retrieve special values:

-1 100 times the program revision.
-2 The highest view handle currently used by Signal - the highest value of type% that returns a
value.
-3 The program serial number.
-4 The number of system handles held by the application (for debugging) or 0 if this is not
supported. Added at 4.02.
-5 The number of GDI (graphic) objects used by the application (for debugging) or 0 if this is not
supported. Added at 4.02.
-6 Indicates if this is a 64-bit build of Signal (1) or a 32-bit build (0). Added at version 6.00.
-7 The number of User graphic objects used by the application (for debugging) or 0 if this is not
supported. Added at version 6.04.

The remaining type% values return view handles, if type% is omitted, 0 is used.

0 Application 4 Edit toolbar 8 Sequencer control panel

1 Main toolbar 5 Script bar 9 States control bar

2 Status bar 6 Sample bar 10 Clamping toolbar

3 Running script 7 Sample control panel

Returns A handle for the selected window. If the requested window does not exist the return value is 0.

For example:

View(App(3)); 'make script window the current view
WindowVisible(0); 'hide script window
View(App(0)); 'application window is the current view
WindowVisible(3); 'resize the Signal window to mid screen

See also:
View(), Dup(), ViewFind(), Window(), WindowVisible(), SampleHandle()

Signal Version 6.06

19-336

AppendFrame()

This function appends a new frame to the current data view, which should not be an online sampling view. The new
frame will be cleared or can optionally be initialised with a copy of the current frame’s data. The current frame in the
view is not changed.

Func AppendFrame({copy%});

copy% If this is present and non-zero the new frame will hold a copy of the current frame’s data.

Returns Zero or a negative error code.

See also:
DeleteFrame(), FrameCount(), FrameFlag(), FrameTag()

Array commands

These functions operate on one dimensional arrays of data, allowing you to use one script step to replace code that
would otherwise need a loop such as repeat...until, while...wend or for...next. A loop with the
equivalent operations on every item of data takes a lot longer to execute than a Signal array command that does the
same thing. You can declare an array variable in your script, or an array can be the items in a channel of a data view
which you access using the View(v,c).[] construction in place of fred[]. The source or destination in the
following functions can be data in a view or an array variable declared with the var or proc or func statements.

An array argument can be an array or part of an array as described in detail in the Arrays of data section under
Script language syntax. The following is a list of the array commands, followed by some examples of how they
might appear in a script.

The array commands are:

Func ArrAdd(dest[]{[]...}, source[]{[]...}|value);
Func ArrConst(dest[]{[]...}, source[]{[]...}|value);
Proc ArrDiff(dest[]);
Func ArrDiv(dest[]{[]...}, source[]{[]...}|value);
Func ArrDivR(dest[]{[]...}, source[]{[]...}|value);
Func ArrDot(source1[],source2[]);
Func ArrFFT(dest[], mode%);
Func ArrFilt(dest[], coef[]);
Func ArrIntgl(dest[]);
Func ArrMul(dest[]{[]...}, source[]{[]...}|value);
Proc ArrSort(sort[]{, opt%{, arr1[]{, arr2[]{, ...}}});
Proc ArrSpline(dest[], source[]{, ratio{, start}});
Func ArrSub(dest[]{[]...}, source[]{[]...}|value);
Func Func ArrSubR(dest[]{[]...}, source[]{[]...}|value);
Func ArrSum(source[]{, &mean{, &stDev}});

dest A real or integer array, or a view, that holds the result.

source A real or integer array, or a view.

value A real or integer value

Integer overflow can be detected with integer destination arrays when the source or value is a real. ArrAdd(),
ArrConst(), ArrDiv(), ArrDivR(), ArrFilt(), ArrMul(), ArrSub(), ArrSubR(), ArrSum() can
all return a negative error code to indicate integer overflow.

The following are examples of what the function calls can look like in action. These are examples of using all or
part of single dimension arrays.

Script language

19-337

var fred[100], tom[100], jim%[200];
var val:=0.5;
ArrAdd(fred[],jim%[]); 'Add elements 0-99 of jim% to fred
ArrSub(fred[],tom[]); 'Subtract each tom from each fred
ArrSubR(fred[]),tom[]); 'The negative of the above result
ArrSub(jim%[],val); 'Subract val from all elements of jim%
ArrAdd(jim%[2:8],10); 'Add value 10 to elements 2-9 of jim%

These are examples of using all or part of two dimension arrays.

var chans[2][100]; 'Array of 2 rows and 100 columns
var data[3][30]; 'Array of 3 rows and 30 columns
var jim%[200]
ArrDot(chans[0][],chans[1][]); 'form the dot product of two rows

This would set first two elements of column one to the first two elements of jim%

ArrConst(data[0:2][1],jim%[]); 'copy jim% to one column of data

and this would do exactly the same

data[0][1]:=jim%[0];
data[1][1]:=jim%[1];

These are examples of using array arithmetic functions on data view channel data.

If vm% is a data view handle, and ch% is a channel number, the following will add the value of the single element
fred[10] to all elements of channel ch% in data view

ArrAdd(View(vm%,ch%).[], fred[10]);

This will subtract data in channel 2 from channel 1 in data view vm%

ArrSub(View(vm%,1).[],View(vm%, 2).[]);

See also:
ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(), ArrFFT(),
ArrFilt(),ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len()

ArrAdd()

This function adds a constant or an array to a real or integer array.

Func ArrAdd(dest[]{[]...}, source[]{[]...}|value);

dest The destination array (1 to 5 dimensions).

source An array of reals or integers with the same number of dimensions as dest. If the dimensions have
different sizes, the smaller size is used for each dimension.

value A value to be added to all elements of the destination array.

Returns The function returns 0 if all was well, or a negative error code for integer overflow. Overflow is detected
when adding a real array to an integer array and the result is set to the nearest valid integer.

In the following examples we assume that the current view is a memory view:

var fred[100], jim%[200], two[3][30], add[3][30];
ArrAdd(fred[],1.0); 'Add 1.0 to all elements of fred
ArrAdd(fred[], jim%[]); 'Add elements 0-99 of jim% to fred
ArrAdd(view(0, 1).[],fred[10]); 'Add fred[10] to memory channel 1
ArrAdd(two[][], add[][]); 'Add corresponding elements

See also:
ArrXXX(), ArrConst(), ArrDiv(), ArrDivR(), ArrDot(), ArrMul(), ArrSub(), ArrSubR(),
ArrSum(), Len(), BuffAdd(), BuffAddTo()

Signal Version 6.06

19-338

ArrConst()

This function sets an array or result view to a constant value, or copies the elements of an array or result view to
another array or result view. You can copy number or strings. It is an error to attempt to copy numbers to a string
array, or strings to a numeric array.

Func ArrConst(dest[]{[]...}, const source[]{[]...}|value);

dest The destination array of 1 to 5 dimensions of any type (real, integer, string).

source An array with same number of dimensions as dest. If the arrays have different sizes, the smaller size is
used for each dimension.

value A value to be copied to all elements of the destination array.

Returns The function returns 0, or a negative error code. If an integer overflows, the element is set to the nearest
integer value to the result.

In the examples below the indices j and i mean repeat the operation for all values of the indices. a1d and b1d are
vectors, a2d and b2d are matrices. The arrays and value must either both be numeric, or both be strings.

Function Operation

ArrConst(a1d[], value); a1d[i] := value

ArrConst(a1d[], b1d[]); a1d[i] := b1d[i]

ArrConst(a2d[][], value); a2d[j][i] := value

ArrConst(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i]

See also:
ArrXXX(), ArrAdd(), ArrDiv(), ArrDivR(), ArrDot(), ArrMul(), ArrSub(), ArrSubR(),
ArrSum(), BuffCopy(), BuffCopyTo(), BuffExchange(), Len()

ArrConv()

This function performs the discrete convolution of a signal f with a pulse g. Convolutions arise when you want to
know the effect of passing a signal through a process. If this process is a filter, the g pulse is the impulse response
of the filter. There is a nice description of the discrete convolution here. Convolutions can be calculated using the
Fast Fourier Transform (FFT) or by summing array products.

Func ArrConv(conv[], const f[], const g[]{, flags% {,nOff%}});

conv A vector to hold the result. If this vector follows the rules for being resizeable with the resize command, it
can be any length and the command will resize it to the correct length for the result. Otherwise, it must be
the correct size for the result, which is Len(f) or Len(f)+Len(g), depending on flags%. This can be
the same vector as f.

f A vector that we think of as the signal. This is not changed by the operation.

g A vector we think of as the pulse. This is not changed by the operation.

flags% This controls how we perform the convolution and the size of the result. If omitted it takes the value 0,
which performs the calculation using FFTs and returns a result which is Len(f)+Len(g) long. It is the
sum of:

1 This causes the calculation to be done by summing all the array products instead of using FFTs. This
can be faster than using FFTs when g is short compared to f.

2 The result array is the same length as f instead of Len(f)+Len(g). You may also wish to set nOff%
to determine which points of the convolution to copy to the result.

nOff% An optional argument used when 2 is added to flags%. If present it must be in the range 0 to Len(g)-1.
If omitted it takes the value Len(g)/2. It is used to determine how many points of the convolution result
of length Len(f)+Len(g) to skip before copying the result to conv[].

Returns If all went well, the return value is the length of the result array, conv[]. Otherwise it returns a negative
error code.

http://en.wikipedia.org/wiki/Convolution

Script language

19-339

Details
The discrete convolution can be expressed generally as:

result[n] = Summ(f[m]*g[n-m]) = Summ(f[n-m]*g[m])

where m ranges from minus to plus infinity and elements of f and g that do not exist have the value 0. From this
definition, you can see that f and g are interchangeable. This is also the case in our implementation, however the
code that does the calculation without using the FFT is optimised on the assumption that Len(g) <= Len(f).

There are two ways commonly used to calculate the convolution:

1. By computing the sums as described above. This is a relatively slow operation, of order (n*m) operations
(written as O(nm) where n and m are the sizes of the arrays).

2. By taking advantage of the Convolution theorem which takes O(N Log N) operations where N is the next power
of two that is greater than or equal in size to Len(f)+Len(g). This takes the forward FFT (Fast Fourier Transform)
of the two source arrays (after zero-padding them to N points), takes the product of the transforms, then takes
the inverse FFT of the result and adjusts it for the zero padding. The zero padding requirement is because the
FFT we use is not implemented for sizes other than powers of 2.

ArrFilt command
The ArrFilt() script command is optimised to apply an FIR digital filter to a vector, and behaves in a very similar
way to using this command with flags% set to 3 and the g vector set to the coef[] array backwards. There are
also differences caused by how we treat the first and last points to allow for end effects. ArrFilt() is optimised
for the case of Len(f) much greater than Len(g).

ArrDiff()

This procedure replaces an array with an array of differences. You can use this as a crude form of differentiation,
however ArrFilt() provides a better method. See ArrXXX() for examples of using arrays as arguments.

Proc ArrDiff(dest[]);

dest[] A real or integer array that is to be replaced by an array of differences. The first element of the array is left
unchanged.

The effect of the ArrDiff() function can be undone by ArrIntgl(). The following two blocks of code perform
the same function:

var work[100],i%;
...
ArrDiff(work[]); 'Form differences
...
for i%:=99 to 1 step -1 do 'Form differences the hard way
 work[i%] := work[i%] - work[i%-1];
 next;

See also:
ArrXXX(), ArrFilt(), ArrIntgl(), ChanDiff(), Len()

ArrDiv()

This function divides a real or integer array by an array or a constant. Use ArrDivR() to form the reciprocal of an
array. Division by zero and integer overflow are detected.

Func ArrDiv(dest[]{[]...}, source[]{[]...}|value)

dest An array of real or integer values.

source An array of reals or integers with the same number of dimensions as dest, used as the denominator of the
division. If the arrays have different sizes, the smaller size is used for each dimension.

value A value used as the denominator of the division.

http://en.wikipedia.org/wiki/Convolution_theorem

Signal Version 6.06

19-340

Returns 0 or a negative error code if integer overflow or division by zero occurs.

If there was integer overflow when assigning the result to an integer array the result is set to the nearest allowed
integer value. If division by zero occurs, the associated destination element is not changed.

The function performs the operations listed below. The indices j and i mean repeat the operation for all values of
the indices. Both a1d and b1d are vectors, a2d and b2d are matrices. The arrays and value may be integer or real.

Function Operation

ArrDiv(a1d[], value); a1d[i] := a1d[i] / value

ArrDiv(a1d[], b1d[]); a1d[i] := a1d[i] / b1d[i]

ArrDiv(a2d[][], value); a2d[j][i] := a2d[j][i] / value

ArrDiv(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] / a2d[j][i]

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDivR(), ArrDot(), ArrMul(), ArrSub()
ArrSubR(), ArrSum(), BuffDivBy(), Len()

ArrDivR()

This function divides a real or integer array into an array or a constant.

Func ArrDivR(dest[]{[]...}, source[]{[]...}|value);

dest An array of reals or integers used as the denominator of the division and for storage of the result.

source A real or integer array with the same number of dimensions as dest used as the numerator of the division.
If the arrays have different sizes, the smaller size is used for each dimension.

value A value used as the numerator of the division.

Returns 0 or a negative error code if integer overflow or division by zero occurs.

If there was integer overflow when assigning the result to an integer array the result is set to the nearest allowed
integer value. If division by zero occurs, the associated destination element is not changed.

The function performs the operations listed below. The indices j and i mean repeat the operation for all values of
the indices. Both a1d and b1d are vectors, a2d and b2d are matrices. The arrays and value may be integer or real.

Function Operation

ArrDivR(a1d[], value); a1d[i] := value / a1d[i]

ArrDivR(a1d[], b1d[]); a1d[i] := b1d[i] / a1d[i]

ArrDivR(a2d[][], value); a2d[j][i] := value / a2d[j][i]

ArrDivR(a2d[][], b2d[][]); a2d[j][i] := a2d[j][i] / a2d[j][i]

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiv(), ArrDot(), ArrMul(), ArrSub(), ArrSubR()
ArrSum(), BuffDiv(), BuffDivBy(), Len()

ArrDot()

This function multiplies one array by another and returns the sum of the products (sometimes called the dot
product of two arrays). The arrays are not changed. See ArrXXX() for examples of using arrays as arguments.

Func ArrDot(arr1[], arr2[]);

arr1 An array of reals or integers.

arr2 An array of reals or integers.

Script language

19-341

Returns The function returns the sum of the products of the corresponding elements of arr1 and arr2.

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrFFT(), ArrFilt()
ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len()

ArrFFT()

This command performs spectral analysis on an array of data. Variants of this command produce log amplitude,
linear amplitude, power and relative phase as well as an option to window the original data. See ArrXXX() for
examples of using arrays as arguments.

Func ArrFFT(dest[], mode%{, wnd%});

dest An array of real numbers to process. The array should be a power of two and at least eight points long. If
the number of points is not a power of two, the size is reduced to the next lower power of two points.

mode% The mode of the command, in the range 0 to 5. Modes are defined below.

wnd% Used only in mode 0 to set the window to use. 0 = none, 1 = Hanning, 2 = Hamming. Values 3 to 9 set
Kaiser windows with -30 dB to -90 dB sideband ripple in steps of 10 dB. If this is omitted a Hanning
window is applied. This argument does not exist before version 6.03.

Returns The function returns 0 or a negative error code.

Modes 1 and 3-5 take an array of data that is a set of equally spaced samples in some unit (usually time). If this unit
is xin, the output is equally spaced in units of 1/xin. In the normal case of input equally spaced in seconds, the
output is equally spaced in 1/seconds, or Hz. If there are n input points, and the interval between the input points is
t, the spacing between the output points is 1/(n*t). The transform assumes that the sampled waveform is
composed of sine and cosine waves of frequencies: 0, 1/(n*t), 2/(n*t), 3/(n*t) up to (n/2)/(n*t) or 1/
(2*t).

Display of phase in data views
The phase information sits rather uncomfortably in a data view. When it is drawn, the x axis has the correct
increment per bin, but starts at the wrong frequency. If you need to draw it, the simplest solution is to copy the
phase information to bin 1 from bin n/2+1 and set bins 0 and n/2 to 0 (this destroys any amplitude information):

ArrConst(View(0,1).[1:], View(0,1).[n/2+1:]); 'Copy phase to start
View(0,1).[0]:=0; View(0,1).[n/2]:=0; 'Clear DC and Nyquist points
View(0).Draw(0, MaxTime()/2); 'Display the phase

Mode 0: Window the data
This mode is used to apply a window of the selected type to the data array. See the power spectrum analysis for an
explanation of windows. The selected data is multiplied by a window of maximum amplitude 1.0, minimum amplitude
0.0. The standard Hanning window causes a power loss in the result of a factor of 3/8. You can select a different
window or supply your own window to taper the data using the array arithmetic commands. The Hanning (raised
cosine) window used by default is a reasonable general purpose window.

Mode 1: Forward FFT
This mode replaces the data with its forward Fast Fourier Transform. You could use this to remove frequency
components, then perform the inverse transform. The output of this mode is in two parts, representing the real and
imaginary result of the transform (or the cosine and sine components). The first n/2+1 points of the result hold the
amplitudes of the cosine components of the result, the remaining n/2-1 points hold the amplitudes of the sine
components. In the case of an 8 point transform, the output has the format:

point frequency contents point frequency contents

0 DC(0) DC amplitude 4 4/(n*t) Nyquist amplitude
1 1/(n*t) cosine amplitude 5 1/(n*t) sine amplitude
2 2/(n*t) cosine amplitude 6 2/(n*t) sine amplitude
3 3/(n*t) cosine amplitude 7 3/(n*t) sine amplitude

There is no sine amplitude at a frequency of 4/(n*t) as this sine wave has amplitude 0 at all sampled points.

Signal Version 6.06

19-342

Mode 2: Inverse FFT
This mode takes data in the format produced by the forward transform and converts it back into a time series. In
theory, the result of mode 1 followed by mode 2, or mode 2 followed by mode 1, would be the original data.
However, each transform adds some noise due to rounding effects in the arithmetic, so the transforms do not invert
exactly.

One use of modes 1 and 2 is to filter data. For example, to remove high frequency noise use mode 1, set unwanted
frequency bins to 0, and use mode 2 to reconstruct the data.

Mode 3: dB and phase
This mode produces an output with the first n/2+1 points holding the log amplitude of the power spectrum in dB,
and the second n/2-1 points holding the phase (in radians) of the data. In the case of our 8 point transform the
output format would be:

point frequency contents point frequency contents

0 DC(0) log amplitude in dB 4 4/(n*t) log amplitude in dB
1 1/(n*t) log amplitude 5 1/(n*t) phase in radians
2 2/(n*t) log amplitude 6 2/(n*t) phase in radians
3 3/(n*t) log amplitude 7 3/(n*t) phase in radians

There is no phase information for DC or for the point at 4/(n*t) because the phase for both of these is zero. If you
want phase in degrees, multiply by 57.3968 (180 degrees/pi)]]. The log amplitude is calculated by taking the result of
a forward FFT (same as mode 1 above) and forming:

dB = 10.0 Log(power) The power is calculated as for Mode 5

Mode 4: Amplitude and phase
This mode produces the same output format as mode 3, but with amplitude in place of log amplitude. The amplitude
is calculated by taking the result of a forward FFT (same as mode 1 above), and forming:

amplitude = Sqrt(cos2+sin2) There is no sin component for the DC and Nyquist

Mode 5: Power and phase
This mode produces the same output format as modes 2 and 3, but with the result in terms of RMS power. The
power is calculated by taking the result of a forward FFT (same as mode 1 above), and forming:

power = (cos2 + sin2) * 0.5 for all components except the DC and Nyquist

power = DC2 or Nyquist2 for the DC and Nyquist components

You can compare the output of this mode with the result of SetPower(). If you have a waveform channel on
channel 2 in view 1, with at least 1024 data points, do the following:

var dView%,spView%, m%; 'assume we are in a file view
var ch%:=2; 'use data from channel 2
var xRes; 'x resolution to apply to result
dView%:=View(0); 'store handle for data view
spView% := SetPower(ch%,1024); 'select power spectrum channel 1
Process(0); 'process first 1024 data points
WindowVisible(1); 'make new memory view visible
xRes:=BinSize(1); 'get spectrum resolution in Hz
m%:=SetMemory(1,1024,xRes,0,0,0,0,"FFT","Hz","Volt^2","","Power");
' created memory view ready to hold 1024 points for transformation
WindowVisible(1); 'make new memory view visible
ArrConst(View(m%,1).[],View(dView%,ch%).[]); 'copy channel data
ArrFFT(View(m%,1).[], 0); 'apply raised cosine window to it
ArrFFT(View(m%,1).[], 5); 'take power spectrum
ArrMul(View(m%,1).[0:513], 4.0/3.0); 'adjust amplitude
Draw(0,500*BinSize(1)); Optimise(1); 'show 500 bins of power
View(spView%); 'look at SetPower() result
Draw(0,500*BinSize(1)); Optimise(1); 'show same bins of power

Script language

19-343

The two results are identical. The view generated by ArrFFT() would be 3/8 of the amplitude of the view
generated by SetPower(). The reason for the difference is that the SetPower() command compensates for the
effect of the window it uses internally by multiplying the result by 8/3. To produce the same numeric result, multiply
by 8/3.

Note: The behaviour of the ArrFFT function in mode 5 (Power and Phase) was altered in version 1.60 of Signal.
Previous versions produced a result which was 3/4 of the SetPower() result.

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(), ArrFilt()
ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), ArrSum(), Len(), SetPower()

ArrFilt()

This function applies a FIR (Finite Impulse Response) filter to a real array. You can use FiltCalc() and
FIRMake() to generate filter coefficients for a wide range of filters.

Func ArrFilt(dest[], coef[]);

dest[] A real vector holding the data to filter. It is replaced by the filtered data.

coef[] A real vector of filter coefficients. This is usually an odd number of data points long so that the result is
not phase shifted. If you use an even number, the result is delayed by 1/2 a sample. Prior to Signal version
5.06, the result was advanced by 1/2 a sample. An even number of coefficients is used with a full
differentiator.

Returns The function returns 0 if there was no error, or a negative error code.

dest[]

Coefficients

Output

This diagram shows how the FIR filter works. Open circles represent filter coefficients, solid circles are the input
and output waveforms. Each output point is generated by multiplying the waveform by the coefficients and
summing the result. The coefficients are then moved one step to the right and the process repeats.

From this description, you can see that the filter coefficients (from right to left) are the impulse response of the
filter. The impulse response is the output of a filter when the input signal is all zero except for one sample of unit
amplitude. In the example above with seven coefficients, there is no time shift in the output. If the filter has an even
number of coefficients, there is an output time shift of half a sample.

The filter operation is applied to every vector element. There is a problem at the start and end of the vector where
some coefficients have no corresponding data element.

 ? ?

The simple solution is to take these missing points as copies of the first and last points. This is usually better that
taking these points as 0. You should remember that the first and last (nc+1)/2 points are unreliable, where nc is the
number of coefficients.

A simple use of this command is to produce three point smoothing of data, replacing each point by the mean of
itself and the two points on either side:

Signal Version 6.06

19-344

var data[1000],coef[3]; 'arrays of data and the coefficients
... 'fill data[] with values
ArrConst(coef[],0.33333); 'set all three coefficients to 0.33333
ArrFilt(data[],coef[]); 'smooth the data.

A more complicated example would be to implement a differentiator to calculate the slope or gradient of an array.
The simplest case is to use two points:

coef[0]:=-1; coef[1]:=1; 'simple difference
ArrFilt(data[], coef[0:1]); 'for differences, equivalent to...
ArrDiff(data[]); '... just using the differences

A simple difference produces a very crude differentiator. A slightly better one, with three coefficients is:

coef[0] := -0.5; coef[1] := 0.0; coef[2] := 0.5;
ArrFilt(data[], coef[]);

You can improve the result with more points, for example for 4 points, the coefficients are -0.3, -0.1, 0.1, 0.3 and for
five points try -0.2, -0.1, 0.0, 0.1, 0.2. It is more usual to use an odd number of points as this does not cause a shift of
the result by half a point.

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(), ArrDot(), ArrFFT(), ArrMul()
ArrSub(), ArrSubR(), ArrSum(), ChanSmooth(), Len()

ArrHist()

This function generates a histogram from a data array. This function is designed for repeated use with the same
destination histogram and different source data; it is up to the caller to zero the histogram array before the first use.
You can use Min(), Max(), ArrSum() and ArrStats() to find suitable values for the start and binSz paramaters.

Func ArrHist(hist%[], data[], start, binSz{, &left%{, &right%}});

hist% An integer array to hold the generated histogram. The elements of this array are incremented by 1 for each
item in the data array that falls in one of the histogram bins. The array is not set to zero before
incrementing the bins. The bin to increment for data element i% is given by: (data[i%]-start)/binSz.

data An array of data values to be added into the histogram.

start The value at the start of the first bin,

binSz The width of each bin. This can be negative but must not be 0.

left% Optional. This integer variable is incremented by the number of data items with a negative bin number
(falling to the left of the histogram).

right% Optional. This integer variable is incremented by the number of data items with a bin number greater than
or equal to Len(hist%[]) (falling to the right of the histogram).

Returns The number of data items that fell inside the histogram.

See also:
Min(), Max(), ArrSum(), ArrStats(), ArrConst()

ArrIntgl()

This procedure is the inverse of ArrDiff(), replacing each point by the sum of the points from the start of the
array up to the element. See ArrXXX() for examples of using arrays as arguments.

Proc ArrIntgl(dest[]);

dest An array or real or integer data.

Each element of the array is replaced by the sum of all the elements up to and including that element. The function
is equivalent to the following:

for i%:=1 to Len(dest[])-1 do
 dest[i%] := dest[i%] + dest[i%-1];

Script language

19-345

See also:
ArrXXX(), ArrDiff(), ChanIntgl(), Len()

ArrMul()

This command is used to form the product of a pair of arrays, or to scale an array by a constant. A less obvious use
is to negate an array by multiplying by -1.

Func ArrMul(dest[]{[]...}, source[]{[]...}|value);

dest An array of real or integer numbers. If dest is integer, the multiplication is done as reals and truncated to
integer.

source A real or integer array with the same number of dimensions as dest. If the arrays have different sizes, the
smaller size is used for each dimension.

value A value to multiply the data in dest.

Returns The function returns 0 if all was well, or a negative error code.

The function performs the operations listed below. The indices j and i mean repeat the operation for all values of
the indices. Both a1d and b1d are vectors, a2d and b2d are matrices. The arrays and value may be integer or real.

Function Operation

ArrMul(a1d[], value); a1d[i] := a1d[i] * value

ArrMul(a1d[],b1d[]); a1d[i] := a1d[i] * b1d[i]

ArrMul(a2d[][],value); a2d[j][i] := a2d[j][i] * value

ArrMul(a2d[][],b2d[][]); a2d[j][i] := a2d[j][i] * a2d[j][i]

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiv(), ArrDivR(), ArrDot(), ArrSub(), ArrSubR()
ArrSum(), BuffMul(), BuffMulBy(), Len()

ArrSort()

This function sorts an array of any data type and optionally orders additional arrays to match the sorted array.

Proc ArrSort(sort[]{, opt%{, arr1[]{, arr2[]{, ...}}});

sort[] An array of integer, real or string data to sort.

opt% This optional argument holds the sorting options. If omitted, the value 0 is used. It is the sum of the
following flag values:

1 Sort in descending order. If omitted, the data is sorted in ascending order.

2 Case sensitive sort when sort[] is an array of strings. String sorts are usually case insensitive. If
omitted, the sort is case insensitive.

arrn[] If present, these arrays are sorted in the same order as the sort[] array. The arrays can be of any type.
You can sort up to 18 additional arrays.

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(), ArrMul(),
ArrSubR()
ArrSum(), BuffSub(), BuffSubFrom(), Len()

Signal Version 6.06

19-346

ArrSpline()

This function interpolates an array of real or integer data sampled at one rate into another array sampled at a
different rate using cubic splines. It can also interpolate a matrix of (x,y) value pairs to an array sampled at a
constant rate. This assumes that the source data has continuous first and second derivatives and that the second
derivatives vary linearly from point to point. The second derivatives at the first and last point of the source data are
set to zero. We interpolate from up to one input sampling interval before the first source point to up to one
sampling interval after the last source point.

Func ArrSpline(dest[], source[]{, xInc{, xStart}});
Func ArrSpline(dest[], srcXY[][]{, xInc{, xStart}});

dest A real or integer vector that holds the interpolated result. If the source array is a matrix, this is a real array.

source A vector of y values. The associated x values are assumed to be the same as the index of each data point
(0, 1, 2...). It is integer array if dest is integer or real if dest is real.

srcXY A matrix of (x,y) source points. srcXY[][0] holds x values and srcXY[][1] holds y values. The x values
must increase with the index, otherwise the return value is -1.

xInc If present, this is the x value change between dest values. If omitted, we assume that the points in
source or scrXY and dest span the same time range. There are no restrictions on xInc, it can even be
negative (in which case the output is backwards relative to the input). If the source variant is in use,
xInc is the ratio of the dest sample interval to the source sample interval.

xStart If present, this is the x position of the first point of dest. If omitted, the first points of both arrays are at
the same x position.

Returns 0 if all was OK or -1 if the scrXY variant is used and the x values do not increase monotonically.

You will get the best results if you can supply source data before and after the output time range. The effect of a
source point on the interpolation of an interval n points away falls by a factor of approximately 4 each time n
increases by 1. There is rarely the need to supply more than 15 data points before and after the interpolation range.

An example
Suppose we have a source vector of 100 points sampled at 100 Hz, with the first point sampled at 5.02 seconds, and
we want to generate an array sampled at 1000 Hz that starts at 5.335 and lasts 0.5 seconds. In this case, the value of
xInc is 0.001/0.01, which is 0.1. The value of start is 31.5, which is the time difference (5.335 - 5.02) divided by 0.01,
the sample interval of the source channel.

See also:
DrawMode()

ArrStats()

This calculates the mean, variance, skewness and (excess) kurtosis of an array of real data. It can also be used with
a matrix to calculate vectors of the mean, variance, skewness and kurtosis of each column of the input matrix. Use
the ArrSum() command if you only require the mean and standard deviation.

Func ArrStats(data[], &mean, &v, &skew, &kur);

data A vector of source data.

mean A real variable returned holding the mean of the data.

v A real variable returned holding the variance of the data.

skew A real variable returned holding the skewness of the data.

kur A real variable returned holding the kurtosis of the data.

Returns 0 if all was well or 1 if the variance of the data was 0.0 (in which case the skewness and kurtosis are also set
to 0.0).

The second form of the command is provided as a convenience when the data is in a matrix with the data in the
columns. When used in the second form, the vector must be at least the size of the first dimension of the matrix.

Func ArrStats(data[][], mean[], v[], skew[], kur[]);

Script language

19-347

data A matrix with the data in the columns.

mean A real vector returned holding the means of each column of data.

v A vector returned holding the variances of each column of data.

skew A vector returned holding the skewness of each column of data.

kur A vector returned holding the kurtosis of each column of data.

Returns The number of columns for which the variance was 0 (in which case the skewness and kurtosis are also 0).

The first form of the command is equivalent to the following script (but runs many times faster):

Func ArrStats(arr[], &mean, &dVar, &skew, &kur)
var i%, n%;
mean := 0; dVar := 0; skew := 0; kur := 0;
ArrSum(arr, mean); 'Calculate the mean
n% := Len(arr);
var d, p;
for i% := 0 to n%-1 do
d := arr[i%]-mean; p := d*d;
dVar += p; p *= d;
skew += p;
kur += p*d;
next;
if (dVar > 0.0) then 'If not a degenerate case...
dVar /= (n%-1); 'calculate the variance
skew /= n%*dVar*sqrt(dVar);
kur /= n%*dVar*dVar;
kur -= 3.0;
return 0;
else
return 1;
endif;
end;

The second form of the command is equivalent to:

var i%, return% := 0;
for i% := 0 to Len(data[0][])-1 do
return% += ArrStats(data[][i%], mean[i%], v[i%], skew[i%], kur[i%]);
next;

See also:
ArrSum()

ArrSub()

This function forms the difference of two arrays or subtracts a constant from an array. If the destination is an
integer array, overflow is detected when subtracting real values.

Func ArrSub(dest[]{[]...}, source[]{[]...}|value);

dest A real or integer array that holds the result.

source A real or integer array with the same number of dimensions as dest. If the arrays have different sizes, the
smaller size is used for each dimension.

value A real or integer value.

Returns 0 if all is well or a negative error code if integer overflow is detected.

The function performs the operations listed below. The indices j and i mean repeat the operation for all values of
the indices. Both a1d and b1d are vectors; a2d and b2d are matrices. The arrays and value may be integer or real.

Signal Version 6.06

19-348

Function Operation

ArrSub(a1d[], value); a1d[i] := a1d[i] - value

ArrSub(a1d[],b1d[]); a1d[i] := a1d[i] - b1d[i]

ArrSub(a2d[][],value); a2d[j][i] := a2d[j][i] - value

ArrSub(a2d[][],b2d[][]); a2d[j][i] := a2d[j][i] - a2d[j][i]

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(), ArrMul(),
ArrSubR()
ArrSum(), BuffSub(), BuffSubFrom(), Len()

ArrSubR()

This function forms the difference of two arrays or subtracts an array from a constant. If the destination is an
integer array, overflow is detected when subtracting real values.

Func ArrSubR(dest[]{[]...}, source[]{[]...}|value);

dest A real or integer array.

source A real or integer array with the same number of dimensions as dest. If the arrays have different sizes, the
smaller size is used for each dimension.

value A real or integer value.

Returns 0 if all is well or a negative error code if integer overflow is detected.

The function performs the operations listed below. The indices j and i mean repeat the operation for all values of
the indices. Both a1d and b1d are vectors, a2d and b2d are matrices. The arrays and value may be integer or real.

Function Operation

ArrSubR(a1d[], value); a1d[i] := value - a1d[i]

ArrSubR(a1d[],b1d[]); a1d[i] := b1d[i] - a1d[i]

ArrSubR(a2d[][],value); a2d[j][i] := value - a2d[j][i]

ArrSubR(a2d[][],b2d[][]); a2d[j][i] := a2d[j][i] - a2d[j][i]

See also:
ArrXXX(), ArrSub(), ArrSum(), BuffSub(), BuffSubFrom(), Len()

ArrSum()

This function forms the sum of the values in an array, and optionally forms the mean and standard deviation. See
ArrXXX() for examples of using arrays as arguments.

Func ArrSum(arr[]|arr%[]{, &mean{, &stDev}});
Func ArrSum(arr[][]|arr%[][]{, mean[], stDev[]});

arr A real or integer vector or matrix to process.

mean If present it is returned holding the mean of the values in the array. The mean is the sum of the values
divided by the number of array elements. If arr is an m by n matrix, mean must be a vector of at least n
elements and is returned holding the mean of each column of arr.

stDev If present, this returns the standard deviation of the array elements around the mean. If the array has only
one element the result is 0. If arr is a m by n matrix, stDev must be a vector with at least n elements and is
returned holding the standard deviation of each column of arr.

Returns The function returns the sum of all the array elements as a real number.

Script language

19-349

See also:
ArrXXX(), ArrAdd(), ArrConst(), ArrDiff(), ArrDiv(), ArrDivR(), ArrDot(), ArrFFT(),
ArrFilt()
ArrIntgl(), ArrMul(), ArrSub(), ArrSubR(), Len()

Asc()

This function returns the ASCII code of the first character in the string as an integer.

Func Asc(text$);

text$ The string to process.

See also:
Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print$(), Right$()
Str$(), UCase$(), Val()

ATan()

This function returns the arc tangent of an expression, or the arc tangent of an array:

Func ATan(s|s[]{[]...}{, c|const c[]{[]...}});

s If the only argument, the function uses this for the arc tangent calculation. s can also be a real array in
which case c must also be an array.

c If this is present, the function uses s/c for the calculation. If c is an array its dimensions must match
those of s.

Returns If s is an array, each element of s is replaced by its arc tangent in the range -pi/2 to pi/2 radians. The
function returns 0 if all was well or a negative error code.

When s is not an array, if s is the only argument, the function returns the arc tangent of s in the range -pi/2 to pi/2.
If c is present, the function calculates the result of ATan(s/c) and uses the signs of s and c to decide the
quadrant of the result. With the second argument, the result is in the range pi to pi.

Arc sine of a single value: s can be calculated as: ATan(s/Sqrt(1-s*s)).

Arc cosine can be calculated as: ATan(Sqrt(1-s*s)/s).

See also:
Cos(), Cosh(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand()
Round(), Sin(), Sinh(), Sqrt(), Tan()

B

BetaI()

This function computes both the Beta function and the Incomplete Beta function. The Beta function is defined as:

The incomplete beta function is defined as:

These functions are not usually directly of interest, but they are used in generating distribution functions, for
example Student's distribution, the F-Distribution and the Binomial distribution. The on-line help has script
examples to implement these.

Func BetaI(a, b{, x});

Signal Version 6.06

19-350

a, b These values must be greater than zero.

x Optional. If present, the result is the incomplete beta function. If omitted, the result is the beta function. x
must be in the range 0 to 1.

Returns If x is present, the result is the incomplete beta function in the range 0 to 1. Otherwise, the result is the
beta function.

See also:
GammaP(), GammaQ(), Binomial Distribution, Student's T Distribution, F-Distribution

Binomial Distribution

The Binomial distribution is used when you have repeated trials and for each trial an event has a known probability
p of occurrence. The examples below show you how to calculate the probabilities that you will get k% or fewer
events in n% trials and k% or more in n% trials.

'p The probability per trial of the event
'k% A number of events in the range 0 to n%
'n% The number of trials (greater than 0)
'Return the probability that an event occurs k% or fewer times in n% trials.
Func BinomialLE(p, k%, n%)
if k% >= n% then return 1.0 endif;
if k% < 0 then return 0.0 endif;
return BetaI(n%-k%, 1+k%, 1-p);
end;

'p The probability per trial of the event
'k% A number of events in the range 0 to n%
'n% The number of trials (greater than 0)
'Return the probability that an event occurs k% or more times in n% trials.
Func BinomialGE(p, k%, n%)
if (k% <= 0) then return 1.0 endif;
if (k% > n%) then return 0.0 endif;
return BetaI(k%, n%-k%+1, p);
end;

The BimonialC() function will evaluate binomial coefficients for you, avoiding arithmetic overflow as much as is
possible.

See also:
BetaI(), BinomialC(), Student's T Distribution, F-Distribution

http://en.wikipedia.org/wiki/Binomial_distribution

Script language

19-351

Student's T Distribution

Students's T distribution for various degrees of freedom compared to Normal distribution

The Student's T distribution is a symmetric probability density function (PDF) used when asking questions about
the mean of a sample taken from a normally distributed population when the number of samples is small. It is
characterised by the number of degrees of freedom (which is usually the number of samples used to estimate the
mean minus 1), and becomes indistinguishable from the Normal distribution when the degrees of freedom reaches a
hundred or so. If you want to graph the function, you can do so with this script expression:

const pi := 3.141592653589793;
func StudentsTDist(t, v)
return pow(1+t*t/v, -(v+1)/2)*Exp(LnGamma((v+1)/2) - LnGamma(v/2))/Sqrt(v*pi);
end;

The t value is a statistic that relates to how different two means are and can be positive or negative. Exactly how it
is calculated depends on the situation; we give some examples later in this section, but the simplest case is where
you have a normally distributed population and you take single sample of n% items with a sample mean Sm and
sample standard deviation Ssd. If the true mean of the population is mean, the t statistic is:

t := (Sm-mean)*Sqrt(n%)/Ssd;

When asking questions about how likely one would be to observe a mean value that is different from or greater
than or less than some value, the more useful functions are the cumulative probability distribution functions (in the
range 0 to 1 as t varies from minus infinity to plus infinity), and the complement of this (1 minus it). These are
usefully calculated from the incomplete beta function, as follows:

't The t statistic
'v The number of degrees of freedom (>0)
Func StudentCDF(t, v)
var tt := t*t;
var z := BetaI(0.5*v, 0.5, v/(v+tt))*0.5;
return t < 0 ? z : 1-z;
end;

'This is 1.0-StudentCDF(t, v);
Func OneMinusStudentCDF(t, v)
var tt := t*t;
var z := BetaI(0.5*v, 0.5, v/(v+tt))*0.5;
return t < 0 ? 1-z : z;
end;

The StudentCDF() function returns the probability that one can reject the Null hypothesis that the means are not
different (or not greater than or not less than some value). The value we usually want is 1-StudentCDF(), which
we calculate separately to preserve the accuracy for small values. In statistical tests, the probability level we are
interested in, for example 0.05 (5%) or 0.01 (1%) is often referred to as alpha. StudentCDF() can be compared with

http://en.wikipedia.org/wiki/Student%27s_t-distribution

Signal Version 6.06

19-352

1-alpha, which is called the confidence level (95% or 99%), OneMinusStudentCDF() returns the probability that
the hypothesis being tested would occur by chance and so can be rejected. That is, you would reject the
hypothesis if OneMinusStudentCDF() > alpha.

One-tail and two-tail tests
If you are asking the question, "are these two mean values different", you want to know how likely is a sampled
mean value to occur by chance. If you want to be 99% certain that your sample differs, your t value needs to differ
from 0 by a sufficient value that the cumulative probability density has reached a value such that 99% of the PDF
lies at lesser values. As the PDF is symmetric about 0, this happens when 1% of the PDF is excluded, which
happens when 0.5% is above some critical t value Tcrit and 0.5% is below -Tcrit. In this case your alpha is 0.01 (or
1%) and the value you would test for is alpha/2. This is a two-tail test as you care what happens at both ends of the
probability distribution.

If you are asking the question, "is this mean greater than that mean", you are only looking at one end of the
distribution and the value you would test against is alpha. If you want to be 99% certain, Tcrit is now the level at
which 99% of the distribution lies below, your alpha value is 0.01 and this is the value to test for. Due to the
symmetry of the distribution, to test that "this mean is less than that mean" you need a negative t value; the
probability to test for is the same as for a positive t value. A one-tail test should be used with caution.

Inverse of the distribution
The functions above calculate alpha given a t statistic and the number of degrees of freedom. If you want to
specify alpha and calculate the t statistic value that corresponds to this, you need the inverse function. The
following script code will do this for you:

Script language

19-353

'Function used by ZeroRoot() to locate the t value with the required probability
var gProb, gV; 'probability and degrees of freedom
func TZeroRoot(t)
return gProb - OneMinusStudentCDF(t, gV);
end;

'TValueFor: This calculates the t-value that you need to reject the NULL hypothesis
'given an alpha, the number of degrees of freedom and if you want a one sided test.
'alpha The desired probability level (typically 0.05)
'v Degrees of freedom (> 0.0)
'os% 0=two sided, non-zero for 1 sided
func TValueFor(alpha, v, os%)
var t;
gProb := os% ? alpha : alpha*0.5;
gV := v;
ZeroFind(t, TZeroRoot, -20, 20);
return t;
end;

Examples
The following example code follows examples given for the Boost C++ libraries, which in turn follow
NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/ (NIST is an
agency of the US Commerce Department).

Confidence range of the mean
You have Sn% sample values taken from a normally distributed population with mean Sm and standard deviation
Ssd and you want to know in what range of values can you be confident that you have bracketed the true
population mean. This is plainly a two-tail test as we care about values in both directions. If you want to be certain
at the alpha level, the Tcrit value is given by: TValueFor(alpha/2, Sn%-1, 0) and the range is from Sm-
Tcrit*Ssd/Sqrt(Sn%) to Sm+Tcrit*Ssd/Sqrt(Sn%). See here for details.

Test a sample mean for difference from a known mean
This test comes up if you already know what the mean should be (for example in quality control) and you want to
know if there is a change. It can also come up in a paired test where you measure a value before and after a
treatment on a set of items and your data set is the difference between before and after for each item, so you are
asking is there a difference from zero. The following routine does this calculation:

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm

Signal Version 6.06

19-354

'testing sample mean for difference from a "true" mean.
'n% Number of items in the sample
'Sm Sample mean
'Ssd Sample standard deviation
'mean The "true" mean
'os% -1 means one-sided test for below mean, +1 means one-sided test for
' above the mean, 0 means two-sided test for different
'Return the probability that the Null hypothesis (that the sample mean is
' not different, greater or less than the true mean).
Func TSingleSample(n%, Sm, Ssd, mean, os%)
var t := (Sm - mean)* Sqrt(n%)/Ssd;
PrintLog("\nStudent's t test for a single sample\n");
PrintLog("Number of observations = %D\n", n%);
PrintLog("Sample mean = %g\n", Sm);
PrintLog("Sample Standard Deviation = %g\n", Ssd);
PrintLog("Expected True mean = %g\n", mean);
PrintLog("T Statistic = %g\n", t);
PrintLog("Degrees of freedom = %d\n", n%-1);
if (os% = 0) then t := abs(t) endif;
if (os% < 0) then t := -t endif;
var prob := OneMinusStudentCDF(t, n%-1); 'Single tailed value
if (os% = 0) then prob *= 2.0 endif;
PrintLog("Probability due to chance = %g\n", prob);
return prob;
end;

In this test we have a single sample of n% items with mean Sm (Sample mean) and standard deviation Ssd (Sample
standard deviation). The question is: is the mean different (two-tail) or greater or less (one-tail) that the known
mean. The return value is the probability that the Null hypothesis can be rejected and is the value to compare
against the alpha value for your test. You may choose to omit the PrintLog() lines. To use this function, for
example using data from the NIST site: 3 observations with mean of 37.8, standard deviation of 0.96437 and
expected true mean of 38.9:

TSingleSample(3, 37.8, 0.96437, 38.9, -1); 'Test for mean < 38.9
TSingleSample(3, 37.8, 0.96437, 38.9, 0); 'Test for mean <> 38.9
TSingleSample(3, 37.8, 0.96437, 38.9, 1); 'Test for mean > 38.9

The output is (omitting repeated lines for second and third cases):

Student's t test for a single sample
Number of observations = 3
Sample mean = 37.8
Sample Standard Deviation = 0.96437
Expected True mean = 38.9
T Statistic = -1.97565
Degrees of freedom = 2
Probability due to chance = 0.093429 (Hypothesis: mean < 38.9)
...
Probability due to chance = 0.186858 (Hypothesis: mean <> 38.9)
...
Probability due to chance = 0.906571 (Hypothesis: mean > 38.9)

With an alpha of 0.05 (5%), all the hypotheses are rejected. However, if the alpha level was set at 0.1 (10%), then the
hypothesis that the mean is less than 38.9 is not rejected.

Test two samples with equal variance for difference of means
In this case we have a first sample with n1% items with mean S1m and standard deviation S2sd and a second sample
with n2% items and mean S2m and standard deviation S2sd. Again, we want to ask if the means are different, or if
the first mean is less than or greater than the second. The code to do this is (you can delete the PrintLog() lines
if they are not wanted):

Script language

19-355

'ni% The number in each set of samples
'Sim The mean of sample i
'Sisd The standard deviation of sample i
'os% 0 for two sided. 1 for sm1 > sm2, -1 for sm1 < sm2
'Return the probability that the Null hypothesis (that the sample means
' are not different, Sm1 greater or less than Sm2).
Func TTwoSamplesSameVar(n1%, S1m, S1sd, n2%, S2m, S2sd, os%)
'Calculate the combined standard devaition of both samples
var S12sd := Sqrt(((n1%-1)*S1sd*S1sd + (n2%-1)*S2sd*S2sd)/(n1%+n2%-2));
var t := (S1m - S2m)/(S12sd * Sqrt(1.0/n1% + 1.0/n2%));
PrintLog("\nStudent's t test for two samples, same variance\n");
PrintLog("Number of observations = %8d %8d\n", n1%, n2%);
PrintLog("Sample means = %8g %8g\n", S1m, S2m);
PrintLog("Sample Standard Deviation = %8g %8g\n", S1sd, S2sd);
PrintLog("T Statistic = %g\n", t);
PrintLog("Degrees of freedom = %d\n", n1%+n2%-2);
if (os% = 0) then t := abs(t) endif;
if (os% < 0) then t := -t endif;
var prob := OneMinusStudentCDF(t, n1%+n2%-2); 'One-tail value
if (os% = 0) then prob *= 2.0 endif;
PrintLog("Probability due to chance = %8e\n", prob);
return prob;
end;

As the two samples have the same variance we can form a pooled standard deviation by combining the two
standard deviations, which is what the calculation for S12sd does. The number of degrees of freedom is just the
sum of the degrees of freedom of the two data sets The calculation of the t statistic is then very similar to the
previous single sample test, just weighting by the two sample sizes. As an example, we consider the following two
data sets:

Data set Observations Mean Sd
1 249 20.1446 6.4147
2 79 30.481 6.10771

The code to test each possible hypothesis is:

TTwoSamplesSameVar(249, 20.14458, 6.41470, 79, 30.48101, 6.10771, -1); 'mean 1 < mean 2
TTwoSamplesSameVar(249, 20.14458, 6.41470, 79, 30.48101, 6.10771, 0); 'mean 1 <> mean 2
TTwoSamplesSameVar(249, 20.14458, 6.41470, 79, 30.48101, 6.10771, 1); 'mean 1 > mean 2

The output (omitting duplicated lines is):

Student's t test for two samples, same variance
Number of observations = 249 79
Sample means = 20.1446 30.481
Sample Standard Deviation = 6.4147 6.10771
T Statistic = -12.6206
Degrees of freedom = 326
Probability due to chance = 2.636609e-030 (Hypothesis: mean1 < mean 2)
...
Probability due to chance = 5.273218e-030 (Hypothesis: mean1 <> mean 2)
...
Probability due to chance = 1.000000e+000 (Hypothesis: mean 1 > mean 2)

This says that the hypotheses that mean1 is less than mean2 or that mean1 is different from mean2 cannot be
rejected. The hypothesis that mean1 is greater than mean2 is rejected.

Test two samples with non-equal variance
Finally we have the code for two samples with non-equal variance. This time we cannot pool the standard
deviations, and we also have a problem with the degrees of freedom. To calculate this, the Welch-Scatterthwaite
approximation is used. Note that the approximation improves as the number of degrees of freedom increases. As
ever, you can delete all the PrintLog() lines if they are not required:

http://en.wikipedia.org/wiki/Welch-Satterthwaite_equation
http://en.wikipedia.org/wiki/Welch-Satterthwaite_equation

Signal Version 6.06

19-356

Func TTwoSamplesDiffVar(n1%, S1m, S1sd, n2%, S2m, S2sd, os%)
var s1 := S1sd*S1sd/n1%;
var s2 := S2sd*S2sd/n2%;
'Calculate the t value
var t := (S1m - S2m)/Sqrt(s1 + s2);
'Calculate the combined degrees of freedom using the Welch-Scatterthwaite approximation.
var v := (s1+s2)*(S1+s2)/(s1*s1/(n1%-1) + s2*s2/(n2%-1));
PrintLog("\nStudent's t test for two samples, different variance\n");
PrintLog("Number of observations = %8d %8d\n", n1%, n2%);
PrintLog("Sample means = %8g %8g\n", S1m, S2m);
PrintLog("Sample Standard Deviation = %8g %8g\n", S1sd, S2sd);
PrintLog("T Statistic = %g\n", t);
PrintLog("Degrees of freedom = %g\n", v);
if (os% = 0) then t := abs(t) endif;
if (os% < 0) then t := -t endif;
var prob := OneMinusStudentCDF(t, v); 'One-tail value
if (os% = 0) then prob *= 2.0 endif; 'Convert to two-tail value
PrintLog("Probability due to chance = %8e\n", prob);
return prob;
end;

If we use the same input data as for the previous example, we have:

TTwoSamplesDiffVar(249, 20.14458, 6.41470, 79, 30.48101, 6.10771, 0); 'mean 1 < mean 2
TTwoSamplesDiffVar(249, 20.14458, 6.41470, 79, 30.48101, 6.10771, 0); 'mean 1 <> mean 2
TTwoSamplesDiffVar(249, 20.14458, 6.41470, 79, 30.48101, 6.10771, 0); 'mean 1 > mean 2

The output (omitting repeated lines) is:

Student's t test for two samples, different variance
Number of observations = 249 79
Sample means = 20.1446 30.481
Sample Standard Deviation = 6.4147 6.10771
T Statistic = -12.9463
Degrees of freedom = 136.875
Probability due to chance = 7.854523e-026 (Hypothesis: mean1 < mean 2)
...
Probability due to chance = 1.570905e-025 (Hypothesis: mean1 <> mean 2)
...
Probability due to chance = 1.000000e+000 (Hypothesis: mean1 > mean 2)

In this case, although the probability that this occurred by chance is increased by several orders of magnitude
compared to the equal variance situation, the conclusions are the same.

See also:
BetaI(), Binomial Distribution, F-Distribution

Script language

19-357

F-Distribution

F Distribution Probability Density Function

The F Distribution probability density functions shows the likelihood of particular values of the F statistic
occurring. The F statistic calculation depends on the situation; in a simple case it is the ratio of two variances. The
F distribution can be calculated and displayed by the script code:

'The derivative of the BetaI function, used to calculate the Prob density of
'the F-Distribution. Maths as suggested by the Boost library.
Func BetaIDerivative(a, b, x)
if (a<=0.0) or (b<=0.0) or (x<0) or (x > 1.0) then return -1 endif;
if (x=0.0) or (x=1.0) then return 0 endif;
return exp((b-1)*ln(1-x)+(a-1)*ln(x))/BetaI(a,b);
end;

'The Probability Density function for the F-Distribution. The use of two
'methods keeps the third argument to the derivative function away from 1.
Func FDistribution(a, b, x)
var z := b + a* x;
var y := a * b / (z * z);
if (a*x > b) then
 return y * BetaIDerivative(b/2, a/2, b/z);
else
 return y * BetaIDerivative(a/2, b/2, a*x/z);
endif;
end;

'Draw the F distribution from x=0 to range with a and b degrees of freedom
Func ShowFDist(a, b, range)
const n% := 100; 'points after 0
const np% := n%+1; 'total points to plot
var rv% := SetResult(np%, range/n%, 0, "F distibution", "f", "PDF");
DrawMode(-1,13); 'cubic spline mode
var i%, x;
for i% := 0 to n% do
 x := i%*(range/n%);
 [i%] := FDistribution(a, b, x);
next;
WindowVisible(1);
return rv%;
end;

ShowFDist(5, 2, 5); 'Draw an example

http://en.wikipedia.org/wiki/F_distribution

Signal Version 6.06

19-358

Unlike the Student's T distribution, the F distribution is asymmetric. For us, a more interesting and useful function
is the Cumulative Distribution Function (CDF) of the F distribution. For statistical use, the complement of the CDF
(1-CDF) is usually the most useful. The CDF and its complement can be calculated with:

'The CDF for the F-Distribution.
func FDistCDF(a, b, x)
var ax := a*x;
var z := b+ax;
return BetaI(a/2, b/2, ax/z);
end;

'We usually want the complement of the CDF
func OneMinusFDistCDF(a, b, x)
var ax := a*x;
var z := b+ax;
return BetaI(b/2, a/2, b/z);
end;

The value of the FDistCDF() function increases from 0 to 1 as x (the F statistic) varies between 0 and infinity. The
value of OneMinusFDistCDF() decreases from 1 to 0 over the same range.

Inverse of the F distribution CDF complement
When asking questions such as, "What F value does 5% of the F-Distribution lie above?", we find the inverse of
the complement of the F distribution CDF at the 5% level. This can be calculated by the InvFCDFComp() function:

var gA, gB, gAlpha; 'variables used by InvFCDFComp()

'Helper function for InvFCDFComp(), used by ZeroFind()
Func ZeroFRoot(x)
return OneMinusFDistCDF(gA, gB, x)-gAlpha;
end;

'Find the inverse of the complement of the cumulative F Distribution
'alpha The probability level
'a,b, The degrees of freedom of the two distributions
Func InvFCDFComp(alpha, a, b)
var x;
gA := a; gB := b; gAlpha := alpha;
ZeroFind(x, ZeroFRoot, 0, 20);
return x;
end;

F-Test for equality of two standard deviations
The simplest use of the F-test is to determine if the standard deviation of two populations are the same. See this
NIST handbook section for an explanation. The FTestSameSd() function calculates the one-tailed probability
value and also returns the critical F statistic values for both the one-tailed test (alpha) and also for a two-tailed test
(alpha/2). For a two-tailed test, both the critical levels at alpha/2 and 1-alpha/2 apply. For the one-tailed test,
only one of the levels at alpha or 1-alpha apply. In this case, the F statistic is just the ratio of the squares of the
two standard deviations and the number of degrees of freedom is the number of samples of each distribution minus
1:

http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda359.htm

Script language

19-359

'F-test for equal standard deviations
'n1% Number of items in sample 1
'sd1 Standard deviation of sample 1
'n2% Number of items in sample 2
'sd2 Standard deviation of sample 2
'alpha The probability level to calculate FCrit
Func FTestSameSd(n1%, sd1, n2%, sd2, alpha)
var f := sd1/sd2; 'The test statistic is the ratio...
f *= f; '...of the two sd's squared
var prob := OneMinusFDistCDF(n1%-1, n2%-1, f);
PrintLog("\nF-Test for same standard deviations\n");
PrintLog("Number of samples = %8d %8d\n", n1%, n2%);
PrintLog("Standard deviations = %8g %8g\n", sd1, sd2);
PrintLog("Test statistic (F) = %8g\n", f);
PrintLog("Prob (one-tailed) = %8g\n", prob);
PrintLog("Upper critical level at alpha/2 = %8g\n", InvFCDFComp(alpha/2, n1%-1, n2%-1));
PrintLog("Upper critical level at alpha = %8g\n", InvFCDFComp(alpha, n1%-1, n2%-1));
PrintLog("Lower critical level at alpha = %8g\n", InvFCDFComp(1-alpha, n1%-1, n2%-1));
PrintLog("Lower critical level at alpha/2 = %8g\n", InvFCDFComp(1-alpha/2, n1%-1, n2%-1));
return prob;
end;

With the following data:

Sample Items sd
1 11 4.9082
2 9 2.5874

We use the script to test at an alpha level of 0.05:

FTestSameSd(11, 4.9082, 9, 2.5874, 0.05);

and the output is:

F-Test for same standard deviations
Number of samples = 11 9
Standard deviations = 4.9082 2.5874
Test statistic (F) = 3.59847
Prob (one-tailed) = 0.0411439
Upper critical level at alpha/2 = 4.29513 (two-tailed test upper limit)
Upper critical level at alpha = 3.34716 (sd1 > sd2 one-tailed limit)
Lower critical level at alpha = 0.325557 (sd1 < sd2 one-tailed limit)
Lower critical level at alpha/2 = 0.259411 (two-tailed test lower limit)

Two-tailed F-test

Given this result, for a two-tailed test the hypothesis that the standard deviations are different is rejected at the 5%
level as the F statistic does not fall outside the range 0.259411 to 4.29513. The probability value returned (that the
result occurred by chance) is for comparison with alpha for a one-tailed test; for a two-tailed test compare it with
alpha/2 or double it for comparison with alpha .

Signal Version 6.06

19-360

One-tailed F test for less

For a one-tailed test that the standard deviation is less, the result is a clear rejection (as you would expect as the
value was greater).

One-tailed F-test for greater

For a one-tailed test, the probability value is less than alpha, and we can see that the hypothesis that sample 1
standard deviation is greater than sample 2 is not rejected at the 5% level.

See also:
BetaI(), Binomial Distribution, Student's T Distribution

BinError()

This function is used in a memory or file view, with error bins enabled, to access the error information. Error bins are
created for a memory view created with SetAverage() or SetAutoAv() with the last argument set to 1 and are
subsequently stored in the cfs file if the memory view is saved. If you are setting the error information you must set
the sweep count with Sweeps() first, as the sweep count is used to convert the standard deviation into the
internal storage format. There are two command variants: the first transfers data for a single bin, the second for an
array of bins:

Func BinError(chan%, bin%{, newSD});
Func BinError(chan%, bin%, sd[]{, set%});

chan% The channel number in the file or memory view.

bin% The first bin number for which to get or set the error information.

newSD If present, this sets the standard deviation for a single bin.

sd[] An array used to hold standard deviation values. Values are transferred starting at bin bin% in the file or
memory view. If the array is too long, extra bins are ignored.

set% If present and non-zero, the values in sd[] are copied to the memory view. If omitted or zero, values are
copied from the file or memory view into sd[].

Script language

19-361

Returns The first command variant returns the standard deviation at the time of the call. The second variant returns
the number of bins copied. If there are 0 or 1 sweeps of data or errors are not enabled, the result is 0.

To illustrate how errors are calculated, we will assume that we are dealing with an average that is set to display the
mean of the data in each bin. In terms of the script language, if the array s[] holds the contribution of each sweep
to a particular bin, the mean, standard deviation and standard error of the mean are calculated as follows:

var mean, sd:=0, i%, diff, sem;
for i%:= 0 to Sweeps()-1 do
 mean += s[i%]; 'form sum of data
 next;
mean /= Sweeps(); 'form mean data value
for i%:= 0 to Sweeps()-1 do
 diff := s[i%]-mean; 'difference from mean
 sd += diff*diff; 'sum squares of differences
 next;
sd := Sqrt(sd/(Sweeps()-1)); 'the standard deviation
sem := sd/Sqrt(Sweeps()); 'the standard error of the mean

We divide by Sweeps()-1 to form the standard deviation because we have lost one degree of freedom through
calculating the mean from the data.

See also:
BinSize(), BinToX(), SetAutoAv(), SetAverage(), Sweeps(), XToBin()

BinomialC

This function calculates the Binomial coefficient nCk, which is the number of different ways to choose k items from
n, which is n!/(k!*(n-k)!). As n factorial grows rapidly as n increases, this can be difficult to compute for even
a modest value of n.

Func BinomialC(n%, k%)

n% The number of items from which to choose. This must be greater than 0.

k% The number to choose, in the range 0 to n%.

Returns The binomial coefficient. The return is integral, but is returned as a real value as it can be very large, for
example BinomialC(34,17) is 23336062200,which exceeds 32-bit integer range. Floating point numbers
can represent integers exactly up to some 15 digits, after which accuracy cannot be maintained. If n%
exceeds 1029 the result can be infinity, which means it is greater than 1.7977e+308 . If you really need
results for very large n%, you can get the logarithm of the result with LnGamma(n%)-LnGamma(k%)-
LnGamma(n%-k%).

See also:
BetaI(), GammaP() and GammaQ(), LnGamma()

BinSize()

The value returned by this function is normally the x axis increment per point but depends upon the channel type.
You can set the bin size in a memory view only.

Func BinSize(chan%, {nSize});

chan% The channel number (1 to n) for which to return information, which must exist.

nSize If this is present it sets a new x axis resolution in a memory view. For log-binned data this value must be
greater than one.

Returns The value returned depends on the channel type:

Waveform This is the x axis interval between points on the channel. For sampled data this is the
sample interval. For log-binned data this is the ratio of each bin width to the next and is
always greater than one.

Marker The underlying x axis resolution of the channel.

Signal Version 6.06

19-362

Real marker The underlying x axis resolution of the channel.

Idealised trace A dummy value of 1.0 is returned.

See also:
BinToX(), XToBin(), SampleRate()

BinToX()

This function converts between bin numbers and x axis values for a channel in the current view. For waveform
channels a bin is a waveform point, for marker-type channels it is a marker item and for idealised trace channels it is
a trace segment.

Func BinToX(chan%, bin);

chan% The channel (1 to n) for which to return information.

bin A bin number in the view, bin numbers run from zero upwards. You can give a non-integer bin number
without error. If you give a bin number outside the range of the view, it will be limited to the range of the
view.

Returns The returned value is the equivalent x axis position for the relevant waveform sample, marker item or the
start time of the idealised trace segment.

See also:
BinSize(), XToBin(), BinZero()

BinZero()

This function returns the x axis position for the first bin in the frame on the given channel. In a memory view you
can also set this.

Func BinZero(chan%{,offset});

chan% The channel (1 to n) for which to return information.

offset If this is provided it sets a new x axis position for the first data point for channels in a memory view.

Returns The returned value is zero if the channel doesn't exist. Otherwise it is the equivalent x axis position of the
start of the data.

See also:
BinSize(), BinToX(), XToBin()

BRead()

This reads data into variables and arrays from a binary file opened by FileOpen(). The function reads 32-bit
integers, 64-bit IEEE real numbers and zero-terminated strings.

Func BRead(&arg1|arg1[]|&arg1%|arg1%[]|&arg1$|arg1$[]{, ...});

arg Up to 20 arguments of any type. Signal reads a block of memory equal in size to the combined size of the
arguments and copies it into the arguments. Strings or string arrays are read a byte at a time until a zero
byte is read.

Returns It returns the number of data items for which complete data was read. This will be less than the number of
items in the list if end of file was reached. If an error occurred during the read, a negative code is returned.

See also:
FileOpen(), BReadSize(), BRWEndian(), BSeek(), BWrite()

Script language

19-363

BReadSize()

This converts data into variables and arrays from a binary file opened by FileOpen(). The function reads 8, 16
and 32-bit integers and converts them to 32-bit integers, and 32 and 64-bit IEEE real numbers and converts them to
64-bit reals. It also reads strings from fixed-size regions in the file (zero bytes are ignored during the read). The read
is from the current file position. The current position after the read is the byte after the last byte read.

Func BReadSize(size%, &arg|arg[]|&arg%|arg%[]|&arg$|arg$[]{,...});

size% The bytes to read for each argument. Legal values depend on the argument type:

Integer 1, 2 or 4 Read 1, 2 or 4 bytes and sign extend to 32-bit integer.
-1, -2 Read 1 or 2 bytes and zero extend to 32-bit integer.

Real 4 Read 4 bytes as 32-bit real, convert to 64-bit real.
8 Read 8 bytes as 64-bit real.

String n Read n bytes into a string. Null characters end the string.

arg The target variable(s) to be filled with data. size% applies to all targets.

Returns It returns the number of data items for which complete data was read. This will be less than the number of
items in the list if end of file was reached. If an error occurred during the read, a negative code is returned.

See also:
FileOpen(), BRead(), BRWEndian(), BSeek(), BWrite()

BRWEndian()

This gets and sets the "endianism" of binary data files. This affects numeric data used with BRead(),
BReadSize(), BWrite() and BWriteSize(). PC programs normally use little-endian data (least significant byte
at lowest address). Some systems, including the Macintosh, use big-endian data (most significant byte at lowest
address). Binary files are little-endian by default.

Most users do not need to use this routine. Only use it if you are writing binary files for use on a big-endian
computer or reading binary files that were generated with a big-endian system.

Func BRWEndian({new%});

new% Omit or set –1 for no change. Set 0 for little-endian and 1 for big-endian.

Returns The current endianism as 0 for little, 1 for big or a negative error code.

See also:
FileOpen(), BRead(), BReadSize(), BSeek(), BWrite(), BWriteSize()

BSeek()

This function moves and reports the current position in a file opened by FileOpen() with a type% code of 9. The
next binary read or write operation to the file starts from the position returned by this function.

Func BSeek({pos% {, rel%}});

pos% The new file position. Positions are measured in terms of the byte offset in the file from the start, the
current position, or from the end. If a new position is not given, the position is not changed and the
function returns the current position.

rel% This determines to what the new position is relative:

0 Relative to the start of the file (same as omitting the argument).

1 Relative to the current position in the file.

2 Relative to the end of the file.

Returns The new file position relative to the start of the file or a negative error code.

See also:

Signal Version 6.06

19-364

FileOpen(), BReadSize(), BRead(), BRWEndian(), BWrite(), BWriteSize()

Buffer commands

The Buff… family of commands can be used to carry out arithmetic on sets of data frames using the built-in frame
buffer. The frame buffer is an extra frame of data attached to a data document that is provided automatically by
Signal. This can be used to hold the results of arithmetic on frames, or to modify the document data. To help to
avoid confusion, commands that modify buffer data all have a simple name such as BuffSub, or BuffCopy, while
commands that modify the document frame data have qualified names such as BuffSubFrom or BuffCopyTo.

Nearly all of the buffer commands require a frame% argument. This specifies the frame in the data document that is
to be used, if omitted, the current frame is used. The current frame in the view is not changed.

The buffer commands do not have channel specification arguments as they operate on all channels. If you require
more precise control over frame arithmetic operations, this can be achieved by creating an invisible view to act as a
buffer using SetCopy() or SetMemory(), and then manipulating the frame data directly.

You can access the built-in interactive support for using the frame buffer from the analysis menu or by using the
multiple frame dialog.

See also:
ShowBuffer(), BuffAdd(), BuffAddTo(), BuffAcc(), BuffClear(), BuffCopy(), BuffCopyTo(),
BuffDiv(), BuffDivBy(), BuffExchange(), BuffMul(), BuffMulBy(), BuffSub(),
BuffSubFrom(), BuffUnAcc(), SetCopy(), SetMemory()

BuffAcc()

This adds the specified frame data to an average in the frame buffer for the current view document. The addition is
carried out in such a way as to maintain the data as an average, which can be e.g. subtracted from data frames. If
you mix BuffAcc() and BuffAdd() operations, the overall effect will probably be rather messy.

Func BuffAcc({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrAdd(), BuffUnAcc(), BuffXXX()

BuffAdd()

This adds the specified frame data to the frame buffer for the current view document.

Func BuffAdd({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrAdd(), BuffXXX()

BuffAddTo()

This adds the frame buffer for the current view document to the specified frame data.

Func BuffAddTo({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

Script language

19-365

See also:
ArrAdd(), BuffXXX()

BuffClear()

This clears the data in the frame buffer for the current view document.

Func BuffClear();

Returns Zero or a negative error code.

See also:
ArrConst(), BuffXXX()

BuffCopy()

This copies the specified frame data to the frame buffer for the current view document.

Func BuffCopy({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrConst(), BuffXXX()

BuffCopyTo()

This copies the frame buffer data for the current view document into the specified data frame.

Func BuffCopyTo({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrConst(), BuffXXX()

BuffDiv()

This divides the frame buffer for the current view document by the specified frame data.

Func BuffDiv({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrDiv(), BuffXXX()

BuffDivBy()

This divides the specified frame data by the frame buffer for the current view document.

Func BuffDivBy({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Signal Version 6.06

19-366

Returns Zero or a negative error code.

See also:
ArrDiv(), BuffXXX()

BuffExchange()

This exchanges the specified frame data with the frame buffer data for the current view document.

Func BuffExchange({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrConst(), BuffXXX()

BuffMul()

This multiplies the frame buffer for the current view document by the data in the specified frame.

Func BuffMul({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrMul(), BuffXXX()

BuffMulBy()

This multiplies the specified frame data by the frame buffer for the current view document.

Func BuffMulBy({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrMul(), BuffXXX()

BuffSub()

This subtracts the specified frame data from the frame buffer for the current view document.

Func BuffSub({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrSub(), BuffXXX()

Script language

19-367

BuffSubFrom()

This subtracts the frame buffer for the current view document from the specified frame data.

Func BuffSubFrom({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrSub(), BuffXXX()

BuffUnAcc()

This removes the specified frame data from an average accumulated in the frame buffer for the current view
document. The arithmetic is carried out in such a way as to maintain the data as an average with the specified frame
now not included. If the frame was never included in the average, or if you mix BuffUnAcc() and BuffSub()
operations, the overall effect will probably be rather messy.

Func BuffUnAcc({frame%});

frame% The frame number in the data document for the current view. If omitted, the current frame in the view is
used.

Returns Zero or a negative error code.

See also:
ArrSub(), BuffAcc(), BuffXXX()

BWrite()

This function writes binary data values and arrays into a file opened by FileOpen() with a type% code of 9. The
function can write 32-bit integers, 64-bit IEEE real numbers and strings. The output is at the current position in the
file. The current position after the write is the byte after the last byte written.

Func BWrite(const arg1 {,const arg2 {,...}});

arg Arguments may be of any type, including arrays. Signal fills a block of memory equal in size to the
combined size of the arguments with the data held in the arguments and copies it to the file. An integer
uses 4 bytes and a real uses 8 bytes. A string is written in UFT-8 format with a zero byte to mark the end.
Use BWriteSize() to write a fixed number of bytes. The arguments are not modified, so const arrays
can be written.

Returns It returns the number of arguments for which complete data was written. If an error occurred during the
write, a negative code is returned.

See also:
FileOpen(), BRead(), BReadSize(), BSeek(), BRWEndian(), BWriteSize()

BWriteSize()

This function writes variables or arrays as binary into a file opened by FileOpen() with a type% code of 9. It
writes 8, 16 and 32-bit integers and 32 and 64-bit reals and strings. It allows you to write formats other than the 32-
bit integer and 64-bit real used internally by the script and to write variable-length strings into fixed-size fields in a
binary file.

Func BWriteSize(size%, const arg1 {,const arg2 {,...}});

size% Bytes to write for each argument (or array element if the argument is an array). Legal values of size%
depend on the argument type:

Integer 1, 2 Write least significant 1 or 2 bytes.

Signal Version 6.06

19-368

4 Write all 4 bytes of the integer.

Real 4 Convert to 32-bit real and write 4 bytes.
8 Write 8 bytes as 64-bit real.

String n Write n bytes. Pad with zeros if the string is too short.

arg The target variable(s) to be filled with data. size% applies to all targets.

Returns It returns the number of data items for which complete data was written or a negative error code.

Unicode
If you write a string, it is converted to UTF-8 first. Beware that this means that the number of bytes needed to hold
the string may be more than the number of characters reported by Len(). There is an example of getting the
equivalent UTF-8 string length in the description of Len().

See also:
FileOpen(), BRead(), BReadSize(), BSeek(), BRWEndian(), BWrite(), Example to write a bitmap

Using BWriteSize() to save a bitmap

This example uses BWriteSize() to save a bitmap image in an integer matrix as a .bmp file. Each element of the
bitmap array is an integer with bits 0-7 holding the blue colour, bits 8-15 holding the green and bits 16-23 holding
the red and the rest of the data bits set to 0 (0x00rrggbb). If you want an Alpha channel (using bits 24-31 to specify
opaqueness, with 0 for transparent and 0xff for opaque, 0xaarrggbb), add 2 to flags%. You can choose to have a
bottom to top or top to bottom bitmap.

'Write a .bmp file based on rgb colours in integer array

'bmpPath$ Path to the file to use. Ideally the name should end in .bmp

'bmp% A matrix bmp%[nx][ny] with the nx=columns, ny is rows

'flags% If bit 0 is set, bmp%[0][0] is top left, else bottom left

' If bit 1 is set, use RGBA coding, else RGB

'return 0 if OK or a negative error code

func WriteBmp(bmpPath$, const bmp%[][], flags% := 0)

var xpix% := Len(bmp%[][0]); ' pixels in the x direction

var ypix% := Len(bmp%[0][]); ' pixels in the y direction

var binf% := FileOpen(bmpPath$, 9, 1); ' open binary output file

if (binf% < 0) then return binf% endif;

'Write out the bitmap header. This is 14 bytes long.

BWriteSize(2, "BM"); ' all bitmaps files start 'BM'

BWriteSize(4, xpix%*ypix%*4 + 14 + 108);' Size of .bmp file in bytes

BWriteSize(4, ""); ' 4 app-defined bytes (0,0,0,0)

BWriteSize(4, 14 + 108); ' offset to where the data starts

' Construct DIB header (BITMAPV4HEADER - this is 108 bytes long)

BWriteSize(4, 108); ' size of the DIB header

BWriteSize(4, xpix%); ' Width of the bitmap in pixels

Script language

19-369

BWriteSize(4, flags% band 1 ? -ypix% : ypix%); ' Height of the bitmap in pixels

BWriteSize(2, 1); ' number of color planes. Must be 1

BWriteSize(2, 32); ' number of bits per pixel

BWriteSize(4, flags% band 2 ? 3 : 0); ' BI_BITFIELDS = 3 or BI_RGB = 0. No compression

BWriteSize(4, xpix%*ypix%*4); ' bytes of bitmap data (or 0 as BI_RGB)

BWriteSize(4, 2835); ' horizontal pix/m = 72 pix/inch

BWriteSize(4, 2835); ' vertical pix/m = 72 pix/inch

BWriteSize(4, 0); ' # of palette colours. No palette used.

BWriteSize(4, 0); ' Important palette colours, 0 as unused

' Next 4 32-bit words set the Red, Green, Blue and Alpha mask in BI_BITFIELDS

if (flags% band 2) then

 BWriteSize(4, 0x00ff0000); ' Red mask You can swap the RGB

 BWriteSize(4, 0x0000ff00); ' Green mask masks around, if you

 BWriteSize(4, 0x000000ff); ' Blue mask need other arrangements.

 BWriteSize(4, 0xff000000); ' Alpha mask Set 0 if no Alpha channel

else

 BWriteSize(16, "BGRsBGRsBGRsBGRs"); ' Unused in BI_RGB mode

endif

 BWriteSize(52, ""); ' fill the rest with 0s

' We have no palette, so the next thing in the file is the RGB(A) values

BWriteSize(4, bmp%); ' Write the bitmap

FileClose();

return 0;

end

C

Ceil()

Returns the next higher integral number of the real number or array. Ceil(4.7) is 5.0, Ceil(4) is 4. Ceil(-4.7)
is -4.

Func Ceil(x|x[] {[]…});

x A real number or a real array.

Returns When the argument is an array, the function replaces the array with the next higher integral number of all
the points and returns either a negative error code or 0 if all was well.

When the argument is not an array the next higher integral number.

See also:
Abs(), ATan(), Cos(), Exp(), Floor(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan(), Trunc()

Signal Version 6.06

19-370

Chan...()

Chan$()

This function converts a channel number or a list of channel numbers into a string, note that virtual and memory
channels do not appear as a simple number but as "v1" or "m2". If a channel does not exist in the current view, it is
represented as a number.

Func Chan$(chan%|chan%[]);

chan% Either a channel number or an array of integers in the same format as a channel specification (the first
element holds the number of items, followed by the channel numbers).

Returns A channel specification string, for example "1,3,5..8,v1,m6".

See also:
ChanList()

ChanAdd()

This will add the data from a specified channel to one or more other channel’s data.

Func ChanAdd(cSpc, src%);

cSpc A channel specifier for the channels to add data to.

src% The number of the channel containing the data to add.

Returns Zero.

See also:
ChanSub(), ChanMult(), ChanDiv()

ChanColour()

Deprecated, use ChanColourSet() and ChanColourGet(). This returns and optionally sets the colour of a channel in
a file or memory view. This colour overrides the application colour set for the drawing mode of the channel.

Func ChanColour(chan%, item%{, col%});

chan% A channel in the file or memory view.

item% The colour item to get and optionally set; 0=background, 1=primary, 2=secondary colour.

col% If present, the new colour index for the item. There are 40 colours in the palette, indexed 0 to 39. Use -1 to
revert to the application colour for the drawing mode.

Returns The palette colour index at the time of the call, –1 if no colour is set or a negative error code if the channel
does not exist.

See also:
Colour dialog, Colour(), PaletteGet(), PaletteSet(), XYColour()

ChanColourGet()

Returns a channel item RGB colour in a data or XY view. This command was added at Signal version 5.02.

Func ChanColourGet(chan%, item%{, &r, &g, &b});

chan% A channel in the data or XY view.

item% The colour item to get; 0=background, 1=primary, 2=secondary colour for time and result views, the fill
colour for an XY channel. XY channels do not have individual background colours, use
ViewColourGet() to get the background colour for all XY channels.

Script language

19-371

r g b If present, these variables are returned holding the colour as red, green and blue values in the range 0 to
1.0.

Returns 1 if the channel colour is overridden, 0 if not, negative for no channel.

See also:
Colour dialog, ChanColourSet(), ColourGet(), ViewColourGet()

ChanColourSet()

Sets a channel item RGB colour in a data or XY view. A change to a colour item that would make visible difference
will cause the affected view to become invalid and it it will repaint at the next opportunity. This command was
added at Signal version 5.02.

Func ChanColourSet(chan%, item%{, r, g, b});

chan% A channel in the data or XY view.

item% The colour item to get; 0=background, 1=primary, 2=secondary colour for time and result views, the fill
colour for an XY channel. XY channels do not have individual background colours, use
ViewColourSet() to set the background colour for all XY channels.

r g b If present, these arguments set the colour as red, green and blue values in the range 0 to 1.0. If omitted, the
item colour is set to the application default.

Returns 0 or a negative error code if the channel does not exist.

See also:
Colour dialog, ChanColourGet(), ColourSet(), ViewColourSet()

ChanCount()

This counts channels in a data or XY view.

Func ChanCount({chan%});

chan% If present, this specifies the channels to count (this is ignored for XY views), if omitted, the total channel
count is returned. Supported chan% values are:

-1 All channels
-2 All visible channels
-3 All selected channels
-4 Waveform channels
-5 Marker channels
-6 Selected waveform channels or visible if none selected
-7 Visible waveform channels
-8 Selected waveform channels
-9 Idealised trace channels
-10 All selected channels or all visible if none selected
-11 Real marker channels
-12 Marker or real marker channels

Returns The returned value is the number of channels of the specified type.

See also:
ChanList()

Signal Version 6.06

19-372

ChanDelete()

This function deletes a channel from an XY view or a virtual or memory channel from a file or memory view. You
have the option of having the user confirm the deletion. You cannot delete the last XY channel as XY views must
always have at least one channel. Channels in XY views are always numbered consecutively, so if you delete a
channel, the channel numbers of any higher numbered channels will change. Changes to the XY data will not
become permanent until the XY view is saved. It is not possible however, to recover data deleted from a memory
channel.

Func ChanDelete(chan%{, query%});

chan% The channel to delete.

query% If present and non-zero, the user is asked to confirm the channel deletion if the channel is part of a saved
XY data file or virtual or a memory channel.

Returns 0 if the channel was deleted or a negative error code if the user cancelled the operation or tried to delete
the last XY channel or for other problems.

See also:
XYDelete(), XYSetChan()

ChanDiff()

This differentiates the data in specified waveform channels of the current frame in the current view. If the specified
channel is not a waveform then the command has no effect. If the frame buffer is being shown, the frame buffer data
is used instead. All data points in the channels used are modified. It is an error to use this command on log-binned
data.

Func ChanDiff(cSpc);

cSpc A channel specifier for the channels to differentiate.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ChanZero(), ArrDiff()

ChanDiv()

This will divide the data in one or more channels by the data from another channel.

Func ChanDiv(cSpc, src%);

cSpc A channel specifier for the channels to divide the source channel into.

src% The number of the channel containing the data to divide into the other channels.

Returns Zero.

See also:
ChanAdd(), ChanSub(), ChanMult()

ChanFit()

ChanFit() has three variants; to initialise ready for a new fit, to perform a fit and to return information about the
last fit. This function together with ChanFitCoef() and ChanFitShow() incorporates the functionality of the
Analysis menu Fit Data dialog. The current window must be a file, memory or XY view to use these functions.

Initialise fit information
This command associates a fit with a channel. The fit parameters and the coefficient limits are reset to their default
values, the coefficient hold flags are cleared and any existing fit for this channel is removed.

Func ChanFit(chan%, type%, order%);

Script language

19-373

chan% The channel number to work on. Each channel in a file, memory or XY view can have one fit associated
with it.

type% The fit type. 0=Clear any fit, 1=Exponential, 2=Polynomial, 3=Gaussian, 4=Sine, 5=Sigmoid.

order% The order of the fit. This can be 1 to 3 for a Sine or Gaussian fit, 1 for a Sigmoid fit, 1 to 5 for an exponential
fit and 1 to 10 for a polynomial fit. If type% is 0 this should also be 0.

Returns 0 if the command succeeded.

Perform the fit
This variant of the command does the fit set by the previous variant.

Func ChanFit(chan%, opt%, frm%|frm%[]|frm$, start|start$,
end|end${, ref|ref${, &err{, maxI%{, &iTer%{, covar[][]}}}}});

chan% A channel number in the current view that has had a fit initialised.

opt% This is the sum of:

1 Estimate the coefficients before fitting, else use current values.

2 Draw the fit over the user-defined range, not the fit range.

4 Use maximum likelihood fitting – obeyed for exponential fits only, and then only when fitting
open/closed time and burst duration histograms where the original idealised trace data is still
accessible.

frm% Frame number or a negative code as follows:

-1 All frames in the file.

-2 The current frame.

-3 Only tagged frames.

-6 Only untagged frames.

frm$ A frame specification string. This option specifies a list of frames using a string such as "1..32,40,50".

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

start This is the start of the fit range, as a value or as a dialog expression string that is to be evaluated.

end The end of the fit range in x axis units, as a value or a string to evaluate.

ref The reference time as a value or a string to evaluate. If omitted start is used.

err If present, this optional variable is updated with the chi-squared or least squares error between the fit and
the data.

maxI% If present, this sets the maximum number of iterations. If omitted, the current number set for the channel is
used. The system default number is 100.

iTer% If present, this integer variable is updated with the count of iterations done.

covar An optional two dimensional array of size at least [nCoef][nCoef] that is returned holding the
covariance matrix when the fit is complete. It is changed if the return value is –1, 0 or 1. However, the
values it contains are probably not useful unless the return value is 0.

Returns 0 if the fit is complete, 1 if max iterations done, or a negative error code: -1=the fit is not making progress
(results may be OK), -2=the fit failed due to a singular matrix, -5=the fit caused a floating point error, -6=too
little data for the number of coefficients, -7=unknown fitting function, -8=ran out of memory during the fit
(too many data points), -9=the fit was set up with bad parameters.

Get fit information
This variant of the command returns information about the current fit set for a channel.

Func ChanFit(chan%{, opt%});

chan% The channel number of the fit to return information about.

Signal Version 6.06

19-374

opt% This determines what information to return. If omitted, the default value is 0. Positive values return
information about the fit that is set-up to be done next. Negative value return information about the last fit
that was done and that can be displayed. The returned information for each value of opt% is:

opt%Returns opt%Returns

0 Fit type of next fit 1 Fit order of next fit

-1 1=a fit exists, 0=no fit exists -2 Type of existing fit or 0

-3 Order of existing fit -4 Chi or least-squares error

-5 Fit probability (estimated) -6 X axis value at fit start

-7 X axis value at fit end -8 Reference x value

-9 User-defined x draw start -10 User-defined x draw end

-11 1=chi-square, 0=least-square -12 Last fit result code

-13 Number of fitted points -14 Number of fit iterations used

-15 R-Square value for fit -16 Adjusted R-Square value

Returns The information requested by the opt% argument or 0 if opt% is out of range.

See also:
Fit Data dialog, More about fitting, ChanFitCoef(), ChanFitShow(), ChanFitValue(), FitPoly(),
FitExp(), FitGauss(), FitSine()

ChanFitCoef()

This command gives you access to the fit coefficients for a channel in the current file, memory or XY view. You can
return the values from any type of fit and set the initial values and limits and hold values fixed for iterative fits.
There are two command variants:

Set and get coefficients
This command variant lets you read back the current coefficient values and set the coefficient values and limits for
iterative fitting:

Func ChanFitCoef(chan%{, num%{, new{, lower{, upper}}}});

chan% The channel number of the fit to access.

num% If this is omitted, the return value is the number of coefficients in the current fit. If present, it is a
coefficient number. The first coefficient is number 0. If num% is present, the return value is the coefficient
value for the existing fit; if there is no fit, the coefficient value that would be used as the starting point for
the next iterative fit is returned.

new If present, this sets the value of coefficient num% for the next iterative fit on this channel.

lower If present, this sets the lower limit for coefficient num% for the next iterative fit on this channel. There is
currently no way to read back the coefficient limits. There is also no check made that the limits are set to
sensible values.

upper If present, this sets the upper limit for coefficient num% for the next iterative fit on this channel.

Returns The number of coefficients or the value of coefficient num%.

Get and set the hold flags
This command variant sets the hold flags (equivalent to the Hold check boxes in the Fit Data dialog Coefficients
tab).

Func ChanFitCoef(chan%, hold%[]);

chan% The channel number of the fit to access.

hold% An array of integers to correspond with the coefficients. If the array is too long, extra elements are
ignored. If it is too short, extra coefficients are not affected. Set hold%[i%] to 1 to hold coefficient i% and
to 0 to fit it. If hold%[i%] is less than 0, the hold state is not changed, but hold%[i%] is set to 1 if the
corresponding coefficient is held and to 0 if it is not held.

Script language

19-375

Returns This always returns 0.

See also:
ChanFit(), ChanFitShow(), ChanFitValue(), FitExp(), FitPoly()

ChanFitShow()

This controls the display of data fitted to a channel in the current file, memory or XY view.

Func ChanFitShow(chan%{, opt%{, start|start${, end|end$}});

chan% The channel number of the fit to access.

opt% If present and positive, this is the sum of:

1 Display the fitted data.

2 Use the user-defined display range rather than the fitting range.

If opt% is omitted or positive, the return value is the current option value. Use negative values to return
the user-defined display range: -1=return the start, -2=return the end.

start If present, this is an x axis value or a string holding a dialog expression to be interpreted as an x axis value
that sets the start of the user-defined display range.

end If present, this is an x axis value or a string holding a dialog expression to be interpreted as an x axis value
that sets the end of the user-defined display range

Returns The current opt% value or the information requested by opt%. If there is no fit defined for the channel, the
return value is 0.

See also:
ChanFit(), ChanFitShow(), ChanFitCoef(), FitExp(), FitPoly()

ChanFitValue()

This function returns the value at a particular x axis value of the fitted function to a channel in the current file,
memory or XY view.

Func ChanFitValue(chan%, x|x$);

chan% The channel number of the fit to access.

x The x axis value at which to evaluate the current fit, this can be either a number or a string to be
interpreted. You should be aware that some of the fitting functions can overflow the floating point range if
you ask for x values beyond the fitted range of the function.

Returns The value of the fitted function at x. If the result is out of floating point range, the function may return a
floating point infinity or a NaN (Not a Number) value or a 0. If there is no fit, the result is always 0.

See also:
ChanFit(), ChanFitShow(), ChanFitCoef(), FitExp(), FitPoly()

ChanImage()

You can set a background image behind each channel in a data or XY view. Images are read from .bmp files on disk.
See the View menu Channel Image command for details. There are three command variants:

Func ChanImage(chan%, path$);
Func ChanImage(chan%, mode%, opac{, xl, yl, xh, yh});
Func ChanImage(chan%, get%{, &path$});

chan% A channel number in the current view. In an XY view, all channels share the same bitmap.

path$ The file name that holds the image. The first command variant sets the image, the third variant reads back
the name of the file. If you set an empty name, this releases any memory used to cache the bitmap within
the program. Setting an image does not change the display mode; use the second variant to make sure that

Signal Version 6.06

19-376

the image is visible. Set the path to "<CB>" to use whatever image happens to be on the clipboard at the
time of the function call.

mode% There are three display modes that you can set in the second command variant: 0=no display, 1=fill
background, 2=fill rectangle. You can also set mode -1, meaning no mode change.

opac You can control the image opacity in the range 0.0 (transparent) to 1.0 (opaque). You can also set the
value -1 for no change.

xl-yh When mode% is 2, these four arguments set the rectangle, in x and y axis units, that contains the bitmap
image.

get% This is used in the third command variant to read back the current settings. You can set -1 to read the
mode, -2 to read the opacity, and -3 to -6 to read the xl, yl, xh and yh values.

Returns The first variant returns 1 if a bitmap was read, 0 if it was not (either file not found, or no image was set) or
a negative error code. The second variant returns 0 and the third variant returns the requested information.

We do not provide any method to size a channel area so a bitmap becomes a specific size. However, you can use
ChanPixel() to find the scaling between x and y axes and pixels. It is possible to then iteratively change the
window size (or adjust the channel weight with ChanWeight()) toget the desired effect.

See also:
ChanColour(), ChanPixel(), ChanWeight()

ChanIndex()

Get or set the index associated with a channel in a data view. Real marker channels use the index to select the data
value to display.

Func ChanIndex(chan%{, index%});

chan% A channel number. Currently, this function is useful only with real marker channels.

index% If present and positive, this sets the zero-based channel index. If omitted or -1, the command returns the
current index. If -2, the command returns the number of index values for the channel - the number of
floating point values attached to each marker.

Returns Either the channel index at the time of the call, or if index% is -2, the number of possible index values.

See also:
MemChan(), MarkInfo()

ChanIntgl()

This integrates the data in specified waveform channels of the current frame in the current view. If the specified
channel is not a waveform then the command has no effect. If the frame buffer is being shown, the frame buffer data
is used instead. All data points in the channels used are modified. It is an error to use this command on log-binned
data.

Func ChanIntgl(cSpc);

cSpc A channel specifier for the channels to integrate.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ChanZero(), ArrIntgl()

Script language

19-377

ChanItems()

This counts waveform points, or markers, in a data view over an x axis range.

Func ChanItems(chan%, start, finish);

chan% The channel number (1 to n) for which to return information.

start The start position in x axis units. If start is greater than finish, the result is 0.

finish The last position in x axis units. If start equals finish, only items that fall exactly at the position count
towards the result.

Returns The returned value is negative if the channel doesn't exist. Otherwise it is the number of data items in the
range. This will be a count of markers or waveform points depending on the channel type.

See also:
ChanRange(), ChanPoints(), XYRange()

ChanKind()

This returns the type of a channel in the current data or XY view.

Func ChanKind(chan%);

chan% The channel number (1 to n) for which to return information.

Returns -1 for a bad channel number, -2 if not a data or XY view, or:

0 Waveform 1 Marker 3 XY channel
5 Idealised trace 6 Real marker

See also:
ViewKind()

ChanList()

This function generates an array of channel numbers from the current data or XY view. The channels can be filtered
to show only a subset of the available channels.

Func ChanList(list%[]{, types%});
Func ChanList(list%[], str${, types%});

list% An integer array to fill with channel numbers. Element 0 is set to the number of channels returned. The
remaining elements are channel numbers. If the array is too short, enough channels are returned to fill the
array. You will find that it is unnecessary to list all the channel numbers for an XY view, since they are
numbered contiguously.

types% This argument specifies which channels to return. If omitted or set to zero, all channels are returned. The
values are as follows:

1 0x1 Waveform or result view channel

2 0x2 Marker channels

4 0x4 Idealised traces

8 0x8 Real marker channels

If none of the above values are used, then the list includes all types of channel. The following codes can
be added to exclude channels from the list created above:

128 0x80 Exclude CFS data file channels (means memory and virtual channels only)

256 0x100 Exclude virtual channels

512 0x200 Exclude memory channels

1024 0x400 Exclude visible channels

2048 0x800 Exclude hidden channels

Signal Version 6.06

19-378

4096 0x1000 Exclude selected channels

8192 0x2000 Exclude non-selected channels

This argument is ignored in an XY view where all channels are the same type.

str$ A channel specification such as "1..10,20,m1,v1..v3". Only channels that exist in the current view
are returned in list%. If types% is provided, only channels that match both the string and types% are
returned in list%.

Returns The number of channels that would be returned if the array was of unlimited length, 0 if the view is not a
data or XY view or -1 if the str$ parameter was badly formed or illegal.

See also:
Channel lists, Channel specifiers, ChanShow(), ChanCount(), ChanDelete(), DlgChan(),
XYSetChan()

ChanMean()

This function returns the mean level of a waveform channel in an x axis range.

Func ChanMean(chan%, start, finish{, stDev});

chan% The channel number (1 to n) for which to form the mean.

start The start position in x axis units. If start is greater than finish, the result is 0.

finish The last position in x axis units.

stDev If present, this is returns the standard deviation of the data values in the range. If there is only one item
the result is 0.

Returns It returns the sum of the data values in the range divided by the number of items. If the channel is not a
waveform channel the script will fail.

See also:
ArrSum(), ChanMeasure()

ChanMeasure()

This performs any of the cursor regions measurements on a channel.

Func ChanMeasure(chan%, type%, start|start$, end|end$);

chan% The channel number (1 to n) on which to perform the measurement.

type% The type of measurement to take, see the documentation of the Cursor Regions window for details of
these measurements. Trying to use the Curve area measurement on log-binned data will halt the script.
The possible type% values are:

1 Curve area 6 Modulus 11 Standard deviation 16 Standard error
2 Mean 7 Maximum 12 Extreme 17 RMS error
3 Slope 8 Minimum 13 Peak
4 Area 9 Peak to peak 14 Trough
5 Sum 10 RMS amplitude 15 Point count

start The start position for the measurement in seconds. If start is greater than finish, the result is 0.

start$ The start position for the measurement expressed as a string. This allows constructs such as
"Cursor(1)" to be used.

end The end position in seconds.

end$ The end position as a string, again allowing time expressions.

Returns The function returns the requested measurement value.

See also:

Script language

19-379

ArrSum(), ChanMean(), ChanValue()

ChanMult()

This will multiply the data in one or more channels by the data from another channel.

Func ChanMult(cSpc, src%);

cSpc A channel specifier for the channels to multiply.

src% The number of the channel containing the data to multiply the other channels by.

Returns Zero.

See also:
ChanAdd(), ChanDiv(), ChanSub()

ChanNegate()

This negates (inverts) the data in specified waveform channels of the current frame in the current view. If the frame
buffer is being shown, the frame buffer data is used instead. All data points in the channels used are modified.

Func ChanNegate(cSpc);

cSpc A channel specifier for the channels to negate.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ChanZero(), ArrMul()

ChanNumbers()

You can show and hide channel numbers in the current view and get the channel number state with this function. It
is not an error to use this with data views that do not support channel number display, but the command has no
effect.

Func ChanNumbers({show%});

show% If present, 0 hides the channel number, and 1 shows it. Other values are reserved (and currently have the
same effect as 1).

Returns The channel number display state at the time of the call.

See also:
YAxis(), YAxisMode()

ChanOffset()

This offsets the data in specified waveform channels of the current frame in the current view by adding a constant
value. If the frame buffer is being shown, the frame buffer data is used instead. All data points in the channels used
are modified.

Func ChanOffset(cSpc, val);

cSpc A channel specifier for the channels to offset.

val The value to add to the data, which can be negative for offsetting down.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanScale(), ChanShift(), ChanZero(), ArrAdd()

Signal Version 6.06

19-380

ChanOrder()

This command changes the order of channels in a data view, groups channels with a y axis so that they share a
common y axis, sets the channel sorting order and gets list of visible channels in screen order from top to bottom.
There are four command variants.

Move channels
The first moves a group of channels relative to a channel or to a channel position in the list of all channels in the
view:

Func ChanOrder(dest%, pos%, cSpc);

dest% The destination channel number or a value less than 1 indicating the position in the list of all channels
including hidden channels but excluding channels in cSpc. When used as a list position, 0 is the top
channel, -1 is the next, and so on. If there are n channels, values of -n or less are taken to mean the bottom
channel.

pos% The drop position relative to the destination channel: -1=drop above, 0=drop on top, 1=drop below. If you
drop between grouped channels, the dropped channels become members of the group (as long as they
have a y axis).

cSpc A channel specifier for the channels to move.

Returns The number of moved channels.

Get information and ungroup channels
The second command variant gets grouping information and can convert all the channels in a group to ungrouped
channels.

Func ChanOrder(dest%, opt%);

dest% A channel number in the view that identifies a group. A group is either a single channel, or a set of
channels that share a single y axis.

opt% 0=returns the number of channels in the group that dest% belongs to or 0 if not grouped. 1-n returns the
channel number of the nth channel in the group or 0 if no channel. -1 ungroups the group and returns the
number of changed channels.

Returns The number of channels in the group, the nth channel in the group, or the number of changed channels,
depending on opt%.

Sort channels
The third command variant sorts channels into numerical order.

Func ChanOrder(order%);

order% This form of the command sorts all the channels into numerical order. Set -1 for low, 1 for high numbered
channels at the top and 0 to use the default channel ordering set by the Edit menu Preferences.

Returns -1 if low-numbered channels were previously at the top, 1 if high-numbered channels were previously at
the top.

Get ordered channel lists
The fourth variant gets channel lists, ordered from top to bottom of all channels, all channels that start a group, and
all channels within the nth group.

Func ChanOrder(list%[]{, sel%});

list% An array that is returned with a channel list. list%[0] holds the number of items that follow in the list, so if
list%[0] holds n, there are valid channel numbers in list%[1] through list%[n]. The returned channel
numbers are always in the order of the channels on the screen, with channels at the top of the screen
first.

sel% Optional, taken as 0 if omitted. If 0, the list contains all the visible channels in the view. If -1, the list
contains the first channels of each group, so if there are no groups, list%[0] holds 0. If sel% is greater than
0, say n, the list is returned holding all the channels in the nth group.

Script language

19-381

Returns The number of channels that match the option. This can be greater than list%[0] if the list% array is too
small.

See also:

Channel specifiers, ChanList(), ChanWeight(), ViewStandard(), YAxis(), YAxisLock()

ChanPenWidth()

This command sets and gets the pen width for a channel in a Data view. The pen width for channels in an XY view
is handled by the XYDrawMode() command. This script command is the equivalent of the View menu channel Pen
Width dialog, it was added in Signal version 5.00.

Func ChanPenWidth(cSpc{, new});

cSpc A channel specification for one or more channels or -1 for all, -2 for visible and -3 for selected channels.

new If present, the new width of the pen to use for the specified channels, in points. A point is 1/72 of an inch,
which is approximately 1 pixel (on most displays in 2010). If you set a negative width, the channel will use
the pen width set in the Edit menu Preferences for data. A width of zero will set the thinnest pen (1 pixel)
possible.

Returns The command returns the current pen width setting for the first channel that exists in the channel
specification, or 0 if no channel exists.

See also:

Channel specifiers, Edit menu preferences, Pen width dialog, XYDrawMode()

ChanPixel()

This command gets screen pixel information about the current file, memory or XY view. All positions are given with
respect to a rectangle that has the 0,0 point at the top, left corner with the x co-ordinates increasing to the right and
the y co-ordinates increasing downwards. In the following description, the rectangles that we refer to are:

Desktop The rectangle that encloses all your monitors.

View The rectangle that encloses the drawing area of the current time, result or XY view. This does NOT
include the frame around the view.

Channel The rectangle that encloses all the data for a particular channel.

Superview The channel superview is the rectangle that encloses all the channel displays (not including any x or
y axes). In the future we may allow channels to be arranged in a grid, in which case the superview for
a channel will be the rectangle that includes all the channels in the column of the grid that includes
the nominated channel.

Func ChanPixel(chan%, &x, &y{, mode%{, &w|xp{, &h|yp}}});

chan% A channel in the current file, memory or XY view. This must be supplied as a valid channel for mode 2, but
can be set to 0 for modes 0 and 1 if you do not want the y information.

x This is a real variable that is set depending on the value of mode%.

y This is a real variable that is set depending on the value of mode%.

mode% An optional variable, taken as 0 if omitted, that determines the returned values:

0 x is set to the number of x axis units equivalent to a move of one pixel to the right. y is set to the
number of user units that are equivalent to a movement of one pixel up. If there is no y axis or chan%
does not exist, it is set to 0. Normally the x and y axes are in linear mode, but they can be set to
logarithmic mode, in which case the returned values are the log increment that corresponds to one
pixel.

You will need this information if you use the ToolbarMouse() or DlgMouse() function to get the
mouse position and want to locate data elements that are close to the mouse pointer.

Signal Version 6.06

19-382

1 x and y (if chan% exists) are set to the pixel positions relative to the channel superview of the axis
positions xp, yp in channel chan%. You can find the position of the channel superview with respect
to the view with mode% set to 3.

2 x, y, w and h are returned holding the channel rectangle of channel chan%, which must exist. x,y are
relative to the channel superview.

3 x, y, w and h are returned holding the channel superview position and size. The position is relative to
the view. Currently there is only one superview, so chan% is ignored. In the future we may allow
channels to be arranged in a grid, and the channel number will matter as it will determine which
superview is required.

4 x, y, w and h are returned holding the view position and size. The position is relative to the Windows
desktop. chan% is ignored and should be 0.

5 x, y, w and h are returned holding the x axis position and size. The position is relative to the view.
Currently there is only one x axis, so chan% is ignored and should be 0. In the future we may allow
channels to be arranged in a grid, and the channel number will matter as it will select the x axis to use.

6 x, y, w and h are returned holding the y axis position and size for the channel chan% (which must
exist). The position is relative to the view.

7 x, y are returned set to the sizes (in pixels) of a representative character that will be used for a cursor
label. This is to allow you to position a vertical cursor label above or below a specific value. The
channel is currently ignored.

w,h Real variables that are set to the width and height of the rectangle selected by mode%.

xp,yp The x and y positions in axis units to map to pixels when mode% is 1.

Returns A set of flags indicating which values were returned and if the units were modified, or -1 if the command
could not be used. Flag values are:

1 The x axis value is set (this should always be set).

2 The y axis value is set (not set if the channel does not exist, is invisible or does not have a y axis).

4 In mode 0, the x axis is in log mode, so the x value is a log increment per pixel.

8 In mode 0, the y axis is in log mode, so the y value is a log increment per pixel.

16 In mode 1, the xp value is outside the visible channel rectangle on screen.

32 In mode 1, the yp value is outside the visible channel rectangle on screen.

See also:
DlgMouse(), ToolbarMouse()

ChanPoints()

This function returns the total number of data items in the frame on the specified channel in a data or XY view.

Func ChanPoints(chan%);

chan% The channel number (1 to n) for which to return the number of items.

Returns The number of data points in a frame.

See also:
ChanRange(), ChanItems(), XYCount()

ChanRange()

This function finds the number of data items within a given x axis range.

Func ChanRange(chan%, &start, finish, &item);

chan% The channel number, from 1 to n.

start The start position in x axis units. This returns the start position of the first data point in the range, or it is
left unchanged if no data is found.

finish The end position in x axis units.

Script language

19-383

item The index in the view of the data item found at the start position.

Returns The number of data items found in the range defined by start and finish.

See also:
ChanPoints(), ChanItems()

ChanRectify()

This rectifies the data in specified waveform channels of the current frame in the current view. If the frame buffer is
being shown, the frame buffer data is used instead. All data points in the channels used are modified.

Func ChanRectify(cSpc);

cSpc A channel specifier for the channels to rectify.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ChanVisible(), ChanZero()

ChanScale()

This scales the data in specifed waveform channels of the current frame in the current view by multiplying by a
constant value. If the frame buffer is being shown, the frame buffer data is used instead. All data points in the
channels used are modified.

Func ChanScale(cSpc, val);

cSpc A channel specifier for the channels to scale.

val The value to multiply by.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ChanZero(), ArrMul()

ChanSearch()

This function searches a channel in file or memory view for a user-defined feature within a time range. It is exactly
the same as an active cursor search, but does not use or move cursors. By avoiding the need to draw and move
cursors, this function should be more efficient than using the active cursors, but there is no visual feedback.

Func ChanSearch(chan%, mode%, &sT, eT{, sp1{, sp2{, wid{, sp3}}}};

chan% The number of a channel in the file or memory view to search.

mode% This sets the search mode, as for the active cursors. See the cursor mode dialog documentation for details
of each mode. Only the first three modes can be used for log-binned data.

1 Maximum 9 Steepest rising 17 Turning point

2 Minimum 10 Steepest falling 18 Slope percentage

3 Extreme 11 Slope peak 19 Repolarisation %

4 Peak find 12 Slope trough 20 Expression

5 Trough find 13 Slope threshold 21 Outside dual levels

6 Threshold 14 Rising slope threshold 22 Within dual levels

7 Rising threshold 15 Falling slope threshold 23 Data points

8 Falling threshold 16 Absolute max slope

sT The start time for the search, the parameter will be returned containing the result (the position of the
feature) of a successful search. Note that as this argument is a reference parameter it has to be a real

Signal Version 6.06

19-384

variable (so that it can be updated), values such as 0 or MinTime() will not be accepted by the script
compiler.

eT The end time for the search. If eT is less than sT, the search is backwards.

sp1 This is the threshold level for threshold crossings and the reference level for extreme mode. It is in the y
axis units of the search channel (y axis units per second for slopes). For data points mode it is the number
of points. If omitted, the value 0.0 is used. For repolarisation % mode it is the time (in seconds) at which
the 100% repolarisation level is measured (the 0% value is measured at the start time for the search). Set it
to 0 if sp1 is not required for the mode.

sp2 This is the minimum required amplitude for peak and trough searches, the hysteresis for threshold
crossings, and the percentage for slope percentage searches. If omitted, the value 0.0 is used. Set it to 0 if
sp2 is not required for the mode.

wid This is the width in seconds for all slope measurements, the maximum peak width for peak and trough
searches, and the post-transition delay for threshold crossings. If omitted, the value 0.0 is used. Set it to 0
if width is not required for the mode or you do not want to set a maximum width or post-transition delay.

sp3 This is the second level for dual-level searches.

Returns 0 if the search succeeds or -1 if the search fails or a negative error code.

See also:
Active cursors, Cursor mode dialog, ChanMeasure(), ChanValue(), CursorActiveGet(),
CursorActiveSet()

ChanSelect()

This function is used to report on the selected/unselected state of a channel in a data view, and to change the
selected state of a channel.

Func ChanSelect(cSpc{, new%});

cSpc A channel specifier for the channels to select.

new% If present it sets the state: 0 for unselected, not 0 for selected. If omitted, the state is unchanged. Attempts
to change invisible channels are ignored.

Returns If you set chan% to a positive channel number the function returns the channel state at the time of the call,
0 for unselected, 1 for selected. Otherwise the function returns the number of selected channels at the time
of the call.

See also:
ChanList(), ChanOrder(), ChanVisible(), ChanWeight()

ChanShift()

This shifts the data in specified waveform channels of the current frame in the current view a specified number of
points right or left. The data is actually rotated so that points that ‘fall off’ one end are shifted back in at the other.
If the frame buffer is being shown, the frame buffer data is used instead. All data points in the channels used are
modified.

Func ChanShift(cSpc, shift%);

cSpc A channel specifier for the channels to shift.

shift% The number of point to shift the data. A negative value shifts points left, a positive value shifts points
right.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ChanZero(), ArrAdd()

Script language

19-385

ChanShow()

This function displays or hides a channel, or a list of channels, in a data or XY view. Showing a channel that is on
or doesn’t exist has no effect.

Func ChanShow(cSpc{, yes%});

cSpc A channel specifier for the channels to display or hide.

yes% If this is non-zero it turns the specified channels on and if it is zero it turns them off. If yes% is omitted no
changes are made.

Returns If you set chan% to a positive channel number the function returns the channel state at the time of the call,
1 for visible, 0 for invisible. Otherwise it returns -1.

See also:
ChanList(), ChanVisible()

ChanSmooth()

This function smooths the data in specified waveform channels of the current frame in the current view by
replacing each point by the average of n adjacent points, where n can be 3 or 5. If the frame buffer is being shown,
the frame buffer data is used instead. All data points in the channels used are modified.

Func ChanSmooth(cSpc, width);

cSpc A channel specifier for the channels to smooth.

width This sets the width to smooth over, either 3 or 5.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ChanZero(), ArrFilt()

ChanSub()

This function subtracts the data in one channel from the data in one or more other channels.

Func ChanSub(cSpc, src%);

cSpc A channel specifier for the channels to subtract from.

src% The number of the channel containing the data to subtract.

Returns Zero.

See also:
ChanAdd(), ChanDiv(), ChanMult()

ChanSubDC()

This function subtracts any DC offset present in the data in specifed waveform channels of the current frame in the
current view. The DC offset is measured over the time range specified, all data points in the channels are modified.
If the frame buffer is being shown, the frame buffer data is used instead.

Func ChanSubDC(cSpc, start, finish);

cSpc A channel specifier for the channels to subtract from.

start The start position for measurement of the DC level.

finish The end position for measurement of the DC level.

Returns 0 or a negative error code.

Signal Version 6.06

19-386

See also:
ShowBuffer(), ChanShow(), ChanZero(), ArrSum()

ChanTitle$()

This function returns the title for a channel in a data or XY view. In a memory or XY views, or in a sampling
document view, it can also set the channel title. For XY views only, it can also be used to get or set the Y axis title.
In an XY view the channel titles are visible in the Key window.

Func ChanTitle$(chan%{, new$});

chan% The channel number (1 to n). For an XY view only, a channel number of zero can be used to access the Y
axis title.

new$ If present, in a sampling document or memory view, this string holds the new channel title. If the string is
too long, it is truncated.

Returns The original title for the channel. If the channel does not exist, the function does nothing and returns an
empty string

See also:
ChanUnits$(), XTitle$(), XYKey(), YAxis()

ChanUnits$()

This returns the units for a waveform channel in a data view or the Y axis units in an XY view. In a memory, XY, or
sampling document view, it can also set the units.

Func ChanUnits$(chan%{, new$});

chan% A channel number (1 to n). This is ignored in an XY, where it operates on the Y axis units only.

new$ If present, in a sampling document, XY or memory view, this string holds the new channel title. If the
string is too long, it is truncated.

Returns It returns the original units for the channel. If the channel does not exist or is not of a suitable type, the
function does nothing and returns an empty string.

See also:
ChanTitle$(), XUnits$(), YAxis()

ChanValue()

This returns the value on a given channel at a given position. It returns a value in the y axis units of the channel
display mode. If the display mode has no y axis the value is the x axis position of the next item on the channel.

This returns the value corresponding to an x axis value. Use the View(v,c).[bin] notation or BinToX(bin) to
access view data by bin number.

Func ChanValue(chan%, pos{, &data%{, mode%{, binsz}}});

chan% A channel number (1 to n).

pos The x axis position for which the value is needed.

data% This is returned as 1 if there was data at the position, 0 if there was not. For example on a waveform
channel with time on the x axis, if there was no waveform point within BinSize(chan%) of the time set by
pos, this would be set to 0.

mode% For a waveform channel, if this is present and set to 1 then linear interpolation between points is used to
generate a more accurate value, otherwise the nearest waveform point is used. If present for a marker
channel, this sets the display mode to use for extracting a value from a view. If an inappropriate mode is
requested or if mode% is absent, the actual display mode is used. The modes for marker channels are:

0 The current mode for the channel. Any additional arguments are ignored.

1 Dots mode for markers, returns the position of the marker at or after pos.

Script language

19-387

2 Lines mode for markers, result is the same as mode 1.

3 Rate mode for markers. If the binSz argument is present it sets the width of each bin, otherwise the
bin width is set to 1.0.

9 Plot mode for real marker channels only using the currently selected channel data index selected for
that channel. Linear interpolation is always carried out unless pos is before the first marker point or
after the last, when the nearest point is used.

binSz If present when mode% specifies rate mode for markers, this sets the width of the rate histogram bins in x
axis units.

Returns It returns the value or zero if no data is found. For display modes with a y axis, if there is no data within
BinSize(chan%) of the position, the value is zero. This is the same value returned by the Cursor Values
menu for the channel.

If data% is not provided, any error stops the script. Errors include: no current window, current window not a data
view, no data at pos, and pos beyond range of x axis. If data% is present, errors cause data% to be set to 0.

For example, to get data value on channel 1 at the position of the cursor number 1 in the view on data file,
mydata.cfs:

vdata%:=ViewFind("mydata.cfs"); 'view handle for data
FrontView(vdata%); 'focus on the data window
ampl:=ChanValue(1,Cursor(1)); 'get data value at cursor

See also:
BinToX(), Cursor(), ChanMeasure(), DrawMode(), Interact(), ChanIndex()

ChanVisible()

This returns the shown state of the channel as 1 if the channel is visible and 0 if it is hidden. If you use a silly or
non-existant channel number, the result is 0 (not displayed).

Func ChanVisible(chan%);

chan% The channel number (1 to n) to report on.

Returns 1 if the channel is displayed, 0 if it is not.

See also:
ChanShow()

ChanWeight()

This function sets the relative vertical space to give a channel or a list of channels. The standard vertical space
corresponds to a weight of 1. When Signal allocates vertical space, channels are of two types: channels with a y
axis and channels without a y axis. Signal calculates how much space to give each channel type assuming all
channels have a weight of 1. Then the actual space allocated is proportional to the standard space multiplied by the
weight factor. This means that if you increase the weight of one channel, all other channels get less space in
proportion to their original space.

Func ChanWeight(cSpc{, new});

cSpc The specification for the list of channels to process.

new If present, a value between 0.001 and 1000.0 that sets the weight for all the channels in the list. Values
outside this range are limited to the range.

Returns The command returns the channel weight of the first channel in the list.

See also:
ChanOrder(), ViewStandard()

Signal Version 6.06

19-388

ChanZero()

This sets to zero all the data in specified waveform channels of the current frame in the current view. If the frame
buffer is being shown, the frame buffer data is used instead. All data points in the channels used are modified.

Func ChanZero(cSpc);

cSpc A channel specifier for the channels to zero.

Returns 0 or a negative error code.

See also:
ShowBuffer(), ChanShow(), ArrConst()

Chr$()

This function converts a code to a character and returns it as a single character string.

Func Chr$(code%);

code% The code to convert. Codes that have no character representation will produce unpredictable results when
printed or displayed.

Returns A string holding one character to represent the code.

See also:
%c format in Print(), Asc(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print$(),
Right$(), Str$(), UCase$(), Val()

Colour()

Deprecated. This is provided for backwards compatibility with old scripts. Use ColourGet() and ColourSet() in
new scripts.

This function gets and/or sets the colours of items. Colours are set in terms of the colour palette displayed in the
Colour menu, not directly in terms of colours. XY view channels are coloured using XYColour().

Func Colour(item%{, col%});

item% This is the item number, being the position of the item in the Colour menu, as follows:

0 Channel numbers 1
1

Rate histogram fill 2
2

Convoluted trace

1 Data view background 1
2

Text labels 2
3

Closed state

2 Waveform as line 1
3

Cursors & cursor labels 2
4

XY channels

3 Waveform as dots 1
4

Controls (not used) 2
5

XY fill

4 Waveform as skyline 1
5

Data display grid 2
6

XY key labels

5 Waveform as histogram 1
6

Axis markings and text labels 2
7

Convoluted trace (fitted)

6 Waveform histogram fill 1
7

Tagged frames background 2
8

Open state

7 Makers as lines 1
8

Frame list traces

8 Markers as dots 1
9

XY view background

9 Marker text 2
0

Error bars

Script language

19-389

10 Rate histogram outline 2
1

Fitted data

col% If present, this sets the index of the colour in the colour palette to be applied to the item. There are 40
colours in the palette, numbered 0 to 39. The first 7 colours in the palette are set to grey scales from black
to white, and the rest can be selected or mixed from basic colours.

Returns The index into the colour palette of the colour of the item at the time of the call.

See also:
PaletteGet(), PaletteSet(), XYColour(), ChanColour()

ColourGet()

Get the RGB colour for an item in the palette, the main colour table or the marker colour table. This command was
added at Signal version 5.02.

Func ColourGet(table%{, item%, &r, &g, &b});

table% -1 to select the colour palette, 0 for the main colour table, 1 for the overdraw cycling colours table.

item% The item number in the table selected by table%. See ColourSet() for a description of the item numbers.

r g b Returned holding the red, green and blue colour values (in the range 0.0 to 1.0) for the selected item in the
selected table.

Returns If only the table number is supplied, returns the length of the table, otherwise 0.

See also:
Colour dialog, ChanColourGet(), ColourSet(), ViewColourGet()

ColourSet()

Set the RGB colour for an item in the palette, the main colour table or the marker colour table. If you change the
colour of any item that is visible, this will make the display invalid and the item will repaint at the next opportunity.
This command was added at Signal version 5.02.

Func ColourSet(table%, size%);
Func ColourSet(table%, item%, r, g, b);

table% -1 to select the colour palette, 0 for the main colour table, 1 for the overdraw cycling colours table.

size% Used to set the size of the overdraw cycling colours table (table% = 1) in the range 8 to 100. The initial,
default value is 8 for colours 0 to 7. If you increase the size, the new table elements are set to black. Setting
a size of 0 resets the table to the default size. Setting a size of -1 resets the table size and sets default
colours. You can use -1 with any table; setting the table size only works for the overdraw cycling colours
table.

item% The item number in the table selected by table%. This is an index from 0 to 39 for the colour palette. It is
one of the following for the main colour table:

0 Channel numbers 11 Rate histogram fill 22 Convoluted trace

1 Data view background 12 Text labels 23 Closed state

2 Waveform as line 13 Cursors & cursor labels 24 XY channels

3 Waveform as dots 14 Controls (not used) 25 XY fill

4 Waveform as skyline 15 Data display grid 26 XY key labels

5 Waveform as histogram 16 Axis markings and text labels 27 Convoluted trace (fitted)

6 Waveform histogram fill 17 Tagged frames background 28 Open state

7 Makers as lines 18 Frame list traces

8 Markers as dots 19 XY view background

9 Marker text 20 Error bars

10 Rate histogram outline 21 Fitted data

Signal Version 6.06

19-390

For the overdraw cycling colours table it is an index from 0 up to the table size-1.

r g b Sets the red, green and blue values in the range 0 to 1.0 for the selected item in the selected table.

Returns If only the table number is supplied, returns the length of the table, or 0.

See also:
Colour dialog, ChanColourSet(), ColourGet(), ViewColourSet(), ViewUseColour()

Conditioner commands

The Cond… family of commands control external signal conditioners. At the time of writing, these commands
support the CED 1902 programmable signal conditioner, the Power1401 programmable gain option, the Digitimer
D360 and the Axon Instruments CyberAmp. Other conditioners may be added in the future.

These commands do not define which serial port is used by the conditioner nor the type of conditioner supported.
When you install Signal you must choose the conditioner type and set the serial port. All these commands require
a port% argument. This is the physical waveform input port number that the conditioner channel is attached to. It is
not a channel number in a view.

You can access the built-in interactive support for the conditioner from the sampling configuration channel setup
dialog. This can be a useful short-cut to getting the lists of gains and signal sources available on your
conditioner(s).

See also:
CondFilter(), CondFilterList(), CondGain(), CondGainList(), CondGet(), CondOffset(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList(), CondType()

CondFeature()

This command gets and sets special signal conditioner features that are not general enough to have dedicated
commands to support them. See the CondSet() command for more details of conditioner operation. There are four
command variants:

Get feature count
Func CondFeature(port%);

port% The waveform port number that the conditioner is connected to.

Returns The number of special features supported by the signal conditioner.

Get feature information
The command supports two types of features: those that have a set of discrete values such as ["None", "Rectify"],
and those that support a continuous range of floating point values, such as 10.0 to 25.6, for example. To determine
if the feature is continuous or discrete, call the function with only the first 3 or 4 arguments.

Func CondFeature(port%, feat%, &name${,&flags%{, list$[]}});
Func CondFeature(port%, feat%, &name${,&flags%{, &low{, &high}}});

feat% The feature number, from 1 to the number of features available

name$ Returned set to the name of the feature.

flags% Returned set to the feature flags. Currently, none are defined, so this will be 0.

list$ Returned set to an array of the possible settings (strings) for discrete type.

low Returned as the low limit for a feature with continuous values.

high Returned as the upper limit for a feature with continuous values

Returns The number of discrete feature values, or 0 if the feature supports continuous values over the range
returned in low and high.

Script language

19-391

Set feature value
Func CondFeature(port%, feat%{, val});

val If present, it sets the value for the feature set by feat% and port%. If this is a continuous feature, val
sets the new value. If the feature has n discrete setting, val should be 0 to n-1 to select the feature
corresponding to the feature description in list$[val]. If val exceeds the allowed range, a continuous
feature is set to the nearest allowed value and a discrete feature is unchanged.

Returns The feature value at the time of the call (before any change). This is an integer index for features with
discrete values otherwise it is the feature value.

See also:
CondFilterList(), CondGain(), CondGainList(), CondGet(), CondOffset(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList(), CondType()

CondFilter()

This sets or gets the frequency of the low-pass or high-pass filter of the signal conditioner. See the CondSet()
command for more details of conditioner operation.

Func CondFilter(port%, high%{, freq{, type%}});

port% The waveform port number that the conditioner is connected to.

high% This selects which filter to set or get: 0 for low-pass, 1 for high-pass.

freq If present, this sets the desired corner frequency of the selected filter. See the CondSet() description for
more information. Set 0 for no filtering. If omitted, the frequency is not changed. The high-pass frequency
must be set lower than the frequency of the low-pass filter, if not the function returns a negative code.

type% Optional, taken as 1 if omitted. The filter type to use when setting the filter.

Returns The cut-off frequency of the selected filter at the time of call, or a negative error code. A return value of 0
means that there is no filtering of the type selected.

See also:
CondFilterList(), CondGain(), CondGainList(), CondGet(), CondOffset(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList(), CondType()

CondFilterList()

This function gets a list of the possible filter frequencies of the conditioner. Conditioners that support continuous
frequency ranges also supply a list of frequencies to match the list of frequencies shown in the conditioner control
panel. See the CondSet() command for more details of conditioner operation.

Func CondFilterList(port%, high%, freq[]{, type%});

port% The waveform port number that the conditioner is connected to.

high% Selects which filter to get: 0 for low-pass, 1 for high-pass.

freq[] An array of reals holding the cut-off frequencies of the selected filter. There is always a value of 0 meaning
no filtering.

type% Optional, taken as 1 if omitted. The filter type in the range 1 to the number of types (as returned by
CondFilterType()).

Returns The number of filter frequencies (including 0) or a negative error code.

See also:
CondFilter(), CondFilterType(), CondGainList(), CondGet(), CondOffset(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList(), CondType()

Signal Version 6.06

19-392

CondFilterType()

This function returns information about the filter types supported by the conditioner for the low pass and high
pass filters. For example, the CED 1902 mk IV supports a choice of filter types. There are three command variants:

Get number of filter types
Func CondFilterType(port%, high%);

port% The waveform port number that the conditioner is connected to.

high% Selects which filter to return information for: 0 for low-pass, 1 for high-pass.

Returns The number of filter types.

Get filter type in use
Func CondFilterType(port%, high%, 0);

Returns The currently selected filter type, from 1 to the number of filter types.

Get filter type information
Func CondFilterType(port%, high%, type%{, &name${, &lower{, &upper}}});

type% The filter number, from 1 to the number of available filters.

name$ If present, returned holding the name of the filter selected by type%.

lower If present, returned as the lowest filter frequency (excluding 0, meaning ‘off’).

upper If present, returned as the highest supported filter frequency.

Returns The number of frequency values the filter can be set to (including 0) or 0 if the filter corner frequency can
be set to any value in the range lower to upper.

See also:
CondFilter(), CondGain(), CondGainList(), CondGet(), CondOffset(), CondOffsetLimit(),
CondRevision$(), CondSet(), CondSourceList(), CondType()

CondGain()

This sets and gets the gain of the signal passing through the signal conditioner See the CondSet() command for
more details of conditioner operation.

Func CondGain(port% {,gain});

port% The waveform port number that the conditioner is connected to.

gain If present this sets the ratio of output signal to the input signal. If this argument is omitted, the current
gain is returned. The conditioner will set the nearest gain it can to the requested value.

Returns The gain at the time of call, or a negative error code.

See also:
CondFilter(), CondFilterList(), CondGainList(), CondGet(), CondOffset(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList(), CondType()

CondGainList()

This function gets a list of the possible gains of the conditioner for the selected signal source. See the CondSet()
command for more details of conditioner operation.

Func CondGainList(port%, gain[]);

port% The waveform port number that the conditioner is connected to.

Script language

19-393

gain[] An array of reals holding the conditioner gains for the selected signal source. If a conditioner (for example,
1902) has a fixed set of gains, this is the set of gain values. If the conditioner supports continuously
variable gain, the first two elements of this array hold the minimum and the maximum values of the gain.

Returns The number of gain values if the conditioner has a fixed set of gains or 2 if the conditioner has
continuously variable gain. In the case of an error, a negative error code is returned.

See also:
CondFilter(), CondFilterList(), CondGain(), CondGet(), CondOffset(), CondOffsetLimit(),
CondRevision$(), CondSet(), CondSourceList(), CondType()

CondGet()

This function gets the input signal source of the signal conditioner, and the conditioner settings for gain, offset,
filters and coupling. The settings are returned in arguments which must all be variables. See CondSet() for details
of conditioner operation.

Func CondGet(port%, &in%, &gain, &offs, &low, &hi, ¬ch%, &ac%{, &typeL%{,
&typeH%}});

port% The waveform port number that the conditioner is connected to.

in% Returned as the zero-based index of the input signal source (see CondSet()).

gain Returned as the ratio of output to input signal amplitude (ignoring filtering).

offs A value added to the input waveform to move it into a more useful range. Offset is specified in user units
and is only meaningful when DC coupling is used.

low Returned as the cut-off frequency of the low-pass filter. A value of 0 means that there is no low-pass
filtering enabled on this channel.

hi Returned as the cut-off frequency of the high-pass filter. A value of 0 means that there is no high-pass
filtering enabled on this channel.

notch% Returned as 0 if the mains notch filter is off, and 1 if it is on.

ac% Returned as 1 for AC or 0 for DC coupling.

typeL% Optional integer variable returned holding the low-pass filter type number as described for
CondFilterType().

typeH% Optional integer variable returned holding the high-pass filter type number.

Returns 0 if all well or a negative error code.

See also:
CondFilter(), CondFilterType(), CondFilterList(), CondGain(), CondGainList(),
CondOffset(), CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList(),
CondType()

CondOffset()

This sets or gets the offset added to the input signal of the signal conditioner. See the CondSet() command for
more details of conditioner operation.

Func CondOffset(port%{, offs});

port% The waveform port number that the conditioner is connected to.

offs The value to add to the input waveform of the conditioner to move it into a more useful range. If this
argument is omitted, the current offset is returned. The conditioner will set the nearest value it can to the
requested value.

Returns The offset at the time of call, or a negative error code.

See also:

Signal Version 6.06

19-394

CondFilter(), CondFilterList(), CondGain(), CondGainList(), CondGet(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList(), CondType()

CondOffsetLimit()

This function gets the maximum and minimum values of the offset range of the conditioner for the currently
selected signal source. See the CondSet() command for more details of conditioner operation.

Func CondOffsetLimit(port%, offs[]);

port% The waveform port number that the conditioner is connected to.

offs[] This is an array of real numbers returned holding the minimum (offs[0]) and the maximum (offs[1])
values of the offset range of the conditioner for the currently selected signal source.

Returns 2 or a negative error code.

See also:
CondFilter(), CondFilterList(), CondGain(), CondGainList(), CondGet(), CondOffset(),
CondRevision$(), CondSet(), CondSourceList(), CondType()

CondRevision$()

This function returns the name and version of the signal conditioner as a string or an empty string if there is no
conditioner for the port.

Func CondRevision$(port%);

port% The waveform port number that the conditioner is connected to.

Returns A string describing the conditioner. Strings defined so far include: “1902ssh”, where ss is the 1902 ROM
software version number and h is the hardware revision level; and “CYBERAMP 3n0 REV x.y.z” where n
is 2 or 8.

See also:
CondFeature(), CondFilter(), CondFilterList(), CondFilterType(), CondGain(),
CondGainList(), CondGet(), CondOffset(), CondOffsetLimit(), CondSet(),
CondSourceList(), CondType()

CondSet()

This sets the input signal source, gain, offset, filters and coupling of the conditioner. All values are requests; the
command sets the closest possible value to that requested. If it is important to know what has actually been set
you should read back the values with CondGet() after setting them, or use the functions for reading specific
values.

Func CondSet(port%, in%, gain, offs {,low, high, notch%, ac%{, typeL%{,
typeH%}}});

port% The waveform port number that the conditioner is connected to.

in% A conditioner has one or more signal sources. For example, the CED 1902 supports Grounded, Single
ended, Normal Diff, Inverted Diff, etc. Conditioners of the same type may have different sources.
To select a source, set in% to its zero-based index in the list returned by CondSourceList().

gain This is the desired ratio of output to the input signal amplitude (ignoring the effect of any filtering). The
actual gain depends on the capabilities of the signal conditioner, see CondGainList(). The gain range
may be altered by the choice of signal source. For example, the 1902 Isolated Amp input has a build-in gain
of 100. This command sets the nearest gain to the requested value.

offs This is the desired value in user units to add to the input waveform to move it into a more useful range.
Offsets are only meaningful with DC coupling. Different conditioners have different offset ranges, and the
offset range may be altered by the choice of signal source, see CondOffsetLimit(). The command will
set the nearest offset it can to the desired value.

Script language

19-395

low If present and greater than 0, it is the desired corner frequency of the low-pass filter. Low-pass filters are
used to reduce the high frequency content of the signal, both to satisfy the sampling requirement, and in
case where it is known that no useful information is to be found in the signal above a certain frequency. If
omitted, or 0, there is no low-pass filtering. The actual filter value set depends on the capabilities of the
signal conditioner.

high If present and greater than 0, it is the high-pass filter corner frequency. High-pass filters reduce the low-
frequency content of the signal. This must be set lower than the frequency of the low-pass filter; if not,
the function returns a negative code. If omitted, or set to 0, there is no high-pass filtering.

Different signal conditioners have different ranges of frequency filtering. To find out the real filter
frequency set, use CondFilter(). CondFilterList() returns the list of possible filter frequencies.

notch% Some signal conditioners have a mains-frequency notch filter (usually 50 Hz or 60 Hz) used to reduce the
effect of mains interference on low level signals. This filter will remove the fundamental 50 Hz or 60 Hz
signal; it will not remove higher harmonics (for example 150 Hz). If notch% is present with a value greater
than 0, the notch filter is on. If omitted, or 0, the notch filter is off.

ac% The 1902 supports both AC and DC signal coupling. If you set AC coupling you should probably set the
offset to zero. If ac% is greater than 0, the signal conditioner is AC coupled. If omitted or 0, the signal
conditioner is DC coupled.

typeL% Optional value, taken as 1 if omitted, that sets the low-pass filter type as described for
CondFilterType() in the range 1 to the number of filter types.

typeH% Optional value, taken as 1 if omitted, that sets the high-pass filter type.

Returns 0 if all well or a negative error code.

See also:
CondFilter(), CondFilterList(), CondFilterType(), CondGain(), CondGainList(),
CondGet(), CondOffset(), CondOffsetLimit(), CondRevision$(), CondSourceList(),
CondType()

CondSourceList()

This function gets a list of the possible signal source names of the conditioner, or the specific signal source name
with the given index number. See the CondSet() command for more details of conditioner operation.

Func CondSourceList(port%, src$[]|src$ {,in%});

port% The waveform port number that the conditioner is connected to.

src$ This is either a string variable or an array of strings that is returned holding the name(s) of signal sources.
Only one name is returned per string.

in% This argument lets you select an individual source or all sources. If present and greater than or equal to 0,
it is the zero-based index number of the signal source to return. In this case, only one source is returned,
even if src$ is an array.

If omitted and src$ is a string, the first source is returned in src$. If src$[] is an array of strings, as
many sources as will fit in the string array are returned.

Returns If in% is greater than or equal to 0, it returns 1 or a negative error code. If in% is omitted, it returns the
number of signal sources or a negative error code.

See also:
CondFilter(), CondFilterList(), CondGain(), CondGainList(), CondGet(), CondOffset(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondType()

CondType()

This function returns the type of the signal conditioner.

Func CondType(port%);

port% The waveform port number that the conditioner is connected to.

Signal Version 6.06

19-396

Returns 0 for no conditioner on that port or 1 for a CED 1902, 2 for an Axon Instruments CyberAmp, 3 for a
Power1401 with ADC gain controls and 4 for a Digitimer D360.

See also:
CondFilter(), CondFilterList(), CondGain(), CondGainList(), CondGet(), CondOffset(),
CondOffsetLimit(), CondRevision$(), CondSet(), CondSourceList()

Cos()

This calculates the cosine of one or an array of angles in radians.

Func Cos(x|x[]{[]...});

x The angle, expressed in radians, or a real array of angles. The best accuracy of the result is obtained when
the angle is in the range -2pi to 2pi.

Returns When the argument is an array, the function replaces the array with the cosines of all the points and
returns either a negative error code or 0 if all was well. When the argument is not an array the function
returns the cosine of the angle.

See also:
Abs(), ATan(), Cosh(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan()

Cosh()

This calculates the hyperbolic cosine of one value or an array of values.

Func Cosh(x|x[]{[]...});

x The value, or a real array of values.

Returns When the argument is an array, the function replaces each value with its hyperbolic cosine and returns 0.
When the argument is not an array the function returns the cosh of the argument.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(), Round(),
Sinh(), Sqrt(), Tanh(), Trunc()

Cursor...()

Cursor()

This function returns the x axis position of a vertical cursor, and can also move the cursor to a new position.

Func Cursor(num%{, where});

num% The cursor number to use, cursor numbers run from 0 to 10.

where If present, the new position of the cursor. If the new position is out of range of the x axis, it is limited to the
x axis.

Returns The old cursor position or 0 if the cursor doesn't exist.

Examples:

Cursor(1,2.0); 'Set cursor 1 at position 2.0
where := Cursor(1); 'Get cursor position

See also:
ChanValue(), CursorDelete(), CursorLabel(), CursorLabelPos(), CursorNew(),
CursorRenumber(), CursorSet(), CursorValid(), HCursor()

Script language

19-397

CursorActive()

This function sets and retrieves the parameters used by an active vertical cursor in searching for a feature in view
data, it replaces the less elegant and now deprecated CursorMode(), CursorActiveSet() and
CursorActiveGet() functions. There are two forms of the function, the first one sets the active cursor mode and
parameters, the second is used to read the mode and parameters back.

Func CursorActive(num%{, mode%{, chan%, start|start$, end|end$ {,n%|thresh|
ref$|expr$ {,hyst {,width {,def|def$|min {,thresh2}}}}}}});

This form of the function is used to set active cursor modes and parameters. Note that the use of some of the
parameters varies according to the cursor mode that is set. The function parameters are:

num% The vertical cursor number for which we are setting the active mode parameters, from 0 to 10. If only this
argument is provided the function returns the current cursor mode and makes no changes.

mode% The active cursor mode (see the main active cursor documentation for a complete description of the
modes). The possible values of mode% are:

0 Static 8 Falling threshold 16 Extreme slope

1 Maximum 9 Maximum slope 17 Turning point

2 Minimum 10 Minimum slope 18 Percentage slope

3 Extreme 11 Peak in slope 19 Repolarisation %

4 Peak find 12 Trough in slope 20 Expression

5 Trough find 13 Slope threshold 21 Outside dual levels

6 Threshold 14 Slope +ve thresh 22 Within dual levels

7 Rising threshold 15 Slope -ve thresh 23 Point count

Modes shown in italics are not available for use with cursor zero and are forced to Static mode. Modes
above 3 apart from Expression and Point count are not allowed for log-binned data.

chan% The channel number on which the cursor searches for features. This parameter is ignored for Static and
Expression modes.

start The start time for the feature search in seconds.

start$ The start time for the search as a string. Expressions such as "XLow()+0.2" can be used, numbers used
in the string are assumed to be in seconds unless a specific modifier is used thus: "XLow()+0.2ms".

end The end time for the feature search, in seconds.

end$ The end time for the search as a string.

n% This is the point count for Points count mode (mode 23).

thresh The threshold level for searches for appropriate modes. This can also be given as a string expression
where items such as "HCursor(1)" or "Mean(0.1, 0.2)" can be used.

ref$ The reference level for Extreme searches. For Repolarisation % searches (mode 19) this is the time
expression that defines the time at which the 100% value is measured (this can also be given as a number
in seconds). The 0% value is measured at the start time for the search.

expr$ The time expression string for Expression mode (mode 20).

hyst The hysteresis for threshold crossing searches or the minimum amplitude value for peak and trough
searches, for Percentage slope (mode 18) and Repolarisation % (mode 19) searches this is the
percentage value.

width The measurement or slope width value used in the feature search. For peak and trough searches, this sets
the maximum width for the peak while for threshold crossings it is the delay after crossing parameter.

def The default position for the cursor - this is the position the cursor moves to if the search fails. Default
positions only apply to cursors numbers higher than zero and are not used for Expression mode. If you
do not set a default position and the search fails, the cursor will become invalid (which prevents it being
used for measurements), so you can use the default position to ensure that measurements are taken even
if the active mode cursor search fails.

Signal Version 6.06

19-398

def$ The default position as a time expression string. Default positions only apply to cursors numbers higher
than zero.

min The minimum step - only used if this is cursor 0.

thresh2 The second threshold for Outside dual levels and Within dual levels searches (modes 21 and 22
respectively). This can also be given as a string expression.

Returns The active cursor mode at the time that the function was called.

Func CursorActive(num%{, item% {, &val$}});

This form of the function is used to read back the active cursor mode and parameters. Note that the use of some of
the parameters varies according to the cursor mode that is set. The function parameters are:

num% The vertical cursor number for which to retrieve information, from 0 to 10.

item% This specifies the parameter for which to retrieve the current value:

-1 mode% -2 chan% -3 start$ -4 end$ -5 n% -6 t
h
r
e
s
h
$

-7 def$ or
expr$

-8 ref$ -9 hyst -10 width -11 min -12 t
h
r
e
s
h
2
$

the value returned when item% is equal to -7 is expr$ if the cursor mode is Expression, def$ otherwise. If
item% is omitted it is treated as -1.

val$ This optional string variable will be updated with the parameter value as a string when item% is -3, -4, -6, -
7, -8 or -12.

Returns The numerical value of the selected value. For items -3, -4, -6, -7, -8 and -12 this value is generated by
parsing the associated string so it will reflect the position of any cursors and data values used, if the
string parsing fails zero is returned.

See also:
ChanSearch(), Cursor(), CursorDelete(), CursorNew(), HCursorActive()

CursorActiveGet()

This function returns the parameters used by an active cursor in searching for a feature in the view data. Note that
the use of some parameters varies according to the cursor mode set. You should check the cursor mode first since if
it is Repolarisation % then the fifth argument should be a string and not a real variable. This function has been
replaced by the rather more elegant CursorActive() which should be used for all new scripts.

Func CursorActiveGet(num%, chan%, start|start$, end|end$ {,n%|thresh|expr$|
ref${, hyst{, width{, def|def$|min{, thresh2}}}}});

num% The cursor number from 0 to 10.

chan% Returned holding the number of the channel on which the cursor operates.

start Returned holding the start time for the feature search.

start$ Returned holding the start time for the search as a string. Search limits such as "XLow() + 0.2" can be
correctly returned.

Script language

19-399

end Returned holding the end time for the search.

end$ Returned holding the end time for the search as a string.

n% The search point count when the cursor mode is 23.

thresh Returned holding the threshold level used in the feature search.

expr$ Returned holding the expression string for expression (20) mode.

ref$ Returned holding the expression used in Repolarisation % (19) mode searches to define the time at which
the 100% value is measured.

hyst Returned holding the hysteresis value used in the feature search or the percentage value for Percentage
slope (18) and Repolaris ation %(19) mode s earches .

width Returned holding the slope width value used in the feature search.

def Returned holding the default position if the search fails

def$ Returned holding the default position as a string.

min Returned holding the minimum step for cursor 0 searches.

thresh2 Returned holding the second threshold level for dual-level searches.

Returns Zero.

See also:
Cursor(), CursorDelete(), CursorMode(), CursorNew(), CursorActive()

CursorActiveSet()

This function sets the parameters used by an active vertical cursor in searching for a feature in view data. Note that
the use of some of the parameters varies according to the cursor mode set, which means that you should take care
to set the active mode first using CursorMode() and then use this function to set the active mode parameters. All
time values, whether as a number or a string, are in seconds regardless of the X axis units that are in use. This
function has been replaced by the rather more elegant CursorActive() which should be used for all new scripts.

Func CursorActiveSet(num%, chan%, start|start$, end|end$ {, n%|thresh|expr$|
ref${, hyst{, width{, def|def$|min{,thresh2}}}}});

num% The vertical cursor number, from 0 to 10.

chan% The channel number on which the cursor searches for features.

start The start time for the feature search in seconds.

start$ The start time for the search as a string. Expressions such as "XLow()+0.2" can be used, again in
seconds. In Signal version 3 this parameter was also used to set the expression in Expression mode, so to
avoid incompatibilities with old scripts this parameter is also copied to the expression string if Expression
mode is in use for the cursor in question.

end The end time for the feature search, in seconds.

end$ The end time for the search as a string.

n% This is the point count for Points count mode (mode 23).

thresh The threshold level for searches for appropriate modes. This can also be given as a string.

expr$ The expression string for Expression mode (mode 20).

ref$ The expression used in Repolarisation % searches (mode 19) to define the time at which the 100% value
is measured, this can also be given as a number. The 0% value is measured at the start time for the search.

hyst The hysteresis for threshold crossing searches or the minimum amplitude value for peak and trough
searches, for Percentage slope (mode 18) and Repolarisation % (mode 19) searches this is the
percentage value.

Signal Version 6.06

19-400

width The measurement or slope width value used in the feature search. For peak and trough searches, this sets
the maximum width for the peak while for threshold crossings it is the delay after crossing parameter.

def The default position for the cursor - this is the position the cursor moves to if the search fails. Default
positions only apply to cursors numbers higher than zero. If you do not set a default position and the
search fails, the cursor will become invalid (which prevents it being used for measurements), so you can
use the default position to ensure that measurements are taken even if the active mode cursor search fails.

def$ The default position as a string. Default positions only apply to cursors numbers higher than zero.

min The minimum step - only used if this is cursor 0.

thresh2 The second threshold for Outside dual levels and Within dual levels searches (modes 21 and 22
respectively). This can also be given as a string.

Returns Zero.

See also:
ChanSearch(), Cursor(), CursorDelete(), CursorMode(), CursorNew(), CursorActive()

CursorDelete()

Deletes a cursor. It is not an error to delete an unknown cursor (which has no effect).

Func CursorDelete({num%});

num% The cursor number to delete, or -1 to delete all cursors. If omitted, the highest-numbered cursor is deleted.

Returns The number of the cursor deleted or 0 if no cursor was deleted.

See also:
Cursor(), CursorLabel(), CursorLabelPos(), CursorNew(), CursorRenumber(), CursorSet(),
HCursorDelete()

CursorExists()

This function tests if a given vertical cursor exists at the time of the call.

Func CursorExists(num%);

num% The cursor number from 0 to 10. For cursor zero, which can only be hidden not deleted, this will always
return 1.

Returns 1 if the cursor exists, 0 if it does not.

See also:
Cursor(), CursorDelete(), HCursorExists()

CursorLabel()

This gets and optionally sets the cursor label style for the view or for a cursor. You can label cursors with a
position and/or the cursor number, or with user-defined text. There are two variants: the first sets styles and labels;
the second reads back user-defined labels.

Func CursorLabel({style%{, num%{, form$}}});
Func CursorLabel(&form$, num%);

style% Set 0=None, 1=Position, 2=Number, 3=Both, 4=User-defined. Omit for no change. Style 4 is used with a
format string. Styles 0-3 set the styles of cursors selected by num% and the view style for new cursors if
num% is -1 or omitted. Style 4 is applied to cursors set by num%; it does not set the view style.

num% A value of -1 or omitting the argument selects all cursors and sets the view style for new cursors, 0-9
selects one cursor.

Script language

19-401

form$ A user-defined label string with replaceable fields %p, %n and %v(chan) for position, number and channel
value; chan is the channel number whose value you require. %w.dp and %w.dv(chan) formats are allowed
where w and d are numbers that set the field width and number of decimal places.

Returns A cursor style before any change as 0-4 if a single cursor is selected, or the view cursor style as 0-3. If
style% is omitted or not 0-3, the current view cursor style is not changed.

See also:
Cursor(), CursorDelete(), CursorLabelPos(), CursorNew(), CursorRenumber(), CursorSet(),
HCursorLabel()

CursorLabelPos()

This function lets you set and read the position of the cursor label.

Func CursorLabelPos(num%{, pos});

num% The cursor number. If the cursor does not exist the function does nothing and returns -1.

pos If present, the command sets the label position as the percentage of the distance from the top of the
cursor. Out-of-range values are set to the appropriate limit.

Returns The cursor position before any change was made, or -1 if the cursor does not exist.

See also:
Cursor(), CursorDelete(), CursorLabel(), CursorNew(), CursorRenumber(), CursorSet(),
HCursorLabelPos()

CursorMode()

This function lets you set and read the active cursor mode for a cursor. This function has been replaced by the
rather more elegant CursorActive() which should be used for all new scripts.

Func CursorMode(num%{, mode%});

num% The cursor number. If the cursor does not exist the function does nothing and returns -1.

mode% If present, the command sets the new cursor mode (see the main active cursor documentation for a
description of the modes). The possible values of mode% are:

0 Static 8 Falling threshold 16 Extreme slope

1 Maximum 9 Maximum slope 17 Turning point

2 Minimum 10 Minimum slope 18 Percentage slope

3 Extreme 11 Peak in slope 19 Repolarisation %

4 Peak find 12 Trough in slope 20 Expression

5 Trough find 13 Slope threshold 21 Outside dual levels

6 Threshold 14 Slope +ve thresh 22 Within dual levels

7 Rising threshold 15 Slope -ve thresh 23 Point count

Modes shown in italics are not available for use with cursor zero and will be forced to static. Modes above
3 apart from Expression and Point count are not allowed for log-binned data.

Returns The cursor mode before any change was made, or -1 if the cursor does not exist.

See also:
ChanSearch(), Cursor(), CursorActive(), CursorNew(), CursorSet()

CursorNew()

This command adds a new cursor to the view at the designated position. A new cursor is created in Static mode
(not active).

Func CursorNew({where{, num%}});

Signal Version 6.06

19-402

where Where to position the cursor. In a file or memory view it is a time in seconds. In an XY view it is in x axis
units. The position is limited to the x axis range. If the position is omitted, the cursor is placed in the middle
of the window.

num% If this is omitted, or set to -1, the lowest numbered free cursor is used. If this is a cursor number, that
cursor is created. This must be a legal cursor number or -1.

Returns It returns the cursor number as an integer, or 0 if all cursors are in use.

See also:
Cursor(), CursorDelete(), CursorLabel(), CursorLabelPos(), CursorRenumber(),
CursorVisible(), CursorSet(), HCursorNew()

CursorOpen()

This command reports on the open state or opens the cursor values and cursor regions dialogs for the current data
or memory view. These dialogs open in the last used position unless not usefully on a monitor, when they open
centred on the application window. If the dialog is open you can use this command to get the dialog handle and
change settings. Use FileClose() to close an opened dialog. This function was added in Signal version 5.00.

Func CursorOpen({opt%{, mode%{, xZero%{, yZero%|type%}}}});

opt% Set 0 to open the cursor values dialog and 1 to open the cursor regions dialog. Omit or set -1 as the only
argument to report on the open state of the cursor dialogs.

mode% Set 1 to open the dialog and show it, 0 or omitted to open and hide it. You may wish to open a window
invisibly so that you can position it before it is displayed.

xZero% This sets the state of the Time Zero or Zero Region check boxes and the associated cursor column
selection. Set -2 for unchecked, -1 or omit for no change or set 0 to 9 for the values or 0 to 8 for the regions
dialog to check the box and select a column. 0 selects the first column, 1 the second, and so on.

yZero% This sets the state of the Y Zero check box and associated column selection for the cursor values dialog.
Set -2 for unchecked, -1 or omit for no change and 0-9 to check the box and select a column. 0 selects the
first column, 1 the second, and so on.

type% This sets the measurement type for the cursor regions dialog. Set 1-17 to set a measurement as for
ChanMeasure(). Omit or set -1 or 0 for no change. See the documentation of the Cursor Regions
window for details of these measurements.

1 Curve area 6 Modulus 11 Standard deviation 16 Standard error
2 Mean 7 Maximum 12 Extreme 17 RMS error
3 Slope 8 Minimum 13 Peak
4 Area 9 Peak to peak 14 Trough
5 Sum 10 RMS amplitude 15 Point count

Returns If opt% is -1 or omitted the return value is the sum of 1 if the values dialog is open and 2 if the regions
dialog is open. Otherwise the return value is the handle of the opened dialog, or 0 if the dialog failed to
open for some reason.

See also:
ChanMeasure(), ChanValue(), FileClose(), Window()

CursorRenumber()

This command renumbers the cursors from left to right in the view. There are no arguments.

Func CursorRenumber();

Returns The number of cursors found in the view.

See also:
Cursor(), CursorDelete(), CursorLabel(), CursorLabelPos(), CursorNew(), CursorSet(),
HCursorRenumber()

Script language

19-403

CursorSearch()

This function causes active cursors in a data view to search according to the current cursor mode. You can cause
all cursors to search, or a restricted range of cursor numbers. Moving cursor 0 with CursorSearch causes all other
vertical cursors to search if they are active.

Func CursorSearch(num%{, stop%});

num% This is the first cursor number to run the search defined by the active cursor mode. Set this to 0 to cause
cursor 0 to search forwards and to -1 for cursor 0 to search backwards. CursorSearch(0) and
CursorSearch(-1) are equivalent to the Ctrl+Shift+Right and Ctrl+Shift+Left key
combinations.

stop% This optional argument sets number of the last cursor to try to reposition. If you omit this argument, all
cursors from num% upward will search according to their active mode. To reposition a single cursor set
stop% the same as num%.

Returns The X position that cursor num% moved to or -1 if didn’t move. You can also use CursorValid() to test
if searches have succeeded.

See also:
ChanSearch(), Cursor(), CursorActive(), CursorNew(), CursorValid(), MeasureChan(),
MeasureX()

CursorSet()

This command deletes any existing vertical cursors, then positions a specified number of new cursors, equally
spaced in the view and numbered in order from left to right. If any positions are given, they are applied. The cursor
labelling style is not changed.

Proc CursorSet(num%{, where1{, where2...}});

num% The number of cursors in the range 0 to the maximum allowed. 0 turns off all the cursors. It is a run-time
error to ask for more than the maximum or less than 0 cursors.

where Optional cursor positions in x axis units. Positions that are out of range are set to the nearest valid
position.

Examples:
CursorSet(0); 'Delete all cursors
CursorSet(2,20,30); 'remove cursors, set 2 at 20 and 30 on x axis.

See also:
BinToX(), Cursor(), CursorDelete(), CursorLabel(), CursorVisible(), CursorLabelPos(),
CursorNew(), CursorRenumber()

CursorValid()

Use this function to test if the last search of a cursor succeeded. Cursor positions are valid if a search succeeds or
if the cursor is positioned manually or by a script command. The position of a newly created cursor is valid.

Func CursorValid(num%);

num% The cursor number to test for a valid search result.

Returns The result is 1 if the position of the nominated cursor is valid or 0 if it is invalid or the cursor does not
exist.

See also:
CursorActive(), CursorNew(), CursorSearch(), CursorVisible(), MeasureChan(), MeasureX()

Signal Version 6.06

19-404

CursorVisible()

Vertical cursors can be hidden without deleting them. Interactively you can hide cursor 0, but from a script you can
show and hide any vertical cursor. Cursors are always made visible by the Ctrl+n key combination.

Func CursorVisible(num%{, show%});

num% The cursor number or -1 for all vertical cursors.

show% If present set this to 0 to hide the cursor and non-zero to show it.

Returns The state of the cursor at the time of the call (0=hidden, 1=visible) or -1 if the cursor does not exist. If num%
is -1, the result is the number of vertical cursors.

See also:
CursorExists(), CursorNew(), CursorSearch(), CursorValid()

CursorX()

This command gets the position of a cursor before the last move. It is particularly useful with Active cursors. The
same mechanism is available as a dialog expression. This command was added at Signal version 6.05.

Func CursorX(num%);

num% The cursor number to use in the range 1 to 9 (0 to 9 in a time view).

Returns The cursor position before the last move (however it was caused) or -1 if the cursor doesn't exist. Use
Cursor(num%) to get the current position.

See also:
BinToX(), XToBin(), Cursor(), CursorDelete(), CursorLabel(), CursorLabelPos(),

CursorRenumber(), CursorVisible(), CursorSet(), CursorNew()

D

Date$()

This function returns a string holding the date. Use TimeDate() to get the date as numbers. For this description,
we assume that today’s date is Wednesday 1 April 1998, the system language is English and the system date
separator is “/”. Default argument values are shown bold.

Func Date$({dayF%, {monF%, {yearF%, {order%, {sep$}}}}});

dayF% This sets the format of the day field in the date. This can be written as a day of the week or the day
number in the month, or both. The options are:

1 Show day of week: “Wednesday”.

2 Show the number of the day in the month with leading zeros: “01”.

4 Show the day without leading zeros: “1”. This overrides option 2.

8 Show abbreviated day of week: “Wed”.

16 Show weekday name first, regardless of the order% field.

Use 0 for no day field. Add the numbers for multiple options. For example, to return “Wed 01”, use 11
(1+2+8) as the dayF% argument.

If you add 8 or 16, 1 is added automatically. If you request both the weekday name and the number of the
day, the name appears before the number.

monF% The format of the month field. This can be returned as either a name or a number. If this argument is
omitted, the value 3 is used. The options are:

0 No month field.

1 Show name of the month: “April”.

2 Show number of month: “04”

Script language

19-405

3 Show an abbreviated name of month: “Apr”

4 Show number of month with no leading zeros: “4”

yearF% The format of the year field. This can be returned as a two or four digit year.

0 No year is shown

1 Year is shown in two digits: “98”.

2 Year is shown in two digits with an apostrophe before it: “’98”.

3 Year is shown in four digits: “1998”.

order% The order that the day, month and year appear in the string.

0 Operating system settings

1 month/day/year

2 day/month/year

3 year/month/day

sep$ This string appears between the day, month and year fields as a separator. If this string is empty or
omitted, Signal supplies a separator based on system settings.

For example, Date$(20, 1, 2, 1, " ") returns "Wednesday April 1 ’98". As 20 is 16+4, we have the day
first, even through the order% argument places the day in between the month and the year. Date$() returns
"01/Apr/98".

See also:
Seconds(), TimeDate(), Time$()

Debug()

This command either opens the debug window so you can step through your script, set breakpoints and display
and edit variables or it can be used to stop the user entering the debugger with the Esc key.

Proc Debug({msg$}|{Esc%});

msg$ When the command is used with no arguments, or with a string argument, the script stops as though the
Esc key had been pressed and enters the debugger. If the debugging toolbar was hidden, it becomes
visible. If the msg$ string is present, the string is displayed in the bar at the top of the script window.

Esc% When the command is used with an integer argument, it enables and disables the ability of the user to
break out of a running script. If Esc% is 0, the user cannot break out of a script into the debugger with the
Esc key and must wait for it to finish. If Esc% is 1, the user can break out. Signal enables the Esc key each
time a script starts, so make this the very first instruction of your script if you want to be certain that the
user cannot break out.

This command was included for use in situations such as student use, where it is important that the user cannot
break out of a script by accident. It is advisable to test your script carefully before using this option. Once set, you
cannot stop a looping script except by forcing a fatal error. Make sure you save your script before setting this
option.

See also:
Eval()

DebugHeap()

This script command is provided for use by CED engineers to help to debug system problems. It was added at
version 4.02. It reports on the state of the application heap, used to dynamically allocate memory. The heap is a list
of memory sections. Each section is described by its start address, its size, and if it is in use by the application or is
free (available for use). When the application wants more memory, it asks the heap for it. If there is no suitable
memory in the heap, the heap requests more memory from the system and uses this to create more heap sections.

The command has the following variants:

Test heap integrity
When called with no arguments, the command tests the integrity of the heap (all command variants do this first).
The return values indicate problems in the heap. The error return values apply to all calls to the Heap() function.

Signal Version 6.06

19-406

Func DebugHeap();

Returns 0 = heap OK, -1 = _HEAPBADBEGIN initial header information is bad or cannot be found, -2
=_HEAPBADNODE bad node or the heap is damaged, -3=_HEAPBADPOINTER a pointer into the heap is
invalid, -4 = _HEAPEMPTY the heap has not been initialised, -5 = unknown error.

Release unused memory
When called with a single argument of -1 (or any value less than 0), the heap will return unused memory back to the
operating system. However, I have never seen this make any difference to the data held by the heap.

Func DebugHeap(-1);

Returns The same values as the call with no arguments.

Set unused heap memory to known value
When called with a single argument that is a positive number, all unused memory that is owned by the heap is set
to this value.

Func DebugHeap(fill%);

fill% All unused bytes in the heap are set to the low byte of this value. This can sometimes be useful when you
suspect that unused memory is being used by the program.

Returns The same values as the call with no arguments.

Get heap information
The heap is a list of used an unused sections of memory; this call gets information on the number of used an
unused sections and the total size of the used sections and the total heap size.

Func DebugHeap(info%[]{, stats%[]});

info% An integer array of at least 4 elements. The first four array elements are returned holding:

0 The total number of memory sections in the heap.

1 The number of used memory sections in the heap.

2 The total size of memory controlled by the heap.

4 The total size of memory that is in used and controlled by the heap.

stats% This optional argument is an integer array of at least 32 elements. The elements are returns with heap
information. The nth element is returned holding the number of heap sections of a size between 2n and
2n+1-1 bytes. The very first element, which should hold the count of sections that are 1 byte in size
actually holds the count of sections that are 0 or 1 byte long.

Returns The same values as the call with no arguments.

Get heap entries
The last call variant returns the entire heap information, and can optionally return the first few bytes of data held in
the heap.

Func DebugHeap(walk%[][]);

walk% This is an integer matrix with at least 3 columns. Ideally it would have at least as many rows as there are
memory sections (both used and free) in the heap. If there are more than 3 columns, the additional columns
are returned holding the heap data. Each row of the matrix returns information for one section. The
columns hold:

0 0 if the section is unused, 1 if it is used.

1 The start address of the section.

2 The size of the section, in bytes.

3 If present, returns the first 4 bytes of data in this section.

4 If present, returns the next 4 bytes of data in this section.

n Returns further data (if it exists) in the section.

Script language

19-407

Returns If there is no error, the function returns the number of sections in the heap. This can be more than the
number of rows in the matrix. If there is an error, the function returns a negative value as described for the
call with no arguments.

Example
This example prints out the number of system handles in use and a synopsis of the heap usage. If you suspected
that your script was causing a memory leak you could insert this procedure, then call it periodically. If there is a
steadily increasing use of handles or heap space, check that you are closing all the views you have created.

proc ReportHeap()
var info%[4], stats%[32], i%;
DebugHeap(info%, stats%);
PrintLog("Handles=%d, Heap used=%d kB in %d fragments, %d Kb free in %d fragments\n",
 App(-4), info%[3]/1000.0, info%[1], (info%[2]-info%[3])/1000.0, info%[0]-info%[1]);
for i% := 0 to 15 do PrintLog("%6d", pow(2, i%)); next;
PrintLog("\n");
for i% := 0 to 15 do PrintLog("%6d", stats%[i%]); next;
PrintLog("\n");
for i% := 16 to 19 do PrintLog("%4dkB", pow(2, i%)/1024); next;
for i% := 20 to 29 do PrintLog("%4dMB", pow(2, i%)/(1024*1024)); next;
for i% := 30 to 31 do PrintLog("%4dGB", pow(2, i%)/(1024*1024*1024)); next;
PrintLog("\n");
for i% := 16 to 31 do PrintLog("%6d", stats%[i%]); next;
PrintLog("\n");
end;

See also:
App(-4), Debug(), Eval(), DebugList(), DebugOpts()

DebugList()

This command is used for debugging problems in the system. It writes information to the Log view about the
internal list of “objects” used to implement the script language. Low numbered objects are the integers 0 to 20,
higher-numbered items are the instructions that the script compiles to followed by objects that represent the built-
in script commands.

Proc DebugList(list% {, opt%});

list% This determines what to list and also controls the accumulation of timing information.

-3 Disable the accumulation of timing information (the normal state) for calls to built-in functions.

-2 Enable the accumulation of timing information. This is normally used as a diagnostic of slow script
performance when we need to figure out where the time is being spent.

-1 Reset accumulated times and call counts to 0.

0 List a summary of the DebugList() options in the Log view.

1 List the names of fixed objects (constants and operators). This is usually only of interest to CED
programmers.

2 List the names of permanent objects (constants, operators and built-in commands).

3 List built-in commands (things like NextTime()).

>3 List information for the object with the index list%.

opt% This optional argument (default value 0) sets the additional object information to list and is the sum of:

1 list the index number.

2 list the object type.

4 list timing information for the built-in script commands. The timing information is three numbers: the
number of times the command was called, the total time in seconds used and the time per call in
microseconds.

8 Only list timing information for built-in script commands that were called at least once (added in
version 6.03).

Signal Version 6.06

19-408

16 Only list timing information for built-in script commands that were not called (added in version 6.03).
We use this to check our test script coverage.

To use the timing information:

DebugList(-3); 'Disable timing
DebugList(-1); 'Reset call counts and times
DebugList(-2); 'Enable timing
... your code to be timed
DebugList(-3); 'stop accumulating times
PrintLog("Command name Total calls Seconds us/call Index\n");
DebugList(3, 1+4+8); 'list indices and times for used built-in commands

Here is some typical output. The timing is from the point where the command arguments have been prepared up to
the point where the command returns control to the script language. These times were measured on an AMD
Athlon 1900+ rated processor.

Command name Total calls Seconds us/call Index
...
Asc 537 0.000512 0.953 530
Chr$ 668 0.001169 1.751 531
DelStr$ 13 0.000030 2.299 532
InStr 1076 0.001263 1.174 533
LCase$ 130 0.000230 1.769 534
Left$ 334 0.000742 2.221 535
Mid$ 3751 0.005480 1.461 536
Right$ 79 0.000155 1.959 537
...

The timing information is normally used by CED programmers to check that functions are working with a reasonable
efficiency and when attempting to find out where all the time is going in a script. Any time not accounted for by
built-in commands is general script execution time (fetching instruction, running them, allocating variables and so
on). If you should discover that a particular built-in function is using a lot of time, you may be able to optimise your
use of the function to improve matters. If you think that a particular function is slow, let us know; we may be able to
improve it.

See also:
App(-4), Debug(), Eval(), DebugOpts(), DebugHeap()

DebugOpts()

This command is used for debugging problems in the system. It controls internal options used for debugging at the
system level.

Func DebugOpts(opt% {,val%});

opt% This selects the option to return (and optionally to change). A value of 0 prints a synopsis of available
options to the Log view and the current value of each option. Values greater than 0 return the value of that
option, and print the option information to the Log view. At the time of writing, only option 1, dump
compiled script to the file default.cod is implemented.

val% If present, this sets the new value of the option.

See also:
Debug(), Eval(), DebugList()

DeleteFrame()

This function deletes the current frame from the current data view. Frames can only be deleted if they were
appended and have not yet been saved to disk. It is not possible to delete the last frame in a memory view.

Func DeleteFrame();

Returns Zero or a negative error code.

Script language

19-409

See also:
AppendFrame(), FrameCount(), FrameFlag(), FrameTag()

DelStr$()

This function removes a substring from a string.

Func DelStr$(text$, index%, count%);

text$ The string to remove characters from. This string is not changed.

index% The start point for the deletion. The first character is index 1. If this is greater than the length of the string,
no characters are deleted.

count% The number of characters to delete. If this would extend beyond the end of the string, the remainder of the
string is removed.

Returns DelStr$() returns the original string with the indicated section deleted.

See also:
InStr(), LCase$(), Len(), Mid$(), Right$(), UCase$()

Dialogs

You can define your own dialogs to get information from the user. You
can define dialogs in a simple way, where each item of information has a
prompt and the dialog is laid out automatically, or you can build a
dialog by specifying the position of every item. A simple dialog has the
structure shown in the diagram:

The dialog is arranged in terms of items. Unless you specifically
request otherwise, the dialog items are stacked vertically above each
other with buttons arranged at the bottom.

The dialog has a title of your choosing at the top. There are OK and
Cancel buttons at the bottom of the dialog. When the dialog is used,
pressing the Enter key is equivalent to clicking on OK.

This form of dialog is very easy to program. There is no need to specify any position or size information, the
system works it all out. Some users require more complicated dialogs, with control over the field positions. This is
also possible, but more involved to program. You are allowed up to 1000 fields in a dialog, the DlgShow() script
function is limited (as are all script functions) to 20 parameters so if you want more than 20 items in a dialog some
have to be handled via array parameters to DlgShow.

In more complex cases, you specify the position (and usually the width) of the box used for user input. This allows
you to arrange data items in the dialog in any way you choose. It requires more work as you must calculate the
positions of all the items.

Steps to program a dialog
Generating and using a dialog using the script language is a three step process:

1. Use DlgCreate() to start designing a dialog. The dialog starts with an OK and a Cancel button only, but you can
change that in step 2.

2. Add fields to the dialog with commands like DlgInteger(), DlgChan() and so on. You can add and modify
buttons with DlgButton(). You can also configure how the dialog behaves with DlgAllow() and set mouse
interactions with DlgMouse().

3. Use DlgShow() with a list of arguments, one per dialog field, to get and set the editable field contents. As there
is a limit on the number of arguments allowed in the script language, you can also use arrays as arguments; an
array with n elements matches n fields in the dialog.

Dialog units
Positions within a dialog are set in dialog units. In the x (horizontal) direction, these are in multiples of the maximum
width of the characters ‘0’ to ‘9’. In the y (vertical) direction, these are in multiples of the line spacing used for

Signal Version 6.06

19-410

simple dialogs. Unless you intend to produce complex dialogs with user-defined positions, you need not be
concerned with dialog units at all.

Simple dialog example
The simple example dialog shown above can be created by this code:

var ok%, item1%, item2%, item3, item4$:= "more...", item5;
DlgCreate ("Title for the dialog"); 'start new dialog
DlgInteger(1,"Item &1 prompt",0,10,0,0,1); 'range 0-10,spinner
DlgChan (2, "Item &2 prompt", 1); 'Waveform channel list
DlgReal (3, "Item &3 prompt", 1.0, 5.0); 'real, range 1.0-5.0
DlgString (4, "&More prompts...", 6); 'string, any characters
DlgCheck (5, "A &check box with a prompt");'a check box item
DlgButton (2, "&Extra"); 'extra button, number 2

ok% := DlgShow(item1%, item2%, item3, item4$, item5); 'show dialog

Prompts, & and tooltips
In the functions that set an item with a prompt, if you precede a character in the prompt with an ampersand (&), the
following character is underlined and is used by Windows as a short-cut key to move to the field or activate the
button. All static dialog items except a group box allow you define a tooltip by appending a vertical bar followed by
the tooltip text to the text$ argument. For example:

DlgReal(3, "Rate|Enter the sample rate in Hz", 100, 500);

Buttons allow you to specify an additional activation key and an optional tooltip by adding a vertical bar followed
by the key code and then another vertical bar followed by the tooltip. See the label$ argument of ToolbarSet()
for details of key codes.

More complex example
This example shows how to respond to user actions within a dialog. In
this case we use a check box to enable and disable a group of items and
a button that displays the current values of dialog items. The numbered
fields are:

1 An integer, range 0-10 with a spinner
2 A drop list of 4 items
3 A check box, used to enable items 4 and 5
4 A real number with a spinner
5 A string with a drop down list of items

We have added button 2 (buttons 0 and 1 are Cancel and OK) and a
group box around items 4 and 5. To make room for the group box, the y
positions of items 4 and 5 are set explicitly.

With DlgAllow() we have set Func Change%(item%) to be called whenever the user changes a selection or
check box or when an editable field loses the input focus. The item% argument is set to the item number that
changed or to 0 if the dialog is appearing for the first time. We are interested in item 3, the check box, and we use
the state to enable or disable the group box and the items inside it.

Func Current%() is linked to the "Current" button. In this case it is used to display a message box that lists the
current values of items in the dialog.

Script language

19-411

var ok%, item1%, item2%, item3%, item4, item5$:= "Text", gp%;
DlgCreate("Dialog with user placement",0,0,40,7.5);
DlgInteger(1,"Integer 0 to 10",0,10,0,1,1); 'Int with spinner
DlgList(2,"List item","List 0|List 1|List 2|List 3", 4, 0, 2);
DlgCheck(3, "check box enabling items",0,3); 'check box item
DlgReal(4, "Real 1 to 5",1.0,5.0,0,4.5,0.5); 'Real with spinner
DlgString(5, "String length 10",10,"",0,5.5, 'String item with
 "String 1|String 2|String 3"); 'drop down list
DlgButton(2, "Current", Current%); 'button+function
DlgAllow(0x3ff, 0, Change%); 'Allow all, no idle, change function
gp% := DlgGroup("Extra items",1,3.8,-1,2.9); 'Group box
ok% := DlgShow(item1%,item2%,item3%,item4,item5$);
Halt;

Func Change%(item%)
var v%;
docase
 case ((item% = 3) or (item% = 0)) then '0 is initial setup
 v% := DlgValue(3); 'get check box state
 DlgEnable(v%, gp%, 4, 5); 'enable groupbox+items 4, 5
endcase;
return 1; 'Return 1 to keep dialog running
end;

Func Current%()
var v1%, v2%, v3%, v4, v5$;
v1% := DlgValue(1); 'Retrieve the current values
v2% := DlgValue(2); v3% := DlgValue(3);
v4 := DlgValue(4); v5$:= DlgValue$(5);
Message("Values are %d, %d, %d, %g and %s",v1%,v2%,v3%,v4,v5$);
return 1; 'Return 1 to keep the dialog running
end;

See also:
DlgAllow(), DlgButton(), DlgChan(), DlgCheck(), DlgCreate(), DlgEnable(), DlgGroup(),
DlgInteger(), DlgLabel(), DlgList(), DlgReal(), DlgShow(), DlgSlider(), DlgString(),
DlgText(), DlgValue(), DlgVisible(), DlgXValue()

DlgAllow()

Call this function after DlgCreate() and before DlgShow() to enable dialog idle time processing, advanced call-
back features and dynamic access to the dialog fields. There are no restrictions on what call-back functions can do.
However, it is not sensible to place time-consuming code in an idle call-back function or to do anything other than
check dialog fields and possible display a warning message in a dialog-item-change function. Call-back functions
use DlgValue(), DlgEnable() and DlgVisible() to manipulate the dialog fields. You can also call
DlgAllow() after DlgShow() in which case it will operate on the most recently created dialog. DlgAllow() is
new in version 3.

Proc DlgAllow(allow% {,func id%(){, func ch%()}});

allow% A code that specifies the actions that the user can and cannot take while interacting with Signal. The code
is the sum of possible activities:

1 0x0001 User may swap to other applications

2 0x0002 User may change the current window

4 0x0004 User may move and resize windows

8 0x0008 User may use File menu

16 0x0010 User may use Edit menu

32 0x0020 User may use View menu

64 0x0040 User may use Analysis menu

Signal Version 6.06

19-412

128 0x0080 User may use Cursor menu and add cursors

256 0x0100 User may use Window menu

512 0x0200 User may use Sample menu

1024 0x0400 User may not double click y axis

2048 0x0800 User may not double click the x axis or scroll it

4096 0x1000 User may not change channel of horizontal cursors

8192 0x2000 User may not change to another frame

A value of 0 would restrict the user to inspecting data and positioning cursors in a single, unmoveable
window, but being able to switch frames. A value of 8192 is the same but without changing frames.

id%() This is an integer function with no arguments. Use the name with no brackets, for example
DlgAllow(0,Idle%); where Func Idle%() is a script function. When DlgShow() executes, the
function is called repeatedly in system idle time, as for the ToolbarSet() idle function.

If the function return value is greater than 0, the dialog remains open. A zero or negative return value
closes the dialog and DlgShow() returns the same value.

If this argument is omitted or 0, there is no idle time function.

ch%() This is an integer function with one integer argument, for example Func Changed%(item%). You would
use DlgAllow(0,0,Changed%); to link this function to a dialog. Each time the user changes a dialog
item, Signal calls the function with the argument set to the changed item number. There is an initial call
with the argument set to 0 when the dialog is about to be displayed.

A field is deemed to change when the user clicks a check box or changes a selection in a list or moves the
focus from an editable item after changing the text. For real and integer values, the new value must be in
range.

If the change function returns greater than 0, the change is accepted. If the return value is zero, the change
is resisted and the focus set back to the changed item. If the return value is negative, the dialog closes and
DlgShow() returns this value and the arguments are not updated.

There is an example of use here.

See also:
DlgCreate(), DlgEnable(), DlgShow(), DlgValue(), DlgValue$(), DlgVisible(), Interact(),
ToolbarSet()

DlgButton()

Dialogs created by DlgCreate() have Cancel and OK buttons; this function adds, deletes and changes buttons.
You can link a script function to a button and use the function return value to decide if the dialog should close. Use
this function after DlgCreate() and before DlgShow(). You can also call this function with no arguments to get
the number of the last button that was pressed (added at version 4.06). There are two command variants:

Func DlgButton(but%, text${, func ff% {, x, y}});
Func DlgButton();

but% The button number from 0 to 199. Button 0 is the cancel button, 1 is the OK button. Button numbers
higher than 1 create new buttons.

text$ This sets the button label. Set an empty string to delete a button. You cannot delete button 1; the label is
set back to OK if you try. The label text can be followed by an optional key code and an optional tooltip
separated by vertical bars. See the label$ argument of ToolbarSet() for details of the format.

If you set a key code, the button can be activated even when the dialog does not have the input focus as
long as it is the topmost user dialog and you have not created a toolbar or interact bar from a function
linked to the dialog. This allows you to drag cursors in a window, then use the key code without the need
to click in the dialog to activate it first.

ff%() This is an integer function with no arguments that is called when the button is used. Set the argument to
zero or omit it if you don't want a button function, in which case clicking the button closes the dialog,

Script language

19-413

DlgShow() returns the button number and the DlgShow() arguments are updated for all buttons except
0.

If you supply a function, it is called each time the button is used and the function return value determines
what happens next:

<0 The button acts as Cancel. The dialog closes, DlgShow() returns this value and its arguments are
not updated.

0 The button acts as OK. The dialog closes and the DlgShow() return value is the button number and
its arguments are updated.

>0 The dialog continues to display.

The button function can use DlgEnable(), DlgValue() and DlgVisible() and can also create and
show subsidiary dialogs.

x,y Set the button position in dialog units, both or neither of these must be supplied. If x is positive it sets the
position of the left edge of the button relative to the left side of the dialog, if negative it sets the position
of the right edge of the button relative to the right side of the dialog. If the button position is not supplied
it will be automatically positioned at the bottom of the dialog in rows based on the button numbers.

Returns The call with no arguments returns the number of the last button that was pressed. This allows you to
service multiple buttons with the same user-defined button function. The call that creates buttons returns
0.

Example
func DoButton%()
Message("Button %d", DlgButton()); 'report button number
return 1; ' leave dialog open
end;

DlgCreate("Example of button replacement");
DlgText("This dialog demonstrates using a button", 0, 1);
DlgButton(0, ""); ' remove the Cancel button
DlgButton(2, "My &Button||Press to say hello", DoButton%);
DlgShow(); ' no arguments as no variable fields defined

There is another example of use here.

See also:
DlgCreate(), DlgEnable(), DlgShow(), DlgValue(), DlgValue$(), DlgVisible(),
ToolbarSet()

DlgChan()

This function defines a dialog entry that lists channels that meet a specification to use for selection of a channel of
a particular type. For simple dialogs, the wide, x and y arguments are not used. Channel lists are checked or created
when the DlgShow() function runs. If the current view is not a data or XY view, the list will be empty.

Proc DlgChan(item%, text$|wide, mask%|const list%[]{, x{, y}});

item% This sets the item number in the dialog.

text$ The text to display as a prompt. If the prompt contains a vertical bar, “|” any following text will be used as
a tooltip and displayed when the mouse pointer is held over the item.

wide This is an alternative to the prompt. It sets the width of the box in which the user selects a channel. If the
width is not given the number entry box has a default width of the longest channel name in the list or 12,
whichever is the smaller.

mask% This is an integer code that determines the channels to be displayed. It is ignored for XY views. You can
select channels of particular types by adding together the following codes:

1 0x1 Waveform or result view channels

2 0x2 Marker channels

4 0x4 Idealised trace channels

Signal Version 6.06

19-414

8 0x08 Real marker channels

If none of the above values are used, then the list includes all types of channel. The following codes can
be added to exclude channels from the list created above:

128 0x80 Exclude CFS data file channels (means idealised trace and virtual channels only)

256 0x100 Exclude virtual channels

1024 0x400 Exclude visible channels

2048 0x800 Exclude hidden channels

4096 0x1000 Exclude selected channels

8192 0x2000 Exclude non-selected channels

Finally, adding the following codes allows special entries to be added to the list:

131072 0x20000 Add None as an entry in the list, returns 0

262144 0x40000 Add All channels as an entry in the list, returns -1

524288 0x80000 Add All visible channels as an entry, returns -2

1048576 0x100000 Add Selected as an entry in the list, returns -3

list% As an alternative to a mask, you can pass in a channel list (as constructed by ChanList()). This must be
an array of channels, with the first element of the array holding the number of channels in the list.

x If omitted or zero, the selection box is right justified in the dialog box, otherwise positive values set the
position of the left end of the channel selection box in dialog units and negative values set the position of
the right hand end relative to the right edge of the dialog. When positioning the left edge using a positive
value, a channel item will be positioned approximately 1 dialog unit further to the left than you might
expect - this is to take account of the control border.

y If omitted or zero, this takes the value of item%. It is the position of the channel selection box in dialog
units.

The variable passed to DlgShow() for this field should be an integer. If the variable passed in holds a channel
number in the list, the field shows that channel, otherwise it shows the first channel in the list (usually None). The
result from this field in DlgShow() is a channel number, or 0 if None is selected, -1 if All channels is selected, -2
if All visible channels is selected or -3 if Selected is chosen.

See also:
DlgAllow(), DlgButton(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgValue(), DlgValue$(), DlgShow(), DlgString(), DlgText()

DlgCheck()

This defines a dialog item that is a check box (on the left) with a text string to its right. For simple dialogs, the x and
y arguments are not used.

Proc DlgCheck(item%, text${, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.

x,y The position of the check box in dialog units. If omitted, x is set to 2 and y to item% and the check box
behaves exactly like other dialog items. If x is positive is sets the position of the left side of the check box
and if negative it sets the position of the right hand end of the prompt text relative to the right edge of the
dialog.

The associated DlgShow() variable should be an integer. It sets the initial state (0 for unchecked, not 0 for
checked) and returns the result as 0 (unchecked) or 1 (checked). This item does not have a prompt. If you use
DlgValue(), a string value refers to the text and a numeric value refers to the check box state.

There is a simple example here.

See also:
DlgChan(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(), DlgReal(), DlgShow(),
DlgString(), DlgText(), DlgValue(), DlgValue$(), DlgXValue()

Script language

19-415

DlgCreate()

This function starts the definition of a dialog, it also kills off any previous dialog that might be partially defined. For
simple dialogs, the optional arguments are not used.

Func DlgCreate(title${, x, y, wide, high, help%|help${, scr%{, rel%}}});

title$ A string holding the title for the dialog.

x,y Optional, taken as 0 if omitted. The position of the top left hand corner of the dialog. The positions are in
percentages of the screen size. The value 0 means centre the dialog. Values out of the range 0 to 95 are
limited to the range 0 to 95.

wide The width of the dialog in dialog units. If this is omitted, or set to 0, Signal works out the width for itself,
based on the items in the dialog.

high The height of the dialog in dialog units. If omitted, or set to 0, Signal works it out for itself, based on the
dialog contents.

help This is a string or numeric identifier that identifies the help page to be displayed if the user requests help
when the dialog is displayed. String identifiers should correspond to entries in the Signal help file index.

scr% Optional screen selector. See Window() command for details.

rel% Omit or set 0 for application window relative, 1 for screen or desktop relative.

Returns This function returns 0 if all was well, or a negative error code.

For simple use, only the first argument is needed. The remainder are for use with more complicated menus where
precise control over menu items is required.

Use of & in prompts
In the functions that set an item with a prompt, if you precede a character in the prompt with an ampersand “&”, the
following character is used by Windows as a short-cut key to move to the field and the character is underlined.
Ampersand characters are ignored on systems that do not use this mechanism.

See also:
DlgAllow(), DlgButton(), DlgChan(), DlgCheck(), DlgInteger(), DlgLabel(), DlgList(),
DlgReal(), DlgShow(), DlgString(), DlgText(), Window()

DlgEnable()

This function is used from a dialog call-back function to enable or disable dialog items, it cannot be used in other
circumstances. Disabled items are drawn in grey, and will not respond to mouse clicks, keypresses or any other
actions. There are two versions of this command. With a single argument, it returns the enabled state of an item;
with two or more arguments it sets the enabled state of one or more dialog items. When you enable or disable an
item, any prompt or spin controls associated with the item are also enabled or disabled.

Func DlgEnable(en%, item%|item%[]{, item%|item%[]...});
Func DlgEnable(item%);

en% Set 0 to disable list items, 1 to enable them and 2 to enable and give the first item the input focus. Input
focus changes should be used sparingly to avoid user confusion; they can cause button clicks to be
missed.

item% An item number or an array of item numbers of dialog elements. The item number is either the number you
set, or the number returned by DlgText() or DlgGroup(), or –button, where button is the button
number. You cannot access prompts separately from their items as this makes no sense.

Returns When called with a single argument it returns the enabled state of the item, otherwise it returns 0.

There is an example of use here.

See also:
DlgAllow(), DlgButton(), DlgCreate(), DlgShow(), DlgValue(), DlgValue$(), DlgVisible()

Signal Version 6.06

19-416

DlgFont()

Before Signal version 6, the font used in user-defined dialogs was the system ANSI_VAR_FONT, which is usually
MS Sans Serif 8pt. This is a proportionally spaced raster font, which does not look as nice as a TrueType or
ClearType font as it does not take advantage of the ability to use fractional pixel positions on modern displays.
However, by sticking with this font, user-defined dialogs look the same and layout the same across all windows
platforms.

The DlgFont() script command gives you two more choices of font for user-defined dialogs (including
Message() and Query()), but with the penalty that you cannot be certain that complex user-defined dialogs will
layout in the same way in different versions of Windows or with different user options. The font used by a user-
defined dialog is set when the DlgShow() command is executed, so DlgFont() must be run before this. Each time
a script starts the default font is reset, equivalent to DlgFont(0). It is possible that in the future we will provide a
Preferences option to change the default.

DlgFont({font%})

font% An optional argument that if present sets the desired font. If omitted, no change is made. There are three
font options:

0 This selects the original ANSI_VAR_FONT. This is automatically set each time you run a script.

1 This sets the same font that Signal uses for dialogs (such as the About Signal dialog). This is usually
an 8 pt TrueType font (often Tahoma), so will look sharper than option 0 and will usually have a
similar spacing.

2 This sets the font that Windows is using for system dialogs, it is fairly similar to the Signal dialog font
(option 1) but appears to have a greater line spacing.

Returns The font selection at the time of the function call.

Setting option 1 will usually not cause too much difference in layout and the result should look better than option
0. Setting option 2 is more problematic as the default since Vista is Segoe UI 9 pt, and this is likely to cause layout
incompatibilities, especially if you make complex dialogs.

See also:
DlgCreate(), DlgShow(), Query(), Message()

DlgGetPos()

This can only be used from a dialog call-back function to get the position of the top left corner of the dialog. The
call-back functions are set by DlgAllow() and DlgButton(). To get the final dialog position you need to have call-
backs for any button press that would close the dialog, or in an idle routine. This function was added at Signal
version 4.01.

Func DlgGetPos(&x, &y{, scr%{, rel%}});

x,y Returned holding the position of the top left hand corner of the dialog relative to the rectangle defined by
scr% and rel%.

scr% Optional screen selector for views, dialogs and the application window. If omitted or -1, positions are
relative to the application window. Otherwise, 0 selects the entire desktop rectangle and greater values
select a particular screen rectangle (but see rel%). See System() for more screen information.

rel% Ignored unless scr% is 0 or greater. Set 0 or omit for positions relative to the intersection of the rectangle
set by scr% and the application window, 1 for positions relative to the scr% rectangle. If there is no
intersection, x and y are both returned holding zero.

Returns 1 if the position was returned, or -1 if the rectangle set by scr% and rel% is of zero size.

See also:
DlgCreate(), DlgButton(), DlgEnable(), DlgShow(), DlgValue(), DlgValue$(), DlgVisible()

http://en.wikipedia.org/wiki/Segoe

Script language

19-417

DlgGroup()

This routine creates a group box with a dialog; a rectangular frame with a text label at the top left corner. You can
use this between calls to DlgCreate() and DlgShow(). There is nothing for the user to edit in this item, so you
do not supply an item number and there is no matching argument in DlgShow(). However, the returned number is
an item number (above the values used to match items to DlgShow() arguments) that you can use in call-back
functions to identify the group box.

Func DlgGroup(text$, x, y, width, height);

text$ The text to display at the top left of the group box.

x,y The position of the top left corner of the group box.

width If positive, the width of the group box. If negative, this is the offset of the right hand side of the group box
from the right hand edge of the dialog.

height The height of the group box.

Returns The routine returns an item number so that you can refer to this in call-back functions to use
DlgVisible() , DlgValue$() and DlgEnable().

There is an example of use here.

See also:
DlgCreate(), DlgEnable(), DlgShow(), DlgValue$(), DlgVisible()

DlgImage()

Call this function after DlgCreate() and before DlgShow() to add an image to a dialog.

Func DlgImage(bmp$, x, y, width, height);

bmp$ The path to a suitable file holding an image. Images are read from .bmp, .jpg, .jpeg, .png, .tif or
.tiff files on disk. The image is stretched to fit in the rectangle set by the x, y, width and height
arguments.

x,y The position of the top left corner of the bitmap.

width If positive, the width of the image in dialog units. If negative, this is the offset of the right hand side of the
image from the right hand edge of the dialog.

height The height of the bitmap in dialog units.

Returns The routine returns an item number so that you can refer to this in call-back functions to use
DlgVisible() and DlgEnable().

See also:
DlgCreate(), DlgEnable(), DlgShow(), DlgVisible()

DlgInteger()

This function defines a dialog entry that edits an integer with an optional spin control or drop down list of
selectable items. The numbers you enter may not contain a decimal point. For simple dialogs, the wide, x, y, sp%
and li$ arguments are not used.

Proc DlgInteger(item%, text$|wide, lo%, hi%{, x{, y{, sp%|li$}}});

item% This sets the item number in the dialog in the range 1 to the number of items.

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.

wide This is an alternative to the prompt. It sets the width in dialog units of the box in which the user types the
integer. If the width is not given the number entry box has a default width of 11 digits (or width needed for
the number range?).

lo% The start of the range of acceptable numbers.

Signal Version 6.06

19-418

hi% The end of the range of acceptable numbers.

x If omitted or zero, the number edit is right justified in the dialog box, otherwise positive values set the
position of the left end of the number edit in dialog units and negative values set the position of the right
hand end relative to the right edge of the dialog. When positioning the left edge using a positive value, an
integer item will be positioned approximately 1 dialog unit further to the left than you might expect - this is
to take account of the edit field border.

y If omitted or zero, this takes the value of item%. It is the position of the number edit in dialog units.

sp% If present and non-zero, this adds a spin box with a click increment of sp%.

li$ If present, this argument is a list of items separated by vertical bars that can be selected into the integer
field, for example "1|10|100".

The variable passed into DlgShow() should be an integer. The field starts with the value of the variable if it is in
the range. Otherwise, it is limited to the nearer end of the range.

See also:
DlgAllow(), DlgButton(), DlgChan(), DlgCheck(), DlgCreate(), DlgLabel(), DlgList(),
DlgReal(), DlgValue(), DlgValue$(), DlgShow(), DlgSlider(), DlgString(), DlgText()

DlgLabel()

This function sets an item with no editable part that is used as a label. For simple dialogs, the wide, x and y
arguments are not used. You can add text to a dialog without using an item number with DlgText().

Proc DlgLabel(item%, text${, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.

x If omitted or zero, the label is right justified in the dialog box, otherwise positive values set the position of
the left end of the label in dialog units and negative values set the position of the right hand end relative
to the right edge of the dialog.

y If omitted or zero, this takes the value of item%. It is the position of the label in dialog units.

When you call DlgShow(), you must provide a dummy variable for this field. The variable is not changed and can
be of any type, but must be present.

See also:
DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgList(), DlgReal(), DlgValue$(),
DlgShow(), DlgString(), DlgText(), DlgXValue()

DlgList()

This defines a dialog item that is a one of n selection, each of the possible items to select is identified by a string.
For simple dialogs, the wide, x and y arguments are not used.

Proc DlgList(item%, text$|wide, const list$[]|str${, n%{, x{, y}}});

item% This sets the item number in the dialog.

text$ The text to display as a prompt. If the prompt contains a vertical bar, “|” any following text will be used as
a tooltip and displayed when the mouse pointer is held over the item.

wide This is an alternative to the prompt. It sets the width of the box in which the user selects an item. If the
width is not given the number entry box has a default width of the longest string in the list or 18,
whichever is the smaller.

list$ An array of strings. These hold the items to be presented in the list. Each string should not be over 18
characters long, or it will be truncated.

Script language

19-419

str$ An alternative way to define the items to be presented in the list. The single string holds all of the items,
items are separated by the vertical bar character (|). Again, items should not be more than 18 characters
long.

n% The number of entries in the list. If this is omitted, or if it is larger than the array, then the size of the array
is used. If the str$ form of the command is used, the number of items in the string sets the maximum
number.

x If omitted or zero, the list selection box is right justified in the dialog box, otherwise positive values set the
position of the left end of the list selection box in dialog units and negative values set the position of the
right hand end relative to the right edge of the dialog. When positioning the left edge using a positive
value, a list item will be positioned approximately 1 dialog unit further to the left than you might expect -
this is to take account of the control border.

y If omitted or zero, this takes the value of item%. It is the position of the list selection box in dialog units.

The result obtained from this is the index into the list of the list element chosen. The first element is number 0. The
variable passed to DlgShow() for this item should be an integer. If the value of the variable is in the range 0 to n%-
1, this sets the item to be displayed, otherwise the first item in the list is displayed.

The following example shows how to set a list:

var list$,ok%,which%:=0; 'string list, test for OK, result
list$:= "zero|one|two|three"; 'these are the choices
DlgCreate("List example"); 'Start the dialog
DlgList(1,"Make your choice", list$);
ok% := DlgShow(which%); 'Display dialog, wait for user

See also:
DlgAllow(), DlgButton(), DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),
DlgReal(), DlgValue(), DlgValue$(), DlgShow(), DlgString(), DlgText()

DlgMouse()

There are two variants of the command; the first sets the initial mouse pointer position when the dialog opens - use
after DlgCreate() and before DlgShow(). If you do not use this command variant, the mouse pointer is not moved
when the dialog opens. This command can be particularly useful if you are using multiple screens.

Proc DlgMouse(item%);

item% The item number of an element of the dialog at which to position the mouse pointer when the dialog
opens. This is either the number you set for the dialog item, or the number returned by DlgText() or
DlgGroup(), or -button, where button is the button number.

The second variant gives you access to the mouse positions and left button mouse clicks in Data and XY views
when the mouse is over a data channel while a dialog is active. This functions in exactly the same way as the
ToolbarMouse() command, so see there for full details and a description of the mouse down, up and move
functions. The command arguments are:

Proc DlgMouse(vh%, ch%, mask%, want%, Func Down%{, Func Up%{, Func Move%}});

See also:

DlgButton(), DlgCreate(), DlgGroup(), DlgShow(), DlgText(), DlgVisible(), ToolbarMouse()

DlgReal()

This function defines a dialog entry that edits a real number. For simple dialogs, the wide, x and y arguments are
not used.

Proc DlgReal(item%, text$|wide, lo, hi{, x{, y{, sp|li${, pre%}}}});

item% This sets the item number in the dialog in the range 1 to the number of items.

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.

Signal Version 6.06

19-420

wide This is an alternative to the prompt. It sets the width in dialog units of the box in which the user types a
real number. If wide is not given the box has a default width of 12 digits.

lo,hi The range of acceptable numbers.

x If omitted or zero, the number edit is right justified in the dialog box, otherwise positive values set the
position of the left end of the number edit in dialog units and negative values set the position of the right
hand end relative to the right edge of the dialog. When positioning the left edge using a positive value, a
real item will be positioned approximately 1 dialog unit further to the left than most other controls - this is
to take account of the edit field border.

y If omitted or zero, this takes the value of item%. It is the position of the number edit in dialog units.

sp If present and non-zero, this adds a spin box with a click increment of sp. You can change this value
dynamically with DlgValue().

li$ If present, this argument is a list of items separated by vertical bars that can be selected into the editing
field, for example "1.0|10.0|100.0".

pre% If present this sets the number of significant figures to use to represent the number, in the range 6 (the
default) to 15.

The variable passed into DlgShow() should be a real number. The field will start with the value of the variable if it
is in the range, otherwise the value is limited to lo or hi.

See also:
DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(), DlgShow(),
DlgSlider(), DlgString(), DlgText(), DlgValue(), DlgValue$(), DlgXValue()

DlgShow()

This function displays the dialog you have built and returns values from the fields identified by item numbers, or
makes no changes if the dialog is cancelled. Once the dialog has closed, all information about it is lost. You must
create a new dialog before you can use this function again.

Func DlgShow(&item1|item1[], &item2|item2[], &item3|item3[] ...);

item For each dialog item with an item number, you must provide a variable of a suitable type to hold the result.
It is an error to use the wrong variable type, except an integer field can have a real or an integer variable.
Items created with DlgLabel() must have a variable too, even though it is not changed. You can have up
to 20 item parameters, if you want more than 20 items in your dialog some item parameters must be arrays;
an array with n elements matches n fields in the dialog.

The item variables also set the initial values. If an initial value is out of range, the value is changed to the
nearest legal value. In the case of a string, illegal characters are deleted before display.

In addition to passing a simple variable, you can pass an array. An array with n elements matches n items
in the dialog. The array type must match the type of the items in the dialog.

Returns 0 if the user clicked on the Cancel button, or 1 if the user clicked on OK.

If the user clicks on OK, all the variables are updated to their new values. If the user clicks on Cancel, the variables
are not changed.

See also:
DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(), DlgReal(),
DlgString(), DlgText(), DlgXValue()

DlgSlider()

This command adds a slider control that sets an integer value between two user-defined limits. The slider is
horizontally orientated for simple use but can be vertically orientated. This command was new in Signal version
5.02.

Proc DlgSlider(item%, text$|wide, lb, rt{, iTick{, flags%{, x{, y}}}});

item% This sets the item number in the dialog in the range 1 to the number of items.

Script language

19-421

text$ A left-justified prompt to display, optionally followed by a vertical bar and tooltip text. If text$ is used,
the slider will be horizontal and fill the space from the end of the prompt to the right hand side of the
dialog.

wide This is an alternative to the prompt. If positive, the slider is horizontal and the value sets the slider width
in dialog units; a zero value uses the entire dialog width. A negative value sets the height of a vertical
slider and you will need to provide the x and y values to complete the positioning.

lb,rt Sets the values corresponding to the left/bottom and right/top end of the slider. lb can be greater than rt
but must not be the same.

iTick Optional, with a default value of 0. Enables ticks if not zero, values greater than 0 set the tick spacing and
negative values set tick auto-scaling in a 1, 2, 5 sequence.

flags% This sets display options and is the sum of: 1=tooltip value readout during drag, 2=change notifications
during drag operation, 4=round all slider values to integers.

x If omitted or zero, the slider is right justified in the dialog. Otherwise positive values set the position of the
left side of the slider relative to the left-hand side of the dialog in dialog units and and negative values set
the right side position relative to the right-hand side of the dialog.

y If omitted or zero, this takes the value of item%. It is the vertical position of the slider control in dialog
units.

The variable passed into DlgShow() as argument number item% should be a real. The slider starts with the value of
the variable if it is in the range. Otherwise, it is limited to the nearer end of the range. Note that the range of values
that a slider can return is quantised by the pixel positions that the slider occupies but the returned variable only
changes if the slider position is moved or if the original value is out of the slider range.

Tooltips
If you enable the tooltip value readout option in flags%, the position of the slider in the control appears in any tip
when the mouse is over the slider. If you have set a tip with the text$ argument, this tip appears when the mouse
is over the prompt. If you add 4 to flags%, all displayed positions are integral.

Change function
If you have used DlgAllow() to set a change function, you can choose if this is called every time the slider
position changes during a drag operation, or only when the drag operation ends.

Keyboard control
The cursor left, right, up and down keys move the slider when it is has the keyboard focus.

See also:
DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(), DlgReal(),
DlgShow(), DlgString(), DlgText(), DlgValue(), DlgValue$(), DlgXValue()

DlgString()

This defines a dialog entry that edits a text string. You can limit the characters that you will accept in the string. For
simple dialogs, the wide, x and y arguments are not used.

Proc DlgString(item%, text$|wide, max%{, legal${, x{, y{, sel$}}}});

item% This sets the item number in the dialog in the range 1 to the number of items.

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.

wide This is an alternative to the prompt. It sets the width in dialog units of the box in which the user types the
string. If the width is not given the number entry box has a default width of max% or 60, whichever is the
smaller.

max% The maximum number of characters allowed in the string.

legal$ A list of acceptable characters. See Input$() for a full description. If this is omitted, or an empty string,
all characters are allowed.

Signal Version 6.06

19-422

x If omitted or zero, the string edit is right justified in the dialog box, otherwise positive values set the
position of the left end of the string edit in dialog units and negative values set the position of the right
hand end relative to the right edge of the dialog. When positioning the left edge using a positive value, a
string item will be positioned approximately 1 dialog unit further to the left than most other controls - this
is to take account of the edit field border.

y If omitted or zero, this takes the value of item%. It is the position of the string edit in dialog units.

sel$ If this string is present, it should hold a list of items separated by vertical bars, for example "one|two|
three". The field becomes an editable combo box with the items in the drop down list.

The result from this operation is a string of legal characters. The variable passed to DlgShow() should be a string.
If the initial string set in DlgShow() contains illegal characters, they are deleted. If the initial string is too long, it is
truncated.

There is an example of use here.

See also:
DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(), DlgReal(),
DlgShow(), DlgValue(), DlgValue$(), DlgText(), DlgXValue(), Input$()

DlgText()

This places non-editable text in the dialog box. This is different from DlgLabel() as you do not supply an item
number and it does not require a variable in the DlgShow() function. It returns an item number (higher than item
numbers for matching arguments in DlgShow()) that you can use to identify this field in call-back functions, for
example DlgVisible().

Func DlgText(text$, x, y{, wide});

text$ The prompt to display, optionally followed by a vertical bar and tooltip text.

x,y The position of the bottom left hand corner of the first character in the string, in dialog units. Set x to 0 for
the default label position (the same as DlgLabel()). Otherwise positive x values set the position of the
left side of the text relative to the left-hand side of the dialog and and negative values set the right side
position relative to the right-hand side of the dialog..

wide Normally, the width of the field is set based on text$. This optional argument sets the width in dialog
units. This allows you to replace the text with a longer string from a call-back function.

Returns An item number to identify this field for call-back functions.

See also:
DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(), DlgList(), DlgReal(),
DlgValue$(), DlgShow(), DlgString(), DlgXValue()

DlgValue() and DlgValue$()

These functions are used from a dialog call-back function to get and optionally set the value of an item, spinner
increment, item prompt or button text, they cannot be used in other circumstances.

Func DlgValue(item%{, val});
Func DlgValue$(item%{, val$});

item% This identifies the dialog item. For items with arguments in DlgShow(), use the item% value you set to
create the field. For items created with DlgText() and DlgGroup(), use the returned item number. For
buttons use minus the button number to access the button label. To access the prompt for an item add
1000 to the item number. Add 2000 to the item number to access the step value of a spin control linked to a
numeric field.

val|$ This optional argument holds the new item value. If you omit this argument the item is not changed. You
can use numeric values on numeric fields or to set a check box or a list. You can use a text value to change
a prompt or button label or to change the text of an editable control or to select the first matching item in a
list box. It is up to you to make sure the text is acceptable for editable items.

Script language

19-423

Returns The returned value is the current value of the item. You can use DlgValue$() on any item to get the
current contents of the field, check box text prompt, button label or item prompt as a text string. Use
DlgValue() to collect numeric or check box values.

If there is a problem running the command, for example if the item does not exist, or an argument type is not
appropriate for an item, the result is an empty string or the value 0.

There is an example of use here.

See also:
DlgCreate(), DlgAllow(), DlgEnable(), DlgShow(), DlgVisible()

DlgVisible()

This function is used from a dialog call-back function to show or hide dialog items, it cannot be used in other
circumstances. There are two versions of this command. The version with a single argument returns the visible
state of an item; the version with two or more arguments sets the visible state of one or more dialog items. When
you show or hide an item, any prompt or spin control associated with the item is also shown or hidden. Using
DlgVisible() to hide a button does not disable responding to associated keypresses, use DlgEnable() as well
if you want this.

Func DlgVisible(show%, item%|const item%[]{, item%|const item%[]...});
Func DlgVisible(item%);

show% Set this to 1 to show the items in the list and to 0 to hide them.

item% An item number of an element of the dialog or an integer array containing a list of item numbers. The item
numbers are either the number you set, or the number returned by DlgText() or DlgGroup(), or –
button, where button is the button number. You cannot access prompts separately from their items as
this makes no sense.

Returns When called with a single argument it returns the visible state of the item, otherwise the return value is 0.

See also:
DlgAllow(), DlgCreate(), DlgEnable(), DlgShow(), DlgValue(), DlgValue$()

DlgXValue()

This creates an editable combo box to collect an x axis value for the current file, memory or XY view. The combo box
drop down list is populated with cursor positions and other window values when DlgShow() runs. If the current
view is not suitable, the list is empty. This control accepts expressions, for example: (Cursor(1)+Cursor(2))/2.
The matching DlgShow() argument is a real number to hold a time in seconds for a file view, or an x axis value for
other views. This procedure is new in version 3.

Proc DlgXValue(item%, text$|wide{, x{, y}});

item% This sets the item number in the dialog in the range 1 to the number of items.

text$ The text to display as a prompt. If the prompt contains a vertical bar, “|” any following text will be used as
a tooltip and displayed when the mouse pointer is held over the item.

wide This is an alternative to the prompt. It sets the width in dialog units of the combo box. If the width is not
given the combo box has a default width of 18 numbers.

x If omitted or zero, the combo box is right justified in the dialog box, otherwise positive values set the
position of the left end of the combo box in dialog units and negative values set the position of the right
hand end relative to the right edge of the dialog. When positioning the left edge using a positive value, a
time item will be positioned approximately 1 dialog unit further to the left than you might expect - this is to
take account of the control border.

y If omitted or zero, this takes the value of item%. It is the position of the combo box in dialog units.

See also:
DlgAllow(), DlgButton(), DlgChan(), DlgCheck(), DlgCreate(), DlgInteger(), DlgLabel(),
DlgList(), DlgValue(), DlgValue$(), DlgReal(), DlgShow(), DlgString(), DlgText()

Signal Version 6.06

19-424

Draw()

This allows invalid regions in the current view to update and optionally sets the drawn X axis range. Draw() on a
view that is up-to-date should make no change. The view is not brought to the front.

Proc Draw({from{, size}});

from The left hand edge of the view in x axis units. For a text view, this sets the top line to display in the view
(or as close to the top line as is possible) and scrolls the view horizontally so that the first character
position is at the left of the view. For a grid view this sets the column at the top left of the view. The first
column is 0. Use YRange() on a grid view to set the top row.

size The width of the view in x axis units. A negative size is ignored. This argument must be omitted in a text
view.

With no arguments, Draw() updates invalid areas in the view. With one argument, the view is scrolled to start at
from. With two arguments, the width is set (unless it is unchanged) and then it is drawn. If size is negative or
omitted, the same size as last time is used.

Data views run from Mintime() to Maxtime(). There are no limits set on the range of values for an XY view axis.
However, huge numbers cause ugly axis labels.

See also:
DrawAll(), XRange(), YRange(), XLow(), XHigh(), Maxtime(), Mintime()

DrawAll()

This routine updates all views that require redrawing. This is equivalent to iterating through all the views and
performing a Draw() on each.

Proc DrawAll();

See also:
Draw()

DrawMode()

This sets and reads the display mode for the channel in a data view. You can set the display mode for channels that
are not displayed.

Func DrawMode(cSpc{, mode%{, dotSz%|binSz|offset{, err%|flags%{, point%{,
line%}}}}});
Func DrawMode(chan%{, item%{, value});

cSpc A channel specifier for the channels to use.

mode% If present and positive, this sets the display mode, and returns the previous mode. If an inappropriate
mode is requested, no change is made. Some modes require additional parameters (for example a dot size).
If additional parameters are omitted, the last known values are used. The mode values for setting draw
modes in the view are:

0 The standard mode for the channel.

1 Dots for markers, using the dotSz% argument if it is provided.

2 Lines for markers.

3 Rate for markers.

4 Histogram for waveform.

5 Line for waveform.

6 Dots for waveform, using the dotSz% argument if it is provided.

7 Skyline for waveform.

8 Cubic spline for waveform.

9 Waveform mode for real markers.

10-14 Reserved.

15 Basic for idealised trace.

Script language

19-425

16 Convolution for idealised trace.

17 Both basic and convolution of idealised trace.

If mode% is present and negative, the function returns a current value without changing anything. The
mode values for getting data are:

-1 Reserved, does nothing and returns -1.

-2 Return the current dot size.

-3 Return the current bin size for a histogram.

-4 Return the basic trace offset for idealised trace drawing.

-5 Return the current draw mode flags value.

-6 Return the current point drawing mode for real markers in plot mode.

-7 Return the current line drawing mode for real markers in plot mode.

-13 Return the current drawing style for errors.

Values in the range -8 to -12 are reserved for future use. If mode% is absent no changes are made.

dotSz% This sets the dot size to use on screen (or the point size to use on a printer) for modes 1 and 6 in units of
the the pen width set for data in the Edit menu Preferences Display tab. 0 is the smallest size available. The
maximum size allowed is 10. Set to -1 for no change.

binSz This sets the width of the rate histogram bins for mode 3 only.

offset The y-offset of the basic idealised trace from the raw data for modes 15 and 17.

err% The drawing style to use for any errors: 0=none, 1=1 SEM, 2=2 SEM, 3=SD.

flags% This is the sum of values controlling various drawing options, the options available are:

1 To enable showing the baseline for idealised traces in Convolution or Both modes.

2 To turn on showing colours for marker codes for markers drawn as Dots or Lines and real markers in
Waveform mode.

4 To turn off drawing of the centre line for marker and real marker channels in Lines mode.

8 To turn on drawing of marker codes as two hexadecimal digits only for marker and real marker
channels in Dots mode.

point% selects the point drawing mode for real markers in plot mode, omit for no change. The point drawing
modes available are:

-1 none) 0 dots (default) 1 boxes
2 plus signs + 3 crosses x 4 circles o
5 triangles 5 diamonds 7 horizontal line
8 vertical line

line% selects the line drawing mode for real markers in plot mode, omit or set to -1 for no change. Styles are:

-1 none 0 solid (default) 1 dotted
2 dashed

chan% A single channel number - required for the item% variant of this function.

item% Calls that use the item% form of the command (where item% is omitted or is negative) are used to read
back specific information and to set values if the value argument is present. The values you can set with
item% can also be set with the mode% command variant (the equivalent argument is in the name column).
The allowed values of item% are:

ite
m%

nameFunction

-1 mode
%

Or omit item% to return the current channel draw mode as described above.

-2 dotS
z%

Return or set the dot or tick size to use as described above.

-3 binS
z

Return or set the rate histogram bin width.

-4 offs
et

Return or set the y-offset of the basic idealised trace from the raw data.

Signal Version 6.06

19-426

-5 flag
s%

Return or set the draw mode flags as described above.

-6 poin
t%

Return or set the point drawing mode for real markers in plot mode as described above.

-7 line
%

Return or set the line drawing mode for real markers in plot mode as described above.

-13 err%Return or set the error drawing style as described above.

value Used with the item% variant to set new values.

Returns The draw mode before the call if a single channel is set or a value determined by a negative mode% value.
For multiple channels or an invalid call, it returns -1.

See also:
Channel draw mode dialog, Draw(), ViewStandard(), XYDrawMode(), ChanValue()

Dup()

This gets the view handle of a duplicate of the current view, or the number of duplicates, including the original.
Duplicated views are numbered from 1 (1 is the original). If a duplicate is deleted, higher numbered duplicates are
renumbered. For more information on this see WindowDuplicate().

Func Dup({num%});

num% The number of the duplicate view to find, starting at 1. You can also pass 0 (or omit num%) as an argument,
to return the number of duplicates.

Returns If num% is greater than 0, this returns the view handle of the duplicate, or 0 if the duplicate does not exist. If
num% is 0 or omitted, this returns the number of duplicates including the original. The following illustrates
the use of Dup().

var maxDup%, i%, dvh%; 'declare variables
maxDup% := Dup(0); 'Get maximum numbered duplicate
for i% := 1 to maxDup% do 'loop round all possible duplicates
 dvh% := Dup(i%); 'get handle of this duplicate
 if (dvh% > 0) then 'does this duplicate exist?
 PrintLog(view(dvh%).WindowTitle$()+"\n"); 'print window title
 endif;
next;

See also:
App(), View(), WindowDuplicate()

E

EditClear()

In a memory view, this command zeros the data in all channels, in a text view it deletes any selected text. In a Grid
view, this command clears selected cells.

Func EditClear();

Returns The function returns 0 if nothing was deleted, otherwise it returns the number of items deleted or 1 if the
number is not known, or a negative error code.

See also:
EditCopy(), EditCut()

Script language

19-427

EditCopy()

This command copies data from the current view to the clipboard or copies a string to the clipboard. The effect
depends on the type of the current view. Data and XY views copy as a bitmap, as a scaleable image, as text in the
format set by ExportTextFormat(), ExportChanFormat() and ExportChanList(), or as binary data in a
private format. Text views copy data as text. Grid views copy as text with cells in a row separated by the Tab
character and rows separated by end of line ("\n").

Func EditCopy({as%|text$});

as% Sets how to copy data when several formats are possible. If omitted, all formats are used. It is the sum of:
1=Copy as a bitmap, 2=Copy as a scalable image (Windows metafile), 4=Copy as text, 8=Copy in CED
private format

text$ A text string to place on the clipboard. This can be useful when you want to move results to a different
program.

Returns It returns 0 if nothing was placed on the clipboard, or the sum of the format specifiers for each format
used.

See also:
EditSelectAll(), ExportTextFormat(), ExportChanFormat(), ExportChanList(), EditClear(),
EditCut(), EditPaste()

EditCut()

This command cuts data from the current view to the clipboard (as for EditCopy()) and deletes the original (if this is
possible).

Func EditCut({as%});

as% This optional argument sets how data is cut and copied to the clipboard. Currently only text may be cut. If
omitted, all allowed formats are used.

1 Cut and copy as a bitmap, has no effect.

2 Cut and copy as a scaleable image (metafile), has no effect.

4 Cut text to the clipboard.

Returns 0 if nothing was placed on the clipboard, or the sum of the format specifiers for each format that was used.
The only possible values now are 0 and 4.

See also:
EditClear(), EditCopy(), EditPaste()

EditFind()

In a text view, this command searches from the selection point for the next occurrence of the specified text and
selects it if found. This is the same as the Find Text dialog.

Func EditFind(find${, dir%{, flags%}});

find$ The text to search for. May include regular expressions if 4 is added to flags%.

dir% Optional. 0=search backwards, 1=search forwards (default), 2=wrap around.

flags% Optional, taken as 0 if omitted. The sum of: 1=case sensitive, 2=find complete words only, 4=simple regular
expression search (dir% may not be 0).

Returns 1 if found, 0 if not found.

See also:
Find text dialog, EditReplace()

Signal Version 6.06

19-428

EditPaste()

This command can be used to obtain the current clipboard contents as a text string, or to paste the clipboard into a
Text or Grid view.

Target Action

String The text clipboard contents are copied to the string.

Text view If the clipboard contains text the current text selection is replaced by the clipboard contents.

Grid view If the clipboard contains text, the clipboard contents are pasted to the grid, starting at the current cell.
The clipboard text can contain multiple cells and uses Tab characters to separate cells horizontally
and end of line characters to separate cells vertically. Cells are pasted to the right and below the
starting cell. After the paste operation, the rectangle holding the modified cells is selected.

Func EditPaste({text$});

text$ If present, any text in the clipboard in returned in this string. If absent, clipboard text is pasted to the
current text view.

Returns If text$ is present the return value is 1 if the clipboard holds text, 0 if it does not. If text$ is absent it
returns the number of characters pasted into the view.

See also:
EditCopy(), EditClear(), EditCut()

EditReplace()

In a text view, this command checks if the selection matches a pattern and replaces it if it does, then it searches for
the pattern again. This is the same as the Replace Text dialog.

Func EditReplace(find${, repl${, dir%{, flags%}}});

find$ The text to search for. May include regular expressions if 4 is added to flags%.

repl$ Optional replacement text, taken as an empty string if omitted.

dir% Optional. 0=search backwards, 1=search forwards (default), 2=wrap around.

flags% Optional, taken as 0 if omitted. The sum of: 1=case sensitive, 2=find complete words only, 4=regular
expression search (dir% may not be 0).

Returns The sum of: 1 if found a new match, 2 if replaced the original selection.

See also:
Replace text dialog, EditFind()

EditSelectAll()

This function selects all items in the current view that can be copied to the clipboard. This is the same as the Edit
menu Select All option.

Func EditSelectAll();

Returns It returns the number of selected items that could be copied to the clipboard.

See also:
EditCopy(), EditClear(), EditCut()(), MoveTo(), MoveBy(), Selection$()

Script language

19-429

Error$()

This function converts a negative error code returned by a function into a text string; it is able to provide a useful
string describing all of the error codes generated by Signal.

Func Error$(code%);

code% A negative error code returned from a Signal function.

Returns It returns a string that describes the error.

Eval()

This evaluates the argument and converts the result into text. The text is displayed in the Script view or the
Evaluate window message area, as appropriate, when the script ends. The argument can be the value returned by a
function.

Proc Eval(arg);

arg A real or integer number or a string.

If you use Eval() it will suppress any run-time error messages as it uses the same mechanism as the error system.
A common use of Eval() in a script is to report an error condition during debugging, for example:

if val<0 then Eval("Negative value"); Halt; endif;

Another use of Eval() is in the Script menu Evaluate window to see the result returned by a function or
expression, as in these examples:

Eval(FileDelete(myfile$)); ' display 1 or a negative error code
Eval(Error$(-1531)); ' give string for error code if known

See also:
Debug(), Error$(), Print(), PrintLog()

Exp()

This function calculates the exponential function (e to the power of x, ex) for a single value, or replaces the elements
of a real array by their exponentials. If a value is too large, overflow will occur, causing the script to stop for single
values, and a negative error code for arrays.

Func Exp(x|x[]{[]...});

x The argument for the exponential function or an array of real values.

Returns With an array, the function returns 0 if all was well, or a negative error code if a problem was found (such
as overflow). With an expression, it returns the exponential of the number.

See also:
Abs(), ATan(), Cos(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(), Round(), Sin(),
Sqrt(), Tan(), Trunc()

ExportChanFormat()

This command sets the channel text export format for use by FileExportAs() and EditCopy(). It is equivalent
to the data, time and headings settings for each channel type in the Text Output Configuration dialog, but note
that though this is used to enable data output for a given type of channel, output for a specific channel will only be
generated if the relevant type is enabled and the channel in question is selected for export using
ExportChanList(). Using ExportTextFormat() with no arguments will reset these fields to enable the output
of data, time and headings for the waveform channel type only. Output of error information (if available) can be
enabled using this function but error output will only be generated if data output for the channel to which the
errors apply is generated.

Proc ExportChanFormat(type%, data%, xval%, heads%);

type% The type of data for which we are setting the format:

Signal Version 6.06

19-430

0 Waveform

1 Markers

2 Error values

4 Fitted curves

5 Idealised traces

6 Real markers

data% Set this non-zero to enable data output for this channel type.

xval% Set this non-zero to enable output of x axis values for this channel type, this is ignored for marker and real
marker data (where the time values are always output) errors (which is output in a column next to the
associated waveform) and when data% is set to zero.

heads% Set this non-zero to enable output of column headings for this channel type. This is ignored for errors or if
neither data% nor xval% are enabled.

See also:
EditCopy(), FileExportAs(), ExportChanList(), ExportFrameList(), ExportTextFormat(),
ExportTimeRange()

ExportChanList()

This command sets a channel list to export for use by FileExportAs() and EditCopy() from a data view.

Proc ExportChanList(cSpc);

cSpc A channel specifier for the channels to export.

See also:
EditCopy(), FileExportAs(), ExportChanFormat(), ExportFrameList(), ExportTextFormat(),
ExportTimeRange()

ExportFrameList()

This command sets a list of frames for use by FileExportAs() and EditCopy().

Proc ExportFrameList(sFrm%{, eFrm%{, mode%}});
Proc ExportFrameList(frm$|frm%[]{, mode%});

sFrm% First frame to export. This option processes a range of frames. sFrm% can also be a negative code as
follows:

-1 All frames in the file are included

-2 The current frame

-3 Frames must be tagged

-6 Frames must be untagged

eFrm% Last frame to export. If this is -1 the last frame is the last in the data view. This argument is ignored if sFrm
% is a negative code.

frm$ This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers to process. This option provides a list of frame numbers. The first element
holds the number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each frame in the range, list or
specification. If mode% is absent all frames are included. The modes are:

0-n Frames must have a state matching the value of mode%

-1 All frames in the specification are processed

-2 Only the current frame, if it is in the main list, is processed

-3 Frames must also be tagged

-6 Frames must also be untagged

The following simple example exports all frames to fred.cfs.

Script language

19-431

ExportFrameList(-1); 'export from all frames in the view
FileExportAs ("fred.cfs", 1); 'export selected data as text

See also:
EditCopy(), FileExportAs(), ExportChanList(), ExportChanFormat(), ExportTextFormat(),
ExportTimeRange()

ExportTextFormat()

This command sets the text export format for use by FileExportAs() and EditCopy(). It is equivalent to setting
decimal places, field width, string delimiter, item separator and frame header options in the Text Output
Configuration dialog. The command with no arguments resets everything in the dialog to default settings: decimal
places to 5, field width to 0, the string delimiter to double quotes, the separator to a tab character, the header and
waveform channel units disabled. It also enables the output of data, time and headings for the waveform channel
type only. See ExportChanFormat() to set these.

Proc ExportTextFormat({dDec%, tDec%, width%, lim$, sep${, flags%{, intp
%}}});

dDec% Decimal places for data values.

tDec% Decimal places for time values.

width% Field width for all values, or zero for minimum width.

lim$ The delimiter, which is the character to place at the start and end of each text string in the output. The
normal character to use is a double-quote mark.

sep$ The separator character which is used to separate multiple data items on a line. This should be one of tab,
comma or space.

flags% If this is present this sets various options, the default value is 0. Before version 6.03 this was the head%
option, but as long as 0 was used for no header and 1 for header wanted, no incompatibilities will be
encountered. It is the sum of:

1 Output the frame header information
2 Output waveform channel units in header (from version 6.03 onwards)

intp% The interpolation method to use for waveform output. The default value is 0, the choices available are

0 None
1 Linear
2 Cubic spline

See also:
EditCopy(), FileExportAs(), ExportChanList(), ExportFrameList(), ExportChanFormat(),
ExportTimeRange()

ExportTimeRange()

This command sets an x axis range for use by FileExportAs() and EditCopy() in a data view. This is equivalent
to setting start and end times in the export setup dialogs.

Proc ExportTimeRange(sRange, eRange{, flags%});

sRange The start of the range of data to export, in x axis units.

eRange The end of the range of data to export, in x axis units.

flags% This affects CFS data written by FileExportAs() and is the sum of:

1 Time shift data so that it starts at zero in the output file.

See also:
EditCopy(), FileExportAs(), ExportChanFormat(), ExportChanList(), ExportFrameList(),
ExportTextFormat()

Signal Version 6.06

19-432

F

File...()

FileApplyResource()

This applies a resource file to the current data or XY view. If a data view is duplicated, all other duplicates are
deleted, then the resource file is applied, which may create duplicates. The current view handle is not changed.
Handles of duplicate views are not preserved, even if the resource file creates the same number of duplicates.

Func FileApplyResource(name$);

name$ The resource file to apply. You must include the .sgrx (or .sgr for older resource files) file extension and
required path. Remember that \ in a string must be entered as \\ or use /. If the name is "" or contains a
"*" or a "?", the user is prompted for a file.

Returns The number of modified views (usually 1 unless the resource file generates duplicates), 0 if the resource
file did not contain suitable information, -1 if the user cancelled the file dialog, -2 if the file could not be
found or -3 if there is any other problem.

See also:
FileGlobalResource(), FileOpen(), FileSave(), FileSaveResource()

FileClose()

This is used to close the current window or external file. You can supply an argument to close all views associated
with the current data view or to close all the views belonging to the application.

Func FileClose({all%{, query%});

all% This argument determines the scope of the file closing. Possible values are:

-1 Close all views except loaded scripts and debug windows

0 Close the current view. This is the same as omitting all%

1 Close all windows associated with the current view

query% This determines what happens if a view holds unsaved data:

-1 Don't save the data or query the user

0 Query the user about each view that needs saving. If the user chooses Cancel, the operation stops,
leaving all unclosed windows behind. This is the same as omitting query%.

Returns The number of views that have not been closed. This can occur if a view needs saving and the user
requests Cancel.

Note: A common fault in scripts is the use of the construct:
View(v%).FileClose(0);

This can cause problems because, if the current view is already View(v%), then at the end of the function the
script will attempt to switch back to View(v%) again, but it is now gone! This results in a “View is wrong
type” error for no obvious reason. To avoid the problem use:

View(v%);
FileClose(0);

See also:
FileOpen(), FileSave(), FileSaveAs(), FileNew()

FileComment$()

This function accesses the file comments in the file associated with the current file view or in a memory view. File
comments for XY and text based views are always blank. The comment string is up to 72 characters in length.

Func FileComment$(num%{, new$});
Func FileComment$({new$});

Script language

19-433

num% This selects the comment string number from 1 to 5, if num% is omitted then file comment string number 1 is
used.

new$ If present, the command replaces the existing comment string with new$.

Returns The comment string at the time of the call.

See also:
FrameComment$()

FileConvert$()

This function converts a data file from a “foreign” format into a Signal data file. The range of foreign formats
supported depends on the number of import filters in the Signal\import folder.

Func FileConvert$(src${, dest${, flag%{, &err%{, cmd$}}}});

src$ This is the name of the file to convert. The file extension is used to determine the file type (unless flag%
bit 0 is set). Known file extensions include: abf, cfs, cnt, cut, dat, eeg, ewb, ibw, son and uff. We
expect to add more. If an empty string is used or one containing wild cards then a file selection dialog will
appear.

dest$ If this is present, it sets the destination file. If this is not a full path name, the name is relative to the current
directory. If you do not supply a file extension then Signal appends ".cfs". If you set any other file
extension, Signal cannot open the file as a Signal data file. If you do not supply this argument, the
converted file will be written to the same folder as the source file, using the original file name with the file
extension changed to .cfs.

flag% This argument is the sum of the flag values: 1=Ignore the file extension of the source file and try all
possible file converters & if all else fails try the binary importer, 2=Allow user interaction if required
(otherwise sensible, non-destructive defaults are used for all decisions).

err% Optional integer variable that is returned as 0 if the file was converted, otherwise it is returned holding a
negative error code.

cmd$ Optional string holding parameters that control the importer. The string is of the form:
name1=value1;name2=value2;name3=value3 where the names are case insensitive. We append
;AppVer=Signal,600 (the 600 stands for the version of Signal multiplied by 100) to the end of the string. It
is entirely up to the importers what parameter names they recognise. For more information about specific
importers click here and then find the importer in the table. If the importer supports a command line, the
cmd$ column contains Yes. Click the Yes for details of supported keywords.

Before the string is passed to an importer it is scanned for parameters that apply generally. At the moment,
only one such option exists:

Na
me

Description

dll You can use this option to select a specific import DLL. If you do not supply this, Signal will use the
first importer it finds that supports a file extension that matches the file set by src$. Most data
formats have a unique extension, but some have a wide range of extensions. For example, to force the
use of the CED binary importer you would set cmd$:= "dll=binary" as the argument. You can
find the DLL name from the table of importers for the File menu Import command, or record your
actions.

Returns The full path name of the created file, or an empty string if the file was not converted.

See also:
FileOpen(), FilePath$(), FilePathSet(), FileList()

FileCopy()

This function copies a source file to a destination file. File names can be specified in full or relative to the current
directory. Wildcards cannot be used.

Func FileCopy(src$, dest${, over%});

Signal Version 6.06

19-434

src$ The source file to copy to the destination. This file is not changed.

dest$ The destination file. If this file exists you must set over% to overwrite it.

over% If this optional argument is 0 or omitted, the copy will not overwrite an existing destination file. Set to 1 to
overwrite.

Returns The routine returns 1 if the file was copied, 0 if it was not. Reasons for failure include: no source file, no
destination path, insufficient disk space, destination exists and insufficient rights.

See also:
BRead(), BWrite(), FileDelete(), FileOpen(), ProgRun()

FileDate$()

This function returns a string holding the date when the data file was sampled. Use FileTimeDate() to get the
date as numbers. The current view must be a time view. The arguments are exactly the same as for the Date$()
command. This function was added to Signal at version 4.07.

Func FileDate$({dayF%, {monF%, {yearF%, {order%, {sep$}}}}});

See also:
Date$(), FileTimeDate(), FileTime$()

FileDelete()

This function deletes one or more files. File names can be specified in full, or relative to the current directory.

Windows file names are of the form x:\folder1\folder2\foldern\file.ext or \
\machine\folder1\folder2\foldern\file.ext across a network. If a name does not start with a \ or with x:
\ (where x is a drive letter), the path is relative to the current directory. Beware that \ must be written \\ in a string
passed to the compiler.

Func FileDelete(name$[]|name${, opt%});

name$ This is either a string variable or an array of strings that holds the names of the files to delete. Only one
name per string and no wildcard characters are allowed. If the names do not include a path they refer to
files in the current directory.

opt% If this is present and non-zero, the user is asked before each file in the list is deleted. You cannot delete
protected or hidden or system files.

Returns The number of files deleted or a negative error code.

See also:
FilePath$(), FilePathSet(), FileList()

FileExportAs()

This function saves the current data view or the sampling configuration as a file on disk. A data view is saved
either in its native format, or as text or as a picture. It is equivalent to the two File menu commands Export As and
Save configuration. This cannot be used for external text or binary files as they are already on disk.

Func FileExportAs(name${, type%{, mode%{, text${, flag%{, exp$}}}}});

name$ The name to use for saving. If the string is empty or if the string holds wild card characters * or ?, then the
File menu Save As dialog opens, otherwise it is used directly. In Windows, the wildcards select the initial
list of files. If the string is used directly, a default file extension is not provided; you must provide the
extension yourself.

type% The type to save the file as (if omitted, type -1 is used):

-2 For data and XY views only, opens a File Save As dialog which will allow the user to choose the type
of file to save as.

-1 Export in the native format for the data view. This is equivalent to using type% 0 for file and memory
views or 12 for XY views.

Script language

19-435

0 Export part of the data view as set by ExportFrameList(), ExportTimeRange() and
ExportChanList() to a new Signal data file. The file extension should be .cfs.

1 Save the contents of the current data or XY view as a text file. Signal saves the data as set by
ExportFrameList(), ExportTimeRange() and ExportChanList() in the text format set by
ExportChanFormat() and ExportTextFormat(). If the export frame list is empty then the
current frame is used. The file extension should be .txt.

5 Save data or XY view as a picture file. The file extension should be .wmf.

6 Save the sampling configuration in a configuration file. The function will only save sampling
configuration data using the new-style .sgcx file format and will force the file extension used to be
.sgcx. Old-style sampling configuration files can only be converted to new-style XML by using them
for sampling. The function fails and returns an error if it is used to try to save an old-style sampling
configuration that has not been converted to new-style.

12 For XY views only, save as an XY data file. The file extension should be .sxy.

13 Save the view as a bitmap picture.

14 As 13, but saving in Joint Photographic Expert Group (JPEG) format.

15 As 13, but saving in Portable Network Graphics (PNG) format.

16 As 13, but saving in Tagged Image File Format (TIFF).

17 Save as Grid view (Grid views only).

100 Types 100 and upwards identify external exporters installed in the export folder (where you will find
additional documentation). Time and result views export the channels and time range set by
ExportChanList(). XY views export the data set by flag%. Codes defined so far:

Code Exporter

100 MatLab follow this link to see the string format used for the exp$ argument
(below).

mode% This optional argument has a default value of zero and is the sum of:

1 Do not query the user if this operation would overwrite an existing file. While an existing file is open
in Signal you will not be able to overwrite it.

8 Allow the operating system to select the initial directory for any Save As dialog that may be provided,
otherwise use the current directory.

text$ An optional prompt displayed as part of the file dialog to prompt the user.

flag% Used when saving XY views as text or to an external exporter to override the normal behaviour, which is to
save all visible channels and all data points. This optional argument has a default value of 1 and is the sum
of:

1 Output only visible channels, otherwise all XY channels.

2 Output only data that is in the visible range (use 3 for visible data).

exp$ External exporter settings as a string (see the external exporter documentation for argument names) of the
form: "name1=value|name2=value|name3=value".

Returns The function returns 0 if the operation was a success or a negative error code.

See also:
EditCopy(), ExportChanFormat(), ExportChanList(), ExportFrameList(), ExportTimeRange(),
ExportTextFormat()

FileGetIntVar()

This function reads a CFS file variable of integer type from the file attached to the current view, which must be a file
view. The CFS supports the use of file and frame variables of integer, floating point and string types. Software
other than Signal may have included these when creating a data file.

Func FileGetIntVar(name${, &nVar%{, &units${, &nType%}}});

name$ The name of the variable to look for. This string is not case sensitive but every character including spaces
must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error code.

units$ If present this returns the units for the variable.

Signal Version 6.06

19-436

nType% If present this returns a code for the CFS type of an integer variable:

0: INT1, 1: WRD1, 2: INT2, 3: WRD2, 4: INT4:

Returns The function returns the value of the variable if the operation was a success, otherwise zero.

See also:
FileGetRealVar(), FileGetStrVar$(), FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FileGetRealVar()

This function reads a CFS file variable of real type from the file attached to the current view, which must be a file
view.

Func FileGetRealVar(name${, &nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every character including spaces
must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error code.

units$ If present this returns the units for the variable.

Returns The function returns the value of the variable if the operation was a success, otherwise zero.

See also:
FileGetIntVar(), FileGetStrVar$(), FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FileGetStrVar$()

This function reads a CFS file variable of string type from the file attached to the current view, which must be a file
view.

Func FileGetStrVar$(name${, &nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every character including spaces
must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error code.

units$ If present this returns the units for the variable.

Returns The function returns a string contents of the variable if the operation was a success, otherwise an empty
string.

See also:
FileGetIntVar(), FileGetRealVar(), FileVarCount(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FileGlobalResource()

This function is equivalent to the Global Resources dialog. Please see the documentation for the dialog for a full
explanation. The function has two forms: the first is for setting values, the second is to read them back:

Func FileGlobalResource(flags%, loc%, name${, path$});
Func FileGlobalResource(&loc%, &name$, &path$);

flags% This is the sum of the following values:

1 Enable the use of global resources. If unset, no global resources are used.

2 Only use global resources if a data file has no associated resource file.

4 Only use if the data file is within the path set by path$.

loc% The location to search for the global resource file. 0=the system folder list, 1=search the data file folder,
then the system list, 2=the data file folder only.

Script language

19-437

name$ The name of the global resource file excluding the path and .sgrx (or .sgr for older resource files) file
extension.

path$ The file path within which to use the global resources. If you omit this argument when setting values, the
current path does not change.

Returns When setting values, the return value is 0 or a negative error code. When reading back values, the return
value is the flags% argument.

See also:
Global Resources dialog, FileApplyResource(), FileOpen(), FileSave(),
FileSaveResource()

FileList()

This function gets lists of files and sub-directories (folders) in the current directory and can also return the path to
the parent directory of the current directory. This function can be used to process all files of a particular type in a
particular directory.

Func FileList(names$[]|&name$, type%{, mask$});

name$ This is either a string variable or an array of strings that is returned holding the name(s) of files or
directories. Only one name is returned per string.

type% This sets the type of the objects to return information on. Allowed values are:

-3 The parent directory of the current directory. The full path is returned.

-2 Sub-directories of the current directory. No path is returned.

-1 All files in the current directory.

0 Signal data files (*.cfs).

1 Text files (*.txt).

2 Output sequence files (*.pls).

3 Signal script files (*.sgs).

6 Signal sampling configuration files (*.sgcx and *.sgc). The mask$ parameter can be used to select
files with just one file extension should this be required.

12 XY view data file (*.sxy).

mask$ This optional string limits the names returned to those that match it; * and ? in the mask are wildcards. ?
matches any character and * matches any 0 or more characters. Matching is case insensitive and from left
to right.

Returns The number of names that met the specification or a negative error code. This can be used to set the size
of the string array required to hold all the results.

See also:
FilePath$(), FilePathSet(), FileDelete(), FileName$()

FileName$()

This returns the name of the data file associated with the current view (if any). You can recall the entire file name, or
any part of it. If there is no file the result is an empty string. The negative mode% values were added in Signal
versions 6.06 and 7.01.

Func FileName$({mode%});

mode% If present, determines what to return, if omitted taken as 0.

0 Or omitted, returns the full file name including the path

1 The disk drive/volume name

2 The path section, excluding the volume/drive and the name of the file

3 The file name up to and not including the last dot in the name, excluding any trailing number

4 Any trailing numbers excluded from 3

5 The end of the file name from the last dot - the file name extension

Signal Version 6.06

19-438

-1 The disk drive/volume plus the path.

-2 The disk drive/volume, path and the file name excluding any trailing number

-3 The disk drive/volume, path and the file name including any trailing number

-4 The file name including any trailing number

-5 The complete file name including any trailing number and the file name extension

Returns A string holding the requested name, or a blank string if there is no file.

See also:
FileList(), FilePath$(), FilePathSet(), FileDelete()

FileNew()

This is equivalent to the File menu New command; it creates a new window, also called a view, and returns the view
handle. You can create visible or invisible windows. Creating an invisible window lets you set the window position
and properties before you draw it. The new window is the current view and if visible, the front view. Use
FileSaveAs() to name created files.

Func FileNew(type%{, mode%);
Func FileNew(17, mode%{, cols%{, rows%}});

type% The type of file to create:

0 A Signal data file based on the sampling configuration, ready for sampling. This opens a new file view
which is also referred to as the sampling document view . It may also open other windows which will
include the sampling control panels.

1 A text file in a window.

2 An output sequence file in a window.

3 A Signal script file in a window.

12 An XY view with one (empty) data channel. Use XYAddData() to add more data and XYSetChan()
to create new channels.

17 An empty Grid view with rows% rows and cols% columns.

mode% This optional argument determines how the new window is opened. The value is the sum of these flags. If
the argument is omitted, its value is 0. The flags are:

1 Make the new window(s) visible immediately. If this flag is not set the window is created, but is
invisible.

2 For data files, if the sampling configuration holds information for creating additional windows, use it.
If this flag is not set, data files extract enough information from the sampling configuration to set the
sampling parameters for the data channels.

Returns It returns the view handle (or the handle of the lowest numbered duplicate for a data file with duplicate
windows) or a negative error.

See also:
FileOpen(), FileSave(), FileSaveAs(), FileClose(), SetMemory(), SampleStart(),
XYAddDAta(), XYSetChan()

FileOpen()

This is the equivalent of the File Open menu command; it opens an existing Signal data file or a text file in a
window, or an external text or binary file. If the file is already opened, a handle for the existing view is returned. The
window becomes the new current view. You can create windows as visible or invisible. It is often more convenient
to create an invisible window so you can position it before making it visible.

Func FileOpen(name$, type%{, mode%{, text$}});

name$ The name of the file to open. This can include a path. The file name is operating system dependent, see
FileDelete(). If the name is blank or holds wild card characters, the file dialog opens for the user to
select a file. Don't forget that if you want to get a single backslash (\) character in the file name you have
to use a double backslash in the string constant.

type% The type of the file to open. The types currently defined (see ViewKind()) are:

Script language

19-439

0 Open a Signal data file. A new file view is created.

1 Open a text file. A new text view is created.

2 Open an output sequence file. A new output sequence view is created.

3 Open a Signal script file. A new script view is created.

6 Load a sampling configuration file. No new view is created. The function will try both the .sgc
extension for old-style resources and the new .sgcx extension for XML resources if necessary. If the a
.sgc file extension is given and the specified file does not exist the new-style .sgcx extension is
tried. Similarly the .sgc extension is tried if the specified file with a .sgcx extension was not found.
This means that old scripts will work without any changes and can be switched to using the new-
style files (if both files exist) by deleting the old file. Scripts can be changed to use new-style files by
default by changing the file extension specified to .sgcx.

8 An external text file without a window. An invisible external text view is created in which Read() or
Print() can be used.

9 An external binary file without a window. An invisible external binary view is created in which
BRead(), BWrite(), BSeek() and other binary routines can be used.

12 Open an XY data file. A new XY view is created.

17 Open a Grid view file. A new Grid view is created.

mode% This optional argument determines how the window or file opens and how the associated resource file
information is used. If the argument is omitted, its value is 0.

For file types 0 to 3 and 12 (plus type 6 for the 8 value only) mode% is the sum of:

1 Make the new window(s) visible immediately. If this flag is not set the window is created, but is
invisible.

2 Read resource information associated with the file. This may create more than one window, depending
on the file type. For data files, it restores the file to the state as it was closed. If the flag is unset,
resources are ignored (except to memory channels, see below). Note that if your data file contains
virtual channels, opening the file without reading the resources will remove them from the file.

4 Return an error if the file is already open in Signal. If this flag is not set and the file is already in use, it
is brought to the front and its handle is returned.

8 Any file open dialog that is generated starts off showing the directory selected by the OS (this is
usually the place where the last file was opened from or saved to), if not set the dialog starts off
showing the current directory. This also applies to sampling configuration files (type 6), unlike all of
the other mode% values.

16 Do not load memory channel data from the resources. Memory channel data is loaded from the
resources by default except if this flag is set and the value 2 flag for overall resource file information
use is not set.

When used with file types 8 and 9 the following values of mode% are used. The file pointer (which sets the
next output or input operation position) is set to the start of the file in modes 0 and 1 and to the end in
modes 2 and 3.

0 Open an existing file for reading only.

1 Open a new file (or replace an existing file) for writing (and reading).

2 Open an existing file for writing (and reading) .

3 Open a file for writing (and reading). If the file doesn’t exist, create it.

Add an 8 to this value for any file open dialog that is generated to start off showing the directory selected
by the OS (this is usually the place where the last file was opened from or saved to), if not the dialog starts
showing the current directory.

text$ An optional prompt displayed as part of the file dialog, for all except type 6. If this is supplied then the file
dialog will appear even if a complete file name is also supplied.

Returns If a file opens without any problem, the return value is the view handle for the file (if multiple views open,
it is the handle for the first file view created). For configuration files (type% of 6), the return value is 0 if no
error occurs. If the file could not be opened, or the user pressed Cancel in the file open dialog, the returned
value is a negative error code.

If multiple windows are created for a data file, you can get a list of the associated view handles using
ViewList(list%[],64).

See also:

Signal Version 6.06

19-440

FileDelete(), FileNew(), FileSave(), FileSaveAs(), FileClose(), BRead(), BReadSize(),
BSeek(), BWrite(), BWriteSize(), ViewFind(), ViewList(), ViewKind()

FilePath$()

This function gets the “current directory”, the place on disk where file open and file save dialogs start from. It can
also get the path for created data files, various special directories available for user purposes or the directory where
the Signal application is installed.

Func FilePath$({opt%});

opt% If omitted this is taken as zero. This determines which directory/folder to get:

0 The current directory. This is the directory that incomplete path names (names that do not start with
a drive specification or a backslash) are relative to.

1 The path for sampled data files created by FileNew() as set by Edit menu Preferences in the
Sampling tab.

2 The path to the directory where the Signal application is installed. Using this location for user data is
strongly deprecated as Signal may be installed within the protected Program Files directory tree
so please do not use this opt% value, use -4 instead if possible. At some point in the future CED
may enforce this by refusing to return this path and returning an empty string or a different path
instead.

3 The automatic file saving path as set by the Sampling Configuration dialog Automation tab.

As an experiment from version 5.00, we also support some negative values that return the path to some
special folders:

-1 The (user-specific) Desktop folder, for example: C:\Users\username\Desktop\

-2 The users documents folder, for example: C:\Users\username\Documents\

-3 The system folder for Signal user and application data, for example: C:
\Users\username\AppData\Local\CED\Signal6\. You can use this location to save files that are
specific to the current logged on user and Signal. You could also consider using the registry with the
Profile() command for small quantities of information.

-4 The Signal6 folder inside the users documents folder (commonly called My Documents). It is
recommended that you use this location for your data and files if possible. Available from version
5.08 only.

-5 The Signal6Shared folder inside the documents folder for all users. Available from version 5.08
only.

Returns A string holding the path or an empty string if an error is detected.

See also:
FilePathSet(), FileList(), FileName$(), SampleAutoName$()

FilePathSet()

This function sets the current directory/folder, and where Signal data files created by FileNew() are stored until
they are sent to their final resting place by FileSaveAs(). There are two version of the command. The first sets or
optionally creates a directory based on a passed in path, the second prompts the user to choose and optionally
create a directory.

Func FilePathSet(path${, opt%{, make%}});
Func FilePathSet(path$, opt%, prmpt${, make%});

path$ A string holding the new path to the directory. The path must conform to the rules for path names on the
host system and be less than 255 characters long. If the path is empty or a prompt is set, a dialog opens
for the user to select an existing directory/folder. Don't forget that if you want to get a single backslash (\)
character in a path you have to use a double backslash in the string constant.

opt% If omitted this is taken as zero. This determines which directory/folder to set:

Script language

19-441

0 The current directory. This is the directory that incomplete path names (names that do not start with
a drive specification or a backslash) are relative to.

1 The path for Signal data files created by FileNew() as set by the Edit menu Preferences in the
Sampling tab.

2 The path to the application. This is fixed, so an attempt to change it is an error.

3 The automatic file naming path as set by the Sampling Configuration Automation tab.

make% In the first command version, if this is zero or omitted, all elements of the path must already exist. If set to 1
and path$ is not empty, the command will create the directory/folder if all elements of the path exist except
the last. In the second version of the command that displays a dialog, if this is zero the user can only
select an existing path. If set to 1, the user is allowed to create a new directory/folder. If the users sets a
path you can find out what was set with FilePath$().

prmpt$ Optional prompt for use with the dialog. If you supply a prompt, a user dialog will appear using the current
value of path$ as the starting point. If path$ is empty, the current path set by opt% is the starting point.

Returns Zero if the path was set, or a negative error code.

See also:
FileList(), FileName$(), FilePath$(), SampleAutoName$()

FilePrint()

This function is equivalent to the File menu Print command; it prints some or all of the current view to the printer
that is currently set. If no printer has been set, the current system printer is used. In a file or memory view, it prints a
range of data with the x axis scaling set by the display. In a text or log view, it prints a range of text lines. There is
currently no script mechanism to choose a printer; you must do it interactively.

Func FilePrint({from{, to{, flags%}}});

from The start point of the print. This is in seconds in a file or memory view and in lines in a text view. If
omitted, this is taken as the start of the view.

to The end point in the same units as from. If omitted or set beyond the end of the view then the end of the
view is used.

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.

Returns The function returns 0 if all went well; otherwise it returns a negative error.

The format of the printed output is based on the screen format of the current view. Beware that for file and memory
views the output could be many (very many) pages long.

See also:
FilePrintScreen(), FilePrintVisible()

FilePrintScreen()

This function is equivalent to the File menu Print Screen command; it prints all visible data, XY and text-based
views to the current printer on one page. The page positions are proportional to the view positions in the Signal
application window.

Func FilePrintScreen({head${, vTtl%{, box%{, scTxt%{, flags%{, foot$}}}}}});

head$ The page header. If omitted or an empty string, there is no page header.

vTtl% Set 1 or higher to print a title above each view, omitted or 0 for no title.

box% Set 1 or higher for a box around each view. If omitted, or 0, no box is drawn.

scTxt% Set 1 or higher to scale text differently in the x and y directions to match the original. If omitted or 0 scale
both directions by the same scale factor.

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.

Signal Version 6.06

19-442

foot$ The page footer. If omitted or an empty string, there is no page footer.

Returns The function returns 0 if it all went well, or a negative error code.

See also:
FilePrint(), FilePrintVisible()

FilePrintVisible()

This function prints the current view as it appears on the computer screen to the current printer. In a text view, this
prints the lines in the current selection. If there is no selection, it prints the line containing the cursor. This function
is equivalent to the File menu Print visible command.

Func FilePrintVisible({flags%});

flags% 0=portrait, 1=landscape, 2=current setting. If omitted, the current value is used.

Returns The function returns 0 if all went well, otherwise it returns a negative error.

See also:
FilePrint(), FilePrintScreen()

FileQuit()

This is equivalent to the File menu Exit command. If there is any unsaved data you are asked if you wish to save it
before the application closes. If the user cancels the operation (because there were files that needed saving), the
script terminates, but the Signal application is left running. Use FileClose(-1, -1) before FileQuit() to
guarantee to exit.

Proc FileQuit();

See also:
FileClose()

FileSave()

This function saves the current view as a file on disk. It is equivalent to the File menu Save command. You cannot
use this command for a file view if it has just been sampled, use FileSaveAs() instead. If the view has not been
saved previously, the File menu Save As dialog opens and the user must provide a file name. This cannot be used
for external text or binary files either as they are already on disk.

Func FileSave();

Returns The function returns 0 if the operation was a success, or a negative error code.

See also:
FileOpen(), EditCopy(), FileExportAs(), FileSaveAs(), FileClose()

FileSaveAs()

This function is equivalent to the File menu SaveAs command, it is used to save the current view, with any
relevant changes, under a new name. You can also use this function to save and name a Signal data file immediately
after it has been sampled. Use FileExportAs() to export selected parts of a CFS data file to a new file, to export
from a view under a different format or to save the current sampling configuration in a file.

Func FileSaveAs(name${, mode%{, text$}};

name$ The name to use for saving. If the string is empty or if the string holds wild card characters * or ?, then the
File menu Save As dialog opens; the wildcards select the initial list of files.

mode% This optional argument has a default value of zero and is the sum of:

1 Do not query the user if this operation would overwrite an existing file. While an existing file is open
in Signal you will not be able to overwrite it.

Script language

19-443

8 Allow the operating system to select the initial directory for any Save As dialog that may be provided,
otherwise use the current directory.

text$ An optional prompt displayed as part of the file dialog to prompt the user.

Returns The function returns 0 if the operation was a success, or a negative error code.

See also:
FileSave(), EditCopy(), FileExportAs()

FileSaveResource()

This saves a resource file for the current data or XY view. If a time view is duplicated, resources for all the
duplicates are saved.

Func FileSaveResource({name$|glob%})

name$ The resource file to save to. If the name is "" or contains a "*" or a "?", the user is prompted for a file.
Any extension in the file name is ignored and the extension is set to .sgrx. Remember that \ in a string
must be entered as \\ or use /. If the name is "" or contains a "*" or a "?", the user is prompted for a file.

glob% An alternative to name$. 0=prompt for a file name, 1=save resources to the resource file associated with
the view (this may be a global resource file), 2=save to the global resource file only (if enabled). If both
name$ and glob% are omitted, the effect is the same as setting glob% to 1.

Returns 0 if all was OK, -1 if the user cancelled the File Save dialog, -2 if the file could not be saved for any other
reason.

This command will add information to an existing resource file, or create a new one.

See also:
FileGlobalResource(), FileApplyResource(), FileOpen(), FileSave()

FileSize()

This function returns the size of the data file associated with the current data view. During sampling this allows for
data that is buffered, but not yet written. If you use this during sampling, you will see the file size increase each
time a new frame is written, that is, it will not increase by the size of data items but by the size of data frames. This
function did not exist before Signal version 4.07.

Func FileSize();

Returns The size of the file, in bytes, as a real number as it can exceed integer range.

See also:
File size limit

FileTime$()

This function returns a string holding the time at which sampling started. Use FileTimeDate() to get the date as
numbers. The current view must be a time view. The arguments are exactly the same as for the Time$() command.
This function was added to Signal at version 4.07.

Func FileTime$({tBase%, {show%, {amPm%, {sep$}}}});

tBase% Specifies the time base to show the time in. You can choose between 24 hour or 12 hour clock mode. If this
argument is omitted, 0 is used.

0 Operating system settings 2 12 hour format

1 24 hour format

Signal Version 6.06

19-444

show% Specifies the time fields to show. Add the values of the required options together and use that as the
argument. If this argument is omitted or a value of 0 is used, 7 (1+2+4) is used for 24 hour format and 15
(1+2+4+8) for 12 hour format.

1 Show hours 4 Show seconds

2 Show minutes 8 Remove leading zeros from hours

amPm% This sets the position of the “AM” or “PM” string in 12 hour format and has no effect in 24 hour format. If
omitted, a value of zero is used. The string that gets printed (“AM” or “PM”) is specified by the operating
system.

0 Operating system settings 2 Show to the left of the time

1 Show to the right of the time 3 Hide the “AM” or “PM” string

sep$ This string appears between adjacent time fields. If sep$ = “:” then the time will appear as 12:04:45. If
an empty string is entered or sep$ is omitted, the operating system settings are used.

See also:
Time$(), FileDate$(), FileTimeDate()

FileTimeDate()

This function returns the time and date at which sampling started as numbers. Use FileTime$() and
FileDate$() to get the result as strings. The current view must be a time view. The arguments are exactly the
same as for the TimeDate() command. This function was added to Signal at version 4.07.

Proc FileTimeDate(&s%, {&m%,{&h%,{&d%,{&mon%,{&y%,{&wDay%}}}}}});
Proc FileTimeDate(td%[])

s% If s% is the only argument, it is set to the number of seconds since midnight. Otherwise it is set to the
number of seconds since the start of the current minute.

m% If this is the last argument, it is set to the number of minutes since midnight. Otherwise it is set to the
number of full minutes since the start of the hour.

h% If present, the number of hours since Midnight is returned in this variable.

d% If present, the day of the month is returned as an integer in the range 1 to 31.

mon% If present, the month number is returned as an integer in the range 1 to 12.

y% If present, the year number is returned here. It will be an integer such as 2002.

wDay% If present, the day of the week will be returned here as 0=Monday to 6=Sunday.

td%[] If an array is the first and only argument, the first seven elements are filled with time and date data. The
array can be less than seven elements long. Element 0 is set to the seconds, 1 to the minutes, 2 to the
hours, and so on.

See also:
Date$(), FileDate$(), MaxTime(), Seconds(), Time$(), TimeDate()

FileVarCount()

This function counts CFS file variables in the data file. File variables are extra values attached to a CFS data file that
are used by Signal for various purposes. A Signal script can read the values of these variables but is not allowed to
change them.

Func FileVarCount();

Returns The number of file variables in the data file associated with this view.

See also:
FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(), FileVarInfo(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

Script language

19-445

FileVarInfo()

This function reads the name, type and optionally the units of a CFS file variable. File variables are extra values
attached to a CFS data file that are used by Signal for various purposes. A Signal script can read the values of
these variables but is not allowed to change them.

Func FileVarInfo(nVar%, &name${, &units$});

nVar% This is the variable number.

name$ This is returned holding the name of the variable, which can be used in the commands for reading the file
variables.

units$ If provided, this is returned holding the units for the variable.

Returns The function returns the type of the variable or -1 if the variable was not found or is of unknown type. The
type code is as follows:

0 An integer variable which can be read using FileGetIntVar()

1 A floating point variable which can be read using FileGetRealVar()

2 A string variable which can be read using FileGetStrVar$()

See also:
FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(), FileVarCount(), FrameGetIntVar(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FiltApply()

This function applies a set of filter coefficients or a filter in the filter bank to a set of waveform channels in the
current file or memory view.

Each output point is generated from the same number of input points as there are filter coefficients. Half these
points are before the output point, and half are after. Where more data is needed than exists in the source file (for
example at the start and end of a file and where there are gaps), extra points are made by duplicating the nearest
valid point.

Func FiltApply(n%|coef[], cSpc, frm%|frm%[]|frm$);

n% Index of the filter in the filter bank to apply in the range -1 to 11, or

coef[] An array holding a set of FIR filter coefficients to apply to the waveform.

cSpc A channel specifier for the channels to filter.

frm% Frame number or a negative code as follows:

-1 All frames in the file

-2 The current frame

-3 Only tagged frames

-6 Only untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

Returns The number of the last channel to be filtered or a negative error code. A negative error code is also
returned if the user clicks Cancel from the progress bar that may appear during a long filtering operation.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltAtten(), FiltCalc(), FiltComment$(), FiltCreate(), FiltInfo(),
FiltName$(), FiltRange()

Signal Version 6.06

19-446

FiltAtten()

This set the desired attenuation for a filter in the filter bank. When FiltApply() or FiltCalc() is used, the
number of coefficients needed to achieve this attenuation (up to a maximum of 255) will be generated. A value of
zero sets the attenuation back to the default (-65 dB).

Func FiltAtten(index%{, dB});

index% Index of the filter in the filter bank to use in the range -1 to 11.

dB If present and negative, this is the desired attenuation for stop bands in the filter.

Returns The desired attenuation for a filter at the time of the call.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltApply(), FiltCalc(), FiltComment$(), FiltCreate(), FiltInfo(),
FiltName$(), FiltRange()

FiltCalc()

The calculation of filter coefficients can take an appreciable time, this function forces the calculation of a filter for a
particular sampling frequency if it has not already been done. If you do not force the calculation, you can still use
FiltApply() to apply a filter. However, the coefficient calculation will then be done at the time of filter
application, which may not be desirable if the filtering operation is time critical.

Func FiltCalc(index%, sInt{, coeff[]{, &dBGot{, nCoef%}}});

index% Index of the filter in the filter bank to use in the range -1 to 11.

sInt% The sample interval of the waveform you are about to filter. This is the value returned by BinSize() for a
waveform channel.

coeff An array to be filled with the coefficients used for filtering. If the array is too small, as many elements as
will fit are set. The maximum size needed is 2047.

dBGot If present, returns the attenuation attained by the filter coefficients.

nCoef% If present, sets the number of coefficients used in the calculation (use an even number for a full
differentiator and an odd number for all other filter types).

Returns The number of coefficients generated by the filter.

An example
Suppose the first filter in the bank (index 0) is a low pass filter with the pass band edge at 50 Hz. If we know that we
will need to filter a channel 4 (sampled at 200 Hz) with this filter, we may want to calculate the coefficients needed in
advance:

FiltCalc(0, BinSize(4));

This will calculate a filter corresponding to the specification of filter 0 for a sampling frequency of 200 Hz with an
attenuation in the stop band of at least the current desired attenuation value for this filter.

Constraints on filters
The calculation of coefficients is a complex process and can produce silly results due to floating point rounding
errors in some situations. To ensure that you will always get a useful result there is a limit to how small and how big
a transition gap can be, relative to the sampling frequency. There is a similar limit on the width of a pass or stop
band:

· The transition gap and the width of a pass or stop band cannot be smaller than 0.005 of the sampling frequency.
· The transition gap cannot be larger than 0.12 of the sampling frequency.

This function always calculates a set of coefficients, but may alter the filter specification in order to do it (these
changes are temporary, see later.) This can happen in two cases :

Script language

19-447

1. If the sampling frequency is such that, to produce the filter, the transition gap and/or pass and stop band
widths are outside their limits, then the widths are set to the limits before calculating the filter. In our 50 Hz low
pass filter example, if we calculate it with respect to a 12 kHz sampling frequency, the minimum pass band width
is 12000*0.005 = 60 Hz. So, the filter would be changed to a 60 Hz low pass filter.

2. If half the sampling frequency (the Nyquist frequency) is less than an edge of a pass or stop band, certain
attributes of the filter are lost. In our 50 Hz low pass filter example, if we tried to calculate with a sampling
frequency of 80 Hz, we would see that the Nyquist frequency is 40 Hz. No frequency above 40 Hz can be
represented in a waveform sampled at 80 Hz, so a 50 Hz low pass filter is equivalent to an “All pass” filter. The
filter specification will be altered to reflect this before calculating.

Any changes made to a filter specification to accommodate a particular calculation are made with reference to the
original specification, not the specification that was last used for a calculation.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltApply(), FiltAtten(), FiltComment$(), FiltCreate(), FiltInfo(),
FiltName$(), FiltRange()

FiltComment$()

This function gets and sets the comment associated with a filter in the filter bank.

Func FiltComment$(index%{, new$});

index% Index of the filter in the filter bank to use, in the range -1 to 11.

new$ If present, sets the new comment.

Returns The previous comment for the filter at the index.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltApply(), FiltAtten(), FiltCalc(), FiltCreate(), FiltInfo(), FiltName$(),
FiltRange()

FiltCreate()

This function creates a filter in the filter bank to the supplied specification and gives it a standard name and
comment.

Func FiltCreate(index%, type%{, trW{, edge1{, edge2{, ...}}}});

index% Index of the new filter in the filter bank in the range -1 to 11. This action replaces any existing filter at this
index. Note that, for this function and all the other FiltXXXX function, an index of -1 refers to special filter
information that is not part of the saved filter banks.

type% The type of the filter desired (see table).

trW The transition width of the filter. This is the frequency interval between the edge of a stop band and the
edge of the adjacent pass band.

edgeN This is a list of edges of pass bands in Hz. (see table).

Returns 0 if there was no problem or a negative error code if the filter was not created.

This table shows the relationship between different filter types and the meaning of the corresponding arguments.
The numbers in brackets indicate the nth pass band when there is more than 1. An empty space in the table means
that the argument is not required.

type% Name trW edge1 edge2 edge3 edge4

0 All stop

1 All pass

2 Low pass Yes High

3 High pass Yes Low

Signal Version 6.06

19-448

4 Band pass Yes Low High

5 Band stop Yes High(1) Low(2)

6 Low pass differentiator Yes High

7 Differentiator

8 1.5 Band Low pass Yes High(1) Low(2) High(2)

9 1.5 Band High pass Yes Low(1) High(1) Low(2)

10 2 Band pass Yes Low(1) High(1) Low(2) High(2)

11 2 Band stop Yes High(1) Low(2) High(2) Low(3)

The values entered correspond to the text fields shown in the Filter edit dialog box.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(), FiltInfo(), FiltName$(),
FiltRange()

FiltInfo()

This function retrieves information about a filter in the bank.

Func FiltInfo(index%{, what%});

index% Index of the filter in the filter bank to use in the range -1 to 11.

what% Which bit of information about the filter to return:

-2 Maximum what% number allowed

-1 Desired attenuation

0 type (if you supply no value, 0 is assumed)

1 Transition width

2-5 edge1-edge4 given in FiltCreate()

Returns The information requested as a real.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(), FiltCreate(),
FiltName$(), FiltRange()

FiltName$()

This function gets and/or sets the name of a filter in the filter bank.

Func FiltName$(index%{, new$});

index% Index of the filter in the filter bank to use in the range -1 to 11.

new$ If present, sets the new name.

Returns The previous name of the filter at that index.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(), FiltInfo(),
FiltCreate(), FiltRange()

FiltRange()

This function retrieves the minimum and maximum sampling rates that this filter can be applied to without the
specification being altered. See the FiltCalc() command, Constraints on filters for more information.

Proc FiltRange(index%, &minFr, &maxFr);

index% Index of the filter in the filter bank to use in the range -1 to 11.

Script language

19-449

minFr Returns the minimum sampling frequency you can calculate the filter with respect to, so that no transition
width is greater than the maximum allowed and no attributes of the filter are lost.

maxFr Returns the maximum sampling frequency you can calculate the filter with respect to, without the
transition (or band) widths being smaller than allowed.

It is possible to create a filter which cannot be applied to any sampling frequency without being changed. This will
be apparent because minFr will be larger than maxFr.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, FiltApply(), FiltAtten(), FiltCalc(), FiltComment$(), FiltInfo(),
FiltCreate(), FiltName$()

FIRMake()

This function creates FIR filter coefficients and places them in an array ready for use by ArrFilt(). This
command is very similar in operation to the DOS program FIRMake and has similar input requirements. Unless you
need precise control over all aspects of filter generation, you may find it easier to use FiltCalc() or FIRQuick().
You will need to read the detailed information about FIR filters in the description of the Digital Filter dialog to get
the best results from this command.

Proc FIRMake(type%, param[][], coef[]{, nGrid{, extFr[]}});

type% The type of filter file to produce: 1=Multiband filter, 2=Differentiator, 3=Hilbert transformer, 4=Multiband
pink noise (Multiband with 3 dB per octave roll-off).

param This is a 2-dimensional array. The size of the first dimension must be 4 or 5. The size of the second
dimension (n) should be the number of bands in your filter. You pass in 4 values for each band (indices 0
to 3) to describe your filter:

Indices 0 and 1 are the start and end frequency of each band. All frequencies are given as fraction of a
sampling frequency and so are in the range 0 to 0.5.

Index 2 is the function of the band. For all filter types except a differentiator, this is the gain of the filter in
the band in the range 0 to 1 (the most common values are 0 for a stop band and 1 for a pass band.) For a
differentiator, this is the slope of the filter in the band, normally not more than 2. The gain at any
frequency f in the band is given by f*function.

Index 3 is the relative weight to give the band. The weight sets the relative importance of the band in
multiband filters. The program divides each band into frequency points and optimises the filter such that
the maximum ripple times the weight in each band is the same for all bands. The weight is independent of
frequency, except in the case of the differentiator, where the weight used is weight/frequency.

If there is an index 4 (the size of the first dimension was 5), this index is filled in by the function with the
ripple in the band in dB.

coef An array into which the FIR filter coefficients are placed. The size of this array determines the number of
filter coefficients which are calculated. It is important, therefore, to make sure this array is exactly the size
that you need. The maximum number of coefficients is 512.

nGrid The grid density for the calculation. If omitted or set to 0, the default density of 16 is used. This sets the
density of test points in internal tables used to search for points of maximum deviation from the filter
specification. The larger the value, the longer it takes to compute the filter. There is seldom any point
changing this value unless you suspect that the program is missing the peak points.

extFr An array to hold the list of extremal frequencies (the list of frequencies within the bands which have the
largest deviation from the desired filter). If there are n% coefficients, there are (n%+1)/2 extremal
frequencies.

The parameters passed in must be correct or a fatal error results. Errors include: overlapping band edges, band
edges outside the range 0 to 0.5, too many coefficients, differentiator slope less than 0. If not a differentiator the
band function must lie between 0 and 1, the band weight must be greater than 0.

For example, to create a low pass filter with a pass band from 0 to 0.3 and a stop band from 0.35 to 0.5, and no return
of the ripple, you would set up param as follows:

Signal Version 6.06

19-450

var param[4][2] 'No return of ripple, 2 bands
para[0][0] := 0; 'Starting frequency of pass band
para[1][0] := 0.3; 'Ending frequency of pass band
para[2][0] := 1; 'Desired gain (unity)
para[3][0] := 1; 'Give this band a weighting of 1
para[0][1] := 0.35; 'Starting frequency of stop band
para[1][1] := 0.5; 'Ending frequency of stop band
para[2][1] := 0; 'Desired gain of 0 (stop band)
para[3][1] := 10; 'Give this band a weighting of 10

See also:
More about FIRMake() filter types, Interactive FIR filtering, Filter banks, Filter
types, Technical details of FIR filters, ArrFilt(), FiltApply(), FiltCalc(),
FIRQuick(), FIRResponse()

FIRQuick()

This function creates a set of filter coefficients in the same way the FIRMake() does, but many of the parameters
are optional, allowing the most common filters to be created with a minimal specification.

Func FIRQuick(coef[], type%, freq{, width{, atten}});

coef An array into which the FIR filter coefficients are placed. The size of this array should be 512. This is the
maximum number of coefficients that can be created and this function reserves the right to return as many
as it feels necessary, up to that value to create a decent filter.

type% This sets the type of filter to create. 0=Low pass, 1=High pass, 2=Band pass, 3=Band stop and
4=Differentiator.

freq This is a fraction of the sampling rate in the range 0 to 0.5 and means different things depending on the
type of filter.:

For Low pass, High pass and Differentiator types, this represents the cut-off frequency. This is the
frequency of the higher edge of the first frequency band.

For Band pass and Band stop filters, this is the midpoint of the middle frequency band: the pass band in a
Band pass filter, the stop band in a Band stop filter.

width For Low pass, High pass and Differentiator filters, this is the width of the transition gap between the stop
band and the pass band. The default value is 0.02 and there is an upper limit of 0.1 on this argument.

For a band Pass or Band stop filter, width is the width of the middle band. E.g. if you ask for a Pass band
filter with the freq parameter to be 0.25 and the width to be 0.05, the middle pass band will be from 0.2 to
0.3. For these types of filter, you still need a positive transition width. This transition width is 0.02 and
cannot be changed by the user.

atten The desired attenuation in the stop band in dB. The default is 50 dB. This is analogous to the desired
attenuation in the FiltAtten() command.

Returns The number of coefficients calculated. If the array is not large enough the coefficient list is truncated (and
the result is useless).

See also:
More about FIRMake() filter types, Interactive FIR filtering, Filter banks, Filter
types, Technical details of FIR filters, ArrFilt(), FiltApply(), FiltCalc(), FIRMake(),
FIRResponse()

FIRResponse()

This function retrieves the frequency response of a given filter as amplitude or in dB.

Proc FIRResponse(resp[], const coef[]{, as%{, type%}});

resp The array to hold the frequency response. This array will be filled regardless of its size. The first element is
the amplitude response at 0 Hz and the last is the amplitude response at the Nyquist frequency. The

Script language

19-451

remaining elements are set to the response at a frequency proportional to the element’s position in the
array.

coef The coefficient array calculated by FIRMake(), FIRQuick() or FiltCalc().

as% If this is 0 or omitted, the response is in dB (0 dB is unchanged amplitude), otherwise as linear amplitude
(1.0 is unchanged).

type% If present, informs the command of the filter type. The types are the same as those supplied for
FIRQuick(): 0=Low pass, 1=High pass, 2=Band pass, 3=Band stop and 4=Differentiator. If a type is
given , the time to calculate the response is halved. If you are not sure what type of filter you have, or you
have type not covered by the FIRQuick() types, then do not supply a type to this command.

See also:
Interactive FIR filtering, Filter banks, Filter types, Technical details of FIR
filters, ArrFilt(), FiltCalc(), FIRMake(), FIRQuick()

FitCoef()

This command gives you access to the fit coefficients for the next FitData() fit. You can return the values from
any type of fit and set the initial values and limits and hold values fixed for iterative fits. There are two command
variants:

Set and get coefficients
This command variant lets you read back the current coefficient values and set the coefficient values and limits for
iterative fitting:

Func FitCoef({num%{, new{, lower{, upper}}}});

num% If this is omitted, the return value is the number of coefficients in the current fit. If present, it is a
coefficient number. The first coefficient is number 0. If num% is present, the return value is the coefficient
value for the existing fit, or if there is no fit, the coefficient value that would be used as the starting point
for the next iterative fit is returned.

new If present, this sets the value of coefficient num% for the next iterative fit.

lower If present, this sets the lower limit for coefficient num% for the next iterative fit. There is currently no way to
read back the coefficient limits. There is also no check made that the limits are set to sensible values.

upper If present, this sets the upper limit for coefficient num% for the next iterative fit.

Returns The number of coefficients or the value of coefficient num%.

Get and set the hold flags
This command variant allows you to hold some coefficients at their current values during the next fit.

Func FitCoef(hold%[]);

hold% An array of integers to correspond with the coefficients. If the array is too long, extra elements are
ignored. If it is too short, extra coefficients are not affected. Set hold%[i%] to 1 to hold coefficient i% and
to 0 to fit it. If hold%[i%] is less than 0, the hold state is not changed, but hold%[i%] is set to 1 if the
corresponding coefficient is held and to 0 if it is not held.

Returns This always returns 0.

See also:
FitData(), FitValue(), FitExp(), ChanFitCoef()

Signal Version 6.06

19-452

FitData()

This function, together with FitCoef() and FitValue(), lets you apply the same fitting functions that are
available for channel data to data in arrays. You supply arrays of x and y data points and an optional array holding
the standard deviation of the input data point y values. There are three command variants:

Initialise fit information
The first variant sets the type of fit. If you select an iterative fit, the initial values of the fitting coefficients are reset
to standard values and any "hold" flags set by FitCoef() are cleared. You can set your own initial values with the
FitCoef() command or make a guess at the initial values when performing the fit.

Func FitData(type%, order%);

type% The fit type. 0=Clear any fit, 1=Exponential, 2=Polynomial, 3=Gaussian, 4=Sine, 5=Sigmoid.

order% If positive, this is the order of the fit, if negative it is minus the number of fitted coefficients. See the
information about each fit for the allowed values for each fit type. If type% is 0 this argument is ignored
and should be 0.

Returns The number of fit coefficients for the fit or a negative error code.

Exponential fit
This fits multiple exponentials by an iterative method. The data is fitted to the equation:

y = a0 exp(-x/a1) + a2 exp(-x/a3)… For an even number of coefficients

y = a0 exp(-x/a1) + a2 exp(-x/a3)… + an For an odd number of coefficients

You can set up to 10 coefficients or orders 1 to 5. If you use a fit order, the number of coefficients is the order times
2. See the FitExp() command for more information. Coefficient estimates are effective for orders 1 and 2.

Polynomial fit

This fits y = a0 + a1x + a2x
2 + a3x

3 … to a set of (x,y) data points. The fitting is by a direct method; there is no

iteration. The fit order is the highest power of x to fit in the range 1 to 10. The number of coefficients is the fit order
plus 1.

Gaussian fit
This fits multiple Gaussians by an iterative method. The data is fitted to the equation:

y = a0 exp(-½(x-a1)
2/a2

2) + a3 exp(-½(x-a4)
2/a5

2) + …

The fitted parameters (coefficients) are the ai. You can fit up to 3 Gaussians (order 1 to 3). The number of

coefficients is given by the fit order times 3. Coefficient estimates become less useful as the order increases.

Sine fit
This fits multiple sinusoids by an iterative method. The data is fitted to the equation:

y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + … {+ a3n}

The fitted coefficients are the ai. Angles are evaluated in radians. You can fit up to 3 sinusoids (order 3) and an

optional offset. Although the function is given in terms of sine functions, you can easily convert to cosines by
subtracting p/2 from the phase angle (a2, a5, a8) after the fit. The coefficient count can be set to 3, 4, 6, 7, 9 or 10. If

you use orders, the number of coefficients is order times 3 and you cannot set an offset. A useful coefficient
estimate is made for a single sinusoid fit.

Sigmoid fit
This fits a single Boltzmann sigmoid by an iterative method. The data is fitted to the equation:

y = a0 + (a1 - a0)/(1 + exp((a2 – x)/ a3)

Script language

19-453

In terms of the fitted result, a0 and a1 are the low and high fitting limits, a2 is the X50 point and a3 is related to the

reciprocal of the slope at the X50 point. The slope at the X50 point, where x is a2, is (a1 - a0)/(4 a3). You can set order

1 only, or 4 coefficients.

Perform the fit
This variant of the command does the fit set by the previous variant. Use the FitCoef() command to preset fit
coefficients and to read back the result of the fit.

Func FitData(opt%, y[], x[]{, s[]|s{, &err{, maxI% {,&iTer%{, covar[]
[]}}}}});

opt% 1=Estimate the coefficients before fitting, 0=use current values. Note that the estimates are usually only
useful for a small number of coefficients.

y[] An array of y values to be fitted.

x[] A corresponding array of x values.

s[]|s A corresponding array of standard deviations for the data points defined by y[] and x, or a single value,
being the standard deviation of each point. If this value is omitted or set to 1.0, the result is a least squares
fit. If standard deviations are supplied, the result is a chi-squared fit.

err If present, this optional variable is updated with the chi-squared or least-squares error between the fit and
the data.

maxI% If present, this changes the maximum number of iterations from 100.

iTer% If present, this integer variable is updated with the count of iterations done.

covar An optional two dimensional array of size at least [nCoef][nCoef] that is returned holding the
covariance matrix when the fit is complete. It is changed if the return value is -1, 0 or 1. However, the
values it contains are probably not useful unless the return value is 0.

Returns 0 if the fit is complete, 1 if max iterations done, or a negative error code: -1=the fit is not making progress
(results may be OK), -2=the fit failed due to a singular matrix, -5=the fit caused a floating point error, -6=too
little data for the number of coefficients, -7=unknown fitting function, -8=ran out of memory during the fit
(too many data points), -9=the fit was set up with bad parameters.

Get fit information
This variant of the command returns information about the current fit.

Func FitData({opt%});

opt% This determines what to return. opt% values match ChanFit(), where possible. The returned information
for each value of opt% is:

opt% Returns opt% Returns

0 Fit type of next fit 1 Fit order of next fit

-1 1=a fit exists, 0=no fit exists -8 Not used

-2 Type of last fit or 0 -9 Not used

-3 Number of coefficients -10 Not used

-4 Chi or least-squares error -11 1=chi-square, 0=least-square

-5 Fit probability (estimated) -12 Last fit result code

-6 Lowest x value fitted -13 Number of fitted points

-7 Highest x value fitted -14 Number of fit iterations used

Returns The information requested by the opt% argument or 0 if opt% is out of range.

See also:
ChanFit(), FitCoef(), FitValue()

Signal Version 6.06

19-454

FitExp()

This command fits multiple exponentials to arrays of x,y data points, with an optional weight for each point. Fitting
is by an iterative method. The data is fitted to the equation:

y = a0 exp(-x/a1) + a2 exp (-x/a3)… For an even number of coefficients

y = a0 exp(-x/a1) + a2 exp (-x/a3)… + an For an odd number of coefficients

The fitted coefficients are the ai; odd numbered ai are assumed to be positive. You can fit up to 5 exponentials or 4

exponentials and an offset. However, experience shows that trying to fit more than two exponentials requires care.
The fit from even two exponentials should be viewed with caution, especially if the odd coefficients are similar. The
commands to implement this are:

Set up the problem
The first command sets the number of exponentials to fit and the data set to be fitted. You must call this function
before you call any of the others.

func FitExp(nCoef%, const y[], const x[]{, const s[]|s});

nCoef% The number of coefficients to fit in the range 2 to 10. If this is even, the first form of the function above is
used. If it is odd, the final coefficient is an offset.

y[] An array of y data values. The length of the array must be at least nCoef%.

x[] An array of x data values. The length of the array must be at least nCoef%.

s An optional argument which is either an array with one value for each y data point or a single value for all
data points. If the value is the standard deviation, then the error value returned when you iterate to find
the best fit is the chi-squared value and the fit is a chi-squared fit.

If this value is proportional to the error in the y values, then the fit is still a chi-squared fit, and the error
returned is proportional to the chi-squared value. If you omit this array, the fit is a least-squares error fit,
and the error value returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if present) arrays. The number
of data points must be at least the number of coefficients.

Set coefficient values and ranges
This variant of the function sets the initial value of each coefficient and optionally sets the range of allowed values.
You can call this function at any time after the setup call and before the iterate call (below) has returned 0 indicating
that the fit is completed.

It is important that you give reasonable initial values for the coefficients, especially when you fit more than one
exponent. You should limit the odd coefficient values (the time constants) so that they cannot be zero and make
sure that multiple exponents do not have overlapping ranges. If two exponents get similar values, the fit is
degenerate and will wander around forever without getting anywhere. However, setting too rigid a range may
damage the fitting process as sometimes the minimisation process has to follow a convoluted n-dimensional path to
reach the goal, and the path may need to wander quite a bit. Let experience be your guide.

If you do not give starting values, the command will make a simplistic guess at the fitting values. As we expect that
you know more about the "right" answer than the command does, we suggest that you set the values you want.

Func FitExp(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.

val The initial value to assign to the coefficient. If you have set low and high limits, and the value is outside
these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this coefficient. If omitted, or if both
values are set to the same value, there is no limit. The value of the coefficient is tested against these limits
after each iterative step, and if it exceeds a limit, it is set to that limit.

Script language

19-455

Iterate to a solution
Once you have set up the problem and given initial values to your coefficients, you can start the iteration process
that will move the coefficients from their starting values to new values that minimise the error (optionally scaled by
the s argument).

func FitExp(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of coefficient values. The first
amplitude is in a[0], the first exponent in a[1], the second amplitude in a[2], the second exponent in
a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i]) ^2/s[i] ^2 if s[] is used or
holding the sum of (yx[i]-y[i]) ^2 if s[] is not used, where yx[i] is the value predicted from the
coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the function. If you omit this
value, the function sets 1000. You can set any value from 1 to 10000. If you set more than 10000, the
number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations done before the function
returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is returned holding the
covariance matrix when the fit is complete. It is not changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the fit has converged, -1 if the
fit is not improving but the result may be OK. Other negative numbers indicate failure.

Select coefficients to fit
Normally the command fits all the coefficients, but you can use this variant to select the coefficients to fit. You can
use this command at any time after you have set the problem until the iteration variant returns 0 or -1.

func FitExp(const fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held constant, otherwise it is fitted. If
all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less than 1, or you set up a new
problem, or you call this variant again.

An example
This is a template for using these commands to fit all the coefficients:

const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var coefs[4],err; 'coefficients and squared error
... 'in here goes code to get the data
FitExp(4, y[], x[]); 'fit two exponentials (no sigma array)
FitExp(0, 1.0, 0.2, 4); 'set first amplitude and limit range
FitExp(1, .01, .001, .03);'set first time constant and range
FitExp(2, 2.0, 0.1, 6); 'set second amplitude and limit range
FitExp(3, .08, .03, .15); 'set second time constant and range
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitExp(coefs[], err, 1) < 1;
DrawMyData(coefs[], x[], y[]); 'Show the final state

See also:

More about curve fitting, ChanFit(), FitGauss(), FitLinear(), FitNLUser(), FitPoly(),
FitSigmoid(), FitSin()

Signal Version 6.06

19-456

FitGauss()

This command fits multiple Gaussians to x,y data points with an optional weight for each point. Fitting is by an
iterative method. The input data is fitted to the equation:

y = a0 exp(-½(x-a1)
2/a2

2) + a3 exp(-½(x-a4)
2/a5

2) + …

The fitted parameters (coefficients) are the a
i
. You can fit up to 3 Gaussians. The commands to implement this are:

Set up the problem
The first command sets the number of Gaussians to fit and the data set to be fitted. You must call this function
before you call any of the others.

func FitGauss(nCoef%, const y[], const x[]{, const s[]|s});

nCoef% The number of coefficients to fit. The legal values are 3, 6 and 9 for one, two and three Gaussians.

y[] An array of y data values. The length of the array must be at least nCoef%.

x[] An array of x data values. The length of the array must be at least nCoef%.

s An optional argument which is either an array with one value for each y data point or a single value for all
data points. If the value is the standard deviation, then the error value returned when you iterate to find
the best fit is the chi-squared value and the fit is a chi-squared fit.

If this value is proportional to the error in the y values, then the fit is still a chi-squared fit, and the error
returned is proportional to the chi-squared value. If you omit this array, the fit is a least-squares error fit,
and the error value returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if present) arrays. The number
of data points must be at least the number of coefficients. If it is not, you will get a fatal error, so check this before
calling the function.

Set coefficient values and ranges
This variant of the function sets the initial value of each coefficient and optionally sets the range of allowed values.
You can call this function at any time after the setup call and before the iterate call (below) has returned 0 indicating
that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the coefficients. In particular,
when fitting multiple Gaussians, it is usual that the centre of each distribution is easy to determine. If you can set
the centres and limit them so that they cannot overlap, the fit usually will proceed without any problems, even for
multiple Gaussians. If you do not give starting values, the command will make a simplistic guess at the fitting
values. As we expect that you know more about the “right” answer than the command does, we suggest that you
set the values you want.

func FitGauss(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.

val The initial value to assign to the coefficient. If you have set low and high limits, and the value is outside
these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this coefficient. If omitted, or if both
values are set to the same value, there is no limit. The value of the coefficient is tested against these limits
after each iterative step, and if it exceeds a limit, it is set to that limit.

As long as you make a reasonable estimate of the centre points, there should be no problems fitting multiple
Gaussians.

Iterate to a solution
Once you have set up the problem and given initial values to your coefficients, you can start the iteration process
that will move the coefficients from their starting values to new values that minimise the error (optionally scaled by
the s argument).

Script language

19-457

func FitGauss(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of coefficient values. The first
amplitude is in a[0], the first centre in a[1], the first sigma in a[2], the second amplitude in a[3] and so
on.

err A real variable returned as the sum over the data points of (yx[i]-y[i]) ^2/s[i] ^2 if s[] is used or
holding the sum of (yx[i]-y[i]) ^2 if s[] is not used, where yx[i] is the value predicted from the
coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the function. If you omit this
value, the function sets 1000. You can set any value from 1 to 10000. If you set more than 10000, the
number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations done before the function
returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is returned holding the
covariance matrix when the fit is complete. It is not changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the fit has converged, -1 if the
fit is not improving but the result may be OK. Other negative numbers indicate failure.

Remember that even when a minimum is found, there is no guarantee that this is the minimum. It is the best
minimum that this algorithm can find given the starting point.

Select coefficients to fit
Normally the command fits all the coefficients, but you can use this variant to select the coefficients to fit. You can
use this command at any time after you have set the problem until the iteration variant returns 0 or -1.

func FitGauss(const fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held constant, otherwise it is fitted. If
all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less than 1, or you set up a new
problem, or you call this variant again.

An example
This is a template for using these commands to fit all the coefficients:

const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var coefs[4], err; 'coefficients and error squared
... 'in here goes code to get the data
FitGauss(3, y[], x[], s[]); 'fit one gaussian
FitGauss(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitGauss(1, 2, 1.5, 2.5); 'set centre of the gaussian and range
FitGauss(2, 0.5, 0.3, 1.9); 'set width and limit range
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitGauss(coefs[], err, 1) < 1;
DrawMyData(coefs[], x[], y[]); 'Show the final state

See also:
More about curve fitting, ChanFit(), FitExp(), FitLinear(), FitNLUser(), FitPoly(),
FitSigmoid(), FitSin()

FitLine()

This function calculates the best fit line to a set of data points using the least squares error method. This can be
applied to any Waveform, Real marker or XY view channel. It fits the expression:

y = m x + c

Signal Version 6.06

19-458

through the data points (xi, yi) so as to minimise the error given by:

Sum
i
(y

i
 - m x

i
 -c)2

In this expression, m is the gradient of the line and c is the y axis intercept when x is 0.

Func FitLine(chan%, start, finish, &grad, &inter, &corr);

chan% A channel number (1 to n) holding waveform, real marker or XY view data.

start The start position for processing. Start and finish are given in x axis units.

finish The end position for processing. A data value at the finish position is included in the calculation.

grad This is returned holding the gradient of the best fit line (m).

inter This is returned holding the intercept of the line with the y axis (c).

corr This is returned holding correlation coefficient indicating the “goodness of fit” of the line. Values close to
1 or -1 indicate a good fit; values close to 0 indicate a very poor fit. This parameter is often referred to as r
in textbooks.

Returns 0 if all was OK, or -1 if there were not at least 2 data points.

The results are in user units, so in a view with a waveform measured in volts on an x axis of seconds, the units of
the gradient would be volts per second and the units of the intercept would be volts.

See also:
ChanFit(), ChanMeasure(), FitLinear(), FitPoly()

FitLinear()

This command fits y = a0 f0(x) + a1 f1(x) + a2 f2(x)… to a set of (x,y) data points. If you can provide error estimates for

each y value, you can use the covariance output from this command to provide confidence limits on the calculated
coefficients and you can use the returned chi-square value to test if the model is likely to fit the data. The command
is:

func FitLinear(coef[], const y[], const x[][]{, const s[]|s{, covar[][]{,
r[]{, mR}}}});

coef[] A real array which sets the number of coefficients to fit and which return the best fit set of coefficients.
The array must be between 2 and 10 elements long. The coefficient a0 is returned in coef[0], a1 in
coef[1] and so on.

y[] A real array of y values.

x[][] This array specifies the values of the functions f(x) at each data point. If there are nc coefficients and nd
data values, this array must be of size at least [nd][nc]. Viewed as a rectangular grid with the coefficients
running from left to right and the data running from top to bottom, the values you must fill in are:

f0(x0) f1(x0) f2(x0) f3(x0) … fnc-1(x0)
f0(x1) f1(x1) f2(x1) f3(x1) … fnc-1(x1)
f0(x2) f1(x2) f2(x2) f3(x2) … fnc-1(x2)
… … … … … …
f0(xnd-1) f1(xnd-1) f2(xnd-1)f3(xnd-1) … fnc-1(xnd-1)

s This is either a real array holding the standard deviations of the y[] data points, or a real value holding
the standard deviation of all data points. If s is omitted or zero, a least-squares error fit is performed,
otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number of coefficients fitted) that is
returned holding the covariance matrix.

r[] An optional array of size at least [nc] (nc is the number of coefficients fitted) that is returned holding
diagnostic information about the fit. The less relevant a fitting function ¦(x) is to the fit, the smaller the
value returned. The element of the array that corresponds to the most relevant function is returned as 1.0,
smaller numbers indicate less relevance.

Script language

19-459

If your fitting functions are not independent of each other, several coefficients may have low r values.
The solution is to remove one of the functions from the fit, or to set the mR argument to exclude one of the
functions, then fit again. If the remaining coefficients become relevant, you have excluded a function that
was a linear combination of the others. If the remaining coefficients still are not relevant, you have
eliminated a function that did not contribute to the fit.

mR You can use this optional variable to set the minimum relevance for a function. Functions that have less
relevance than this are “edited” out of the fit and their coefficient is returned as 0. If you do not provide
this value, the minimum is set to 10 -15, which will probably not exclude any values.

Returns The function returns the chi-square value for the fit if s[] or s is given (and non-zero), or the sum of
squares of the errors between the data points and the best fit line if s is omitted or is zero.

The smallest of the sizes of the y[] array (and s[] array, if provided) and the second dimension of x[][] sets the
number of data points. It is a fatal error for the number of data points to be less than the number of coefficients.

An example
This demonstrates how to fit data to the function y = a*sin(x/10) + b*cos(x/20). The x values vary from 0
to 49 in steps of 1. The function MakeFunc() calculates a trial data set plus noise. We set s to 1.0, so
FitLinear() returns the sum of squares of the errors between the fitted and input data. If you run this example,
you will notice that the returned value is slightly less than the sum of squares of the added errors.

const NCOEF%:=2,NDATA%:=50;' coefficient and data sizes
var x[NDATA%][NCOEF%]; ' array of function information
const noise := 0.01; ' controls how much noise we add
var data[NDATA%], err := 0;' space for our function and errors
' Generate raw data. Fit y = a*sin(x/10)+b*cos(x/20)
var coef[NCOEF%], i%, r; ' coefficients, index, random noise
coef[0]:=1.0; coef[1]:=2; ' set coefficients for generated data
MakeFunc(data[], coef[], x[][]); ' Generate the data, then...
for i%:=0 to NDATA%-1 do ' ...add noise to it
 r := (rand()-0.5)*noise;' the noise to add
 data[i%] += r; ' add noise to the data
 err := err + r*r; ' accumulate sum of squared noise
 next;
var covar[NCOEF%][NCOEF%]; ' covariance array
var sig2, a[NCOEF%]; ' sigma, fitted coefficients
var rel[NCOEF%]; ' array for "relevance" values
sig2 := FitLinear(a[], data[], x[][], 1, covar[][], rel[]);
Message("sig^2=%g, err=%g\ncoefs=%g\nrel=%g",sig2,err,a[],rel[]);
halt;
'y is the output array (x values are 0, 1, 2...), a is the array
'of coefficients. Y = a*sin(x/10)+b*cos(x/20)
proc MakeFunc(y[], a[], x[][])
var nd%,v; ' coefficient index, work space
for nd% := 0 to NDATA%-1 do
 v := Sin(nd% / 10.0); ' first funcion
 x[nd%][0] := v; ' save the value;
 y[nd%] := a[0] * v; ' start to build the result
 v := Cos(nd%/20.0); ' second function
 x[nd%][1] := v; ' save it
 y[nd%] += a[1]*v; ' full result
next;
end;

See also:
More about curve fitting, ChanFit(), FitExp(), FitGauss(), FitNLUser(), FitPoly(), FitSin()

Signal Version 6.06

19-460

FitNLUser()

This command uses a non-linear fitting algorithm to fit a user-defined function to a set of data points. The function
to be fitted is of the form y = f(x, a0, a1, a2…) where the ai are coefficients to determine. You must be able to calculate

the differential of the function f with respect to each of the coefficients. You can optionally supply an array to
weight each data point. The commands to implement this are:

Set up the problem
The first command sets the user-defined function, the number of coefficients you want to fit, the number of data
points and optionally, you can set the weight to give each data point. You must call this function before you call
any of the others.

func FitNLUser(User(ind%, a[], dyda[]), nCoef%, nData%{, const s[]|s});

User() A user-defined function which is called by the fitting routine. The function is passed the current values of
the coefficients. It returns the error between the function and the data point identified by ind% and the
differentials of the function with respect to each of the coefficients at that point. The return value should
be the y data value at the index minus the calculated value of the function at the x value, using the
coefficients passed in.

ind% The index into the data points at which to evaluate the error and differentials. If there are n data points,
ind% runs from 0 to n-1. You can rely on the function being called with the same coefficients as ind%
increments from 0 to n-1, which may be useful if you have complex functions of the coefficients to
evaluate.

a An array of length nCoef% holding the current values of the coefficients. The coefficients are refreshed
for each call to the user-defined function, so it is not an error to change them; however this is usually not
done.

dyda An array of length nCoef% which your function should fill in with the values of the partial differential of
the function with respect to each of the coefficients. For example, if you were fitting y = a0*exp(-a1*x)

then set dyda[0] = dy/da0 = exp(-a1*x) and dyda[1] = dy/da1 = -a0 *a1*exp(-a1*x).

nCoef% The number of coefficients to fit in the range 1 to 10.

nData% The number of data points you will be fitting. If s[] is provided as an array, the value of nData% used is
the smaller of nData% and the length of the s[] array. It is a fatal error for the number of data points used
to be less than nCoef%.

s This argument is optional. It is either an array of weights to be given to each data point in the fit or a
single weight to apply to all data points. If this value is the expected standard deviation of the y value of
the data points, then the error value returned is the chi-squared value and the fit is a chi-squared fit. If this
value is proportional to the expected error at the data point, then the fit is still a chi-squared fit, and the
error returned is proportional to the chi-squared value. If you omit this argument, the fit is a least-squares
error fit, and the error value returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

Unlike the other fitting routines, you will notice that the x and y data values are not passed into the command.
Instead, the user-defined function is passed an index to the data values. It is assumed that the data is accessible by
the user function.

Due to restrictions in the implementation of the script language, you cannot debug through the user-defined
function. If you set a break point in it, or attempt to step into it you will get errors. We recommend that you check
the returned values from the user-defined function by calling it from your own script code.

Set coefficient values and ranges
This variant of the function sets the initial value of each coefficient and optionally sets the range of allowed values.
You can call this function at any time after the setup call and before the iterate call (below) has returned 0 indicating
that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the coefficients. If you do not
give starting values, the command will set them all to zero, which is unlikely to be correct.

func FitNLUser(coef%, val{, lo, hi});

Script language

19-461

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.

val The initial value to assign to the coefficient. If you have set low and high limits, and the value is outside
these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this coefficient. If omitted, or if both
values are set to the same value, there is no limit. The value of the coefficient is tested against these limits
after each iterative step, and if it exceeds a limit, it is set to that limit.

Iterate to a solution
Once you have set up the problem and given initial values to your coefficients, you can start the iteration process
that will move the coefficients from their starting values to new values that minimise the error (optionally scaled by
the s argument).

func FitNLUser(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of coefficient values.

err A real variable returned as the sum over the data points of (yx[i]-y[i]) ^2/s[i] ^2 if s[] is used or
holding the sum of (yx[i]-y[i]) ^2 if s[] is not used, where yx[i] is the value predicted from the
coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the function. If you omit this
value, the function sets 1000. You can set any value from 1 to 10000. If you set more than 10000, the
number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations done before the function
returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is returned holding the
covariance matrix when the fit is complete. It is not changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the fit has converged, -1 if the
fit is not improving but the result may be OK. Other negative numbers indicate failure.

Remember that even when a minimum is found, there is no guarantee that it is the minimum. It is the best minimum
that this algorithm can find given the starting point.

Select coefficients to fit
Normally the command fits all the coefficients, but you can use this variant to select the coefficients to fit. You can
use this command at any time after you have set the problem until the iteration variant returns 0 or -1.

func FitNLUser(const fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held constant, otherwise it is fitted. If
all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less than 1, or you set up a new
problem, or you call this variant again.

See also:
Simple example, More complex example, More about curve fitting, FitExp(), FitGauss(), FitLinear(),
FitPoly(), FitSin()

A simple example

The following is an example of using this set of commands to fit the user-defined function y = a * exp(-b*x). In
this example we generate some test data and add to it a random error. There are two coefficients to be fitted (a and
b). To use FitNLUser() we need to calculate the differential of the function with respect to a and b:

dy/da = exp(-b*x)
dy/db = -x * a * exp(-b*x)

These are standard results. Differential calculus is too large a subject to attempt a summary in this help. If you need
to refresh your knowledge, this reference may help.

http://en.wikibooks.org/wiki/Calculus/Differentiation

Signal Version 6.06

19-462

const NDATA%:=100, NCOEF% := 2;
var x[NDATA%],y[NDATA%],i%;
for i% := 0 to NDATA%-1 do ' Generate data
 x[i%] := i%; ' a:=1, b:=0.05 and add some noise
 y[i%] := exp(-0.05*i%)+(rand()-0.5)*0.01;
 next;

FitNLUser(UserFnc, NCOEF%, NDATA%); 'Link user function
FitNLUser(0, 0.5, 0.01, 2); 'Set range of amplitude
FitNLUser(1, 0.01, 0.001, 1); 'Set range of exponent

var coefs[NCOEF%], err, iter%;
i% := FitNLUser(coefs[], err, 100, iter%);
Message("fit=%d, Err=%g, iter=%d, coefs=%g",i%,err,iter%,coefs[]);
halt;

' The user-defined function: y = a * exp(-b*x);
' dy/da = exp(-b*x), dy/db = -x * a * exp(-b*x)
func UserFnc(ind%, a[], dyda[])
var xi,yi,r;
xi := x[ind%]; ' local copy of x value
yi := y[ind%]; ' local copy of y value
dyda[0] := exp(-a[1]*xi); ' differential of y with respect to a
r := dyda[0] * a[0]; ' intermediate value
dyda[1] := -xi * r; ' differential of y with respect to b
return yi-r;
end

The script is in 4 sections:

1. The header declares the number of data points and the number of coefficients plus space to store a set of x,y
data points. It then fills in the data points with the function y = exp(-0.05*x) and adds some random numbers in
the range -0.005 up to 0.005. This will be the test data for the fitting.

2. The second section sets up the problem by telling FitNLUser() the name of the user function, the number of
data points and the number of coefficients. Then for each coefficient, it sets a starting guess value and a range
of acceptable values. The better your initial guess is, the more likely you are to get a useful result. Sometimes
you will know a likely range of values for each coefficient, on other occasions, you may be able to make some
reasonable guess from the initial data. Conversely, if you make a perversely bad initial guess, you may get
results that are totally useless. It is not a good idea to set limits that are too close to the guess; sometimes a
function has to chase a minimum along a tortuous route and setting very tight limits may prevent it doing this.

3. The third section declares space for the coefficients, tells the function to iterate a maximum of 100 times and
prints the results.

4. The fourth section holds the user function. This is called once for each data point per iteration, so try to
minimise the calculations required. Within each iteration, it is called with the index argument having the values 0
to the number of data points minus 1. For each data point we must fill in the differential of the fitting function
with respect to each coefficient and we must return the error between the y value and the fitting function.

Fitting a Gabor function

This demonstrates the use of the FitNLUser() script function. This is used to fit to a one dimensional Gabor
function (the product of a Gaussian and a cosine wave) defined as:

y(x) = b + a*exp(-g*x*x*0.5)*Sin(l*x+p)

where b is an offset, a is the amplitude, g is twice the variance of the Gaussian, l is 2*pi/wavelength of the sinusoid
and p is the phase of the sinusoid. There are 5 parameters to fit, being: b, a, g, l, p. The script starts with a header
that defines the number of data points and number of coefficients, plus how much noise to add (to make this a more
realistic example). It also sets the values of the coefficients that we are to attempt to fit.

Script language

19-463

'$FitGABOR|Demonstration of using the NL fitting to fit a Gabor function
'Author: Greg Smith, Cambridge Electronic Design Limited
const NDATA%:=100, NCOEF% := 5;
var x[NDATA%],y[NDATA%],i%, xv;
' coef# 0 1 2 3 4
const b:=0.002, a:=1.00, g:=0.01, l:=0.1, p:=0.0;
const noise := 0.04; ' maximum noise amplitude to add

' Phase 1. Generate some sample data at equal-spaced x values. If you want
' other than x increments of 1, set xv to i%*width where width is
' the desired x spacing. Note that random noise is added to the
' data values.
for i% := 0 to NDATA%-1 do ' Generate data
 xv := i%;
 x[i%] := i%; ' a:=1, b:=0.05 and add some noise
 y[i%] := b + a*exp(-g*xv*xv*0.5)*Sin(l*xv+p)+(rand()-0.5)*noise;
next;

' Phase 2. Set up the problem. This tells the script language the name of
' the function to use to get the data values, then sets a range of
' acceptable values for each argument and a starting guess for each
' value. It is MOST important that the starting guess is reasonable.
' If it is not, the fitting may yield stupid results.
FitNLUser(UserFnc, NCOEF%, NDATA%); 'Link user function
FitNLUser(0, 0, -0.1, 0.1); 'Set range of offset b
FitNLUser(1, 0.3, 0.5, 2); 'Set range of amplitude a
FitNLUser(2, 0.04, 0.01, 0.1);'Set range of g (1/sigma squared)
FitNLUser(3, 0.03, 0.01, 0.3);'Set range of omega (frequency) l
FitNLUser(4, 1, -3, 3); 'Set range of the phase p

' Phase 3. Solve the problem. This tells the system to improve the initial
' guess. Each iteration will call the User function NDATA% times.
' The result is 0 if it worked, err is the sum of squares of the
' difference between the fitted curve and the raw data, iterations
' is the number of times round the function went and coefs are the
' fitted parameters.
var coefs[NCOEF%], err, iter%, covar[NCOEF%][NCOEF%];
i% := FitNLUser(coefs[], err, 100, iter%, covar[][]);

Message("fit=%d, Err=%.4f, iterations=%d, coefs=%.4f", i%, err ,iter% ,coefs[]);

'
' If you need to know the likely errors in the fitted parameters, this is
' available from the covar array (co-variance). The diagonal of the array
' holds the expected variance (sigma squared) of each parameter, on the
' assumption that the errors in the original data have a normal distribution.
'
' See the on-line documentation for the FitNLUser() script function and read the
' linked section "More about curve fitting" for additional information.
halt;

' The next section is the user-defined function. Differentials of functions with
' several factors will have common expressions that need only be calculated once.
' Although the functions is quite complicated, the calculations turn out to be
' relatively simple.
'
' The user-defined function: y = b + a*exp(-g*x*x*0.5)*Sin(l*x+p);
' dy/db = 1;
' dy/da = exp(-g*x*x*0.5)*Sin(l*x+p)
' dy/dg = -x*x*0.5*a*exp(-g*x*x*0.5)*Sin(l*x+p)
' dy/dl = a*x*exp(-g*x*x*0.5)*Cos(l*x+p)
' dy/dp = a*exp(-g*x*x*0.5)*Cos(l*x+p)

Signal Version 6.06

19-464

func UserFnc(ind%, a[], dyda[])
var yv,xi,yi,r, xsq2, gauss, angle;
xi := x[ind%]; ' local copy of x value
yi := y[ind%]; ' local copy of y value
xsq2 := xi*xi*0.5; ' calculate once as used twice
gauss := Exp(-a[2]*xsq2); ' calculate once as used twice
angle := a[3]*xi+a[4]; ' used by Sin() and Cos()

dyda[0] := 1; ' dy/db is 1
dyda[1] := gauss*Sin(angle); ' exp(-g*x*x*0.5)*Sin(l*x+p)
dyda[2] := -xsq2*a[1]*dyda[1]; ' -x*x*0.5*a*exp(-g*x*x*0.5)*Sin(l*x+p)
dyda[4] := a[1]*gauss*Cos(angle); ' a*exp(-g*x*x*0.5)*Cos(l*x+p)
dyda[3] := dyda[4]*xi; ' a*x*exp(-g*x*x*0.5)*Cos(l*x+p)
yv := a[0] + a[1]*dyda[1];
return yi-yv;
end

FitPoly()

This command fits y = a0 + a1x + a2x
2 + a3x

3 … to a set of (x,y) data points. If you can provide error estimates for

each y value, you can use the covariance output from this command to provide confidence limits on the calculated
coefficients and you can use the returned chi-squared value to test if the model is likely to fit the data. The
command is:

func FitPoly(coef[], const y[], const x[]{, const s[]|s{, covar[][]}});

coef[] A real array that sets the number of coefficients and returns the coefficient values. The array must be
between 2 and 10 elements long. The coefficient a0 is returned in coef[0], a1 in coef[1] and so on.

y[] A real array of y values. The smaller of the sizes of the x[] and y[] arrays (and s[] array, if provided),
sets the number of data points. It is a fatal error for the number of data points to be less than the number
of coefficients.

x[] A real array of x values.

s This is an optional argument. It is either a real array holding the standard deviations of each of the y[]
data points, or it is a real value holding the standard deviation of all of the data points. If the argument is
omitted or set to zero, a least-squares error fit is performed, otherwise a chi-squared fit is done.

covar An optional two dimensional array of size at least [nc][nc] (nc is the number of coefficients fitted) that is
returned holding the covariance matrix.

Returns The function returns chi-squared if s[] or s is given (and non-zero), otherwise it returns the sum of
squares of the errors between the raw and fitted data.

An example
This example generates test data, adds random noise, then fits a polynomial to the data.

Script language

19-465

const NCOEF% := 5; ' number of coefficients
const NDATA%:=50; ' number of data points
var y[NDATA%], x[NDATA%]; ' space for x and y values for fit
const noise := 1; ' noise to add
var err := 0.0; ' will be sum of squares of added noise
var cf[NCOEF%], i%, r;
cf[0]:=1.0; cf[1]:=-80; cf[2]:=-2.0; cf[3]:=0.5; cf[4]:=-0.009;
MakePoly(cf[],x[],y[]); ' generate ideal data as polynomial
for i%:=0 to NDATA%-1 do ' now add some noise to it
 r := (rand()-0.5)*noise;
 y[i%] += r; ' add noise to the data
 err += r*r; ' sum of squares of added noise
 next;
var sig2, a[NCOEF%]; ' a[] will be the fitted coefficients
sig2 := FitPoly(a[], y[], x[]);
Message("sig2=%g, noise=%g\nfitted=%8.4f\nideal =%8.4f",
 sig2, err, a[], cf[]);
halt;
'a[] input array of coefficients
'x[] output x co-ordinates, y[] output data values
proc MakePoly(a[], x[], y[])
var i%,j%,xv,s;
for i% := 0 to Len(y[])-1 do
 s := 0.0;
 xv := 1;
 for j% := 0 to NCOEF%-1 do
 s += a[j%]*xv;
 xv *= i%;
 next;
 y[i%] := s;

x[i%] := i%;
 next;
end;

See also:
More about curve fitting, ChanFit(), FitExp(), FitGauss(), FitLinear(), FitNLUser(),
FitSigmoid(), FitSin()

FitSigmoid()

This command fits a single Sigmoid function to x,y data points with an optional weight for each point. Fitting is by
an iterative method. The input data is fitted to the equation:

y = a
0
 + (a

1
 - a

0
) / (1 + exp((a

2
 - x) / a

3
))

The fitted parameters (coefficients) are the a
i
. You can only fit 1 Sigmoid. The commands to implement this are:

Set up the problem
The first command sets the number of Sigmoids to fit and the data set to be fitted. You must call this function
before you call any of the others.

func FitSigmoid(nCoef%, const y[], const x[]{, const s[]|s});

nCoef% The number of coefficients to fit. The only legal value is 4 for one Sigmoid.

y[] An array of y data values. The length of the array must be at least nCoef%.

x[] An array of x data values. The length of the array must be at least nCoef%.

s An optional argument which is either an array with one value for each y data point or a single value for all
data points. If the value is the standard deviation, then the error value returned when you iterate to find
the best fit is the chi-squared value and the fit is a chi-squared fit.

Signal Version 6.06

19-466

If this value is proportional to the error in the y values, then the fit is still a chi-squared fit, and the error
returned is proportional to the chi-squared value. If you omit this array, the fit is a least-squares error fit,
and the error value returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if present) arrays. The number
of data points must be at least the number of coefficients. If it is not, you will get a fatal error, so check this before
calling the function.

Set coefficient values and ranges
This variant of the function sets the initial value of each coefficient and optionally sets the range of allowed values.
You can call this function at any time after the setup call and before the iterate call (below) has returned 0 indicating
that the fit is completed.

In this type of fitting it is very important that you give reasonable starting values for the coefficients. In particular,
when fitting a Sigmoid, it is usual that the two levels (a0 and a1) are easy to determine. If you can set the levels and
limit them so that they cannot overlap, the fit usually will proceed without any problems. If you do not give starting
values, the command will make a simplistic guess at the fitting values. As we expect that you know more about the
“right” answer than the command does, we suggest that you set the values you want.

func FitSigmoid(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.

val The initial value to assign to the coefficient. If you have set low and high limits, and the value is outside
these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this coefficient. If omitted, or if both
values are set to the same value, there is no limit. The value of the coefficient is tested against these limits
after each iterative step, and if it exceeds a limit, it is set to that limit.

As long as you make a reasonable estimate of the two levels, there should be no problems fitting a Sigmoid.

Iterate to a solution
Once you have set up the problem and given initial values to your coefficients, you can start the iteration process
that will move the coefficients from their starting values to new values that minimise the error (optionally scaled by
the s argument).

func FitSigmoid(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of coefficient values. The first
amplitude is in a[0], the first centre in a[1], the first sigma in a[2], the second amplitude in a[3] and so
on.

err A real variable returned as the sum over the data points of (yx[i]-y[i]) ^2/s[i] ^2 if s[] is used or
holding the sum of (yx[i]-y[i]) ^2 if s[] is not used, where yx[i] is the value predicted from the
coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the function. If you omit this
value, the function sets 1000. You can set any value from 1 to 10000. If you set more than 10000, the
number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations done before the function
returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is returned holding the
covariance matrix when the fit is complete. It is not changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the fit has converged, -1 if the
fit is not improving but the result may be OK. Other negative numbers indicate failure.

Remember that even when a minimum is found, there is no guarantee that this is the minimum. It is the best
minimum that this algorithm can find given the starting point.

Script language

19-467

Select coefficients to fit
Normally the command fits all the coefficients, but you can use this variant to select the coefficients to fit. You can
use this command at any time after you have set the problem until the iteration variant returns 0 or -1.

func FitSigmoid(const fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held constant, otherwise it is fitted. If
all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less than 1, or you set up a new
problem, or you call this variant again.

An example
This is a template for using these commands to fit all the coefficients:

const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var coefs[4], err; 'coefficients and error squared
... 'in here goes code to get the data
FitSigmoid(4, y[], x[], s[]); 'fit one gaussian
FitSigmoid(0, 1.0, 0.2, 4); 'set base level and limit range
FitSigmoid(1, 20, 15, 25); 'set end level and range
FitSigmoid(2, 8); 'initial 50% point in X units
FitSigmoid(3, 0.5); 'initial slope
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitSigmoid(coefs[], err, 1) < 1;
DrawMyData(coefs[], x[], y[]); 'Show the final state

See also:
More about curve fitting, ChanFit(), FitExp(), FitLinear(), FitGauss(), FitNLUser(),
FitPoly(), FitSin()

FitSin()

This command fits multiple sinusoids to arrays of x,y data points, with an optional weight for each point. Fitting is
by an iterative method. The input data is fitted to the equation:

y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + … {+ a3n}

The fitted coefficients are the ai. Angles are evaluated in radians. You can fit up to 3 sinusoids and an optional

offset. Although the function is given in terms of sine functions, you can easily convert to cosines by subtracting
p/2 from the phase angle (a2, a5, a8) after the fit. The commands to implement this are:

Set up the problem
The first command sets the number of sinusoids to fit and the data set to be fitted. You must call this function
before you call any of the others.

func FitSin(nCoef%, const y[], const x[]{, const s[]|s});

nCoef% The number of coefficients to fit. The only legal values are 3, 6 and 9 for one, two and three sinusoids or 4,
7 and 10 to include an offset as the last coefficient.

y[] An array of y data values. The length of the array must be at least nCoef%.

x[] An array of x data values. The length of the array must be at least nCoef%.

s An optional argument which is either an array with one value for each y data point or a single value for all
data points. If the value is the standard deviation, then the error value returned when you iterate to find
the best fit is the chi-squared value and the fit is a chi-squared fit.

Signal Version 6.06

19-468

If this value is proportional to the error in the y values, then the fit is still a chi-squared fit, and the error
returned is proportional to the chi-squared value. If you omit this array, the fit is a least-squares error fit,
and the error value returned is the sum of the squares of the errors in the y values.

Returns The function returns 0. There is no other return value as all errors stop the script.

The number of data points is set by the smallest of the sizes of the y[], x[] or s[] (if present) arrays. The number
of data points must be at least the number of coefficients. If it is not, you will get a fatal error, so check this before
calling the function.

Set coefficient values and ranges
This variant of the function sets the initial value of each coefficient and optionally sets the range of allowed values.
You can call this function at any time after the setup call and before the iterate call (below) has returned 0,
indicating that the fit is complete.

In this type of fitting it is very important that you give reasonable starting values for the coefficients. In particular,
when fitting multiple sinusoids you will usually either know, or have a good idea of the frequencies. You should
limit the range of each frequency so that they cannot overlap. If you can do this, the fit will proceed quickly. If you
do not give starting values, the command will make a simplistic guess at the fitting values. As we expect that you
know more about the "right" answer than the command does, we suggest that you set the values you want.

func FitSin(coef%, val{, lo, hi});

coef% The coefficient to set. The first coefficient is number 0, the last is nCoef%-1.

val The initial value to assign to the coefficient. If you have set low and high limits, and the value is outside
these limits, it is set to the nearer limit.

lo,hi If present, these two values set the acceptable range of values for this coefficient. If omitted, or if both
values are set to the same value, there is no limit. The value of the coefficient is tested against these limits
after each iterative step, and if it exceeds a limit, it is set to that limit.

Iterate to a solution
Once you have set up the problem and given initial values to your coefficients, you can start the iteration process
that will move the coefficients from their starting values to new values that minimise the error (optionally scaled by
the s argument).

func FitSin(a[], &err{, maxI%{, &iTer%{, covar[][]}}});

a[] An array of size at least nCoef% that is returned holding the current set of coefficient values. The first
amplitude is in a[0], the first frequency in a[1], the first phase angle in a[2], the second amplitude in
a[3] and so on.

err A real variable returned as the sum over the data points of (yx[i]-y[i]) ^2/s[i] ^2 if s[] is used or
holding the sum of (yx[i]-y[i]) ^2 if s[] is not used, where yx[i] is the value predicted from the
coefficients at the x value x[i].

maxI% This is the maximum number of fitting iterations to do before returning from the function. If you omit this
value, the function sets 1000. You can set any value from 1 to 10000. If you set more than 10000, the
number is limited to 10000.

iTer% An optional integer variable that is returned holding the number of iterations done before the function
returned.

covar An optional two dimensional array of size at least [nCoef%][nCoef%] that is returned holding the
covariance matrix when the fit is complete. It is not changed unless the function return value is 0 or -1.

Returns 1 if the number of iterations are exhausted and the fit has not converged, 0 if the fit has converged, -1 if the
fit is not improving but the result may be OK. Other negative numbers indicate failure.

Even when a minimum is found, there is no guarantee that this is the minimum, only that it is the best minimum that
this algorithm can find given the starting point.

Script language

19-469

Select coefficients to fit
Sometimes you may wish to hold some coefficients fixed while you fit others. Normally the command will fit all the
coefficients, but you can use this command variant to select the coefficients to fit. You can use this command at
any time after you have set the problem until the iteration variant returns 0 or -1.

func FitSin(const fit%[]);

fit%[] An array of at least nCoef% integers. If fit%[i] is 0, coefficient i is held constant, otherwise it is fitted. If
all elements are 0, all arguments are fitted.

The effect of this command persists until either the iteration variant returns a value less than 1, or you set up a new
problem, or you call this variant again. For a sinusoidal fit it is likely that you will know the frequency to fit, so you
may well hold this constant.

An example
The following is a template for using this command (assuming you don't want to fit the frequency, which we
assume you know).

const nData%:=50; 'set number of data elements
var x[nData%], y[nData%]; 'space for our arrays
var s[nData%]; 'space for sigma of each point
var fit%[3]; 'we want to hold the frequency
var coefs[4]; 'space for coefficients
var err; 'will hold error squared
... 'in here goes code to get the data
FitSin(3, y[], x[], s[]); 'fit one sinusoid
'Note that we let the phase take any value
FitSin(0, 1.0, 0.2, 4); 'set amplitude and limit range
FitSin(1, .02, .01, .03); 'set frequency
FitSin(2, 0., 0.3, 1.9); 'set width and limit range
'Now we say that we don't want to fit the frequency
ArrConst(fit%[],1); 'set all elements to 1
fit%[1] := 0; 'but not element 1 (=frequency)
FitSin(fit%[]); 'so the frequency is fixed
repeat
 DrawMyData(coefs[], x[], y[]); 'Some function to show progress
until FitSin(coefs[], err, 1) < 1;
DrawMyData(coefs[], x[], y[]); 'Show the final state

See also:
More about curve fitting, FitExp(), FitGauss(), FitLinear(), FitNLUser(), FitSigmoid(),
FitPoly()

FitValue()

This function returns the value at a particular x position of the fitted function set by the last FitData() command.

Func FitValue(x{, &valid%});

x The x value at which to evaluate the current fit. You should be aware that some of the fitting functions can
overflow the floating point range if you ask for x values beyond the fitted range of the function.

valid% If present, this integer variable is set to 1 if the returned value is valid, 0 if not.

Returns The value of the fitted function at x. If the result is out of floating point range, the function may return a
floating point infinity or a NaN (Not a Number) value or a 0. If there is no fit, the result is always 0.

See also:
FitCoef(), FitData(), FitExp(), ChanFitValue()

Signal Version 6.06

19-470

Floor()

Returns the next lower integral number of the real number or array. Floor(4.7) is 4.0, Floor(4) is 4. Floor(-
4.7) is -5.

Func Floor(x|x[]{[]...});

x A real number or a real array.

Returns 0 or a negative error code for an array or the next lower integral value.

See also:
Abs(), ATan(), Ceil(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan(), Trunc()

FocusHandle()

This function returns the view handle of the script-controllable window with the input focus (the active window).
Unlike FrontView(), it can return any type of window, for example the toolbar.

Func FocusHandle();

Returns The handle of a window that the script can manipulate, or 0 if the focus is not in such a window.

See also:
FrontView()

FontGet()

This function gets the name of the font, and its characteristics for the current view.

Func FontGet(&name$, &size, &flags%{, style%{, &fore%{, &back%}}});

name$ This string variable is returned holding the name of the font.

size The real number variable is returned holding the point size of the font.

flags% Returned holding the sum of the style values: 1=Italic, 2=Bold, 4=Underline, 8=Force upper case, 16=force
lower case. Only one of 8 or 16 will be returned.

style% Text-based views have all have default style (32) that is used as the basis of all other styles, plus a number
of additional styles that are used to highlight keywords and the like in output sequencer and script
windows. The style codes for other styles start at 0 and run upwards. You can find a list of styles for each
view type in the Edit Preferences General tab in the Editor settings section. If you omit style% the
settings for the default style (32) are returned.

fore% This value returns the foreground colour of the style. Bits 0-7 hold the red intensity, bits 8-15 hold the
green and bits 16-23 hold the blue.

back% This value returns the background colour of the style.

Returns The function returns 0 if all was well or a negative error code. If an error occurs, the variables are not
changed.

The arguments from style% onwards and the flag% values 4, 8 and 16 only apply to text-based views and are new
in version 4.

See also:
FontSet(), TabSettings()

FontSet()

This function sets the font for the current view. Text-based views (text, sequencer and script) normally avoid
proportionally spaced fonts as they did not display correctly before Signal version 4. Arguments from style%
onwards are for text-based views.

Func FontSet(name$|code%, size, flags%{, style%{, fore%{, back%}}});

Script language

19-471

name$ A string holding the font name to use or you can specify a font code:

code% This is an alternative method of specifying a font. We recognise these codes:

0 The standard system font, whatever that might be

1 A non-proportionally spaced font, usually Courier-like

2 A proportionally spaced non-serifed font, such as Helvetica or Arial

3 A proportionally spaced serifed font, such as Times Roman

4 A symbol font

5 A decorative font, such as Zapf-Dingbats or TrueType Wingdings

size The point size required. Your system may limit the allowed range.

flags% The sum of the style values to set: 1=Italic, 2=Bold, 4=Underline, 8=Force upper case, 16=force lower case.
If both 8 and 16 are set, 16 is ignored. Values from 4 upwards are only supported by text-based views.

style% Text-based views have a default style (32) plus a number of additional styles that are used to highlight
keywords in output sequencer and script windows. The style codes for other styles start at 0 and run
upwards. You can find a list of styles for each view type in the Edit Setup dialog. If you omit style%, the
default style is changed. Set the value -1 to set all styles to the values you give.

fore% This sets the style foreground colour or is set to -1 to make no change. Bits 0-7 hold the red intensity, bits
8-15 hold the green and bits 16-23 hold the blue. Bits 24-31 are 0. It is convenient to code this as a
hexadecimal number, for example:

 const red%:=0x0000ff, green%:=0x00ff00, blue%:=0xff0000;
 const gray%:=0x808080, yellow% :=0x00ffff;

back% This sets the background colour of the style in the same format as fore%.

Returns The function returns 0 if the font change succeeded, or a negative error code.

See also:
Edit setup dialog, FontGet(), TabSettings()

Frac()

Returns the fractional part of a real number or replaces an array of reals with its fractional parts.

Func Frac(x|x[]{[]...});

x A real number or an array of reals.

Returns For arrays, it returns 0 or a negative error code. If x is not an array it returns a real number equal to x-
Trunc(x). E.g. Frac(4.7) is 0.7, Frac(-4.7) is -0.7.

See also:
Trunc(), Round()

Frame...()

Frame()

This function gets or sets the current frame in a data view.

Func Frame({frame%});

frame% If this is present and in range, the current frame changes to the new number.

Returns The frame number for the view at the time of the call.

See also:
FrameComment$(), FrameCount(), FrameFlag(), FrameTag(), FrameUserVar()

Signal Version 6.06

19-472

FrameAbsStart()

This function obtains the absolute start time for the current frame in a data view, it can also set the start time for
frames in a memory view. The absolute start time for a frame is the time for time zero in a frame relative to the time at
which sampling was started.

Func FrameAbsStart({new});

new If this is present and the current view is a memory view not yet saved to disk, it sets the new absolute start
time for the current frame.

Returns The absolute start time, in seconds, of the current frame in the current data view.

See also:
Frame(), SampleStart()

FrameComment$()

This function gets or sets the comment for the current frame. This is a string of up to 72 characters that is stored
with each frame.

Func FrameComment$({c$});

c$ If this is present it provides a new comment to store with the frame.

Returns The frame comment at the time of the call.

See also:
FileComment$(), FrameState(), FrameTag(), FrameUserVar()

FrameCount()

This function returns the number of frames in a data document.

Func FrameCount();

Returns Number of frames (sweeps) in the file or memory view.

See also:
Frame(), Sweeps()

FrameFlag()

This command turns a frame flag on or off or retrieves the current setting of a flag from the specified frame. This
function will fail with a run-time error if used to change a flag with read-only data, you can check for read-only data
using the Modified() function.

Func FrameFlag(frm%|frm$|frm%[], flag%{, set%});

frm% Frame number or a negative code as follows:

-1 All frames in the file.

-2 The current frame.

-3 Only tagged frames.

-6 Only untagged frames.

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

flag% The flag number (1..32). For CFS files not created by Signal, only flags 1 to 4 and flag 16 are present,
though the other flags can be used while the frame is held in memory.

Script language

19-473

set% If non-zero, this sets flag number flag% on in the current frame. If zero, it clears the flag. In a file not
created by Signal only flags 1,2,3,4 or 16 can be permanently changed.

Returns 1 if the flag number flag% is set in the last frame specified when the function was called or zero if not.
Returns -1 if no frames are found to match the specification.

See also:
FrameComment$(), FrameState(), FrameTag(), FrameUserVar()

FrameGapFree()

This function returns a flag indicating if the current data view file was collected using sampling in gap-free mode, it
can also set the gap-free flag for a memory view.

Func FrameGapFree({new%});

new% If this is present and the current view is a memory view not yet saved to disk, it sets the new gap free flag
for the current frame. A value of zero turns the gap free flag off, a value of 1 turns it on.

Returns The gap free flag in the current data view file at the time of the function call.

See also:
SampleStart()

FrameGetIntVar()

This function reads a CFS frame variable of integer type from the current frame.

Func FrameGetIntVar(name${, &nVar%{, &units${, nType%}}});

name$ The name of the variable to look for. This string is not case sensitive but every character including spaces
must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error code.

units$ If present this returns the units for the variable.

nType% If present this returns a code for the CFS type of an integer variable:

0: INT1, 1: WRD1, 2: INT2, 3: WRD2, 4: INT4:

Returns The function returns the value of the variable if the operation was a success, otherwise zero.

See also:
FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(), FileVarCount(), FileVarInfo(),
FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(), FrameVarInfo(), FrameUserVar()

FrameGetRealVar()

This function reads a CFS frame variable of real type from the current frame.

Func FrameGetRealVar(name${, &nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every character including spaces
must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error code.

units$ If present this returns the units for the variable.

Returns The function returns the value of the variable if the operation was a success, otherwise zero.

See also:
FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(), FileVarCount(), FileVarInfo(),
FrameGetIntVar(), FrameGetStrVar$(), FrameVarCount(), FrameVarInfo(), FrameUserVar()

Signal Version 6.06

19-474

FrameGetStrVar$()

This function reads a CFS frame variable of string type from the current frame.

Func FrameGetStrVar$(name${, &nVar%{, &units$}});

name$ The name of the variable to look for. This string is not case sensitive but every character including spaces
must match exactly.

nVar% If present this returns the variable number, -1 if not found, or a negative error code.

units$ If present this returns the units for the variable.

Returns The function returns the string contents of the variable if the operation was a success, otherwise an empty
string.

See also:
FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(), FileVarCount(), FileVarInfo(),
FrameGetIntVar(), FrameGetRealVar(), FrameVarCount(), FrameVarInfo(), FrameUserVar()

FrameList()

This function generates an array of specified frame numbers from the current view.

Func FrameList(list%[], sFrm%{, eFrm%{, mode%}});
Func FrameList(list%[], frm$|frm%[]{, mode%});

list% An integer array to fill with frame numbers. The first element of the array, list%[0], is set to the number
of frames returned, and the remaining elements in the array are frame numbers. If the array is too short,
enough frames are returned to fill the array.

sFrm% First frame to include. This option returns a range of frames. sFrm% can also be a negative code as follows:

-1 All frames in the file are included.

-2 The current frame.

-3 Frames must be tagged.

-6 Frames must be untagged.

eFrm% Last frame to include. If this is -1 the last frame number in the data file is used. This argument is ignored if
sFrm% is a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each frame in the range, list or
specification. If mode% is absent all frames are included. The modes are:

0-n Frames must have a state matching the value of mode%.

-1 All frames in the range list are included.

-2 Only the current frame in the view is included.

-3 Frames must be tagged.

-6 Frames must be untagged.

Returns The number of frames that would be returned if the array was of unlimited length or 0 if the view is not a
data view.

See also:
Frame lists, FrameState(), FrameTag(), FrameUserVar(), ExportFrameList(),
ProcessFrames()

Script language

19-475

FrameMean()

This command turns the frame mean flag on or off or gets the setting of the mean flag for the specified frame or
frame type.

Func FrameMean(frm%|frm$|frm%[]{, on%});

frm% One frame number or a negative code as follows:

-1 All frames in the file.

-2 The current frame.

-3 All tagged frames.

-6 All untagged frames.

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

on% A value of 1 marks the frame as a mean, zero marks it as a total.

Returns 1 if the last frame specified was a mean when the function was called or zero if not. Returns -1 if no frames
are found to match the specification.

See also:
FrameComment$(), FrameFlag(), FrameState(), FrameUserVar(), Sweeps()

FrameSave()

This command saves changed frame data in a file view back into the file, bypassing the usual interactive process
controlled by the preferences dialog. It can also be used to discard changes to ensure that the user is not promped
to save them. This command can only be used on frames already present on disk; appended frames and memory
view frames will be saved as part of FileSave or FileClose. This function will fail with a run-time error if used to
save changes with read-only data, you can check for read-only data using the Modified() function.

Func FrameSave({no%});

no% If present and non-zero, this causes changed data to be discarded by marking the data as unchanged. If
the parameter is not present or set to zero the function causes the changed data to be written back to the
disk file.

Returns One if changed frame data was written to disk, zero if nothing or only frame variables were written, or a
negative error code.

See also:
FileExportAs(), FileSave(), FileClose(), Frame(), Modified()

FrameState()

This command sets or gets the state code value for the specified frame or frames. This function will fail with a run-
time error if used to change the state with read-only data, you can check for read-only data using the Modified()
function.

Func FrameState(frm%|frm$|frm%[]{, new%});

frm% One frame number or a negative code as follows:

-1 All frames in the file

-2 The current frame

-3 All tagged frames

-6 All untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

Signal Version 6.06

19-476

new% If present this sets the state stored with each frame specified. For values above 9 this is only effective in a
file created by Signal.

Returns The state of the last frame specified when the function was called. Returns -1 if no frames are found to
match the specification.

See also:
FrameComment$(), FrameFlag(), FrameTag(), FrameUserVar()

FrameTag()

This command turns the frame tag on or off, or gets the setting of the tag, for the specified frame or frame type. This
function will fail with a run-time error if used to change the tag with read-only data, you can check for read-only
data using the Modified() function.

Func FrameTag(frm%|frm$|frm%[]{, on%});

frm% One frame number or a negative code as follows:

-1 All frames in the file.

-2 The current frame

-3 All tagged frames

-6 All untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

on% A value of 1 tags the frame, zero untags it.

Returns 1 if the last frame specified was tagged when the function was called or zero if not. Returns -1 if no frames
are found to match the specification.

See also:
FrameComment$(), FrameFlag(), FrameState(), FrameUserVar()

FrameUserVar()

This command gets or sets one of the user frame variable values stored with the current frame of the file associated
with the current file or memory view, a second form can be used to read back or change the name and units of a
variable - which applies to all frames. This function will fail with a run-time error if used to change a user variable
with read-only data, you can check for read-only data using the Modified() function.

Frame user variables are a subset of the frame variables in a file that can be both read and changed by the script
language. There are sixteen of them, all are floating point values, and they are initially named User1 to User16 with
blank units. Signal makes use of frame variables for various purposes, for example to store information about the
setup of an auxiliary states device, but the user frame variables are specifically available for general use. It is
necessary to be very cautious about changing non-user frame variables, but you can make use of the user variables
freely and safely by using this function and can rename them and alter the units to reflect the information stored
within them.

Func FrameUserVar(n%{, val});
Func FrameUserVar(n%, name$, units${, set%});

n% The user variable number, between 1 and 16.

val If present this is the new value for user variable number n.

name$ This string sets or is updated with the name of user frame variable n%. When used to set the name this
should not be more than 14 characters long.

units$ This string sets or is updated with the units of user frame variable n%. When used to set the units this
should not be more than 8 characters long.

Script language

19-477

set% If present and set to 1, the user variable name and units will be set using name$ and units$, otherwise
the current name and units will be returned.

Returns The value of frame user variable number n before the call.

See also:
FrameComment$(), FrameFlag(), FrameState(), FrameTag(), FrameGetIntVar(),
FrameGetStrVar$(), FrameVarCount(), FrameVarInfo()

FrameVarCount()

This function counts CFS frame variables in the data file. Frame variables are extra values attached to each frame in
a CFS data file. These are used by Signal for various purposes, for example to hold the frame state and absolute
start time. Some of the frame variable are user variables and can be both read and written-to. A Signal script can
read the values of the other frame variables but is not allowed to change them.

Func FrameVarCount();

Returns The number of frame variables in the data file for file views, the number of frame user variables for memory
views, or zero for other types of view.

See also:
FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(), FileVarCount(), FileVarInfo(),
FrameGetIntVar(), FrameGetRealVar(), FrameGetStrVar$(), FrameVarInfo(), FrameUserVar()

FrameVarInfo()

This function reads the name, type and optionally the units of a CFS frame variable. Frame variables are extra values
attached to each frame in a CFS data file. These are used by Signal for various purposes, for example to hold the
frame state and absolute start time. Some of the frame variable are user variables and can be both read and written-
to. A Signal script can read the values of the other frame variables but is not allowed to change them.

Func FrameVarInfo(nVar%, &name${, &units$});

nVar% This is the variable number for which information is required. The first frame variable is number zero, the
first user variable is number five for file views and zero for memory views.

name$ This is returned holding the name of the variable, which can be used in the commands for reading the
frame variable values.

units$ If provided, this is returned holding the units for the variable.

Returns The function returns the type of the variable or -1 if the variable was not found or is of unknown type. The
variable type codes are as follows:

0 An integer variable which can be read using FrameGetIntVar().

1 A floating point variable which can be read using FrameGetRealVar().

2 A string variable which can be read using FrameGetStrVar$().

See also:
FileGetIntVar(), FileGetRealVar(), FileGetStrVar$(), FileVarCount(), FileVarInfo(),
FrameGetIntVar(), FrameGetRealVar(), FrameGetStrVar$(), FrameVarCount(), FrameUserVar()

FrontView()

This command is used to set the view that is nearest to the top and also makes it the current view. It is the view that
would have the focus if all dialogs were removed. You can use this to find out the front view, or to set it. When a
view becomes the front view, it is moved to the front unless it is already there. If an invisible or iconised view is
made the front view, the view is made visible automatically (equivalent to WindowVisible(1)). Care should be
taken if using this function in an idle routine for a toolbar, as calling it repeatedly will prevent the toolbar buttons
from being pressed!

Func FrontView({vh%});

Signal Version 6.06

19-478

vh% Either 0 or omitted to return the front view handle, the handle of the view to be set, or n, meaning the n th
duplicate of the data view associated with the current view.

Returns 0 if there are no visible views, -1 if the view handle passed is not a valid view handle, otherwise it returns
the view handle of the view that was at the front.

See also:
View(), Window(), WindowVisible(), FocusHandle()

G

GammaP() and GammaQ()

These functions return the incomplete gamma function P(a, x). It is defined as:

the integral between 0 and x of exp(-t)*pow(t,a-1) with respect to t divided by Gamma(a)

This is named GammaP() in the script. We also define the complement of this function, GammaQ(a,x), which is
1.0-GammaP(a,x). From them are obtained the error function, the cumulative Poisson probability function and the
Chi-squared probability function.

The error function erf(x) = GammaP(0.5, x*x)

The cumulative Poisson probability function relates to a Poisson process of random events and is the probability
that, given an expected number of events r in a given time period, the actual number was greater than or equal to n.
This turns out to be GammaP(n,r). Also, the probability that there are less than n events is GammaQ(n,r).

The Chi-squared probability function is useful where we are fitting a model to data. Given a fitting function that fits
the data with n degrees of freedom (if you have nData data points and nCoef coefficients you usually have
nData-nCoef degrees of freedom), and given that the errors in the data points are normally distributed, the
probability of a Chi-squared value less than chisq is GammaP(n/2, chisq/2). Similarly, the probability of a
chisq value at least as large as chisq is GammaQ(n/2, chisq/2). So, if you know the chi-squared value from a
fitting exercise, you can ask "What is the probability of getting this value (or a greater one) given that my model fits
the data?" If the probability is very small, it is likely that your model does not fit the data, or your fit has not
converged to the correct solution.

Func GammaP(a, x);
Func GammaQ(a, x);

a This must be positive, it is a fatal error if it is not.

x This must be positive, it is a fatal error if it is not.

Returns These functions return the incomplete Gamma function and the complement of the incomplete Gamma
function.

See also:
LnGamma()

GammaQ()

The complement of GammaP(); GammaQ(a,x) is 1.0-GammaP(a,x).

Func GammaQ(a, x);

a This must be positive, it is a fatal error if it is not.

x This must be positive, it is a fatal error if it is not.

Returns The complement of the incomplete Gamma function.

See also:
GammaP()

Script language

19-479

Grd...()

GrdAlign()

This command sets the alignment of text in grid view columns.

Func GrdAlign(align%, col%)

align% Set -1 to make no change, 0 for left aligned, 1 for centred and 2 for right aligned columns.

col% The column number to align or -1 for all columns that intersect the currently selected cells in the grid or -2
for all columns.

Returns The alignment of the lowest numbered column defined by col% as 0 for left, 1 for centred and 2 for right
aligned before any change made by this command is applied.

See also:
GrdGet(), GrdSet(), GrdColWidth(), GrdShow(), GrdSize()

GrdColWidth()

This command reads or sets the width of a nominated column, or all columns that intersect with the current
selection. There are two variants:

Func GrdColWidth(col%{, width%);
Func GrdColWidth(col%, text$);

col% The column to use or -1 to use all columns that intersect the currently selected cells in the grid or -2 for all
columns.

width% Optional. If present, and positive it sets the width of the columns nominated by col% in pixels. You are
allowed to set a 0 width, which hides the column(s). You can also set

-1 Set the default column width.

-2 Optimise the column width based on the contents.

text$ Set the column wide enough to display this text, based on the current font set for the body of the grid (not
the headings).

Returns The width of the first column set by col%, in pixels or -1 if col% is too large to refer to a column.

See also:
GrdGet(), GrdSet(), GrdAlign(), GrdShow(), GrdSize()

GrdGet()

Collect data from the current grid view. You can read back data from a single cell, or from a column or a row, or from
a square region of the grid.

Func GrdGet(&text$|text$[]{[]}, col%, row%);

text$ This is either a simple string variable or a string vector or a string matrix. With a simple variable, you read
back one cell from row%, col%. With a vector, you read back a column of data starting at row%, col%.
With a matrix, you read back a rectangular grid of items starting at row%, col%. To read back a row of data
into a vector, use the transpose operator on the vector (trans(text$[]) or text$`).

col% This sets the start column. The first data column is 0. The row headings are always the row numbers so
these cannot be accessed.

row% This sets the start row. You can read back the column headers by setting this to -1. The first data column
is 0.

Returns The number of elements of text$ that were set.

If either row% or col% exceed the size of the grid, nothing is read and 0 is returned.

See also:

Signal Version 6.06

19-480

GrdSet(), GrdColWidth(), GrdAlign(), GrdShow(), GrdSize()

GrdSet()

Set data in the current grid view. You can write data to a single cell, or to a column or a row or to a square region of
the grid.

Func GrdSet(text$|text$[]{[]}, col%, row%);

text$ This is either a simple string or a string vector or a string matrix. With a simple variable, you set one cell at
row%, col%. With a vector, you set a column of data starting at row%, col%. With a matrix, you set a
rectangular grid of items starting at row%, col%. To set a row of data from a vector text$[], use the
transpose operator on the vector (trans(text$) or text$`).

col% This sets the start column. The first data column is 0. The row headings are always the row numbers so
these cannot be accessed.

row% This sets the start row. You can set the column headers by setting this to -1. The first data column is 0. If
you set a blank column header, the displayed heading reverts to the default.

Returns The number of cells of the grid that were set.

If either row% or col% exceed the size of the grid, nothing is set and 0 is returned.

See also:
GrdGet(), GrdColWidth(), GrdAlign(), GrdShow(), GrdSize()

GrdShow()

Show, hide and report visibility of column and row headers.

Func GrdShow({cHead%, rHead%});

cHead% Omit or set -1 for no change, 0 to hide and 1 to show the column header.

rHead% Omit or set -1 for no change, 0 to hide and 1 to show the row header.

Return The original state as the sum of 1 (for column headers visible) and 2 (for row headers visible), so possible
return values are 0, 1, 2 or 3.

See also:
GrdGet(), GrdSet(), GrdColWidth(), GrdAlign(), GrdSize()

GrdSize()

This function resizes the grid or reports the grid size. If you change the size, existing cell contents in surviving cells
are preserved. There are two command variants.

Change grid size
Func GrdSize(cols%, rows%);

cols% The number of columns to set in the grid or -1 for no change.

rows% The number of rows to set in the grid or -1 for no change.

Returns 0 if done or a negative error code (for example, too many cells).

Get grid size
The second variant returns the number of rows or columns:

Func GrdSize({get%});

get% Set 0 or omit to return the number of columns. Set -1 to return the number of rows.

Returns The information requested by get%.

See also:

Script language

19-481

GrdGet(), GrdSet(), GrdColWidth(), GrdAlign(), GrdShow()

Grid()

This function turns the background grid on and off for the current data or XY view and returns the state of the grid.
The grid is a mesh of lines that follow the big and small ticks on the x and y axes that is drawn on top of the data
view background and under the data. Separate control of x and y grid lines was added at version 4.07.

Func Grid({on%});

on% Optional, sets the grid state. Omit or set -1 for no change, 0 = no grid, 1 = both x and y grid, 2=x grid only,
3=y grid only.

Returns The state of the grid at the time of the call as 0-3 or a negative error code. Changes made by this function
do not cause an immediate redraw.

See also:
XAxis(), XScroller(), YAxis()

Gutter()

The gutter is the area on the left of a text-based window where bookmarks and script break points appear. This
function returns and optionally sets the gutter visible state. If you set a large font size you may wish to hide the
gutter.

Func Gutter({show%});

show% Optional, sets the gutter state. 0 = hide, 1 = show, -1 or omitted for no change.

Returns The gutter state at the time of the call: 0 = hidden, 1=visible.

H

HCursor...()

HCursor()

This function returns the y axis position of a horizontal cursor, and optionally sets a new position. You can get and
set positions of cursors attached to invisible channels or channels that have no y axis.

Func HCursor(num%{, where{, chan%}});

num% The cursor to use, from 1 to n. It is an error to attempt this operation on an unknown cursor.

where If this parameter is given it sets the new y axis position of the cursor.

chan% If this parameter is given, it sets the channel number (1 to n).

Returns The function returns the y axis position of the cursor at the time of the call, or zero for a non-existent
cursor number.

See also:
Cursor(), HCursorChan(), HCursorDelete(), HCursorLabel(), HCursorLabelPos(),
HCursorNew(), HCursorRenumber()

HCursorActive()

This function sets and retrieves the parameters used by an active horizontal cursor in taking a measurement from
the channel on which the cursor is placed and moving to the measured level. There are two forms of the function,
the first one sets the active cursor mode and parameters, the second is used to read the mode and parameters back.

Func HCursorActive(num%{, mode% {,start|start$|expr$, end|end$ {,factor
{,seq%}}}});

Signal Version 6.06

19-482

This form of the function is used to set active horizontal cursor modes and parameters. Note that the use of some of
the parameters varies according to the cursor mode that is set. The function parameters are:

num% The horizontal cursor number for which we are setting the active mode parameters, from 1 to 10. If only
this argument is provided the function returns the current cursor mode and makes no changes.

mode% The active cursor mode (see the main active horizontal cursor documentation for a complete description of
the modes). The possible values of mode% are:

0 Static 3 Mean level 6 Extreme

1 Value at point 4 Maximum 7 Mean level + (SD * factor)

2 Expression 5 Minimum

start The start time for the measurement in seconds, or the time for the Value at point measurement.

start$ The start time for the measurement as a string. Time expressions such as "XLow()+0.2" can be used for
the start time, numbers used in the string are assumed to be in seconds unless a specific modifier is used
thus: "XLow()+0.2ms".

expr$ For Expression mode only this is a string expression relating to the channel on which the cursor is placed
such as "HCursor(1)" or "Mean(0.1, 0.2)".

end The end time for the measurement, in seconds.

end$ The end time for the measurement as a string, again time expressions can be used.

factor This is the scale factor used in mode 7.

seq% This is a number specifying when the measurement should be evaluated and the cursor repositioned
relative to the sequence of active vertical cursor repositioning that occurs when the current frame changes
or vertical cursor 0 is iterated. Set seq% to 0 for automatic sequencing, 1 for evaluation before all the
vertical cursors and 2 for after all the vertical cursors.

Returns The active cursor mode set at the time that the function was called.

Func HCursorActive(num%{, item% {, &val$}});

This form of the function is used to read back the active cursor mode and parameters. Note that the use of some of
the parameters varies according to the cursor mode that is set. The function parameters are:

num% The horizontal cursor number for which to retrieve information, from 1 to 10.

item% This specifies the parameter for which to retrieve the current value:

-1 mode% -3 end$ -5 factor

-2 start$ -4 expr$ -6 seq%

If item% is omitted it is treated as -1.

val$ This optional string variable will be updated with the parameter value as a string when item% is -2, -3 or -4.

Returns The numerical value of the selected value. For items -2, -3 and -4 this value is generated by parsing the
associated string so it will reflect the position of any cursors or data values used, if the string parsing fails
zero is returned.

See also:
ChanMeasure(), ChanValue(), HCursor(), HCursorDelete(), HCursorNew(), HCursorValid(),
CursorActive()

HCursorChan()

This function returns the channel number that a particular horizontal cursor is currently attached to.

Func HCursorChan(num%);

num% The horizontal cursor number, from 1 to n.

Returns It returns the channel number that the cursor is attached to, or 0 if this cursor is not attached to any
channel or if the channel number is out of the allowed range.

Script language

19-483

See also:

HCursor(), HCursorDelete(), HCursorLabel(), HCursorLabelPos(), HCursorNew(),
HCursorRenumber()

HCursorDelete()

This deletes the designated horizontal cursor. It is not an error to delete an unknown cursor, it just has no effect.

Func HCursorDelete({num%});

num% The number of the cursor to delete, or -1 to delete all horizontal cursors. If this is omitted, the highest
numbered cursor is deleted.

Returns The number of the deleted cursor or 0 if no cursor was deleted.

See also:
CursorDelete(), HCursor(), HCursorChan(), HCursorLabel(), HCursorLabelPos(),
HCursorNew(), HCursorRenumber()

HCursorExists()

This function tests if a given horizontal cursor exists at the time of the call.

Func HCursorExists(num%)

num% The cursor number to be tested.

Returns 1 if the cursor exists, 0 if it does not.

See also:
HCursor(), HCursorDelete(), CursorExists()

HCursorLabel()

This gets and optionally sets the horizontal cursor label style for the view or for a cursor. You can label cursors
with a position and/or the cursor number, or with user-defined text. There are two variants: the first sets styles and
labels; the second reads back user-defined labels.

Func HCursorLabel({style%{, num%{, form$}}})
Func HCursorLabel(&form$, num%);

style% The cursor style. Cursors can be annotated with a position or the cursor number or a user-defined style.
The styles are: 0=Neither, 1=Position, 2=Number, 3=Both, 4=User-defined. Unknown styles cause no
change.

num% 1-9 to select a single cursor or to return the label string. Omit num% or set it less than 1 (use -1 in case we
allow a horizontal cursor 0 in the future) for all cursors and to get and set the style for new cursors.

form$ The user-defined label string for style 4. The string has replaceable parameters %p, and %n for position and
number. We also allow %w.dp where w and d are numbers that set the field width and decimal places. You
cannot read back a label format string.

Returns A cursor style before any change as 0-4 if a single cursor is selected, or the view cursor style as 0-3. If
style% is omitted or not 0-3, the current view cursor style is not changed.

See also:
CursorLabel(), HCursor(), HCursorChan(), HCursorDelete(), HCursorLabelPos(),
HCursorNew(), HCursorRenumber()

Signal Version 6.06

19-484

HCursorLabelPos()

This lets you set and read the position of the horizontal cursor label.

Func HCursorLabelPos(num%{, pos});

num% The cursor number to use, from 1 to n. If the cursor does not exist the function does nothing and returns -
1.

pos If present, the command sets the position. The position is a percentage of the distance from the left of the
cursor at which to position the value. Out of range values are set to the appropriate limit.

Returns The cursor position before any change was made, or -1 if the cursor does not exist.

See also:
CursorLabelPos(), HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),
HCursorNew(), HCursorRenumber()

HCursorNew()

This function creates a new horizontal cursor and assigns it to a channel. You can create up to 10 horizontal
cursors, which can subsequently be moved to any channel.

Func HCursorNew(chan%{, where});

chan% A channel number (1 to n) for the new cursor. If the channel is hidden the cursor is hidden.

where An optional argument setting the cursor position. If this is omitted, the cursor is placed in the middle of
the y axis or at zero if there is no y axis.

Returns It returns the horizontal cursor number or 0 if all cursors are in use.

See also:
CursorNew(), HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),
HCursorLabelPos(), HCursorRenumber()

HCursorRenumber()

This command renumbers the cursors starting with channel 1. Cursors in each channel are numbered from bottom
to top. There are no arguments.

Func HCursorRenumber();

Returns The number of cursors found in the view.

See also:
CursorRenumber(), HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),
HCursorLabelPos(), HCursorNew()

HCursorValid()

Use this function to test if the last measurement for a level of an active horizontal cursor succeeded. Horizontal
cursor positions are valid if a measurement succeeds or if the cursor is positioned manually or by a script command.
The position of a newly created cursor is valid.

Func HCursorValid(num%);

num% The horizontal cursor number to test for a valid measurement result.

Returns The result is 1 if the position of the nominated horizontal cursor is valid or 0 if it is invalid or the horizontal
cursor does not exist.

See also:
HCursorActive(), HCursorNew(), CursorSearch(), ChanMeasure()

Script language

19-485

HCursorVisible()

Horizontal cursors can be hidden without deleting them by using this script function. This command was added at
Signal version 6.06.

Func HCursorVisible(num%{, show%});

num% The horizontal cursor number or -1 for all horizontal cursors.

show% If present set this to 0 to hide the cursor and non-zero to show it, if not present no change is made.

Returns The state of the horizontal cursor at the time of the call (0=hidden, 1=visible, 0 if the cursor does not exist).
If num% is -1, the result is the number of horizontal cursors.

See also:
CursorVisible(), HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(),
HCursorLabelPos(), HCursorNew()

HCursorX()

This function returns the position of a horizontal cursor in a Time, Result or XY view before the move that took it to
the current position. It is particularly useful with Active horizontal cursors. The same mechanism is available as a
dialog expression. This command was added at Signal version 6.05.

Func HCursorX(num%);

num% The cursor to use. It is an error to attempt this operation on an unknown cursor.

Returns The function returns the position of the cursor before the move (however caused) to the current position.
Use HCursor(num%) to get the current position.

See also:

HCursor(), HCursorChan(), HCursorDelete(), HCursorLabel(), HCursorLabelPos(),
HCursorNew(), HCursorRenumber()

Help()

This function displays a help file page. Signal uses the standard Windows HTML help system.

Func Help(topic%|topic${, file$});

topic% A numeric code for the help topic. These codes are assigned by the help system author. Code 0 changes
the default help file to file$.

topic$ A string holding a help topic keyword or phrase to look-up.

file$ If this is omitted, or the string is empty, the standard Signal help file is used. If this holds a filename, this
filename is used as the help file.

Returns 1 if the help topic was found, 0 if it was not, -1 if the help file was not found.

The Windows SDK has some help-authoring tools, and third-party tools are available.

I

IIR commands

The IIRxxxx() script commands make it easy for you to generate and apply IIR (Infinite Impulse Response) filters
to data held in arrays of real numbers. The data values are assumed to be a sampled sequence, spaced at equal
intervals. You can create digital filters that are modelled on Butterworth, Bessel, Chebyshev type 1 and Chebyshev
type 2 highpass, lowpass, bandstop and bandpass filters. You can also create digital resonators and notch filters.
The commands are:

IIRBp() Bandpass filter IIRHp() Highpass filter IIRNotch() Notch filter

Signal Version 6.06

19-486

IIRBs() Bandstop filter IIRLp() Lowpass filter IIRReson() Resonator

The algorithms used to create the filters are based on the mkfilter program, written by Tony Fisher of York
University. The basic idea is to position the s-plane poles and zeros for a normalised low-pass filter of the desired
characteristic and order, then to transform the filter to the desired type.

The theory of IIR filters is beyond the scope of this manual; a classic reference work is Theory and Application of
Digital Signal Processing by Rabiner and Gold, published in 1975. The IIR filters generated by these commands
can be modelled by:

y[n] = Sum(Ai*x[n-i]/G) + Sum(Bi*y[n-i])

i=0,N i=1,M

where the x[n] are the sequence of input data values, the y[n] are the sequence of output values, the Ai and the Bi

are the filter coefficients (some of which may be zero) and G is the filter gain. Although G could be incorporated
into the Ai, for computational reasons we keep it separate. In the filters designed by the IIRxxxx() commands,

N=M and is the order of the filter for lowpass and highpass designs, twice the order for bandpass and bandstop
designs and is 2 for resonators and notch filters. The order of the low pass, high pass, band pass and band stop
filters determines the sharpness of the filter cut-off: the higher the order, the sharper the cut-off.

IIR and FIR filters
When compared to FIR filters, IIR filters have advantages:

· They can generate much steeper edges and narrower notches for the same computational effort.

· The filters are causal, which means that the filter output is only affected by current and previous data. If you
run a step change through FIR filters you typically see ringing before the step as well as after it.

However, they also have disadvantages:

· FIR filters are unconditionally stable. IIR filters are prone to stability problems if very narrow features (<0.0001
of the sample rate) are used. Problems increase at high filter orders. Filters report if they are likely to be
unstable.

· They impose a group delay on the data that varies with frequency. This means that they do not preserve the
shape of a waveform, in particular, the positions of peaks and troughs will change.

You can remedy the group delay problem by running a filter forwards, then backwards, through the data. However,
this makes the filter non-causal, removing one of the advantages of using an IIR filter. The commands allow you to
check the impulse, step, frequency and phase response of the filters, and we recommend that you do so before
using a generated filter for a critical purpose.

The lowpass, highpass, bandpass and bandstop filters generate digital filters modelled on four types of analogue
filter: Butterworth, Bessel, Chebyshev type 1 and Chebyshev type 2. The resulting digital filters are not identical to
the analogue filters as the mapping from the analogue to the digital domain distorts the frequency scale. In many
cases, this improves the performance of the digital filter over the analogue counterpart.

Filter types
You can generate notch and resonator filters plus lowpass, highpass, bandpass and bandstop filters modelled on
Butterworth, Bessel and Chebyshev analogue filters.

Butterworth
These have a maximally flat pass band, but pay for this by not having the steepest possible transition between the
pass band and the stop band.

Bessel
An analogue Bessel filter has the property that the group delay is maximally flat, which means that it tends to
preserve the shape of a signal passed through it. This leads to filters with a gentle cut-off. When digitised, the
constant group delay property is compromised; the higher the filter order, the worse the group delay.

Chebyshev type 1
Filters of this type are based on Chebyshev polynomials and have the fastest transition between the pass band and
the stop band for a given ripple in the pass band and no ripples in the stop band.

Script language

19-487

Chebyshev type 2
Filters of this type are defined by the start of the stop band and the stop band ripple. The filter has the fastest
transition between the pass and stop bands given the stop band ripple and no ripple in the pass band.

Notch
Notch filters are defined by a centre frequency and a q factor. q is the width of the stop band at the –3 dB point
divided by the centre frequency: the higher the q, the narrower the notch. Notch filters are sometimes used to
remove mains hum, but if you do this you will likely need to set notches at the first few odd harmonics of the mains
frequency. If you have a fairly constant coupling of mains noise into your signal, there are other ways to remove it
that may cause much less signal degradation than notch filtering.

Resonator
A resonator is the inverse of a notch. It is defined in terms of a centre frequency and a q factor. q is the width of the
pass band at the –3 dB point divided by the centre frequency: the higher the q, the narrower the resonance.
Resonators are sometimes used as alternatives to a narrow bandpass filter.

Non-filter bank commands
The IIRBp(), IIRBs(), IIRLp(), IIRHp(), IIRReson() and IIRNotch() commands are all independent and
they each remember the last filter you created and the filter state after the last filtering operation. They have
common operations to read back data and apply the filter to an array.

Filter bank commands
The IIRApply(), IIRComment$(), IIRCreate(), IIRInfo() and IIRName$() commands use the IIR filter
bank to generate and apply digital filters to channels of data.

See also:
FIRMake(), IIRApply(), IIRBp(), IIRBs(), IIRComment$(), IIRCreate(), IIRHp(), IIRInfo(),
IIRLp(), IIRName$(), IIRNotch(), IIRReson()

Get IIR filter information

For the IIRBp(), IIRBs(), IIRLp(), IIRHp(), IIRReson() and IIRNotch() commands, you use a variant of
the following form to return filter information:

Func IIRxxxx(get%{, arr[]{[]}});

get% The form of the command using this argument is used to read back information about the last filter created
with this command. The argument can be:

1 arr[] is set to the impulse response of the filter. This is the response to an input of 1 followed by an
infinite number of zeros assuming that all previous inputs were also zero. It is up to you to set a
suitable length of the array. Each array data points corresponds with one sample interval. The return
value is the magnitude of the largest value in arr[]. For example, if the impulse response ranged in
values from –0.5 to 0.3, 0.5 would be returned.

2 arr[] is set to the step response of the filter. The input to the filter is assumed to be an infinite
number of zeros, followed by an infinite number of ones, and the response is taken from the moment
where the input changes to a 1. It is up to you to set a suitable array length. The return value is the
magnitude of the largest value in arr[].

3 arr[][] is a matrix with r rows and 2 columns. The frequency response is returned as complex
numbers in the columns; arr[][0] holds the real part and arr[][1] the imaginary part. The first row
corresponds to a frequency of 0; the final row corresponds to a frequency of half the sampling rate.
The frequencies are spaced as 0.5/(r-1). The more rows you set, the finer the frequency response.
The return value is the maximum magnitude of the returned frequency response.

4 The same as 3 except that the results are returned as the amplitude response in column 0 and the phase
response in column 1. If the real and imaginary parts of the response are r and i, arr[][0] holds
sqrt(r*r+i*i) and arr[][1] holds atan(i, r). The return value is the maximum returned
amplitude response.

5 Returns the number of filter coefficients (N+1) to apply to the filter input values and fills in arr[] with
these values. These correspond to the ai in the filter expression. However, we return the values in

Signal Version 6.06

19-488

reverse order as this makes them easier to use as a dot product with old values. N is the filter order for
low pass and high pass, twice the order for band pass and band stop, and 2 for resonators and notch
filters.

6 Returns the number of filter coefficients (N+1) to apply to the filter output values and fills in arr[]
with these values. These correspond to the bi in the filter expression. However, we return the values in

reverse order to match the ai. The final value is always –1.0 (corresponding to b0, which is not used

when implementing the filter). N is the filter order for low pass and high pass, twice the order for band
pass and band stop, and 2 for resonators and notch filters.

7 Returns the filter gain G as defined in the filter expression.

8 arr[][] is a matrix with N rows and 2 columns. N is the filter order for low pass and high pass, twice
the order for band pass and band stop, and 2 for resonators and notch filters. The return value is the
number of poles in the s-plane and the matrix is filled in with the poles as complex numbers with the real
part in column 0 and the imaginary part in column 1.

9 The same as 8, but returning the s-plane zeros.

10 The same as 8, but returning the z-plane poles.

11 The same as 8, but returning the z-plane zeros.

12 Returns a measure of filter stability, being the distance of the nearest pole to the unit circle. It is our
experience that values greater than 1e-12 generate plausible filters. As the filter depends on a function
of this distance, which is of the form (pole position-1), as the pole position approaches 1, the numerical
accuracy of the result become significantly compromised (floating point numbers have around 15
significant digits of accuracy, all else being equal). You can improve the stability by reducing the order
of the filter. Getting the stability measure was added at Signal version 5.05.

To read back information about a filter in the filter bank, use the IIRInfo() command.

See also:
FIRMake(), IIRApply(), IIRBp(), IIRBs(), IIRHp(), IIRInfo(), IIRLp(), IIRNotch(),
IIRReson()

Apply IIR filter to an array

This command applies the current filter set by one of the IIRBp(), IIRBs(), IIRLp(), IIRHp(), IIRReson()
and IIRNotch() commands to an array of equally spaced data

Func IIRBp(data[]{, flags%{, save[]}});
Func IIRBs(data[]{, flags%{, save[]}});
Func IIRLp(data[]{, flags%{, save[]}});
Func IIRHp(data[]{, flags%{, save[]}});
Func IIRReson(data[]{, flags%{, save[]}});
Func IIRNotch(data[]{, flags%{, save[]}});

data An array of data to filter.

flags% Optional, taken as 0 if omitted. Add:

1 To apply the filter backwards through the array. Applying a filter introduces a phase shift; running a
filter forwards then backwards cancels the phase shift at the expense of a non-causal filter.

2 To treat data[] as a continuation of the last filtering operation (only do this if it really is a
continuation, otherwise the results are nonsense). The filter state is saved separately for each filter
command, but if you want to interleave use of the the same command between multiple data streams,
you must use the save argument. If you apply the filter backwards, you must present the data blocks
backwards.

save[] Optional. This is a real array that preserves the state of the IIR filter so that you can interleave continuous
filtering using the same filter between multiple data streams, for example different channels. You will need a
separate save[] array for each data stream/channel, the IIR filtering command will restore its state from
the array before filtering if the 2 value in flags% is set and will save the filter state in the array after
finishing the filtering - thus preserving the internal state separately for each data stream. The minimum size
of the array depends on the filter type and order. It is 2*order+2 for IIRLp() and IIRHp(), 6 for
IIRReson() and IIRNotch() and 4*order+2 for IIRBp() and IIRBs().

Script language

19-489

If save is present and 2 is added to flags%, the filter state is loaded from it before filtering; it is always
updated after filtering. You can simplify code by always having the continuous data flag set if you make
sure that save[] is initialised to zeros before it is used for the first time.

See also:
FIRMake(), IIRApply(), IIRBp(), IIRBs(), IIRHp(), IIRLp(), IIRNotch(), IIRReson()

IIRApply()

Applies a filter in the IIR filter bank to a waveform channel in the current time view.

Func IIRApply(index%, cSpc, frm%|frm%[]|frm$);

index% Index of the filter in the filter bank to apply in the range -1 to 11

cSpc A channel specifier for the channels to filter.

frm% Frame number or a negative code as follows:

-1 All frames in the file

-2 The current frame

-3 Only tagged frames

-6 Only untagged frames

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

Returns Zero or a negative error code. A negative error code is also returned if the user clicks Cancel from the
progress bar that may appear during a long filtering operation.

See also:
The filter bank, IIRComment$(), IIRCreate(), IIRBp(), IIRInfo(), IIRName$()

IIRBp()

This function creates and applies IIR (Infinite Impulse Response) band pass filters to arrays of data. You can run
the filter forwards or backwards through the data.

Func IIRBp(data[]|0, lo, hi, order%{, type%{, ripple}});
Func IIRBp(data[]{, flags%{, save[]}});
Func IIRBp(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created band pass filter is used.
Otherwise, the filter defined by the remaining arguments is used forwards. Replace data with 0 to create a
filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards, 2 to treat data[] as a continuation of the
last filtering operation.

save[] Optional. If present it must have a size of at least 4*order%+2. It is used to save the filter state to allow
use with the continued data flag with multiple data streams.

lo The low corner frequency of the band stop filter. This is expressed as a fraction of the sample rate and is
limited to the range 0.000001 to 0.499998. For Chebyshev type 2 filters, this is the point at which the
attenuation reaches the ripple value, for all other filters this sets the –3 dB point.

hi The high corner frequency of the band pass filter. This is expressed as a fraction of the sampling rate and
is limited to the range lo+0.000001 to 0.499999. For Chebyshev type 2 filters, this is the point at which the
attenuation reaches the ripple value, for all other filters this sets the –3 dB point.

order% The order of the lowpass filter used as the basis of the design, in the range 1 to 10. The order of the filter
implemented is order%*2. High orders (order% > 7) and narrow bands may cause inaccuracy in the filter.
Narrow means that (hi-lo)/sqrt(lo*hi) is less than 0.2, for example.

Signal Version 6.06

19-490

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev type 2. The default value
is 0 for a Butterworth filter.

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or the desired minimum cut
in the stop bands for Chebyshev type 2 filters (default 40 dB). The ripple value must be in the range 0.01 to
1000 dB.

get% The command variant with this argument returns information about the last filter you created with this
command. See the discussion of IIR commands for details.

arr An optional vector or matrix used to return information about the last filter you created with this command.
See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that apply or create filters return 0
for success or 1 if a created filter has stability less than 1e-12. The other command forms have their return
values included in the description of the get% argument or return 0.

See also:
More about IIR filters and commands, Get filter information, FIRMake(), IIRBs(), IIRHp(), IIRLp(),
IIRNotch(), IIRReson()

IIRBs()

This function creates and applies IIR (Infinite Impulse Response) band stop filters to arrays of data. You can run
the filter forwards or backwards through the data.

Func IIRBs(data[]|0, lo, hi, order%{, type%{, ripple}});
Func IIRBs(data[]{, flags%{, save[]}});
Func IIRBs(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created band stop filter is used.
Otherwise, the filter defined by the remaining arguments is applied forwards. Replace data with 0 to create
a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards, 2 to treat data[] as a continuation of the
last filtering operation.

save[] Optional. If present it must have a size of at least 4*order%+2. It is used to save the filter state to allow
use with the continued data flag with multiple data streams.

lo The low corner frequency of the band pass filter. This is expressed as a fraction of the sample rate and is
limited to the range 0.000001 to 0.499998. For Chebyshev filters, this is the point at which the attenuation
reaches the ripple value, for other filters this sets the –3 dB point.

hi The high corner frequency of the band pass filter. This is expressed as a fraction of the sampling rate and
is limited to the range lo+0.000001 to 0.499999. For Chebyshev type 2 filters, this is the point at which the
attenuation reaches the ripple value, for all other filters this sets the –3 dB point.

order% The order of the lowpass filter used as the basis of the design, in the range 1 to 10. The order of the filter
implemented is order%*2. High orders and narrow pass bands may lose numerical accuracy in the filter
output.

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev type 2. The default value
is 0 for a Butterworth filter.

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or the desired minimum cut
in the stop band for Chebyshev type 2 filters (default 40 dB). The ripple value must be in the range 0.01 to
1000 dB.

get% The command variant with this argument returns information about the last filter you created with this
command. See the discussion of IIR commands for details.

arr An optional vector or matrix used to return information about the last filter you created with this command.
See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that apply or create filters return 0
for success or 1 if a created filter has stability less than 1e-12. The other command forms have their return
values included in the description of the get% argument or return 0.

Script language

19-491

See also:
More about IIR filters and commands, Get filter information, FIRMake(), IIRBp(), IIRHp(), IIRLp(),
IIRNotch(), IIRReson()

IIRComment$()

This function gets and sets the comment associated with an IIR filter in the filter bank.

Func IIRComment$(index%{, new$});

index% Index of the filter in the filter bank to use in the range -1 to 11.

new$ If present, sets the new comment.

Returns The previous comment for the filter at the index.

See also:
Filter banks, IIRApply(), IIRInfo(), IIRName$()

IIRCreate()

This creates an IIR filter description and adds it to the filter bank.

Func IIRCreate(index%, type%, model%, order%, fr1{, fr2{, extra}});

index% Index of the filter in the filter bank in the range -1 to 11.

type% Sets the filter type as: 0=Low pass, 1=High pass, 2=Band pass, 3=Band stop.

model% Sets the filter model: 0=Butterworth, 1=Bessel, 2=Chebyshev type 1, 3=Chebyshev type 2, 4=Resonator.

order% Sets the filter order in the range 1-10. Resonators always set an order of 2.

fr1 Sets the corner frequency for low pass, high pass filters, the centre frequency for resonators, and the low
corner frequency for band pass and band stop filters.

fr2 Sets the upper corner frequency for band pass/stop filters, otherwise ignored.

extra Sets the ripple for Chebyshev filters in the range 0.01 to 1000 and the Q factor for resonators in the range 1
to 10000.

Returns 0 if OK or a negative error code if the operation failed.

See also:
The filter bank, IIRApply(), IIRComment$(), IIRCreate(), IIRName$()

IIRHp()

This function creates and applies IIR (Infinite Impulse Response) high pass filters to arrays of data. You can run
the filter forwards or backwards through the data.

Func IIRHp(data[]|0, edge, order%{, type%{, ripple}});
Func IIRHp(data[]{, flags%{, save[]}});
Func IIRHp(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created high pass filter is used.
Otherwise, the filter defined by the remaining arguments is applied forwards. Replace data with 0 to create
a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards, 2 to treat data[] as a continuation of the
last filtering operation.

save[] Optional. If present it must have a size of at least 2*order%+2. It is used to save the filter state to allow
use with the continued data flag with multiple data streams.

Signal Version 6.06

19-492

edge The corner frequency of the high pass filter. This is expressed as a fraction of the sample rate and is
limited to the range 0.000001 to 0.499999. For Chebyshev filters, this is the point at which the attenuation
reaches the ripple value, for other filters this sets the –3 dB point.

order% The order of the filter in the range 1 to 10.

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev type 2. The default value
is 0 for a Butterworth filter.

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or the desired minimum cut
in the stop bands for Chebyshev type 2 filters (default 40 dB). The ripple value must be in the range 0.01 to
1000 dB.

get% The command variant with this argument returns information about the last filter you created with this
command. See the discussion of IIR commands for details.

arr An optional vector or matrix used to return information about the last filter you created with this command.
See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that apply or create filters return 0
for success or 1 if a created filter has stability less than 1e-12. The other command forms have their return
values included in the description of the get% argument or return 0.

See also:
More about IIR filters and commands, Get filter information, FIRMake(), IIRBp(), IIRBs(), IIRLp(),
IIRNotch(), IIRReson()

IIRInfo()

Retrieves information about an IIR filter in the bank.

Func IIRInfo(index%, &model%, &order%, &fr1{, &fr2{, &extra}});

index% Index of the filter in the filter bank in the range -1 to 11.

model% Returned as the filter model: 0=Butterworth, 1=Bessel, 2=Chebyshev type 1, 3=Chebyshev type 2,
4=Resonator.

order% Returned as the filter order in the range 1-10. Resonators always return 2.

fr1 Returned as the corner frequency for low and high pass filters, as the low corner for band pass and band
stop filters and as the centre frequency for resonators.

fr2 Returned as the upper corner frequency for band pass and band stop filters, otherwise set the same as
fr1.

extra Returned as the ripple for Chebyshev filters and as the Q factor for resonators.

Returns The type of the filter as 0=Low pass, 1=High pass, 2=Band pass, 3=Band stop.

See also:
The filter bank, IIRApply(), IIRComment$(), IIRCreate(), IIRName$()

IIRLp()

This function creates and applies IIR (Infinite Impulse Response) low pass filters to arrays of data. You can run the
filter forwards or backwards through the data.

Func IIRLp(data[]|0, edge, order%{, type%{, ripple}});
Func IIRLp(data[]{, flags%{, save[]}});
Func IIRLp(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created low pass filter is used.
Otherwise, the filter defined by the remaining arguments is applied forwards. Replace data with 0 to create
a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards, 2 to treat data[] as a continuation of the
last filtering operation.

Script language

19-493

save[] Optional. If present it must have a size of at least 2*order%+2. It is used to save the filter state to allow
use with the continued data flag with multiple data streams.

edge The corner frequency of the low pass filter. This is expressed as a fraction of the sample rate and is limited
to the range 0.000001 to 0.499999. For Chebyshev filters, this is the point at which the attenuation reaches
the ripple value, for other filters this sets the –3 dB point.

order% The order of the filter in the range 1 to 10.

type% Set 0 for Butterworth, 1 for Bessel and 2 for Chebyshev type 1, 3 for Chebyshev type 2. The default value
is 0 for a Butterworth filter.

ripple The desired pass band ripple in dB for Chebyshev type 1 filters (default 3 dB) or the desired minimum cut
in the stop bands for Chebyshev type 2 filters (default 40 dB). The ripple value must be in the range 0.01 to
1000 dB.

get% The command variant with this argument returns information about the last filter you created with this
command. See the discussion of IIR commands for details.

arr An optional vector or matrix used to return information about the last filter you created with this command.
See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that apply or create filters return 0
for success or 1 if a created filter has stability less than 1e-12. The other command forms have their return
values included in the description of the get% argument or return 0.

See also:
More about IIR filters and commands, Get filter information, FIRMake(), IIRBp(), IIRBs(), IIRHp(),
IIRNotch(), IIRReson()

IIRName$()

This function gets and/or sets the name of an IIR filter in the filter bank.

Func IIRName$(index%{, new$});

index% Index of the filter in the filter bank to use in the range -1 to 11.

new$ If present, sets the new name.

Returns The previous name of the filter at that index.

See also:
Filter banks, IIRApply(), IIRComment$(), IIRInfo()

IIRNotch()

This function creates and applies IIR (Infinite Impulse Response) notch filters to arrays of data. You can run the
filter forwards or backwards through the data. The gain of the notch filter is zero at the notch frequency and 1 at
low and high frequencies.

Func IIRNotch(data[]|0, fr, q);
Func IIRNotch(data[]{, flags%{, save[]}});
Func IIRNotch(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created notch filter is used. Otherwise,
the filter defined by the remaining arguments is applied forwards. Replace data with 0 to create a filter
without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards, 2 to treat data[] as a continuation of the
last filtering operation.

save[] Optional. If present it must have a size of at least 6. It is used to save the filter state to allow use with the
continued data flag with multiple data streams.

fr The frequency of the notch. This is expressed as a fraction of the sample rate and is limited to the range
0.000001 to 0.499999.

Signal Version 6.06

19-494

q The q factor for the notch in the range 1 to 10000; the higher the q, the narrower the notch. If Flo and Fhi
are the frequencies of the –3 dB points either side of the notch, q is fr/(Fhi-Flo). Try 100 as a starting
point.

get% The command variant with this argument returns information about the last filter you created with this
command. See the discussion of IIR commands for details.

arr An optional vector or matrix used to return information about the last filter you created with this command.
See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that apply or create filters return 0
for success or 1 if a created filter has stability less than 1e-12. The other command forms have their return
values included in the description of the get% argument or return 0.

See also:
More about IIR filters and commands, Get filter information, FIRMake(), IIRBp(), IIRBs(), IIRHp(),
IIRLp(), IIRReson()

IIRReson()

This function creates and applies IIR (Infinite Impulse Response) resonator filters to arrays of data. You can run the
filter forwards or backwards through the data. The gain of the filter is 1 at the resonator frequency and zero at low
and high frequencies.

Func IIRReson(data[]|0, fr, q);
Func IIRReson(data[]{, flags%{, save[]}});
Func IIRReson(get%{, arr[]{[]}});

data An array of data to filter. If there are only 1 or 2 arguments, the last created resonator filter is used.
Otherwise, the filter defined by the remaining arguments is applied forwards. Replace data with 0 to create
a filter without applying it.

flags% Optional, taken as 0 if omitted. Add 1 to run the filter backwards, 2 to treat data[] as a continuation of the
last filtering operation.

save[] Optional. If present it must have a size of at least 6. It is used to save the filter state to allow use with the
continued data flag with multiple data streams.

fr The centre frequency of the resonator. This is expressed as a fraction of the sample rate and is limited to
the range 0.000001 to 0.499999.

q The q factor for the resonator in the range 1 to 10000; the higher the q, the narrower the resonance. If Flo
and Fhi are the frequencies of the –3 dB points either side of the resonance, q is fr/(Fhi-Flo). Try 100
as a starting point.

get% The command variant with this argument returns information about the last filter you created with this
command. See the discussion of IIR commands for details.

arr An optional vector or matrix used to return information about the last filter you created with this command.
See the discussion of IIR commands for details.

Returns All forms of the command return negative numbers for errors. The forms that apply or create filters return 0
for success or 1 if a created filter has stability less than 1e-12. The other command forms have their return
values included in the description of the get% argument or return 0.

See also:
More about IIR filters and commands, Get filter information, FIRMake(), IIRBp(), IIRBs(), IIRHp(),
IIRLp(), IIRNotch()

Input()

This function reads a number from the user. It opens a window with a message, and displays the initial value of a
variable. You can limit the range of the result.

Func Input(text$, val {,low {, high{, pre%}}});

Script language

19-495

text$ A string holding a prompt for the user. If the string includes a vertical bar, the text before the vertical bar is
used as the window title.

val The initial value to be displayed for editing. If limits are given, and the initial value is outside the limits, it is
set to the nearer limit.

low An optional low limit for the result. If low>=high, the limits are ignored.

high An optional high limit for the result.

pre% If present this sets the number of significant figures to use to represent the number, in the range 6
(the default) to 15.

Returns The value typed in. The function always returns a value. If an out-of-range value is entered, the function
warns the user and a correct value must be given. When parsing the input, leading white space is ignored
and the number interpretation stops at the first non-numeric character or the end of the string.

See also:
DlgReal(), DlgInteger(), Input$()

Input$()

This function reads user input into a string variable. It opens a window with a message, and displays a string. You
can also limit the range of acceptable characters.

Func Input$(text$, edit${, maxSz%{, legal$}});

text$ A string holding a prompt for the user. If the string includes a vertical bar, the text before the vertical bar is
used as the window title.

edit$ The starting value for the text to edit.

maxSz% Optional, maximum size of the response string.

legal$ An string holding acceptable characters. edit$ is filtered before display. A hyphen indicates a range of
characters. To include a hyphen in the list, place it first or last in the string. Upper and lower case
characters are distinct. For upper and lower case characters and integer numbers use: "a-zA-Z0-9".

If this string is omitted, all printing characters are allowed, equivalent to " -~" (space to tilde). For simple
use, the sequence of printing characters is:

space !"#$%&'()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`
abcdefghijklmnopqrstuvwxyz{|}~

The order of extended or accented characters is system and country dependent.

Returns The result is the edited string. A blank string is a possible result.

See also:
DlgString(), Input()

InStr()

This function searches for a string within another string. This function is case sensitive.

Func InStr(text$, find${, index%});

text$ The string to be searched.

find$ The string to look for.

index% If present, the start character index for the search. The first character is index 1.

Returns The index of the first matched character, or 0 if the string is not found.

See also:

Signal Version 6.06

19-496

Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print$(), ReadStr(), Right$(),
Str$(), UCase$(), Val(), InStrRE()

InStrRE()

This function searched for a string within another string using regular expressions. This code is implemented
though the regular expression engine that is part of the C++ standard. There are a lot of flag values and error codes
that are defined by name in the standard, but not by value. Because of this, we have given them all symbolic names,
and the associated values are defined in the script file regex.sgs in the system include folder. Should you need to
refer to any of these symbolic names, #include <regex.sgs> at the start of your script. There are 3 command
variants:

Set the regular expression
Call this function first to set up for matching. The regular expression and syntax you set here persist until you
change it.

Func InStrRE(sytax%, re$);

syntx% Sets the syntax to use when parsing the regular expression (both the grammar and options). You should
only set one of the flags that set the regular expression grammar, or set none for ECMAScript. The call
with two arguments sets the default values to use if match% and syntx% are not supplied in the other
command variants.

resECMAS
cript

Use the script grammar as described for ECMAScript. This is the default and is set if you do not
specify a grammar.

resBasicUse the basic POSIX script grammar.

resExten
ded

Use the extended POSIX script grammar.

resAwk Use the awk grammar.

resGrep Use the POSIX grep grammar.

resEgrepUse the POSIX egrep grammar.

resIcaseIgnore case when matching.

resNosub
s

Do not return information about any sub-matches.

resOptim
ise

Spend more time optimising the search. Maybe useful when searching a long string or if you
will apply the same regular expression to multiple strings. This is not guaranteed to have any
effect.

resColla
te

Make character ranges [a-d] sensitive to the locale. This can be important if your search text is
not in English.

re$ The regular expression text to use for the search.

Returns 0 if the regular expression was compiled without error or a negative error code (see below).

Search text for a match
Func InStrRE(text${, index%{, match%{, ms%}}});

text$ The text to search. You can move the start point with index%.

index% If present, the start character index into text$ for the search. The first character is index 1. That is,
characters before this index are not searched (or even visible to the search engine).

match% A set of flags that can be used to control the matching process. Although these flags ought to have
stable values, we cannot guarantee that they will not be changed, so you must use the constants defined
in regex.sgs.

remDefau
lt

The default state. You should use this unless you really know you need something else.

remNotBo
l

Do not take the first character as matching beginning of line (^).

Script language

19-497

remNotEo
l

Do not take the end of the string as matching end of line ($).

remNotBo
w

Do not take the start of the string as matching beginning of word (\b).

remNotEo
w

Do not take the end of the string as matching the end of a word (\b).

remAny If more than 1 match is possible, then any match is acceptable.

remNotNu
ll

If text$ is empty, then no match is possible (prevents "x*" matching an empty string, for
example).

remConti
nuous

The search expression must match with the first character to succeed.

ms% An optional time out in milliseconds. If you omit this it defaults to 1000 milliseconds. If you are certain that
your regular expression is well-formed and will terminate quickly you can set this to 0, which removes the
time out and the search will run faster. Beware: it is possible to write expressions that will search forever. If
you set ms% to 0 and set such a search, you will not be able to stop it and Signal will hang.

Returns 0 if no match was found. If a match is found, the return value is 1 plus the number of capture groups in the
regular expression. The return code is negative for an error (see below). If you are timed out, the return
code is rerrComplexity.

Get information about the matches and captured groups
You can get the matched text as positions and sizes in the original string. Positions and sizes are very useful if you
want to replace the found text.

Func InStrRE(pos%[]{, sz%[]});

pos%[] This array is filled in with the start indices into text$ of the match, followed by the start indices of any
captured groups. If a capture group is part of an alternative and is not matched, for example "(dog)|(cat)",
the non-matching capture group has a start index of 0 and a size of 0. It is not an error for the array to be
too small or too large.

sz%[] Optional. If there is a match, this is filled in with the size of the complete match, followed by the sizes of
each captured group. It is not an error for the array to be too small or too large.

got$[] An array of strings to be filled in with the matched text, followed by the captured groups.

Returns The number of available matches.

All in one call
This call sets up a search, performs it and reports the start index of any match in a single call. You can follow it with
the previous variant to get more detailed match information.

Func InStrRE(text$, re${, index%{, match%{, syntax%{, ms%}}}});

text$ The text to search. You can move the start point with index%.

index% If present, the start character index into text$ for the search.

match% An optional set of flags that can be used to control the matching process as described above.

syntx% Sets the syntax to use when parsing the regular expression (both the grammar and options) as described
above. If omitted, the default syntax is set.

ms% An optional time out in milliseconds as described above.

Returns The position of the start of the match or 0 if no match or a negative error code. If you need the positions
and sizes of matches you can follow this with the InStrRE(pos%[]{, sz%[]}) call.

Error codes
All of the function variants return a positive code for normal operation and a negative code for an error. The
regex.sgs file holds definitions of the error code constants described below and also Func regexError$(err
%) that converts a negative error code into a text string. Currently defined error codes are:

Signal Version 6.06

19-498

rerrColl
ate

Use of an invalid collating element name.

rerrCtyp
e

Use of invalid character class name :lower: is an example of a valid name.

rerrEsca
pe

Use of an invalid escaped character, or a trailing escape.

rerrBack
ref

Invalid back reference, for example \3 when no such parenthesized group.

rerrBrac
k

Mismatched square brackets [and].

rerrPare
n

Mismatched parentheses (and).

rerrBrac
e

Mismatched braces { and }.

rerrBadb
race

The contents of the braces { and } was invalid.

rerrRang
e

There was an invalid character range.

rerrSpac
e

Ran out of memory when converting the regular expression to a state machine.

rerrBadr
epeat

One of the repeat specifiers (+*? or {...}) did not have a valid expression in front of it.

rerrComp
lexity

The regular expression is too complicated or the search was timed out.

rerrStac
k

Ran out of space when matching the expression.

rerrPars
e

Some other error when parsing the regular expression.

rerrSynt
ax

A syntax error when parsing that is not covered above.

Example
The following very simple example locates a numeric data with the format dd/mm/yy in text. We allow the day and
month to be specified by 1 or 2 decimal digits and the year by 4 decimal digits. We capture the day, month and year
as separate strings:

var text$:= "There is a date 1/12/14 in here";
var find$:= "(\\d{1,2})/(\\d{1,2})/(\\d{2,2})";
InStrRE(0, find$); 'Setup the search
var n% := InStrRE(text$); 'Search for a match
PrintLog("%d\n", n%); 'Print the matches
var pos%[4],sz%[4], i%;
InStrRE(pos%, sz%); 'get positions and sizes
for i% := 0 to n%-1 do
 PrintLog("%s\n", Mid$(text$, pos%[i%], sz%[i%]))
next;

Note that you have to double up the \ characters when they are supplied as part of a literal string (as they are used
as escapes). The output from this script is:

4
1/12/14
1
12
14

See also:

Script language

19-499

Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print$(), ReadStr(), Right$(),
Str$(), UCase$(), Val(), InStr()

Grammars

The C++ specified regular expression engine can cope with several different grammars. We suggest that you stick
with the ECMAScript grammar as this is pretty much a superset of the available features. However, you may be
more familiar with one of the other grammars and prefer to use it. Note that (...) is used for capture groups (so
you must use \(and \) to match parentheses) except for the basic and grep grammars. The available grammars are
(together with links to web-based descriptions that worked in 2014):

ECMAScri
pt

Use the script grammar as described for ECMAScript (JavaScript). This has the most supported grammar
features of all the supported grammars.

Basic Use the basic POSIX script grammar. This uses \(...\) to capture a group.

Extended Use the extended POSIX script grammar.

Awk Use the awk grammar.

Grep Use the POSIX grep grammar. This is the same as Basic, but accepts \n as well as | for alternation.

Egrep Use the POSIX egrep grammar. This is the same as Extended, but accepts \n as well as | for
alternation.

We are using the Microsoft supplied regular expression library and you can find their description of the differences
between supported grammars at http://msdn.microsoft.com/en-us/library/bb982727.aspx. This reference also has
the Microsoft description of regular expressions.

The grammar used by the editor Find dialog is a cut down version of the Basic syntax.

Regular expressions

Using regular expressions is a huge topic, well beyond the reach of the Signal online help. This section attempts to
get you started with the basics of the ECMAScript regular expression grammar. If you need more than this you can
look it up online; there are many sites that will tell you more than you ever wanted to know, for example this one. If
you are really serious about regular expressions, there are programs that will analyse and debug your regular
expressions for you (for example, RegexBuddy). The other supported regular expression grammars are basically
subsets of this one with some syntax differences.

What does a regular expression do?
Basically, it works through target text and either matches some part (or maybe all) of the text, or it does not. If it
matches the text, you have the option of saving sub-matches that were found along the way. You are most likely to
use regular expressions for verifying that text matches some particular specification, or when transforming input
text. Both the regular expression and the target text are processed from left to right, but there are circumstances
where the search will backtrack (which can cause problems). A lot of the skill in writing a good regular expression is
to avoid backtracking as much as possible.

Special characters
The characters ^ $ \ . * + ? () [] { and } are special. All other characters just stand for themselves, so a
regular expression of "rat" will match the same letters in "scratch".

Single character matches
Any character except one of the special characters listed above, matches itself. A dot matches any single character
except an end of line character.

Escapes
If you want to match any of these special characters you must put a \ in front of them. Beware: if the regular
expression is being provided by a script literal, you will need to double the \ to \\ to get it past the Script compiler.
For example if you want to match the parenthesised text in "cat (tiger) and" you would need to use a regular
expression of "\\(tiger\\)", which becomes \(tiger\) after being processed by the script compiler:

http://en.cppreference.com/w/cpp/regex/ecmascript
http://en.cppreference.com/w/cpp/regex/ecmascript
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_03
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap09.html#tag_09_04
http://pubs.opengroup.org/onlinepubs/9699919799/utilities/awk.html#tag_20_06_13_04
http://msdn.microsoft.com/en-us/library/bb982727.aspx#grammarsummary
http://www.rexegg.com/

Signal Version 6.06

19-500

You can also use escapes for the file format escape characters: form feed \f, new line \n, carriage return \r, tab \t
and vertical tab \v. Don't forget to double the \ in literal strings: tab is "\\t", for example. There is also an escape
\0 ("\\0" in literal strings) for the character with code 0, which you should not need in Signal.

Ranges
You can state that instead of matching a single, defined character, you can match a whole range of characters. This
is done using square braces holding the list of matching characters. You can also provide a list of non-matching
characters:

[0-9a-
zABC-]

Matches the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, the lower case letters z through z, the upper case letters A, B
and C and a hyphen. A minus sign (-) at the start or end of the character list stands for itself. Otherwise, it
stands for an inclusive character range. The range a-c is the characters a, b, c. The range c-a is an error
because c comes after a in the collation order.

[^-
1357A-
Z]

Matches any character that is not in the list. So this will not match the minus sign, the odd digits, or any
upper-case letter (unless ignore case is set, when it will not match a-z and A-Z.

You could match both "scare" and "score" with "sc[ao]re". You do not need to escape the special characters
except] and \ inside the range brackets as there is no possibility of using them for other purposes.

Character classes
You can refer to classes of characters by class names. These mostly use up more space than typing the range
equivalent, but are useful in the Unicode context as they cover more than the ASCII characters. A class is specified
by [: followed by a name followed by :]. You can use these constructs within a range. The names recognised are:

alnum Lower case and upper case letters and decimal digits. Underline is considered a letter.

alpha Lower case and upper case letters

blank Space or tab

cntrl The file format escape characters

digits The decimal digits

d Same as digits

graph Lower case and upper case letters, decimal digits and punctuation

lower Lower case letters

print Lower case and upper case letters, decimal digits, punctuation and space or tab

punct Punctuation

space Space characters (not tab)

s Same as space

upper Upper case letters

w Same as alnum

xdigit Hexadecimal digits [0-9a-fA-f]

To use these classes, include them within a range or a not-range. For example to include hexadecimal characters and
space and the letter z: [[:xdigit:][:space:]z]. To exclude all digits you could use: [^[:d:]]. If you forget
the range brackets [:d:] will match the letter d and a colon.

dsw character escapes
These provide a useful shorthand for ranges (but note that you will have to double the \ in a string literal). You can
use these both in a range, where they stand for the equivalent character class, and outside a range, where they are
equivalent to a range of the character class.

Escap
e

Same
as

Use

\d [[:d:
]]

Matches decimal digit.

\D [^[:d
]]

Not decimal digit.

Script language

19-501

\s [[:s]
]

Matches space.

\S [^[:s
]]

Not space.

\w [[:w]
]

Lower and upper case letters and decimal digits.

\W [^[:w
]]

Not lower and upper case letters and decimal digits.

Capturing and non-capturing groups and back references

(stuff)This groups the stuff within the parentheses and saves it as capture group n, where n is the count of
the left parentheses from the start of the search. The first group is numbered 1. The group then behaves
as a single element. You can then use \1, \2 and so on ("\\1" in a literal string) to refer back to a
previously matched group. So the literal string "(cat)\\1" will match "catcat". Note that the Basic and
Grep grammars treat (and) as normal characters and you must escape them as \(and \) for use as
syntax elements.

(?
:stuff)

This groups the stuff within the parentheses for lexical purposes, but does not capture it

It is possible to have captured text within a repeated group. In this case, the captured text is the last capture.

Alternation
The vertical bar separates alternatives. Thus "dog|cat" will match either domestic pet. You can use groups to limit
the scope of the alternation. "gr(a|e)y" will match "grey" or "gray" and capture the character, "gr(?:a|e)y"
will match both and not capture the character.

Quantifiers (repeats) and greedy/non-greedy matching
A quantifier refers to

{n} Matches the previous entity is repeated exactly n times (n is composed of decimal digits). For example
"x{10}" matches "xxxxxxxxxx".

{min,ma
x}

Matches the previous entry repeated between min and max times (min and max are composed of decimal
digits). min can be 0, max must be the same as or more than min.

{min,} Matches the previous entry repeated at least min times.

* Matches the previous entry 0 or more times. Equivalent to {0,}.

+ Matches the previous entry 1 or more times. Equivalent to {1,}.

? Matches the previous entry 0 or 1 times. Equivalent to {0,1}.

You can follow any qualifier with a ? to convert it from a greedy match to a non-greedy match. Normally, a match
will consume as much as possible of the text while still matching the data. For example, the expression ".*end" will
match all of "it depends on what you spend". However, ".*?end" will match "it depend". You should
think very carefully about using unlimited greedy matches as these cause backtracking if a subsequent part of the
match fails. Backtracking is where a greedy match has taken as much text as it can such that a subsequent portion
of the regular expression fails. The search then tries to match a bit less in an attempt to match the next part of the
expression and then a bit less again. In a bad case, this can cause the search to take so long that it never ends, or it
can use up so much memory that the system crashes. By default, the regular expression search will time out after 1
second.

Anchors and boundaries
These items are a little different from the matches we have seen so far as they do not consume characters in the
target text, but they state a condition that must be true for a match to continue. You can think of these as asserting
that a condition must be true.

^ Assert that the current position is the start of the text or start of a line. "^T" will only match text/lines that
begin with a capital T. You can use remNotBol to state that the start of the text is not at the start of a line.

$ Assert that the current position is the end of the text or a line. "end.$" will match the final "end.", not
the one in "spend." in "Do not spend. That is the end." You can use remNotEol to state that

Signal Version 6.06

19-502

the end of the text is not the end of a line.

\b Asserts that the current position is a word boundary. That is, the previous character is not part of the
alnum class and the current one is part of the alnum class or vice versa. The start of the text is also
considered a word boundary unless you use the remNotBow flag when it is not a word boundary. The
end of the text is also considered a word boundary unless you use the remNotEow flag.

\B Asserts that the current position is not a word boundary, that is both the previous and current characters
are part of the alnum class, or they are both not part of the class.

(?
=expr)

Assert that the following text matches the regular expression expr but does not move the search position
past expr.

(?
!expr)

Assert that the following text does not match expr.

Interact()

This function provides a quick and easy way to interact with a user. Cursors can always be dragged as we assume
that they are one of the main ways of interacting with the data. You can restrict the user to a single view and limit
the menu commands that can be used.

Func Interact(msg$, allow%{, help{, lb1${, lb2${, lb3$...}}}});

msg$ The prompt to display in the tool bar during the operation. If there is not enough space to display the
message and buttons, the message is truncated.

allow% A code that specifies the actions that the user can and cannot take while interacting with Signal. The code
is the sum of possible activities:

1 0x0001 User may swap to other applications

2 0x0002 User may change the current window

4 0x0004 User may move and resize windows

8 0x0008 User may use File menu

16 0x0010 User may use Edit menu

32 0x0020 User may use View menu

64 0x0040 User may use Analysis menu

128 0x0080 User may use Cursor menu and add cursors

256 0x0100 User may use Window menu

512 0x0200 User may use Sample menu

1024 0x0400 User may not double click y axis

2048 0x0800 User may not double click the x axis or scroll it

4096 0x1000 User may not change channel of horizontal cursors

8192 0x2000 User may not change to another frame

A value of 0 would restrict the user to inspecting data and positioning cursors in a single, unmoveable
window, but being able to switch frames. A value of 8192 is the same but without changing frames.

help This can be either a number or a string. If it is a number, it is the number of a help item (if help is
supported). If it is a string, it is a help context string. This is used to set the help information that is
presented when the user requests help in the manner supported on the host machine. Set 0 to accept the
default help.

lb1$ These label strings create buttons, from right to left, in the tool bar. If no labels are given, one label is
displayed with the text "OK". The maximum number of buttons is 17. Buttons can be linked to the
keyboard using & and by adding a vertical bar followed by a key code to the end of the label. You can also
set a tooltip. The format is "Label|code|tip". See the documentation for label$ in the ToolbarSet()
command for details.

Script language

19-503

Returns The number of the button that was pressed. Buttons are numbered in order, so lb1$ is button 1, lb2$ is
button 2 and so on.

With allow% set to 0, all the user could do would be to press a button on the tool bar. The tool bar would be
displayed (if it was not present) when Interact() was called. When the user presses a button to exit, the tool bar
is returned to the state it was in before Interact was used.

See also:
Toolbar()

L

LastTime()

This function finds the first item on a channel before a particular x axis position.

Func LastTime(chan%, &pos{, &val|code%|code%[]{, &rval|rval[]}});

chan% The channel number (1 to n) to use for the search.

pos The x axis value to search before. Items at the start position are ignored. To start a backward search that
guarantees to iterate through all items, start at Maxtime(chan%)+1.

pos is updated to contain the x axis position of the previous item. It is left unchanged if no more items are
found or there is an error.

val This optional parameter returns the waveform value for waveform channels.

code% This optional parameter is only used if the channel is a marker type, it can be an array that is filled in with
the marker code values or a single integer variable that is updated with the first code value. Each marker
has four code values, the data returned in code%[] is the lesser of 4 and the array size.

rval This optional parameter is only used if the channel is real marker type, it is either an array that is filled in
with the real marker float values or a single real variable that is updated with the first real marker float
value. Real markers can have one or more float values, the data returned in rval[] is the lesser of the data
available and the array size.

Returns The function returns 1 if a data item is found, 0 if there are no more items to be found or a negative error
code.

See also:
Maxtime(), Mintime(), NextTime()

LCase$()

This function converts a string into lower case.

Func LCase$(text$);

text$ The string to convert.

Returns A lower cased version of the original string.

See also:
Asc(), Chr$(), DelStr$(), InStr(), Left$(), Len(), Mid$(), Print$(), ReadStr(),
Right$(), Str$(), UCase$(), Val()

Left$()

This function returns the first n characters of a string.

Func Left$(text$, n);

text$ A string of text.

n The number of characters to extract.

Signal Version 6.06

19-504

Returns The first n characters, or all the string if it is less than n characters long.

See also:
Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Len(), Mid$(), Print$(), ReadStr(),
Right$(), Str$(), UCase$(), Val()

Len()

This function returns the length of a string or the size of a one dimensional array.

Func Len(text$);
Func Len(const arr[]);

text$ The text string.

arr[] A one dimensional array of any kind. It is an error to pass in a two dimensional array.

Returns The length of the string or the array, as an integer.

You can find out the size of each dimension of a two dimensional array as follows:

proc something(arr[][]) 'function passed a 2-d array
var n%; n% := Len(arr[][0]); 'get size of first dimension
var m%; m% := Len(arr[0][]); 'get size of second dimension

The largest multi-dimensional array we support is 5-d, so here is the code for finding the sizes of all the dimensions
of a 5-d array.

proc arrayMax(a[][][][][])
var d1% := Len(a[][0][0][0][0]);
var d2% := Len(a[0][][0][0][0]);
var d3% := Len(a[0][0][][0][0]);
var d4% := Len(a[0][0][0][][0]);
var d5% := Len(a[0][0][0][0][]);

From version 5.09 onwards you can pass an array with a 0 length to Len(), and the result is 0 rather than a fatal
script error.

Unicode
If you are running the Unicode version of Signal, you may wish to know the length of a string if it were written as
UTF-8 (for example for use by BWriteSize()). The following function will return the length of the UTF-8
equivalent in bytes.

func LenUTF8%(str$)
var i% := 1, bytes%, c%; ' bytes% initialised to 0
var n% := Len(str$);
while i% <= n% do
 c% := Asc(Mid$(str$, i%)); 'get code of next char or surrogate pair
 docase
 case c% < 0x80 then bytes% += 1; 'ASCII code
 case c% < 0x800 then bytes% += 2; 'needs 2 bytes
 case c% < 0x10000 then bytes% += 3; 'needs 3 bytes
 else bytes% += 4; i% +=1; 'Surrogate pair
 endcase;
 i% += 1;
wend;
return bytes%;
end;

See also:
Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Mid$(), Print$(), Right$(),
Str$(), UCase$(), Val()

Script language

19-505

LinPred()

Linear prediction can be used to predict future (or past) data values based on a sequence of data values on the
assumption that the data is statistically stationary. It can also be used to estimate power spectra using the
Maximum Entropy or All Poles method. The command generates a set of coefficients that when applied to the
previous m points, generate the next predicted point. Some of the explanation for this command relies on technical
knowledge; see the references for more information. The command has the following variants:

Func LinPred(const data[], mMax%{, limit{, out[]{, dir%{, stab%}}}});
Func LinPred(0, out[]{, data[]}); 'Predict forward
Func LinPred(1, out[]{, data[]}); 'Predict backwards
Func LinPred(2, stab%); 'Check stability
Func LinPred(3, coef[]); 'Get the coefficients
Func LinPred(4, refl[]); 'Get reflection coefficients
Func LinPred(5, power[], frLo, frHi); 'Get estimated power spectrum
Func LinPred(6, poles[][]{, fr[]}); 'get poles and frequencies

data An array holding the data to be used to form the linear prediction coefficients or to be used to initialise a
prediction based on existing coefficients.

mMax% The maximum order of the prediction, which is the number of previous points to use to predict each future
point. The actual number may be less than this, depending on the value of the limit argument. You will
generally want to use the smallest value of m that you can; values in the range 5-50 are common, but this
does depend on the data. The value of m must be less than the number of data points and is generally
much less. We have set an upper bound of 1024 on mMax% (this is higher than you are likely to need).

limit The algorithm to calculate the poles is an iterative procedure. The command holds an array of residual
values that is initialised to the raw data. Each iteration subtracts data from the residual based on a
normalised autocorrelation of the residual (in the range -1 to 1) at increasing lags, aiming to reduce the
residual array to a list of zeros. We track a number that models the significance of the remaining data. This

number is 1.0 at the start, and is multiplied by (1-ac2) at each iteration, where ac is the autocorrelation, so
the value decreases at each iteration unless ac is 0. If this value becomes less than limit, the iteration
will stop. So set limit to 0 for no early stopping, setting a small value above 1.0e-31 may stop it early.
The actual value of m used is returned by the first command variant.

out An array of output values predicted by the command. When predicting backwards, the data values are
written into the out array so that the first data item in the array is the last predicted point (the oldest).
When predicting forwards, the first item in the out array is the first predicted point.

dir% Optional argument to the setup command that sets the prediction direction. Set 0 or omit for a forward
prediction, 1 for reverse.

stab% The linear prediction coefficients that are generated form a characteristic polynomial, and the roots of this
polynomial are the positions of the poles in the z-plane. For the resulting filter to be stable (have an output
that does not increase exponentially), the poles must lie inside (corresponding to decaying sinusoids) or
on (corresponding to constant amplitude sinusoids) the unit circle. This algorithm should not produce
poles outside the unit circle unless there are numerical accuracy problems (usually when mMax% is large).
You can use this argument to check the stability of the result and to adjust the pole positions and
recompute the coefficients by setting the values:

0 Do nothing to the poles.

1 If a pole lies outside the unit circle, reflect it across the unit circle so that a growing sinusoid becomes
a decaying sinusoid.

2 If a pole lies outside the unit circle, move it onto the unit circle, corresponding to a constant sinusoid.

3 Move all poles onto the unit circle. This produces an output that neither grows nor decays with time.
However, this is very prone to numerical stability problems and is likely to be interesting only when
mMax% is small.

coef An array to be filled in with coefficients. The array can be any size, but only the points corresponding with
coefficients will be set.

refl An array to be filled with reflection coefficients. These values represent the proportion of the residual that
was removed at each iteration. These are the values that are modified by the Levinson recursion to form
the coefficients.

Signal Version 6.06

19-506

power An array to be filled in with estimated power spectrum components.

frLo A value in the range -0.5 to 0.5, being the fraction of the sampling frequency that the first bin of power will
hold the estimated power spectrum for.

frHi A value in the range -0.5 to 0.5, being the fraction of the sampling frequency that the last bin of power will
hold the estimated power spectrum for.

poles A matrix with the second dimension of size at least 2. poles[n][0] is returned holding the real

component of the nth pole, and poles[n][1] holds the imaginary component.

fr An array to be filled in with the frequencies that correspond to the pole positions, in the range -0.5 to 0.5
(fraction of the sampling rate).

Setup
Func LinPred(data[], mMax%{, limit{, out[]{, dir%{, stab%}}}});

This command must be used before any other as it calculates the initial set of coefficients. The command returns
the number of coefficients that have been generated (this will be the same as mMax% if limit is 0). The command
can be used to generate predicted data, or to set up the system for further LinPred() commands. The following
example takes 1000 data points from near the start of a waveform channel, predicts the next 100 points and writes
them to a memory channel.

const chan% := 1; ' a waveform channel
var data[1000], out[100];
var f%;
f% := FileOpen("*.cfs", 0); ' Open a file containing test data
arrconst(data[], view(f%, chan%).[0:1000]); ' copy data into array
var m% := LinPred(data, 20, 0, out, 0, 0); ' predict forwards

The predicted data will not be the same as the actual data that follows the first 1000 points unless the first 1100
points are composed of the sum of constant amplitude sinusoids. The command forms a mathematical model of the
data held in the data[] array based on the assumption that the spectral components are not changing with time
(the signal is stationary) and that the data is modelled by a set of resonances. Unless you set stab% to 3, the result
will usually decay with time.

Predict forwards and backwards
Func LinPred(0, out[]{, data[]}); 'Predict forward
Func LinPred(1, out[]{, data[]}); 'Predict backwards

These two command versions fill the out[] array with data predicted by the coefficients established by the Setup
version of the command. The setup command dir% argument will have set up the command to generate output that
joins up with the original data array, or with any output if the setup command generated output. You can choose to
continue generating output in the same direction, in which case you must NOT supply the data[] array, or you
can supply a data[] array of at least the size of the number of coefficients to reset the prediction and you can then
run forwards or backwards. By supplying a data[] array, you are not recalculating the coefficients, these remain
unchanged; you are reloading the data points that are used with the coefficients to predict values. If you have m
coefficients, when going forwards, the last m data points of data[] are used; when going backwards, the first m
data points. For example, if we wanted to extend the previous example to predict the 100 data points that might have
led up to the original 1000 points we could add the lines:

var back[100];
LinPred(1, back, data); ' predict back from start

If we had just used LinPred(1, back); this would have caused an error as the previous use of the command
was to go forwards. These command variants return 0.

Check stability
Func LinPred(2, stab%); 'Check stability

This command variant is used to check that the poles of the characteristic polynomial lie within the unit circle. The
command returns the distance of the pole furthest from the origin of the z-plane. This should be less than or equal
to 1.0 for a stable set of coefficients. Stable, in this context, means that the predicted data does not grow
exponentially. The algorithms we use should generate stable solutions, but poles can be generated outside the unit
circle due to loss of numerical precision in the calculations. The stab% argument can be used to adjust the pole

Script language

19-507

positions, as described above. If you are using this command to replace a short stretch of damaged data (like fixing
a scratch in a record), you may want to predict both forwards and backwards across the damaged data, then mix the
two predictions together. If the data used to generate the coefficients is not stationary, it will decay across the gap,
in which case using stab% set to 3 will generate a result that maintains its amplitude, which may be what you
require.

Get coefficients
Func LinPred(3, coef[]); 'Get the coefficients

This function returns the number of coefficients and returns them in the coef[] array. Note that the first
coefficient is the one that is multiplied with the most recent data point (when going forward), that is the coefficients
run backwards compared to the data. Given an array x[] of data and coefficient coef[], both of length m% points,
the next forward and backward predictions are given by:

var i%, fwd:=0, rev:=0;
for i% := 0 to m%-1 do
 fwd += x[m%-i%-1] * coef[i%];
 rev += x[i%] * coef[i%];
next;

It is usually much simpler to use the forward and backward prediction versions of the command to do this. If you
cannot do this, for example when you need to process several waveforms simultaneously, save the coefficients for
each waveform (and reverse the order if predicting forwards), then you can use ArrDot() to predict each new
point.

Get reflection coefficients
Func LinPred(4, refl[]); 'Get reflection coefficients

This function returns the number of reflection values that are available (the same value as the number of
coefficients) and sets refl to the results of the auto-correlations done at each lag as the original data was
analysed. The results are normalised such that the results lie in the range -1 to 1. The first value is the
autocorrelation at a lag of 1 point, the next is for a lag of 2 points, and so on. The term reflection comes from the use
of this technique in seismology.

Power spectrum
Func LinPred(5, power[], frLo, frHi); 'Get estimated power spectrum

Typical Power spectrum

The variant generates an estimate of the power spectrum
based on the representation of the original as the sum of a set
of resonances. You should leave the stab% argument at 0
when using the command for this purpose. This method is
particularly effective if you know that the data contains a
small number of constant frequency sinusoids and can allow
you to separate peaks that would merge into a single peak
using the FFT. However, if your spectrum is not
representable as the sum of a set of resonances, the result
may be misleading unless mMax% is large enough so that the
spectrum can be approximated. Unlike the FFT, where the
resolution of the result depends on the number of points in
the transform, here the resolution of a particular peak is
determined by the number of bins and the frequency range
that you set. Make sure you set the bin width small enough
so you do not miss a very narrow resonance. The frequencies are defined in terms of a fraction of the sampling
rates from -0.5 to 0.5 (but note that -0.5 is the same frequency as 0.5); you will find that the power at frequency f is
equal to the power at frequency -f.

The result is scaled so that the integral of the power from -0.5 up to (but not including) 0.5 is equal to the mean
square of the values in the original data[] array used in the setup call. For example, we could extend the previous
examples to display the power with:

const bins% := 10001; ' Bins in spectrum
var bsz := BinSize(chan%); ' source data rate
var power[bins%]; ' Array to hold the power
LinPred(5, power, -0.5, 0.5); ' NB: -0.5 is same as 0.5

Signal Version 6.06

19-508

var rv% := SetMemory(1, bins%, 1/(bsz*(bins%-1)), -0.5/bsz, 0, 0, 0, "Power", "Hz");
ArrConst(view(rv%, 1).[], power);Optimise(-1);WindowVisible(1); ' display the result
var MeanSq := ArrDot(data, data)/Len(data); ' Mean square of data
var MemSum := ArrSum(power[:bins%-1])/(bins%-1); 'Integral of power
Message("Mean sumSq = %g, SumPower = %g", MeanSq, MemSum);

The example image shows the power spectrum obtained by data with 60 Hz mains interference, leading to peaks at
odd multiples of 60. If you try this with data constructed from pure sinusoids you will find that MemSum < MeanSq.
The reason is that the purer the sinusoid, the higher and narrower the peak in the power spectrum; simple schemes
for adding up equal width bins will not give an accurate result in this case. In the limiting case where the roots of
the characteristic polynomial lie on the unit circle, the resonance has infinite amplitude, but zero width.

You might be puzzled about how this method can get much better frequency resolution than the FFT. The basic
reason is that this method makes the assumption that the data continues in a sensible way outside the range of
input points so as to preserve the auto-correlation between the data values. The FFT assumes that the data repeats
exactly outside the initial range of data, leading to a limit on the frequency resolution.

Get Poles and frequencies
Func LinPred(6, poles[][]{, fr[]}); 'get poles and frequencies

In the z-plane, the coefficients are represented by a set of poles. You can use this variant to read back the positions
of the poles as complex numbers. The poles are sorted in order by their real components, so the pole pairs for each
imaginary root should be adjacent. You can also read back the frequencies (as a fraction of the sample rate in the
range -0.5 to 0.5) at which the poles are located.

Predicting data across a gap
If you are predicting data across a gap (a very common use of this function), you will find that your choice of mMax
% is critical. If your data is periodic, for example a blood pressure signal and there are around p points in the period,
then you will find that setting mMax% to p (the exact value is not critical) will usually work. If your data is the sum of
a small number of sinusoids, you will find that a value of around twice the number of sinusoids may work. In other
cases, if you are predicting across a gap of g points, then setting mMax% to g (again the exact value is not critical)
may work.

It is a good idea to predict forwards and backwards across the gap, then merge the two predictions using some sort
of weighting function that starts with all forwards prediction at the start and all backwards prediction at the end.

Remember that the mathematics makes the assumption that the data used for the prediction is stationary; that is
that the statistical properties of the data (power spectra) remain constant with time. In many cases this will not be
true; this leads to predicted data that decays away to the mean value.

The stability parameter should usually be 0. If you find that your predicted values are growing exponentially, then
you can try setting the stab% argument to 1 or 2, which should stop this. However, the more normal problem is for
the data to decay away. Setting stab% to 3 is a rather drastic act as it moves all the sinusoidal resonances that are
used to model the power spectrum of the data onto the unit circle (converts them all into resonances with infinite Q
and zero width). This may be useful if you have a small value of mMax% and you know that the data consists of
constant sinusoids.

References
Claerbout, Jon F. (1976). "Chapter 7 - Waveform Applications of Least-Squares." Fundamentals of Geophysical
Data Processing. Palo Alto: Blackwell Scientific Publications. This has an explanation of the John P Burg algorithm
that we implement.

Levinson recursion is a method for inverting a Toeplitz matrix in O(n2) time, taking advantage of the symmetry of

the matrix, and improving on the O(n3) time of a general inversion (n is the order of the prediction). Symmetrical
Toeplitz matrices come about as a natural consequence of the linear prediction equations. However, implementing
the obvious equations often results in unsatisfactory solutions, and the Burg algorithm is a better approach that
incorporates the iterative idea of the Levinson recursion, but calculates the autocorrelation in a different way that
leads to stable solutions.

There is a good overview of linear prediction and the Maximum Entropy (All Poles) method of power spectrum
estimation in Numerical Recipes, The Art of Scientific Computing, by Press, Flannery, Teukolsky and Vettering.

http://sepwww.stanford.edu/oldreports/fgdp/
http://sepwww.stanford.edu/oldreports/fgdp/
http://en.wikipedia.org/wiki/Levinson_recursion

Script language

19-509

Ln()

This function calculates the natural logarithm (inverse of Exp()) of an expression, or replaces the elements of an
array with their natural logarithms.

Func Ln(x|x[]{[]...});

x A real number or a real array. Zero or negative numbers cause the script to halt with an error unless the
argument is an array, when an error code is returned.

Returns When used with an array, it returns 0 if all was well, or a negative error code. When used with an
expression, it returns the natural logarithm of the argument.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Log(), Max(), Min(), Pow(), Rand(), Round(),
Sin(), Sqrt(), Tan(), Trunc()

LnGamma()

This function returns the natural logarithm of the gamma function Gamma(x) for real values of x > 0.0. Gamma(x)
has the useful property that Gamma(n+1) is the same as n! (n factorial) for integral values of n. However, it
increases very rapidly with x, reaching floating-point infinity when x is 172.62. To avoid this problem, the script
returns the natural logarithm of the gamma function. The definition of the gamma function is:

Gamma(a) is the integral between 0 and infinity of exp(-t)*pow(t,a-1) with respect to t.

Func LnGamma(a);

a A positive value. The script stops with a fatal error if this is negative.

Returns The natural logarithm of the Gamma function of a.

See also:
GammaP()

Log()

Takes the logarithm to the base 10 of the argument.

Func Log(x|x[]{[]...});

x A real number or a real array. Zero or negative numbers cause the script to halt with an error unless the
argument is an array, when an error code is returned.

Returns With an array, this returns 0 if all was well or a negative error code. With an expression, this returns the
logarithm of the number to the base 10.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Max(), Min(), Pow(), Rand(), Round(), Sin(),
Sqrt(), Tan(), Trunc()

LogHandle()

This function returns the view handle of the log window. The log window, also called the log view, is a text view
created by the application and is the destination for PrintLog(). You need this if you are to size or hide the log
window, or make it the current or front window, or use the editing commands to clear it.

Func LogHandle();

Returns The view handle of the log window.

See also:
EditClear(), EditSelectAll(), View(), FrontView(), Window(), WindowGetPos(),
WindowSize(), WindowVisible()

Signal Version 6.06

19-510

M

MarkCode()

This returns the data stored in a marker at a particular x axis position.

Func MarkCode(chan%, pos{, code%|code%[]{, &rval|rval[]}});

chan% The marker channel to read, this can be a simple marker or real marker channel.

pos The marker time. This must match to within ± half the time interval returned by BinSize() for the channel.

code% This optional parameter can be an array that is filled in with the marker code values or a single integer
variable that is updated with the first code value. Each marker has four code values, the number of values
returned in code%[] is the lesser of 4 and the array size.

rval This optional parameter is only used if the channel is real marker type, it is either an array that is filled in
with the real marker float values or a single real variable that is updated with the first real marker float
value. Real markers can have one or more float values, the number of values returned in rval[] is the
lesser of the count of values available and the array size.

Returns The first code if a marker was found, or -1 if no marker exists at time pos.

See also:
BinSize(), MarkEdit(), MarkTime()

MarkEdit()

This changes the data stored in a marker at a particular x axis position.

Func MarkEdit(chan%, pos, code%|code%[]{, &rval|rval[]});

chan% The marker channel to edit, this can be a simple marker or real marker channel.

pos The marker time. This must match to within ± half the time interval returned by BinSize() for the channel.

code% This is either a single value from 0 to 255 to replace the first code for the marker or an array of up to 4
values (from 0 to 255) to replace codes for the marker. If the array size is smaller than 4 the other codes are
left untouched.

rval This optional parameter is only used for real marker channels, it is either a single real value that will replace
first float value of the real marker or an array of reals to replace float values for the marker. If the array size
is smaller than the number of floats in the marker the other values are left untouched.

Returns 0 if a marker was edited, or -1 if no marker exists at time pos.

See also:
BinSize(), MarkCode(), MarkTime()

MarkInfo()

This function returns the number of real values stored with each item of a real marker channel, it was added in
version 6.03 of Signal to match Spike2 and as a tidier way of getting this information than by using ChanIndex().

Func MarkInfo(chan%);

chan% The marker channel to test, this should be a real marker channel.

Returns The number of real values per item for the real marker channel, or 0 if the channel was not real marker type.

See also:
ChanIndex(), MemChan()

Script language

19-511

MarkShow()

This sets which of the four marker codes to display for one or more marker channels. Setting the default draw mode
with DrawMode(chan%,0) resets the displayed code to 0. This is equivalent to the Use marker code field in the
channel Draw Mode dialog.

Func MarkShow(cSpc{, code%});

cSpc A channel specifier or -1 for all, -2 for visible or -3 for selected channels.

code% This optional argument sets which of the 4 marker codes to display in the range 0 to 3, omitted or -1 for no
change.

Returns The original marker code display selection (0-3).

See also:
DrawMode(), LastTime(), MarkEdit(), MemGetItem(), NextTime()

MarkTime()

This reads and changes the time for a marker.

Func MarkTime(chan%, pos{, new});

chan% The marker channel holding data to move, this can be a simple marker or real marker channel.

pos The marker time. This must match to within ± half the time interval returned by BinSize() for the marker
channel.

new If supplied, the new time (x axis value) for the marker. Note that marker times must be in order, so this time
will be truncated to prevent the marker time reaching or going past adjacent markers.

Returns The exact marker time before any changes or 0 if no marker exists at time pos.

See also:
BinSize(), MarkCode(), MarkEdit()

MATDet()

This calculates the determinant of a matrix (a two dimensional array).

Func MATDet(const mat[][]);

mat A two dimensional array with the same number of rows and columns.

Returns The determinant of mat or 0.0 if the matrix is singular.

See also:
ArrAdd(), MATInv(), MATMul(), MATTrans()

MATInv()

This inverts a matrix (a two dimensional array) and optionally returns the determinant.

Func MATInv(inv[][]{, const src[][]{, &det}});

inv A two dimensional array to hold the result. If src is omitted, inv is replaced by its own inverse. The
number of rows and columns of inv must be the same.

src If present, the matrix to invert. The numbers of rows and columns of this two dimensional array must be at
least as large as inv.

det If present, returned holding the determinant of the inverted matrix.

Returns 0 if all was OK, -1 if the matrix was singular or very close to singular.

Signal Version 6.06

19-512

See also:
ArrAdd(), MATMul()

MatLab Script Support

If you have a copy of MATLAB installed on your computer, the MatLabXxx() family of script commands let you
start a MATLAB process for the purpose of using MATLAB as a computational engine. This process can have a
visible window allowing some user interaction, but it is not a full MATLAB workspace and will be separate from
any normally opened MATLAB workspaces that you use. You can transfer script variables and arrays (but not
arrays of strings) to the MATLAB workspace, command MATLAB to process your data, then move results back
into the script language. You must select the MATLAB script support option when installing Signal, otherwise
these commands will not be installed. These functions were added to Signal in version 5.02.

See also:
MatLabOpen(), MatLabClose(), MatLabPut(), MatLabGet(), MatLabEval(), MatLabShow()

MatLabClose()

This function closes a connection to MATLAB that was created using MatLabOpen().

Proc MatLabClose();

See also:
MatLabOpen(), MatLabPut(), MatLabGet(), MatLabEval(), MatLabShow()

MatLabEval()

This function requests the MATLAB command window to execute an arbitrary command and gets its result as a
string. Typical use of this would be to set up data with MatLabPut(), process it with MatLabEval(), then retrieve
the result with MatLabGet().

Func MatLabEval(cmd$ {,&resp$});

cmd$ This is the command string that is sent to MATLAB.

resp$ Optional. If present, it is set to the response from MATLAB. For example, it is set to an error message if
the command fails. The maximum length of the response is 511 characters.

Returns 0 if cmd$ was successfully passed to MATLAB and -1 if it was not.

See also:
MatLabOpen(), MatLabClose(), MatLabGet(), MatLabPut(), MatLabShow()

MatLabGet()

This function copies a variable from the MATLAB workspace into a script variable.

Func MatLabGet(name$, &v%|&v|&v$|v%[]{[]...]|v[]{[]...});

name$ the name of the MATLAB variable to be copied. If the variable does not exist the function will return -1
and script execution continues. MATLAB variables that are structures, cell arrays, functions, logical
(BOOLEAN) data or 64-bit integer data are not supported. Of the remaining types of data (basically
character and numeric values), the allowed types vary with the type of script language variable supplied.

v$ For a string variable, the MATLAB variable must be a simple string (a 1-dimensional array of characters).
String arrays are not supported.

v% v For non-array integer and real variables, the MATLAB variable must be a numeric value. Integer and
floating-point data are automatically converted, floating point values put into an integer variable are
truncated.

v[] For real and integer script arrays, the MATLAB variable must be a vector with compatible numbers and
sizes of dimensions: a 1-dimensional script array of length n matches an n x 1 vector (or a 1 x n vector), a 2
dimensional script array arr[m][n] matches an m x n vector and so forth. The size of the last dimension

Script language

19-513

of the script array is allowed to be larger than or equal to the size of the last dimension of the MATLAB
vector so an m x n vector can be transferred into arr[m][n], arr[m][n+1] ... arr[m][n+x].
MATLAB floating-point types are converted to script reals and MATLAB integer types are converted to
script integers. Converting between integer and floating-point types is not supported.

Returns -1 if the variable was not found in MATLAB or a type match error, otherwise it returns 0 for a simple
variable or the size of the last dimension of the script array that was filled.

See also:
MatLabOpen(), MatLabClose(), MatLabPut(), MatLabEval(), MatLabShow()

MatLabOpen()

This function opens a connection to an invisible MATLAB command window. All of the other MatLabXxx()
script commands fail if there is no connection. Making a connection takes a detectable time; it is inadvisable to
open and close the connection many times.

Func MatLabOpen({mode%});

mode% If mode% is absent or set to zero, the MATLAB connection is shared, allowing other applications to use
the same command window. Set mode% to 1 for an unshared connection, for exclusive use by the script.

Returns 0 if the MATLAB connection was opened successfully, -1 if the function failed. If this function fails it will
generally be because Signal cannot locate the relevant DLLs that were installed with MatLab, which is
most likely caused by the Windows system path being incorrect. To help with debugging connection
problems, Signal will generate error messages in the log window.

Possible effects on MatLab file export
Various users have reported that exporting data to MatLab files works normally but fails after the MatLabOpen()
script command has been used. This appears to be caused by DLL version incompatibilities between the MatLab
DLLs installed with Signal for the purposes of file export (which should be available even if MatLab is not installed)
and the DLLs installed with MatLab (which are loaded by MatLabOpen()). It appears that the problem can be fixed,
at least in some cases, by hiding the MatLab DLLs installed with Signal so that file export uses the DLLs installed
with MatLab. The DLLs in question are all in the export directory inside the Signal export directory, they are:
libmat.dll, libmx.dll, libut.dll, libz.dll, icudt32.dll, icuin32.dll, icuio32.dll, icuuc32.dll, msvcr71.dll and
msvcp71.dll. for a 32-bit installation, libmat.dll, libmx.dll, libut.dll, libz.dll, icudt32.dll, icuin32.dll, icuio32.dll,
icuuc32.dll and libhdf5.dll. for a 64-bit installation.

See also:
MatLabClose(), MatLabPut(), MatLabGet(), MatLabEval(), MatLabShow()

MatLabPut()

This function takes a script variable and puts it into the MATLAB workspace. A connection with MATLAB must
have been set up for this function to be used.

Func MatLabPut(name$, const v%|v|v$|v%[]{[]...}|v[]{[]...}{, as%});

name$ the name of the MATLAB variable that will be created in the workspace. If a variable of this name already
exists, it is overwritten. MATLAB variable names can only use alphanumeric characters plus the
underscore character ‘_’ and must start with an alphabetic character.

v An expression or variable holding the data to move to MATLAB. The variable type created in the
MATLAB workspace is set by the type of v and the as% argument. All of the script language variable
types are supported.

v[] A script array variable holding the data to move to MATLAB. The type or the vector created in the
MATLAB workspace is set by the type of v and the as% argument, the vector dimensions and sizes are
set by the dimensions and sizes of v[]. All of the script language array types except strings are
supported.

as% Optional. Sets the type of the MATLAB workspace variable. If v is a real value or array, as% can be 4 or 8
to specify single- or double-precision real data. If v is an integer value or array, as% can be 1, 2 or 4 for 1, 2
and 4-byte signed integer data and -1, -2 and -4 for the corresponding unsigned integer data. For 1 and 2-

Signal Version 6.06

19-514

byte data only the bottom 1 and 2 bytes of the script variable are used and the upper bytes discarded. If
as% is omitted, it is taken as 8 for a real value and 4 for an integer value.

For string data, a string variable is created in the workspace and as% is ignored.

For integer and real data, either a single variable or a vector is created in the MATLAB workspace. If a
Signal script array is used then the dimensions of the vector created in the workspace match the script
array: a 1-dimensional script array length n creates an n x 1 vector, a 2 dimensional script array arr[m][n]
creates an m x n vector and so forth.

Returns 0 if the data was successfully transferred and -1 if it was not.

See also:
MatLabOpen(), MatLabClose(), MatLabGet(), MatLabEval(), MatLabShow()

MatLabShow()

This command retrieves the visible state of a MATLAB command window opened by MatLabOpen() and
optionally changes it.

Func MatLabShow({show%});

show% Optional. If provided, sets the new visible state. Set 1 to show the window and 0 to hide it.

Returns the command window visibility at the time the call was made.

See also:
MatLabOpen(), MatLabClose(), MatLabGet(), MatLabPut(), MatLabEval()

MATMul()

This function multiplies matrices and/or vectors. In matrix terms, this evaluates A = BC where A is an m rows by n
columns matrix, B is an m by p matrix and C is a p by n matrix. Vectors of length v are treated as a v by 1 matrix.

Proc MATMul(a[]{[]}, const b[]{[]}, const c[]{[]});

a A m by n matrix of reals or a vector of length m (n is 1) to hold the result.

b A m by p matrix or a vector of length m (p is 1).

c A p by n matrix or a vector of length p (n must be 1).

If you pass any of a, b or c as a vector, they are treated as a n by 1 matrix, where n is the length of the vector. Use
the trans() operator to convert a vector to a 1 by n matrix.

See also:
trans() operator, ArrMul(), MATInv()

MATSolve()

This function solves the matrix equation Ax = y for x, given A and y. Both x and y are vectors of length n and A is
an n by n matrix.

Func MATSolve(x[], const a[][], const y[]);

x A one dimensional real array of length n to hold the result.

a A two dimensional (n by n) array of reals holding the matrix.

y A one dimensional real array of length n.

Returns The functions returns 0 if all is OK or -1 if a is a singular matrix.

See also:
ArrMul(), MATInv()

Script language

19-515

MATTrace()

This evaluates the trace of a matrix, that is the sum of the diagonal of the matrix. If the matrix is not square, for
example arr[i][j] and the smaller dimension is of size n, the trace is of the arr[:n][:n].

Func MATTrace(const arr[][]);

arr A matrix (two-dimensional array) that is either square, or that is treated as square using the smaller
dimension. The array can be either real or integer. The result is always a real value.

Returns The trace of the matrix, that is the sum of the diagonal elements.

This is equivalent to ArrSum(diag(arr));

See also:
ArrSum(), MATTrans()

MATTrans()

This transposes a matrix (a two dimensional array), swapping the rows and columns. This procedure physically
moves the data, unlike the trans() or ` operator, which remaps the matrix without moving any data. It is usually
much more efficient to use trans().

Proc MATTrans(mat[][]{, const src[][]});

mat A m by n matrix returned holding the transpose of src. If src is omitted, m must be equal to n and the rows
and columns of mat are swapped.

src Optional, a n by m matrix to transpose.

See also:
trans() operator, ArrAdd(), MATMul()

Max()

This function returns the index of the maximum value in an array, or the maximum of several real and/or integer
variables.

Func Max(const arr[]|const arr%[]|val1{, val2{, val3...}});

arr A real or integer array.

valn A list of real and/or integer values to scan for a maximum.

Returns The maximum value or array index of the maximum.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Min(), MinMax(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan(), Trunc(), XYRange()

Maxtime()

This returns the maximum x axis value in the frame or a specified channel, or the latest time reached within the frame
or the specified channel in a sampling document view. For the end of the visible x axis use XHigh().

Func MaxTime({chan%});

chan% An optional channel number (1 to n). If present, and if the channel exists, the function gets the x axis value
for the last item sampled in the channel or the maximum x axis value in the frame if no items are found on
the channel, or if no channel was specified. If chan% is zero, the value returned is the frame length limit –
the maximum X axis value for a frame regardless of the points that happen to be currently stored – this is
useful for frame 0 of a file being sampled.

Returns The value returned is the maximum x axis value for the frame or a specified channel. If the current view is of
the wrong type, or if a specified channel number does not exist, the script stops with an error.

Signal Version 6.06

19-516

See also:
Len(), LastTime(), NextTime(), Mintime(), Seconds(), XHigh()

MeasureChan()

This function adds or changes a measurement channel in an XY view created with MeasureToXY() using the
settings previously defined by using MeasureX() and MeasureY(). The XY view must be the current view. This
command implements some of the functionality of the XY measurements settings dialog.

Func MeasureChan(chan%, name${, pts%});

chan% This is 0 to add a new channel or the number of an existing channel to change settings. MeasureToXY()
creates an XY view with one channel, so you will usually call this function with chan% set to 1. You can
have up to 32 measurement channels in the XY view.

name$ This sets the name of the channel and can be up to 9 characters long.

pts% Sets the maximum number of points for this channel, if omitted or set to zero then all points are used.
When a points limit is set and more points are added, the oldest points are deleted.

Returns The channel number these settings were applied to or a negative error code.

See also:
XY measurements, CursorActiveSet(), MeasureToXY(), MeasureX(), MeasureY()

MeasureToChan()

This creates a new marker or real marker memory channel with an associated measurement process and cursor 0
iteration method, the channel is created in the current data view. The ProcessFrames() command adds items to
the new channel based on active cursor measurements. Before calling this function, use MeasureX() to set the
measurement method to 102 (Time) and set expr1$ to generate the time stamps of the generated marker data. If you
select any other method this command will return an error code. The iteration must produce times in ascending
order unless the output is to a memory channel.

If you are creating a real marker channel, you must call MeasureY() before this function to define the measurement
to attach to each data item added to the new channel.

These commands implement the functionality of the Measurements to data channel dialog.

Func MeasureToChan(dest%, name$, type%, iter%, chan%, st|st$, en|en$, min|
exp$
 {, lv|lv$|pts%{ ,hy{, flgs%{, qu${, width{, lv2|lv2$}}}}}});

dest% This is the output memory channel number or zero for the lowest numbered unused memory channel. Set
to 201 to 400 for specific memory channels. It is a fatal error to set a channel that is in use or to specify a
non-memory channel.

name$ The output channel name. Channel units, if required, are inferred from chan% in the MeasureY() call and
the measurement method.

type% This sets the output memory channel type, set 0 for a marker channel and 1 for a real marker channel. Only
real marker channels with a single real value are generated.

iter% This is the cursor 0 iteration mode. Modes are the same as in CursorMode() but not all modes can be
used. Valid modes are:

4 Peak find 11 Slope peak 17 Turning point 23 Data points
5 Trough find 12 Slope trough 20 Expression
7 Rising threshold 14 Slope +ve thr 21 Outside levels
8 Falling threshold 15 Slope -ve thr 22 Inside levels

chan% This is the channel that is searched by the cursor 0 iterator. In expression mode (20), this is ignored and
should be set to 0.

st This is the start position within the frame for cursor 0 iteration, either as a number or a string. In expression
mode, this is the first iteration position, for other modes the start of the search.

Script language

19-517

en This is the end position within the frame for cursor 0 iteration, again either as a number or a string.

min This is the minimum allowed step for cursor 0, it is used in all modes except expression mode (20).

exp$ This is the string expression that is evaluated in expression mode (20).

lv This number or string expression sets the threshold level for threshold modes (7, 8, 14, 15, 21 and 22). It is
in y axis units for data channel chan% or y axis units per x axis unit for slope threshold modes (14 and 15).
This argument is ignored and should be set to 0 or omitted for modes that do not require it.

pts% The number of points to advance by in Data points mode.

hy This sets the hysteresis level for threshold search modes (7, 8, 14, 15, 21 and 22) and the minimum
amplitude for peak and trough modes (4, 5, 11 and 12). It is in y axis units for data channel chan% for
normal modes or y axis units per x axis unit for slope modes. This argument is ignored and should be set to
0 or omitted for modes that do not require it.

flgs% This is the sum of the measurement option flags. Add 2 for user checks on the cursor positions and add 8
to overdraw the new channel on top of the source channel for the Y measurement (if the output channel
type is real marker and the Y measurement type is appropriate). The default value is zero.

qu$ This sets the qualification expression for the iteration. If left blank then all iteration positions will be used.
If not blank, and it evaluates to non-zero, then the iteration is skipped.

width The width for measurements in X axis units; set to 0 or omit it in modes that do not require it. For slopes it
sets the time over which the slope is measured. For peaks and troughs, it sets the maximum peak width
(use 0 for no maximum). For threshold crossing modes (7, 8, 21 and 22) it sets the minimum crossing time
(Delay in the dialog).

lv2 This is a number or string expression, it sets the second threshold level for outside and inside dual
threshold cursor iteration modes (21 and 22).

Returns The function result is a memory channel number or a negative error code.

Arguments passed as strings are not evaluated until data is processed. Invalid strings generate invalid
measurements and no data points in the XY view.

Example
This generates a channel holding peak values from channel 1 of the current time view. Peaks must be at least 0.1
seconds apart and the data must fall by at least 1 y axis unit after each peak.

var ch%; 'Memory channel number
MeasureX(102, 0, "Cursor(0)"); 'x = Time, no channel, at cursor 0
MeasureY(100, 1, "Cursor(0)"); 'y = Value of chan 1 at cursor 0
ch%:=MeasureToChan(0, "Peaks", 1, 4, 1, 0.0, 1.0, 0.1, 1); 'Peak, chan 1
ProcessFrames(-1); 'Process all the data

See also:
Measurements to data channel, CursorActiveSet(), MeasureX(), MeasureY(),
ProcessFrames()

MeasureToXY()

This creates a new XY view with a trend plot or measurement process and optional cursor 0 iteration method. It
creates one output channel in the XY view with a default measurement method. Use MeasureX(), MeasureY()
and MeasureChan() to edit the method and add channels. Use ProcessFrames() to generate the plot. The new
XY view will be the current view and is invisible. Use WindowVisible(1) to make it visible. These commands
implement the functionality of the Measurements to XY View and Measurements to XY View(Trend plot) dialogs.

Func MeasureToXY(iter%|tpf%{, chan%, st|st$, en|en$, min|exp$
 {, lv|lv$|pts%{ ,hy{, flgs%{, qu${, width{, lv2|lv2$}}}}}}});

iter% This is the cursor 0 iteration mode. Modes are the same as in CursorMode() but not all modes can be
used. Valid modes are:

4 Peak find 11 Slope peak 17 Turning point 23 Data points
5 Trough find 12 Slope trough 20 Expression

Signal Version 6.06

19-518

7 Rising threshold 14 Slope +ve thr 21 Outside levels
8 Falling threshold 15 Slope -ve thr 22 Inside levels

tpf% This is the only argument if you want trend-plot-style processing with one measurement per frame and no
cursor zero iteration. It is the sum of the option flags for trend plot processing; add 1 for common X
values, add 2 for user checks on the cursor positions or leave it set to the default value of zero.

chan% This is the channel that is searched by the cursor 0 iterator. In expression mode (20), this is ignored and
should be set to 0.

st This is the start position within the frame for cursor 0 iteration, either as a number or a string. In expression
mode, this is the first iteration position, for other modes the start of the search.

en This is the end position within the frame for cursor 0 iteration, again either as a number or a string.

min This is the minimum allowed step for cursor 0, it is used in all modes except expression mode (20).

exp$ This is the string expression that is evaluated in expression mode (20).

lv This number or string expression sets the threshold level for threshold modes (7, 8, 14, 15, 21 and 22). It is
in y axis units for data channel chan% or y axis units per x axis unit for slope threshold modes (14 and 15).
This argument is ignored and should be set to 0 or omitted for modes that do not require it.

pts% The number of points to advance by in Data points mode.

hy This sets the hysteresis level for threshold search modes (7, 8, 14, 15, 21 and 22) and the minimum
amplitude for peak and trough modes (4, 5, 11 and 12). It is in y axis units for data channel chan% for
normal modes or y axis units per x axis unit for slope modes. This argument is ignored and should be set to
0 or omitted for modes that do not require it.

flgs% This is the sum of the measurement option flags. Add 1 to force common X values, add 2 for user checks
on the cursor positions and add 4 to generate one averaged measurement per frame. The default value is
zero.

qu$ This sets the qualification expression for the iteration. If left blank then all iteration positions will be used.
If not blank, and it evaluates to non-zero, then the iteration is skipped.

width The width for measurements in X axis units; set to 0 or omit it in modes that do not require it. For slopes it
sets the time over which the slope is measured. For peaks and troughs, it sets the maximum peak width
(use 0 for no maximum). For threshold crossing modes (7, 8, 21 and 22) it sets the minimum crossing time
(Delay in the dialog).

lv2 This is a number or string expression, it sets the second threshold level for outside and inside dual
threshold cursor iteration modes (21 and 22).

Returns The function result is an XY view handle or a negative error code.

Arguments passed as strings are not evaluated until data is processed. Invalid strings generate invalid
measurements and no data points in the XY view.

Example
This generates a plot of peak values in channel 1 of the current time view. Peaks must be at least 0.1 seconds apart
and the data must fall by at least 1 y axis unit after each peak.

var xy%; 'Handle of new xy view
xy%:=MeasureToXY(4, 1, 0.0, 1.0, 0.1, 1); 'Peak, chan 1
WindowVisible(1); 'Window is invisible, so show it
MeasureX(102, 0, "Cursor(0)"); 'x = Time, no channel, at cursor 0
MeasureY(100, 1, "Cursor(0)"); 'y = Value of chan 1 at cursor 0
MeasureChan(1, "Peaks", 0); 'Set the title, no point limit
ProcessFrames(-1); 'Process all the data

See also:
XY measurements, CursorActiveSet(), MeasureChan(), MeasureX(), MeasureY(),
ProcessFrames()

Script language

19-519

MeasureX()

MeasureX() and MeasureY() set the x and y part of a measurement. The settings are saved but have no effect
until MeasureChan() is used to change or create a channel. This command implements some of the functionality
of the XY measurements settings dialog. The current view must be the target of the measurements.

Func MeasureX(type%{, chan%{, expr1|coef%{, expr2{, width}}}});

type% This sets the x or y measurement type. Types less than 100 are cursor regions measurements matching the
ChanMeasure() function:

1 Curve area 6 Modulus 11 Standard deviation 16 Standard error
2 Mean 7 Maximum 12 Extreme 17 RMS error
3 Slope 8 Minimum 13 Peak
4 Area 9 Peak to peak 14 Trough
5 Sum 10 RMS amplitude 15 Point count

Types from 100 up are special values:

100 Value at point 105 Frame abs time 110 Value product
101 Value difference 106 Frame state value 111 Value above baseline
102 Time at point 107 0-based fit

coefficient
112 Iteration count

103 Time difference 108 User entered value 113 Expression
104 Frame number 109 Value ratio

Types from 1000 up select frame variable values with the frame variable number being type%-1000.

chan% This is the channel number from which the measurements are taken. For time, user entered and frame-
based measurements it is ignored and should be set to 0 or omitted.

expr1 Either a real value or a string expression that sets the start time for measurements over a time range, the
position for time (102) and value measurements and the expression used for measurement type 106.

coef% The zero-based fit coefficient number for measurement type 107.

expr2 Either a real value or a string expression that sets the end time for measurements over a time range and the
reference time for single-point measurements and differences. Set an empty string when width is required
and this is not.

width This is the measurement width for value and value difference measurements. The default value is zero.

Returns The function return value is zero or a negative error code.

See also:
XY measurements, CursorActiveSet(), MeasureChan(), MeasureToXY(), MeasureY(),
FrameVarInfo()

MeasureY()

This is identical to MeasureX() and sets the y part of a measurement for a measurement channel. The settings are
saved but have no effect until MeasureChan() is used to change or create a channel. See the MeasureX()
documentation for details.

Func MeasureY(type%, chan%, expr1${, expr2${, width}});

See also:
XY measurements, CursorActiveSet(), MeasureChan(), MeasureToXY(), MeasureX()

MemChan()

This function creates a new memory channel attached to the file in the current data view. You can have up to 200
memory channels per file. There are two variants: the first lets you specify the channel type and settings, the
second copies settings from an existing channel.

Func MemChan(type%{, size%});

Signal Version 6.06

19-520

Func MemChan(-1, copy%);

type% The type of memory channel to create. The available types are:

1 Marker
5 Idealised trace
6 Real marker

size% For real marker channels it sets the number of reals to attach to each item, if omitted the default value of 1
is used.

copy% A channel from which to copy settings, including the channel type, title, units and size. The channel must
exist.

Returns The new memory channel number, or 0 if there is no free channel, or a negative error code.

Channels created by the first variant have default titles and units. You can set these with ChanTitle$() and
ChanUnits$(). This example code copies a channel of any type:

func CopyWave%(chan%)
var mc%;
mc% := MemChan(-1, chan%); ' Create channel of the same type
if mc%>0 then ' Created OK?
 var f%;
 for f% := 1 to FrameCount() do ' Work through the frames
 Frame(f%); ' Select the frame
 MemImport(mc%, chan%, MinTime(), MaxTime()); ' Copy data into memory channel
 next;
 ChanShow(mc%); ' Display new channel
endif;
return mc%; ' Return the new memory channel number
end;

See also:
MemDeleteItem(), MemDeleteTime(), MemGetItem(), MemImport(), MemSetItem(), MarkInfo(),
ChanIndex()

MemDeleteItem()

This function deletes one or more items from a memory channel created by MemChan() or by other means. To
delete the actual channel use ChanDelete().

Func MemDeleteItem(chan% {,index% {,num%}});

chan% The channel number of a channel created by MemChan() or by other means, including normal channels in
memory frames. This channel should hold marker or real marker data; this function does not operate on
waveform or idealised trace channels.

index% The ordinal index into the channel to the item to delete. The first item is numbered 1. If you specify index -1
or omit this argument, all items are deleted.

num% The number of items to delete from index%. Default value is 1.

Returns The number of items deleted or a negative error code.

See also:
MemChan(), MemDeleteTime(), MemGetItem(), MemImport(), MemSetItem()

MemDeleteTime()

This function deletes one or more items from a memory channel based on an X axis range.

Func MemDeleteTime(chan%, mode%, t1 {,t2});

chan% The channel number of a channel created by MemChan() or by other means, including normal channels in
memory frames. This channel should hold marker or real marker data; this function does not operate on
waveform or idealised trace channels.

Script language

19-521

mode% This sets the items to delete and how to interpret the values t1 and t2:

0 A single item is deleted. t1 is the item time and t2 is a timing tolerance (0 if t2 is omitted). The
nearest item to t1 in the time range t1-t2 to t1+t2 is deleted. If there are no items in the range,
nothing is deleted.

1 Delete all items from time t1-t2 to t1+t2. If t2 is omitted, 0 is used.

2 Delete the first item from time t1 to t2. If t2 is omitted it is taken as t1.

3 Delete all items from time t1 to t2. If t2 is omitted, it is taken as t1.

t1, t2 Two times, in seconds, that set the X axis (normally time) range for items to delete. Times outside the frame
X axis range are limited to the range.

Returns The number of items deleted, or a negative error code.

See also:
MemChan(), MemDeleteItem(), MemGetItem(), MemImport(), MemSetItem()

MemGetItem()

This returns information about a memory channel item. The item is identified by its ordinal position in the channel,
not by time.

Func MemGetItem(chan% {,index% {,code%[]|&code% {,data[]|&data}}});

chan% The channel number of a channel created by MemChan() or by other means, including normal channels in
memory frames. This channel should hold marker or real marker data; this function does not operate on
waveform or idealised trace channels.

index% The ordinal index into the channel to the item required. The first item is numbered 1. If you omit the index,
or specify index 0, the function returns the number of items in the channel.

The remaining fields are only allowed if the index is non-zero.

code% This is an integer array that is returned holding the item marker codes in the first four values, or a single
integer variable that is returned holding the first code byte value. For an array, the codes returned is the
smaller of the size of the array and four.

data This is a real array that is returned holding the real marker data from the item or a single real variable that is
returned holding the first real marker value. If the channel data is not real marker, it is not changed. For an
array, the points returned is the smaller of the size of the array and the number of values in the item.

Returns For index% of 0 or omitted, the function returns the number of items in the channel. If an index is given
that is outside the range of items present, the function returns a value less than MinTime(). Otherwise it
returns the time of the item.

See also:
MemChan(), MemDeleteItem(), MemDeleteTime(), MemImport(), MemSetItem()

MemImport()

This function imports data into a memory channel created by MemChan() or by other means. There are some
restrictions on the type of data channel that you can import from, depending on the type of the destination
channel.

Destin
ation

Sourc
e

Restrictions

Marker Wavefo
rm
Marker
Real
marker
All
others

Can extract marker times, coded for
peak/trough, etc.
Marker times and codes copied
Marker times and codes copied
Not available

Signal Version 6.06

19-522

Destin
ation

Sourc
e

Restrictions

Real
marker

Wavefo
rm
Marker
Real
marker
All
others

Can extract marker times, coded for
peak/trough, etc., real values set to
zero
Marker times and codes copied, real
values set to zero
Marker times, codes and real values
copied, real data truncated or zero
padded as needed
Not available

Idealise
d trace

Idealise
d trace
All
others

Idealised trace data copied
Not available

You can extract markers and real markers from waveform data using peak search and level crossing techniques.

Import compatible channel
The first command variant imports data from a compatible channel within the specified time range and frames. All
marker-type channels can be copied to each other, but the information transferred is the lowest common
denominator of the two channel types, missing data is padded with zeros. Idealised trace data is compatible with
itself.

Func MemImport(chan%, inCh%, start, end, frm%|frm%[]|frm$);

chan% The channel number of a channel created by MemChan() or by other means, including normal channels in
memory frames.

inCh% The channel number to import data from.

start The start time (X axis value) to collect data from.

end The end time (X axis value) to collect data up to (and including).

frm% Frame number or a negative code as follows:

-1 All frames in the file.

-2 The current frame.

-3 Only tagged frames.

-6 Only untagged frames.

frm$ A frame specification string. This option specifies a list of frames using a string such as "1..32,40,50".

frm%[] An array of frame numbers. This option provides a list of frame numbers. The first element holds the
number of frames in the list.

Extracting markers from waveforms
The extra mode%, time, level and code% arguments are used when extracting markers or real markers from
waveform data. inCh% must be a waveform channel. The level crossing modes use linear interpolation between
points to find the exact time of the waveform crossing. The peak and trough modes fit a parabola to the three points
around the peak or trough to estimate the time more accurately.

Func MemImport(chan%, inCh%, start, end, frm%|frm%[]|frm${ ,mode%, time,
level{, code%}});

mode% The mode of data extraction. The modes are:

0 Extract markers based on the time of a peak in the waveform, these are coded as 2 unless code% is
set.

1 Extract markers based on the time of a trough in the waveform, these are coded 3 unless code% is set.

2 Extract markers based on times when the waveform rises through level, these are coded 4 unless code
% is set.

Script language

19-523

3 Extract markers based on times when the waveform falls through level, these are coded 5 unless code
% is set.

time The minimum time between detected markers. Use this to filter noisy signals.

level In modes 0 and 1, this is the minimum peak or trough amplitude - the distance that the waveform must fall
after a peak or rise after a trough. In modes 2 and 3 it is the level to cross to detect an markers.

code% If present and positive it overrides the codes based on mode% that are applied to the markers. The low
byte of code% sets the first marker code; the remaining marker codes are always 0.

Returns It returns the number of items added to the channel (zero if no items were added), or a negative error code.

See also:
MemChan(), MemDeleteItem(), MemDeleteTime(), MemGetItem(), MemSetItem()

MemSetItem()

This function edits or adds an item in a memory channel. The item is identified by its ordinal position in the
channel.

Func MemSetItem(chan%, index%, time{, code%[]|code%{, data[]|data}});

chan% The channel number of a channel created by MemChan() or by other means, including normal channels in
memory frames. This channel should hold marker or real marker data; this function does not operate on
waveform or idealised trace channels.

index% The index of the item to edit. The first item is number 1. An index of 0 adds a new item to the buffer at a
position set by time.

time The item time, or less that MinTime() for no change. If index% is 0, you must supply a valid time between
MinTime() and MaxTime().

code% This is an integer array that holds the marker codes for the channel data item or a single integer value that
holds the first marker code for the item. marker code values can be from 0 to 255. If the array is less than
four long then upper code bytes are left unchanged.

data This is a real array holding the item data for real marker items or a single real value holding the first real
marker value. If the channel data type is not real marker it is ignored. The number of points set is the
smaller of the number passed and the number expected. If the array is too short, the extra values are
unchanged when index% > 0 (editing) and have the value 0 if index% is 0.

Returns The function returns the index at which the data was stored. If an index is given that is outside the range
of items present, the function returns -1.

Example
This example creates an array of markers at time 1, 2, 3...10 seconds. It assumes that the current view is a data view;
if not the MakeMarkChan%() function will return -1.

'Create a new memory event channel holding the times passed in an array.
'times is an array of times to add to a new memory event channel
'returns event channel or 0 if no data or -ve if an error
func MakeMarkChan%(times[])
var mc%, n%, i%;
n% := Len(times[]); ' number of points to add
if n% <= 0 then return 0 endif; ' no data
mc% := MemChan(1); ' create a new memory channel
if (mc% < 0) then return -1 endif; ' failed to create
for i% := 0 to n%-1 do
 MemSetItem(mc%, 0, times[i%]);
next;
return mc%;
end;

var times[10], memChan%;
ArrConst(times, 1);ArrIntgl(times); ' create 1,2,3..10

Signal Version 6.06

19-524

memChan% := MakeMarkChan%(times); ' make hidden marker channel
if (memChan% > 0) then
 ChanShow(memChan%); ' show hidden channel
endif;

See also:
MemChan(), MemDeleteItem(), MemDeleteTime(), MemGetItem(), MemImport(), MinTime(),
MaxTime()

Message()

This function displays a message in a box with an OK button that the user must click to remove the message.
Alternatively, the user can press the Enter key.

Proc Message(form${, const arg1{, const arg2...}});

form$ A string that defines the output format as for Print(). If the string includes a vertical bar, the text before
the vertical bar is used as the window title.

arg1,2 The arguments used to replace %d, %f and %s type formats.

You can split the message into multiple lines by including \n in the form$ string. Long messages are truncated.

See also:
Print(), Input(), Query(), DlgCreate(), DlgFont()

Mid$()

This function returns a sub-string of a string.

Func Mid$(text$, index%{, count%});

text$ A text string.

index% The starting character in the string. The first character is index 1.

count% The maximum characters to return. If omitted, there is no limit on the number.

Returns The sub-string. If index% is larger than Len(text$), the string is empty.

See also:
Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Print$(), ReadStr(),
Right$(), Str$(), UCase$(), Val()

Min()

This function returns the index of the minimum value in an array, or the minimum of several real and/or integer
variables.

Func Min(const arr[]|const arr%[]|val1{, val2{, val3...}});

arr A real or integer array.

valn A list of real and/or integer values to scan for a minimum.

Returns The minimum value or array index of the minimum.

An example finding the minimum in a sub-array holding 10 items of the original data:

var data[70], minPos%, minVal;
...
minPos:=Min(data[40:10]); ' returns a position between 0 and 9
minVal:=data[40+minPos]; ' value of minimum

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Minmax(), Pow(), Rand(),
Round(), Sin(), Sqrt(), Tan(), Trunc(), XYRange()

Script language

19-525

Minmax()

Minmax() finds the minimum and maximum values for data view channels with a y axis, or the minimum and
maximum intervals for a marker channel handled as dots or lines. The values returned for marker channels as a rate
histogram are measured from the histogram with partial bins included.

Func Minmax(chan%, start, finish, &min, &max{, &minP{, &maxP {, mode%{,
binSz}}}});

chan% The channel number (1 to n) on which to find the maximum and minimum.

start The start position in x axis units.

finish The end position in x axis units.

min The minimum value is returned in this variable or zero if no data found.

max The maximum value is returned in this variable or zero if no data found.

minP The position of the minimum is returned in this variable or zero if no data found.

maxP The position of the maximum is returned in this variable or zero if no data found.

mode% This will have no effect for a waveform channel. If present for a marker channel, this sets the effective
drawing mode in which to find the minimum and maximum. If mode% is absent or inappropriate, the current
display mode is used. The modes are:

0 The current mode for the channel. Any additional arguments are ignored.

1 Dots mode for markers, returns the position of the marker at or after pos.

2 Lines mode for markers, result is the same as mode 1.

3 Rate mode for markers. The binSz argument sets the width of each bin.

9 Plot mode for real marker channels only, using the currently selected channel data index selected for
that channel.

binSz This sets the width of the rate histogram bins when specifying rate mode.

Returns 1 if data points were found, 0 if no data was found or a negative error code.

See also:
Min(), Max(), XYRange(), ChanIndex()

Mintime()

In a data view, this returns the minimum x axis value in the frame or in a channel. For the end of the visible x axis use
XLow().

Func MinTime({chan%});

chan% An optional channel number (1 to n). If present, and if the channel exists, the function gets the x axis value
for the earliest item in the channel or the minimum x axis value in the frame if no items are found on the
channel or if no channel was specified. If chan% is zero, the value returned is the frame length limit – the
minimum X axis value for a frame regardless of the points that happen to be currently stored – this is
useful for frame 0 of a file being sampled.

Returns The value returned is the minimum x axis value in the frame or channel. If the current view is of the wrong
type, or if the channel number is illegal the script stops with an error.

See also:
Len(), BinZero(), ChanRange(), LastTime(), NextTime(), Maxtime(), Seconds(), XLow()

Signal Version 6.06

19-526

Modified()

This command lets you get (and in many cases, set) the modified state of a view and detect if it is read only. Beware
that clearing the modified flag for views that support this will allow you to close the view without being prompted
to save changes. This function was added to Signal at version 4.07 and its behaviour adjusted in version 6.03.

Func Modified({what%{, new%}});

what% 0 (or omitted) to get or set the modified state, 1 to get or set the read only state.

new% The new state. -1 (or omitted) for no change, 0 to clear the state, 1 to set the state.

Returns The state at the time of the call, before any change.

The meaning and effect of this routine depends on the type of the current view.

Text view
A text view is considered modified if changes have been made since the last save; such changes will be interactive
edits, changes made by a script and typing. You can use Modified(0,0) to clear the modified state without
saving the file; you cannot set the modified flag with this command.

Text views (but not the Log view) can be set read only with Modified(1,1) and the read only state can be cleared
with Modified(1,0). Note that output sequence and script files open read only if they are marked read only on
disk. This command does not change the read only status of the file on disk.

Data view
A data view counts as modified if you make a change to it that would be written to the underlying .cfs file.
Changes made to virtual channels or to idealised traces do not count as modifications, but changes made (in the
current frame) to the frame tag, flags, state or user variables do - however note that such changes made to other
frames are written to disk immediately and do not set the modified flag, while changes to the current frame data are
only written when the file is closed or the data view switches to a different frame. You can force the file to commit
any changes written to disk, update the file headers and ensure the directory information is up to date with
Modified(0,0). Committing changes in this way does not clear the modified flag. It also does not write any
changes made to the current frame data or any appended frames to disk, this should be done using FrameSave()
and FileSave() respectively.

Modified(1) reports the read only state. You cannot change the read only state of a data view; it depends on the
read only state of the underlying .cfs file.

Memory, Grid and XY views
A memory, grid or XY view is modified if it has been changed since the last save. You can set and clear the
modified flag using Modified(0, new%), note that this changes the flag but does not save any changed data to
disk. There is currently no concept of a read only state for these views and Modified(1) always returns 0.

Other view types
The command is not implemented for other view types and will return 0.

See also:
FrameSave(), FileSave(), FrameFlag(), FrameState(), FrameTag(), FrameUserVar()

MousePointer()

This command loads permanent mouse pointers from external files, creates new temporary mouse pointers and can
delete temporary mouse pointers when they are no longer needed. Signal maintains a list of standard mouse
pointers (see ToolbarMouse() for the list); any pointers added by this function are added to this list and are
available for use by the mouse Down%(), Move%() and Up%() routines associated with ToolbarMouse().

Func MousePointer(text$|nDel%);

text$ This is a text string that defines a new mouse pointer. This is either the path to a data file that holds a
cursor or an animated cursor, ending in ".cur" or ".ani" (not case sensitive) or it is a text string that defines
a monochrome mouse pointer, as described below. The function returns the number of the new mouse
pointer, or 0 if it was not created. Cursors loaded from a file are permanent and exist until Signal closes.

Script language

19-527

There is a limit on the number of cursors that Signal will manage (currently set to 60); this should be more
than enough for any reasonable purpose.

nDel% The number of a mouse pointer to delete, or -1 to delete all user-defined mouse pointers. You can only
delete temporary mouse pointers, and you cannot delete a mouse pointer that is currently in use.

Returns The number of a newly created mouse pointer or 0 if it was not created or the number of mouse pointers
that were deleted.

Text format to create a new pointer
Mouse pointers defined by this function are a 32 x 32 pixel image. Inside this image is the hot spot, being the actual
position where the mouse is deemed to be pointing. Each pixel in the image can be screen coloured, black, white or
the inverse of the screen. In addition, you can designate a pixel to be the hot spot. This is coded in text as follows:

Charact
er

Screen Black White Inverse

Normal space b w i

Hot-
spot

h B W I

Cursors are defined by pixel by pixel, starting at the top left, moving horizontally and starting a new row every 32
characters. However, most mouse pointers are much smaller than 32 x 32 pixels, so you can stop a line early by
adding a vertical bar character "|" or by a line feed character "\n". Any character that is not a space, b, B, w, W, h, i,
I, | or line feed is treated as a space. You do not need to provide 32 rows; any rows that are not defined are treated
as if they were filled with spaces. It is not an error to include more than one hot-spot character; the hot-spot
position is set by the last hot-spot character in the string.

The following example creates a small square cursor:

var mp% := MousePointer(
"bbbbbbb|"
"bwwwwwb|"
"bw wb|"
"bw h wb|"
"bw wb|"
"bwwwwwb|"
"bbbbbbb");

This could be written as:

var mp% := MousePointer("bbbbbbb|bwwwwwb|bw i wb|bwihiwb|bw i wb|bwwwwwb|bbbbbbb");

but the first arrangement is much easier to understand.

Loading mouse pointers from files
Cursors created with text strings are monochrome and not animated. You can also load coloured (sometimes called
3D) cursors and animated cursors from files. If you want to experiment with this, you can find suitable files in the
Windows Cursors folder. On my machine, the following loads an animated stopwatch cursor:

var ani% := MousePointer("c:\\WINDOWS\\Cursors\\stopwtch.ani");

See also:
ToolbarMouse()

Signal Version 6.06

19-528

MoveBy()

This command can be used in both Text views and Grid views to move relative to the current position and to report
the current position without moving..

Text view
This gets and sets the position of the text caret. You can move the text caret in a text window relative to the current
position by lines and/or a character offset and you can extend or cancel the current selection. The caret position
can be read as a position in the entire document or as a line and a column. If you use this to move past the end of a
line, beware that in Windows, this is usually marked by two characters (\r, \n, CR LF).

Func MoveBy(sel%{, char%{, line%}});

sel% With char% present, if sel% is zero, all selections are cleared. If non-zero the selection is extended to the
destination of the move. With char% omitted sel%=0 returns the character offset, 1 the line number and 2
the column.

char% If line% is absent, the new position is obtained by adding char% to the current character offset in the file.
You cannot move the caret beyond the existing text.

line% If present it specifies a line offset. The new line is the current line number plus line% and the new
character position is the current character position in the line plus char%. The new line number is limited
to the existing text. If the new character position is beyond the start or end of the line it is limited to the
line. You can use the Draw() command to position a text view to start at a given line.

Returns It returns the new position. MoveBy(1,0) returns the current position without changing the selection. See
sel% (above) to get line and column numbers. You can use XLow() and XHigh() to get the first visible
line and the line past the last fully visible line.

Unicode
When you use a Unicode build of Spike2, the text editor works in terms of byte positions in the text, not in terms of
Unicode characters. If your text only contains ASCII characters with codes in the range 1 to 127 (0x01 to 0x7f), then
positions in the text correspond with displayed characters. However, if your text holds characters with higher
codes, each character may occupy from 1 to 4 bytes. We do not allow you to position the text caret in the middle of
Unicode characters as then if you used Selection$(), the result could be rubbish. So the rules are that if you
move the caret and the move ends in the middle of a multi-byte character, then the move continues in the same
direction until the caret lies between Unicode characters. This means that character moves by 1 or -1 will always
move the text caret by 1 Unicode character, as you would expect, though the position may change by more than 1.

Grid view
In a grid view, this command is used to select cells in the grid relative to the last position. There is (currently) no
script concept of selecting text ranges within a cell. The grid allows selection of multiple rectangular regions.

Func MoveBy(sel%{, col%{, row%}});

sel% If both col% and row% are omitted and this is 1, no change is made and the current row is returned. If this
is 2, the current column is returned. If this is 0, all selections are cleared.

If col% is present, col% (and row% if present) are added to the current column and row to generate a new
position. If sel% is 0, all selections are cleared and the row% and col% start a new rectangular selection. If
1, the current selection is extended to the cell set by row% and col%. If 2, a new selection is started and
added to any existing selection.

col% Optional. This is added to the last column position. The result is limited to the range 0 to the number of
columns -1.

row% Optional, taken as 0 if omitted. This is added to the last column position. The result is limited to the range
0 to the number of rows-1.

Returns If col% is present, or if sel% is 0, the return value is the cell number that we moved to. This is calculated
as the row number times the number of columns plus the column number.If col% is omitted, sel% = 0
returns the current cell number, sel% = 1 returns the current column number and sel% = 2 returns the
current row number.

See also:

Script language

19-529

Draw(), EditSelectAll(), MoveTo(), Selection$(), XHigh(), XLow()

MoveTo()

This command can be used in both Text views and Grid views.

Text view
This moves the text caret in a text window. You position the caret by lines and/or a character offset. You can extend
or cancel the text selection. The first line is number 1. See MoveBy() to get the caret position as a line or column.

Func MoveTo(sel%, char%{, line%});

sel% If zero, all selections are cleared. If non-zero the selection is extended to the destination of the move and
the new current position is the start of the selection.

char% If line% is absent, this sets the new position in the file. You cannot move the caret beyond the existing
text. 0 places the caret at the start of the text.

line% If present it specifies the new line number. The new line number is limited to the existing text. char% sets
the position in this line (and is limited to the line). You can use the Draw() command to position a text
view to start at a given line.

Returns The function returns the new position in the file. You can use XLow() and XHigh() to get the first visible
line and the line past the last fully visible line.

Unicode

In a Unicode build of Spike2, you can only position the caret between characters.

Grid view
In a grid view, this command is used to select cells in the grid. There is (currently) no script concept of selecting
text ranges within a cell. The grid allows selection of multiple rectangular regions.

Func MoveTo(sel%, col%, row%);

sel% If 0, all selections are cleared and the row% and col% start a new rectangular selection. If 1, the current
selection is extended to the cell set by row% and col%. If 2, a new selection is started and added to any
existing selection.

col% If set negative, the entire row set by row% is selected unless row% is too large when the command is
ignored. If this is positive, it sets the column unless it is too large, when it is limited to the available
columns.

row% If set negative, the entire column set by col% is selected (equivalent to selecting from (0, col%) to
(maxRow-1, col%) unless col% is too large, when the command is ignored. If this is positive, it sets the
row (unless it is greater than the number of rows when it is limited to the maximum value.

To select the entire grid, use EditSelectAll() or set both col% and row% to -1.

See also:
Draw(), EditFind(), EditSelectAll(), MoveBy(), Selection$(), XLow(), XHigh()

N

NextTime()

This function is used to find the next item on a channel after a particular x axis position.

Func NextTime(chan%, &pos{, &val|&code%|code%[]{, &rval|rval[]}});

chan% The channel number (1 to n) to use for the search.

pos The x axis position to start the search after. Items at the start position are ignored. To ensure that items at
the Mintime() are found, set position to Mintime()-1. pos is updated to contain the x axis position of
the next item. It is left unchanged if no more items are found or there is an error.

Signal Version 6.06

19-530

val This optional argument is used with waveform channels. It is returned holding the waveform value.

code% This optional parameter is only used if the channel is a marker type, it can be an array that is filled in with
the marker code values or a single integer variable that is updated with the first code value. Each marker
has four code values, the data returned in code%[] is the lesser of 4 and the array size.

rval This optional parameter is only used if the channel is real marker type, it is either an array that is filled in
with the real marker float values or a single real variable that is updated with the first real marker float
value. Real markers can have one or more float values, the data returned in rval[] is the lesser of the data
available and the array size.

Returns The function returns 1 if a data item is found, 0 if there are no more items to be found, or a negative error
code.

See also:
LastTime(), MaxTime(), MinTime()

O

OpClEventGet()

This function gets the details of a particular event in an idealised trace.

Func OpClEventGet(chan%, meth%, &time{, &per{, &{, &flags%}}});

chan% The channel number of the idealised trace.

meth% The indexing method used to determine which event we are addressing. Possible values are:

0 Use the selected event and ignore the time parameter.
1 Find the first event starting before the specified time or the first event in the trace if none exist before

time.
2 Find the event with a start time closest to the specified time.
3 Find the first event starting after the specified time.

time The time used to address the event. This will be set to the start time of the event if an event is found.

per This will be set to the duration of the event if found.

amp This will be set to the amplitude of the event if found.

flags% This will contain the events flags if found. A full list of flags can be found in the description of
SetOpClHist().

Returns The function returns 1 if an event was found otherwise it returns 0.

See also:
OpClEventSet() OpClEventDelete() OpClEventSplit() SetOpClHist()

OpClEventChop()

This function splits the specified event in an idealised trace into two, each having a period equal to half that of the
original. If the event has an amplitude between those of the preceding and following events then the amplitudes
and flags of the first and second new events will be taken from the following and preceding events respectively. In
this case the new events will also be flagged as having assumed amplitudes.

Func OpClEventChop(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.

meth% The indexing method used to determine which event we are addressing. Possible values are:

0 Use the selected event and ignore the time parameter.
1 Find the first event starting before the specified time or the first event in the trace if none exist before

time.
2 Find the event with a start time closest to the specified time.
3 Find the first event starting after the specified time.

Script language

19-531

time The time used to address the event (not needed if meth% is 0).

opt% Omit this or set it to zero to split the entire event in half, set it to 1 to split the event half-way through the
visible portion of the event (to match the interactive behaviour).

Returns The function returns 1 if an event is found otherwise it returns 0.

See also:
OpClEventDelete(), OpClEventGet(), OpClEventMerge(), OpClEventSet(), OpClEventSplit()

OpClEventDelete()

This function deletes a specified event from an idealised trace and amalgamates its neighbours to produce a single
event covering the time range of all three events and an amplitude calculated as an average of the amplitudes of all
three events weighted by their durations. The flags for this event will be taken from the earliest of the three original
events.

Func OpClEventDelete(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.

meth% The indexing method used to determine which event we are addressing. Possible values are:

0 Use the selected event and ignore the time parameter.
1 Find the first event starting before the specified time or the first event in the trace if none exist before

time.
2 Find the event with a start time closest to the specified time.
3 Find the first event starting after the specified time.

time The time used to address the event (not needed if meth% is 0).

opt% Omit this or set it to zero to always delete the event, set it to 1 to only delete if some portion of the event is
visible (to match the interactive behaviour).

Returns The function returns 1 if an event was found and deleted, otherwise it returns 0.

See also:
OpClEventGet(), OpClEventSet(), OpClEventSplit()

OpClEventMerge()

This function amalgamates the specified event with the following event to produce a single event covering the time
range of both events and an amplitude calculated as an average of the amplitudes of both events weighted by their
durations. The flags for this event will be taken from the original specified event.

Func OpClEventMerge(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.

meth% The indexing method used to determine which event we are addressing. Possible values are:

0 Use the selected event and ignore the time parameter.
1 Find the first event starting before the specified time or the first event in the trace if none exist before

time.
2 Find the event with a start time closest to the specified time.
3 Find the first event starting after the specified time.

time The time used to address the event (not needed if meth% is 0).

opt% Omit this or set it to zero to always merge the events, set it to 1 to only merge if some portion of the event
is visible (to match the interactive behaviour).

Returns The function returns 1 if an event was found and merged, otherwise it returns 0.

See also:
OpClEventChop(), OpClEventDelete(), OpClEventGet(), OpClEventSet(), OpClEventSplit()

Signal Version 6.06

19-532

OpClEventSet()

This function sets the details of a particular event in an idealised trace. Neighbouring events will be adjusted to
accommodate the new values by altering the start time or duration acordingly. If you attempt to modify an event
beyond the time range of the immediate neighbours then the function will fail and 0 will be returned.

Func OpClEventSet(chan%, meth%, time, start, period{, amp{, flags%}});

chan% The channel number of the idealised trace.

meth% The indexing method used to determine which event we are addressing. Possible values are:

0 Use the selected event and ignore the time parameter.
1 Find the first event starting before the specified time or the first event in the trace if none exist before

time.
2 Find the event with a start time closest to the specified time.
3 Find the first event starting after the specified time.

time The time used to address the event.

start The new start time for the event being indexed.

period The new duration for the event.

amp The new amplitude for the event. If omited the amplitude will be left unchanged.

flags% The new flag values. If omitted the flags are left unchanged. A full list of flags can be found in the
description of SetOpClHist().

Returns The function returns 1 if an event was found and set, otherwise it returns 0.

See also:
OpClEventGet(), OpClEventDelete(), OpClEventSplit(), SetOpClHist()

OpClEventSplit()

This function splits the specified event in an idealised trace into three, each having a period equal to one third that
of the original.

Func OpClEventSplit(chan%, meth%{, time{, opt%}});

chan% The channel number of the idealised trace.

meth% The indexing method used to determine which event we are addressing. Possible values are:

0 Use the selected event and ignore the time parameter.
1 Find the first event starting before the specified time or the first event in the trace if none exist before

time.
2 Find the event with a start time closest to the specified time.
3 Find the first event starting after the specified time.

time The time used to address the event (not needed if meth% is 0).

opt% Omit this or set it to zero to split the entire event into three, set it to 1 to split only the visible portion of the
event (to match the interactive behaviour).

Returns The function returns 1 if a data item is found, 0 if there are no more items to be found, or a negative error
code.

See also:
OpClEventGet(), OpClEventSet(), OpClEventDelete()

OpClFitRange()

This function fits an idealised trace so that the convolution with the step response function of the filter used to
sample the original data overlays the observed raw data trace.

Func OpClFitRange(chan%, start, end);

Script language

19-533

chan% The channel number of the idealised trace.

start The start time of the range to fit.

end The end time of the range to fit

Returns The function returns 1 if a data item is found, 0 if there are no more items to be found, or a negative error
code.

See also:
OpClEventChop(), OpClEventDelete(), OpClEventGet(), OpClEventMerge(), OpClEventSet()

OpClNoise()

This function is used to measure an area of baseline and obtain measurements of the RMS noise and RMS noise in
the first derivative. You will need to call this function before you use SetOpClScan(); in addition to returning these
values it saves information internally for use by the SCAN analysis.

Proc OpClNoise(chan%, st, end{, &base{, &rms {, &rmsDrv}}});

chan% The channel to measure

st The start time of the area to measure

end The end time of the area to measure

base Returned holding the mean data value within the time range

rms Returned holding the standard deviation of the data within the time range from the mean

rmsDrv Returned as the root mean square of the first derivative of the data within the time range

See also:
SetOpClScan()

Optimise()

This has the same effect as the optimise button in the YAxis dialog and can be used in a data or XY view.
Optimising a channel that is not displayed is not an error. If you give a channel number that is not displayed, we
assume that you know what you are doing, so it is optimised in the display mode that would be used if the channel
were turned on.

Proc Optimise(cSpc{, start{, finish}});

cSpc A channel specifier for the channels to optimise.

start The start of the region to optimise. If omitted, this is the start of the window.

finish The end of the region to optimise. If omitted, this is the end of the window.

See also:
YRange(), YLow(), YHigh(), MinMax(), XYRange()

OutputReset()

This command is equivalent to the Output Reset and Application Output Reset dialogs. It allows you to specify
DAC and digital output levels to be set before and after sampling. There are two command versions: the first sets
values and the second returns the set values.

Func OutputReset(flags%, dacs%[], dacv[], dig%[]{, rampt{, n1401%}});
Func OutputReset(&dacs%[], &dacv[], &dig%[]{, &rampt{, n1401%}})

flags% When to apply the settings. This is the sum of: 1 = at configuration load/program start, 2 = before
sampling, 4 = after sampling.

Signal Version 6.06

19-534

dacs% An array of up to 8 elements. Element n corresponds to DAC n. When setting values, set each element to
1 to apply the associated DAC value, 0 to not apply the associated value. Values of 0 and 1 are returned
when reading back values.

dacv An array of up to 8 DAC values in Volts to apply if the corresponding element of dacs%[] is not zero.

dig% An array of up to 16 elements, element n corresponding to digital output bit n. Set values as: 1=high,
0=low, -1 no change. Elements 0-7 correspond with the output sequencer DIGLOW command, elements 8-15
correspond with the DIGOUT command.

rampt Ramp time in seconds, default 0. This relates to a currently unimplemented feature. It will allow you to
specify how long to take to ramp the DAC outputs to their final values for use in situations where a
sudden DAC change could cause a problem.

n1401% Currently, set this to 0 to set/get values in the Output Resets dialog (sampling configuration) and 1024 for
the Application Output Resets dialog (application preferences). We have plans to allow sampling with
multiple 1401s. When this is enabled you will add the 1401 number to n1401%. If this is omitted, this value
is taken as 0, meaning set the value in the current sampling configuration.

Return Both function versions return the flags% value at the time of the call.

The dacs%, dacv and dig% arrays can be any length without error. If longer arrays are supplied, the extra values
are ignored. If shorter arrays are supplied, only the elements present are used. For the supplied values to have any
effect, at least one of the flags% values must be set and the desired output must be enabled with dacs% or dig%.

This command was added to Signal at version 5.08.

Overdraw()

This function turns overdraw mode on and off for the current view. It also returns the current overdraw mode. With
overdraw mode on, a view will display not only the current frame, but also all of the other frames in the overdraw
frame list.

Func Overdraw({mode%{, cols%{, maxf%{, maxt}}}});
Func Overdraw({get%});

mode% 0 for off, 1 for 2D, 3 for 3D (2 acts as 0).

cols% The colour selection option, this is the same options as for interactive control:

0 Draw all overdrawn (non-current) frames using the Overdraw colour defined in the colour settings.

1 Draw overdrawn frames using the Signal colour cycling table. Each frame is drawn using the next
colour in the table, wrapping round when the end of the table is reached.

2 Draw overdrawn frames using a colour halfway between the channel trace colour and the channel
background.

3 Draw overdrawn frames using the same colour as the current frame – the standard trace colour.

4 Draw overdrawn frames in a colour that fades from the trace colour to the channel background colour.

5 Draw overdrawn frames in a colour that fades from the trace colour to the defined overdraw colour.

6 Draw overdrawn frames in a colour that fades from the trace colour to the channel secondary colour.

7 Draw overdrawn frames using a colour taken from the colour cycling table, each frame is drawn using
a table colour indexed by the frame state, wrapping round the end of the table as necessary

maxf% The maximum number of frames to overdraw. Set to 0 or omit for no limit.

maxt The maximum time range. Set to 0 or omit for no limit.

get% Alters the meaning of the return value. Possible values are:

-1 or omitted to get current mode%
-2 to get current cols%
-3 to get current maxf%
-4 to get current maxt

Returns By default, the state of overdraw mode at the time of the call, or a negative error code. get% may be used
to alter the return. Changes made by this function do not cause an immediate redraw.

See also:

Script language

19-535

OverdrawFrames(), OverdrawGetFrames(), Overdraw3D()

Overdraw3D()

This command controls 3D overdrawing, it is the equivalent of the View menu Overdraw settings dialog. This
command may only be used in a data view. There are two command variants. The first sets the overdraw values, the
second reads back the current settings.

Func Overdraw3D(xProp, yProp{, xScale{, yScale{, zMode%}}});
Func Overdraw3D(get%);

xProp The proportion of the available x space (in the range 0 to 1.0) to use for the 3D effect. Values outside the
range 0 to 1 are limited to this range.

yProp The proportion of the available y space to use for the 3D effect.Values outside the range 0 to 1 are limited
to this range.

xScale This optional argument sets how much to shrink the display width when going from the front to the back
to give a perspective effect. Values are limited to the range 0 (shrink to nothing) to 1 (no shrink). If
omitted, no change is made.

yScale How much to shrink the display height when going from the front to the back to give a perspective effect,
in the range 0 to 1. Values are limited to the range 0 (shrink to nothing) to 1 (no shrink). If omitted, there is
no change.

zMode% This optional argument sets the Z axis scaling, if it is omitted, no change is made. It is one of:

0 Z position is set by the frame's position in the list of overdrawn frames

1 Z position set by the frame number

2 Z position set by the frame start time

get% The variant of the command with one argument uses this value to indicate the value to read back:

-1 to get current xProp

-2 to get current yProp

-3 to get current xScale

-4 to get current yScale

-5 to get current zMode%

Returns 0 when setting a value or the value requested by get%.

See also:

Overdraw(), OverdrawFrames(), OverdrawGetFrames()

OverdrawFrames()

This function is used to set or modify the list of frames to overdraw in the data view. You can specify a range of
frame numbers or a list of frames. If the function is used with no arguments it clears the overdraw frame list.

Func OverdrawFrames({sFrm%{, eFrm%{, mode%{, add%}}}});
Func OverdrawFrames(frm$|frm%[]{, mode%{, add%}});

sFrm% First frame to include. This option processes a range of frames. sFrm% can also be a negative code as
follows:

-101The overdraw list is cleared and the frame buffer is added.

0 All sampled frames (on-line only).

-1 All frames in the file are included.

-2 The frame current at the time of this call.

-3 Frames must be tagged.

-5 Last N frames (on-line only).

-6 Frames must be untagged.

Signal Version 6.06

19-536

Choosing a negative code with add% set to 0 will allow Signal to modify the overdraw status of individual
frames as they are subsequently tagged/untagged. etc If this command is used with add% absent or set to
non-zero then this dynamic behaviour will be lost.

eFrm% Last frame to include. If this is -1 the last frame is the last in the data view. This argument is ignored if
sFrm% is less than 1.

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers. This option provides a list of frame numbers in an array, the first array element
holding the number of frames in the list.

mode% If mode% is present it is used to supply an additional criterion for including each frame in the range, list or
specification. If mode% is absent all frames are included. As with sFrm%, these modes will be applied
dynamicaly if add% is 0. If sFrm% is –5 then this is the value of N. If sFrm% is 0 then this value is ignored,
otherwise the modes are:

0-n Frames must have a state matching the value of mode%.

-1 All frames in the range, list are included.

-2 Only the frame current at the time of drawing, if in the list, is included.

-3 Frames must be tagged.

-6 Frames must be untagged.

add% If add% is present and non-zero it determines whether the specified frames are to be added to or removed
from the existing display list for the view, as follows:

-1 Remove the frames from the existing display list.

0 Clear the display list before adding these frames.

1 Add the frames to the existing display list (the default).

If add% is absent the new frame list will be added to the existing display list.

Returns The number of frames in the new overdraw list or a negative error code.

See also:
Overdraw(), OverdrawGetFrames()

OverdrawGetFrames()

This function is used to get the list of frames overdrawn in the data view.

Func OverdrawGetFrames({list%[]});

list% An optional array of frame numbers to hold the list of frame numbers. If the array is too short, enough
frames are returned to fill the array. Element zero holds the number of frames returned in the array.

Returns The number of frames that would be returned if the array was of unlimited length, or zero if the view is not
a data view.

See also:
Overdraw(), OverdrawFrames()

P

PaletteGet()

This reads back the percentages of red, green and blue in a colour in the palette.

Proc PaletteGet(col%, &red, &green, &blue);

col% The colour index in the palette in the range 0 to 39.

red The percentage of red in the colour.

green The percentage of green in the colour.

blue The percentage of blue in the colour.

Script language

19-537

This function is now deprecated. You can replace PaletteGet(col%, r,g,b) with ColourGet(-1, col%, r,
g, b) and dividing r, g and b by 100. PaletteGet() should only be used when compatibility with older version
of Signal is required

See also:
Colour dialog, ColourGet(), ChanColour(), Colour(), PaletteSet(), XYColour()

PaletteSet()

This sets the colour of one of the 40 palette colours. Colours 0 to 6 form a grey scale and cannot be changed.
Colours are specified using the RGB (Red, Green, Blue) colour model. For example, bright blue is (0%, 0%, 100%).
Bright yellow is (100%, 100%, 0%). Black is (0%, 0%, 0%) and white is (100%, 100%, 100%).

Proc PaletteSet(col%, red, green, blue{, solid%});

col% The colour index in the palette in the range 0 to 39. Attempting to change a fixed colour or a non-existent
colour has no effect.

red The percentage of red in the colour.

green The percentage of green in the colour.

blue The percentage of blue in the colour.

solid% If present and non-zero, sets the nearest solid colour (all pixels have the same hue in a solid colour).
Systems that don't need to do this ignore solid%.

This function is now deprecated. You can replace PaletteSet(col%,r,g,b) with ColourSet(-1, col%,
r/100, g/100, b/100). There is no equivalent of the solid% argument. PaletteSet() should only be used
when compatibility with older version of Signal is required.

See also:
Colour dialog, ColourSet(), ChanColour(), Colour(), PaletteGet(), XYColour()

PCA()

This command performs Principal Component Analysis on a matrix of data. This can take a long time if the input
matrix is large.

Func PCA(flags%, x[][]{, w[]{, v[][]}});

flags% Add the following values to control pre-processing of the input data:

1 Subtract the mean value of each row from each row

2 Normalise each row to have mean 0.0 and variance 1.0

4 Subtract the mean value of each column from each column

8 Normalise each column to have mean 0.0 and variance 1.0

You would normally pre-process the rows or the columns, not both. If you set flags for both, the rows are
processed first.

x[][] A m rows by n columns matrix of input data that is replaced by the output data. The first array index is the
rows; the second is the columns. There must be at least as many rows as columns (m >= n). If you have
insufficient data you can use a square matrix and fill the missing rows with zeros. If you were computing
the principal components of spike data, on input, each row would be a spike waveform. On output, each
row holds the proportion of each of the n principal components scaled by the w[] array that, when added
together, would best (in a least-squares error sense) represent the input data.

w[] This is an optional array of length at least n that is returned holding the variance of the input data that
each component accounts for. The components are ordered such that w[i] >= w[i+1].

v[][] This is an optional square matrix of size n by n that is returned holding the n principal components in the
rows.

Returns 0 if the function succeeded, -1 if m < n, -2 if w has less than n elements or v has less than n rows or
columns.

Signal Version 6.06

19-538

Pow()

This function raises x to the power of y. If the calculation underflows, the result is 0.

Func Pow(x|x[]{[]...}, y);

x A real number or a real array to be raised to the power of y.

y The exponent. If x is negative, y must be integral.

Returns If x is an array, it returns 0 or a negative error code. If x is a number, it returns x to the power of y unless an
error is detected, when the script halts.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Rand(), Round(), Sin(),
Sqrt(), Tan(), Trunc()

Print()

This command prints to the current view at the text caret. If the first argument is a string (not an array), it is used as
format information for the remaining arguments. If the first argument is an array or not a string or if there are more
arguments than format specifiers, Signal prints the arguments without a format specifier in a standard format and
adds a new line character at the end. If you provide a format string and you require a new line character at the end
of the output, include \n at the end of the format string.

Func Print(form$|const arg0{, const arg1{, const arg2...}});

form$ A string that specifies how to treat the following arguments. The string contains two types of characters:
ordinary text that is copied to the output unchanged and format specifiers that convert the following
arguments to text. Format specifiers start with % and end with one of the letters d, x, c, s, f, e or g in upper
or lower case. For a % in the output, use %% in the format string.

arg1,2 The arguments used to replace %c, %d, %e, %f, %g, %s and %x type formats.

Returns 0 or a negative error code. Fields that cannot be printed are filled with asterisks.

Format specifiers
The full format specifier is: %{flags}{width}{.precision}format

flags
The flags are optional and can be placed in any order. They are single characters that modify the format
specification as follows:

- Specifies that the converted argument is left justified in the output field.
+ Valid for numbers, and specifies that positive numbers have a + sign.
space If the first character of a field is not a sign, a space is added.
0 For numbers, causes the output to be padded on the left to the field width with 0.
For x format, 0x is prefixed to non-zero arguments. For e, f and g formats, the output always has a decimal

point. For g formats, trailing zeros are not removed.

width
If this is omitted, the output field will be as wide as is required to express the argument. If present, it is a number
that sets the minimum output field width. If the output is narrower than this, the field is padded on the left (on the
right if the - flag was used) to this width with spaces (zeros if the 0 flag was used). The maximum width for numbers
is 100.

precision
This number sets the maximum number of characters to be printed for a string, the number of digits after the decimal
point for e and f formats, the number of significant figures for g format and the minimum number of digits for d
format (leading zeros are added if required). It is ignored for c format. There is no limit to the size of a string.
Numeric fields have a maximum precision value of 100.

Script language

19-539

format
The format character determines how the argument is converted into text. Both upper and lower cased version of
the format character can be given. If the formatting contains alphabetic characters (for example the e in an
exponent, or hexadecimal digits a-f), if the formatting character is given in upper case the output becomes upper
case too (e+23 and 0x23ab become E+23 and 0X23AB). The formats are:

c The argument is printed as a single character. If the argument is a numeric type, it is converted to an integer,
then the low byte of the integer (this is equivalent to integer mod 256) is converted to the equivalent ASCII
character. You can use this to insert control codes into the output. If the argument is a string, the first
character of the string is output. The following example prints two tab characters, the first using the standard
tab escape, the second with the ASCII code for tab (8):

Print("\t%c", 8);

d The argument must be a numeric type and is printed as a decimal integer with no decimal point. If a string is
passed as an argument the field is filled with asterisks. The following prints “ 23,0002”:

Print("%4d,%.4d", 23, 2.3);

e The argument must be a numeric type; otherwise the field is filled with asterisks. The argument is printed as
{-}m.dddddde±xx{x} where the number of d’s is set by the precision (which defaults to 6). A precision of 0
suppresses the decimal point unless the # flag is used. The exponent has at least 2 digits (in some
implementations of Signal there may always be 3 digits, others use 2 digits unless 3 are required). The
following prints “2.300000e+01,2.3E+00”:

Print("%4e,%.1E", 23, 2.3);

f The argument must be a numeric type; otherwise the field is filled with asterisks. The argument is printed as
{-}mmm.ddd with the number of d’s set by the precision (which defaults to 6) and the number of m’s set by the
size of the number. A precision of 0 suppresses the decimal point unless the # flag is used. The following
prints “+23.000000,0002.3”:

Print("%+f,%06.1f", 23, 2.3);

g The argument must be a numeric type; otherwise the field is filled with asterisks. This uses e format if the
exponent is less than -4 or greater than or equal to the precision, otherwise f format is used. Trailing zeros and
a trailing decimal point are not printed unless the # flag is used. The following prints “2.3e-06,2.300000”:

Print("%g,%#g", 0.0000023, 2.3);

s The argument must be a string; otherwise the field is filled with asterisks.

x The argument must be a numeric type and is printed as a hexadecimal integer with no leading 0x unless the #
flag is used. The following prints “1f,0X001F”:

Print("%x,%#.4X", 31, 31);

Arrays in the argument list
The d, e, f, g, s and x formats support arrays. One dimensional arrays have elements separated by commas; two
dimensional arrays use commas for columns and new lines for rows. Extra new lines separate higher dimensions. If
there is a format string, the matching format specifier is applied to all elements.

Infinity and Not a Number
The floating point number format normally stores a number within the floating point range. However, the format can
also store positive infinity, negative infinity and Not a Number values. These are tricky to generate inside Signal,
but you can do it by dividing by zero in some circumstances, for example. If you try to print these values in f or g
format you get #IND for a NaN (for example the result of 0.0/0.0) or #INF or -#INF for an infinity (for example 1.0/0.0
or -1.0/0.0).

See also:
Message(), ToolbarText(), Print$(), PrintLog()

Signal Version 6.06

19-540

Print$()

This command prints formatted output into a string. The syntax is identical to the Print() command, but the
function returns the generated output as a string.

Func Print$(form$|const arg0{, const arg1{, const arg2...}});

form$ An optional string with formatting information. See Print() for a description.

arg1,2 The data to format into a string.

Returns It returns the string that is the result of the formatting operation. Fields that cannot be printed are filled
with asterisks.

See also:
Asc(), Chr$(), DelStr$(), LCase$(), Left$(), Len(), Mid$(), Print(), PrintLog(),
Right$(), Str$(), UCase$(), Val()

PrintLog()

This command prints to the log window. The syntax is identical to Print(). The output always goes to the log
views and is always placed at the end of the view contents.

Func PrintLog(form$|arg0{, arg1{, arg2...}});

form$ An optional string with formatting information. See Print() for a description.

arg1,2 The data to print.

Returns 0 or a negative error code. Fields that cannot be printed are filled with asterisks.

See also:
Print(), Print$(), Message()

Process()

This function processes data into the current memory or XY view or to a memory channel in the current data view.
The view or channel must have been generated by using SetXXXX() or MeasureToChan() on a source data view
which must not have been closed. This function takes data starting from a specified position in the current frame in
the source data view and processes it.

Func Process(start{, clear%{, opt%{, optx%{, chan%}}}});

start The source view x axis position from which to start processing. Positions less than MinTime() are treated
as MinTime(). Positions greater than Maxtime() mean no processing is done. The offset from the start
of frame in SetXXX() will be ignored. If the start position specified plus the width of data required goes
past the end of the source data then no data is processed.

clear% If present, and non-zero, the memory or XY view or destination channel data is cleared before the results
of the analysis are added to the view and Sweeps() result is reset.

opt% If present, and non-zero, the display of data in the memory or XY view or destination channel is optimised
after processing the data.

optx% For XY views only, if present and non-zero, the X axis in the XY view is optimised after processing the
data.

chan% For memory channels only, if present and a valid memory channel number, it is the channel number to
process to.

Returns One if all is OK, zero if no data was processed or a negative error code.

A common mistake is to forget that the current view is not the source view and to use View(0).xxx when
View(ViewSource()).xxx was intended.

See also:

Script language

19-541

SetXXX(), SetAverage(), SetPower(), ProcessAll(), ProcessFrames(), ProcessOnline(),
Sweeps(), Optimise()

ProcessAll()

This function is used in a data view to process all memory views, XY views or memory channels that are derived
from it.

Func ProcessAll(sFrm%{, eFrm%{, chans%}});

sFrm% The first frame to process.

eFrm% If this is present, a range of frames is processed, from sFrm% to eFrm% inclusive. If omitted only sFrm% is
processed.

chans% If this is present and set to –1 then all memory channels will be processed otherwise all memory or XY
views will be processed.

Returns Zero if no errors or a negative error code.

For each derived memory view, the settings of the clear% and opt% arguments are taken from the last call of
Process() or ProcessFrames(). If a memory view had not yet been processed clear% is zero and opt% is non-
zero.

See also:
Process(), ProcessFrames(), ProcessOnline()

ProcessFrames()

This function is used in a derived memory or XY view to process specified frames from the source data view or in a
data view to process specified frames of a memory channel. You can process a range of frame numbers or specify a
list of frames.

Func ProcessFrames(sF%{, eF%{, mode%{, clear%{, opt%{, optx%{, chan%{, auto
%}}}}}}});
Func ProcessFrames(frm$|frm%[]{, mode%{, clear%{, opt%{, optx%{, chan%{,
auto%}}}}}});

sF% First frame to process. This option processes a range of frames. sFrm% can also be a negative code as
follows:

-1 All frames in the file are included.

-2 The current frame.

-3 Frames must be tagged.

-6 Frames must be untagged.

eF% Last frame to process. If this is -1 the last frame in the data view is used. This argument is ignored if sF% is
a negative code.

frm$ A frame specification string. This option specifies a list of frames using a string such as “1..32,40,50”.

frm%[] An array of frame numbers to process. This option provides a list of frame numbers in an array. The first
element in the array holds the number of frames in the list.

mode% If mode% is present, it is used to supply an additional criterion for including each frame in the range, list or
specification. If mode% is absent all frames are included. The modes are:

0-n Frames must have a state matching the value of mode%.

-1 All frames in the specification are processed.

-2 Only the current frame, if in the list, will be processed.

-3 Frames must also be tagged.

-6 Frames must also be untagged.

clear% If present, and non-zero, the memory or XY view or destination channel data is cleared before the results
of the analysis are added to the view and Sweeps() result is reset.

Signal Version 6.06

19-542

opt% If present, and non-zero, the display of data in the memory or XY view or destination channel is optimised
after processing the data.

optx% For XY views only, if present and non-zero, the X axis in the XY view is optimised after processing the
data.

chan% For memory channels only, this is the channel number to process to. It is ignored if it is not a valid memory
channel number.

auto% Set this to 1 for automatic reprocessing if the source data changes, otherwise omit it or set it to zero.

Returns Zero if no errors or a negative error code.

See also:
Process(), ProcessAll(), ProcessOnline()

ProcessOnline()

This function is equivalent to the process dialog for a memory or XY view derived from a sampling document or a
memory channel in the sampled document. It does not cause any processing, but sets up processing so that when
the next automatic processing can happen, the parameters set by this command are used.

Func ProcessOnline(mode%{, val%{, up%{, opt%{, optx%{, chan%(, clear%(,
leeway}}}}}}});

mode% The modes are:

0 All sampled sweeps are processed regardless of whether they are written to disk. This mode will not
work if you are using Fast triggers or Fast Fixed interval sampling modes.

-1 All sweeps saved to disk are processed.

-3 All tagged frames written to disk are processed.

-4 Sweeps with a state of val% are processed. A state of 0 is used if val% is not provided.

-5 Processes the last val% sweeps including the latest. The result is cleared and Sweeps() count is
reset to 0 before each update.

-6 All untagged frames written to disk are processed.

val% With mode% set to -4 or -5 this provides the value for the frame state or the number of frames respectively.
With other mode% values it sets a frame subset value that qualifes the frames selected by mode%; positive
val% values set a frame state code while using -1, -3 or -6 selects all, tagged and untagged frames
respectively. Other negative values will give undefined results.

up% This provides the number of frames before the next process or zero for no gap.

opt% If present, and non-zero, the display of data in the memory or XY view or destination channel is optimised
after processing the data.

optx% For XY views only, if present and non-zero, the X axis in the XY view is optimised after processing the
data.

chan% For memory channels only, this is the channel number for which we are changing the settings. It is ignored
if it is not a valid memory channel number.

clear% Set to 1 to clear destination data before each process. Set to 0 or omit to leave destination data unchanged
before each process.

leeway This is used when processing to a memory channel as set up using MeasureToChan(). It sets how close
to the end of the incoming data cursor 0 is allowed to get, so as to allow space after cursor zero for
measurements or for other cursors to position themselves.

Returns 0 or a negative error code.

See also:
MeasureToChan(), Process(), ProcessAll(), ProcessFrames()

Script language

19-543

Profile()

This command can create and delete keys and store and read integer and string values within the Signal section of
the registry. Signal stores information within the HKEY_CURRENT_USER\Software\CED\Signal section of the
system registry. The registry is organised as a tree of keys with lists of values attached to each key. If you think of
the registry as a filing system, the keys are folders and the values are files. Keys and values are identified by case-
insensitive text strings.

You can view and edit the registry with the regedt32 program, which is part of your system. Select Run from the
start menu and type regedt32, then click OK. Please read the regedt32 help information before making any
registry changes. It is a very powerful program; careless use can severely damage your system.

Do not write vast quantities of data into the registry; it is a system resource and should be treated with respect. If
you must save a lot of data, write it to a text or binary file and save the file name in the registry. If you think that
you may have messed up the Signal section of the registry, use regedt32 to locate the Signal section and delete
it. The next time you run Signal the section will be restored; you will lose any preferences you had set.

Proc Profile(key${, name${, val%{, &read%}}});
Proc Profile(key${, name${, val${, &read$}}});

key$ This string sets the key to work on inside the Signal section of the registry. If you use an empty string,
the Signal key is used. You can use nested keys separated by a backslash, for example "My bit\
\stuff" to use the key stuff inside the key My bit. The key name may not start with a backslash.
Remember that you must use two backslashes inside quote marks; a single backslash is an escape
character. It is never an error to refer to a key that does not exist; the system creates missing keys for you.

name$ This string identifies the data in the key to read or write. If you set an empty name, this refers to the
(default) data item for the key set by key$.

val This can be either a string or an integer value. If read is omitted, this is the value to write to the registry. If
read is present, this is the default value to return if the registry item does not exist.

read If present, it must have the same type as val. This is a variable that is set to the value held in the registry.
If the value is not found in the registry, the variable is set to the value of the val argument.

Profile() can be used with 1 to 4 arguments. It has a different function in each case:

1 The key identified by key$ is deleted. All sub-keys and data values attached to the key and sub-keys are also
deleted. Nothing is done if key$ is empty.

2 The value identified by name$ in the key key$ is deleted.

3 The value identified by name$ in the key key$ is set to val% or val$.

4 The value identified by name$ in the key key$ is returned in val% or val$.

The following script example collects values at the start, then saves them at the end:

var path$, count%;
Profile("My data", "path", "c:\\work", path$); 'get initial path
Profile("My data", "count", 0, count%); 'and initial count
... 'your script...
Profile("My data","path", path$); 'save final value
Profile("My data","count", count%); 'save final count

Registry use by Signal
The HKEY_CURRENT_USER\Software\CED\Signal key contains the following keys that are used by Signal:

BarList
This key holds the list of scripts to load into the script bar when Signal starts.

Edit
This key holds the editor settings for scripts, output sequences and general text editing.

PageSetup
This key holds the margins in units of 0.01 mm for printing data views, and the margins in mm for text-based views.
It also holds header and footer text for text-based views.

Signal Version 6.06

19-544

Preferences
The values in this key are mainly set by the Edit menu preferences. If you change any Edit menu Preferences value
in this key, Signal will use the changed information immediately. The values are all integers except the file path,
which is a string:

1401 ADC range 5000=5 Volt 1401 hardware, 10000=10 Volt 1401 hardware, -1=Use last seen hardware
settings

Assume Power 0=Do not assume Power1401 hardware, 1=do assume.

Decorated states text
online

0=Don't show extra states information in sampling window title, 1= show extra states
information.

Defer Optimise 0=Y-axis optimised on data acquired so far when on-line, 1=Y-axis optimise deferred to
sweep end when on-line.

Disable AuxTel 0=use auxiliary telegraph support if installed, 1=ignore any installed auxiliary telegraph
support (mostly for demonstrating the software!)

Enhanced MetaFile 0=Windows metafile, 1=enhanced metafile for clipboard.

Enter debug on error 1=Enter the script debugger when an error occurs. 0=Do not.

Error log level Sets the minimum level of information that will be logged; 0=information, 1=warnings,
2=errors, 3=critical errors.

File shorts 0=Waveform data to be written to CFS file as 16 bit integers, 1=to be written as floating
point values. Add 256 if calibrated zero is to be kept at zero volts.

File update 0=Discard changes to data, 1=query the user, 2=always save changes.

Font Italic 0=Use non-italic font as default for file and memory views. 1=use italic font.

Font Name Name of font to use as default for file and memory views.

Font Pitch 0=Use default-pitch font for the above, 1=use a fixed-pitch font (all characters the same
width), 2=use a variable-pitch font. To this value you should add: 4=don’t care which
family of font used, 8=use a serifed, variable-width font, 16=sans-serif, variable width
font, 32=constant-width font, 64=cursive font, 128=decorative font.

Font Size Size of font to use as default for file and memory views.

Font Weight 400=Normal font, 700=bold font.

Force idle cycles 0 – 65535 number of time a script idle is called before handing time back to the System.
0=No limit.

Force idle time Number of ms to force Signal to idle for before giving time back to System (0-200). 0=No
limit.

Frame 1 on sample
finish

0=Show last filed frame when sampling finishes, 1=show frame 1 when sampling
finishes.

Frame time mode 0=Seconds, 1=HH:MM:SS, 2=Time of day]].

Keep ADC range 0=Maintain always, 1=Keep showing full ADC range if already doing so, 2=Maintain
ADC range percentage.

Kill dynamic clamp 0=allow dynamic clamp usage, 1=ignore all dynamic clamp setups (mostly for use when
demonstrating the software!).

Line thickness codes Bits 0-3 = Axis code, bits 4-7 = Data code. The codes 0-15 map onto the 16 values in the
drop down list. Bit 7=1 to use lines, not rectangles, to draw axes.

Low channels at top 0=Standard display shows low channel at bottom, 1=at top.

Maximum Log lines Sets the maximum number of text lines in the log window or 0 for no limit.

MetaFile Scale 0-11 selects from the list of allowed scale factors.

MetaFile NoCompress 0=allow compressed metafiles, 1=no metafile compression.

New file path New data file directory or blank for current folder.

No background colour
check

0=check all colours against background & enforce visibility, 1=no checks - just use the
colours set.

No flicker free drawing 0=Use flicker free drawing, 1=Do not.

No save prompt 0=Prompt to save derived views, 1=no prompt.

Script language

19-545

No Y axis invert on
drag

0=Allow dragging to invert a Y axis, 1=don't allow inversion.

Prompt comment 1=Prompt for File Comment when sampling stops. 0=Do not.

Provide clamp features 0=No clamping features are provided in user interface, 1=clamping features are provided
& used.

Save modified scripts 1=Save modified scripts before running them. 0=Do not save.

Text print mode Controls colour usage in text printing; 0=use screen colours, 1=invert if light on dark,
2=black on white, 3=colour on white.

Time mode 0=Display seconds, 1=display ms, 2=display µ]]s.

Update interval Number of ms between on-line updates or script idles.

The keys with names starting "Bars-" are used by system code to restore dockable toolbars. You can delete them
all safely; any other change is likely to crash Signal.

Recent file list
This key holds the list of recently used files that appear at the bottom of the file menu.

Recover
This key holds the information to recover data from interrupted sampling sessions.

Settings
This is where the evaluate bar saves the last few evaluated lines.

Tip
The Tip of the Day dialog uses this key to remember the last tip position.

Version
Signal uses this key to detect when a new version of the program is run for the first time.

Win32
This key holds the desired working set sizes. The working set sizes in use are displayed in the Help menu About
Signal dialog. Click the Help button in this dialog to read more about using these registry values. The values are as
follows:

Minimum working set Minimum size in kB (units of 1024 bytes), default is 800.

Maximum working set Maximum size in kB, default is 4000 (4 MB).

See also:
About the Working Set, ViewUseColour()

ProgKill()

This function terminates a program started using ProgRun(). This can be dangerous, as it will terminate a program
without giving it the opportunity to save data.

Func ProgKill(pHdl%);

pHdl% A program handle returned by ProgRun().

Returns Zero or a negative error code.

See also:
ProgRun(), ProgStatus()

Signal Version 6.06

19-546

ProgRun()

This function runs a program using command line arguments as if from a command prompt. Use ProgRun() to test
the program status, ProgKill() to terminate it. The program inherits its environment variables from Signal, see
System$() for details.

Func ProgRun(cmd${, code% {,xLow, yLow, xHigh, yHigh}});

cmd$ The command string as typed at a command prompt. To run shell command x use "cmd /c x". To run
another copy of Signal, use "cfsview.exe /M {filename}".

code% If present, this sets the initial application window state: 0=Hidden, 1=Normal, 2=Iconised, 3=maximised.
Some programs set their own window state so this may not work. The next 4 arguments set the Normal
window position:

xLow Position of the left window edge as a percentage of the screen width.

yLow Position of the top window edge as a percentage of the screen height.

xHigh The right hand edge as a percentage of the screen width.

yHigh The bottom edge position as a percentage of the screen height.

Returns A program handle or a negative error code. ProgStatus() releases resources associated with the handle
when it detects that the program has terminated.

See also:
FileCopy(), FileDelete(), ProgKill(), ProgStatus(), System$()

ProgStatus()

This function tests if a program started with ProgRun() is still running. If it is not, resources associated with the
program handle are released.

Func ProgStatus(pHdl%);

pHdl% The program handle returned by ProgRun().

Returns 1=program is running, 0=terminated, resources released, handle now invalid. A negative error code (-1525)
means that the handle is invalid.

See also:
ProgKill(), ProgRun()

Protocol commands

ProtocolAdd()

This function adds a new protocol to the list of protocols defined in the sampling configuration. This function
normally operates on the stored sampling configuration but if used during sampling it operates upon the on-going
sampling.

Func ProtocolAdd(name$);

name$ The name for the new protocol, which must not be blank.

Returns The number for the new protocol or a negative error code.

See also:
Protocols(), ProtocolDel(), ProtocolClear(), ProtocolName$()

Script language

19-547

ProtocolClear()

This function initialises a protocol defined in the sampling configuration. This function normally operates on the
stored sampling configuration but if used during sampling it operates upon the on-going sampling.

Func ProtocolClear(num%|name$);

num% The number of the protocol to clear, from 1 to the number returned by Protocols().

name$ The name of the protocol to be cleared.

Returns Zero or a negative error code.

See also:
Protocols(), ProtocolDel(), ProtocolAdd(), ProtocolName$()

ProtocolDel()

This function deletes a protocol from the list defined in the sampling configuration. This function normally operates
on the stored sampling configuration but if used during sampling it operates upon the on-going sampling.

Func ProtocolDel(num%|name$);

num% The number of the protocol to delete, from 1 to the number returned by Protocols().

name$ The name of the protocol to be deleted.

Returns Zero or a negative error code.

See also:
Protocols(), ProtocolAdd(), ProtocolClear(), ProtocolName$()

ProtocolEnd()

This sets what happens when the end of a protocol is reached. This function normally operates on the stored
sampling configuration but if used during sampling it operates upon the on-going sampling.

Func ProtocolEnd(num%|name${, atEnd%});

num% The number of the protocol to delete, from 1 to the number returned by Protocols().

name$ The name of the protocol to be deleted.

atEnd% Set to 0 for the protocol finishing, or 1 to n to select chaining to protocol 1 to n. No protocol is selected if
next value is above current count of protocols.

Returns The previous value of atEnd%.

See also:
Protocols(), ProtocolAdd(), ProtocolClear(), ProtocolName$()

ProtocolFlags()

This function gets the flags for a protocol defined in the sampling configuration and optionally sets the flags to a
new value. This function normally operates on the stored sampling configuration but if used during sampling it
operates upon the on-going sampling - though it will probably not operate correctly when used on a protocol that
is already running.

Func ProtocolFlags(num%|name${, new%});

num% The number of the protocol to use, from 1 to the number returned by Protocols().

name$ The name of the protocol to use.

new% If present, the new protocol flags value. This is the sum of values for each flag option, the values are:

1 Initialise pulse variations when protocol starts.

Signal Version 6.06

19-548

2 Sampling switches to state 0 when protocol finishes.

4 Turn on writing to disk when protocol starts.

8 Selects not turning off writing to disk on finishing.

16 Selects creation of a button in the control bar for this protocol.

32 Selects cycling protocol states only on writing, otherwise always.

64 Selects running this protocol automatically at the start of sampling.

128 Enables the use of the optional per-step write flags.

Returns The flags for this protocol before the call.

See also:
Protocols(), ProtocolClear(), ProtocolName$(), ProtocolRepeats()

ProtocolName$()

This function gets the name for a protocol defined in the sampling configuration and optionally sets a new name.
This function normally operates on the stored sampling configuration but if used during sampling it operates upon
the on-going sampling.

Func ProtocolName$(num%|name${, new$});

num% The protocol number to use, from 1 to the number returned by Protocols().

name$ The name of the protocol to use.

new$ If present, this sets the new protocol name.

Returns The name of the protocol before this call.

See also:
Protocols(), ProtocolAdd(), ProtocolDel(), ProtocolClear()

ProtocolRepeats()

This function gets the number of repeats set for a protocol defined in the sampling configuration and optionally
sets a new repeat count. This function normally operates on the stored sampling configuration but if used during
sampling it operates upon the on-going sampling.

Func ProtocolRepeats(num%|name${, new%});

num% The protocol number to use, from 1 to the number returned by Protocols().

name$ The name of the protocol to use.

new% If present, sets the new repeat count. Any repeat count from 1 to 1000 can be set, or zero for a protocol
which repeats forever.

Returns The repeat count for the protocol before the call.

See also:
Protocols(), ProtocolFlags(), ProtocolEnd()

Protocols()

This function returns the number of protocols defined in the sampling configuration. This function normally
operates on the stored sampling configuration but if used during sampling it operates upon the on-going sampling.

Func Protocols();

Returns The number of protocols defined in the sampling configuration.

See also:
ProtocolAdd(), ProtocolDel(), ProtocolClear(), ProtocolName$()

Script language

19-549

ProtocolStepGet()

This function gets information about a specific step within a protocol defined within the sampling configuration.
This function normally operates on the stored sampling configuration but if used during sampling it operates upon
the on-going sampling.

Func ProtocolStepGet(num%|name$, step, &state, &repeat, &next{, &write});

num% The protocol number to use, from 1 to the number returned by Protocols().

name$ The name of the protocol to use.

step The step in the protocol, from 1 to 10.

state This parameter is updated with the state for this step.

repeat This parameter is updated with the repeat count for this step.

next This parameter is updated with the next step value for this step.

write If present this is updated with the per-step write flag; 1 for writing and 0 for not writing. The per-step write
flags have no effect unless the appropriate enable bit is set in the protocol flags.

Returns Zero or a negative error code.

See also:
Protocols(), ProtocolFlags(), SampleStates(), ProtocolClear(), ProtocolName$()

ProtocolStepSet()

This function sets up a specific step within a protocol defined within the sampling configuration. This function
normally operates on the stored sampling configuration but if used during sampling it operates upon the on-going
sampling - though it will probably not operate correctly when used on a protocol that is already running.

Func ProtocolStepSet(num%|name$, step%, state, repeat, next{, write});

num% The number of the protocol to use, from 1 to the number returned by Protocols().

name$ The name of the protocol to use.

Step% The step in the protocol, from 1 to 10.

state This parameter sets the state for this step, from 0 to the maximum state number in use. State numbers
higher than the maximum are set to zero.

repeat This parameter sets the repeat count for this step, from 1 to 1000.

next This parameter sets the next step value for this step, from 0 to 10. A value of zero terminates protocol
execution.

write If present this value sets the per-step write flag; use 1 for writing and 0 for not writing. If write is omitted
the per-step write flag is set to not writing. The per-step write flags have no effect unless the appropriate
enable bit is set in the protocol flags.

Returns Zero or a negative error code.

See also:
Protocols(), ProtocolFlags(), SampleStates(), ProtocolClear(), ProtocolName$()

Pulse output commands

The PulseXXX family of commands can be used to control the pulse outputs generated during sampling sweeps.
Pulses can be generated on up to eight 1401 DACs and on 8 bits of dedicated digital output. For Micro1401s only
two DACs are available while on Power1401 systems normally four DACs are available but more can be added (up
to the maximum of 8) by extending the 1401 hardware with top boxes. These functions normally operate on the
stored sampling configuration but if used during sampling they operate upon the on-going sampling.

Signal Version 6.06

19-550

As part of the Signal multiple states facilities, each state can have a separate set of pulse outputs. Because of this,
all script functions that access the pulses information have a parameter to select the state. For sampling situations
that do not involve multiple states, this parameter should be set to zero.

Individual pulses can be specified by their number or by name. For access by number the pulses for a given output
are kept in a sorted list in order of their start time. The (always present) initial level is pulse number zero and
subsequent pulses are number one and upwards. Though access by number seems straightforward, it does have
some drawbacks. Firstly, when the start time of a pulse is changed the ordering of the list can change and the pulse
number will be changed. Secondly, for complex reasons, the arbitrary waveform output item is always attached to
the control track list, and does not appear in the output lists for the DACs to which the waveform output is sent.
This can make things very confusing! Therefore we recommend that, for non-trivial pulse output arrangements with
a lot of pulse movement or manipulation, individual pulses are accessed by name.

See also:
PulseAdd(), PulseClear(), PulseDataGet(), PulseDataSet(), PulseDel(), PulseFlags(),
PulseName$(), Pulses(), PulseTimesGet(), PulseTimesSet(), PulseType(), PulseVarGet(),
PulseVarSet(), PulseWaveformGet(), PulseWaveformSet(), PulseWaveGet(), PulseWaveSet()

PulseAdd()

This function adds a new pulse to the output pulses for a given state and output. The pulse created will use a
default set of parameters depending upon the type of pulse and the outputs used (for digital outputs the pulse is
created on all enabled outputs, for DAC output pulses the pulse created will have a default amplitude and other
values), you will need to use PulseDataSet() to change these values to what is actually wanted. Note that, if
you add a waveform output item to a set of pulses that already contains another waveform output item, the output
DACs and waveform rate are set to match the existing waveform(s) as these cannot vary between the waveform
items. The ability to add multiple waveform items was added in Signal version 5.00.

Func PulseAdd(state%, out%, type%, name$, time, len{, flags%});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 selects the control track, though for items that can be added to the control track
(waveform and marker generation items) out% is ignored and the control track is always used.

type% A code for the type of pulse. The legal codes are:

1 A simple square pulse.
2 A square pulse with varying amplitude.
3 A square pulse with varying duration.
4 A ramp pulse.
5 A cosine wave segment.
6 An arbitrary waveform (for the control track only, out% is ignored), the rate is initialised to 100Hz.
7 A pulse train; the number of pulses is set to 2

8 A marker generation item (for the control track only, out% is ignored). This type of pulse was added in
Signal version 5.00.

name$ The name for the new pulse, which can be blank. Pulse names are intended to make it easier to manipulate
pulses from a script as changing the start time of a pulse can cause the pulse number to spontaneously
change.

time The start time for the pulse in seconds from the start of the outputs.

len The length of the pulse, in seconds. For a pulse train, this is the length of the individual pulses in the train,
not the length of the entire train.

flags% If present, this sets the flags for the pulse. Flag bit 0 is set for varying-width pulses to push following
pulses back, bit 1 is set for pulses to stay up at the end, bit 3 is set for a marker item to read the digital
inputs to set the marker data. If this parameter is omitted, the pulse flags are cleared.

Returns The number of the new pulse or a negative error code. The initial level item is always present as pulse zero,
so the smallest successful return value is 1.

See also:
Pulses(), PulseDataSet(), PulseDel(), SampleStates(), SampleOutLength(), PulseName$()

Script language

19-551

PulseClear()

This function deletes all the pulses for a given state and output (or all outputs) and sets the initial levels of the
outputs to zero.

Func PulseClear(state%{, out%});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track. If this parameter is omitted, then all outputs for the selected state
are cleared. Note that to remove arbitrary waveform outputs you should clear the control track and not the
DACs on which the waveforms are output.

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), PulseDel(), SampleStates()

PulseDataGet()

This function retrieves the amplitude and other values for a pulse in the outputs for a given state and output. Up to
four data values can be retrieved, the meaning of most of these varies with the pulse type. A separate function,
PulseWaveGet(), retrieves the settings for waveform outputs.

Func PulseDataGet(state%, out%, num%|name$, &{, &val1{, &val2{,
&val3}}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.

name$ The name of the pulse to use.

amp This is updated with the amplitude or level of the pulse, or the bit value for digital pulses.

val1 This is updated with the end amplitude for ramps, the initial phase for cosines, the number of pulses for
pulse trains and the marker code for digital marker items.

val2 This is updated with the step mode for ramps, the centre value for sines, and the inter-pulse gap for pulse
trains. The step mode value is 0 for both ends, 1 for start only and 2 for end only.

val3 This is updated with the cycle period for sines only.

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), PulseDataSet(), PulseName$()

PulseDataSet()

This function sets the amplitude and other values for a pulse in the outputs for a given state and output. Up to four
data values can be set, the meaning of most of these varies with the pulse type. A separate function,
PulseWaveSet(), is used to change the settings for arbitrary waveform output.

Func PulseDataSet(state%, out%, num%|name$, amp{, val1{, val2{, val3}}}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.

name$ The name of the pulse to use.

Signal Version 6.06

19-552

amp This sets the amplitude or level of the pulse, or the bit mask value for digital pulses. The bit mask sets the
digital outputs on which the pulse appears, see SampleDigOMask() for details of bit mask usage.

val1 This sets the end amplitude for ramps, the initial phase for cosines,the number of pulses for pulse trains
and the marker code for digital marker items.

val2 This sets the step mode for ramps, the centre value for sines, and the inter-pulse gap for pulse trains. The
step mode value is 0 for both ends, 1 for start only and 2 for end only.

val3 This sets the cycle period for sines only.

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), PulseDataGet(), PulseName$(), SampleDigOMask()

PulseDel()

This function deletes a pulse from the output pulses for a given state and output.

Func PulseDel(state%, out%, num%|name$);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse to delete, from 1 to the number of pulses-1 (you cannot delete pulse zero - the
initial level).

name$ The name of the pulse to delete. You cannot delete the initial level.

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

PulseFlags()

This function retrieves, and optionally sets, the options flags for a pulse in the outputs for a given state and
output.

Func PulseFlags(state%, out%, num%|name${, flags});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.

name$ The current name of the pulse in question.

flags If present, this sets the new flags for the pulse. Flag bit 0 is set for varying-width pulses to push following
pulses back, bit 1 is set for pulses to stay up at the end and bit 3 is set for digital marker items to read the
digital inputs to set the marker code (bit 2 is reserved).

Returns The flags for the pulse at the time of the function call.

See also:
Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

Script language

19-553

PulseName$()

This function retrieves, and optionally sets, the name of a pulse in the outputs. Pulse names are intended to make it
easier to manipulate pulses from a script as changing the start time of a pulse can cause the pulse number to
spontaneously change.

Func PulseName$(state%, out%, num%|name${, new$});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.

name$ The current name of the pulse in question.

new$ The new name for the pulse. Blank pulse names are legal.

Returns The name of the pulse at the time of the function call.

See also:
Pulses(), PulseAdd(), SampleStates(), SampleOutMode()

Pulses()

This function returns the number of pulses for a given state and output. This number is usually straightforward to
use, but can be complicated by the fact that waveform output items always appear on control track and not on any
DAC used for the waveform output.

Func Pulses(state%, out%);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values from 0 upwards select the corresponding DAC, -1 selects the
digital outputs, -2 the control track.

Returns The number of pulses on this output. This value will be 1 or more as there is always one pulse defined for
an output, the initial level.

See also:
PulseDel(), PulseAdd(), PulseWaveSet(), PulseName$()

PulseTimesGet()

This function retrieves the times for a pulse in the outputs for a given state and output.

Func PulseTimesGet(state%, out%, num%|name$, &time, &len);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 1 to the number of pulses-1. Zero is not meaningful here
because there are no times for the initial level.

name$ The name of the pulse to use.

time This is updated with the start time for the pulse, in seconds from the start of the pulse outputs.

len This is updated with the length of the pulse (this is the individual pulse length for trains, not the train
length), in seconds.

Returns Zero or a negative error code.

See also:

Signal Version 6.06

19-554

Pulses(), PulseAdd(), PulseTimesSet(), SampleOutMode()

PulseTimesSet()

This function sets the times for a pulse in the outputs for a given state and output.

Func PulseTimesSet(state%, out%, num%|name$, time, len);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 1 to the number of pulses-1. Zero is not usable because there
are no times for the initial level.

name$ The name of the pulse to use.

time This sets the start time for the pulse, in seconds from the start of the pulse outputs.

len This sets the length of the pulse (the individual pulses for trains) in seconds. This does not affect
arbitrary waveform items; use PulseWaveSet().

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), PulseTimesGet(), SampleOutMode()

PulseType()

This function returns a code for the type of a pulse defined in the outputs.

Func PulseType(state%, out%, num%|name$);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.

name$ The name of the pulse in question.

Returns A code for the type of pulse, as follows:

0 The initial level for the output.

1 A simple square pulse.

2 A square pulse with varying amplitude (DACs only).

3 A square pulse with varying duration.

4 A ramp (DACs only).

5 A cosine wave segment (DACs only).

6 An arbitrary waveform (control track only).

7 A pulse train.

8 A marker generation item (control track only).

See also:
Pulses(), PulseAdd(), PulseDataGet(), PulseDataSet()

PulseVarGet()

This function retrieves the values controlling the automatic variation of a pulse in the outputs for a given state and
output. Note that, though these values can be retrieved and set for all types of pulse, they will only have any effect
on pulse types that allow variations; the two varying square pulses, ramps and the initial levels for DACs.

Func PulseVarGet(state%, out%, num%|name$, &step{, &repeat{, &steps}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

Script language

19-555

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.

name$ The name of the pulse in question.

step This is updated with the step value for the pulse.

repeat This, if present, is updated with the repeat count for each step in the variation.

steps This, if present, is updated with the total steps for the variation. Note that the number of values for the
variation is steps+1 as the initial value is also used.

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), PulseVarSet(), PulseName$()

PulseVarSet()

This function sets values controlling the automatic variation of a pulse in the outputs for a given state and output.
Note that, though these values can be retrieved and set for all types of pulse, they will only have any effect on
pulse types that allow variations; the two varying square pulses, ramps and the initial levels for DACs.

Func PulseVarSet(state%, out%, num%|name$, step{, repeat{, steps}});

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

out% The output to which this applies. Values of zero upwards select the corresponding DAC output, -1 selects
the digital outputs, -2 the control track.

num% The number of the pulse in question, from 0 to the number of pulses-1.

name$ The name of the pulse to use.

step This sets the step value for the pulse.

repeat This, if present, sets the repeat count for each step in the variation.

steps This, if present, sets the total steps for the variation. Note that the number of values for the variation is
steps+1 as the initial value is also used.

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), PulseVarGet(), PulseName$()

PulseWaveformGet()

This function retrieves the waveform data values sent to a given DAC as part of an arbitrary waveform item in the
pulses for a given state.

Func PulseWaveformGet(state%{, num%}, dac%, dat%[]|dat[]);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

num% The number of the waveform output within the state, from 1 to the number of waveform output items. This
item can be omitted for compatibility with earlier versions of Signal, in which case waveform item number 1
will be used. This optional parameter was added in Signal version 5.00.

dac% The DAC number for which we want data. If the DAC is not used, no data will be returned.

dat%[] An integer array that will be filled with the data for the DAC. The values are the 16-bit integer values that
would be written to the DAC. A value of -32768 corresponds to an output of -5 volts, 32767 corresponds
to +5 volts (assuming 5-volt 1401 hardware). If the array is too short to hold all of the waveform, it will be
filled with the initial points of the waveform. If the array is longer than the waveform, all the points will be
copied and the rest of the array left unchanged.

Signal Version 6.06

19-556

dat[] A real array that will be filled with the data for the DAC. The values are calibrated using the appropriate
DAC scaling factors. If the array is too short to hold all of the waveform, it will be filled with the initial
points of the waveform. If the array is longer than the waveform, all the points will be copied and the rest
of the array left unchanged.

Returns The number of points copied or a negative error code.

See also:
Pulses(), PulseAdd(), PulseWaveSet(), PulseWaveGet(), PulseWaveformSet()

PulseWaveformSet()

This function sets the waveform data values sent to a given DAC as part of an arbitrary waveform item in the
pulses for a given state.

Func PulseWaveformSet(state%{, num%}, dac%, dat%[]|dat[]);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

num% The number of the waveform output within the state, from 1 to the number of waveform output items. This
item can be omitted for compatibility with earlier versions of Signal, in which case waveform item number 1
will be used. This optional parameter was added in Signal version 5.00.

dac% The DAC number for the data. If the DAC is not used, the function will do nothing.

dat%[] An integer array that holds the new data for the DAC. The values are the 16-bit integer values that would
be written to the DAC. A value of -32768 corresponds to an output of -5 or -10 volts as determined by
your DAC hardware, similarly 32767 corresponds to +5 or +10 volts. If the array used is shorter than the
waveform output points, only the earlier points in the waveform output will be changed. If the array is
longer than the waveform, the extra data in the array is ignored.

dat[] A real array that holds the new data for the DAC. The values are converted into DAC output values using
the appropriate DAC scaling factors. If the array used is shorter than the waveform output points, only the
earlier points in the waveform output will be changed. If the array is longer than the waveform, the extra
data in the array is ignored.

Returns The number of waveform points changed or a negative error code.

See also:
Pulses(), PulseAdd(), PulseWaveSet(), PulseWaveGet(), PulseWaveformGet()

PulseWaveGet()

This function retrieves the values controlling an arbitrary waveform item in the pulses for a given state. Note that
the mask% and rate values are the same for all waveform items.

Func PulseWaveGet(state%{, num%}, &mask%, &rate, &pnts%);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

num% The number of the waveform output within the state, from 1 to the number of waveform output items. This
item can be omitted for compatibility with earlier versions of Signal, in which case waveform item number 1
will be used. This optional parameter was added in Signal version 5.00.

mask% This is updated with the DAC mask value for the output. This has one bit set for each DAC used; bit 0 for
DAC 0, bit 1 for DAC 1 and so forth. In integer values bit zero is represented by the value 1, bit one by the
value 2, bit 2 by the value 4 and so forth. So if DACs 0 and 1 are used mask% will be 3 (1+2), if only DAC 3
is used mask% will be 8.

rate This is updated with the output rate for the waveform data, in Hz.

pnts% This is updated with the number of points of data for each DAC.

Returns Zero or a negative error code.

See also:

Script language

19-557

Pulses(), PulseAdd(), PulseWaveSet()

PulseWaveSet()

This function sets the values controlling an arbitrary waveform items in the pulses for a given state. Note that, as
the mask% and rate values are the same for all waveform items, changing either of these in one waveform item
changes all such items.

Func PulseWaveSet(state%{, num%}, mask%, rate, pnts%);

state% The state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

num% The number of the waveform output within the state, from 1 to the number of waveform output items. This
item can be omitted for compatibility with earlier versions of Signal, in which case waveform item number 1
will be used. This parameter was added in Signal version 5.00.

mask% This sets the DAC mask value for the output, which controls which DACs are used. This has one bit set
for each DAC used; bit 0 for DAC 0, bit 1 for DAC 1 and so forth. In integer values bit zero is represented
by the value 1, bit one by the value 2, bit 2 by the value 4 and so forth. So to use DACs 0 and 1 set mask%
to 3 (1+2), to only use DAC 3 set mask% to 8.

rate This sets the output rate for the waveform data, in Hz.

pnts% This sets the number of points of data for each DAC in the mask.

Returns Zero or a negative error code.

See also:
Pulses(), PulseAdd(), PulseWaveGet()

Q

Query()

This function is used to ask the user a Yes/No question. It opens a window with a message and two buttons. The
window is removed when a button is pressed.

Func Query(text${, yes${, no$}});

text$ This string forms the text in the window. If the string includes a vertical bar, the text before the vertical bar
is used as the window title.

yes$ This sets the text for the first button. If this argument is omitted, "Yes" is used.

no$ This sets the text for the second button. If this is omitted, "No" is used.

Returns 1 if the user selects Yes or presses Enter, 0 if the user selects the No button.

See also:
Print(), Input(), Message(), DlgCreate(), DlgFont()

R

Rand()

This returns pseudo-random numbers with a uniform density in a set range. The values returned are R * scl + off
where R is in the range 0 up to, but not including, 1. Signal initialises the generator with a random seed based on
the time. You must set the seed for a repeatable sequence. The sequence is independent of RandExp() and
RandNorm().

Func Rand(seed);
Func Rand({scl, off});
Func Rand(arr[]{[]}{, scl{, off}});

Signal Version 6.06

19-558

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside this range, the fractional
part of the number is used. If you use 0.0 as the seed, the generator is initialised with a seed based on the
system time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an integer array is used, the
random number is truncated to an integer.

scl This scales the random number. If omitted, it has the value 1.

off This offsets the random number. If omitted it has the value 0.

Returns If the first argument is not an array, the return value is a random number in the range off up to off+scl.
If a seed is given, a random number is still returned. If the first argument is an array, the return value is 0.0.

See also:
RandExp(), RandNorm()

RandExp()

This function returns pseudo-random numbers with an exponential density, suitable for generating Poisson
statistics. The values returned are R * mean + off where R is a random number with the density function p(x) =
exp(-x). When you start Signal, the generator is initialised with a random seed based on the time. For repeatable
sequences, you must set a seed. The sequence is independent of Rand() and RandNorm().

Func RandExp(seed);
Func RandExp({mean, off});
Func RandExp(arr[]{[]}{, mean{, off}});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside this range, the fractional
part of the number is used. If you use 0.0 as the seed, the generator is initialised with a seed based on the
time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an integer array is used, the
random number is truncated to an integer.

mean This scales the random number. If omitted, it has the value 1.

off This offsets the random number. If omitted it has the value 0.

Returns If the first argument is not an array, the return value is a random number. If a seed is given, a random
number is still returned. If the first argument is an array, the return value is 0.0.

The following example fills an array with event times with a mean interval t:

RandExp(arr[], t); 'Fill arr with event intervals
ArrIntgl(arr[]); 'convert intervals to times

See also:
Rand(), RandNorm()

RandNorm()

This function returns pseudo-random numbers with a normal density. The values returned are R * scl + off where
R is a random number with a normal probability density function p(x) = exp(-x*x/2)/sqrt(2*pi); this has a
mean of 0 and a variance of 1. When you start Signal, the generator is initialised with a random seed based on the
time. For a repeatable sequence, you must set a seed. The sequence is independent of Rand() and RandExp().

Func RandNorm(seed);
Func RandNorm({scl, off});
Func RandNorm(arr[]{[]}{, scl{, off}});

seed If present, this is a seed for the generator in the range 0 to 1. If seed is outside this range, the fractional
part of the number is used. If you use 0.0 as the seed, the generator is initialised with a seed based on the
time.

arr This 1 or 2 dimensional real or integer array is filled with random numbers. If an integer array is used, the
random number is truncated to an integer.

Script language

19-559

scl This scales the random number. If omitted, it has the value 1.

off This offsets the random number. If omitted it has the value 0.

Returns If the first argument is not an array, the return value is a random number. If a seed is given, a random
number is still returned. If the first argument is an array, the return value is 0.0.

See also:
Rand(), RandExp()

Read()

This function reads the next line from the current text view or external text file and converts the text into variables.
The read starts at the beginning of the line containing the text cursor. The text cursor moves to the start of the next
line after the read.

Func Read({&var1{, &var2{, &var3 ...}}});

varn Arguments must be variables. They can be any type. One dimensional arrays are allowed. The variable
type determines how to convert the string data. In a successful call, each variable matches a field in the
string, and the value of the variable changes to the value found in the field. A call to Read() with no
arguments skips a line.

Returns The function returns the number of fields in the text string that were successfully extracted and returned in
variables, or a negative error code. Attempts to read past the end of the file produce the end of file error
code.

It is not an error to run out of data before all the variables have been updated. If this is a possibility you must check
that the number of items returned matches the number you expected. An array of length n is treated as n individual
values.

The source string is expected to hold data values as real numbers, integer numbers (decimal or hexadecimal
introduced by 0x) and strings. Strings can be delimited by quote marks, for example "This is a string", or they
can be just text. If a string is not delimited, it is deemed to run to the end of the source string, so no other items can
follow it. You can use ReadSetup() to change the characters that delimit a string and also to define hard separator
characters within non-delimited strings. String delimiters are not returned as part of the string.

Normally, the fields in the source string are separated by white space (tabs and spaces) and commas. Space
characters are “soft” separators. You can have any number of spaces between fields. Tabs and commas are treated
as “hard” separators. Two consecutive hard separators (with or without intervening soft separators), imply a blank
field. You can use ReadSetup() to redefine the soft and hard separators. When reading a field, the following rules
are followed:

1. Soft separator (space) characters are skipped over

2. If the field is a string and the next character is a delimiter, it is skipped.

3. Characters that are legal for the destination variable are extracted until a non-legal character or a separator or a
required string delimiter or end of data is found. The characters read are converted into the variable type. If an
error occurs in the translation, the function returns the error. Blank fields assigned to numbers are treated as 0.
Blank fields assigned to strings produce empty strings.

4. Characters are skipped until a separator character is found or end of data. If a soft separator is found, it and
any further soft separators are skipped. If the next character is a hard separator it is also skipped.

5. If there are no more variables or no more data, the process stops, else back to step 1.

The source string is expected to hold data values as:

Type Examples Description

Real 1.23e-23
-23
1:23:12:58.23
12:34.56

A number with an optional decimal point and an optional exponent. The number can
start with a minus sign.

From version 6.04 you can read a time as days:hours:minutes:seconds. You may
omit the days, or days and hours. The time is converted to seconds. Times of more
than 100 years are not recognised.

Integer 123, -1234567
0x1234abcd

A 32-bit integer value formatted as an optional minus sign followed by a list of
decimal digits. It also accepts a hexadecimal value, being 0x followed by 1 to 8

Signal Version 6.06

19-560

hexadecimal digits (0-9, a-f, A-F).

String Some text
"Quoted text"

Strings can be delimited by double quote marks, which allows the strings to hold
separators and to be followed by other fields. If a string is not delimited, it is deemed
to run to the end of the source string, so no other items can follow it unless you set a
hard string separator with ReadSetup(). You can use ReadSetup() to change the
characters that delimit a string and also to define hard separator characters for non-
delimited strings. String delimiters are not returned as part of the string.

Reading exact contents of text file
If you want to use Read() to fill a string with the line by line contents of a text file, including leading white space,
you should call ReadSetup("","") before using Read().This cancels all soft separators, which allows leading
white space (spaces and Tab characters) to be read.

Example
The following example shows a source line, followed by a Read() function, then the assignment statements that
would be equivalent to the Read():

"This is text" , 2 3 4,, 4.56 Text too 3 4 5 The source line

n := Read(fred$, jim[1:2], sam, dick%, tom%, sally$, a, b, c);

is equivalent to:

n := 7;
fred$:= "This is text";
jim[1] := 2; jim[2] := 3; sam := 4; dick% := 0; tom% := 4;
sally$:= "Text too 3 4 5"
a, b and c are not changed

See also:
EditCopy(), FileOpen(), ReadSetup(), ReadStr(), Selection$()

ReadSetup()

This sets the separators and delimiters used by Read() and ReadStr() to convert text into numbers and strings.
You can also set string delimiters and set a string separator.

Proc ReadSetup({hard${, soft${, sDel${, eDel${, sSep$}}}}});

hard$ The characters to use as hard separators between all fields. If this is omitted or the string is empty, the
standard hard separators of comma and tab are used.

soft$ The characters to use as soft separators. If this is omitted, the space character is set as a soft separator. If
soft$ is empty, no soft separators are used.

sDel$ The characters that delimit the start of a string. If omitted, a double quote is used. If empty, no delimiter is
set. Delimiters are not returned in the string.

eDel$ The characters that delimit the end of a string. If omitted, a double quote is used. If empty, no delimiter is
set. If sDel$ and eDel$ are the same length, only the end delimiter character that matches the start
delimiter position is used. For example, to delimit strings with <text> or 'text' set sDel$ to "<'" and
eDel$ to ">'". You can repeat a character to force different lengths.

sSep$ The list of hard separator characters for strings that have no start delimiter. For example, setting "|" lets
you read one|two|three into three separate strings.

See also:
Read(), ReadStr(), Val()

Script language

19-561

ReadStr()

This function extracts data fields from a string and converts them into variables.

Func ReadStr(text$, &var1{, &var2{, &var3...}});

text$ The string used as a source of data.

var The arguments must all be variables. The variables can be of any type, and can be one dimensional arrays.
The type of each variable determines how the function tries to extract data from the string. See Read() for
details.

Returns The function returns the number of fields in the text string that were successfully extracted and returned in
variables, or a negative error code.

It is not an error to run out of data before all the variables have been updated. If this is a possibility you must check
the returned value. If an array is passed in, it is treated as though it was the number of individual values held in the
array.

See also:
Read(), ReadSetup(), Val()

Right$()

This function returns the rightmost n characters of a string.

Func Right$(text$, n);

text$ A string of text.

n The number of characters to return.

Returns The last n characters of the string, or all the string if it is less than n characters.

See also:
Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(), Print$(),
ReadStr(), Str$(), UCase$(), Val()

Round()

Rounds a real number or an array of reals to the nearest whole number.

Func Round(x|x[]{[]...});

x A real number or an array of reals.

Returns If x is an array it returns 0. Otherwise it returns a real number with no fractional part that is the nearest to
the original number.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(), Sin(),
Sqrt(), Tan(), Trunc()

S

Sample....()

SampleAbort()

This function cancels sampling and deletes the views that were being sampled and any associated result and
cursor views. If a memory view derived from the data has been saved, the saved file remains. It is equivalent to the
Abort button on the floating sampling control window.

Func SampleAbort({noask%});

Signal Version 6.06

19-562

noask% If provided and non-zero, this causes the normal querying of the user about this potentially destructive
operation to be bypassed.

Returns 0 if sampling was aborted, or a negative error code.

See also:
SampleReset(), SampleStart(), SampleStop(), SampleStatus()

SampleAbsLevel()

This function sets and gets the absolute levels flag as seen in the sampling configuration dialog Outputs page.

Func SampleAbsLevel({new});

new If present, this sets the new absolute levels flag if non-zero, clears the flag if zero.

Returns The absolute levels flag from the configuration at the time of the call.

See also:
SampleClear(), Pulses()

SampleAccept()

This flags the current frame 0 data in a sampling document to be accepted or rejected.

Func SampleAccept({yes%});

yes% If this is zero, the frame is rejected, otherwise the frame is written to disk. This is equivalent to the Accept
check box in the sampling control dialog.

Returns 0 if sweep was written successfully or a negative error code.

See also:
SamplePause(), SampleStatus(), SampleWrite()

SampleArtefactGet()

This command returns the parameters used in automatic artefact rejection during sampling. Artefact rejection
consists of testing all points within a given time range and rejecting or tagging frames where the points at the ADC
limit exceed a set threshold. This function normally operates on the stored sampling configuration but if used
during sampling it operates upon the on-going sampling.

Func SampleArtefactGet(&mode%, &start, &end, &per{, &lev});

mode% Returned holding the artefact rejection mode: 0 for none, 1 for Tag and 2 for Reject.

start Returned holding the start time for the search for out-of-range points.

end Returned holding the end time for the search for out-of-range points.

per Returned holding the percentage of out-of-range points that can be tolerated, frames with more than this
are deemed to contain artefacts.

lev Returned holding the percentage of the ADC range (from zero to full scale) above or below which will be
considered an artefact.

Returns Zero or a negative error code.

See also:
SampleArtefactSet(), SampleAccept(), FrameTag(), SamplePortFull()

Script language

19-563

SampleArtefactSet()

This command sets the parameters used in automatic artefact rejection during sampling. Artefact rejection consists
of testing all points within a given time range and rejecting or tagging frames where the points at the ADC limit
exceed a set threshold. This function normally operates on the stored sampling configuration but if used during
sampling it operates upon the on-going sampling.

Func SampleArtefactSet(mode%, start, end, per{, lev});

mode% Sets the artefact rejection mode: 0 for none, 1 for Tag and 2 for Reject.

start The start time for the search for out-of-range points.

end The end time for the search for out-of-range points.

per The percentage of out-of-range points (value limited to 0 to 100) that can be tolerated, frames with more
than this are deemed to contain artefacts.

lev The percentage of the ADC range (from zero to full scale, value limited to 1 to 100) above or below which
will be considered an artefact. The default is 100.

Returns Zero or a negative error code.

See also:
SampleArtefactGet(), SampleAccept(), FrameTag(), SamplePortFull()

SampleAutoFile()

This gets or sets the flag for file auto-filing as seen in the sampling configuration dialog.

Func SampleAutoFile({yes%});

yes% If present and non-zero, this turns on automatic filing of data when sampling finishes. If zero or missing it
turns automatic filing off.

Returns The automatic filing flag at the time of the function call.

See also:
SampleAutoName$(), FileNew()

SampleAutoName$()

This gets or sets the template for file auto-naming as in the sampling configuration dialog. The path used for auto-
naming can be set using FilePathSet() and read using FilePath$().

Func SampleAutoName$({name$});

name$ If present, this sets the new template string for file auto-naming (this should not be more than 22
characters long), or turns off auto-naming if it is a blank string. See the sampling configuration
documentation for details on the template string.

Returns The auto-naming template at the time of the function call.

See also:
FilePath$, FilePathSet(), SampleAutoFile(), FileNew()

SampleAuxStateParam()

This function is used to get or set parameters for the auxiliary states device if one is installed. The meaning and use
of these parameters varies according to the type of auxiliary states device in use. At the time of writing the auxiliary
devices supported are the Magstim, MagPro and the CED 3304. The meaning of the num% parameter in this function
will depend entirely upon the type of auxiliary states device installed. It is therefore very important that the value
returned by SampleAuxStateParam(0) is checked before using these functions (for a Magstim you should call
SampleAuxStateParam(1) as well to check the Magstim type) and that nothing is done by the script if the
returned values do not match the supported devices.

Signal Version 6.06

19-564

Func SampleAuxStateParam(num%{, val});

num% Selects the parameter to read or set. The meaning of all parameters except 0 depends on the auxiliary
device type.

0 The type of auxiliary states device support loaded. -1 = no device, 1=Magstim, 2=CED 3304 current
stimulator, 3=MagPro. You cannot set this parameter.

For a Magstim only:

1 The device in use. -1 = Do not use, 0 = 200, 1 = BiStim, 2 = Rapid, 3 = dual 200.

2 The device flags. This is the sum of 1 for the Rapid coil interlock ignore, 2 for BiStim high-resolution
timing, 4 for Rapid single pulse mode, 8 for assume BiStim independent triggers, 16 to prevent
generation of textual information for the sampling window title and 128 to allow simulated operation
without Magstim hardware being present. Not all of these values are meaningful with any particular
Magstim type; your script code needs to be carefully written.

3 The serial line port (COM port) used to control the Magstim, from 1 to 19.

4 The second serial line port for dual 200 mode, from 1 to 19.

5 The digital output used to trigger the Magstim (for Rapid only) from 0 to 7 or -1 for not set. Setting
this to -1 is not a good idea as it defeats the power safety checks and will cause warning messages.

6 The current Magstim device status, if used while sampling is in progress, else zero. The bottom 8 bits
of the value returned are the standard Magstim device status byte, the next 8 bits are the Rapid status
for a Rapid device or the device status for the second Magstim for dual 200s. Consult your Magstim
documentation for the meaning of this information. Needless to say, this parameter value cannot be
set.

For a MagPro only:

1 The device in use. -1 = Do not use, 0 = MagPro R30, 1 = MagPro R30 + MagOption, 2 =MagPro X100,
3 = MagPro X100 + MagOption.

2 The device flags. This is the sum of 1 for assume MagPro software version 7.1 or later, 16 to prevent
generation of textual information for the sampling window title and 128 to allow simulated operation
without MagPro hardware being present.

3 The serial line port (COM port) used to control the MagPro, from 1 to 19.

For a CED 3304 only:

1 CED 3304 in use. -1=Do not use, 0=Use CED 3304.

2 The device flags. This is 1 for the high level trigger, 0 for low trigger. Add 2 to prevent generation of
textual information for the sampling window title

3 The serial line port (COM port) used to control the 3304, from 1 to 19.

4 The range switch setting, from 0 (10 microamps) to 3 (10 milliamps).

val If present, this sets the new value of the selected parameter, otherwise it will be unchanged. It is not
possible to set a new value for parameters zero, this is set by the type of auxiliary device support installed.

Returns The parameter value selected at the time of the function call.

Warning
Many auxiliary states devices, in particular transcranial magnetic stimulators such as the Magstim, are potentially
dangerous devices. If you use these script functions carelessly, they could be set to deliver dangerously high
levels of stimulation or magnetic field. CED cannot accept any responsibility whatsoever for any harm or damage
resulting - it is up to you to write your script carefully and make sure that you are programming the device you
think you are using, and that the parameter values used are correct.

See also:
SampleAuxStateValue(), SampleStates(), SampleState()

SampleAuxStateValue()

This function is used to get or set auxiliary states device settings for individual states. The meaning and use of
these settings varies according to the type of auxiliary states device in use, it is vitally important that you use
SampleAuxStateParam(0) in your script to check that the correct auxiliary states device is installed. You will also
need to be very familiar with the device(s) in question as in many cases certain modes or options are not available

Script language

19-565

in all circumstances. At the time of writing the auxiliary devices supported are the Magstim, MagPro and the CED
3304.

Func SampleAuxStateValue(state%, num%{, val});

state% The state number for which the settings are being read or written, from zero to the number of extra states
enabled.

num% This selects the setting that will be read or set. The meaning and use of all settings varies with the type of
auxiliary states device in use.

For a Magstim only:

0 The state flags. This is 1 if manual control is selected, otherwise 0.

1 The power level from 0 to 100 percent (or 110 percent for Rapid 2 single pulse mode).

2 The secondary power level for BiStim and dual 200 devices.

3 The pulse interval for BiStim devices.

4 The pulse frequency in Hz for Rapid devices.

5 The number of pulses for Rapid devices.

For a MagPro only:

0 The state flags. This is the sum of 1 if manual control is selected and 2 if reversed pulses are to be
generated.

1 The power A level from 0 to 100 percent.

2 The power B level from 0 to 100 percent.

3 The pulse interval in milliseconds from 1 to 3000.

4 The power B/A value for Twin mode from 0.2 to 5.

5 The number of pulses for biphasic bursts, from 2 to 5.

6 The device mode. This is 0 for Standard, 1 for Power, 2 for Twin and 3 for Dual mode.

7 The waveform type. This is 0 for Monophasic, 1 for Biphasic, 2 for Halfsine and 3 for Biphasic
burst.

For a CED 3304 only:

0 The state flags. Unused with the 3304 and read as 0.

1 The current in uA from zero to the maximum allowed by the range setting.

val If present, this sets the new value of the selected setting, otherwise it will be unchanged.

Returns The setting value selected at the time of the function call.

Warning
Many auxiliary states devices, in particular transcranial magnetic stimulators such as the Magstim, are potentially
dangerous devices. If you use these script functions carelessly, they could be set to deliver dangerously high
levels of stimulation or magnetic field. CED cannot accept any responsibility whatsoever for any harm or damage
resulting - it is up to you to write your script carefully and make sure that you are programming the device you
think you are using, and that the parameter values used are correct.

See also:
SampleAuxStateParam(), SampleStates(), SampleState()

SampleBar()

This function gives you access to the Sample toolbar. The format of strings passed by this command is the button
label (up to 8 characters), followed by a vertical bar, followed by the full path name to a sampling configuration file,
including the .sgcx (.sgc for older files) file extension, followed by a vertical bar, then a comment to display when
the mouse pointer is over the button. If you call the command with no arguments it returns the number of buttons
in the toolbar.

Func SampleBar({n%{, &get$}});
Func SampleBar(set$);

Signal Version 6.06

19-566

n% If set to -1, get$ must be omitted, all buttons are cleared and the function returns 0. When set to the
number of a button (the first button is 0), get$ is as described above. In this case, the function returns -1
if the button does not exist, 0 if it exists and is the last button, and 1 if higher-numbered buttons exist.

set$ The string passed in should have the format described above. The function returns the new number of
buttons or -1 if all buttons are already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets two buttons:

SampleBar(-1); 'clear all buttons
SampleBar("Fast|C:\\Signal3\\Fast.sgc|Fast 4 channel sampling");
SampleBar("Faster|C:\\Signal3\\FastXX.sgc|Very fast sampling");

See also:
App()

SampleBurst()

This function gets or sets the burst mode sampling flag as seen in the sampling configuration dialog.

Func SampleBurst({bMode%});

bMode% If present and non-zero this turns burst mode on in the sampling configuration. Burst mode is often to be
preferred, as the actual sampling rate used is more likely to match the preferred rate set.

Returns 1 if burst mode is on, 0 if it is off.

See also:
SampleClear(), SampleRate(), SamplePoints(), SampleTrigger(), SamplePorts()

SampleClamp()

This function gets or sets the overall clamping information and clamping sets in the sampling configuration. The
first two forms of the command are used to set up clamping options, the third form reads settings back.

Func SampleClamp(0, meas%, flags%);
Func SampleClamp(set%, type%, stim%, resp%, dac%);
Func SampleClamp(set%, opt%);

set% The clamping set to work with, from 1 to 8, or 0 to operate on the overall clamping information.

meas% The state to use for resistance measurements (when set% is zero), from 0 to 256.

flags% The clamping option flags (when set% is zero), currently this is unused and should be set to zero.

type% The type of clamping used in this set (set% is the clamping set from 1 to 8). The possible clamping types
are:

0 Clamping is disabled.
1 Whole cell voltage clamp.
2 Whole cell current clamp.
3 Single-channel voltage clamp.
4 Single-channel current clamp.

stim% The stimulus channel for this clamping set (set% is the clamping set from 1 to 8), from 1 upwards. No error
will be generated by selecting a channel that will not be created by this sampling configuration or which
has the wrong channel units, but if these are not correct when the sampling configuration is used then it
will not run.

resp% The response channel for this clamping set (set% is the clamping set from 1 to 8), from 1 upwards. No
error will be generated by selecting a channel that will not be created by this sampling configuration or
which has the wrong channel units, but if these are not correct when the sampling configuration is used
then it will not run.

Script language

19-567

dac% The control DAC number used in this clamping set (set% is the clamping set from 1 to 8), from 0 to 7. No
error will be generated by selecting a DAC that is not used in this sampling configuration, or which has
the wrong units, but if these are not correct when the sampling configuration is used then it will not run.

opt% This can be set to the following negative values which cause the function to return the following values. If
set% is zero the possible opt% values are:

-1 The state that is used for resistance measurement is returned.
-2 The clamping option flags are returned.
-3 This special option resets all of the clamping information and returns 0.
-4 The number of clamping sets available (currently 8) is returned.

 If set% is 1 to 8 the possible opt% values are:

-1 The clamping type in this clamping set is returned.

-2 The stimulus channel in this clamping set is returned.

-3 The response channel in this clamping set is returned.

-4 The control DAC used in this clamping set is returned.

Returns 0, the requested value or a negative error code.

See also:
SamplePorts(), SamplePortUnits$(), SampleDacMask(), SampleDacUnits$()

SampleClampHP()

This function gets or sets the current holding potential in use with a clamping set. It cannot be used before
sampling to preset the holding potential - that is set by the initial levels for the various DACs - but only while
sampling is in progress to dynamically access the potentials in use.

Func SampleClampHP(set%{, new});

set% The clamping set to work with, from 1 to 8.

new If provided, this sets the new holding potential. Note that this value and the function result are in
whatever units are in use for the relevant control DAC, which will normally be millivolts, but not
necessarily.

Returns the holding potential at the time of the call.

See also:
SamplePorts(), SamplePortUnits$(), SampleDacMask(), SampleDacUnits$(), SampleClamp()

SampleClear()

This procedure resets the contents of the sampling configuration dialog to a standard state. You can use the
sampling configuration commands to get or change values in the sampling configuration. There is a full list of the
sampling configuration commands in the Commands by function section.

Proc SampleClear();

SampleDacFull()

This function gets the full-scale value used to scale values written to the DACs from the sampling configuration
and optionally sets it to a new value.

Func SampleDacFull(port{, new});

port The DAC number, from 0 to 7. Sequencer outputs use the DAC 0 settings for all DAC calibration.

new If present, sets the value in the units for this DAC corresponding to a full-scale value. This value is used
throughout Signal to calibrate DAC values.

Returns The DAC full-scale value before the call.

See also:

Signal Version 6.06

19-568

Pulses(), SampleDacMask(), SampleDacZero(), SampleDacUnits$(), SampleStateDac()

SampleDacMask()

This function gets the mask value used to enable the DAC outputs from the sampling configuration and optionally
sets it to a new value.

Func SampleDacMask({new%});

new% If present, sets the mask enabling specified DAC outputs. This mask has one bit for each DAC, set bits
enable the corresponding DAC output; bit 0 for DAC 0, bit 1 for DAC 1, and so forth. In integer values bit
zero is represented by the value 1, bit one by the value 2, bit 2 by the value 4 and so forth. So to enable
DACs 0 and 1 set new% to 3 (1+2), to only enable DAC 3 set new% to 8.

Returns The DAC outputs mask value before the call.

See also:
SampleStatesMode(), SampleDigOMask(), SampleDigIMask(), SampleStateDac()

SampleDacUnits$()

This function gets the units string for a DAC from the sampling configuration and optionally sets it to a new value.

Func SampleDacUnits$(port{, new$});

port The DAC number, from 0 to 7.

new If present, sets the units string for this DAC. This value is used throughout Signal to calibrate DAC
values.

Returns The DAC units string before the call.

See also:
Pulses(), SampleDacMask(), SampleDacFull(), SampleDacZero(), SampleStateDac()

SampleDacZero()

This function gets the zero value used to scale values written to the DACs from the sampling configuration and
optionally sets it to a new value.

Func SampleDacZero(port{, new});

port The DAC number, from 0 to 7. Sequencer outputs use the DAC 0 settings for all DAC calibration.

new If present, sets the value in the units for this DAC corresponding to a zero value. This value is used
throughout Signal to calibrate DAC values.

Returns The DAC zero value before the call.

See also:
Pulses(), SampleDacMask(), SampleDacFull(), SampleDacUnits$(), SampleStateDac()

SampleDigIMask()

This function gets the mask value used to enable the digital inputs for the External digital multiple states mode from
the sampling configuration and optionally sets it to a new value.

Func SampleDigIMask({new%});

new% If present, sets the mask enabling specific digital inputs. This mask has one bit for each digital input, set
bits enabling the corresponding inputs; bit 0 for input bit 0, bit 1 for input bit 1 and so forth. In integer
values bit zero is represented by the value 1, bit one by the value 2, bit 2 by the value 4 and so forth. So to
enable digital input bits 0 and 1 set new% to 3 (1+2), to enable bits 2 and 6 set new% to 68. This value is
only used in External digital states mode.

Script language

19-569

Returns The digital inputs mask value before the call.

See also:
SampleStatesMode(), SampleStateDig(), SampleDacMask(), SampleDigOMask()

SampleDigMark()

This function sets and gets the flag for enabling the digital marker channel in the sampling configuration.

Func SampleDigMark({on%});

on% If present and non-zero, enables the marker channel

Returns 1 if the marker channel was on, 0 if it was off.

See also:
SampleClear(), SampleKeyMark()

SampleDigOMask()

This function gets the mask value used to enable the digital outputs from the sampling configuration and
optionally sets it to a new value.

Func SampleDigOMask({new%});

new If present, sets the bit mask enabling the digital outputs. This mask has one bit for each digital output, set
bits enabling the corresponding outputs; bit 0 for output bit 0, bit 1 for output bit 1 and so forth. In integer
values bit zero is represented by the value 1, bit one by the value 2, bit 2 by the value 4 and so forth. So to
enable digital output bits 0 and 1 set new% to 3 (1+2), to enable bits 2 and 6 set new% to 68 (4+64).

Returns The digital output bit mask value before the call.

See also:
SampleStatesMode(), SampleStateDig(), SampleDacMask(), SampleDigIMask()

SampleFixedInt()

This function sets and gets the sweep interval for Fixed interval and Fast Fixed interval sweep modes, as stored
in the pulses information. Note that this sets the interval after frames with the specified state, not the interval before
a frame. This function normally operates on the stored sampling configuration but, if used during sampling, it
operates upon the on-going sampling.

Func SampleFixedInt(state{, period});

state This sets the state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in
use.

period If present, this argument sets the fixed interval period, in seconds.

Returns The fixed interval period at the time of the call.

See also:
SampleOutMode(), SampleOutTrig(), SampleOutClock(), SampleFixedVar(), Pulses(),
SampleStates()

SampleFixedVar()

This function sets and gets the percentage variation of the sweep interval for Fixed interval sweep mode, as stored
in the pulses information. This function normally operates on the stored sampling configuration but, if used during
sampling, it operates upon the on-going sampling.

Func SampleFixedVar(state{, vary});

Signal Version 6.06

19-570

state This sets the state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in
use.

vary If present, this argument sets the fixed interval variation, from 0 to 100 percent.

Returns The fixed interval variation percentage at the time of the call.

See also:
SampleOutMode(), SampleOutTrig(), SampleOutClock(), SampleFixedInt(), Pulses(),
SampleStates()

SampleHandle()

This gets the handle of a view associated with sampling. This can be used to position, show or hide the sampling
control panel or the output control panel.

Func SampleHandle(which%);

which% Selects which view handle to return:

0 Main file view.

1 Sampling control panel.

2 Sequencer control panel.

3 Pulses configuration dialog.

4 States control bar.

5 Clamp control bar.

Returns The view handle or 0 if the view does not exist.

See also:
View(), ViewList(), Window(), WindowVisible()

SampleKey()

This procedure adds events to the keyboard marker channel, exactly as if you had typed them (with the sampling
document view as the current view). If there is no sampling, the procedure does nothing. If the output sequencer is
running, and you add a key that corresponds to a key linked to a sequencer step, the sequencer jumps to the step.

Func SampleKey(key$);

key$ The first character of the string is added to the keyboard marker channel.

Returns The time in seconds at which the marker was added to the keyboard marker channel.

See also:
SampleClear(), SampleKeyMark()

SampleKeyMark()

This function turns the keyboard marker channel on or off or gets the current setting of this from the sampling
configuration.

Func SampleKeyMark({on%});

on% If present and non-zero this turns keyboard markers on in the sampling configuration.

Returns 1 if the keyboard channel is on in the sampling configuration, 0 if not.

See also:
SampleClear(), SampleDigMark(), SampleKey()

Script language

19-571

SampleLimitFrames()

This function corresponds to the Number of Frames field on the Automation page of the sampling configuration
dialog.

Func SampleLimitFrames({frame%});

frame% The number of frames to set as a limit. A positive number sets the limit and enables. A negative or zero
value sets the limit to the positive value of frame%, but disables the limit. Omitting the argument means no
change.

Returns The function returns the frames limit as it was at the time of the call. If the limit is disabled, the number of
frames is returned negated.

See also:
SampleClear(), SampleLimitSize(), SampleLimitTime(), SampleWrite()

SampleLimitSize()

This function corresponds to the File size (KByte) field on the Automation page of the sampling configuration
dialog.

Func SampleLimitSize({size%});

size% The size limit for the output file, in KB. A positive value sets the size and enables the limit. A negative or
zero value sets the limit to the positive value of size%, but disables the limit. Omitting the argument means
no change.

Returns The limit before the call. If the limit is disabled, the value is returned negated.

See also:
SampleClear(), SampleLimitFrames(), SampleLimitTime(), SampleWrite()

SampleLimitTime()

This function corresponds to the Sampling duration field on the Automation page of the sampling configuration
dialog.

Func SampleLimitTime({time%});

time% The time in seconds to set as a limit. A positive time% sets the limit and enables the limit. A negative or
zero value sets the limit to the positive value of time%, but disables the limit. Omitting the argument means
no change.

Returns The function returns the time limit as it was in the sampling configuration at the time of the call. If the limit
is disabled, the time is returned negated.

See also:
SampleClear(), SampleLimitFrames(), SampleLimitSize(), SampleWrite()

SampleMode()

This function gets and optionally sets the sampling sweep mode as seen in the sampling configuration dialog.

Func SampleMode({mode%});

mode% If supplied, this argument sets the new sampling mode as follows:

0 Basic

1 Peri-trigger

2 Extended

3 Fixed interval

4 Fast triggers

5 Fast fixed interval

Signal Version 6.06

19-572

6 Gap-free

Returns The sweep mode set in the sampling configuration at the time of the call.

See also:
SampleClear(), SamplePeriType(), SampleFixedInt(), SampleOutLength(), SampleOutTrig()

SampleOutClock()

This function sets and gets the outputs clock as seen in the sampling configuration dialog Outputs page.

Func SampleOutClock({period{, flags%}});

period If present, this argument sets the outputs clock period, in seconds. This value sets the time resolution for
pulses and sequencer output, for measuring sweep absolute start times, for timing sweeps in Fixed
interval mode and for measuring the time of marker data. For the standard 1401, this value should not be
less than 10 ms, for a 1401plus 3 ms, for a micro1401 0.1 ms, for a Micro1401 mk II and Micro1401-3 25 µ s
and for Power1401s 10 microseconds.

flags% If present, this sets clock options, if omitted the default value of zero is used. Set flags% to 2 to enable
the maximum possible waveform output rates at the expense of sequencer timing precision. In versions of
Signal before version 4.06, adding 1 to flags% was equivalent to checking the “Synchronise
sampling” box in the sampling configuration dialog.

Returns The outputs clock period from the configuration at the time of the call.

See also:
SampleOutMode(), SampleFixedInt(), SampleOutTrig(), Pulses()

SampleOutLength()

This function sets and gets the length of the pulse outputs as stored in the pulses information for use in Extended
and Fixed interval sweep modes. This function normally operates on the stored sampling configuration but, if used
during sampling, it operates upon the on-going sampling.

Func SampleOutLength(state{, length});

state This sets the state (pulses set) to which this applies, from 0 to 256. Use 0 if multiple states are not in use.

length If present, this argument sets the length of the pulses output frame, in seconds.

Returns The pulses output frame length at the time of the call.

See also:
SampleOutMode(), SampleOutTrig(), SampleOutClock(), Pulses(), SampleStates()

SampleOutMode()

This function sets and gets the outputs mode as seen in the sampling configuration dialog Outputs page.

Func SampleOutMode({mode%});

mode% This argument determines the action of the command:

0 Sets None outputs mode.

1 Sets Pulses outputs mode.

2 Sets Sequencer outputs mode.

Returns The outputs mode from the configuration at the time of the call.

See also:
SampleClear(), Pulses()

Script language

19-573

SampleOutTrig()

This function sets and gets the sweep trigger time within the pulses frame as stored in the pulses information for
use in Extended and Fixed interval sweep modes. This function normally operates on the stored sampling
configuration but, if used during sampling, it operates upon the on-going sampling.

Func SampleOutTrig(state{, time});

state This sets the state (set of pulses) to which this applies, from 0 to 256. Use 0 if multiple states are not in
use.

time If present, this argument sets the sweep trigger time within the pulse outputs, in seconds. The value
should be from 0 to the pulses outputs length.

Returns The sweep trigger time at the time of the call.

See also:
SampleOutLength(), SampleFixedInt(), SampleOutClock(), Pulses(), SampleStates()

SamplePause()

This function ascertains or sets whether the sampling is set to pause after each sweep, this is equivalent to the
Pause at sweep end check box. It can also be used during sampling to control the current pause state.

Func SamplePause({pause%});

pause% If present this is equivalent to changing the state of the Pause at sweep end check box. A non-zero
value pauses sampling and zero enables sampling.

Returns If pause% is present it returns the new state as 1 or 0, or a negative error code. If pause% is absent it
returns the current state as 1 or 0.

See also:
SampleSweep(), SampleStart(), SampleStop(), SampleStatus(), SampleWrite(),
SampleAbort()

SamplePeriBitState()

This function gets or selects the state of the digital input bit required to trigger sampling. It is equivalent to the
dropdown selection box in the digital peri-trigger sampling configuration.

Func SamplePeriBitState({set%});

set% If present a value of 1 selects Trigger on bit high in the digital peri-trigger sampling configuration. A value
of 0 selects Trigger on bit low.

Returns The value for the setting at the time of the call.

See also:
SamplePeriDigBit(), SamplePeriHyst(), SamplePeriLevel(), SamplePeriLowLev(),
SamplePeriType(), SamplePeriPoints()

SamplePeriDigBit()

This function gets or sets the digital bit number in the digital peri-trigger information within the sampling
configuration.

Func SamplePeriDigBit({bit%});

bit% If present and in the range 8-15, this sets the new digital bit number in the digital peri-trigger sampling
configuration.

Returns The value for the peri-trigger digital bit in the sampling configuration at the time of the call.

See also:

Signal Version 6.06

19-574

SamplePeriBitState(), SamplePeriHyst(), SamplePeriLevel(), SamplePeriLowLev(),
SamplePeriType(), SamplePeriPoints()

SamplePeriHyst()

This function gets or sets the hysteresis value for triggering from an analogue channel level in the peri-trigger
information within the sampling configuration. If used while sampling is in progress, this gets and sets the
hysteresis value currently in use.

Func SamplePeriHyst({level});

level If present this sets the new hysteresis value in the peri-trigger sampling configuration or sampling
document.

Returns The value for hysteresis in the sampling configuration at the time of the call.

See also:
SamplePeriDigBit(), SamplePeriBitState(), SamplePeriLevel(), SamplePeriLowLev(),
SamplePeriType(), SamplePeriPoints()

SamplePeriLevel()

This function gets or sets the threshold level for triggering from an analogue channel level in peri-trigger mode.
This is the threshold level for +Analogue and -Analogue peri-trigger types and the upper threshold for the
=Analogue peri-trigger type. If used while sampling is in progress, this gets and sets the threshold level currently
in use.

Func SamplePeriLevel({level});

level If present this sets the peri-trigger threshold level in the sampling configuration or sampling document.

Returns The value for peri-trigger threshold level in the sampling configuration.

See also:
SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(), SamplePeriLowLev(),
SamplePeriType(), SamplePeriPoints()

SamplePeriLowLev()

This function gets or sets the peri-trigger Lower threshold for =Analogue peri-trigger type in the peri-trigger
sampling configuration. If used while sampling is in progress, this gets and sets the lower threshold level currently
in use.

Func SamplePeriLowLev({level});

level If present this sets the lower threshold for =Analogue peri-trigger type in the peri-trigger sampling
configuration or sampling document.

Returns The value for the lower threshold for =Analogue peri-trigger type in the peri-trigger sampling
configuration.

See also:
SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(), SamplePeriLevel(),
SamplePeriType(), SamplePeriPoints()

SamplePeriType()

This function gets or sets the type of peri-trigger in the peri-trigger information within the sampling configuration.

Func SamplePeriType({pts%});

pts% If present this sets the type of trigger in the sampling configuration as follows:

0 +Analogue.

Script language

19-575

1 -Analogue.

2 =Analogue.

3 Digital.

4 Event.

Returns The trigger type in the sampling configuration at the time of the call.

See also:
SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(), SamplePeriLevel(),
SamplePeriLowLev(), SamplePeriPoints()

SamplePeriPoints()

This function gets or sets the number of data points in the frame before the trigger as given by Pre-trig. points in
the Peri-trigger section of the sampling configuration.

Func SamplePeriPoints({pts%});

pts% If present this sets the pre-trigger points in the peri-trigger sampling configuration. This can be any
negative number or a positive number less than the points per sweep.

Returns The value for pre-trigger points in the peri-trigger sampling configuration.

See also:
SamplePeriDigBit(), SamplePeriBitState(), SamplePeriHyst(), SamplePeriLevel(),
SamplePeriLowLev(), SamplePeriType()

SamplePoints()

This function gets or sets the number of data points per ADC port per frame as given by the Frame points in the
sampling configuration.

Func SamplePoints({pts%});

pts% If present this sets the number of frame points in the sampling configuration.

Returns The value for frame points in the sampling configuration.

See also:
SampleClear(), SampleRate(), SamplePeriPoints(), SampleTrigger()

SamplePortFull()

This function gets and sets the Full value for an input port, as shown in the sampling configuration dialog.
Complete calibration of a waveform channel requires Full, Zero and Units to be set up correctly. This function
normally operates on the stored sampling configuration but if used during sampling it operates upon the on-going
sampling.

Func SamplePortFull(port%{, full});

port% The port number (0-127).

full The value of the data corresponding to the ADC full-scale level (+5 volts or +10 volts for a 10 volt system)
at the input.

Returns The value for the port Full scale value at the time of the call, or zero for illegal port numbers.

See also:
SampleClear(), SamplePorts(), SamplePortOptions$(), SamplePortUnits$(),
SamplePortZero(), SampleTel()

Signal Version 6.06

19-576

SamplePortName$()

This function gets and sets the title attached to a port, as shown in the sampling configuration dialog.

Func SamplePortName$(port%{, new$});

port% The port number (0-127).

new$ If present, the new title. If the title is too long, it is truncated.

Returns The title at the time of the call, or an empty string for illegal channel numbers.

See also:
SampleClear(), SamplePorts(), SamplePortFull(), SamplePortOptions$(),
SamplePortUnits$(), SamplePortZero()

SamplePortOptions$()

This function gets and sets the online processing options attached to a waveform input port setup, as shown in the
sampling configuration dialog.

Func SamplePortOptions$(port%{, new$});

port% The port number (0-127).

new$ If present, the new options string, up to 7 characters long. If the string is too long it will be truncated.

Returns The options string at the time of the call, or an empty string for illegal channel numbers.

See also:
SampleClear(), SamplePortFull(), SamplePorts(), SamplePortName$(), SamplePortUnits$(),
SamplePortZero()

SamplePorts()

This function gets or sets the ADC ports to be used as shown in the sampling configuration.

Func SamplePorts({get%[]|num%{, new%[]}});

num% If present this sets the number of ADC ports to take from the new% array. If new% is not present the new
ADC ports will be 0..num%-1.

get%[] If present as a single argument this is filled with ADC ports from the sampling configuration up to the size
of the array. If there are insufficient ports to fill the array the unused entries are left unchanged.

new%[] If present this holds the new ADC ports for the sampling configuration. The number of new ADC ports
will be restricted by the size of num% or by the size of this array, whichever is the smaller.

Returns The number of ADC ports at the time of the call.

See also:
SampleClear(), SamplePortFull(), SamplePortName$(), SamplePortOptions$(),
SamplePortUnits$(), SamplePortZero()

SamplePortUnits$()

This function gets and sets the units string for an input port, as shown in the sampling configuration dialog.
Complete calibration of a waveform channel requires Full, Zero and Units to be set up correctly.

Func SamplePortUnits$(port%{, new$});

port% The port number (0-127).

new$ The units to use. If the string is longer than 7 characters only the first 7 are used.

Returns The units at the time of the call, or an empty string for illegal channel numbers.

Script language

19-577

See also:
SampleClear(), SamplePorts(), SamplePortFull(), SamplePortOptions$(), SamplePortZero()

SamplePortZero()

This function gets and sets the Zero value for an input port, as shown in the sampling configuration dialog. This
function normally operates on the stored sampling configuration but if used during sampling it operates upon the
on-going sampling.

Func SamplePortZero(port%{, zero});

port% The port number (0-127).

zero The value of the data corresponding to a zero-volt input at the ADC.

Returns The value for the port zero value at the time of the call, or zero for illegal port numbers.

See also:
SampleClear(), SamplePorts(), SamplePortFull(), SamplePortUnits$(),
SamplePortOptions$()

SampleProtocol()

This function is used during sampling to retrieve the index number of the currently executing protocol and
optionally to start off execution of a protocol.

Func SampleProtocol({num|name$});

num If provided, the protocol number to use, from 1 to the number returned by Protocols().

name$ If provided, the name of the protocol to use.

Returns The number of the protocol in use before this call or a negative error code.

See also:
Protocols(), ProtocolName$(), SampleState()

SampleRate()

This function gets the waveform sample rate in Hz from the sampling configuration and optionally sets it to a new
value.

Func SampleRate({new});

new If present, the new preferred rate in Hz. The actual sampling rate used will be as close as possible to the
new rate, but will not always match it exactly.

Returns The sampling rate before the call. This is the actual sampling rate that would have been used, not the
preferred rate.

See also:
SampleClear(), SamplePoints(), SampleTrigger(), SampleBurst(), BinSize()

SampleReset()

This function can be used while sampling is in progress to abandon sampling, delete any data that has been written
to disk, and return to the state as if FileNew() had just been used to create a new data file.

Func SampleReset({noask%});

noask% If provided and non-zero, this causes the normal querying of the user about this potentially destructive
operation to be bypassed.

Returns 0 if the reset operation completed without a problem, or a negative error code.

Signal Version 6.06

19-578

See also:
SampleAbort(), SampleStart(), SampleStop(), SampleStatus(), SampleWrite(),
SamplePause()

SampleSeqCtrl()

This function sets and gets the options that control the use of the output sequence form of outputs.

Func SampleSeqCtrl(opt%{, new%};

opt% This value selects the option which is to be retrieved or set: 1 for the sequencer jump control, 2 for the
restart sequence at frame start flag.

new% The new value for the control option. For the jump control: 0 = keyboard, control panel and script, 1 =
control panel and script, 2 = script only. For the restart sequence flag a value of 1 selects the sequence
restarting at the start of each frame, 0 selects a free-running sequence without restarts.

Returns If you are setting an option, the function returns the previous value of the option. If you are reading a
value, the function returns the value.

See also:
SampleKey(), SampleSeqStep(), SampleSequencer$(), SampleOutClock(), SampleStart()

SampleSeqStep()

This function returns the current sequencer step when using the output sequence form of outputs or -1 if not
sampling. If no sequence is running the result is usually 0 (but this is not guaranteed).

Func SampleSeqStep();

Returns The current sequence step number, or -1 if not sampling.

See also:
SampleKey(), SampleSequencer$(), SampleOutClock(), SampleSeqVar()

SampleSeqTable()

If there is a sampling document sampled using the output sequence form of outputs, you can use this function to
find the size of any table set in the sequence by the TABSZ directive or to transfer data between an integer array
and the table.

Func SampleSeqTable({tab%[]{, offs%{, get%}}});

tab%[] An integer array holding items to transfer to the 1401 sequencer table or to hold items read back from the
table. The array size sets the maximum item count.

offs% This sets the index into the sequencer table to start the transfer. The first index in the table is 0. If this
value is negative or greater than or equal to the sequencer table size, no data is transferred. If omitted, the
value 0 is used.

get% Set 0 or omit this argument to transfer data to the sequencer table, set to 1 to transfer data from the
sequencer table.

Returns If you call this with no arguments, the return value is the size of the sequencer table. Otherwise, the
returned value is the number of items transferred between the sequencer table and the array. A negative
error code is also possible, for example -1 if there is no sampling document.

See also:
SampleKey(), SampleSequencer$(), SampleSeqVar()

Script language

19-579

SampleSequencer()

You can use this function to set the sequencer file to attach to the Sampling configuration. Use
SampleSequencer$() to get the name of the current sequencer file.

Func SampleSequencer(new$);

new$ The name of the sequence file. Pass an empty string to set no sequencer file.

Returns It returns 0 if all was well, or a negative error code.

This function modifies the sampling configuration by setting the sequencer file name and altering the outputs mode
to the output sequence form of outputs. In order for it to take effect, this function should be used before the
FileNew() script function is used to create a new data file and get ready for sampling.

See also:
SampleKey(), SampleSequencer$(), SampleOutClock(), SampleSeqVar(), FileNew()

SampleSequencer$()

This function returns the name of the sequencer file (for the output sequence form of outputs) that is currently
attached to the sampling configuration. Use SampleSequencer() to set the sequencer file.

Func SampleSequencer$();

Returns It returns the current sequencer file name, or an empty string if there is no file. The returned name includes
the full path.

See also:
SampleKey(), SampleSequencer(), SampleSeqVar()

SampleSeqVar()

This function is used just before or during sampling using the output sequence form of outputs to get or set the
value of an output sequencer variable. Values set before the sampling window exists (it is created by using
FileNew()) are ignored. Values set after FileNew() and before SampleStart() set the initial sequencer variable
values.

Func SampleSeqVar(sVar%{, new%});

sVar% The sequencer variable to set or read, in the range 1 to 64.

new% The new value for the output sequencer variable. If present, the value of the variable is updated. Omit to
return the variable value. A common error when setting variables for the DAC instruction is to set a value
65536 times too small.

Returns If you are setting a variable value, or if this function is used at an inappropriate time, the return value is 0.
If you are reading a value, the function returns the value of the variable.

See also:
Output sequencer DAC instruction, SampleKey(), SampleSeqStep(), SampleSequencer$(),
SampleStart(), SampleSeqWave(), FileNew()

SampleSeqWave()

This command can be used to set the number or size of the arbitrary waveform output areas used by the output
sequence form of outputs, to retrieve such information, or to load waveform data into or out of a waveform area.

Func SampleSeqWave(area%, arr%[]{, offs%{, get%}});
Func SampleSeqWave(area%, arr[]{, offs%{, get%}});

These two forms of the command copy data between a script array and the waveform output area. They can be
used while sampling is in progress, or after the FileNew() function has been used but before SampleStart(),
but will not have any effect if used when not sampling. If a single DAC is being used for waveform output, the

Signal Version 6.06

19-580

array data is a simple list of values. If more than one DAC is used the values for the various DACs are interleaved
so if DACs two and four are being used the data array goes 242424....

area% The waveform area number, from 1 to 256. Zero is also accepted and taken to mean 1 for compatibility with
previous versions of Signal.

arr%[] The array holding, or to be updated with, the waveform data. For integer arrays values from -32768 to
32767 span the complete DAC range.

arr[] As for arr%[] but an array of real numbers. For real arrays, the DAC scaling values for the sequencer
(actually the settings for DAC 0) will be used to convert from user units in the array to DAC values.

offs% The offset within the waveform area to start the transfer. The size of the data array sets the transfer size. If
this parameter is omitted, a value of zero is used.

get% Set this parameter to 1 to read data from the waveform area, set it to zero or omit it to transfer data into the
waveform area.

Func SampleSeqWave(areas%, mask%, pnts%, hz%);

This form of the command operates on the sampling configuration settings and is used to define the waveform
areas (which are all the same). It should therefore be used before sampling has begun.

areas% The number of waveform output areas, from 1 to 256. Zero is accepted and taken to mean 1 for
compatibility with previous versions of Signal.

mask% A value that defines which DACs are used, DACs from 0 to 7 are supported. The mask has bit zero set if
DAC 0 is used, bit 1 for DAC 1, bit 2 for DAC 2 and so on. In integer values bit zero is represented by the
value 1, bit one by the value 2, bit 2 by the value 4 and so forth. So to use DACs 0 and 1 set mask% to 3
(1+2), to only use DAC 4 set mask% to 16. Note that mask%, like the other values, applies to all the areas.

pnts% Sets the number of waveform points per DAC in each waveform area. Note that you can set the sequence
to only play part of an area.

hz% Sets the waveform output rate, in points per second.

Func SampleSeqWave(area%{, num%});

This form of the command is used to retrieve area settings from the sampling configuration, and so should also be
used before sampling has begun.

area% This argument is currently ignored and should be set to zero, it is present to allow future extensions.

num% A number which determines the return value of the function, if omitted its value is taken to be zero. Note
that none of these values vary between areas, though the sequencer WAVE instruction can specify less
than the total number of area points for replay. Possible values are:

 0 pnts% * number of DACs, i.e. the total data size for each area in DAC points.
-1 mask%

-2 pnts%

-3 hz%

-4 The number of DACs in mask%
-5 The number of waveform areas

Returns For the form used to read back area information, the return value is as shown in the table above. In all
other cases the return value is 0 if all went well or a negative error code.

See also:
SampleKey(), SampleSeqStep(), SampleSequencer$(), SampleStart(), SampleSeqVar(),
SampleDacFull(), SampleDacZero()

SampleStart()

This function starts sampling off, it can be used after FileNew() has created a new file view based on the current
sampling configuration. It starts sampling immediately or on a 1401 event trigger.

Func SampleStart({trig%});

Script language

19-581

trig% If this is 0 or omitted, sampling starts immediately, otherwise sampling waits for a trigger signal on the 1401
E1 input.

Returns 0 if all went well or a negative error code.

See also:
SampleAbort(), SampleReset(), SampleStop(), SampleStatus(), SampleWrite(),
SamplePause()

SampleState()

This function is used during sampling to set the current state directly; it is the scripting equivalent of controlling
the state manually with the states control bar. The command should be used with states sequencing set to Manual,
or the values set will be overridden by the sampling system.

Func SampleState(num);

num The state to use, from 0 to 256.

Returns The state in use at the time of the call or a negative error code. Note that this is the state currently in use;
the function return value will not change until the next sweep is started by calling SampleSweep() or an
equivalent operation.

See also:
SampleStatesOrder(), SampleStatesRun(), SampleStates()

SampleStateDac()

This function gets the DAC output value for a specific state from the sampling configuration and optionally sets it
to a new value.

Func SampleStateDac(state, port{, new});

state The state for which information is required, from 0 to 256.

port The DAC number, from 0 to 3.

new If present, sets the value to be output to the DAC for this state in Static outputs states mode. This value
is scaled to a voltage using the scaling factors currently set for the DAC.

Returns The DAC output value before the call.

See also:
SampleStatesMode(), SampleStates(), SampleState(), SampleDacMask(), SampleDacFull(),
SampleDacZero()

SampleStateDig()

This function gets the value to be written to the digital outputs for a specific state or the value read from the digital
inputs to set a state and optionally sets it to a new value.

Func SampleStateDig(state{, new%});

state The state for which information is required, from 0 to 256.

new% If present, sets the value to be written to the digital outputs for this state in Static outputs states mode,
or the value used to test the digital input data in External digital states mode.

Returns The digital output or input value before the call.

See also:
SampleStatesMode(), SampleStates(), SampleState(), SampleStateDac(), SampleDigIMask()

Signal Version 6.06

19-582

SampleStateLabel$()

This function gets the label string for a specific state (this is used to label the state control bar buttons amongst
other things) and optionally sets it to a new value.

Func SampleStateLabel$(state{, new$});

state The state for which information is required, from 0 to 256.

new$ If present, sets the new label for this state. A state label should consist of printable text and should not be
longer than ten characters.

Returns The label for the state before the call.

See also:
SampleStateRepeats(), SampleStates(), SampleState(), SampleStateDac()

SampleStateRepeats()

This function gets the number of repeats for a specific state from the sampling configuration and optionally sets it
to a new value.

Func SampleStateRepeats(state{, new});

state The state for which information is required, from 0 to 256.

new If present, sets the number of times the state is repeated in Numeric and Random ordering mode if
Individual repeats is enabled.

Returns The number of repeats before the call.

See also:
SampleStateRepeats(), SampleStates(), SampleState()

SampleStates()

This function gets the number of extra states from the sampling configuration and optionally sets it to a new value.

Func SampleStates({new});

new If present, the new number of extra states. Values from 1 to 256 set the states and turn on Multiple states
mode, a value of zero turns off multiple states.

Returns The number of extra states before the call, or zero if multiple states were disabled.

See also:
SampleStatesMode(), SampleStatesOrder(), SampleState(), SampleStatesOptions()

SampleStatesIdle()

This function gets the number of states ordering cycles to be executed before idling from the sampling
configuration and optionally sets it to a new value.

Func SampleStatesIdle({idle%});

idle% If present, this sets the number of cycles of states using Numeric, Random or Semi-random state
sequencing that will be executed before idling. A zero value means keep cycling forever. This parameter is
ignored for protocol ordering.

Returns The states cycles before idling before the call.

See also:
SampleStates(), SampleStatesMode(), SampleStatesOrder(), SampleState(),
SampleProtocol(), ProtocolFlags()

Script language

19-583

SampleStatesMode()

This function gets the mode for multiple states from the sampling configuration and optionally sets it to a new
value.

Func SampleStatesMode({new});

new If present, sets the new multiple states mode as follows:

0 External digital

1 Static outputs

2 Dynamic outputs

Returns The mode for multiple states before the call.

See also:
SampleStates(), SampleStatesOrder(), SampleState()

SampleStatesOptions()

This function gets the options for non-protocol ordering multiple states from the sampling configuration and
optionally sets new options.

Func SampleStatesOptions({new%});

new% If present, this sets the new multiple states options and is the sum of:

1 Start cycling states automatically when sampling starts.

2 Turn on writing to disk whenever states cycling starts.

Returns The multiple states options before the call.

See also:
SampleStates(), SampleStatesIdle(), SampleStatesMode(), SampleState(),
SampleProtocol(), ProtocolFlags()

SampleStatesOrder()

This function gets the ordering mode for multiple states from the sampling configuration and optionally sets it to a
new value.

Func SampleStatesOrder({new%});

new% If present, this sets the new multiple states ordering mode as follows:

0 Numeric

1 Random

2 Protocol

3 Semi-random

4 Random repeats

Returns The states ordering mode before the call.

See also:
SampleStates(), SampleStatesIdle(), SampleStatesMode(), SampleState(),
SampleProtocol(), ProtocolFlags()

SampleStatesPause()

This function is used during sampling to get the paused or not-paused state of multiple states cycling and
optionally sets it to a new value; it is the scripting equivalent of pressing the Pause button in the states control bar.

Func SampleStatesPause({pause%});

pause% If present, this sets the new paused condition of state cycling:

Signal Version 6.06

19-584

0 Not paused

1 Paused

Returns The paused condition before the call.

See also:
SampleStates(), SampleStatesIdle(), SampleStatesMode(), SampleState(),
SampleProtocol(), ProtocolFlags()

SampleStatesRepeats()

This function gets the number of times each state is repeated from the sampling configuration and optionally sets it
to a new value, or selects individual repeats mode.

Func SampleStatesRepeats({new%});

new% If present and non-zero, disables individual repeats and sets the number of times each state is repeated in
Numeric and Random ordering mode. A value of zero turns on individual repeats.

Returns The number of repeats before the call, or zero if individual repeats were enabled.

See also:
SampleStateRepeats(), SampleStatesOrder(), SampleState()

SampleStatesReset()

This function is used during sampling to reset the states-sequencing system and the pulses built-in varations; it is
the scripting equivalent of pressing the Reset button in the states control bar.

Func SampleStatesReset();

Returns Zero or a negative error code.

See also:
SampleStatesOrder(), SampleStatesRun(), SampleStates()

SampleStatesRun()

This function is used during sampling to set the state seqencing execution mode; the script equivalent of the
Manual, On Write or Cycle buttons in the states control bar.

Func SampleStatesRun({mode%});

mode% The mode of sequencing to use, as follows:

0 Manual or direct script control of states

1 States sequencer runs, moves to next state if data written

2 States sequencer runs, moves to next state unconditionally

Returns The state sequencing mode in use before this call or a negative error code.

When using protocols, setting mode to 0 will terminate the protocol, though this command cannot be used to start
a protocol running.

See also:
SampleStatesOrder(), SampleStatesReset(), SampleState(), SampleStatesOptions()

SampleStatesStep()

This function returns the current value of the states sequencing counter which is used during sampling to control
states seqencing.

Func SampleStatesStep();

Script language

19-585

Returns The states sequencing counter at the time of the call.

When using non-protocol ordering, the step counter runs from zero to states*repeats, in protocol mode it is the
count of steps since the protocol started.

See also:
SampleStatesOrder(), SampleStatesReset(), SampleState()

SampleStatus()

This function returns the current state of any sampling.

Func SampleStatus();

Returns A code indicating the sampling state or -1 if there is no sampling:

0 A file view is ready to sample, but it has not been told to start yet.

1 Sampling is waiting for an Event 1 trigger.

2 Sampling of a sweep is now in progress or is awaiting a trigger.

3 Sampling is paused at the end of a sweep.

4 Sampling is stopped but not finished (changes to -1 when it has finished).

See also:
SampleAbort(), SampleReset(), SampleStart(), SampleStop(), SampleWrite(), SamplePause()

SampleStop()

This function stops sampling in progress and is equivalent to using the Stop and Finish buttons of the sampling
control panel. The default behaviour is that there is no intermediate state between stopping and finishing, when
sampling is stopped by using this function. The function does not return until sampling has stopped.

Func SampleStop({noFin%});

noFin% If present and non zero then sampling will stop but not finish. SampleSweep() may then be used to
continue sampling.

Returns 0 if sampling stopped correctly or a negative error code.

See also:
SampleAbort(), SamplePause(), SampleReset(), SampleStart(), SampleStatus(),
SampleSweep(), SampleWrite()

SampleSweep()

If sampling is paused at the end of a sweep, or stopped but not finished because a limit was reached, this starts
sampling of the next sweep. The current sweep will be lost if it is unsaved. This function is the equivalent of the
Continue button in the sampling control panel (or More when sampling is stopped).

Func SampleSweep();

Returns 0 or a negative error code.

See also:
SamplePause(), SampleReset(), SampleStart(), SampleStop()

SampleSweepPoints()

If variable points per sweep sampling is in use, this function gets the number of points sampled for a given state
and optionally sets a new points value. If used online, it operates upun the sampling that is in progress.

Func SampleSweepPoints(state%{, new%});

state The state for which information is required, from 0 to 256.

Signal Version 6.06

19-586

new% If this is provided it sets the number of ADC points sampled per channel for the specified state. This
should be an even number no larger than the overall sweep points for the sampling configuration, odd
numbers will be rounded down to a value divisible by 2, values larger than overall sweep points will be
truncated.

Returns The number of ADC points sampled per channel before the call.

See also:
SamplePoints(), SampleVaryPoints(), SampleStates(), SampleMode(), SampleState()

SampleTel()

This function gets or sets the telegraph options in the sampling configuration. The first form of the command is
used to set telegraph options, the second form reads settings back.

Func SampleTel(nSet%, nPort%, nTel%{, volt[]|volt, gain[]|gain});
Func SampleTel(nSet%, opt%);

nSet% The set of telegraph values to work with, from 1 to 4.

nPort% The port number whose input is to be scaled by the telegraph. If this and nTel% are both set to -1 then
these telegraph settings will be turned off.

nTel% The port number being used to read the telegraph voltage. If this and nPort% are both set to -1 then these
telegraph settings will be turned off.

volt A telegraph voltage. If this is set to 0 and no gain is given then the list of gains and telegraph voltages is
cleared. If this matches the voltage in an existing telegraph entry, then this plus the gain value replaces the
original entry.

volt[] An array of telegraph voltages.

gain The gain associated with a particular voltage.

gain[] An array of gains associated with the array of telegraph voltages provided.

opt% This can be set to the following negative values which cause the function to return the following values:

-1 The scaled port number for this set of telegraph values or -1 if they are turned off.

-2 The telegraph port number or 0 if this set is turned off.

-3 The number of items in the telegraph list or 0 if this set is turned off.

-4 The first telegraph voltage in the list.

-5 The first gain in the list.

-n If n > 3 and n is even, the (n-2)/2 nd voltage in the list is returned. If n > 4 and n is odd, the (n-3)/2 nd
gain in the list is returned.

Returns 0, the requested value or a negative error code.

See also:
SamplePorts(), SamplePortFull(), SamplePortZero()

SampleTrigger()

This function gets or sets the external trigger option in the sampling configuration. It can also be used during
sampling to control the current trigger state.

Func SampleTrigger({trig%});

trig% If this is non-zero, sampling of each frame waits for a trigger input pulse. Zero turns trigger mode off.

Returns 0 or 1, or a negative error code.

See also:
SampleClear(), SampleRate(), SampleSweep(), SamplePoints(), SampleStatus()

Script language

19-587

SampleTriggerInv()

This function gets or sets the rising edge trigger flag as seen in the sampling configuration dialog.

Func SampleTriggerInv({inv%});

inv% If this is non-zero, the rising edge sweep trigger option is turned on, zero sets the standard falling-edge
trigger.

Returns 0 or 1 to indicate the previous state of the rising edge trigger flag.

See also:
SampleClear(), SampleTrigger(), SampleSweep(), SampleStatus()

SampleVaryPoints()

This function gets the flag enabling variable sweep points from the sampling configuration and optionally sets it to
a new value.

Func SampleVaryPoints({new%});

new% If this is provided it sets the variable sweep points enable in the sampling configuration; non-zero turns
variable sweep points on, zero turns it off. This will not affect sampling unless the sweep mode in use
allows variable points mode.

Returns The variable sweep points flag before the call.

See also:
SamplePoints(), SampleSweepPoints(), SampleStates(), SampleMode()

SampleWrite()

This function controls the automatic writing of data to the file during sampling and is equivalent to the Write to
disk at sweep end check boxes.

Func SampleWrite({write%});

write% If present this sets the state of automatic writing of data at the end of each sweep:

0 Disable writing to disk at the end of each sweep

1 Enable writing to disk at the end of each sweep

Returns The state of automatic writing to file at the end of each sweep: 0 for disabled, 1 for enabled.

See also:
SampleClear(), SamplePause(), SampleSweep(), SampleStatus()

SampleZeroOffset()

This function sets and gets the offset value applied to the zero point on the x-axis for newly sampled data. Normally
zero will be at the start of the frame or the trigger point for peri-triggered data.

Func SampleZeroOffset({offset});

offset If present this sets the amount in seconds by which to offset zero:

Returns The offset in seconds of zero before the function was called.

See also:
SampleClear()

Signal Version 6.06

19-588

ScriptBar()

This function controls the Script toolbar. Call the command with no arguments to return the number of toolbar
buttons. The first button is numbered 0.

Func ScriptBar({nBut%{, &get$}});
Func ScriptBar(set$);

nBut% Set -1 and omit get$ to clear all buttons and return 0. Otherwise it is a button number and returns -1 if the
button does not exist, 0 if it is the last button, and 1 if higher-numbered buttons exist. get$ returns the
information as for set$.

set$ This holds up to 8 characters of button label, a vertical bar, the path to the script file including .sgs, a
vertical bar and a pop-up comment. The function returns the new number of buttons or -1 if all buttons are
already used.

Returns See the descriptions above. Negative return values indicate an error.

For example, the following code clears the script bar and sets a button:

ScriptBar(-1); 'clear all buttons
ScriptBar("ToolMake|C:\\Scripts\\ToolMake.sgs|Build a toolbar");

See also:
App()

ScriptRun()

This sets the name of a script to run when the current script terminates. You can pass information to the new script
using disk files or by using the Profile() command. You can call this function as often as you like; only the last
use has any effect.

Proc ScriptRun(name${, flags%});

name$ The script file to run. You can supply a path relative to the current folder or a full path to the script file. If
you supply a relative path, it must still be valid at the end of the current script. Set name$ to "" to cancel
running a script.

flags% Optional flags, taken as 0 if omitted. Sum of: 1 = run even if the current script ends in an error, 2 = keep
loaded script in memory

If the file you name does not exist when Signal tries to run it, nothing happens. If the nominated script is not
already loaded, Signal will load it, run it and unload it unless the keep loaded script in memory flag is set. If a loaded
script calls Yield() or calls any function that allows the system to idle (Toolbar(), DlgShow()...), the script can
be unloaded while it is still running. This is usually harmless unless the loaded script attempts to use App(3),
which will return 0 if the script is no longer in memory.

See also:
App(), Profile()

Seconds()

This sets or gets the timer in seconds and is used for relative time measurements. If you want the position reached
within the current sweep, use the Maxtime() function.

Func Seconds({set{, hiRes%}});

set If present, this sets the time in seconds. The time is zero when Signal starts.

hiRes% If present, this selects between normal or high-resolution timing. A zero value selects the standard
resolution of nominally 1 millisecond (but may be worse on some systems). Set this to 1 for the highest
timer resolution available. Note that the default is 1 millisecond resolution, which is set when Signal starts.
Changes to the resolution are persistent between scripts.

Script language

19-589

Returns If hiRes is not present, the function returns the time in seconds. This is the value before any new time is
set. If hiRes is present, the return value is the time resolution, in seconds. This is 1 millisecond for the
standard resolution and can be (much) less than 1 microsecond for the high resolution timer.

High resolution timer caveats
The function we use for the high-resolution timer is supposed to use a fixed frequency source. However, some
machines (incorrectly) use a time based on CPU cycles; this is a problem for many laptops which change the CPU
speed to save battery power. There are also reports that some multi-core machines report different times for each
core. If you have a problem, the following web links may be useful: South bridge chipset problem, Athlon X2
problem. Note that computers from 2007 onwards are less likely to have problems.

See also:
MaxTime()

Selection$()

This function returns the text in the current view that is currently selected. To find where the currently selected text
is in relation to the overall view text, use the MoveBy() function.

Func Selection$();

Returns The current text selection. If there is no text selected, or if the view is inappropriate for this action, an
empty string is returned.

See also:
EditCopy(), EditCut(), EditPaste(), EditSelectAll(), MoveBy(), MoveTo(), XLow(),
XHigh()

SerialClose()

This function closes a serial port opened by SerialOpen(). Closing a port releases memory and system
resources. Ports are automatically closed when a script ends, however it is good practice to close a port when your
script has finished with it. Closing a serial port deletes any data from SerialWrite() that has not been
transmitted, if this could cause problems you can poll the output buffer space using SerialWrite() until all the
data is gone.

Func SerialClose(port%);

port% The serial port to close as defined for SerialOpen().

Returns 0 or a negative error code.

Safely closing the serial line
As mentioned above, SerialClose() will discard any un-transmitted serial line data. The safe way to ensure that
all data has been sent is to save the output buffer size at the time the serial line is opened and wait until the
available space is equal to the buffer size before closing:

var serbufsize%; ' Variable to hold size of serial output buffer

if (SerialOpen(port%, 9600) < 0) ' Open serial line & check that it worked
 halt;
serbufsize% := SerialWrite(port%); ' Save the size of the output buffer (will be empty)

 ' Do whatever serial line communications you want

while (SerialWrite(port%) < serbufsize%) do ' Wait until output buffer is empty again
wend;
SerialClose(port%); ' before safely closing the serial port

This code will ensure reliable operation in normal circumstances but can hang if the hardware handshake or other
mechanism prevents the serial line data from being transmitted (which is why we do not wait automatically as part
of SerialClose()). You do not need to wait for all characters to be sent if delays in your code or other effects

Signal Version 6.06

19-590

ensure that all serial line data will have been sent, if you get problems with hung serial line transmission you could
replace the simple while loop used above with one that times out after a suitable period:

var stime;
stime := Seconds(); ' Get the time at which we started waiting
while (SerialWrite(port%) < serbufsize%) do ' Wait until output buffer is empty again
 if (Seconds() > (stime + 2)) then break; endif; ' or until two seconds have elapsed
wend;
SerialClose(port%); ' before closing the serial port

See also:
SerialOpen(), SerialWrite(), SerialRead(), SerialCount()

SerialCount()

This counts the characters or items buffered in a serial port opened by SerialOpen(). Use this to detect input so
your script can do other tasks while waiting for serial data. There is an internal buffer of 1024 characters per port
that is filled when you use SerialCount(). The size of this buffer limits the number of characters that this
function can tell you about. To avoid character loss when you are not using a serial line handshake, do not buffer
up more than a few hundred characters with SerialCount().

Func SerialCount(port%{, term$});

port% The serial port to use as defined for SerialOpen().

term$ An optional string holding the character(s) that terminate an input item.

Returns If term$ is absent or empty, this returns the number of characters that could be read. If term$ is set, this
returns the number of complete items that end with term$ that could be read.

See also:
SerialOpen(), SerialWrite(), SerialRead(), SerialClose()

SerialOpen()

This function opens a serial port and configures it for use by the other serial line functions. It is not an error to call
SerialOpen more than once on the same port. The serial routines use the host operating system serial line
support. Consult your system documentation for information on serial line connections and Baud rate limits.

Func SerialOpen(port%{, baud%{, bits%{, par%{, stop%{, hsk%}}}}});

port% The serial port to use, in the range 1 to 256 (1 to 9 before version 5.05). The number of ports actually
available depends on the computer. Only one port is found on most PCs but USB serial ports can be used
to add more.

baud% This sets the serial line Baud rate (number of bits per second). The maximum character transfer rate is of
order one-tenth this figure. All standard rates from 50 to 115200 Baud are supported. If you omit baud%,
9600 is used.

bits% The number of data bits used to encode a character. Windows supports 4 to 8 bit encoding but you
should normally restrict yourself to 7 or 8. If bits% is omitted, 8 is set. Standard values are 7 or 8 data bits.
If you set 7 data bits, character codes from 0 to 127 can be read. If you set 8 data bits, codes from 0 to 255
are possible.

par% Set this to 0 for no parity check, 1 for odd parity or 2 for even parity. If you do not specify this argument,
no parity is set.

stop% This sets the number of stop bits as 1 or 2. If omitted, 1 stop bit is set. If you specify 5 data bits, a request
for 2 stop bits results in 1.5 stop bits being used.

hsk% This sets the handshake mode, sometimes called “flow control”. 0 sets no handshake, 1 sets a hardware
handshake, 2 sets XON/XOFF protocol.

Returns 0 or a negative error code.

See also:
SerialWrite(), SerialRead(), SerialCount(), SerialClose()

Script language

19-591

SerialRead()

This function reads characters, a string, an array of strings, or binary data from a nominated serial port that was
previously opened with SerialOpen(). Binary data can include character code 0; string data never includes
character 0.

Func SerialRead(port%, &in$|in$[]|&in%|in%[]{, term${, max%}});

port% The serial port to read from as defined for SerialOpen().

in$ A single string or an array of strings to fill with characters. To use an array of strings you must set a
terminator or all input goes to the first string in the array.

in% A single integer (term$ and max% are ignored) or an array of integers (term$ and max% can be used) to
read binary data. Each integer can hold one character, coded as 0 up to 255. The function returns the
number of characters returned.

term$ If this is an empty string or omitted, all characters read are input to the string, integer array or to the first
string in the string array and the number of characters read can be limited by max%. The function returns
the number of characters read.

If term$ is not empty, the contents are used to separate data items in the input stream. Only complete
items are returned and the terminator is not included. For example, set the terminator to "\n" if lines end in
line feed, or to "\r\n" if input lines end with carriage return then line feed. If in$ is a string, one item at
most is returned. If in$[] is an array, one item is returned per array element. The function returns the
number of items read unless in is an integer (in% or in%[]) when it returns the number of characters
returned.

max% If present, it sets the maximum number of characters to read into each string or into the integer array. If a
terminator is set, but not found after this many characters, the function breaks the input at this point as if a
terminator had been found. There is a maximum limit set by the integer array size, the size of the buffers
used by Signal to process data and by the size of the system buffers used outside Signal. This is typically
1024 characters.

Returns The function returns the number of characters or items read or a negative error code. If there is nothing to
read, it waits 1 second for characters to arrive before timing out and returning 0. Use SerialCount() to
test for items to read to avoid a time out.

See also:
SerialOpen(), SerialWrite(), SerialCount(), SerialClose()

SerialWrite()

This writes one or more strings or binary data to a serial port opened by SerialOpen(). Use the command with a
single argument to find out how much space is available in the serial line output buffer (typically 1024 characters).

Func SerialWrite(port%{, out$|out$[]|out%|out%[]{, term$}});

port% The serial port to write to as defined for SerialOpen().

out$ A single string or an array of strings to write to the output. The return value is the number of strings
written.

out% A single integer or an integer array to write as binary. One value is written per integer. The output written
depends on the number of data bits set for the port; 7-bit data writes as out% band 127, 8-bit data writes
as out% band 255. The return value is 1 if the transfer succeeded.

term$ If present, it is written to the output port after the contents of out%, out%[] or out$ or after each string in
out$[].

Returns If only the port argument is present, the return value is the amount of space available in the serial port
output buffer. With more arguments, for success the return value is as documented for the out argument.
If there is no room in the output buffer for the data the return value is -1 except when out$[] is used when
the return values is the count of complete strings actually sent.

SerialWrite() does not actually write the strings or data to the serial line; it merely puts it into a buffer for later
transmission. If you use the SerialClose() command before the system has had time to write buffered characters

Signal Version 6.06

19-592

to the serial port, the buffered characters will be lost. See SerialClose() for example code that avoids this
problem.

See also:
SerialOpen(), SerialRead(), SerialCount(), SerialClose()

SetXXX()

This family of commands creates memory view windows. Memory views which require processing are derived from
and attached to the current data view, which should be a file view. This does not apply to SetCopy() and
SetMemory(), which create memory views that do not use a Process command. The MeasureToXY() function is
special in that it creates an XY view which will receive data points from processing a source view which can be
either a file or a memory view. The SetXXX() functions do not update the display, for which you should use
Draw() or DrawAll().

All these functions, with the exception of SetOpCl() return a positive view handle if they succeed or a negative
error code. Possible errors are: bad channel number, illegal number of bins and out of memory. The new derived
memory view will be empty until a processing command is executed for it. The processing of a memory view takes
data from the source view and replaces or adds to the data in the memory view. SetOpCl()creates a idealised
trace channel in the source view to hold an idealised trace and returns the channel number.

When these functions create a new view, it is made the current view. The view is created invisibly and must be
made visible with WindowVisible(1) before it will appear.

See also:
Process(), ProcessAll(), ProcessFrames(), SetAutoAv(), SetAverage(), SetLeak(),
SetOpCl(), SetOpClScan(), SetPower(), MeasureToXY(), SetCopy(), SetMemory()

SetAmplitude()

This function creates a memory view to hold an amplitude histogram in each channel when it is processed.
Sweeps() reports the number of sweeps of waveform data accumulated by processing into the memory view. The
current view when SetAmplitude() is called will be the source view for the data to be processed. In this version
of Signal the source view cannot be log-binned.

Func SetAmplitude(ch%, bins%{, minA|minA${, maxA|maxA${, sTime|sTime${,
eTime|eTime$}}}});

ch% A waveform channel to analyse from the current view. Use a channel number (1 to n).

bins% The number of bins in the resulting histogram.

minA The smallest amplitude to be represented in the histogram. The default is the lower limit of the ADC range
of the channel.

minA$ The smallest amplitude to be represented in the histogram, as a string. Strings such as "HCursor(1)" can
be used.

maxA The largest amplitude to be represented in the histogram. The default is the upper limit of the ADC range
of the channel.

maxA$ The largest amplitude to be represented in the histogram, as a string. Strings such as "HCursor(1)" can
be used.

sTime The start time of the data to be included in the analysis. The default is the minimum time in the frame.

sTime$ A string giving the start time of the data to be included in the analysis, e.g. "Cursor(1)".

eTime The end time of the data to be included in the analysis. The default is the maximum time in the frame.

eTime$ A string giving the end time of the data to be included in the analysis e.g. "Cursor(2)".

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), Process(), ProcessAll(), ProcessFrames(), Sweeps(), View()

Script language

19-593

SetAutoAv()

This function creates a memory view to hold a sum or average in each channel when it is processed. The memory
view will hold multiple frames, with set numbers of source frames being averaged into each destination frame. This
allows you to set up averaging with, for example, every ten source frames processed into a new average. The
amount moved-on between averages can be separately controlled for extra flexibility. The current view when
SetAutoAv() is called will be the source view for the data to be processed. SetAutoAv() is very similar to
SetAverage().

Func SetAutoAv(cSpc, perAv%, betAv%{, width, offs{, sum%{, xzero%{, cntEx%{,
doErr%{, mode%{, maxFr%}}}}}}});

cSpc A channel specifier for the channels to average.

perAv% The number of source frames to use per average.

betAv% The number of source frames between the first frame for one average and the first frame for the next. If
perAv% is the same as betAv%, then each perAv% frames processed make a new average frame. If betAv%
is less than perAv%, then some source frames are used for more than one average; if it is greater than
perAv% then some source frames will be unused.

width The width of the average in x axis units. If omitted the whole frame will be used. The maximum is limited by
available memory.

offs This sets the offset in x axis units from start of frame to the start of the data to average. If omitted or zero,
the data will be taken from the start of the frame.

sum% If present and non-zero, each channel in the memory view will hold the sum of the data accumulated. If
omitted or zero, the memory view channels will hold the mean of the data accumulated.

xzero% If present and non-zero, this forces the x axis of the memory view to start at zero. If omitted or zero, the
start of the x axis will be the same as the start of the data that is averaged.

cntEx% If present and non-zero, excluded frames will count as if they had been added, so Signal will not use extra
frames to form each average and thereby remain in step with (for example) the sampling protocol.

doErr% If present and set to 1 then error bar information will be generated.

mode% If present and set to 1 then averaging will use the source state number to determine the destination frame
for each source view frame, otherwise the perAv% and betAv% values are used to calculate the
destination frame numbers.

MaxFr% If present and set to more than 0 then this sets the maximum number of frames that will be created in the
new memory view during averaging, otherwise no limit will be imposed. Note that when using By State
mode, the maximum state number for which an average will be created is MaxFr%-1 as the first average
frame is used for state number 0.

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), SetAverage(), Process(), ProcessAll(), ProcessFrames(), Sweeps(), View(),
MinTime()

SetAverage()

This function creates a memory view to hold a sum or average in each channel when it is processed. Sweeps()
reports the number of sweeps of waveform data accumulated by processing into the memory view. The current
view when SetAverage() is called will be the source view for the data to be processed.

Func SetAverage(cSpc{, width, offs{, sum%{, xzero%{, doErr%}}}});

cSpc A channel specifier for the channels to average.

width The width of the average in x axis units. If omitted the whole frame will be used. The maximum is limited by
available memory.

offs This sets the offset in x axis units from start of frame to the start of the data to average. If omitted or zero,
the data will be taken from the start of the frame.

Signal Version 6.06

19-594

sum% If present and non-zero, each channel in the memory view will hold the sum of the data accumulated. If
omitted or zero, the memory view channels will hold the mean of the data accumulated.

xzero% If present and non-zero, this forces the x axis of the memory view to start at zero. If omitted or zero, the
start of the x axis will be the same as the start of the data to average, as defined by offset offs from
MinTime() in the current frame.

doErr% If present and set to 1 then error bar information will be generated.

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), SetAutoAv(), Process(), ProcessAll(), ProcessFrames(), Sweeps(), View(),
MinTime()

SetCopy()

This function creates a new memory view with channels selected from and identical to those in the current view.
The new view can be empty or contain data copied from the current frame. It is attached to no source view and has
no implied Process(). Idealised trace channels are not handled.

Func SetCopy(cSpc, title$, bcopy%);

cSpc A channel specifier for the channels to copy. Virtual channels, real marker channels and idealised trace
channels will all be ignored.

title$ The new window title.

bcopy% If this is not 0 the data values are copied into the new memory view. If this is 0 the waveform data values
in the new view are zero and marker channels are empty.

Returns A handle for the new view, or a negative error code.

See also:
SetXXX(), SetMemory(), View()

SetINTH()

This function creates a memory view to hold an interval histogram in each channel when it is processed. Each
marker interval processed increments the value returned by Sweeps(), even intervals that are too short or too long
to contribute to the histogram. The current view when SetINTH() is called will be the source view for the data to
be processed.

Func SetINTH(cSpc, bins%, binsz{, minInt{, cross%{, sTime|sTime${, eTime|
eTime$}}}});

cSpc A channel specifier for the marker channels in the source view that are going to be analysed. Invalid
channels are ignored. The resulting channel list must hold at least one valid channel.

bins% The number of bins in the resulting histogram.

binsz The width of each bin in seconds, this is converted into the time units in use before the histogram is
created.

minInt The smallest interval to be represented in the histogram, the default is zero.

cross% Omit or set to zero if you do not want to process intervals crossing frame boundaries, set to 1 if you do
want to process these intervals.

sTime The start time of the data to be included in the analysis. The default is the minimum time in the frame. It is
an error to use cross-frame analysis with partial frames so if the cross% parameter is non-zero this
parameter must not be provided.

sTime$ A string giving the start time of the data to be included in the analysis, e.g. "Cursor(1)". Again this
should not be provided if cross-frame analysis is used.

Script language

19-595

eTime The end time of the data to be included in the analysis. The default is the maximum time in the frame. It is
an error to use cross-frame analysis with partial frames so if the cross% parameter is non-zero this
parameter must not be provided.

eTime$ A string giving the end time of the data to be included in the analysis e.g. "Cursor(2)". Again this
should not be provided if cross-frame analysis is used.

Returns The function returns a handle for the new memory view, or a negative error code.

See also:
SetXXX(), Process(), ProcessAll(), ProcessFrames(), Sweeps(), View()

SetLeak()

This function creates a memory view to hold leak subtracted data when it is processed. The current view when
SetLeak() is called, which must be a file view, will be the source view for the data to be processed.

Func SetLeak(mode%, chan%, stim%, base|base$, pulse|pulse$, width, form%,
sub%{, zero%{, cntEx%}});

mode% A value to set the leak subtraction mode: 0 for Basic, 1 for P/N or 2 for States.

chan% A single waveform channel from the current view, this is the channel that will be leak-subtracted, all other
source channels are copied unchanged. Use a channel number (1 to n).

stim% A single waveform channel from the current view. This is the channel that will be used to measure the
stimulus pulse size. Normally this will be a channel on which the stimulus was recorded.

base A time at which the baseline level can be measured; a time outside the stimulus pulse.

base$ The baseline level time expressed as a string, allowing constructs such as “Cursor(1) - 10”.

pulse A time at which the pulse level can be measured; a time inside the stimulus pulse.

pulse$ The pulse time expressed as a string.

width The width of the two level measurements. The measurement used is the average of all waveform points
within the specified width.

form% The first frame used to measure the leak in Basic mode, the number of frames to use for the leak in P/N
mode and the state code for leak frames in States mode.

sub% The last frame used to measure the leak in Basic mode and the number of frames to subtract the current
leak from in P/N mode. This parameter is unused in States mode.

zero% If present and non-zero, the baseline level will be maintained constant by the leak subtraction process;
otherwise this adjustment is not done.

cntEx% If present and non-zero, excluded frames will count as if they had been used, so Signal will not continue to
search for enough frames to form each leak and so remain in step with the sampling protocol.

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), FrameState(), SetPower(), Process(), ProcessAll(), ProcessFrames(), View()

SetMemory()

This function creates a memory view of user-defined type, attached to no source view and with no implied
Process().

Func SetMemory(chans%, pts%, binsz, offset, marks%, tmks%, mkBns%, title$,
xU${, yU${, xT${, yT$}}});

chans% The number of waveform channels in the view (1 to 80).

pts% The number of data points in each waveform channel.

Signal Version 6.06

19-596

binsz The x axis increment per point in the waveform channels. This is equivalent to the sample interval for
sampled data. This value should be positive and non-zero.

offset The x axis value at the first point of the waveform channels.

marks% The number of marker channels in the view, not including text markers (0 to 80).

tmks% The number of text marker channels in the view. Not implemented yet.

mkBns% The number of marker items in each marker channel.

title$ The new window title.

xU$ The x axis units.

yU$ Optional, y axis units, blank if omitted.

xT$ Optional, x axis title (otherwise blank).

yT$ Optional, y axis title (otherwise blank).

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), SetCopy(), View()

SetOpCl()

This function creates an idealised trace process. The current view when SetOpCl() is called will be the source
view for the data to be processed.

Func SetOpCl(cSpc, start|start$, end|end$, lev1|lev1$, lev2|lev2$, base|
base${, intrp%{, track%{, flags%}}});

cSpc A channel specifier for the channels to analyse.

start The start time in seconds of the idealised trace to be created.

start$ The start time as a string, e.g. "Cursor(1)".

end The end time in seconds of the idealised trace to be created.

end$ The end time as a string, e.g. "Cursor(2)".

lev1 The level which the original data trace must cross in order to change from closed state to open state.

lev1$ The lev1 value as a string, e.g. "HCursor(1)".

lev2 The level which the original data trace must cross in order to change from open state to closed state.

lev2$ The lev2 value as a string, e.g. "HCursor(2)".

base The level at which the data trace is considered to be in the closed state. This is used for calculating
additional thresholds for multi-level data.

base$ The base level as a string, e.g. "HCursor(3)".

intrp% The interpolation method to use for calculating the time of a threshold crossing. Set to 0 for no
interpolation and 1 for linear interpolation. The default value is 0.

track% The number of data points in the closed state to use in tracking the base level, in order to adjust the
thresholds to compensate for baseline drift. The default value is 0.

flags% A set of flags built up by adding together the following values:

1 Outward current. An opening of a channel leads to a more positive current.

2 Multiple level data. Normally set if there is more than one channel in the patch.

This parameter is set to 0 by default.

Returns The function returns the number of the idealised trace channel.

See also:

Script language

19-597

SetXXX(), SetOpClAmp(), SetOpClBurst(), SetOpClHist(), SetOpClScan()

SetOpClAmp()

This function creates a memory view to hold an open/closed amplitude histogram from an idealised trace. The
current view when SetOpClAmp() is called will be the source view for the data to be processed.

Func SetOpClAmp(chan%, bins%, minA|minA$, maxA|maxA$, incl%, excl%{, flags
%});

chan% The channel number in the source view. This channel must have an idealised trace fitted, for a histogram
to be built.

bins% The number of bins in the resulting histogram.

minA The smallest amplitude to be represented in the histogram.

minA$ The smallest amplitude to be represented in the histogram, as a string. Strings such as "HCursor(1)" can
be used.

maxA The largest amplitude to be represented in the histogram.

maxA$ The largest amplitude to be represented in the histogram, as a string. Strings such as "HCursor(1)" can
be used.

incl% A set of flags associated with each open/closed time to include. If an event has any of the flags in the
incl% set and none of the flags in the excl% set, it will be included in the histogram. See
SetOpClHist() for a list of flag values.

excl% A set of flags defining those events to be excluded from the histogram. Events having flags in the excl%
set will be excluded regardless of whether they have flags in the incl% sets. See SetOpClHist() for a
list of flag values.

flags% Set to 1 if amplitudes are to be measured relative to the baseline. If this is set to 0 or omitted then
processing will use absolute amplitudes.

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), SetOpCl(), SetOpClBurst(), SetOpClHist(), SetOpClScan()

SetOpClBurst()

This function creates a memory view to hold an open/closed burst time histogram from an idealised trace. The
current view when SetOpClBurst() is called will be the source view for the data to be processed. A burst
duration is from the start time of an included event to the start time of an excluded event having a duration greater
than the critical interval.

Func SetOpClBurst(chan%, binsz, maxDur, crInt, incl%, excl%);

Func SetOpClBurst(chan%, minDur, maxDur, crInt, incl%, excl%, nBins%);

chan% The channel number in the source view. This channel must have an idealised trace fitted for a histogram to
be built.

binsz The x increment per bin in the histogram.

minDur The minimum duration of a burst to be included in the histogram. This is used for log-binning.

maxDur The maximum duration of a burst to be included in the histogram.

crInt The critical interval.

incl% A set of flags associated with each open/closed time to include. If an event has any of the flags in the
incl% set and none of the flags in the excl% set, it will be included in the histogram. See
SetOpClHist() for a list of flag values.

Signal Version 6.06

19-598

excl% A set of flags defining those events to be excluded from the histogram. Events having flags in the excl%
set will be excluded regardless of whether they have flags in the incl% sets. See SetOpClHist() for a
list of flag values.

nBins% The number of bins in the histogram of log-binned data. Omit or set to 0 for all bins to be of width binsz.

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), SetOpCl(), SetOpClAmp(), SetOpClHist(), SetOpClScan()

SetOpClHist()

This function creates a memory view to hold an open/closed time histogram from an idealised trace. The current
view when SetOpClHist() is called will be the source view for the data to be processed.

Func SetOpClHist(chan%, binsz, maxDur, incl%, excl%);

Func SetOpClHist(chan%, minDur, maxDur, incl%, excl%, nBins%);

chan% The channel number in the source view. This channel must have an idealised trace fitted for a histogram to
be built.

binsz The x increment per bin in the histogram.

minDur The minimum duration of an open/closed time to be included in the histogram. This is used for log-
binning.

maxDur The maximum duration of an open/closed time to be included in the histogram.

incl% A set of flags associated with each open/closed time to include. If an event has any of the flags in the
incl% set and none of the flags in the excl% set it will be included in the histogram. A set of flags is built
up by adding together the following values:

0x000
1

1 Level 1. Closed times and the first open level will have this set.

0x000
2

2 Bad data: Events marked as bad in the idealised trace editor.

0x000
4

4 Assumed amplitude: Events whose amplitude has not been calculated from the raw data.

0x000
8

8 Reserved

0x001
0

16 First latency: The period from the start of the idealised trace to the first transition.

0x002
0

32 Truncated: The last event in an idealised trace.

0x004
0

64 Closed time.

0x008
0

128 Open time.

0x010
0

256 Reserved

0x020
0

512 Reserved

0x040
0

1024 Reserved

0x080
0

2048 Level 6 of multi-level data.

0x100
0

4096 Level 5 of multi-level data.

0x200
0

8192 Level 4 of multi-level data.

Script language

19-599

0x400
0

1638
4

Level 3 of multi-level data.

0x800
0

3276
8

Level 2 of multi-level data.

excl% A set of flags defining those events to be excluded from the histogram. Events having flags in both the
incl% and excl% sets will be excluded.

nBins% The number of bins in the histogram of log-binned data. Omit or set to 0 for all bins to be of width binsz.

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), SetOpCl(), SetOpClAmp(), SetOpClBurst(), SetOpClScan()

SetOpClScan()

This function creates an idealised trace process using the SCAN method. The current view when SetOpClScan()
is called will be the source view for the data to be processed. You will need to call OpClNoise before calling this
function.

Func SetOpClScan(cSpc, start|start$, end|end$, base|base$, thr|thr$, open|
open$, cutoff{, track%{, flags%}});

cSpc A channel specifier for the channels to analyse.

start The start time in seconds of the idealised trace to be created.

start$ The start time as a string, e.g. "Cursor(1)".

end The end time in seconds of the idealised trace to be created.

end$ The end time as a string, e.g. "Cursor(2)".

base The initial level of the baseline.

base$ The base value as a string, e.g. "HCursor(1)".

thr The threshold level which the original data trace must cross in order to change from closed state to an
open state.

thr$ The thr value as a string e.g. "HCursor(2)".

open The approximate initial level at which the channel will be assumed to be fully open.

open$ The open value as a string, e.g. "HCursor(3)".

cutoff The –3dB frequency in Hz of the cut-off frequency of the filter used to remove noise from the raw data..

track% The number of data points over which to form a running average of the baseline. The default value is 0.

flags% A set of flags built up by adding together the following values:

1 Outward current. An opening of a channel leads to a more positive current.

2 Avoid sub-levels. Normally set if you know there are no sub-levels so multiple transitions will be used
instead where possible.

This parameter is set to 0 by default.

Returns The function returns the number of the idealised trace channel.

See also:
SetXXX(), OpClNoise(), SetOpClAmp(), SetOpClBurst(), SetOpClHist(), SetOpCl()

Signal Version 6.06

19-600

SetPower()

This function creates a memory view to hold a power spectrum in each channel when it is processed. Sweeps()
reports the number of sweeps accumulated by processing into the memory view. The current view when
SetPower() is called will be the source view for the data to be processed. In this version of Signal the source view
cannot be log-binned data.

Func SetPower(cSpc, fftsz%{, offset{, wnd%}});

cSpc A channel specifier for the channels to analyse.

fftsz% The size of the transform used in the FFT. This must be a power of 2 in the range of 16 to 262144, values
that are not an integral power of two will be rounded down to the next lower such value. The memory view
that is created has half this number of bins. The width of each bin is the sampling rate of the channel
divided by fftsz%. Each block of fftsz% data points processed increments the value for Sweeps().

offset This sets the offset in x axis units from start of frame to the start of the data to analyse. If omitted or zero,
the data will be taken from the start of the frame.

wnd% The window to use. 0 = none, 1 = Hanning, 2 = Hamming. Values 3 to 9 set Kaiser windows with -30 dB to -
90 dB sideband ripple in steps of 10 dB. If this is omitted a Hanning window is applied.

Returns The function returns a handle for the new view, or a negative error code.

See also:
SetXXX(), SetAverage(), ArrFFT(), Process(), Sweeps(), View()

SetTrend()

This function creates an XY view to hold XY points calculated by trend plot processing. The function creates an
XY view with a single channel; more channels can be added using SetTrendChan(). This command has been
replaced by the MeasureToXY(), MeasureX() and MeasureY() commands, which should be used for all new
scripts.

Func SetTrend(name$, xtyp%, xc%, xp|xp$, xb|xb$, xw, ytyp%, yc%, yp|yp$, yb|
yb$, yw{, pts%{, xFCh%{, yFCh%{, comX%}}})};

name$ The name of the channel. The channel name is shown in the XY key area.

xtyp% The type of measurement to take for the X part of each point. The possible values are:

1 Curve area 6 Modulus 11 Standard deviation 16 Standard error
2 Mean 7 Maximum 12 Extreme 17 RMS error
3 Slope 8 Minimum 13 Peak
4 Area 9 Peak to peak 14 Trough
5 Sum 10 RMS amplitude 15 Point count

Types from 100 up are special values:

100Value at
point

105 Frame abs
time

110 Value product

101Value
difference

106 Frame state
value

111 Value above baseline

102Time at
point

107 0-based fit
coefficient

103Time
difference

108 User entered
value

104Frame
number

109 Value ratio

These values have changed from earlier versions of Signal – you will need to adjust any scripts that use
them.

xc% A single waveform channel from the current view, this is the channel that will be used to take the X
measurement. Use a channel number (1 to n). For xtyp% = 107 this is the coefficient index.

xp The time for single-point X measurements and difference measurements. For measurements between
points, this is the end time.

Script language

19-601

xp$ The time for single-point X measurements and difference measurements expressed as a string. This allows
constructs such as "Cursor(1) – 10" to be used.

xb The reference time for difference measurements; for measurements between points, this is the start time.

xb$ The reference time for difference measurements expressed as a string.

xw The width used for some measurements, particularly value at point and value difference.

ytyp% The type of measurement to take for the Y part of each point. The possible values are the same as for xtyp
%.

yc% A single waveform channel from the current view; this is the channel that will be used to take the Y
measurement. Use a channel number (1 to n). For ytyp% = 107 this is the coefficient index.

yp The time for single-point Y measurements and difference measurements. For measurements between
points, this is the end time.

yp$ The time for single-point Y measurements and difference measurements expressed as a string. This allows
constructs such as "Cursor(1) – 10" to be used.

yb The reference time for difference measurements; for measurements between points, this is the start time.

yb$ The reference time for difference measurements expressed as a string.

yw The width used for some measurements, particularly value at point and value difference.

pts% The number of points for this channel before they are recycled. If this is omitted or set to zero, all points
are simply added.

xFCh% The channel containing the fit to take fit coefficient values from if xtyp% = 107. If this is set to 0 (the
default) Signal will scan all channels to find one containing a fit with sufficient coefficients to use.

yFCh% The channel containing the fit to take fit coefficient values from from if ytyp% = 107. If this is set to 0 (the
default) Signal will scan all channels to find one containing a fit with sufficient coefficients to use.

comX% Set to 1 for all channels in the plot to share the same x-values. 0 (default) sets channels to have
independent x-values.

Returns The function returns a handle for the new view, or a negative error code.

See also:
MeasureToXY(), FrameState(), FrameAbsStart(), ChanMeasure(), SetTrendChan(), Process(),
ProcessAll(), ProcessFrames()

SetTrendChan()

This function adds another channel to an XY view created using SetTrend(). The current view must be the XY
view to be modified. The SetTrendChan() function can be used to create XY views with up to 32 channels. This
command has been replaced with MeasureChan(), which should be used for all new scripts.

Func SetTrendChan(name$, xtyp%, xc%, xp|xp$, xb|xb$, xw, ytyp%, yc%, yp|yp$,
yb|yb$, yw{, pts%{, xFitCh%{, yFitCh%}}});

All of the parameters to SetTrendChan() are exactly the same as for SetTrend().

Returns The function returns zero or a negative error code.

See also:
MeasureChan(), FrameState(), ChanMeasure(), SetTrend(), Process(), ProcessAll(),
ProcessFrames()

Signal Version 6.06

19-602

ShowBuffer()

This function gets or sets the show frame buffer flag from the current view.

Func ShowBuffer({yes%});

yes% If this is non-zero the frame buffer is shown otherwise the current frame data is shown. If this is omitted,
no change is made.

Returns The buffer show flag at the time of the call.

See also:
BuffXXX(), Frame()

ShowFunc()

This function draws a function over a data channel. This function is included for compatibility. It has been replaced
with ChanFitShow() in version 3 or later.

Func ShowFunc(func%, chan%{, start, coefs[]});

func% The type of the function to show:

0 Don’t show a function

1 Single exponential

2 Double exponential

3 Single gaussian

4 Double gaussian

chan% The channel on which to show the function.

start The time to start drawing from.

coefs The coefficients to use in drawing the function.

Returns The function returns zero or a negative error code.

See also:
FitExp(), FitGauss(), ChanFitShow()

Sin()

This calculates the sine of an angle in radians, or converts an array of angles into sines.

Func Sin(x|x[]{[]...});

x The angle, expressed in radians, or a real array of angles. The best accuracy of the result is obtained when
the angle is in the range -2pi to 2pi.

Returns When the argument is an array, the function replaces the array with the sines and returns 0 or a negative
error code. When the argument is not an array the function returns the sine of the angle.

See also:
Abs(), ATan(), Cos(), Cosh(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sqrt(), Sinh(), Tan(), Tanh()

Sinh()

This calculates the hyperbolic sine of a value or of an array of values.

Func Sinh(x|x[]{[]...});

x The value, or an array of real values.

Returns When the argument is an array, the function replaces the array elements with their hyperbolic sines and
returns 0. When the argument is not an array the function returns the hyperbolic sine of the argument.

Script language

19-603

See also:
Abs(), ATan(), Cos(), Cosh(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sqrt(), Sinh(), Tan(), Tanh()

Sound()

This command has two variants. The first plays a tone of set pitch and duration. The second plays a .WAV file or
system sound through your sound card if your system has multimedia support.

Func Sound(freq%, dur{, midi%});
Func Sound(name${, flags%);

freq% If midi% is 0 or omitted this holds the sound frequency in Hz. If midi% is non-zero this is a MIDI value in
the range 1-127. A MIDI value of 60 is middle C, 61 is C# and so on. Add or subtract 12 to change the note
by one octave. This uses the system speaker (usually a small and nasty device attached to your computer
motherboard), not your sound card.

dur The sound duration, in seconds. The script stops during output.

midi% If present and non-zero, freq% is interpreted as a MIDI value.

name$ The name of a .wav file or of a system sound. You can supply the full path to the file or just a file name
and the system will search for the file in the current directory, the Windows directory, the Windows
system directory, directories listed in the PATH environmental variable and the list of directories mapped in
a network. If no file extension is given, .wav is assumed. The file must be short enough to fit in available
physical memory.

A blank name halts sound output. If name$ is any of the following (case is important), a standard system
sound plays:

"S*" Asterisk "SS" Start "SE" Exit "SH" Hand
"SW" Welcome "S?" Query "SD" Default "S!" Exclamation

flags% This optional argument controls how the data is played. It is the sum of:

0x0001 1 Play asynchronously (start output and return). Without this flag, Signal does nothing
until replay ends.

0x0002 2 Silence when sound not found. Normally Sound() plays the system default sound if
the nominated sound cannot be found.

0x0008 8 Loop sound until stopped by another Sound() command. You must also supply the
asynchronous flag if you use loop mode.

0x0010 16 Don’t stop a playing sound. Normally, unless the “No wait” flag is set, each command
cancels any playing sound.

0x2000 8192 No wait if sound is already playing. Sound("",0x2010) returns 1 if a previous
asynchronous sound is finished and 0 if not.

If you don’t supply this argument, the flag value is set to 0x2000.

Returns The tone output returns 0 or a negative error code. The multimedia output returns non-zero if the function
succeeded and zero if it failed.

See also:
Speak()

Speak()

If your system supports text to speech, this command allows you to convert a text string into speech. We do not
provide facilities to setup voices or to route the sound output; you must do this from the Speech applet in the
control panel. There are two command variants. The first outputs text as speech; the second is for control of the
output and provides status information.

Func Speak(text${, opt%});
Func Speak({what%{, val}});

text$ A string holding the text to output, for example "Sampling has started".

Signal Version 6.06

19-604

opt% This optional argument (default value 1) controls the text conversion and output method. It is the sum of
the following flags:
1 Speak asynchronously. Without this flag the command waits until speech output is over before

returning.

2 Cancel any pending speech output.

4 Speak punctuation marks in the text.

8 Process embedded SAPI XML; the www.microsoft.com/speech web site has more information on this
advanced topic. For example:
Speak("Emphasis on <EMPH>this</EMPH> word",8);

16 Reset to the standard voice settings before speaking.

what% An optional variable, taken as 0 if it is omitted:
0 Returns 1 if speech is playing and 0 if it is not.

1 Wait for up to val seconds (default value 3.0) for output to end. The return value is 0 if playing is
finished, 1 if it continues after val seconds.

2 Returns the current speech speed in the range -10 to 10; 0 is the standard speed. If val is present, it
sets the new speed.

3 Returns the current speech volume in the range 0 to 100, 100 is the standard volume. If val is present,
it sets the new volume.

val An optional argument used when what% is greater than 0.

Returns If there is no speech support available, or a system error occurs, the command returns -1. Otherwise the
first command variant returns 0 if all is well and the second variant returns the values listed for what%.

To use TTS (text to speech), you need a suitable sound card and the Microsoft SAPI software support. Windows
XP and later has this software included with the operating system. You can get text to speech support as a
download for other versions of Windows. In August 2006, the speech support was available as
SpeechSDK51MSM.exe from the web page www.microsoft.com/speech/download/sdk51/ but this location
may change.

See also:
Sound()

Spline2D()

Given a set of (xi , yi) or (xi , yi , zi) positions and the values vi at each

position, this command allows you to generate interpolated values at
arbitrary (but local to the existing points) positions by interpolation. The
interpolation is based on the distance of each interpolated point from
the known points, so it can work in any number of dimensions, but we
have implemented it in 2D (x,y) and 3D (x,y,z). We also provide functions
to help in generating bitmaps of the result.

For example, in EEG work, you might have a set of measurements from
electrodes attached to a head and you want to map the power in a
particular frequency band (which is known at each electrode) across the
entire head. In the example image the small circles are electrode positions
at which the power in a particular frequency band is known and the
colours represent power density with red as high and blue as low.

The Spline2D() function is useful for a reasonable number of (x, y)
positions (say a maximum of a hundred or so). The example picture uses
19.

The function uses two basic methods to map the data: Inverse distance weighting and Radial basis functions. Both
methods use the distances ri of a general position (x, y) or (x, y, z) from each of the i positions, which means that x

and y (and z) must be measured in the same units. Put another way, this is not a suitable method to use if your y
position is distance and your x position is time.

If you have data points on a rectangular grid (such as might occur when looking at the time course of the signals
from a linear array), cubic splining treating the x and y axes as independent may be more appropriate.

http://www.microsoft.com/speech

Script language

19-605

The command has several variants, some of which are used to set up the problem, some to provide the data and
some to obtain the interpolations. As this command will often be used to create bitmaps, we provide support for
efficient mapping of levels to colours. The command are:

Func Spline2D(const p[][]);
Func Spline2D(const v[]{, mode%{, flags%{, v1}}});
Func Spline2D(x, y{, z});
Func Spline2D(out[], const pos[][]);
Func Spline2D(const map%[], mLo, mHi);
Func Spline2D(xy%[][], xLo, yLo, xHi, yHi);
Func Spline2D(xy%[][], const pos[][][]);

Set (x, y) positions
This command variant must be called first and resets any remembered information including resetting the
interpolation both mode% and flags% to 0. It sets the (x, y) positions for use by the other command variants.

Func Spline2D(const p[][]);

p[][] A matrix of x,y or x,y,z positions. That is the matrix is either p[2][n] for 2D interpolation or p[3][n]
for 3D interpolation. p[0][] is a vector of x values, p[1][] is a vector of y values, and it it exists, p[3][]
is a vector of z values.

Returns It returns the number of positions that will be used or -1 if points are not distinct (different).

Set the values and the interpolation method
This command variant is called after setting the positions. It sets the values at each of the positions and optionally
sets the interpolation method and any required settings. It sets up the command so that it can compute the
interpolations efficiently.

Func Spline2D(const v[]{, mode%{, flags%{, v1}}});

v[] A vector of values. This vector must be at least as long as the number of positions. If there are n
positions, the first n elements of v[] are used.

mode% This determines the method used for interpolation. If omitted, the last set mode% is used. The reset value is
0. There is more information about the methods, below. The values currently implemented are:

0 Inverse distance weighting. v1 sets the inverse power to use. Positive values greater than 0 and less
than 20 or so can be used. Large values may cause arithmetic underflow or overflow.

1 Polyharmonic spline using r.

2 Polyharmonic spline using r2 Ln(r). The distance r is scaled by dividing by v1, which is taken as 1 if
omitted.

3 Polyharmonic spline using r3.

4 Polyharmonic spline using r4 Ln(r). The distance r is scaled by dividing by v1, which is taken as 1 if
omitted.

5 Radial basis function using exp(-r2/v12). The distance r is scaled by dividing by v1, which is taken as
1 if omitted.

flags% Flag settings control aspects of the interpolation (there is only one flag at present). If omitted, the flags
take the last set value. The reset value is 0. The value is the sum of:

1 Subtract the mean of the z[] values from the data before use, then add the mean back to the
interpolated values. This affects how the results behave outside the locality of the supplied data. If
the spline method tends to zero at large distances, this causes it to tend to the mean value.

v1 Optional parameter. If omitted it takes the last set value. The reset value is 1. Its use depends on mode%.

Returns -1 if an error, otherwise the mode% value that will be used.

Interpolate single value
This command variant returns the interpolated value at a designated point. It is an error to call this method without
having previously set the positions and set the values and interpolation method.

Func Spline2D(x, y{, z});

Signal Version 6.06

19-606

x,y,z The position to interpolate the result. The z value should not be present for a 2D interpolation and is
required for a 3D interpolation. We do not restrict the range of positions, but you should be aware that
using a position well away from the locality of the positions that define the spline may not generate useful
results.

Returns The interpolated value.

Interpolate a list of values
This command variant fills a vector of values with interpolated values based on a list of positions passed in. This
works with 2D or 3D positions. You could use this to interpolate values over a 3D surface mapped onto a plane. It
is an error to call this without having set the positions and the interpolation values and method.

Func Spline2D(out[], const pos[][]);

out[] A vector that is filled with interpolated values for each position in pos. The number of values returned is
the shorter of this vector and the second dimension of pos. That is, min(len(out, len(pos[0][])).

pos A matrix that is either 2 x n or 3 x n, for 2D or 3D interpolation. pos[0][] is a vector of x values,
pos[1][] is a vector of y values and for 3D interpolation, pos[2][] is a vector of z values.

Returns The number of values written to out.

Interpolate for rectangular bitmap
These command variants fill a rectangular integer matrix with values that map from the interpolation. The
expectation is that the mapping array will be filled with RGB colour values and that the xy%[][] array will be written
as a bitmap. The first variant determines how interpolated values map to colours (or colour indices in a palette). You
must call this before the calls that generate a rectangular bitmap.

Func Spline2D(const map%[], mLo, mHi);

map%[] An integer vector of values that are to be used in the bitmap to represent interpolated values in a range
determined by mLo and mHi. The formula used to determine the element of map% to use for an interpolated
value v is:

mIndex% := (v - mLo) * (Len(map%)-1)/(mHi - mLo);

Values outside the range mLo to mHi are mapped to the nearer end of the map. You can use this
mechanism to implement a variety of bitmap formats. For example, a simple approach is to use the 32-bit
per pixel format with bits 0-7 for blue, 8-15 for green and bits 16-23 for red (with the option of using bits 24-
31 for an alpha channel). Alternatively, if you were using a palette format, the map% array might only hold
the integer values 0-255 for an 8-bit palette.

mLo The interpolated value to map to the first element of map%. It is a fatal error for mLo to be the same as mHi.

mHi The interpolated value to map to the last element of map%.

Returns 0.

The next variant is used in the 2D case to map a rectangular region of the (x, y) plane into a matrix such that each
element of the output represents the colour of a pixel in a bitmap. You must have already set up the mapping of
interpolated values into integers (map%, mLo and mHi) and have called the routines to set up the interpolation.

Func Spline2D(xy%[][], xLo, yLo, xHi, yHi);

xy% This is a matrix xy%[nx%][ny%] that is filled in by interpolating values, then mapping these values to an
integer, where nx% is the number of x pixels from left to right and ny% is the number of y pixels.

xLo The x position used to calculate the xy%[0][] elements of the matrix.

yLo The y position used to calculate the xy%[][0] elements of the matrix.

xHi The x position of the end of the range spanned by the matrix. The x increment per bin in the x direction is
(xHi - xLo)/nx%.

yHi The y position of the end of the range spanned by the matrix. The y increment per bin in the y direction is
(yHi - yLo)/ny%.

Returns The number of elements that were outside the range mLo to mHi.

Script language

19-607

The next variant maps a 3D (or 2D) surface onto a 2D bitmap (for example to map interpolations of values on the
surface of a human head onto a flat plane). You must have already set up the mapping of interpolated values into
integers (map%, mLo and mHi) and have called the routines to set up the interpolation.

Func Spline2D(xy%[][], const pos[][][]);

xy% This is a matrix xy%[nx%][ny%] that is filled in by interpolating values, then mapping these values to an
integer, where nx% is the number of x pixels from left to right and ny% is the number of y pixels. The same
comments about masking out values applies as for the rectangular map, above.

pos This is either pos[2][nx%][ny%] for a 2D mapping or pos[3][nx%][ny%] for a 3D mapping. The first
dimension holds the x, y (and z) co-ordinates in the pos[0][][], pos[1][][] (and pos[2][][])
elements. The numbers of elements in each dimension must be large enough to match the xy% matrix and
to match the 2D or 3D mapping.

Returns The number of elements that were outside the range mLo to mHi.

See also:
ArrSpline(), Inverse distance, Radial basis, Example

Inverse distance weighting

This is a relatively simple-minded form of interpolation, which weights the contribution of each known point to the
result at any arbitrary point by some negative power of the distance to the known point. The basic idea is that if di

is the distance to the ith known value vi, the interpolated value is:

vi/di
p di

p

The larger the value of p, the more the effect of local points dominates the result (p need not be integral). High
values (16, for example), tend to generate hard edges in the interpolation along the lines joining the known points.
You can see examples of this here.

This formula appears to break down as you approach any of the known points due to division by zero, but you can
see that as you get very close to any point n you can ignore the contribution of all other points (as dn << di for all

other points), so the formula becomes vn/dn
p / 1/dn

p which simplifies to just vn.

Radial basis functions

The idea here is that given our fixed points, to place values wi (to be calculated) at each of the fixed points such

that the interpolated value at a point that is a distance ri from each of the fixed points is given by:

wi f(ri)

The wi are calculated such that the interpolation passes through each of the fixed points.

The f(r) are known as radial basis functions, and many are possible. We implement a few that are likely to be useful.
The first 4 in the list are also known as Polyharmonic Splines (rn for n odd, rn ln(r) for n even).

r This is a linear interpolation between the calculated points.

r2ln(r) This is a Polyharmonic spline that is also known as the Thin plate spline. This has several nice
properties that make it a good choice for smooth splining.

r3 Polyharmonic spline.

r4ln(r) Polyharmonic spline.

exp(-r2/σ2) Gaussian. Setting a sensible σ value is important. Too small a value results in spikes at each fixed
data point.

The generation of the wi values involves inverting a matrix (which is an O(n3) process, with n the number of fixed
points, another reason to keep the number of fixed points within reason). If your input data points all have the same
sign and are all a long way from zero, you may be able to improve the results by setting the flags% value to
remove the mean value from the data before interpolation, then add it back after.

http://en.wikipedia.org/wiki/Inverse_distance_weighting
http://en.wikipedia.org/wiki/Radial_basis_function
http://en.wikipedia.org/wiki/Polyharmonic_spline
http://en.wikipedia.org/wiki/Thin_plate_spline

Signal Version 6.06

19-608

Spline2D example

The following example code shows how you can generate a bitmap
from scattered data points. In this case, we have 4 data points (the
black squares) with known values of 1, -1, 1 and -1 (clockwise from
the top left). The data is interpolated using the "thin plate spline"
mechanism using red to represent positive values and blue to
represent negative values.

The image to the right shows the result. To interpret this, the darker
the red, the more the interpolating surface is raised. The darker the
blue, the more the interpolating surface is lowered. The white cross
represents the places where the interpolating surface passes
through 0.

The code required to set up the problem is:

const p[][] := {{-0.5, 0.5}, {0.5, 0.5}, {0.5, -0.5}, {-0.5, -0.5}};
Spline2D(p); 'set the initial point positions (square)
const v[] := {1, -1, 1, -1};'the data values for each of the positions
Spline2D(v, 2); 'set point values in "thin plate spline mode"

We could now use the Spline2D(x, y) calls to obtain the splined values as any desired (x, y) position. However,
we want to generate a bitmap, so the next step is to generate a map from data values to colours. To do this, we
generate a list of integer values, each value representing a colour in RGB format and we set the colours to span a
range of values. Colours are coded from 0 (off) to 255 (0xff, full on) as:

blue% + green%*0x100 + red%*0x10000

Hexadecimal notation is convenient as it uses 2 digits for each colour. Black is 0x000000, bright blue is 0x0000ff.
Bright green is 0x00ff00 and bright red is 0xff0000. White is 0xffffff. Setting the same proportion of red,
green and blue generates a grey scale. The following code sets up a map from bright blue through white to bright
red. We set this to map the range -2 to +2.

var col%[511], i%;
for i% := 0 to 255 do col%[i%] := 0xff + i%*0x10100 next;
for i% := 256 to 510 do col%[i%] := 0xff0000 + (510-i%)*0x101 next;
Spline2D(col%, -2, 2); 'colour map blue - white - red for -2 to +2

The next task is to map this into a bitmap and then save it in a file. The data points form a square with side 1 centred
at 0,0 and we choose to display the mapping from (-2,2) to (2,2) using a 200 x 200 pixel bitmap. We save the bitmap
to test.bmp in the folder My Documents\Signal6. You can find the code for WriteBmp() in the BWriteSize()
script command example (so we don't repeat it here). We know that the bmp% matrix will be initialised to 0, so we do
not need to worry about having some of the data masked out.

const xLo := -2, xHi := 2, yLo := -2, yHi := 2;
var bmp%[200][200]; 'bitmap space 200 x 200 pixels
Spline2D(bmp%, xLo, yLo, xHi, yHi); 'make a bitmap
var path$:= FilePath$(-4) + "test.bmp"; 'Where to save a bitmap
WriteBmp(path$, bmp%, 0); 'See BWriteSize example for code

Finally, we create an XY view and set the newly created bitmap as the channel image. We then scale the image so
that it spans the same x and y axis range as the bitmap and add data points for the positions where the data values
are known.

var xy% := FileNew(12, 1); ' New XY view
XRange(xLo, xHi); ' Set axis range to span
YRange(1, yLo, yHi); ' the data
ChanImage(1, path$); ' Link bitmap to the channel and set...
ChanImage(1, 2, 1.00, xLo, yLo, xHi, yHi); '...to span the data range
XYAddData(1, p[0][], p[1][]); 'Mark data positions

The mapping operation is quite fast. On my computer it took around 8 milliseconds, so it is entirely possible to use
this technique to generate an animated display. The time is proportional to the number of pixels and to the number
of known data points. If you had 20 known points (a more reasonable number), it would likely take 5 times longer
than this simple example with 4 known points.

Script language

19-609

Sqrt()

Forms the square root of a real number or an array of real numbers. Negative numbers halt the script with an error
when x is not an array. With an array, negative numbers are set to 0 and an error is returned.

Func Sqrt(x|x[]{[]...});

x A real number or a real array to replace with an array of square roots.

Returns With an array, this returns 0 if all was well, or a negative error code. With an expression, it returns the
square root of the expression.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(), Round(),
Sin(), Tan(), Trunc()

Str$()

This converts a number to a string.

Func Str$(x{, width%{, sigd%}});

x A number to be converted.

width% Optional minimum field width. The number is right justified in this width.

sigd% Optional number of significant figures in the result (default is 6) or set a negative number to set the
number of decimal places.

Returns A string holding a representation of the number.

See also:
Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(), Print$(), Print(),
Right$(), UCase$(), Val()

StrToChanY()

This function lets you evaluate a text string in exactly the same way that a dialog expression evaluates a channel
expression. It is here to allow us to test dialog expressions from a script, but it could occasionally be useful from a
script.

Func StrToChanY(expr$, chan%, &value);

expr$ The channel dialog expression to evaluate.

chan% The channel to evaluate it for or 0 if no channel is needed. Expressions involving only horizontal cursors
do not need a channel as each horizontal cursor is attached to a channel.

value A real variable returned holding the result of a successful evaluation.

Return 1 for success, 0 if the expression could not be evaluated.

See also:
StrToViewX()

StrToViewX()

This function lets you evaluate a text string in exactly the same way that a dialog expression evaluates a view
expression. It is here to allow us to test dialog expressions from a script, but it could occasionally be useful from a
script.

Func StrToViewX(expr$, &value);

expr$ A view x axis expression to be evaluated.

value A real variable returned holding the result of a successful evaluation.

Signal Version 6.06

19-610

Return 1 for success, 0 if unable to evaluate the expression.

See also:
StrToChanY()

Sweeps()

This function returns the number of sweeps accumulated into the frame data and optionally sets it to a new value. If
the memory view is saved and reloaded as a file view, the sweeps value is preserved. What each item or sweep is,
depends on the type of the analysis.

Func Sweeps({new});

new If present, sets the sweeps value for the frame to a new value. Note that, while setting the sweep count for
a frame is necessary in some circumstances, if used incautiously this mechanism will corrupt the sweep
count of analysed data.

Returns The number of sweeps accumulated to produce the frame data.

See also:
SetAverage(), SetPower(), View()

System()

This function returns the operating system version as a number and gets information about desktop screens and
about the time consumed by the GUI thread. Use the App() command to get the version number of Signal.

Func System({get%{, scr%{, sz%[]}}});
Func System(3, &user, &kernel);

get% A value that determines which information to return. If omitted, the value is taken as 0. Values 2 and 3 were
added at Signal version 6.05.

0 The return value is the operating system revision times 100: 351=NT 3.51, 400=95 and NT 4, 410=98,
490=Me, 500=NT 2000, 501=XP, 502=Windows Server 2003, 600=Vista, Windows Server 2008,
601=Windows Server 2008 R2, Windows 7, 602=Windows 8, Windows Server 2012, 1000=Windows
10. Signal version 7 requires Windows 7 or later (it may work in Vista with the correct libraries
installed).

1 The function returns information about installed desktop monitors (see scr% and sz%[])

2 Set the base time for collecting the time used by the current GUI thread. There must only be one
argument. This is for CED diagnostic use. If you do not use this, the value read back by setting get%
to 3 will be relative to the start of Signal (not to the start of the current script).

3 Read back the time used in user and kernel mode of the GUI thread in seconds. There must be three
arguments. This is for CED diagnostic use.

scr% Set 0 to return the number of desktop monitors; sz%[] gets the pixel co-ordinates of the desktop. Set to n
(>0) to get the pixel co-ordinates of screen n; returns 1 for the primary monitor, 0 if not and -1 if it does not
exist. Add 1000 to scr% to get the pixel co-ordinates of screen n with any areas reserved by the system
(for example the task bar) removed.

sz%[] Optional array of at least 4 elements to return pixel positions. Elements 0 and 1 hold the top left x and y, 2
and 3 hold bottom right x and y.

user Returned holding the time in seconds that the GUI thread has executed for in user mode since the last call
to System(2). The result is pretty much meaningless if you do not call System(2) first.

kernel Returned holding the time in seconds that the GUI thread has executed for in kernel mode since the last
call to System(2).

Returns A value that depends on get% as described above.

See also:

Script language

19-611

App(), System$(), Window(), WindowVisible()

System$()

This returns the operating system name and accesses Signal environment variables and the program command line.
The environment holds a list of strings of the form "name=value". You can get or set the value associated with
name. You can also read all the strings into a string array.

Get operating system name
To get information about the operating system use the command with no arguments:

Func System$()

Returns With no arguments, it returns: "Windows SS build n" where SS is the operating system and n is the
build number.

Get and optionally set an environment variable
Each process has its own environment. A process started with ProgRun() inherits a copy of the Signal
environment, so you can pass it information. However, you cannot see environment changes made by the new
process.

Func System$({var$ {,value$}});

var$ If present, this is the name of an environment variable (case insensitive).

value$ If present, the new value. An empty string deletes the environment variable.

Returns The value of the environment variable identified by var$ or an empty string if this variable does not exist.

Get a list of environment variables
This command variant reads the environment strings into a string array.

Func System$(list$[] {,&n%});

list$ An array of strings to fill with environment strings of the form "name=value".

n% An optional integer that is returned holding the number of elements copied.

Returns An empty string.

Get elements of the command line that started Signal
Signal can be started with a command line and it can be useful to find out what this held. In particular, Signal
ignores command line switches (items starting with a - or / character) that it does not recognise, so a script run
using the command line can then interpret other command line switches as defined by the user.

Func System$(cmd%);

cmd% Used to return the elements that make up the program command line used to start Signal. The first element
is 0, the second 1 and so on. If a command element is a flag (introduced by - or /), it starts with a /. The
return value is an empty string if the element does not exist. The command line variant was added at Signal
version 6.06.

Returns The element of the command line indexed by cmd% or an empty string if there is no such element.

Examples of use
var list$[200], value$, n%, i%;

PrintLog("%s\n", System$()); 'Print OS name

System$("fred","good"); 'Assign the value "good" to fred

PrintLog("%s\n", System$("fred")); 'get value of fred

System$("fred",""); 'Delete fred from the environment

System$(list$[], n%); 'Print all environment strings

for i%:=0 to n%-1 do PrintLog("%s\n",list$[i%]) next;

Signal Version 6.06

19-612

See also:
ProgRun(), System()

T

TabSettings()

This sets and gets the tab settings for a text view. Any changes you make apply to the current view only. If you
want to change the tab settings for all views, open the Edit menu preferences General tab and click the appropriate
button in the Text view settings. It is possible to do this using a script with the Profile() command.

Func TabSettings({size%{, flags%}});

size% Tab sizes are set in units of the width of the space character in the Default style set for the view (style
32). Values in the range 1 to 100 set the tab size. If size% is 0 or omitted, no change is made. If size% is -1,
the return value is the current flags% value for the text view.

flags% If omitted, no change is made to the flags. Otherwise, this is the sum of flag values: 1=Keep tab characters
(the alternative is replace tabs with spaces), 2=show indents.

Returns If size% is positive, the return value is the tab size at the time of the call. If size% is -1, the return value is
the flags% value at the time of the call.

See also:
FontGet(), FontSet(), Profile()

Tan()

This calculates the tangent of an angle in radians or converts an array of angles into tangents. Tangents of odd
multiples of pi/2 are infinite, so cause computational overflow. There are 2pi radians in 360degrees. pi is
approximately 3.14159265359 (4.0*ATan(1)).

Func Tan(x|x[]{[]...});

x The angle, expressed in radians, or a real array of angles. The best accuracy of the result is obtained when
the angle is in the range -2pi to 2pi.

Returns For an array, it returns a negative error code (for overflow) or 0. When the argument is not an array the
function returns the tangent of the angle.

See also:
Abs(), ATan(), Cos(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(), Round(),
Sin(), Sqrt(), Trunc()

Tanh()

This calculates the hyperbolic tangent of a value or an array of values.

Func Tanh(x|x[]{[]...});

x The value or an array of real values.

Returns For an array, it returns 0. Otherwise it returns the hyperbolic tangent of x.

See also:
Abs(), ATan(), Cos(), Cosh(), Exp(), Frac(), Ln(), Log(), Max(), Min(), Pow(), Rand(),
Round(), Sin(), Sinh(), Sqrt(), Trunc()

Script language

19-613

Time$()

This function returns the current system time of day as a string. If no arguments are supplied, the returned string
shows hours, minutes and seconds in a format determined by the operating system settings. To obtain the time as
numbers, use TimeDate(). To obtain relative time and fractions of a second, use Seconds().

Func Time$({tBase%{, show%{, amPm%{, sep$}}}});

tBase% Specifies the time base to show the time in. You can choose between 24 hour or 12 hour clock mode. If this
argument is omitted, 0 is used.

0 Operating system settings 2 12 hour format

1 24 hour format

show% Specifies the time fields to show. Add the values of the required options together and use that as the
argument. If this argument is omitted or a value of 0 is used, 7 (1+2+4) is used for 24 hour format and 15
(1+2+4+8) for 12 hour format.

1 Show hours 4 Show seconds

2 Show minutes 8 Remove leading zeros from hours

amPm% This sets the position of the “AM” or “PM” string in 12 hour format and has no effect in 24 hour format. If
omitted, a value of zero is used. The string that gets printed (“AM” or “PM”) is specified by the operating
system.

0 Operating system settings 2 Show to the left of the time

1 Show to the right of the time 3 Hide the “AM” or “PM” string

sep$ This string appears between adjacent time fields. If sep$ = “:” then the time will appear as 12:04:45. If
an empty string is entered or sep$ is omitted, the operating system settings are used.

See also:
Date$(), Seconds(), TimeDate()

TimeDate()

This returns the time and date in seconds, minutes, hours, days, months, and years plus the day of the week. You
can use separate variables for each field or an integer array. To get the data or time as a string, use Date$() or
Time$(). To measure relative times, or times to a fraction of a second, see the Seconds() command. To get the
current sampling time, see MaxTime().

Proc TimeDate(&s%{, &m%{, &h%{, &d%{, &mon%{, &y%{, &wDay%}}}}}});
Proc TimeDate(now%[])

s% If s% is the only argument, it is set to the number of seconds since midnight. Otherwise it is set to the
number of seconds since the start of the current minute.

m% If this is the last argument, it is set to the number of minutes since midnight. Otherwise it is set to the
number of full minutes since the start of the hour.

h% If present, the number of hours since Midnight is returned in this variable.

d% If present, the day of the month is returned as an integer in the range 1 to 31.

mon% If present, the month number is returned as an integer in the range 1 to 12.

y% If present, the year number is returned here. It will be an integer such as 2008.

wDay% If present, the day of the week will be returned here as 0=Monday to 6=Sunday.

now%[] If an array is the first and only argument, the first seven elements are filled with time and date data. The
array can be less than seven elements long. Element 0 is set to the seconds, 1 to the minutes, 2 to the
hours, and so on.

See also:
Date$(), MaxTime(), Seconds(), Time$()

Signal Version 6.06

19-614

TimeRatio()

This function returns the ratio between the current view X axis units and seconds; for example in milliseconds mode
it returns 1000. Use of this value allows script output to use the preferred time units, as the script functions always
see time values in seconds, regardless of the time units preferred.

Func TimeRatio();

Returns The current time ratio.

See also:
TimeUnits$()

TimeUnits$()

This function returns the current view time units, for example in milliseconds mode it returns "ms". Use of this
allows script output to show the preferred time units.

Func TimeUnits$();

Returns The current time units.

See also:
TimeRatio()

The toolbar

The toolbar is at the top of the screen, below the menu. The bar has a message area and can hold buttons that are
used in the Interact() and Toolbar() commands.

It is possible to link user-defined functions and procedures to the toolbar buttons. This is done through a set of
functions that define buttons and optionally link the buttons to the toolbar. You can define up to 40 buttons in
your toolbar, but you will probably be limited by the available space to a maximum of around 10. Buttons are
numbered from 1 to 40. There is an invisible button, numbered 0, that is used to set a function that is called when
the toolbar is waiting for a button to be pressed.

When you start a script, the toolbar is invisible and contains no buttons. When a script stops running, the toolbar
becomes invisible (if it was visible).

Toolbar building
There is an example script Toolmake.sgs which automates the writing of toolbar commands to generate your
desired toolbar.

See also:
Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(), ToolbarSet(), ToolbarText(),
ToolbarVisible()

Toolbar()

This function displays the toolbar and waits for the user to click on a button. If button 0 has been defined with an
associated function, that function is called repeatedly while no button is pressed. If no buttons are defined or
enabled, or if all buttons become undefined or disabled, the toolbar is in an illegal state and an error is returned. If
the toolbar was not visible, it becomes visible when this command is given.

If the user presses the “escape” key (Esc) with the toolbar active, the script will stop unless an “escape button”
has been set by ToolbarSet(), in which case the action associated with that button is performed.

Func Toolbar(text$, allow%{, help%|help$});

text$ A message to display in the message area of the toolbar. The area available for messages competes with
the area for buttons. If there are too many buttons, the message may not be visible.

Script language

19-615

allow% A code that defines what the user can do (apart from pressing toolbar buttons). The code is the sum of
possible activities:

1 0x0001 User may swap to other applications

2 0x0002 User may change the current window

4 0x0004 User may move and resize windows

8 0x0008 User may use File menu

16 0x0010 User may use Edit menu

32 0x0020 User may use View menu

64 0x0040 User may use Analysis menu

128 0x0080 User may use Cursor menu and add cursors

256 0x0100 User may use Window menu

512 0x0200 User may use Sample menu

1024 0x0400 User may not double click y axis

2048 0x0800 User may not double click the x axis or scroll it

4096 0x1000 User may not change channel of horizontal cursors

8192 0x2000 User may not change to another frame

A value of 0 would restrict the user to the current view in a fixed window and, in a data view, the user
would be able to scroll data and switch frames. A value of 9216 is the same as 0 but without being able to
change y axes or frame. The allow% value used remains in force all the time the toolbar remains active.

help This is either a numeric code or a string that defines the help to be presented if the user asks for it while
using the toolbar. A code of 0 means use standard help.

Returns The function returns the number of the button that was pressed to leave the toolbar, or a negative code
returned by an associated function.

The buttons are displayed in order of their item number. Undefined items leave a gap between the buttons. This
effect can be used to group related buttons together.

See also:
Interact(), ToolbarClear(), ToolbarEnable(), ToolbarSet(), ToolbarText(),
ToolbarVisible()

ToolbarClear()

This function removes some or all of the toolbar buttons. If you delete all buttons, the Toolbar() function inserts
an OK button, so you can get out of the Toolbar() function. Use ToolbarText("") to clear the toolbar
message.

Proc ToolbarClear({item%});

item% If present, this is the button to clear. Buttons are numbered from 0. If omitted, all buttons are cleared. If the
toolbar is visible, changes are shown immediately.

See also:
Interact(), Toolbar(), ToolbarEnable(), ToolbarSet(), ToolbarText(), ToolbarVisible()

ToolbarEnable()

This function enables and disables toolbar buttons, and reports on the state of a button. Enabling an undefined
button has no effect. If you disable all the buttons and then use the Toolbar() function, or if you disable all the
buttons in a function linked to the toolbar, and there is no idle function set, a single OK button is displayed.

Func ToolbarEnable(but%{, state%});
Func ToolbarEnable(const but%[], state%); (new at 6.03)

but% The number of the button or -1 for all buttons. You must enable and disable button 0 with ToolbarSet()
and ToolbarClear().

Signal Version 6.06

19-616

but%[] An array of button numbers. This allows you to set the state of several buttons with a single call. If you
use this array variant of the command, you must provide the state% argument.

state% If present this sets the button state. 0 disables a button, 1 enables it, -1 leaves the state unchanged.

Returns The function returns the state of the button (or the first button in the list in the array variant of the
command) prior to the call, as 0 for disabled and 1 for enabled. If but% or but%[0] was -1, the function
returns 0. If an undefined button or button 0 is selected, the function returns -1.

See also:
Interact(), Toolbar(), ToolbarClear(), ToolbarSet(), ToolbarText(), ToolbarVisible()

ToolbarMouse()

This command gives you access to the mouse positions and left button mouse clicks in Data and XY views when
the mouse is over a data channel while a toolbar is active. There is an example, here. The description of this
command applies also to DlgMouse() when used with 5 or more arguments.

Proc ToolbarMouse(vh%, ch%, mask%, want%, Func Down%{, Func Up%{, Func Move
%}});

vh% This is either the view handle of the view that you want to get mouse information from, or 0, meaning that
you will accept mouse information from any suitable view.

ch% This is either a channel number in the view that you want mouse information for when you are over it or 0
to accept input from any channel. In an XY view, the display area is treated as belonging to channel 1, so
setting 1 or 0 will work. If you set a channel number, once you have clicked on that channel, all values
passed to you will be for that channel, even if you drag the mouse over a different channel. If you want to
be able to click on a channel, then drag to another and be told about the other channel you must set ch%
to 0. With ch% set to 0, if you drag to a place where there is no channel, you will be returned the last
position that was over a channel.

mask% This, and the next argument (want%) are used when the left mouse button is clicked to decide if the script
should be told about the mouse click. When the mouse button is clicked, and the conditions set here are
met, the mouse becomes owned by the script and all mouse input will be given to the script until the
mouse is released (or another application grabs the mouse). The mouse is said to be captured. The
conditions set here are also used to decide if the script should be informed of mouse movements when the
mouse is not owned by the script. Both mask% and want% are the sum of a set of values:

1 The left-hand mouse button is down.

2 The right-hand mouse button is down (releasing this button will normally display a context menu)

4 The Shift key is down

8 The Ctrl key is down

16 The mouse middle button is down

32 Extra button 1 is down (this is the left-hand side button on my mouse)

64 Extra button 2 is down (this is the right-hand side button on my mouse)

128 The Alt key is down

256 There was a left mouse button double-click

The mask% value determines which of these items we care about. For example if you cared about the state
of the Shift and Ctrl keys, you would set the value to 12.

want% This argument sets the desired state of the items that you have identified with mask%. For example, if you
only want to be told when the Shift key is down and the Ctrl key is not down, set mask% to 12 and
want% to 4. Another use would be to stop the script being told when the mouse was just being moved
around but had not been clicked in an area we wanted. In this case you would set mask% to 1 and want%
to 1 (only tell me when the left-hand mouse button is down).

Down% This is the name of a user-defined function that is called when the mouse left-hand button is clicked and
the conditions implied by vh%, ch%, mask% and want% are satisfied. The arguments and return value of
this function are described below.

Up% This is the name of an optional user-defined function that is called when the mouse button is released
after it has been captured. You will always get a Down% function call before you get an Up% call. If another

Script language

19-617

application (rudely) takes over the mouse by popping up a window, you will also get a call to the Up%
function. This function is described below.

Move% This is the name of an optional user-defined function that is called when the mouse is moved after being
captured. This function is also called when the mouse is moved when not captured by a mouse click and
the conditions set by vh%, ch%, mask% and want% are satisfied. If you only want to be called during a drag
operation, make sure you include the value for the left-hand mouse button in both mask% and want%.

The user-defined mouse functions
All three functions have exactly the same arguments. The function names do not have to be Down%, Up% and Move
%, you can choose any names that are suitable. Ideally your mouse functions (especially mouse move) should not
take a long time to run; if they do, the mouse movement will feel uncomfortable and jerky. If you must trigger a more
time-consuming operation, set a flag and then service it in an idle routine. The mouse pointer and any screen
drawing related to the mouse is not acted upon until after your function returns, so you may get odd screen effects
if you have a time-consuming function that causes screen repainting. The return value has different uses in all three
cases. The functions are:

Func Down%(vh%, ch%, x, y, flags%);
Func Move%(vh%, ch%, x, y, flags%);
Func Up%(vh%, ch%, x, y, flags%);

vh% The view handle of the view that the mouse is over. If you set vh% to a view handle value in the
ToolbarMouse() call, then this will be that value. Your function must not close this view (the view is
required to handle the return value from this function).

ch% The channel number that the values of x and y relate to. If you specified a channel number in the
ToolbarMouse() call, then this will be that value.

x The x-axis value in x-axis units. If you click and drag you can get values that are outside the visible range
of the x axis. If you want to scroll the view in response to this, you can do so.

y The y-axis value in y axis units for the channel identified by ch%. If there is no y axis, the value will be 0.

flags% This holds the same information as held by mask% and want%. It gives you the state of the mouse buttons
and Shift, Ctrl and Alt keys.

Return value
The return values have different uses for the three functions:

Func Down%()

If you decide that you do not want to do anything with the mouse, for example the click was not over anything
interesting, then return 0 and Signal will decide what to do with the click. You will never get a mouse down call
when the mouse is over the XY view key, or over a vertical or horizontal cursor. However, you do get priority over
Signal for all other clicks in a view (for sizing, for instance). Return values greater than 0 select the mouse pointer to
display (this is covered below) and mean that you want to capture the mouse for script use.

You can also choose to display an indication of a selection size or area by adding a value to the return value (only 1
value can be added). If you add any of the following values and you drag beyond the left or right edges of the data
area, the area will scroll (if it is allowed to).

Value Result

256 Display a selection rectangle, as you would for zooming in and out. If you return 256, the appropriate zoom
cursor (16 or 17) is selected based on the state of the Ctrl key.

512 Display a measurement of the distance between the start of the drag and the current position. If you return
512, the measurement cursor (19) is selected.

1024 Display a line from the selection start to the current position. If you return 1024, the measurement cursor is
selected.

Func Move%()

The return value from this sets the mouse pointer to be used (see below). A return value of 0 makes no change to
the mouse pointer, which means that the pointer set by Func Down%() will be used for a drag operation and the
cross-hair cursor (#1 in the list below) used when not dragging.

Func Up%()

Signal Version 6.06

19-618

The return value from this determines if the toolbar (or user-defined dialog for DlgMouse()) closes or not when the
mouse button is released. Return a negative value or 0 to close the toolbar or dialog, 1 to keep the toolbar or dialog
running. When used with a dialog a negative value acts as Cancel, while 0 acts as OK. When this function closes
the toolbar or dialog, the result of Toolbar() or DlgShow() will be the value returned by Up% for a negative return
value, or a value greater than the highest valid button number if zero is returned.

Mouse pointers set by return values
You have access to many of the mouse pointers that are available in Signal, so you can use these to indicate that
you are over an item or to show that you are dragging something. The values for the preset mouse pointers are:

The first seven and the last four of these are system mouse pointers and may have a different appearance if you
have chosen a custom set of mouse pointers in the Windows system Control Panel in the Mouse section. You
should be aware that 3D and animated mouse pointers can be a lot slower on some systems than simple
monochrome pointers. You can also define your own mouse pointers with the MousePointer() command. These
are assigned numbers above the range of the built-in cursors.

Mouse double-click behaviour
If you double-click, you will get a mouse down, possibly followed by one or more mouse moves, followed by a
mouse up for the first click. The second click generates another mouse down, but this time the double-click flag will
be set. It is up to you to decide if you want to undo anything that happened as a result of the initial mouse down
and up. If your mouse down function returns 0, the double click will be handled by Signal.

Things you should not do in a user-defined mouse function
The code in the mouse functions runs as part of the Windows code that decides which mouse pointer to display.
There are a few things that you must not do inside the mouse functions:

1. Calling FileClose() on the view that is handling the mouse move or button notification will not close
the view. This is because if it did close the view, when the mouse function returned control back to the
deleted window, the program would crash.

2. Do not use up a lot of time, especially in a mouse move routine. Time consuming mouse routines will make
mouse movement and button clicks feel awkward.

3. Mouse move calls after the mouse has been captured should not display user-defined dialogs or use the
Message() or Input() or Input$() commands. If you do use these functions, you will find that the
mouse is not available as it belongs to the window where the mouse was clicked. The keyboard can be
used to navigate the dialog, but users will be very confused and may think that the program has crashed
as mouse clicks in the dialog will have no effect.

Debugging user-defined mouse functions

You can set a break point in the mouse down, move and up functions. However, if you do, the function will not
control the mouse pointer (as it is in use for debugging) and the mouse up function will not terminate the Toolbar()
call if it returns 0.

See also:

DlgMouse(), MousePointer(), Toolbar(), ToolbarMouse() example

Script language

19-619

ToolbarMouse() example

This example assumes that there is a data or XY view open. The three mouse routines just print information to the
log window. The ToolbarMouse() call is setup to accept any suitable window and any channel in that window.
The mask% and want% arguments are set so that the mouse left-hand button must be down. This prevents the
mouse move function being called unless the mouse is down.

The mouse down function requests mouse pointer 19 (the measurement pointer) and adds 1024, which causes a line
to be drawn between the mouse down position and the current position.

The mouse move function returns 0, which will leave the mouse pointer unchanged. If there was no need to do
anything in this routine it could be omitted. We have included it so we can print the mouse information to the log
window.

The mouse up function returns 1, so that the toolbar continues to run.

func MouseDown%(vh%, chan%, x, y, flags%)
PrintLog("Down: chan=%2d, x=%g, y= %g, flags% = %d\n", chan%, x, y, flags%);
return 19+1024; 'cursor 19 + a line linking start to end
end;

func MouseMove%(vh%, chan%, x, y, flags%)
PrintLog("Move: chan=%2d, x=%g, y= %g, flags% = %d\n", chan%, x, y, flags%);
return 0; 'keep same cursor as for the mouse down
end;

func MouseUp%(vh%, chan%, x, y, flags%)
PrintLog("Up: chan=%2d, x=%g, y= %g, flags% = %d\n", chan%, x, y, flags%);
return 1; 'do not close the toolbar
end;

ToolbarSet(1, "Hello");
ToolbarMouse(-1, -1, 1, 1, MouseDown%, MouseUp%, MouseMove%);
Toolbar("Hello", 511);

ToolbarSet()

This function adds a button to the toolbar and optionally associates a function with it. When a button is added, it
is added in the enabled state. You can also use this command while the toolbar is displayed to get the last button
pressed (added at version 4.06). There are two command variants:

Func ToolbarSet(item%, label${, func ff%()});
Func ToolbarSet();

item% The button number in the range 1 to 40 to add or replace or 0 to set or clear a function that is called
repeatedly while the toolbar waits for a button press.

You can set an “escape” key as described in Toolbar(), by negating item%. For example ToolbarSet(-
2,"Quit"); sets button 2 as the escape key.

label$ The button label plus optional key code and tooltip as "Label|code|tip". Labels compete for space
with each other; use tooltips for lengthy explanations. The label is ignored for button 0. Tooltips can be
up to 79 characters long. To use a tooltip with no code use "Label||A tooltip with no code
field".

To link a key to a button, place & before a character in the label or add a vertical bar and a key code in
hexadecimal (e.g. 0x30), octal (e.g. 060) or decimal (e.g. 48) to the end of the label. Characters set by & are
case insensitive. For example "a&Maze" generates the label aMaze and responds to m or M; the label
"F2:Go|0x71" generates the label F2:Go and responds to the F2 key. Useful key codes include (nk =
numeric keypad):

0x08 Backspace 0x22 Page down 0x28 Down arrow 0x6b nk +
0x09 Tab 0x23 End 0x2e Del 0x6c nk separator
0x0d Enter 0x24 Home 0x30-39 0-9 0x6d nk -
0x1b Escape 0x25 Left arrow 0x41-5a A-Z 0x62 nk .

Signal Version 6.06

19-620

0x20 Spacebar 0x26 Up arrow 0x60-69 nk 0-9 0x6f nk /
0x21 Page up 0x27 Right arrow 0x6a nk * 0x70-87 F1-F24

Use of other keys codes or use of & before characters other than a-z, A-Z or 0-9 may cause unpredictable
and undesirable effects.

Beware: When the toolbar is active, it owns all keys linked to it. If A is linked, you cannot type a or A into a
text window with the toolbar active.

ff%() This is the name of a function with no arguments. The name with no brackets is given, for example
ToolbarSet(1,"Go",DoIt%); where Func DoIt%() is defined somewhere in the script. When the
Toolbar() function is used and the user clicks on the button, the linked function runs. If the item% 0
function is set, that function runs while no button is pressed. The function return value controls the
action of Toolbar() after a button is pressed.

If it returns 0, the Toolbar() function returns to the caller, passing back the button number. If it returns a
negative number, the Toolbar() call returns the negative number. If it returns a number greater than 0,
the Toolbar() function does not return, but waits for the next button. An item 0 function must return a
value greater than 0, otherwise Toolbar() will return immediately.

If this argument is omitted, there is no function linked to the button. When the user clicks on the button,
the Toolbar() function returns the button number.

Returns The call with no arguments returns the item number of the last button pressed. This call can be used to
service multiple buttons with a single user-defined function. The call that creates a button returns 0.

See also:
Asc(), DlgButton(), Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(),
ToolbarText(), ToolbarVisible()

ToolbarText()

This replaces any message in the toolbar, and makes the toolbar visible if it is invisible. It can be used to give a
progress report on the state of a script that takes a while to run.

Proc ToolbarText(msg$);

msg$ A string to be displayed in the message area of the toolbar.

See also:
Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(), ToolbarSet(), ToolbarVisible()

ToolbarVisible()

This function reports on the visibility of the toolbar, and can also show and hide it. You cannot hide the toolbar if
the Toolbar() function is in use.

Func ToolbarVisible({show%});

show% If present and non-zero, the toolbar is made visible. If this is zero, and the Toolbar() function is not
active, the toolbar is made invisible.

Returns The state of the toolbar at the time of the call. The state is returned as 2 if the toolbar is active, 1 if it is
visible but inactive and 0 if it is invisible.

See also:
Interact(), Toolbar(), ToolbarClear(), ToolbarEnable(), ToolbarSet(), ToolbarText()

Trim()

This function removes leading and trailing white space (spaces, tabs and end of line characters) or user-defined
characters from a string variable. This function was added in Signal version 5.00.

Proc Trim(&text${, chars$};

Script language

19-621

text$ The string variable to remove characters from.

chars$ An optional list of characters to remove. If omitted, " \t\n\r" is used.

This function and the similar TrimLeft() and TrimRight() are commonly used to help parse user input that may
contain multiple spaces. For example:

Input to Trim() After Trim() After Trim(text$, "1234 ");

" 12AB34 " "12AB34" "AB"

" 1234 " "1234" ""

See also:
DelStr$(), InStr(), Left$(), Len(), Mid$(), Right$(), TrimLeft(), TrimRight()

TrimLeft()

This function removes leading white space (spaces, tabs and end of line characters) or user-defined characters from
a string variable. This function was added in Signal version 5.00.

Proc TrimLeft(&text${, chars$};

text$ The string variable to remove characters from.

chars$ An optional list of characters to remove. If omitted, " \t\n\r" is used.

This function and the similar Trim() and TrimRight() are commonly used to help parse user input that may
contain multiple spaces. For example:

Input to TrimLeft() After TrimLeft() After TrimLeft(text$, "1234 ");

" 12AB34 " "12AB34 " "AB34 "

" 1234 " "1234 " ""

See also:
DelStr$(), InStr(), Left$(), Len(), Mid$(), Right$(), Trim(), TrimRight()

TrimRight()

This function removes trailing white space (spaces, tabs and end of line characters) or user-defined characters from
a string variable. This function was added in Signal version 5.00.

Proc TrimRight(&text${, chars$};

text$ The string variable to remove characters from.

chars$ An optional list of characters to remove. If omitted, " \t\n\r" is used.

This function and the similar TrimLeft() and Trim() are commonly used to help parse user input that may
contain multiple spaces. For example:

Input to TrimRight() After TrimRight() After TrimRight(text$, "1234 ");

" 12AB34 " " 12AB34" " 12AB"

" 1234 " " 1234" ""

See also:
DelStr$(), InStr(), Left$(), Len(), Mid$(), Right$(), TrimLeft(), Trim()

Signal Version 6.06

19-622

Trunc()

Removes the fractional part of a real number or array. To truncate a real number to an integer, assign the real to the
integer. ArrConst() copies a real array to an integer array.

Func Trunc(x|x[]{[]...});

x A real number or a real array.

Returns 0 or a negative error code for an array. For a number it returns the value with the fractional part removed.
Trunc(4.7) is 4.0; Trunc(-4.7) is -4.0.

See also:
Abs(), ATan(), Ceil(), Cos(), Exp(), Floor(), Frac(), Ln(), Log(), Max(), Min(), Pow(),
Rand(), Round(), Sin(), Sqrt(), Tan(), Trunc()

U

U1401 commands

The U1401 commands give you direct access to the CED 1401 interface connected to your computer. You should
not use these commands during sampling, as this will probably cause the sampling to fail. You must use the
U1401Open() command first to take control of the 1401, and you should use the U1401Close() command to
release the 1401 once you have finished with it. See the 1401 family programming manual for details of using the
1401; this is available from CED as part of the 1401 programming kit and also as a download from the CED web site.

See also:
U1401Close(), U1401Ld(), U1401Open(), U1401Read(), U1401To1401(), U1401ToHost(),
U1401Write()

U1401Close()

This command closes the link between the script language and a 1401 interface generated by the U1401Open()
command. If there is no open 1401, the command is ignored.

Proc U1401Close();

See also:
U1401Ld(), U1401Open(), U1401Read(), U1401To1401(), U1401ToHost(), U1401Write()

U1401Ld()

This command loads one or more 1401 commands with the option of nominating the folder to load the commands
from. If no 1401 is open, the script halts.

Func U1401Ld(list${, path$});

list$ The list of commands to load separated by commas. Include KILL as the first item to clear all commands
first. For example: "KILL,ADCMEM,MEMDAC". The file name for a command is the command name plus an
extension that depends on the type of 1401. The extension is added automatically.

path$ Optional. The path to the folder to search for the commands. If omitted, or if the command is not found in
this path, the 1401 folder in the Signal source folder is searched, then any path indicated by the 1401DIR
environment variable, and finally, the \1401 folder on the current drive.

Returns 0 if all commands loaded. Otherwise the bottom 16 bits is a negative error code and the upper 16 bits is the
1-based index to the command in the list that failed to load. If v% is the non-zero return value, the command
number is v%/65536 and the error code is (v% mod 65536 - 65536).

See also:
U1401Close(), U1401Open(), U1401Read(), U1401To1401(), U1401ToHost(), U1401Write()

Script language

19-623

U1401Open()

This command attempts to open a 1401 for use by other U1401 commands and returns the type of the opened 1401
or a negative error code. Note that the 1401 opened is the unit that will be (or is) used in sampling; if you attempt to
use the 1401 from the script while sampling is in progress the likely result will be a failure of Signal. It is not an error
to call U1401Open() multiple times with no intervening U1401Close().

Func U1401Open({unit%});

unit% Optional 1401 unit number in the range of 1 to 8 or 0 for the first available unit. If a 1401 unit number has
been set using the Signal command line, the specified unit is used if unit% is omitted, otherwise a default
value of zero is used.

Returns The return value is the type of the 1401 detected: 0=standard 1401, 1=1401plus, 2=micro1401,
3=Power1401, 4=Micro1401 mk II, 5=Power1401 mk II, 6=Micro1401-3, 7=Power1401-3. Otherwise it is a
negative error code that can be decoded by Error$().

See also:
Error$(), U1401Close(), U1401Ld(), U1401Read(), U1401To1401(), U1401ToHost(),
U1401Write()

U1401Read()

This command reads a text response from a 1401 and optionally converts it into one or more integer values or
reports the number of available input lines. If no 1401 is open, the script halts. There are four variants:

Func U1401Read(); Get count of input lines
Func U1401Read(&text$); Real an input line as text
Func U1401Read(&v1%{, &v2%, {...}}); Read a line and convert to integers
Func U1401Read(arr%[]); Read a line, convert to integer array

text$ A text variable returned holding the entire response.

v1% An integer variable that is returned with the first integer number read.

vn% Optional integer variables (v2% up to v12%) returned with following values. Values for which no number is
returned are unchanged.

arr%[] An integer array that is filled (starting at element 0) with converted values.

Returns The version with no arguments returns the number of available input lines. The other versions return the
number of items that were converted from the input text and stored to a script variable or a negative error
code. If you use a variant that reads a line and there is no text to read, the command times out after about 3
seconds and returns an error code.

See also:
U1401Close(), U1401Ld(), U1401Open(), U1401To1401(), U1401ToHost(), U1401Write()

U1401To1401()

This command transfers the contents of an integer array to memory in the 1401.

Func U1401To1401(const arr%[]{[]}, addr%{, size%});

arr% This is a one or 2 dimensional array to transfer. If you use a 2 dimensional array to interleave 4 channels of
data, for example for MEMDAC, set the first dimension to 4 and the second to the number of points per
channel.

addr% The start address of the block of contiguous memory in the 1401 user area to be filled with data.

size% Optional, the number of bytes in the 1401 that each array element is copied to. Acceptable values are 1, 2
or 4. If size% is omitted, 4 is used.

Returns 0 if the data transferred without a problem, or a negative error code.

See also:

Signal Version 6.06

19-624

U1401Close(), U1401Ld(), U1401Open(), U1401Read(), U1401ToHost(), U1401Write()

U1401ToHost()

This command transfers a block of 1401 memory into an integer array.

Func U1401ToHost(arr%[]{[]}, addr%{, size%});

arr% This is a one or 2 dimensional array to receive the data. If you use a 2 dimensional array to interleave 8
channels of data, for example for ADCMEM, set the first dimension to 8 and the second to the number of
points per channel.

addr% The start address of the block of contiguous memory in the 1401 user area to copy data from.

size% Optional, taken as 4 if omitted. The number of bytes of 1401 data used to set each array element. Use 1, 2
or 4 to read 1, 2 or 4 bytes and sign extend to 32-bit integer. Use -1, -2 or -4 to read 1 or 2 or 4 bytes and
zero extend to 32-bit integer.

Returns 0 if the data transferred without a problem, or a negative error code.

See also:
U1401Close(), U1401Ld(), U1401Open(), U1401Read(), U1401To1401(), U1401Write()

U1401Write()

This command writes a text string to the 1401.

Func U1401Write(text$);

text$ The text to write to the 1401. Commands to the 1401 are terminated by either a newline "\n" or a
semicolon ";".

Returns 0 if the line was added to the 1401 device driver output buffer, or a negative error code.

See also:
U1401Close(), U1401Ld(), U1401Open(), U1401Read(), U1401To1401(), U1401ToHost()

UCase$()

This function converts a string into upper case. The upper-case operation may be system dependent. Some
systems may provide localised uppercasing, others may only provide the minimum translation of the ASCII
characters a-z to A-Z.

Func UCase$(text$);

text$ The string to convert.

Returns An upper case version of the original string.

See also:
Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(), Print$(),
ReadStr(), Right$(), Str$(), Val()

V

Val()

This converts a string to a number. The converter allows the same number format as the script compiler and leading
white space is ignored.

Func Val(text${, &nCh%{, flag%}});

text$ A string that starts with a floating point number to convert. The conversion stops at the first character
that is not part of the number. From version 4.06, the function will also accept a hexadecimal number if
flag% is set to 1. In ambiguous cases, the conversion uses the format that uses the most characters of the
input string, so "0xa" has the value 10, not 0 and uses all the characters. The string "0x" is converted as 0

Script language

19-625

and uses 1 character as "0x" is not a valid hexadecimal number. The expected formats are (items in curly
brackets are optional, a vertical bar means use one of the characters before or after the bar):

{white space}{-|+}{digits}{.digits}{e|E{+|-}digits} or

{white space}0x|Xhexadecimaldigits

nCh% If present, it is set to the number of characters used to construct the number.

flag% If present and set to 1, hexadecimal input is also acceptable.

Returns It returns the extracted number, or zero if no number was present. You should use the nCh% argument to
decide if a number was processed.

See also:
Asc(), Chr$(), DelStr$(), InStr(), LCase$(), Left$(), Len(), Mid$(), Print$(),
ReadStr(), Right$(), Str$(), UCase$()

View()

The View() function sets the current view and returns the last view handle, or a negative error. A view handle is a
positive integer > 0. Changing the current view does not change the focus or bring the view to the front; use
FrontView() to do that.

Func View({vh%});

vh% An integer argument being:

>0 A valid view handle that is to be made the current view. An invalid view handle will stop the script
with a fatal error.

0 (Or omitted) no change of the current view is required.

<0 If the argument is -n, this selects the nth duplicate of the current data view. This is equivalent to
Dup(n). Use ViewSource() to get the data view from which a memory or XY view is derived.

Returns 0 if there are no views at all, -1 if the duplicate requested does not exist, otherwise it returns the view
handle of the view that was current.

View(v,c).[]
The View(vh%,c).[] construction accesses view data for channel c. The [] refers to the whole array unless it
encloses an expression to define a range of array elements. For waveform channels, the array holds the waveform
values as expected. Marker channels appear as an array holding the marker times, but this array is read-only and a
script error will be caused by attempting to assign to it. Use the MarkTime() function to change the times of
markers. Idealised trace channels appear as a read-only array of the event start times.

View(vh%{, c%}).[{aExp}]

vh% A view handle of an existing view, 0 for the current view, or -n for the n th duplicate view associated with
the current view.

c% A channel number from the view. If omitted, channel 1 is assumed.

aExp An optional array indexing expression. If omitted, the whole array is accessed.

Here are three examples, to work on data from bin b% in channel c% of view v%:

val:=View(v%,c%).[b%] 'get one data value
sum:=ArrSum(View(v%,c%).[b%:100]); 'sum 100 data values
ArrDiff(View(v%,c%).[]); 'replace data by differences

View().x()
The View().x() construction overrides the current view for the evaluation of the function that follows the dot. It
is an error if the selected view does not exist, and the script stops. Don’t use this contruct for functions which
close the view.

View(vh%).x()

vh% A view handle of an existing view, 0 for the current view (a waste of time), or -n for the n th duplicate view
associated with the current view.

Signal Version 6.06

19-626

x() A function or procedure.

For example, View(vh%).Draw() draws the view indicated by vh%. The equivalent code to View(vh%).x() is:

var temp%;
temp% := View(vh%);
x();
View(temp%);

This means that View(vh%).FileClose(); will cause an error if vh% is the current view, so you should always
use View(vh%);FileClose(); instead.

See also:
FrontView(), ViewFind(), ViewKind(), ViewSource(), Window(), WindowTitle$(), BinToX(),
XToBin()

ViewColour()

Deprecated. Use ViewColourGet() and ViewColourSet(). This function gets and sets the colours of data and
XY view items, overriding the application-wide colours set by Colour(). Currently you can set the background
colour.

Func ViewColour(item%{, col%});

item% The colour item to get or set; 0=background

col% If present, the new colour index for the item. There are 40 colours in the palette with indices 0 to 39. Use -1
to revert to the application colour for the item.

Returns The palette colour index at the time of the call or -1 if no view colour is set.

See also:
Colour dialog, ChanColour(), Colour(), PaletteGet(), PaletteSet(), XYColour()

ViewColourGet()

This function gets the RGB colour of a data or XY view item, indicating if it overrides the application-wide colours
set by ColourSet(). This command was added at Signal version 5.02.

Func ViewColourGet(item%{, &r, &g, &b});

item% The colour item to get or set; 0=background. There is only one item at present.

r g b If present, set to the red, green and blue colour values in the range 0.0 to 1.0.

Returns 1 if the returned colour overrides the application colour, 0 if it does not.

See also:
Colour dialog, ChanColourGet(), ColourGet(), ViewColourSet()

ViewColourSet()

This function sets the RGB colour of data and XY view items, to override the application-wide colours set by
ColourSet(). This command was added at Signal version 5.02.

Proc ViewColourSet(item%{, r, g, b});

item% The colour item to get or set; 0=background. There is only one item at present.

r g b If present, These set the red, green and blue colour values in the range 0.0 to 1.0. If omitted, the item
colour is set to the application default.

See also:
Colour dialog, ChanColourSet(), ColourSet(), ViewColourGet()

Script language

19-627

ViewFind()

This function searches for a window with a given title and returns its view handle. The search looks for a view
whose title starts with the supplied search string and is case-insensitive.

Func ViewFind(title$);

title$ A string holding the view title to search for. Note that system settings in Windows Explorer can cause the
file extension to be removed from the view title, so you may have to search both with and without the
“.cfs”.

Returns The view handle of a view with a title that matches the string, or 0 if no view matches the title.

See also:
FileOpen(), Window(), WindowTitle$(), View()

ViewKind()

This function returns the type of a view or of the current view. Types 5-7 are reserved.

Func ViewKind({vh%});

vh% The handle of the view for which the type is required. If omitted the function returns information about the
current view.

Returns The type of the view. View types are:

0 File view A data view showing one frame at a time from a CFS data file. Access to any
frame in the file is possible for analysis etc.

1 Text view A view holding a text file for editing.

2 Output sequence A view holding an output sequence file.

3 Script view A view holding a script file.

4 Memory view A data view created by a SetXXX() command, similar to a file view but wholly
held in memory.

5-7 Reserved Reserved for future expansion.

8 External text file An invisible view for use with routines Read() and Print().

9 External binary file An invisible view for use by BRead(), BWrite() etc.

10 Application window The Signal program window.

11 Other types Other views with handles, such as the Status bar, and Toolbar, which can be
made visible or invisible.

12 XY view An XY view showing sets of XY data points.

-1 Unknown type These include the cursor windows.

-2 Invalid handle The return value if the vh% parameter value is invalid.

See also:
App(), ChanKind(), FileOpen(), View(), ViewList()

ViewLineNumbers()

This function is used in a text-based view to display or hide line numbers and to set the number of decimal digits of
space to use for a line number.

Func ViewLineNumbers({show%});

show% Set -1 or omit for no change, 0 to hide line numbers, 1 to show them. Use 2-8 to set 2-8 digits of space and
greater than 8 for a standard display (5 digits).

Returns 0 if line numbers were hidden at the time of the call, else the number of digits of display space allocated (2-
8).

See also:
Gutter()

Signal Version 6.06

19-628

ViewLink()

This function returns the view handle of the view that owns the current window. For example, you can use this to
get the data view that created a memory or XY view or that owns a cursor window. This is slightly different from
View(-n), which finds the n th duplicate of the time view linked to the current data or XY view. This function was
added in Signal version 5.00 and extended to add the second form in Signal 5.02.

Func ViewLink();

Returns The handle of the linked view, or 0 if there is no such view.

This command can also be used to iterate through the process operations that are using the current data view as
their source. For example, if you create a new sampling document using FileNew() with the current sampling
configuration, you may also open other memory and XY documents and have additional channels present due to
the sampling configuration. In this case, the command is:

Func ViewLink(n%{, mask%{, &name$}});

n% This can be 0, meaning count the number of processes and return it, or it can be the process number to
report on.

mask% This value determines the types of processes we wish to count or report on and is the sum of: 1 for result
views generated bySetAverage() and similar calls, 2 for XY views generated by MeasureToXY() and 4
for idealised trace data channels in the current view generated by SetOpCl() and similar. If this argument
is omitted, it takes the value 3, to report on memory and XY views. Normally this argument will be set to 1,
2, 3 or 4. There is nothing to stop you using the values 5, 6 and 7, but you would need to interpret the
returned name$ argument to decide if the return value was a channel number or a view handle.

name$ If present, and n% is greater than 0, this is set to the name of the command that will process the data.

Returns If n% is 0, this returns the number of processes that match the mask% argument. If n% is greater than 0,
then this returns either the handle of the view or the channel number in the current view that is the target
of the process operation. If n% is greater than 0 and there is no corresponding process, the return value is
0.

Note that this form of the command identifies active processes, that is processes for which the Process()
command could have some effect.

Example
This example code lists the processes associated with the current view:

var vh%, n%,i%,name$;
n% := ViewLink(0, 3); 'count associated result and XY views
for i% := 1 to n% do
 vh% := ViewLink(i%, 3, name$);
 PrintLog("View Handle %d, name: %s\n", vh%, name$);
next;

n% := ViewLink(0, 4); 'count associated channels
for i% := 1 to n% do
 vh% := ViewLink(i%, 4, name$);
 PrintLog("Channel %d, name: %s\n", vh%, name$);
next;

See also:
App(), SampleHandle(), View(), ViewKind(), ViewList()

ViewList()

This function fills an integer array with a list of view handles. It never returns the view handle of the running script.
Use the App() command to get this.

Func ViewList({list%[]{, types%}});

Script language

19-629

list% An integer array that is returned holding view handles. The first element of the array, list%[0], is set to
the number of handles returned, and the remaining elements in the array are view handles. If the array is
too small to hold the full number, the number that will fit are returned.

types% The types of view to include. This is a code that can be used to filter the view handles. The filter is formed
by adding the types from the list below. If this is omitted or if no types are specified for inclusion, all view
handles are returned.

1 File views 8 Script views 512 External binary 4096 XY views
2 Text views 16 Memory views 1024 Application view
4 Sequencer 256 External text 2048 Other view types

You can also exclude views otherwise included by adding:

 8192 Exclude views not directly related to the current view
16384 Exclude visible windows
32768 Exclude hidden windows
65536 Exclude duplicates

Returns The total number of windows that satisfy the types%. This can be used to find a suitable array size.

The following example prints all the window titles into the log view:

var list%[100],i%; 'Assume no more than 99 views
ViewList(list%[]); 'Get a list of all the views
for i%:=1 to list%[0] do 'Iterate round all the views
 PrintLog(view(list%[i%]).WindowTitle$()+"\n");
 next;

See also:
App(), SampleHandle(), ViewKind()

ViewMaxLines()

This function gets and optionally sets the maximum number of lines that the current text view will retain if text is
added by a script. For the Log view, this value is initially set by the Edit menu Preferences in the Display tab, but
a script can set or clear the line limit for any text-based view. ViewStandard() clears the limit except in a Log view,
where it sets the value set in the preferences.

Func ViewMaxLines({max%});

max% If present, this sets the maximum lines to keep after a script Print() or PrintLog() statement. If this is
omitted or negative, no change is made. Set 0 for no limit and greater than zero to set a limit.

Returns The value of the limit at the time of the call.

Each time the line limit is exceeded, the number of lines in the file is reduced to 90% of the maximum line count by
deleting the lowest numbered lines. We reduce the line count to 90% of the maximum because deleting lines from
the start of the view is a slow operation (in very large views); by allowing the view to grow normally for a while this
minimises the time penalty for setting this option. For example, if max% is set to 1000, the next time that a line is
added and more than 1000 lines are in the file, the line count is reduced to 900. After this 100 lines can be added
before the limit is tripped.

See also:
Edit Preferences, ViewStandard()

ViewSource()

This function returns the handle of the source view for a memory or XY view created by processing.

Func ViewSource();

Returns The handle of the data view from which this memory or XY view was derived, and from which it obtains its
data. Note that memory views created using SetCopy() or SetMemory() do not have a data view
attached and return 0.

See also:

Signal Version 6.06

19-630

View(), SetXXX(), SetAverage(), SetCopy(), SetMemory(), SetPower()

ViewStandard()

This sets the current data, XY, grid or text view to a standard state by making all channels and axes visible in their
standard drawing mode, axis range and colour. All channels are given standard spacing and are ungrouped and the
channels are sorted into the numerical order set by the Edit menu Preferences. In an XY view the key is hidden and
the axes are optimised.

In a text-based view it removes any maximum line limit except in the Log view, where is applies the line limit set in
the Edit menu Preferences option. It also hides line numbers, displays the gutter and the folding margin (for views
that support folding). All the text styles are set to the default values (equivalent to opening the Font dialog and
using Reset All) and any zooming is removed.

Proc ViewStandard();

See also:
ChanOrder(), ChanWeight(), DrawMode(), XYDrawMode()

ViewUseColour()

This function can be used to force the display to use black and white only, or to use the colours set in the colour
dialog or by the Colour() command.

Func ViewUseColour({use%});

use% If present, a value of 0 forces Signal to display all windows in black and white. Any other value allows the
use of colour. If omitted, no change is made.

Returns The current state as 1 if colour is in use, 0 if black and white is used.

See also:
Colour()

ViewZoom()

This function is used in a text-based view to get and optionally set the zoom factor. This is the number of points to
add to the nominal size of the text.

Func ViewZoom({zoom%});

zoom% Omit for no change or a value in the range -10 to 20 to add to the point size of all the text. The resulting
minimum text size is 2 point regardless of zoom%.

Returns The zoom value at the time of the call.

See also:
ViewStandard(), Zooming

VirtualChan

This command controls virtual channels in the current data view. Virtual channels are defined by an algebraic
expression that can include other channels (but not virtual channels). This command has the functionality of the
Virtual Channel dialog. The first command variant creates and modifies a virtual channel, the second reports the
state of a virtual channel.

Func VirtualChan(chan%, expr${, match%{, binsz{, align}}});
Func VirtualChan(chan%, get%{, &expr$});

chan% In the first command variant, set this to 0 to create a new virtual channel and return the channel number.
The remaining arguments set the initial channel settings, otherwise default values are used. If not 0, this is
the number of an existing virtual channel to modify or from which to read back the settings.

Script language

19-631

expr$ In the first command variant, this is a string expression defining the output. See the Analysis chapter of
the Signal manual for details. In the second command variant, this is an optional string variable that is
returned holding the current expression for the channel.

match% This is the number of an existing waveform channel to match for sample interval and alignment. If 0, the
sample interval and alignment are set by the binsz and align arguments. If negative, no change is made.

binsz If match% is 0, this sets the sample interval of the channel. Values of binsz less than or equal to zero are
ignored.

align If match% is 0, this sets the channel alignment. The first point of the channel will be at time align mod
binsz. Values less than 0 are ignored.

get% In the second command variant, get% determines the returned value. 0 = the state of the expression
parsing, 1 = match%, 2 = binsz, 3 = align.

Returns When creating a new channel, the return value is the new channel number or a negative error code. When
modifying an existing channel, the return value is a negative code if the match%, binsz or align
arguments are illegal, a positive code if the expression contains an error and 0 if there was no error. The
second variant returns the requested information or a negative error code. If get% is 0, the return value is
negative if the channel is not a virtual channel, 0 if the expression is acceptable and a positive code if not.

See also:
More about virtual channels

W

Window()

This sets the position and size of the current view. Normally, positions are percentages from the top left-hand
corner of the application window size. You can also set positions relative to a monitor. This can also be used to
position, dock and float dockable toolbars.

Func Window(xLow, yLow{, xHigh{, yHigh{, scr%{, rel%}}}});

xLow Position of the left hand edge of the window in percent. When docking a dockable toolbar, the xLow and
xHigh values correspond to the position of the top left corner of the window when dropped with the
mouse.

yLow Position of the top edge of the window in percent.

xHigh If present, the right hand edge. If omitted the previous width is maintained. If the window is made too
small, the minimum allowed size is used. If the current view is a dockable control and yHigh is 0, values
less than 1 or greater than 4 float the window at (xLow, yLow), otherwise xHigh sets the docking state:

1 Docked to the left window edge 3 Docked to the right edge
2 Docked to the top window edge 4 Docked to the bottom edge

yHigh If present, the bottom edge position. If omitted the previous height is maintained. If the window is made
too small, the minimum allowed size is used.

If the Window is dockable and yHigh is 0, this command sets the docked state of the window (see
xHigh). Otherwise the window is floated with the nearest allowed width that is no more than xHigh-xLow.
If xHigh-xLow is 0 or negative YHigh sets the height of the dockable window.

scr% Optional screen selector for views, dialogs and the application window. If omitted or -1, positions are
relative to the application window. Otherwise, 0 selects the entire desktop rectangle and greater values
select a particular screen rectangle (but see rel%). See System() for more screen information.

rel% Ignored unless scr% is greater than 0. Set 0 or omit for positions relative to the intersection of the selected
monitor and the application window, 1 for positions relative to the monitor. If there is no intersection, there
is no position change. When positioning the application window, rel% is treated as if it were 1.

Returns 1 if the position was returned, or -1 if the rectangle set by scr% and rel% is of zero size.

Examples:

Signal Version 6.06

19-632

view(App()).Window(0,0,100,100,0); 'use all desktop
view(App()).Window(0,0,100,100,2); 'use all second monitor

See also:
App(), System(), WindowDuplicate(), WindowGetPos(), WindowSize(), WindowTitle$(),
WindowVisible()

WindowDuplicate()

This duplicates the current data view, creating a new window that has all the settings of the current view. It does
not duplicate channels; these are shared with the existing window. The new window becomes the current view and
is created invisibly.

Func WindowDuplicate();

Returns This command returns the view handle of the new window or a negative error code or 0 if no free
duplicates (there is a limit of 9 duplicates per data view.)

See also:
Dup(), Window(), WindowGetPos(), WindowSize(), WindowTitle$(), WindowVisible(), View()

WindowGetPos()

This gets the window position of the current view with respect to the application window. Positions are measured
from the top left-hand corner as a percentage.

Func WindowGetPos(&xLow, &yLow, &xHigh, &yHigh{, scr%{, rel%}});

xLow A real variable that is set to the position of the left hand edge of the window.

yLow A real variable that is set to the position of the top edge of the window.

xHigh A real variable that is set to the position of the right hand edge of the window or that returns a docking
code for a docked control bar if yHigh is returned as 0.

1 Docked to the left window edge 3 Docked to the right edge
2 Docked to the top window edge 4 Docked to the bottom edge

yHigh A real variable that is set to the position of the bottom edge of the window or to 0 if the window is docked.

scr% Optional screen selector for views, dialogs and the application window. If omitted or -1, positions are
relative to the application window. Otherwise, 0 selects the entire desktop rectangle and greater values
select a particular monitor (but see rel%). See System() for more screen information..

rel% Ignored unless scr% is 0 or greater. Set 0 or omit for positions relative to the intersection of the rectangle
set by scr% and the application window, 1 for positions relative to the scr% rectangle.

Returns 1 if the position was returned, or -1 if the rectangle set by scr% and rel% is of zero size.

See also:
Window(), WindowDuplicate(), WindowSize(), WindowTitle$(), WindowVisible(), System(),
DlgGetPos()

WindowSize()

This procedure is used to resize the current window without changing the position of the top left-hand corner.
Setting a window dimension less than zero leaves the dimension unchanged. Setting a dimension smaller than the
minimum allowed sets the minimum value. Setting a size greater than the maximum allowed sets the maximum size.
There are no errors from this function. When this is used to size Signal application window the available area is the
whole screen, otherwise the available area is Signal application area.

Proc WindowSize(width, height);

width The width of the window as a percentage of the available area.

height The height of the window as a percentage of the available area.

Script language

19-633

See also:
App(), Window(), WindowDuplicate(), WindowGetPos(), WindowTitle$(), WindowVisible()

WindowTitle$()

This function gets and sets the title of the current window. There may be windows that are resistant to having their
title changed, for these, the routine has no effect. Most windows can return a title. If you change a title, dependent
window titles change, for example, cursor windows belonging to data views track the title of the data view. Data
files use decorated titles where the basic title has extra information (normally the frame number) appended to it. The
title that is returned and set using this function will not incoporate this extra text.

Func WindowTitle$({new$});

new$ If present, this sets the new window title. Window titles must follow any system rules for length or
content. Illegal titles (for example titles containing control characters) are mangled or ignored at the
discretion of the system.

Returns The window title as it was prior to this call.

See also:
Window(), WindowDuplicate(), WindowGetPos(), WindowSize(), WindowVisible()

WindowVisible()

This function is used to get and set the visible state of the current window. This function can also be used on the
application window, however the effect will vary with the system and on some, there may be no effect at all.

Func WindowVisible({code%});

code% If present, this sets the window state. The possible states are:

0 Hidden, the window becomes invisible. A hidden window can be sent data, sized and so on, the result
is just not visible.

1 Normal, the window assumes its last normal size and position and is made visible if it was invisible or
iconised.

2 Iconised. An iconised window can be sent data, sized and so on; the result is not visible. This will
dock a dockable window at its last docked position.

3 Maximise, make it as large as possible or float a dockable window.

4 Application window only; extend over all available desktop monitors.

Returns The window state prior to this call.

See also:
FrontView(), Window(), WindowDuplicate(), WindowGetPos(), WindowSize(), WindowTitle$()

X

XAxis()

This turns on and off the x axis of the current view and returns the state of the x axis.

Func XAxis({on%});

on% Set the axis state. If omitted, no change is made. 0=Hide axis, 1=Show axis.

Returns The axis state at the time of the call (0 or 1, as above) or a negative error code. It is an error to use this
function on a view that has no concept of an x axis.

Changes made by this function do not cause a redraw immediately. The affected view is drawn at the next
opportunity.

See also:
XAxisMode(), XAxisStyle(), XHigh(), XLow(), XRange()

Signal Version 6.06

19-634

XAxisAttrib()

This function controls the choice of logarithmic or linear axis and automatic adjustment of axis units at high zoom
levels. This command is equivalent to the check boxes at the bottom of the X Axis dialog.

Func XAxisAttrib({flags%});

flags% A value that controls how the axis looks and behaves, zero sets a linear axis with no auto-adjust of units
for high zoom. Add the following values to change the behaviour:

1 Display a logarithmic axis.

2 Display powers on a logarithmic axis (you must have added 1 as well for this to take effect).

4 Cause a linear axis to auto-adjust its units by factors of 1000 at high zoom around 0.

16 When used along with 4, causes the axis to auto-adjust its units by using an SI prefix rather than
factors of 1000.

 Omit this argument for no change to the attributes.

Returns The sum of the current flags set for the x-axis.

See also:
XAxis(), XAxisMode(), XAxisStyle(), XHigh(), XLow(), XRange(), YAxisAttrib()

XAxisMode()

This function controls what is drawn in an x axis.

Func XAxisMode({mode%});

mode% Optional argument that controls how the axis is displayed. If omitted, no change is made. Possible values
are the sum of the following:

1 Hide all the title information.

2 Hide all the unit information.

4 Hide small ticks on the x axis. Small ticks are hidden if big ticks are hidden.

8 Hide numbers on the x axis. Numbers are hidden if big ticks are hidden.

16 Hide the big ticks and the horizontal line that joins them.

32 Scale bar axis. If selected, add 4 to remove the end caps.

Returns The x axis mode value at the time of the call or a negative error code.

See also:
XAxis(), XHigh(), XLow(), XRange(), YAxisMode()

XAxisStyle()

This function controls the major and minor tick spacing for all views that have an x axis. If you set values that
would cause illegible or unintelligible axes, they are stored but not used unless the axis range or scaling changes to
make the values useful.

Func XAxisStyle({style%{, nTick%{, major}}});

style% A value of -1 returns the number of minor divisions set or 0 for automatic. A value of -2 returns the major
tick spacing or 0 for automatic spacing. Set style% to 0 if setting nTick% or major.

nTick% The number of minor tick subdivisions or 0 for automatic spacing. Omit nTick% or set it to -1 for no
change.

major If present, values greater than 0 set the major tick spacing. Values less than or equal to 0 select automatic
major tick spacing.

Returns See the description of style% for return values.

See also:
XAxis(), XAxisAttrib(), XAxisMode(), XHigh(), XLow(), XRange(), YAxisStyle()

Script language

19-635

XHigh()

This function returns the value of the right end of the X axis of the current data or XY view or the line past the last
fully visible line in a text view. To find the frame limit use Maxtime().

Func XHigh();

Returns In a data or XY view, the result is the X axis upper limit in X axis units. It is in lines in a text view.

In a text view, the value is the first visible line number plus the number of fully visible lines. At the end of a file, the
returned value can be greater than the number of lines in the file.

See also:
Draw(), XRange(), BinToX(), XToBin(), XLow(), Maxtime()

XLow()

This function returns the value that corresponds to the left end of the X axis of the current data or XY view or the
first visible line in a text view. To find the frame limit use Mintime().

Func XLow();

Returns The X axis lower limit in X axis units. In a text view, this returns a line number (the first line number in a text
view is 1).

See also:
Draw(), XRange(), BinToX(), XToBin(), XHigh(), Mintime(), MoveBy()

XRange()

This function sets the start and end of the x axis in a data or XY view in x axis units. In a grid view, it sets the first
column to display. Unlike Draw(), it does not update the view immediately; updates must wait for the next
Draw(), DrawAll(), Yield() or some interactive activity.

Proc XRange(low{, high});

low The left hand edge of the view in x axis units or the 0-based first column for a grid view.

high The right hand edge of the view, not used for grid views. If omitted, the view stays the same width.

Values are limited to the axis range. Without high, it preserves the width, adjusting low if required. If the resulting
width is less than the minimum allowed, no change is made.

See also:
Draw(), XLow(), XHigh(), Yield()

XScroller()

This function gets and optionally sets the visibility of the x axis scroll bar and controls.

Func XScroller({show%});

show% If present, 0 hides the scroll bar and buttons, non-zero shows it.

Returns 0 if the scroll bar was hidden, 1 if it was visible.

XTitle$()

This function gets the title of the x axis. In a memory or XY view, or in a sampling document view, you can also set
the title. The window will update with a new title at the next opportunity, but, in Version 3.00, the x axis title is not
written to CFS data files.

Func XTitle$({new$});

new$ If present this sets the new x axis title in a sampling document or memory view.

Signal Version 6.06

19-636

Returns The x axis title at the time of the call.

See also:
ChanTitle$(), XUnits$()

XToBin()

This function converts between x axis values and bin numbers for a channel in the current view. For waveform
channels a bin is a waveform point, for marker-type channels it is a marker item and for idealised trace channels it is
a trace segment.

Func XToBin(chan%, x);

chan% A channel number (1 to n).

x An x axis value. If it exceeds the x axis range it is limited to the nearer end.

Returns In a data view it returns the bin number that corresponds to x, bin numbers start at zero with the first data
point. For waveform channels this will generally not be an integral number of bins; however, when used to
access a bin, it will be truncated to an integer, and will refer to the bin that contains the x value. For marker-
type channels the result will be the index of the marker item at or before the specified x position. For
idealised trace channels the result will be the index of the trace segment within which the x position lies, or
the index of the segment lying before that x position.

See also:
BinToX(), BinSize(), BinZero()

XUnits$()

This function gets the units of the x axis in the current view. In a memory, XY, or sampling document view, you can
also set the units. The window will update with the new units at the next opportunity and they will become part of
the new file if it is saved.

Func XUnits$({new$});

new$ If present this sets the new x axis units in a new file or memory view.

Returns The x axis units at the time of the call.

See also:
ChanUnits$(), XTitle$()

XY view commands

XYAddData()

This adds data points to an XY view channel. If the axes are set to automatic expanding mode by XYDrawMode(),
they will change when you add a new data point that is out of the current axis range. If the channel is set to a fixed
size (see XYSize()), adding new points causes older points to be deleted once the channel is full. The first form of
the command allows unrestricted x and y positions. The second form is for data that is equally spaced in the x
direction.

Func XYAddData(chan%, x|const x[]|x%[], y|const y[]|y%[]);
Func XYAddData(chan%, const y[], xInc{, xOff});

chan% A channel number in the current XY view. The first channel is number 1.

x The x co-ordinate(s) of the added data point(s). In the first form of the command, both x and y must be
either single variables or arrays. If they are arrays, the number of data points added is equal to the size of
the smaller array.

y The y co-ordinate(s) of the added data point(s). In the second form of the command, this is an array of
equally spaced data in x.

Script language

19-637

xInc Sets the x spacing between the y data points in the second form of the command.

xOff Sets the x position of the first data point in the second form of the command. If omitted, the first position is
set to 0.

Returns The number of data points which have been added successfully.

See also:
XYColour(), XYCount(), XYDelete(), XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize(), XYSort()

XYColour()

Deprecated, use ChanColourSet() and ChanColourGet() instead in new scripts. This function gets or sets a channel
line colour index or a channel fill colour index in the current XY view.

Func XYColour(chan%{, col%{, item%}});

chan% A channel number in the current XY view. The first channel is number 1.

col% The index of the colour in the colour palette. There are 40 colours in the palette, numbered from 0 to 39. If
omitted or -1, there is no colour change.

item% Set 1 for the line colour, 2 for the fill colour. Taken as 1 if omitted.

Returns The colour index in the colour palette at time of call or a negative error code.

See also:
Colour dialog, ChanColourSet(), ChanColourGet(), Colour(), XYAddData(), XYCount(),
XYDelete(), XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYKey(),
XYRange(), XYSetChan(), XYSize(), XYSort()

XYCount()

This gets the number of data points in a channel in the current XY view. To find the maximum number of data
points, see the XYSize() command.

Func XYCount(chan%);

chan% A channel number in the current XY view. The first channel is number 1.

Returns The number of data points in the channel or a negative error code.

See also:
XYAddData(), XYColour(), XYDelete(), XYJoin(), XYDrawMode(), XYGetData(), XYInCircle(),
XYInRect(), XYKey(), XYRange(), XYSetChan(), XYSize(), XYSort()

XYDelete()

This command deletes a range of data points or all data points from one channel of the current XY view. Use
ChanDelete() to delete the entire channel.

Func XYDelete(chan%{, first%{, last%}});

chan% A channel number in the current XY view. The first channel is number 1.

first% The zero-based index of the first point to delete. Omit to delete all points.

last% The zero-based index of the last data point to delete. If omitted, data points from first% to the last point
in the channel are deleted. If last% is less than first% no data points are deleted.

Returns The function returns the number of deleted data points.

The index number of a data point depends on the current sorting method of the channel set by XYSort(). For
different sorting methods, a data point may have different index numbers. The data points in a channel have
continuous index numbers. When a point has been deleted the remaining points re-index themselves automatically.

Signal Version 6.06

19-638

See also:
ChanDelete(), XYAddData(), XYColour(), XYCount(), XYDrawMode(), XYGetData(),
XYInCircle(), XYInRect(), XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize(), XYSort()

XYDrawMode()

This gets and sets the drawing and automatic axis expansion modes of a channel in the current XY view. It is an
error to use this command with any other view type.

Func XYDrawMode(chan%, which%{, new%});

chan% A channel number in the current XY view. The first channel is number 1. This is ignored when which% is
5, as all XY channels share the same axes. -1 can also be used, meaning all channels.

which% The drawing parameter to get or set in the range 1 to 5. When setting parameters, the new value is held in
the new% argument. The values are:

1 Get or set the data point draw mode. The drawing modes are:

0 dots (default) 3 crosses x 6 diamonds
1 boxes 4 circles (not 9x) 7 horizontal line
2 plus signs + 5 triangles 8 vertical line

2 Get or set the size of the data points in points (units of approximately 0.353 mm). The sizes allowed are
0 to 100; 0 is invisible. The default size is 5.

3 Get or set the line style. If the line thickness is greater than 1 all lines are drawn as style 0. Styles are:

0 solid (default) 1 dotted 2 dashed

4 Get or set the line thickness in points. Thickness values range from 0 (invisible) to 10. The default is 1.

5 Get or set automatic axis range mode. This applies to the entire view, so the chan% argument is
ignored. Values are:

0 The axes do not change automatically when new data points are added.
1 When new data points are added that lie outside the current x or y axis range, the data and axes

screen area update at the next opportunity to display all the data.

new% New draw mode or axis expanding mode. If omitted, no change is made.

Returns The value of the relevant channel draw mode or axis expanding mode at the time of the call or a negative
error code.

See also:
XYAddData(), XYColour(), XYCount(), XYDelete(), XYGetData(), XYInCircle(), XYInRect(),
XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize(), XYSort()

XYGetData()

This gets data points between two indices from a channel in the current XY view. It is an error to use this command
with any other view type.

Func XYGetData(chan%, &x|x[], &y|y[]{, first%{, last%}});

chan% A channel number in the current XY view. The first channel is number 1.

x|x[] The returned x co-ordinate(s) of data point(s). When arrays are used, either both x and y must be arrays or
neither can be. The smaller of the two arrays sets the maximum number of data points that can be returned.

y|y[] The returned y co-ordinate(s) of data point(s).

first% The zero-based index of the first data point to return. If omitted, 0 is used.

last% The zero-based index of the last data point returned, used when x and y are arrays. If omitted or greater
than or equal to the number of data points, the final data point is the last one in the channel. If last% is
less than first%, no data points are returned.

Returns The number of data points copied. If the x or y arrays are not big enough to hold all the data points from
first% to last%, the return value is the array size. If x or y are not arrays, if a data point with index first
% exists, 1 is returned.

Script language

19-639

The index number of a data point depends on the current sorting method (see XYSort()).

See also:
XYAddData(), XYColour(), XYCount(), XYDelete(), XYDrawMode(), XYInCircle(), XYInRect(),
XYJoin(), XYRange(), XYKey(), XYSetChan(), XYSize(), XYSort()

XYInChan()

This function returns the number of data points in a channel of the current XY view that lie inside another channel
that is treated as a joined up shape. The points in the channel that defines the shape are not sorted (regardless of
the sorting mode set for that channel); they are always considered in the order in which the points were added to
the channel. You might use this function to let a user draw a shape (using ToolbarMouse()) in an XY view around
data points that they want to select for a particular purpose.

Inside and outside

For a data point to lie inside the channel, we count
the number of times that a line drawn from the data
point to infinity in any direction crosses a line of the
channel. If it crosses an even number of times it is
outside (0 is even). If it crosses an odd number of
times, it is inside. This is obvious for simple shapes,
but less so for complex ones. In the example picture
to the right, the shaded sections are the inside and
the non-shaded are the outside. Points that lie
exactly on the boundary may be inside or outside;
however, if you have a set of shapes that exactly
tessellate to fill an area, any point placed in that area
will be in only one of the shapes. If there are n points to check, and the channel that defines the shape has m points,
then this algorithm takes a worst case time of O(n*m). This means that it pays to search inside shapes with
relatively few points to define them. The algorithm will be relatively quick if you are searching for points inside an
area that is small compared to the area that the data points cover.

Func XYInChan(chan%, shCh%{, list%[]});

chan% A channel number in the current XY view that defines the points to test against the shape.

shCh% The channel in the current XY view that defines the shape that the points must be inside.

list% An optional integer array that is returned holding the indices of the data points that were inside. If the
array is too small, the function returns the number that would have been returned had the array been large
enough. The index values returned are the index positions in the current sort mode for the channel. You
can read the points back with XYGetData().

Returns The number of data points inside the rectangle or a negative error code.

See also:
XYAddData(), XYColour(), XYInCircle(), XYInRect(), XYDelete(), XYDrawMode(),
XYGetData(), XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize(), XYSort()

XYInCircle()

This gets the number of data points inside a circle defined by xc, yc, and r in the current XY view. A general point
(x,y) is considered to be inside the circle if:

(x-xc)2 + (y-yc)2 <= r2

Points lying on the circumference are considered inside, but owing to floating-point rounding effects they may be
indeterminate.

Func XYInCircle(chan%, xc, yc, r{, list%[]});

chan% A channel number in the current XY view. The first channel is number 1.

xc,yc These are the x and y co-ordinates of the centre of the circle.

r This is the radius of the circle. r must be >= 0.

Signal Version 6.06

19-640

list% This is an optional integer array that is filled in with the indices of the points in the channel that were
inside the circle. Points are filled from index 0 of the array until the array is full or there are no more points.
The index values returned are the index positions in the current sort mode for the channel. You can read
the points back with XYGetData().

Returns The number of data points inside the circle or a negative error code.

See also:
XYAddData(), XYColour(), XYInChan(), XYCount(), XYDrawMode(), XYGetData(), XYInRect(),
XYJoin(), XYRange(), XYKey(), XYSetChan(), XYSize(), XYSort()

XYInRect()

This function returns the number of data points in a channel of the current XY view that lie inside a rectangle. To
be inside, a data point must lie between the low rectangle coordinate up to, but not including the high coordinate.
This is so that two rectangles with a common edge will not both count a data point on the boundary.

Func XYInRect(chan%, xl, yl, xh, yh{, list%[]});

chan% A channel number in the current XY view.

xl,xh The x co-ordinates of the left and right hand edges of the rectangle. xh must be greater than or equal to
xl.

yl,yh The y co-ordinates of the bottom and top edges of the rectangle. yh must be greater than or equal to yl.

list% This is an optional integer array that is filled in with the indices of the points in the channel that were
inside the rectangle. Points are filled from index 0 of the array until the array is full or there are no more
points. The index values returned are the index positions in the current sort mode for the channel. You can
read the points back with XYGetData().

Returns The number of data points inside the rectangle or a negative error code.

See also:
XYAddData(), XYColour(), XYInChan(), XYInCircle(), XYDelete(), XYDrawMode(),
XYGetData(), XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize(), XYSort()

XYJoin()

This function gets or sets the data point joining method of a channel in the current XY view. Data points can be
separated, joined by lines, or joined by lines with the last point connected to the first point (making a closed loop),
filled or filled and framed.

Func XYJoin(chan%{, join%});

chan% A channel number in the current XY view. The first channel is number 1. -1 is also allowed, meaning all
channels.

join% If present, this is the new joining method of the channel. If this is omitted, no change is made. The data
point joining methods are:

0 Not joined by lines (this is the default joining method)

1 Joined by lines. The line styles are set by XYDrawMode().

2 Joined by lines and the last data point is connected to the first data point to form a closed loop.

3 Not joined by lines, but the channel data is filled with the channel fill colour.

4 Joined by lines and filled with the channel fill colour set by XYColour().

5 Draw as a histogram with a baseline at zero, filled with the channel fill colour.

Returns The joining method at the time of the call or a negative error code.

See also:
XYAddData(), XYColour(), XYCount(), XYDelete(), XYDrawMode(), XYGetData(),
XYInCircle(), XYInRect(), XYRange(), XYKey(), XYSetChan(), XYSize(), XYSort()

Script language

19-641

XYKey()

This gets or sets the display mode and positions of the channel key for the current XY view. The key displays
channel titles (set by ChanTitle$()) and drawing symbols of all the visible channels. It can be positioned
anywhere within the data area. The key can be framed or unframed, transparent or opaque and visible or invisible.

Func XYKey(which%{, new});

which% This determines which property of the key we are interested in. Properties are:

1 Visibility of the key. 0 if the key is hidden (default), 1 if it is visible.

2 Background state. 0 for opaque (default), 1 for transparent.

3 Draw border. 0 for no border, 1 to draw a border (default)

4 Key left hand edge x position. It is measured from the left-hand edge of the x axis and is a percentage of
the drawn x axis width in the range 0 to 100. The default value is 0.

5 Key top edge y position. It is measured from the top of the XY view as a percentage of the drawn y axis
height in the range 0 to 100. The default is 0.

new If present it changes the selected property. If it is omitted, no change is made.

Returns The value selected by which% at the time of call, or a negative error code.

See also:
View menu Options command, ChanTitle$(), XYAddData(), XYColour(), XYCount(), XYDelete(),
XYDrawMode(), XYGetData(), XYInCircle(), XYInRect(), XYJoin(), XYRange(), XYSetChan(),
XYSize(), XYSort()

XYOffset()

This command sets and gets an XY channel offset. The offset moves the origin of the x,y co-ordinate system when
the channel is drawn. This allows you to generate a grid of histograms or to generate waterfall displays.

Proc XYOffset(chan%, x, y{, opt%});
Proc XYOffset(chan%, &x, &y{, opt%});

chan% A channel in the current XY view.

x,y Used when setting the channel offset. This is the offset in the current axis units.

&x,&y Used when returning the offset. Returns the offset in the current axis units.

opt% Omit or set to 0 to set the offset. Set -1 to return the offset.

Axis units
In Signal you have the choice of drawing axes in linear, logarithmic or square root mode. In linear mode, the axis
units are the same as the user units. In logarithmic mode, the axis units are Log(user units), in square root mode
they are root(user units).

This command is somewhat experimental (at version 5.06) and more opt% values may be added in the future.

See also:
XYRange()

XYRange()

This function gets the range of data values of a channel or channels in the current XY view. This is equivalent to
the smallest rectangle that encloses the points.

Func XYRange(chan%, &xLow, &yLow, &xHigh, &yHigh);

chan% A channel number in the current XY view or -1 for all channels or -2 for all visible channels. The first
channel is number 1.

xLow A variable returned with the smallest x value found in the channel(s).

yLow A variable returned with the smallest y value found in the channel(s).

Signal Version 6.06

19-642

xHigh A variable returned with the biggest x value found in the channel(s).

yHigh A variable returned with the biggest y value found in the channel(s).

Returns 0 if there are no data points, or the channel does not exist, 1 if values found.

See also:
XYAddData(), XYColour(), XYCount(), XYDelete(), XYDrawMode(), XYGetData(),
XYInCircle(), XYInRect(), XYKey(), XYSetChan(), XYSize(), XYSort()

XYSetChan()

This function creates a new channel or modifies an existing channel in the current XY view. It is an error to use this
function if the current view is not an XY view. This function can modify all properties of an existing channel
without calling the XYSize(), XYSort(), XYJoin() and XYColour() commands individually.

Func XYSetChan(chan%{, size%{, sort%{, join%{, col%}}}});

chan% A channel number in the current XY view. If chan% is 0, a new channel is created. Each XY view can have
maximum of 256 channels, numbered 1 to 256. The first channel is created automatically when you open a
new XY view with FileNew(). If chan% is not 0, it must be the channel number of an existing channel to
modify or -1 to modify all channels.

size% This sets the number of data points in the channel and how and if the number of data points can extend.
The only limits on the number of data points are the available memory and the time taken to draw the view.

A value of zero (the default) sets no limit on the number of points and the size of the channel expands as
required to hold data added to it.

If a negative size is given, for example -n, this limits the number of points in the channel to n. If more than
n points are added, the oldest points are deleted to make space for the newer points. If you set a negative
size for an existing channel that is smaller than the points in the channel, points are deleted.

If a positive value is set, for example n, this allocates storage space for n data points, but the storage will
grow as required to accommodate further points. Using a positive number rather than 0 can save time if
you know in advance the likely number of data points as it costs time to grow the data storage.

sort% This sets the sorting method of data points. The sorting method is only important if the points are joined.
If they are not joined, it is much more efficient to leave them unsorted as sorting a large list of points takes
time. The sort methods are:

0 Unsorted (default). Data is drawn and sorted in the order that it was added. The most recently added
point has the highest sort index.

1 Sorted by x value. The index runs from points with the most negative x value to points with the most
positive x value.

2 Sorted by y value. The index runs from points with the most negative y value to points with the most
positive y value.

If this is omitted, the default value 0 is used for a new channel. For an existing channel, there is no change
in sorting method.

join% If present, this is the new joining method of the channel. If this is omitted, no change is made to an
existing channel; a new channel is given mode 0. The data point joining methods are:

0 Not joined by lines (this is the default joining method).

1 Joined by lines. The line styles are set by XYDrawMode().

2 Joined by lines and also connect the first and last data points to form a loop.

3 Not joined by lines, but the channel data is filled with the channel fill colour.

4 Joined by lines and filled with the channel fill colour set by XYColour().

col% If present, this sets the index of the colour in the colour palette to use for this channel. There are 40
colours with indices 0 to 39. If omitted, the colour of an existing channel is not changed. The default
colour for a new channel is the colour that a user has chosen for an XY view channel.

Returns The highest channel number that was affected or a negative error code. When you create a channel, the
value returned is the new channel number.

See also:

Script language

19-643

XYAddData(), ChanColourSet(), XYCount(), XYDelete(), XYDrawMode(), XYGetData(),
XYInCircle(), XYInRect(), XYJoin(), XYKey(), XYRange(), XYSize(), XYSort()

XYSize()

This function gets and sets the limits on the number of data points of a channel in the current XY view. Channels
can be set to have a fixed size, or to expand as more data is added. The only limit on the number of data points is
the available memory and the time taken to draw data.

Func XYSize(chan%{, size});

chan% A channel number in the current XY view. The first channel is number 1.

size% This sets the number of data points in the channel and how and if the number of data points can extend. A
value of zero sets no limit on the number of points and the size of the channel expands as required to hold
data added to it.

If a negative size is given, for example -n, this limits the number of points in the channel to n. If more than
n points are added, the oldest points are deleted to make space for the newer points. If you set a negative
size for an existing channel that is smaller than the points in the channel, points are deleted.

If a positive value is set, for example n, this allocates storage space for n data points, but the storage will
grow as required to accommodate further points. Using a positive number rather than 0 can save time if
you know in advance the likely number of data points as it costs time to grow the data storage.

If this is omitted, there is no change to the size.

Returns If the number of points for the channel is fixed at n points, the function returns n. Otherwise, the function
returns the maximum number of points that could be stored in the channel without allocating additional
storage space.

See also:
XYAddData(), XYColour(), XYCount(), XYDelete(), XYDrawMode(), XYGetData(),
XYInCircle(), XYInRect(), XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSort()

XYSort()

In the current XY view, gets or sets the sorting method of the channel.

Func XYSort(chan%{, sort%});

chan% the channel number in the current XY view. The first channel is number 1.

sort% This sets the sorting method of data points. The sorting method is only important if the points are joined.
If they are not joined, it is much more efficient to leave them unsorted as sorting a large list of points takes
time. The sort methods are:

0 Unsorted (default). Data is drawn and sorted in the order that it was added. The most recently added
point has the highest sort index.

1 Sorted by x value. The index runs from points with the most negative x value to points with the most
positive x value.

2 Sorted by y value. The index runs from points with the most negative y value to points with the most
positive y value.

If this is omitted, there is no change in sorting method.

Returns The function returns the sorting method at time of call or a negative error code.

See also:
XYAddData(), XYColour(), XYCount(), XYDelete(), XYDrawMode(), XYGetData(),
XYInCircle(), XYInRect(), XYJoin(), XYKey(), XYRange(), XYSetChan(), XYSize()

Signal Version 6.06

19-644

Y

YAxis()

This function is used to turn the y axes on and off, in the current view and to find the state of the y axes in a view.

Func YAxis({on%});

on% Optional argument that sets the state of the axes. If omitted, no change is made. Possible values are:

0 Hide all y axes in the view.

1 Show all y axes in the view.

Returns The state of the y axes at the time of the call (0 or 1) or a negative error code.

See also:
ChanOffset(), ChanScale(), Grid(), Optimise(), XAxis(), XScroller(), YAxisMode(),
YHigh(), YLow(), YRange()

YAxisAttrib()

This function controls the choice of logarithmic or linear axis and automatic adjustment of axis units at high zoom
levels. This command is equivalent to the check boxes at the bottom of the Y Axis dialog.

Func YAxisAttrib(cSpc{, flags%});

cSpc A channel specifier or -1 for all, -2 for visible or -3 for selected channels. When multiple channels are
specified, returned values are for the first channel.

flags% A value that controls how the axis looks and behaves, zero sets a linear axis with no auto-adjust of units
for high zoom. Add the following values to change the behaviour:

1 Display a logarithmic axis.

2 Display powers on a logarithmic or square root axis (you must have added 1 or 8 as well for this to
take effect).

4 Cause a linear or square root axis to auto-adjust its units by factors of 1000 at high zoom around 0.

8 Display a square-root axis.

16 When used along with 4, causes the axis to auto-adjust its units by using an SI prefix rather than
factors of 1000.

 It is an error to add both 1 and 8 for logarithmic and square root mode at the same time, 2 without 1 or 8
and 16 without 4 do nothing. Omit this argument for no change to the attributes.

Returns The sum of the current flags set for the y-axis of the first channel in the list.

See also:
YAxis(), YAxisMode(), YAxisStyle(), YHigh(), YLow(), YRange(), XAxisAttrib()

YAxisLock()

This function locks and unlocks the axes of grouped channels and reports on the locked state of grouped channels.
If you lock a group, the grouped channels keep their own axis ranges, but display using the axis of the first channel
in the group. The YRange(), YHigh() and YLow() commands operate on the information stored with a channel.
To change the displayed range of grouped and locked channels, you must use YRange() on the first channel in a
group.

Func YAxisLock(chan%{, opt%{, vOffs}});

chan% A channel that is in the group that you wish to address.

opt% If present, values of 1 and 0 set and unset the locked state. A value of -1 returns the visual offset per
channel for the group. If omitted, no change is made.

vOffs If present, this sets the y axis display offset to apply between channels in the group. The nth channel has
a visual offset of (n-1)*offs.

Script language

19-645

Returns The current locked state of the group unless opt% was -1, when it returns the y axis visual offset per
channel for the group.

See also:
ChanOrder(), YAxisMode(), YHigh(), YLow(), YRange()

YAxisMode()

This function controls what is drawn in a y axis and where the y axis is placed with respect to the data.

Func YAxisMode({mode%{, hal%{, hsp%{, hvp%}}}});

mode% Optional argument that controls how the axis is displayed. If omitted or negative, no change is made.
Positive values are the sum of :

1 Hide all the title information.

2 Hide all the unit information.

4 Hide y axis small ticks. They are also hidden when big ticks are hidden.

8 Hide y axis numbers. They are also hidden when big ticks are hidden.

16 Hide the big ticks and the vertical line that joins them.

32 Scale bar axis. If selected add 4 to remove the end caps.

4096 Place the y axis on the right of the data.

8192 Horizontal text for the title and units.

hal% The horizontal label alignment as -1 or omitted for no change, 0 for centred, 1 for aligned to the edge.

hsp% Set the horizontal label character space in the range 2-17 or -1 or omitted for no change.

hvp% Set the horizontal label vertical position as 0 for centred, 1 for top, 2 for bottom or -1 or omitted for no
change.

Returns If mode% is positive, omitted or -1 it returns the mode% value at the time of the call or a negative error code.
Set mode% to -2 to return the current value of hal%, -3 for hsp% or -4 for hvp%.

See also:
ChanNumbers(), YAxis(), YAxisStyle(), YHigh(), YLow(), YRange()

YAxisStyle()

This function controls the y axis major and minor tick spacing. If you set values that would cause illegible or
unintelligible axes, they are stored but not used unless the axis range or scaling changes to make the values useful.

Func YAxisStyle(cSpc, opt%{, major});

cSpc A channel specifier or -1 for all, -2 for visible and -3 for selected channels. When multiple channels are
specified, returned values are for the first channel.

opt% Values greater than 0 set the number of subdivisions between major ticks. 0 sets automatic small tick
calculation. Use -1 for no change. Values less than -1 return information, but do not change the axis style

major If present and opt% is greater than -2, values greater than 0 sets the major tick spacing. Values less than or
equal to 0 select automatic major tick spacing.

Returns If opt% is -2 this returns the current number of forced subdivisions or 0 if they are not forced. If opt% is -3
this returns the current major tick spacing if forced or 0 if not forced. Otherwise the return value is 0 or a
negative error code. If multiple channels are specified the return value is for the first channel in the list.

See also:
YAxis(), YAxisMode(), YHigh(), YLow(), YRange(), XAxisStyle()

Signal Version 6.06

19-646

YHigh()

This function returns the current upper limit of the y axis in a data or XY view.

Func YHigh(chan%);

chan% A channel number (1 to n). The channel number is ignored for an XY view.

Returns The value at the appropriate end of the axis.

See also:
ChanTitle$(), ChanUnits$(), YLow(), YRange(), Optimise()

Yield()

This function suspends script operation for a user-defined time and allows the system to idle. During the idle time,
invalid screen areas update, you can interact with the program and the system has the opportunity to do
housekeeping. If your script runs for long periods without using Interact() or Toolbar(), adding an occasional
Yield() can make it feel more responsive and stop the operating system marking Signal as "not responding".
However be aware that Yield() uses up time and slows down script execution, even when used to give the
shortest possible idle time. You should therefore avoid putting calls to Yield() inside loops, particularly deep
inside nested loops, unless this is definitely necessary.

Func Yield({wait{, allow%}});

wait The minimum time to wait, in seconds. If omitted or 0, Signal gives the system one idle cycle. If greater
than 0 and there is still waiting time left after an idle cycle completes, other processes are given the
opportunity to run between idle cycles. If set negative, there is no idle cycle but the allow% argument is
applied.

allow% This defines what the user can do during the wait period, if this argument is omitted a default value of zero
is used. See Interact() for the possible allow% values. The allow% value is cancelled and the allow
settings restored to the previous state after the yield finishes unless wait is negative. An allow% value
of 0 would restrict the user to inspecting data and positioning cursors in a single, un-moveable window,
but being able to switch frames. An allow% value of 8192 is the same but without changing frames.

Returns The function returns 1. We may add more return codes in future versions.

See also:
Interact(), Seconds(), Toolbar(), YieldSystem()

YieldSystem()

To share the system CPU(s) among competing processes, the operating system allocates time slices of around 10
milliseconds based on process priorities and recent process activity. A process can surrender a time slice if it has
nothing to do. A typical application spends most of its time waiting for user input, which appears as messages in
the application message queue; it will surrender a time slice if the message queue is empty unless it has a task to
work on. Signal normally surrenders time slices, but if you run a script, it runs for the full time slice unless it is in
Yield(), Interact(), or you use ToolBar() or DlgShow() without an idle routine.

The YieldSystem() command causes Signal to surrender the current time slice and suspends the user interface
and script thread for a user-defined time or until a new message arrives in the Signal input queue. It has no effect on
sampling, which runs in a separate thread. Unlike Yield(), it does not allow Signal to idle.

Proc YieldSystem({wait});

wait The time to wait, in seconds, before resuming the thread. Values are rounded to the nearest millisecond.
Values greater than 10 are treated as 10 seconds; values less than –10 are treated as –10 seconds.

For wait values greater than 0, the wait is ended by unserviced messages; keyboard and mouse activity, timers for
screen updates and the like cause messages. If wait is 0 or omitted, the current time slice is surrendered, but if
Signal is the highest priority task it will be re-scheduled immediately. Negative values suspend Signal for –wait
seconds regardless of messages.

Script language

19-647

YieldSystem() with wait values greater than 0 returns immediately if there are messages in the input queue.
Unless you allow Signal to idle, either with a Yield() call or with Toolbar() or DlgShow(), there will always be
pending messages, so it will have no effect. If you have a script loop that causes 100% CPU usage, inserting:

Yield();YieldSystem(0.001);

Will give other processes a chance to run. Increasing the wait time up to 0.05 will further reduce the CPU usage.
Larger values have little additional effect due to timer messages ending the wait early. To give as much system time
as possible to other tasks without allowing Signal to idle, you can use:

YieldSystem(-0.001);

In this case, increasing the time to –10.0 will have an effect; Signal will feel completely unresponsive until the time
period has elapsed.

See also:
Interact(), DlgShow(), Seconds(), Toolbar(), Yield()

YLow()

This function returns the current lower limit of the y axis in a data or XY view.

Func YLow(chan%);

chan% A channel number (1 to n). The channel number is ignored for an XY view.

Returns The value at the appropriate end of the axis.

See also:
ChanTitle$(), ChanUnits$(), YHigh(), YRange(), Optimise()

YRange()

This sets the y axis range for a channel or grid or XY view. Attempting to set the range for a display mode that
doesn't have a y axis is not an error, but has no effect. If the y range changes, the display is invalidated, but waits
for the next Draw().

Proc YRange(chan%|chan%[]|chan${, low, high});

chan% A channel number (1 to n) or you can also use -1 for all channels, -2 for all visible channels, -3 for all
selected channels, -4 for waveform channels or -5 for marker channels, -6 for selected waveform channels
or visible if none selected, -7 for visible waveform channels or -8 for selected waveform channels. The
channel number is ignored in an XY view as there is only one axis for all channels.

This can also be an integer array. If it is, the first array element holds the number of channels in the list.
This is followed by a list of positive channel numbers.

chan$ A string to specify channel numbers, such as "1,3..8,9,11..16".

low The value for the bottom of the y axis. If omitted, and the channel type has a known range, Signal sets low
and high to suitable limits. For example, for a normal waveform channel the limits are those set by the 16-
bit nature of the data, if there is no underlying 16-bit data the available data range is used.

high The value for the top of the y axis. If low and high are the same, or stupidly close, the range is not
changed.

Grid view
In a grid view, this is used to set to top line to display in the grid. The channel specification is currently unused and
should be set to 0 for future compatibility. Use the Draw() command or XRange() to set the first column.

Proc YRange(0, line);

line The top line number to display. The first line is 0.

See also:
YHigh(), YLow(), ChanScale(), ChanOffset(), Optimise()

Signal Version 6.06

19-648

Z

ZeroFind()

Find a zero (root) of a user-defined continuous function using Brent's method. You must supply a range to search
that contains a zero. The method is iterative with each iteration reducing the search range. Iterations stop when a
zero is found, the search range becomes smaller than a supplied tolerance or an iteration limit is reached. The need
to supply a range that brackets a zero means that you must have some understanding of the general shape of the
function before usng ZeroFind().

Func ZeroFind(&x, f(x), a, b{, tol{, maxIt%}});

x A real variable that is returned with a value that is within tol of a position for which f(x) is zero.

f The name (no brackets or argument) of a user-defined function that takes a single real argument and that
returns a real value.

a,b These values define a range to be searched for a zero. f(a) and f(b) must both be non-zero and must
have different signs.

tol This specifies how close the returned x must be to the exact result and must be positive. If omitted or zero,
the tolerance is set based on the root position and floating point precision.

MaxIt% The maximum number of iterations of the algorithm in the range 1 to 200. If omitted, a maximum of 100
iterations are set.

Return The number of iterations left after the tolerance is achieved, or 0 if it was not, or -1 if the initial range (a, b)
does not include a zero.

Examples

The following example calculates the roots of the equation x2-2=0.

Func root2(x) return x*x-2 end;

var r1,r2;
ZeroFind(r1, root2, 0, 2); 'Find a root between 0 and 2
ZeroFind(r2, root2, 0, -2); 'Find a root between 0 and -2
printlog("Roots at %g and %g\n", r1, r2);

some cases the function may not be analytic. For example, suppose we want to demonstrate the often quoted result
that 95% of normally distributed values lie within two standard deviations of the mean. The indefinite integral of a
Gaussian with unit standard deviation can be obtained with:

Func NormProp(x) return GammaP(0.5, 0.5*x*x); end;

This returns the fraction of the data that lies within x standard deviations of the mean of a normal distribution. We
want the value of x for which NormProp(x) = 0.95. Put another way, we want NormProp(x)-0.95 to be zero.
The following script does this:

Func NormProp(x) return GammaP(0.5, 0.5*x*x); end;
Func Root(x) return NormProp(x)-0.95 end;

var sd;
ZeroFind(sd, Root, 0, 5); 'get 95% level
printlog("95%% at %4.2f\n", sd);

You can use this function in some circumstances to calculate the inverse of a function when no other method is

available. That is, if y = f(x), then x = f-1(y). For example, in the above case we were finding the inverse of the
NormProp(x) function at the specific value 0.95. To tabulate the function for a range of values we would change
the Root() function to:

var prop;
Func Root(x) return NormProp(x)-prop end;

Now, by setting prop to a value in the range between 0 and 1 (but not to 0 and 1), we can map the inverse function:

http://en.wikipedia.org/wiki/Brent%27s_method

Script language

19-649

for prop := 0.01 to 0.99 step 0.01 do
 ZeroFind(sd, Root, 0, 100);
 printlog("%4.2f %5.3f\n", prop, sd);
next;

We have omitted 0 and 1 from our range because we cannot set a range that meets the criteria for the arguments a
and b for these values (the result from NormProp() can only lie in the range 0 to 1, and only reaches 1 at infinity).

Curve fitting

Introduction

It frequently happens that you have a set of data values (x1,y1), (x2,y2) … (xn,yn) that you wish to test against a

theoretical model y = f(x, a0, a1, a2…) where the ai are coefficients that are to be set to constant values which give

the best fit of the model to the data values.

For example, if we were looking at the extension of a spring (y) as it is loaded by weights (x), we might wish to fit the
straight line y = a0 + a1x to some measured data points so that we could measure a weight by the extension it

caused. A careful experimenter might also wish to know what the probable error was in a0 and a1 so that the

probable error in any weight deduced from an extension would be known. An even more cautious experimenter
might want to know if the straight-line formula was likely to model the measured data.

To avoid repeating definitions throughout the remainder of this information the following will be taken as defined.
We apologise to the statisticians who may read the following and shudder.

mean
Given a set of n values yj, the mean is the sum of the n values divided by n.

variance
If the mean of a set of n data values yj is ym, then the variance (sigma squared) of this set of values is: the sum of the

squares of yj - ym divided by n if ym is known independently of the data values and by (n - 1) if ym is calculated from

the data values yj.

For a data set of any reasonable size, the use of n-1 or n in the denominator should make little difference.

standard deviation
The standard deviation (sigma) of a data set is the square root of the variance. Both the variance and the standard
deviation are used as measures of the width of the distribution.

Normal distribution

If you measure a data value in any real system, there is
always some error in the measurement. Once you have
made a (very) large number of measurements, you can
form a curve showing the probability of getting any
particular value. One would hope that this error
distribution would show a large peak at the “correct”
value of the measurement and the width of this
distribution would show the spread of likely errors.

There is a particular error distribution that often occurs,
called the Normal distribution. If a set of measurements is
normally distributed, with a mean ym and standard
deviation sigma, then the probability of measuring any
particular value y is proportional to:

P(y) µ exp(-½(y-ym)^2/sigma^2)

Signal Version 6.06

19-650

It is for this distribution of errors that we have the well-known result that 68% of the values lie within one standard
deviation of the mean, that 95% lie within two standard deviations and that 99.7% lie within three standard
deviations. Of course, if the error distribution is not normal, these results do not apply.

Chi squared

The fitting routines given here define best fit as the values of ai (the coefficients) that minimise the chi-squared

value defined as the sum over the measured data points of the square of the difference between the measured and
predicted values divided by the variance of the data point:

If the sigma of each data point is unknown, then the fitting routines can be used to minimise the sum of the squares
of the differences between the actual data values and the values predicted by the fitted function which produces
the same result as a chi-squared fit would produce if the variance of the errors at all the data points was the same.
This is commonly called least-squares fitting (meaning that the fit minimises the sum of squares of the errors
between the fitted function and the data).

Chi-squared fitting is also a maximum likelihood fit if the errors in the data points are normally distributed. This
means that as well as minimising the chi-squared value, the fit also selects the most probable set of coefficients that
model your data. If your data measurement errors are not normally distributed you can still use this method, but the
fit is not maximum likelihood.

If your errors are normally distributed and if you know the variance(s) of the data points, you can form good
estimates of the variance of the fitted coefficients, and you can also test if the function you have fitted is likely to
model the data.

If your errors are normally distributed but you do not know the variance of the errors at the data points, you can
make an estimate of the variance of the errors (based on the assumption that the variance is the same for them all
and that the model does fit the data), by fitting your model and calculating the variance from the errors between the
best fit and the data. Having done this, you cannot then use this variance to test if the fit is likely to model the data.

Residuals

Once your fit is completed, it is a good idea to look at the graph of the errors between your original data and the
fitted data (the residuals or residual errors). If your errors are normally distributed and are independent, you would
expect this graph to be more or less horizontal with no obvious trends. If this is not the case, you should consider if
the correct model function has been selected, or if the fitting function has found the true minimum.

Linear fit Non linear fit

A linear fit is one in which the theoretical model y = f(x, a0, a1, a2…) can be expressed as y = a0 f0(x) + a1 f1(x) + a2 f2(x)

… for example y = a0 + a1x + a2x
2. Linear fits are relatively quick as they are done in one step. Usually, the only thing

that can cause a problem is if the functions fi(x) are not linearly independent. The methods we use can usually

detect this problem, and can still give a useful result.

A non-linear fit means all other cases, for example, y = a0 exp(-a1 x) + a2. We solve these types of problem by making

an initial guess at the coefficients (and ideally providing a range of values that the result is known to lie in) and
then improving this guess. This process repeats until some criterion is met. Each repeat is called an iteration, so we
call this an iterative process.

Covariance array

Several of the script fitting routines return a covariance array. If you have n coefficients, this array is of size n by n
and is diagonally symmetric. If the errors in the original data points are normally distributed, the diagonal elements
of this array are the variances in the values of the fitted coefficients. The remaining elements are the co-variances of
pairs of the fitting parameters and can be used to estimate errors in derived values that depend on the product of
two of the coefficients. If the errors are not normally distributed, the further away from normal the errors are, the
less useful is the covariance array as a direct indication of the variances in the fitted coefficients.

For example, in the case of the linear fit:

Script language

19-651

 y = a0 + a1x + a2x
2

you might collect your three coefficients in the array coef[], and the covariance in the array covar[][]. In this
case, the a

0
 value is returned in coef[0] and its variance in covar[0][0], the a

1
 value is returned in coef[1]

and its variance in covar[1][1], and the a
2
 value is returned in coef[2] and its variance in covar[2][2].

Because the array is diagonally symmetric, covar[i][j] is equal to covar[j][i] and the off-diagonal elements
are the expected variance in the product of pairs of the coefficients, so covar[1][2] is the variance of a

1
a

2
.

If you have not supplied the standard deviations of the errors in the data points, the covariance array is calculated
on the assumption that all data points have a standard deviation of 1.0, and the covariance array is incorrectly
scaled. In this case, if inspection of the residuals leads you to the conclusion that the function does indeed fit the
data and that the errors are more or less the same for all values and not too far from normally distributed, then you
can scale the covariance array to the correct values by multiplying all the elements of the array by the sum of
squares of the errors between the data and the fitted values divided by the number of data points. If there are nD%
data points and the sum of squares of the errors is errSq, then use ArrMul(cover[][], errSq/nD%); to rescale
the covariance.

What does the covariance mean?
Having fitted our data, we would like some idea of how the errors in the original data feed through to uncertainties
in the values of the coefficients. The best way to do this is to obtain many sets of (x,y) data and fit our coefficient
to each set. Then we can inspect the values of the coefficients and obtain a mean and standard deviation for each
coefficient. However, this is very time consuming.

If the errors in the data are normally distributed (or not too far from this ideal case) and known, then the covariance
array gives you some useful information. The square root of the covariance for a particular coefficient is the
expected standard deviation in that value (given that the remaining coefficients remain fixed at optimum values). In
script language terms, the standard deviation of coef[i] is sqrt(covar[i][i]).

In this case you would expect the coefficient to be within one standard deviation of the “correct” result 68% of the
time, within 2 standard deviations 95% of the time and within 3 standard deviations 99.7% of the time.

Testing the fit

If the errors in the original data are normally distributed and known (not calculated from the fit), and you know the
chi-squared value for the fitted data, you can ask the question, “Given the known errors in the original data, how
likely is it that you would get a value of chi-squared at least this large given that the data is correctly modelled by
the fitting function plus normally distributed noise?” The answer is (at least in terms of the script language) that the
probability is: GammaQ((nData% - nCoef%)/2.0, chiSq/2.0); where nData% is the number of data points to
be fitted, nCoef% is the number of coefficients that were fitted and chiSq is the chi-squared value for the fit.
GammaQ() is the incomplete Gamma function.

If you want to follow this result up in a statistical textbook, you should look up chi-squared distribution for n
degrees of freedom. In our case, we have nData%-nCoef% degrees of freedom.

If the fit is reasonable, you should expect a probability value between 0.1 and 1 (but be a bit suspicious if you
always get values close to 1.0, as you may have overestimated the errors in the data). If the wrong function has
been fitted or if the fit is poor you usually get a very small probability.

Intermediate values (0.0001 to 0.1) may indicate that the errors in the original data were actually larger than you
thought, or they may indicate that the model does not explain all the variation in the data.

Fitting routines

The ChanFit...() family of commands give a script the same capability as the Analysis menu Fit Data command.
These commands were added to Signal at version 3.

ChanFit()
This command associates a fit with a data channel in a data or XY view, performs the fit and returns basic fit
information.

Signal Version 6.06

19-652

ChanFitCoef()
This gets and sets fit coefficients, coefficient limits and the hold flags. It is equivalent to the coefficient page of the
Fit Data dialog.

ChanFitShow()
This controls the display of the fitted data.

ChanFitValue()
This returns the value at a given x position of the fitted function.

The remaining fitting functions allow you to fit curves to data in arrays:

FitPoly()

This fits a polynomial of the form y = a
0
 + a

1
x + a

2
x2 + a

3
x3…

FitLine()
This fits a straight line to data in a data view.

FitLinear()
This fits y = a

0
 f

0
(x) + a

1
 f

1
(x) + a

2
 f

2
(x)…where the f

n
(x) are user-defined functions of x.

FitExp()
This fits multiple exponentials of the form y = a0 exp(-x/a1) + a2 exp (-x/a3)…

FitGauss()

This fits Gaussians of the form y = a0 exp(-½(x-a1)
2/a2

2) + a3 exp(-½(x-a4)
2/a5

2) + …

FitSin()
This fits multiple sinusoids of the form y = a0 sin(a1x+a2) + a3 sin(a4x+a5) + …

FitNLUser()
This fits a user-defined function of the form y = f(x, a0, a1, a2…) to a set of data points where the ai are constant

coefficients to be determined. You must be able to calculate the differential of the function f with respect to each of
the ai coefficients. This is the most general fitting routine, and also the slowest and most complex to use.

GammaP(), GammaQ()
Use these functions to calculate the error function erf(x), the cumulative Poisson probability function and the Chi-
squared probability function. These are very useful when considering probabilities of fits associated with the
normally distributed data.

LnGamma()
This calculates the natural logarithm of the Gamma function. It can be used to calculate the log of large factorials
and is useful when working with probability distributions.

Digital filtering

20-653

Digital filtering

Filtering is used to remove unwanted frequency components from waveforms and can also be used to differentiate
a signal. In Signal we provide you with two basic types of filter: Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR). Both types of filter have their advantages and disadvantages.

FIR and IIR filters

Filtering is used to remove unwanted frequency components from waveforms and can also be used to differentiate
a signal. In Signal we provide you with two basic types of filter: Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR). Both types of filter have their advantages and disadvantages.

IIR filters
These are similar to analogue filters, and we design them by mapping standard
Butterworth, Bessel, Chebyshev filters and resonators into their digital forms.
IIR filters have these advantages:

· They can generate much steeper edges and narrower notches than FIR
filters for the same computational effort.

· IIR filters are causal; they do not use future data to calculate the output, so
there is no pre-ringing due to transients.

They also have disadvantages:

· IIR filters are prone to stability problems particularly as the filter order increases or when a filter feature becomes
very narrow compared to the sample rate.

· IIR filters impose a group delay on the data that varies with frequency. This means that they do not preserve the
shape of a waveform, in particular, the positions of peaks and troughs will change.

The output of an IIR filter may take a long time to settle down from the discontinuity at the start (transition from no
data to the supplied data).

FIR filters
We describe FIR filters in terms of frequency bands: pass bands, stop bands
and transition gaps. You define a filter by the arrangement of bands and the
corner frequencies of each band. FIR filters have these advantages:

· They are unconditionally stable as they do not feedback the filter output to
the input.

· There is no phase delay through the filter, so peaks and troughs do not
move when data is filtered (this is called linear phase in the literature).

They also have disadvantages:

· They are poor at generating very narrow notches or narrow band pass filters.

· The narrowest frequency band or band gap is limited by the number of coefficients (we allow up to 511
coefficients).

· FIR filters are not causal; they use future as well as past data to generate each output point. A transient in the
input causes effects in the output before the transient.

If your FIR filter has n coefficients, the first and last n/2 output points are estimates due to the discontinuity at the
start and end of the data.

So which to choose?
If you want a differentiating filter, you have no choice as we have not implemented differentiators for IIR filters.
Unless one of the disadvantages of the FIR filter is a problem, you will likely have fewer unexpected effects with an
FIR filter.

However, there are circumstances in which only an IIR filter will do. If you need a high Q notch filter or resonator,
then use an IIR filter. If you are interested in small changes just before a large discontinuity, only the IIR filter will

Signal Version 6.06

20-654

help you. However, make sure that you understand the disadvantages of IIR filters before you depend on their
output.

Digital filter dialog

The Analysis menu Digital filters command is available when you have a data or memory view open. You can
choose to apply Finite Impulse Response (FIR) filters or Infinite Impulse Response (IIR) filters. Apart from the
dialog title, the initial dialog display is the same for IIR and FIR filters. You can apply one of twelve stored digital
filters to a waveform channel, or you can create your own digital filter. You can also load and save additional sets
of filters from the dialog.

The dialog shows the
original waveform using
the overdrawn waveform
colour and a filtered
version in the colour you
have set for waveform
data. Whenever you
change the filter, the
display updates to show
the effect of the change.

Show axes
You can choose to Show
axes for the original data and for the filtered version. The axis for the original data is always on the left. If a
separate axis is required for the filtered data, it is drawn in the filtered data colour on the right.

Same scale
Initially, the filtered data is drawn at the same scale as the original data. However, sometimes this is inconvenient,
for example when high-pass filtering a signal with a significant DC offset or when the result of filtering is very small
compared to the original. If you clear the Same scale check box, the filtered data is scaled to fit in the window
independently of the scaling of the original waveform.

Channel
The Channel field allows you to select a waveform channel to filter.

Filter
The Filter field of the dialog box selects the filter to apply. There are normally 12 filters to choose from. When you
first open the dialog, this field is grey, indicating that you cannot edit the filter name. If you display the filter details
you can modify the filter name.

Comment
The Comment field is for any purpose you wish; there is one comment per filter. When you first open the dialog,
this field is grey, indicating that you cannot edit the comment. Click the Show details button to edit the comment.

The Filter field of the dialog box selects the filter to apply and the Channel field sets the waveform channel to
filter.

The Close button shuts the dialog and will ask if you want to save any changed filter and the Help button opens
the on-line Help at the digital filtering topic.

Close
Click the Close button to shut the filtering dialog. If you have made a change to any of the filters, or loaded a new
filter set, you are asked if you want to save the current set of filters as your standard filter set.

Digital filtering

20-655

Load and Save
You can choose to save the current set of filters to a .cfb file, or to load a new set of filters from a .cfb file. If you
are working with FIR filters, this only saves or loads FIR filters. If you are working with IIR filters, this only saves or
loads IIR filters. Loading a new filter set does not change your standard filter set, however, you will be asked if you
want to change your standard set when you close the dialog.

Show details
The Show details button increases the dialog size to display a new area in which you can design and edit filters.
Click this button again to hide the new dialog area. When you display the filter details, the Filter and Comment
fields become editable. If you change a filter or create a new filter or load a new set of filters from a file, you will be
prompted to save the filter bank when you close the digital filter dialog. The details are different for FIR and IIR
filters.

Apply

The Apply button opens a new dialog in which you set which channels and frames
to filter with the Channels and Frame list fields. The Frame subset field can be
used to further specify which frames are to be filtered. The Selected frame state
field only appears if you select Frame state = xxx in either the Frame list or the
Frame subset field. The channels should all have the same sampling rate as the
one you were previewing in the main dialog. Channels of a differing sampling rate
will be ignored – this situation should only occur with data imported into Signal.

As applying a filter can be a lengthy process, a progress dialog appears with a
Cancel button during the filtering operation.

FIR filter details
If the filter is of length n, then n/2 points around each input data point are used to produce each output point.
When there is no input data available before or after a point, the filter uses a duplicate of the nearest input point as
an estimate of the data value. This means that the n/2 output points next to either end of the input data should not
be used for any critical purpose.

IIR filter details
IIR filters are applied to all the data in the selected area. IIR filters feed back the results of previous filter steps into
the current step. This means that the result of the filter on a data point depend on all the data points up to and
including that point. For a stable filter, the effect of a distant point is much less than that of an adjacent one. After a
discontinuity (the start of a frame), it will take some time for the filter to settle down. Generally, the sharper the filter,
the longer it takes for the result to settle. If a filter is unstable or close to unstable, the result may never settle.

Filter bank

A digital filter definition is complex and it would be tedious to specify all the properties of a filter each time you
wanted to apply one to data. To avoid this, Signal contains a filter bank of 12 FIR and 12 IIR filter definitions. This
filter bank is saved to the file Filtbank.cfb when you close Signal and reloaded when you open it. When you
use the digital filter dialog, you specify which filter you want by the filter name.

Script users identify the filter by its type (FIR or IIR) and an index number in the range 0 to 11. Script users also
have access to two additional temporary filters with index number -1 (one for FIR and the other for IIR filters) that
they can set and use for channel filtering operations without changing the standard filter set.

FIR filter details

The graph in the details area displays the ideal and actual frequency response of the filter. The ideal response
appears as blue solid lines for each pass band linked by dotted lines that mark transition gaps between the bands.
All transition gaps have the same width. The calculated frequency response is drawn as solid black lines and is
greyed when the filter specification has changed and the response has not yet been calculated.

Signal Version 6.06

20-656

The mouse pointer
changes to indicate the
feature it is over: for
a pass band or stop band,

 for a transition gap
and for a band
corner. The small circles
can be dragged sideways
to change the slope of
the band edges or you
can edit the band edges
as numbers in the
Frequency panel on the right. You can also drag the bands and the transition gaps sideways.

Set
If you edit the numbers in the Frequency panel, the Set button is enabled so you can force a recalculation of the
filter.

-3dB point
The filters produced by the program are not defined in terms of -3dB corner frequencies and n dB per octave, as is
often the case for traditional analogue filters. The 3dB point column is present to help users who are more
comfortable describing filter band edges in terms of the 3 dB point.

Gain in dB
The Gain in dB check box sets the y axis scale to dB if checked, linear if not checked. Using dB is usually the more
convenient, except when working on a differentiator.

Log frequency
You can choose to display the frequency axis as the logarithm of the frequency, which gives you more resolution at
low frequencies. However, this can make working with FIR filters more awkward as it removes the visual symmetry
of the transition bands. In log mode, the frequency axis extends down to 0.001 of the data sample rate.

Continuous update
If you check the Continuous update box, the filter is updated while you drag the filter features around. If you have
a slow computer and this feels ponderous you can clear the check box, in which case the filter is not recalculated
until you stop changing features.

Free parameters
If you check the Free parameters box, dragged features are not limited by the next band and will push bands
along horizontally. If you clear the box, the horizontal motion of a dragged feature is limited by the next moveable
object.

Length, Auto and traffic lights
To the right of the frequency response display is a slider that controls the number of filter coefficients. In general,
the more coefficients, the better the filter. However, the more coefficients, the longer it takes to compute them and
the longer to filter the data. If you check the Auto box, the program will adjust the number of coefficients for you to
produce a useful filter. The “traffic light” display above the slider shows green if the filter is good, amber if the
result is usable but not ideal, and red if the result is hopeless.

An FIR filter of length n uses the n/2 points before and after each input point to produce each output point. When
there is no input data available before or after an input point, the filter uses a duplicate of the nearest point as an
estimate of the data value. The n/2 output points next to the start or end of a frame of data should not be used for
any critical purpose.

Digital filtering

20-657

FIR Filter types

The Type field sets the arrangement of filter bands. If you need a filter that is not in this list you can generate it
from the script language with the FIRMake() command. There are currently 12 different filter types:

All pass
This has no effect on your signal. This filter type covers the case where you apply a low pass filter designed for a
higher sampling rate to a waveform with a much lower sampling rate, so that the pass band extends beyond half the
sampling frequency of the new file.

All stop
This removes any signal; the output is always zero. This filter type is provided to cover the case where you apply a
high pass filter designed for a higher sampling rate to a waveform with a much lower sampling rate, so that the stop
band extends beyond half the sampling frequency of the new file.

Low pass
This filter attempts to remove the high frequencies from the input signal. The
Frequency field holds one editable number, Low pass, the frequency of the upper
edge of the pass band. The stop band starts at this frequency plus the value set by
the Transition gap field.

High pass
A high pass filter removes low frequencies from the input signal. The Frequency field
holds one editable number, High pass, the frequency of the lower edge of the pass
band. The stop band starts at this frequency less the value set by the Transition gap
field.

Band pass
A band pass filter passes a range of frequencies and removes frequencies above and
below this range. The Frequency field has two editable numbers, Low and High,
which correspond to the two edges of the pass band. The stop band below runs up to
Low-Transition gap, and the stop band above from High+Transition gap to one half
the sampling rate.

Band stop
A band stop filter removes a range of frequencies. The Frequency field has two
editable numbers, High (the upper edge of the first pass band) and Low (the lower
edge of the upper pass band). The stop band below runs from High+Transition gap
up to Low-Transition gap.

One and a half low pass
This filter has two pass bands, the first running from zero Hz and the second in the
frequency space between the upper edge of the first pass band and one half the
sampling rate. The Frequency field has three editable numbers: Band 1 high, Band 2
low and Band 2 high. These numbers correspond to the edges of the pass bands.

One and a half high pass
This filter has two pass bands. The second runs up to one half the sampling rate. The
first band lies in the frequency space between 0 Hz and the lower edge of the second
band. The Frequency field has three editable numbers: Band 1 low, Band 1 high and
Band 2 low. These numbers correspond to the edges of the pass bands.

Signal Version 6.06

20-658

Two band pass
This filter passes two frequency ranges and rejects the remainder. Both 0 Hz and one
half the sampling frequency are rejected. The Frequency field has 4 numeric fields:
Band 1 low, Band 1 high, Band 2 low and Band 2 high. These fields correspond to
the four edges of the two bands.

Two band stop
This filter passes three frequency ranges and rejects the remainder. Both 0 Hz and one
half the sampling rate are passed. The Frequency field has 4 numeric fields: Band 1
high, Band 2 low, Band 2 high and Band 3 low. These fields correspond to the four
edges of the three bands.

Low pass differentiator
This filter is a combination of a differentiator (that is the output is proportional to the
rate of change of the input) and a low pass filter. The y axis scale is linear, rather than
in dB (although you can display it in dB if you wish). There is one editable number in
the Frequency field, Low pass, the end of the differential section of the filter.

Differentiator
The output of the filter is proportional to the rate of change of the input. The y axis
scale is linear, rather than in dB (although you can display it in dB if you wish). The
Frequency field is empty as there is only one band and it extends from 0 Hz to half
the sampling rate.

IIR filter details

We describe IIR filters in
terms of a filter type (low
pass, high pass, band
pass or band stop), the
analogue filter model that
they are based on
(Butterworth, for
example), the corner
frequencies and the filter
order (which determines
the steepness of the cut-
off outside the desired
pass bands). Filters based on Chebyshev designs also require a ripple specification and resonators require a Q
factor.

The graph in the details area displays the corner frequencies and the frequency response of the filter. You can
adjust the filter by clicking and dragging in this area or by editing the filter parameters as text. The mouse pointer

changes to indicate the feature it is over: for a corner frequency and for an adjustable parameter (ripple or Q

factor).

Gain in dB
The Gain in dB check box sets the y axis scale to dB if checked, linear if not checked. Using dB is usually the more
convenient.

Log frequency
You can choose to display the frequency axis as the logarithm of the frequency, which gives you more resolution at
low frequencies. The display extends to 0.0001 of the sample rate. If you need a corner frequency below this you

Digital filtering

20-659

should consider sampling the signal more slowly in the first place. Alternatively, low pass filter the signal and then
use a channel process to down sample it before filtering.

Continuous update
This is always checked for IIR filters, and is greyed out.

Free parameters
If you check the Free parameters box, corner frequencies are not limited by the next corner, and will push them
along. If you clear the box, corner frequencies cannot be moved past each other.

Traffic lights and messages
The traffic lights show green if the filter appears to be OK, amber if the filter may be unstable and red if the filter
calculation failed, the filter is unstable or if one of the input parameters is illegal. There will usually be an
explanatory message in the lower right hand corner of the dialog explaining the problem. In the amber state, the
filter may still be usable; you can look at the frequency response and the filtered data to see if the result is
acceptable.

Filter Order
In an analogue filter, the filter order determines the sharpness of the filter, for example Butterworth and Bessel filters
tend towards 6n dB per octave, where n is the filter order. In a digital filter, the order determines the number of filter
coefficients. The higher the order, the sharper the filter cut-off and also, the more likely the filter is to be unstable
due to problems in numerical precision. You can set filter orders of 1 to 10. You should always use the lowest order
that meets your filtering criteria. Phase non-linearity gets worse as the filter order increases.

Filter type
There are four filter types: Low pass, High pass, Band pass and Band stop. However, if you set the filter model
to Resonator, there are only two types, being Band pass (this creates a resonator filter) and Band stop (this
creates a notch filter). For all filter models except Chebyshev type 2 and Resonator, the frequencies given are the
points at which the filter achieves a cut of 3 dB. For Chebyshev type 2 filters, the frequencies are the point at which
the filter cut reaches the value set by the Ripple parameter. For Resonators, the frequency is the centre frequency
of the resonator.

Low pass Use this to remove high frequencies and pass low frequencies. This has a single corner frequency.

High pass Use this to remove low frequencies and pass high frequencies. This has a single corner frequency.

Band pass This passes a range of frequencies between the Low edge and the high edge. If the filter model is
Resonator, then this has a single Centre frequency.

Band stop This removes a range of frequencies between the Low edge and the high edge. If the filter model is
Resonator, then this has a single Centre frequency.

Filter Model
The IIR filters we provide are digital implementation of standard analogue filter models. The following descriptions
use fifth order 1 to 10 Hz band pass filters on 100 Hz data as examples (except for the Resonator filters). The five
filter models are:

Butterworth
This has a maximally flat pass band, but pays for it by not having the steepest
possible transition between the pass band and the stop band. This is a good choice
for a general-purpose IIR filter, but beware that the group delay can get quite bad
near the corners, especially for high-order filters.

Signal Version 6.06

20-660

Bessel
An analogue Bessel filter has the property that the group delay is maximally flat,
which means that it tends to preserve the shape of a signal passed through it. This
leads to filters with a gentle cut-off. When digitised, the constant group delay
property is compromised; the higher the filter order, the worse the group delay.

Chebyshev type 1
Filters of this type are based on Chebyshev polynomials and have the fastest
transition between the pass band and the stop band for a given ripple in the pass
band and no ripples in the stop band. You can adjust the ripple by dragging the small
circles vertically or with the Ripple field to the right of the displayed frequency
response.

Chebyshev type 2
Filters of this type are defined by the start of the stop band and the stop band ripple
(the minimum cut in the stop band). They have the fastest transition between the
pass and stop bands given the stop band ripple and no ripple in the pass band. Drag
the small circles to adjust the ripple, or use the Ripple field to the right of the
frequency response.

Resonator
Resonators are defined by a centre frequency and a Q factor. The Q is the centre frequency divided by the width of
the resonator at the -3 dB point. You can have a band stop or a band pass resonator. The Q is adjusted by dragging
the small circle or with the Q field to the right of the displayed frequency response.

Band stop resonators are also called Notch filters. The higher the Q, the narrower the
notch. Notch filters are often used to remove mains hum, but if you do this you will
likely need to set notches at the first few odd harmonics of the mains frequency. The
example has a very low Q (1.24) to make the filter response visible.

A band pass resonator is the inverse of a notch. Band
pass resonators are sometimes used as alternatives to
a narrow bandpass filter. The example has a Q of 100.
The higher the Q set for a resonator, the longer it will take for the output to stabilise
at the start of the filter output.

FIR filters technical information

The FIRMake(), FIRQuick() and FiltCalc() script commands and the Analysis menu Digital filters… dialog
generate FIR (Finite Impulse Response) filter coefficients suitable for a variety of filtering applications. The
generated filters are optimal in the sense that they have the minimum ripple in each defined band. These filter
coefficients are used to modify a sampled waveform, usually to remove unwanted frequency components. The
algorithmic heart of the filter coefficient generation is based on the well-known FORTRAN program written by Jim
McClellan of Rice University in 1973 that implements the Remez exchange algorithm to optimise the filter.

The theory of FIR filters is beyond the scope of this document. Readers who are interested in learning more about
the subject should consult a suitable text book, for example Theory and Application of Digital Signal Processing
by Rabiner and Gold published by Prentice-Hall, ISBN 0-13-914101.

Digital filtering

20-661

FIR filtering

This diagram shows the general principle of the FIR filter. The hollow circles represent the filter coefficients, and
the solid circles are the input and output waveforms. Each output point is generated by multiplying the waveform
by the coefficients and summing the result. The coefficients are then moved one step to the right and the process
repeats.

From this description, you can see that the filter coefficients (from right to left) are the impulse response of the
filter. The impulse response is the output of a filter when the input signal is all zero except for one sample of unit
amplitude. In the example above with 7 coefficients, there is no time shift caused by the filter. With an even number
of coefficients, there is a time shift in the output of half a sample period.

Frequencies

The Analysis menu Digital filters… command deals with frequencies in Hz as this is comfortable for us to work
with. However, if you calculate a FIR filter for one sampling rate, and apply the same coefficients to a waveform
sampled at another rate, all the frequency properties of the filter are scaled by the relative sampling rates. That is,
the frequency properties of an FIR filter are invariant when expressed as fractions of the sampling rate, not when
expressed in Hz.

It is usually more convenient when dealing with real signals to describe filters in terms of Hz, but this means that
each time a filter is applied to a waveform the sampling rate must be checked. If the rate is different from the rate for
which the filter was last used, the coefficients must be recalculated. Unless you use the FIRMake() script
command, Signal takes care of all the frequency scaling and recalculation for you. The remainder of this description
is to help users of the FIRMake() script command, but the general principles apply to all the digital filtering
commands in Signal.

Users of the FIRMake() script command must specify frequencies in terms of fractions of the sample rate from 0 to
0.5. For example, if you were sampling at 10 kHz and you wanted to refer to a frequency of 500 Hz, you would call
this 500/10000 or 0.05.

Example filter

The heavy lines in the next diagrams show the results obtained by FIRMake() when it designed a low pass filter
with 80 coefficients with the specification that the frequency band from 0 to 0.08 should have no attenuation, and
that the band from 0.16 to 0.5 should be removed. We can specify the relative weight to give to the ripple in each
band. In this case, we said that it was 10 times more important that the stop band (0.16 to 0.5) should pass no signal
than the pass band should be completely flat.

Signal Version 6.06

20-662

We have shown the coefficients as a waveform for interest as well as the frequency response of the filter. The
shape shown below is typical for a band pass filter. One way of understanding the action of the FIR filter is to think
of the output as the correlation of the waveform and the filter coefficients.

Coefficients and frequency response for low pass filters
The frequency response is shown in dB, which is a logarithmic scale. A ratio r is represented by 20 log

10
(r) dB. A

change of 20 dB is a factor of 10 in amplitude, 6 dB is approximately a factor of 2 in amplitude. The graph shows that
a frequency in the stop band is attenuated by over 110 dB (a factor of 300,000 in amplitude with respect to the
signal before it was filtered).

Because we didn't specify what happened between a frequency of 0.08 and 0.16 of the sampling rate, the
optimisation pays no attention to this region. You might ask what happens if we make this transition gap smaller.
The lighter line in the graph shows the result of halving the width of the gap by making the stop band run from 0.12
to 0.5. The filter is now much sharper. However, you don't get something for nothing. The attenuation in the stop
band is reduced from 110 dB to around 70 dB. Although you cannot see it from the graph, the ripple in the pass
band also increases by the same proportion (from 1 part in 30,000 to 1 part in 300).

We can restore the attenuation in the stop band by increasing the number of coefficients to around 120. However,
there are limits to the number of coefficients it is worth having (apart from increasing the time it takes to calculate
the filter and filter the data). Although the process used to calculate coefficients uses double precision floating
point numbers, there are rounding errors and the larger the number of coefficients, the larger the numerical noise in
the result.

Because the waveform channels are stored in 16-bit integers, there is no point designing filters that attenuate any
more than 96 dB as this is a factor of 32768. Attenuations greater than this would reduce any input to less than 1
bit. If you are targeting data stored in real numbers this restriction may not apply.

It is important that you leave gaps between your bands. The smaller the gap, the larger the ripple in the bands.

This is illustrated by these two graphs. They show the linear frequency response of two low pass filters, both
designed with 18 coefficients (we have used so few coefficients so the ripple is obvious). Both have a pass band of
0 to 0.2, but the first has a gap between the pass band and the stop band of 0.1 and the second has a gap of 0.05.

Digital filtering

20-663

We have also given equal weighting to both the pass and the stop bands, so you can see that the ripple around the
desired value is the same for each band.

As you can see, halving the gap has made a considerable increase in the ripple in both the pass band and the stop
band. In the first case, the ripple is 1.76%, in the second it is 8.7%. Halving the transition region width increased the
ripple by a factor of 5.

In case you were worrying about the negative amplitudes in the graphs, a negative amplitude means that a sine-
wave input at that frequency would be inverted by the filter. The graphs with dB axes consider only the magnitude
of the signals, not the sign.

FIRMake filter types

FIRMake() can generate coefficients for four types of filter: Multiband, Differentiators, Hilbert transformer and a
variation on multiband with 3 dB per octave frequency cut. The other routines can generate only Multiband filters
and Differentiators.

Multiband filters
The filter required is defined in terms of frequency bands and the desired frequency response in each band (usually
1.0 or 0.0). Bands with a response of 1.0 are called pass bands, bands with a response of 0.0 are called stop bands.
You can also set bands with intermediate responses, but this is unusual. The bands may not overlap, and there are
gaps between the defined bands where the frequency response is undefined. You give a weighting to each band to
specify how important it is that the band meets the specification. As a rule of thumb, you should make the weight in
stop bands about ten times the weight in pass bands.

FIRMake() optimises the filter by making the ripple in each band times the weight for the band the same. The ripple
is the maximum error between the desired and actual filter response in a band. The ripple is usually expressed in dB
relative to the unfiltered signal. Thus the ripple in a stop band is the minimum attenuation found in that band. The
ripple in a pass band is the variation of the frequency response from the desired response of unity. In some
situations, for example audio filters, quite large ripples in the pass band are tolerable but the same ripple would be
unacceptable in a stop band. For example, a ripple of -40 dB in a pass band (1%) is inaudible, but the same ripple in
a stop band would allow easily audible signals to pass. By weighting bands you can increase the attenuation in
one band at the expense of another to suit your application.

Differentiators
The output of a differentiator increases linearly with frequency and is zero at a frequency of 0. The differentiator is
defined in terms of a frequency band and a slope. The frequency response at frequency f is f * slope. The slope is
usually set so that the frequency response at the highest frequency is no more than 1.

The weight given to each frequency within a band is the weight for that band divided by the frequency. This gives
a more accurate frequency response at low frequencies where the resultant amplitude will be the smallest.

Although you can define multiple bands for a differentiator, it is unusual to do so. Almost all differentiators define
a single band that starts at 0. Occasionally a differentiator followed by a stop band is needed.

Hilbert transformers
A Hilbert transformer is a very specialised form of filter that causes a phase shift of -pi/2 in a band, often used to
separate a signal from a carrier. The theory and use of this form of filter is way beyond the scope of this document.
Unless you know that you need this filter type you can ignore it.

Multiband with 3dB octave cut
This is a variation on the multiband filter that can be used to filter white noise to produce band limited pink noise.
The filter is identical to the band pass filter except that the attenuation increases by 3 dB per octave in the band
(each doubling of frequency reduces the amplitude of the signal by a factor of the square root of 2). It is used in
exactly the same way as the multiband filter.

Signal Version 6.06

20-664

Low pass filter example

A waveform is sampled at 1 kHz and we are interested only in frequencies below 100 Hz. We would like all
frequencies above 150 Hz attenuated by at least 70 dB.

A low pass filter has two bands. The first band starts at 0 and ends at 100 Hz, the second band starts at 150 Hz and
ends at half the sampling rate. Translated into fractions of the sampling rate, the two bands are 0-0.1 and 0.15 to 0.5.
The first band has a gain of 1, the second band has a gain of 0. We will follow our own advice and give the stop
band a weight of 10 and the pass band a weight of 1. We will try 40 coefficients to start with, so a possible script is:

var prm[5][2]; 'Array for parameters
var coef[40]; 'Array for the coefficients
' band start band end function weight
prm[0][0]:=0.00; prm[1][0]:=0.1; prm[2][0]:=1.0; prm[3][0]:= 1.0;
prm[0][1]:=0.15; prm[1][1]:=0.5; prm[2][1]:=0.0; prm[3][1]:=10.0;
FIRMake(1, prm[][], coef[]);
PrintLog("Pass Band ripple=%.1fdB Stop band attenuation=%.1f\n",
 prm[4][0], prm[4][1]);

If you run this, the log view output is:

Pass Band ripple=-28.8dB Stop band attenuation=-48.8

The attenuation in the stop band is only 48 dB, which is not enough. The ripple in the pass band is around 3% of
the signal amplitude. We can increase the stop band attenuation in three ways: by increasing the number of
coefficients, by giving the stop band more weight, or by making the gap larger between the bands.

We don't want to give the stop band more weight; this would increase the ripple in the pass band. We could
probably reduce the width of the pass band a little as the attenuation of the signal tends to start slowly, but we will
leave that adjustment to the end. The best way to improve the filter is to increase the number of coefficients. If we
increase the size of coef[] to 80 coefficients and run again, the output now is:

Pass Band ripple=-58.7dB Stop band attenuation=-78.7

This is much closer to the filter we wanted. You might wonder if there is a formula that can predict the number of
coefficients based on the filter specification. There is no exact relationship, but the following formula, worked out
empirically by curve fitting, predicts the number of coefficients required to generate a filter with equal weighting in
each of the bands and is usually accurate to within a couple of coefficients. The formula can be applied when there
are more than two bands, but becomes less accurate as the number of bands increase.

' dB is the mean ripple/attenuation in dB of the bands
' deltaF is the width of the transition region between the bands
' return An estimate of the number of coefficients
Func NCoefMultiBand(dB, deltaF)
return (dB-23.9*deltaF-5.585)/(14.41*deltaF+0.0723);
end;

In our example we wanted at least 70 dB attenuation, and we weighted the stop band by a factor of 10 (20 dB). This
causes a 10 dB improvement in the stop band at the expense of a 10 dB degradation of the pass band. Thus to
achieve 70 dB in the stop band with the weighting, we need 60 dB without it. If we set these values in the formula
(dB = 60, deltaF=0.05) , it predicts that 67.13 coefficients are needed. If we run our script with 67 coefficients, we
get 70.9 dB attenuation, which is close enough!

Digital filtering

20-665

A final finesse
If we look at the frequency response of our filter in the area
between the pass band and the stop band, we see that the curve is
quite gentle to start with. If you are used to using analogue filters,
you will recall that the corner frequency for a low pass analogue
filter is usually stated to be the frequency at which the filter
response fell by 3 dB which is a factor of root 2]] in amplitude
(when the response falls to 0.707 of the unfiltered amplitude).

If we use the analogue filter definition of corner frequency, we see
that we have produced a filter that passes from 0 to 0.115 of the
sampling rate, and we wanted from 0 to 0.1, so we can move the
corner frequency back. This will increase the attenuation in the
stop band, and reduce the filter ripple, as it widens the gap between
the pass band and the stop band. If we move it back to 0.085, the
attenuation in the stop band increases to 84 dB. Alternatively, we could move both edges back, keeping the width
of the gap constant. This leaves the stop band attenuation more or less unchanged, but means that the start of the
stop band is moved lower in frequency.

High pass filter

A high pass filter is the same idea as a low pass except that the first frequency band is a stop band and the second
band is a pass band. All the discussion for a low pass filter applies, with the addition that there must be an odd
number of coefficients. If you try to use an even number your filter will be very poor indeed. The example below
shows a script for a high pass filter with the same bands and tolerances as for the low pass filter. We have added a
little more code to draw the frequency response in a result view.

var prm[5][2];
var coef[69];
' band start band end function weight
prm[0][0]:=0.00; prm[1][0]:=0.1; prm[2][0]:=0.0; prm[3][0]:=10.0;
prm[0][1]:=0.15; prm[1][1]:=0.5; prm[2][1]:=1.0; prm[3][1]:= 1.0;
FIRMake(1, prm[][], coef[]);
const bins% := 1000;
var fr[bins%];
FIRResponse(fr[], coef[], 0);
SetResult(bins%, 0.5/(bins%-1), 0, "Fr Resp", "Fr","dB");
ArrConst([], fr[]);
Optimise(0);
WindowVisible(1);

Signal Version 6.06

20-666

Effect of odd and even coefficients

The graph shows the results of this high pass filter design with 69 coefficients, which gives a good result, and with
68 coefficients, which does not. In fact, if we had not given a factor of 10 weight (20 dB) to the stop band, the filter
with 68 coefficients would not have achieved any cut in the stop band at all!

The reason for this unexpected result is that we have specified a non-zero response at the Nyquist frequency (half
the sampling rate). If you imagine a sine wave with a frequency of half the sample rate, each cycle will contribute
two samples. The samples will be 180° out of phase, so if one sample has amplitude a, the next will have amplitude -
a, the next a and so on. The filter coefficients are mirror symmetrical about the centre point for a band pass filter, so
with an even number of coefficients, the result when the input waveform is a, -a, a, -a... is 0. Another way of
looking at this is to consider that a filter with an even number of coefficients produces half a sample delay. The
output halfway between points that are alternately +a and -a must be 0.

You can use the formula given for the low pass filter to estimate the number of coefficients required, but you must
round the result up to the next odd number.

General multiband filter

You can define up to 10 bands. However, it is unusual to need more than three. The most common cases with three
bands are called band pass and band stop filters. In a band pass filter, you set a range of frequencies in which you
want the signal passed unchanged, and set the frequency region below and above the band to pass zero. In a band
stop filter you define a range to pass zero, and set the frequency ranges above and below to pass 1.

You must still allow transition bands between the defined bands, exactly as for the low and high pass filters, the
only difference is that now you need two transition bands, not one. Also, if you want a non-zero response at the
Nyquist frequency, you must have an odd number of coefficients.

For our example we will take the case of a signal sampled at 250 Hz. We want a filter that passes from 20 to 40 Hz
(0.08 to 0.16) with transition regions of 7.5 Hz (0.03). If we say it is 10 times more important to have no signal in the
stop band than ripple in the pass band, and we want 70 dB cut in the stop band we will get 50 dB ripple in the pass
band (because a factor of 10 is 20 dB). To use the formula for the number of coefficients we need the mean
attenuation/ripple in dB and the width of the transition region. The two stop bands have an attenuation of 70 dB
and the pass band has a ripple of 50 dB, so the mean value is (70+50+70)/3 or 63.33 dB. We have two transition
regions (both the same width). In the general case of transition regions of different sizes, use the smallest transition
region in the formula. Plugging these values into the formula predicts 113 coefficients, however only 111 are needed
to achieve 70 dB.

Digital filtering

20-667

var prm[5][3]; ' 3 bands for band pass
var coef[111]; ' 111 coefficients needed
' band start band end function weight
prm[0][0]:=0.00; prm[1][0]:=0.05; prm[2][0]:=0.0; prm[3][0]:=10.0;
prm[0][1]:=0.08; prm[1][1]:=0.16; prm[2][1]:=1.0; prm[3][1]:= 1.0;
prm[0][2]:=0.19; prm[1][2]:=0.50; prm[2][2]:=0.0; prm[3][2]:=10.0;
FIRMake(1, prm[][], coef[]);

Band pass filter with 111 coefficients

Differentiators

A differentiator filter has a gain that increases linearly with frequency over the frequency band for which it is
defined. There is also a phase change of 90 degrees (pi/2)]] between the input and the output.

Ideal differentiator with slope of 2.0
You define the differentiator by the number of coefficients, the frequency range of the band to differentiate and the
slope. The example above has a slope of 2. Within each band (normally only 1 band is set) the program optimises
the filter so that the amplitude of the ripple (error) is proportional to the response amplitude. A differentiator is
normally defined to operate over a frequency band from zero up to some frequency f. If f is 0.5, or close to it, you
must use an even number of coefficients, or the result is very poor. You can estimate the number of coefficients
required with the following function:

Signal Version 6.06

20-668

' dB the proportional ripple expressed in dB
' f the highest frequency set in the band
' even% Non-zero if you want an even number of coefficients
func NCoefDiff(dB, f, even%)
if (f<0) or (f>0.5) then return 0 endif;
f := 0.5-f;
var n%;
if (even%) then
 n% := (dB+43.837*f-35.547)/(0.22495+29.312*f);
 n% := (n%+1) band -2; 'next even number
else
 if f=0.0 then return 0 endif;
 n% := dB/(29.33*f);
 n% := n% bor 1; 'next odd number
endif;
return n%;
end

For an even number of coefficients this is unreliable when f is close to 0.5. For an odd number, no value of n works
if f is close to 0.5.

These equations were obtained by curve fitting and should only be used as a guide. To make a differentiator that
uses a small number of coefficients, use an even number of coefficients and don't try to span the entire frequency
range. If you cannot tolerate the half point shift produced by using an even number of coefficients and must use an
odd number, you must set a band that stops short of the 0.5 point. Remember, that by not specifying the remainder
of the band you have no control over the effect of the filter in the unspecified region. However, for an odd number
of points, the gain at the 0.5 point will be 0 whatever you specify for the frequency band.

The graph below shows the effect of setting an odd number of coefficients when generating a differentiator that
spans the full frequency range. The second curve shows the improvement when the maximum frequency is reduced
to 0.45.

Differentiators with 31 coefficients

If you must span the full range, use an even number of coefficients. The graph below shows the improvement you
get with an even number of coefficients. The ripple for the 0.45 case is about the same with 10 coefficients as for 31.

Digital filtering

20-669

Differentiators with 10 coefficients

var prm[4][1]; ' 1 bands for differentiator
var coef[10]; ' 10 coefficients needed
' band start band end slope weight
prm[0][0]:=0.00; prm[1][0]:=0.45; prm[2][0]:=1.0; prm[3][0]:=1.0;
FIRMake(2, prm[][], coef[]);

Hilbert transformer

A Hilbert transformer phase shifts a band of frequencies from F
low

 to F
high

 by pi/2. The target magnitude response

in the band is to leave the magnitude unchanged. F
low

 must be greater than 0 and for the minimum magnitude

overshoot in the undefined regions, F
high

 should be 0.5-F
low

. The magnitude response at 0 is 0, and if an odd

number of coefficients is set, then the response at 0.5 is also 0. This means that if you want F
high

 to be 0.5 (or near

to it), you must use an even number of coefficients.

There is a special case of the transformer where there is an odd number of coefficients and F
high

 = 0.5-F
low

. In this

case, every other coefficient is 0. This is no help to Signal, but users who write their own software can use this fact
to minimise the number of operations required to make a filter.

It is extremely unlikely that a Hilbert transformer will be of any practical use in the context of Signal, so we do not
consider them further. You can find more information about this type of filter in Theory and Application of Digital
Signal Processing by Rabiner and Gold.

Signal Version 6.06

21-670

Programmable Signal conditioners

The Signal conditioner control panel supports the CED 1902 Mk III and IV, the Axon Instruments CyberAmp and
the Digitimer D360 and D440 signal conditioners and also the Power1401 gain option. Only one type of signal
conditioner can be used with Signal at any given time, the type of signal conditioner to be used (or none) is
selected during Signal installation, this choice can be changed using the Preferences dialog Conditioner tab. Note
that the Power1401 gain option is not necessary for general-purpose use of the Power1401; it makes use of the gain
control hardware that may optionally be fitted (at the time of manufacture) into Power1401s.

You can open the conditioner control panel from either the sampling configuration port configuration page or from
the Sample menu. The 1902 and CyberAmp signal conditioners are controlled through a serial port which is set in
the Edit menu Preferences… option.

What a signal conditioner does

A signal conditioner takes an input signal and amplifies, shifts and filters it so that the data acquisition unit can
sample it effectively. Many input signals from experimental equipment are too small, or are masked by high and or
low frequency noise, or are not voltages and cannot be connected directly to the 1401.

Signal conditioners may also have specialist functions, for example converting transducer inputs into a useful
signal, or providing mains notch filters. The CED 1902 has options for isolated inputs and specialised front ends
include ECG with lead selection, magnetic stimulation artefact clamps and EMG rectification and filtering. With the
Power1401 with programmable gains option only the gain may be set from within Signal.

You should consult the documentation supplied with your signal conditioner to determine the full range of its
capabilities.

Serial ports

Most signal conditioners
use a serial line
connection for software
control. The serial port, if
any, used to communicate
with signal conditioners is
set in the Edit menu
Preferences dialog, in the Conditioner page. In addition to using serial line ports built into your computer you can
also make use of serial lines provided by plugging an adaptor into a USB socket. USB serial lines generally work
fine but you do need one which always appears as the same COM port, or where you can set the COM port as
which it appears.

This method of controlling the serial line used does not apply to the Digitimer D360 and D440, where the support
software determines the serial line in use independently.

Check the Dump errors to Log Window check box if you are having problems using your conditioners; this will
cause log text detailing communications attempts to be added to the Signal Log window which will allow the cause
of connection problems to be determined. Leave this check box clear if you are not having any problems
connecting to signal conditioners – it’s intended for troubleshooting only.

Programmable Signal conditioners

21-671

Control panel

The signal conditioner control panel is in two halves. The left-
hand side holds the controls that change the conditioner
settings, the right-hand side displays data from the
conditioner. Signal omits the right-hand side while sampling
data or if the 1401 interface is not available for any reason.

If the right-hand side is present, the Volts check box causes the
data to be displayed in Volts at the conditioner input in place
of user units as defined by the Channel parameters dialog. The
number at the bottom right is the mean level of the signal in the
area marked above the number.

Signal conditioners differ in their
capabilities. Not all the controls listed below may appear for all conditioners. The
example on the left is the CyberAmp control panel (with the signal display part omitted).
The controls are:

Port
This is the 1401 ADC port number whose conditioner settings are being adjusted. Only
ports for which a conditioner was found are shown.

Input
If your signal conditioner has a choice of input options, you can select the input to use with this field. The choice
of input may also affect the ranges of the other options. Note that with the 1902 amplifier some of the inputs select
a grounded input that is useful for testing but will only produce a flat line at zero when used. Signal will warn you if
you try to use a grounded 1902 input for sampling, if you get this message you should change the input selection
to either one of the other transducer inputs or an isolated input depending upon the input connections that you are
using and your experimental requirements.

Gain
This dialog field sets the gain to apply to the signal selected by the Input field. Signal tracks changes of gain (and
offset) and will change the channel scaling factors in the ports configuration to preserve the y axis scale. To make
the best use of the accuracy of the 1401 family, you should adjust the gain of your signal so that the maximum input
signal does not exceed the limits of the data displayed on the right of the control panel.

Offset
Some signals are biased away from zero and must be offset back to zero before they can be amplified. If you are not
interested in the mean level of your signal, only in the fluctuations, you may find it much simpler to AC couple
(1902) or high-pass filter (CyberAmp) the signal and leave the offset at zero.

Low pass filter
A low-pass filter reduces high-frequency content in your signal. Filters are usually specified in terms of a corner
frequency, which is the frequency at which they attenuate the power in the signal by a factor of two and a slope,
which is how much they increase the attenuation for each doubling of frequency. Sampling theory tells us that you
must sample a signal at a rate that is as least twice the highest frequency component present in the data. If you do
not, the result may appear to contain signals at unexpected frequencies due to an effect called aliasing. As the
highest frequency present will be above the corner frequency you should sample a channel at several times the
filter corner frequency (probably between 3 and 10 times depending on the signal and the application).

You can choose a range of filter corner frequencies, or you can choose to have the data unfiltered (for use when
the signal is already filtered due to the source).

If you are using a modern 1902 that uses digital filtering, you can set the low-pass filter type (from 2-pole and 3-pole
Butterworth and 2-pole and 3-pole Bessel) as well as set the filter corner frequency.

Signal Version 6.06

21-672

High pass filter
A high-pass filter reduces low-frequency components of the input signal. The high-pass filters area is specified in
the same way as low-pass filters in terms of a corner frequency and a slope, except that the slope is the attenuation
increase for each halving of frequency. If you set a high-pass filter, a change in the mean level of the signal will
cause a temporary change in the output, but the output will return to zero again after a time that depends on the
corner frequency of the filter. The lower the corner frequency, the longer it takes for mean level change to decay to
zero.

Again, if you are using a modern 1902 that uses digital filtering, you can set the high-pass filter type (from 2-pole
and 3-pole Butterworth and 2-pole and 3-pole Bessel) as well as set the filter corner frequency.

Notch filter
A notch filter is designed to remove a single frequency, usually set to the local mains power supply (50 Hz or 60 Hz,
depending on country).

Reset calibration
The Reset Calibration button resets the port calibration information in Signal to show the input voltage taking into
account the current signal conditioner gain and offset, it does not make any changes to the conditioner settings.
The units for the calibration will be set to V, mV or uV as appropriate (based on the gain in use) and the port Full
and Zero values within Signal are adjusted as appropriate. On the CyberAmp, this option will use the ‘native’
calibration information and units specified by a SmartProbe, if present.

The remaining options are available for the CED 1902 only:

AC couple
This is present for the 1902 only, and can be thought of as a high-pass filter with a corner frequency of 0.16 Hz.
However, it differs from the high-pass filters as it is applied to the signal at the input; the high-pass filters in the
1902 are applied at the output.

Trigger
The 1902 provides two conditioned trigger inputs, and one output. These controls select which of the trigger
inputs is used to generate the output and, in a 1902 mk IV, allow selection of the trigger input polarity.

Filter type
A 1902 mk IV with digital filters has extra fields that allow you to set the low-pass and high-pass filter types. You
can choose between Butterworth or Bessel characteristics and 2 pole or 3 pole filters.

Reload 1902
The 1902 is controlled by a serial interface and to set the complete state of it would takes a noticeable time. To
avoid this, we keep a record of the state that has been commanded and only transmit changes. If you click this
button, we transmit all the commands to set every feature of the 1902 to match the control panel. This is provided
so that you can recover a 1902 that has been powered down by accident.

Setting the channel gain and offset

If you change the gain or offset in the control panel, Signal will adjust the port Full and Zero values in the sampling
configuration to compensate so as to keep the y axis showing the correct values. This means that if you change the
gain, the signals will still be correctly calibrated in the file. However, the first time you calibrate the channel you
must tell the system how to scale the signal into y axis units.

For example, to set up the y axis scales in microvolts you do the following:

1. Open the Sampling Configuration dialog.
2. Select the ADC port in the Ports setup page.
3. Press the Conditioner button to open the conditioner control panel.
4. Adjust the gain to give a reasonable signal. Make a note of the gain G you have set.
5. Close the signal conditioner control panel.
6. Set the Units field of the Channel parameters to uV.

Programmable Signal conditioners

21-673

7. Set the Full field to 5000000/G.

You only need do steps 6 and 7 once. Any subsequent change to the conditioner gain will adjust the channel Full
value to leave the units in microvolts.

For the more general case imagine you have a transducer that measures some physical quantity (Newtons, for
example) and it has an output of 152.5 Newtons per V. If you wanted the y axis scaled in Newtons, you would
replace steps 6 and 7 above with:

8. Set the Units field of the Channel parameters dialog to N.
9. Set the Full field to (5 * 152.5)/G.

To work this out you must express the transducer calibration in terms of Units per Volt (in this case Newtons per
Volt), multiply this by 5 to get the Full value at five volts, then divide it by the gain of the conditioner.

If you have set an offset in the conditioner, and you want to preserve the mean signal level, you should null it out
by changing the offset in the Channel parameters dialog.

Conditioner connections and details

Signal normally expects the first channel of signal conditioning to be connected to 1401 ADC port 0, the second to
port 1 and so on. Connect the conditioner output BNC (labelled Amp Out on the 1902, and OUT on the CyberAmp)
to the relevant 1401 input. This arrangement can be adjusted to start with another port, but in all cases the
conditioner channel number must match the ADC port to which it is connected.

Most signal conditioners connect to the computer with a serial line. You will have received a suitable cable with the
unit.

Signal conditioner settings are stored in the Windows registry in location
HKEY_CURRENT_USER\Software\CED\CEDCond\XXXX where XXXX is the name of the type of conditioner
you are using; it can be one of 1902, CyberAmp, Power1401, D360 or D440. This registry location holds a
number of DWORD values each of which has a different name, they are documented here for overall completeness
but should be viewed and changed using the controls in the Signal Preferences dialog, Conditioners section. The
registry values are :

Port
The Port value sets the communications port to use for 1902 and CyberAmp signal conditioners. We would
recommend you use the Edit menu Preferences… to change the port number or it can be set for 1902s by using
Try1902. If this value is missing, COM1 is used.

Dump
The Dump value enables diagnostic logging. If this value is set to 1 (its easiest to control it from the Preferences
dialog) Signal will generate information in the Log window when it initialises the conditioner, this can be used to
diagnose communications problems. If you are using 1902 signal conditioners it is recommended that you use the
Try1902 application (which can be downloaded from the CED web site) to diagnose communications problems.

As mentioned above, the first signal conditioner is usually connected to ADC port 0, the second to port 1, and so
on. Signal searches for signal conditioners based on this assumption. The search starts at signal conditioner
channel 0 and continues until a channel does not respond. The search sequence can be changed by two additional
items in the registry:

First & Last
These items (its easiest to control them from the Preferences dialog) are used to optimise the search for available
conditioner channels, both to ensure that the channels wanted are found and to prevent excessive time being spent
on the search. If these values are not set, they are both assumed to be 0. Their use depends on the signal
conditioner.

CED 1902
CED 1902s are controlled using a serial line, the COM port used is set by the Port registry value. The amplifiers
have unit numbers set by an internal switch pack; multiple units usually have the channel number as a label on the
front panel. If you have multiple units, they must have different unit numbers. Each 1902 output should be
connected to the 1401 ADC input with the same number as the 1902 unit. First and Last control the range of unit
numbers to search, the search starts at First and goes at least up to Last, it continues beyond Last until a unit

Signal Version 6.06

21-674

does not respond. The purpose of Last is to force the search to skip over missing conditioners. The purpose of
First is to skip over missing lower-numbered conditioners to avoid time delays waiting for them to respond.

Normally you will have 1902s with consecutive unit numbers starting at 0, in which case you do not need to set
First and Last. As an example of a more complicated situation, let us suppose you have unit numbers 4, 5, 6, 7,
12, 13, 14 and 15. In this case, you should set First to 4 and Last to 15.

CyberAmp
CyberAmps are controlled using a serial line, the COM port used is set by the Port registry value. CyberAmps
have a device Address set by a rotary switch on the rear panel, if you have multiple units, they must have different
addresses. There are two types of CyberAmp: 8-channel and 2-channel. If you have multiple units, either they must
all have the same number of channels or all of the 8-channel units must have lower device addresses than the 2-
channel units.

First and Last set the range of device addresses to search. The search continues beyond Last until a device
does not respond. The purpose of Last is to force the search to skip over missing devices. The purpose of First
is to skip over missing lower-numbered devices to avoid time delays waiting for them to respond.

The range of ADC channels supported by each CyberAmp is set by the device address (dev) and the number of
channels in the first device detected (num). The first ADC channel supported by the device at address dev is
dev*num. Each CyberAmp support 8 or 2 consecutive ADC channels.

Normally you will have one 8-channel CyberAmp, and you will give it address 0 to support ADC channels 0 to 7. In
this case you do not need to set First and Last. If you want to connect it to channels 8-15, you would set both
First and the device address to 1 and then you could connect it to channels 8-15.

Here is a more complex example with three CyberAmps, two with 8-channels and one with 2-channels. The table
shows some possible configurations (assuming you have 32 ADC inputs to choose from):

CEDCOND.INI 8-channel unit 1 8-channel unit 2 2-channel unit 3

First Last Switch ADC Switch ADC Switch ADC

0 2 0 0-7 1 8-15 2 16-17

1 3 1 8-15 2 16-23 3 24-25

2 3 2 16-23 3 24-31 - -

CED Power1401 gain
The Power1401 data acquisition hardware from CED can optionally be fitted with programmable gains on its ADC
ports - note that this option should be ordered at the time you purchase your 1401 - it is expensive or impossible to
add programmable gains afterwards. Signal can detect 1401 channels with gain fitted automatically so the Port,
First and Last registry values are all unused.

Digitimer D360
The Digitimer D360 is also controlled using a serial line but Signal does not know of or control the COM port
number that is used - that is managed by the separate D360 support software. Similarly the First and Last
registry values are not used. You should install the D360 support separately and check that it is working correctly
using the Digitimer-supplied control software before using it with Signal. We have found that Signal can have
problems if you are running older versions of the Digitimer D360 support software, for example it might fail to detect
a connected D360 amplifier. If you do encounter problems using the D360 with Signal you should check if your
D360 client software is at least version 4.7.0.0 and upgrade to the latest version if it is older than this. Digitimer
D360 support is currently only available with the 32-bit build of Signal as the necessary Digitimer software is
restricted to 32-bit use.

Detection of a missing D360 takes some time so you may on occasion experience long delays when opening the
sampling configuration, opening the conditioner preferences, starting sampling or shutting down Signal if you have
installed D360 support but the D360 is not connected or switched on. Detection of connected D360s is only done
once, when Signal starts up, so if your amplifier was off at that point you will have to restart Signal in order to use
the amplifier.

Multiple D360 amplifiers can be used; each has 8 channels numbered 1 to 8. Channels 1 to 8 of the first D360 are
assumed to be connected to ADC inputs number 0 to 7, the second D360 drives ADC ports 8 to 15 and so on. The
amplifier numbers are determined by the order in which they are daisy-chained together, they should be connected

Programmable Signal conditioners

21-675

in serial-number order with the lowest-numbered amplifier connected directly to the PC, the next lowest-numbered
amplifier connected to the first amplifier and so forth.

Digitimer D440
Install the Digitimer-supplied D440 support software first and verify that it is working by running the Digitimer
control panel. Signal should then be able to locate and use the device. The Digitimer software does not (yet)
support multiple D440 units.

Signal Version 6.06

22-676

Amplifier telegraphs

If you are using an external amplifier to scale your signals before they are sampled by the 1401, you can encounter
problems if you change the signal gain while sampling – the amplitude of the sampled data changes and this makes
the signal calibrations incorrect. Signal can avoid this problem by using amplifier telegraphs to determine the
current amplifier settings. By collecting and interpreting amplifier telegraphs, Signal can automatically adjust
channel scalings to compensate for changes in the amplifier settings and maintain signal calibration.

Signal currently supports two types of telegraph signal; a standard gain-only telegraph using one or more analogue
signals that are sampled using the 1401 interface and an auxiliary amplifier specific mechanism provided by DLLs
installed with Signal. The standard 1401 gain-only telegraphs are always available for use, while the auxiliary
telegraph amplifier support is only available if you have chosen to install it when you installed Signal or if you
afterwards selected an auxiliary telegraph amplifier using the Preferences dialog Clamp tab. Only one type of
auxiliary telegraph support can be used by Signal at any given time. Currently, three types of auxiliary telegraph
amplifier are supported; the Molecular Devices (Axon Instruments) MultiClamp 700 range of amplifiers, the
AxoClamp 900A amplifier and the Heka EPC 800 amplifier. If you do not install or select support for an auxiliary
telegraph amplifier then only standard 1401 telegraphs will be available.

The support for clamping experiments that is available within Signal is able to make use of the much more complex
information available from the auxiliary telegraph systems to automatically configure channels and clamping
configurations.

Standard 1401 telegraphs

A number of different amplifiers, for example the Axoclamp 200, are able to signal the amplifier gain currently in use
by generating a 'telegraph' output; a voltage which varied according to the gain currently selected. Originally, a
researcher would sample this telegraph output along with all the others and use it's level to determine the gain in
use and adjust measured values accordingly. When using Signal these amplifier telegraph outputs can be handled
automatically using standard 1401 telegraphs.

The standard telegraph support in Signal uses spare 1401 ADC inputs to sample the telegraph outputs; the
analogue voltages generated by the amplifier. A lookup table is then used to convert these voltages into the
amplifier gain setting which is then used to adjust the signal calibration as necessary. Up to four separate telegraph
signals can be defined, each indicating the gain in use for a separate ADC input. Setting up standard 1401
telegraphs consists of defining the ADC ports involved and setting up the table used to convert telegraph voltages
to amplifier gains. Because the 1401 is used to sample the telegraph signals in the period between frames, standard
1401 telegraphs cannot be used with any of the fast trigger sampling modes, including gap-free sampling.

1401 telegraph configuration

The 1401 telegraph configuration dialog is used to enter the settings for
standard 1401 telegraphs. Using the dialog you can create up to four
independent telegraph sets, each of which defines an ADC port whose
scaling depends upon the amplifier telegraph output, a port from which the
telegraph signal is read and a list of telegraph voltages and the
corresponding amplifier gains.

To begin setting up amplifier telegraph support, select one of the four
telegraph sets using the Telegraph set field.

Then set the ADC ports that are involved. The Scaled item sets the ADC
port whose scaling is controlled by a telegraph signal, this is set to None if
use of this telegraph set is disabled. The Telegraph item sets the ADC port
from which Signal will read the amplifier telegraph output. It should be clear
that this is equivalent to telling Signal which 1401 ADC inputs are connected
to the two relevant amplifier outputs.

You then have to set up the table of telegraph voltages and corresponding amplifier gains. The button labelled
'Generate settings for a known amplifier', when pressed, will provide a list of common amplifiers which provide
telegraph signals. Selecting one of the amplifiers from the list will generate a table of telegraph data suitable for that

Amplifier telegraphs

22-677

amplifier. If your amplifier is not in the list please contact CED and we will try to add it – our thanks to John
Dempster for providing much initial amplifier information.

Alternatively, you can use the Volts and Gain fields to directly enter a list of telegraph signal voltages and
corresponding amplifier gains. For each amplifier telegraph setting enter the telegraph output voltage value and the
corresponding gain value, then press Add to add this pair of values to the table. Note that the Add button will be
disabled unless both the Volts and Gain fields are valid - if they are not valid a message indicating what is wrong
will be displayed at the bottom of the dialog. To remove a pair of values from the list simply select them by clicking
with the mouse and then press Remove.

The 1401 voltage range in use is shown at the bottom of the dialog, the telegraph Volts values entered cannot
exceed this range.

Telegraphs and Ports information
The telegraphs in use are indicated in the port options shown in the Ports page of the Signal sampling
configuration dialog. Where a port scaling is being altered or controlled by an amplifier telegraph, the port options
will show Tel (or ATel if controlled by an auxiliary telegraph) in red to indicate this fact. If the port is being used by
the standard 1401 telegraphs to determine the gain for another port this field shows T>n in red, where n is the
number of the port which is affected by this telegraph signal.

The 1401 telegraph system completely ignores the Full and Zero port calibration values defined for the ADC port
used to read the amplifier telegraph outputs, it simply converts the ADC data to voltages using the 1401 ADC
voltage range that in use.

The scaled port (the port whose scaling is controlled by the telegraph output) should be set up using Full and
Zero port calibration values as if the amplifier gain was set to unity; the amplifier gains generated by the telegraph
system will then be applied to this ‘basic’ calibration. It is very important that you enter the value for unity amplifier
gain, not whatever gain you happen to have in use at the moment. During sampling, the telegraph signals are read
at the start and end of each sampling sweep and used to adjust the signal scaling.

A simple worked example
Let us suppose that we are using a single amplifier to generate our data and we wish to have this data automatically
calibrated for us. The scaled output (the output which changes when the gain is changed) of the amplifier is
connected to the 1401 ADC port 1, while the telegraph output is connected to 1401 ADC port 3. The amplifier has
five gain settings: 10mV/mV, 30mV/mV, 100 mV/mV, 300 mV/mV and 1000mV/mV, the telegraph output voltage for
these settings are 0, 1, 2, 3 and 4 volts respectively.

We start by selecting Telegraph set 1 and setting the Scaled port to 1, and the Telegraph port to 3. Now, the gain
of an amplifier is the ratio of the output signal to the input signal, so the five amplifier gains are 10, 30, 100, 30 and
1000. To enter the first telegraph data pair we enter 0 in the Volts field and 10 in the Gain field and press Add. We
repeat this for the other four pairs of values, at the end the table of telegraph data should show:

0.00 V signals gain of 10
1.00 V signals gain of 30
2.00 V signals gain of 100
3.00 V signals gain of 300
4.00 V signals gain of 1000

Finally, we have to go to the Ports page of the sampling configuration and make sure the calibrations are correct.
We don't care about ADC port 3 as its calibration will be ignored but we want to set up the calibration for port 1 as
if the gain was 1. So (assuming a 5 Volt 1401) you would set the Zero value for port 1 to 0 and the Full value to 5000
if we wanted to calibrate the scaled signal in millivolts and 5 if we wanted to calibrate in Volts. Note that it does not
matter at all that the amplifier cannot give a gain of 1, we simply calibrate the ADC port as if there was a gain of 1
and let the telegraph arithmetic do the rest for us.

And that is all; when sampling, the calibration of the data sampled from ADC port 1 will always be adjusted to
match whatever gain was set on the amplifier.

A slightly less simple example
Suppose now that this amplifier can also measure current and generate an output voltage proportional to the
current that flows through an electrode. The 1401 ports used remain the same as above, but the five gain settings
are now 1mV/pA, 3mV/pA, 10mV/pA, 30 mV/pA and 100 mV/pA. The telegraph output voltages are also the same
but how do we calculate the gains?

Signal Version 6.06

22-678

Well to be precise, we cannot, as an amplifier gain is voltage out/voltage in, and we do not have a voltage in value,
only a current. But we can work round this easily enough by arbitrarily deciding that one of these settings
represents a 'gain' of 1 and calculating the other gains relative to that setting. So we make the obvious choice and
say that 1mV/pA is a 'gain' of 1, then the second setting of 3mV/pA represents a gain of 3 because we get three
times the output for the same input. Similarly the other gains are 10, 30 and 100. So we enter these 'gain' values into
the telegraph data and end up with a table like this:

0.00 V signals gain of 1
1.00 V signals gain of 3
2.00 V signals gain of 10
3.00 V signals gain of 30
4.00 V signals gain of 100

We then have to go to the Ports page to enter the signal calibration data. Again, we can ignore ADC port 3 but we
have to calibrate port 1 as if the amplifier gain was 1. We have decided that a gain of 1 means 1 mV per pA so with a
5 Volt 1401 the full scale value is 5000 millivolts which corresponds to 5000 pA. So if we want to calibrate our
current signal in pA we would enter a Full value of 5000, or if we preferred nA we would enter a Full value of 5. In
either case the Zero value should be set to 0.

MultiClamp 700 telegraphs

The MultiClamp 700 amplifiers supplied by Axon Instruments have two identical sections (referred to as channels)
within them, each of which is controllable using a DAC driving the external command input and which has two
signal outputs (giving four separate signals that can be sampled per amplifier). The MultiClamp commander
software controlling the amplifier generates telegraph information telling interested applications about changes to
amplifier gain settings and other settings such as the voltage or current clamp mode and external command
sensitivity. Using the MultiClamp 700 telegraph configuration dialog you can configure Signal so that it can receive
and make use of this telegraph information from up to four amplifiers, this information is of course only available
when the the MultiClamp commander software is in use.

In addition to signalling changes to amplifier gains, output signals and operating modes, the MC700 control
software also provides information about other aspects of the amplifier setup. For each channel in the amplifier,
Signal can retrieve:

· The primary output’s low-pass filter settings
· The secondary output’s low pass filter settings
· The membrane capacitance
· The series resistance
· The external command sensitivity

All of these values for each channel in each amplifier are retrieved for every frame of data and placed into extra
frame variables in the sampled data file. The frame variable values can be viewed using the File information dialog,
plotted in a trend plot or retrieved using the script language.

Integration with Signal channel scaling
The basic MC700 support uses the information provided by the MC700 control software to adjust ADC port
scaling factors to match the amplifier gains in the same way as for 1401-based telegraphs. The MC700 support is
also able to set the initial port scale factors, name and units to match the MC700 settings, ensuring that all settings
for ports sampled from MC700 outputs are correct.

Integration with Signal clamping support
Extra MC700 support features integrate the Signal support for clamping experiments with the MC700 amplifier
setup. This additional mechanism reads back clamping set definitions (pairs of MC700 outputs that are in use and
the associated external control DAC), selects between voltage-clamp and current-clamp according to the amplifier
controls and in addition sets up the scaling and units of the DAC used for external amplifier control. This ensures
that all relevant controls and calibrations are correct at the start of a clamping experiment. A button available in the
clamping configuration page can be used to read back all of the clamping, ADC port and DAC scaling information
from the MC700 so that they can be inspected.

Amplifier telegraphs

22-679

Getting started with clamping experiments using the MultiClamp 700 support
Signal is a much more general-purpose program that many of the other applications used for voltage- and current-
clamping experiments. While this does have advantages - for example Signal can carry out an extremely wide range
of analyses - it does make getting started with these types of experiment a bit harder, and the complicated nature of
the interaction between an amplifier such as the MC700 and such general purpose software also makes things
difficult. There is more information about using Signal for clamping experiments in the Sampling with Clamp support
chapter, this short guide is aimed at helping you with aspects specifically related to the MC700 amplifier. Nearly all
of the information here is also relevant to the interfaces to other amplifiers, specifically the AxoClamp 900A and the
EPC800.

Installing the amplifier interface
The telegraph interface to the MC700 or other telegraph devices is an optional part of Signal. You have to install
the support for your amplifier before it will be available for use, if you have not installed the interface software then
the Aux Telegraphs button at the bottom of the ports configuration page of the sampling configuration dialog will
be greyed-out. To install the interface software if you have not done so, or to change the amplifier telegraph
support to a different device, simply re-install Signal into the same directory making sure that your choice of
auxiliary telegraph device is correct.

Configuring the amplifier interface
The first thing you have to do is to use the MultiClamp 700 telegraphs configuration dialog to define the
amplifier(s) that you are using and their connections with the 1401. You can set up information for up to four
MC700 amplifiers. The configuration dialog does three things really: it tells Signal how to communicate with the
MultiClamp commander software, it tells Signal what the connections are between the amplifier and the 1401, and it
has options that control how and when Signal uses information from the amplifier.

The amplifier type and serial number at the top should be set to match your amplifier(s) - if they are not correct then
communications with the MultiClamp commander software will not work. The Test button at the bottom of the
configuration dialog allows you to check that communications with the amplifier are working correctly.

You must then use the middle part of the configuration dialog to set the 1401 ADC and DAC ports that are
connected to the relevant amplifier outputs and external command inputs - the wiring that you are using between
the amplifier and the 1401. These must be correct if you want Signal to make correct use of information about the
amplifier settings. If it does not know what ADC input is connected to MC700 primary output 1, it will not know
which port to calibrate using information about primary output 1, similarly with the DAC calibrations. Signal cannot
check that you have entered this information correctly so you should take care to make sure it is correct. You will
probably find out very quickly if the information is wrong because your data channels are incorrectly named, have
the wrong units, or show the wrong signals.

The bottom of the dialog controls what information Signal automatically reads and applies at the start of sampling,
normally you should have both of these checkboxes checked so that everything is set up for you (they are
intended to be turned-off if you need to override the amplifier information in some way). It also allows you to set
your preferred units for the control DAC signals, which allows you to set up your DAC control pulses beforehand
while knowing that voltage pulses will use millivolt units, for example. Otherwise the amplifier information could
change the units for you, making the pulses 1000 times too large or small...

Checking the amplifier settings
You can then look at the information read back from the amplifier. Go to the Clamp page of the sampling
configuration and (with the amplifier set up and the commander software running, and the amplifiers set in VC
mode) and click on the MC700 button at bottom right. Select the top option - Read All. This will cause Signal to
read back all the settings from the amplifier and try to use them to set itself up. So you should see the following:

· Up to 8 clamping sets generated using the current amplifier mode and the ADC ports and DACs you defined as
being connected to the amplifier(s), note that while you define the amplifier connections using ADC and DAC
port numbers (which relate to specific connections on the 1401), the clamping set information refers to channels
in the data file that will be created by sampling, so the numbers seen will be different. Obviously, each amplifier
can only generate two clamping sets.

· The DACs defined in the clamping sets will have their calibration and units in the Outputs page set up using the
information read from the amplifier and the preferred units set in the configuration dialog.

Signal Version 6.06

22-680

· The ADC ports that are used to sample the channels defined in each clamping set (the ports you said were
connected to the amplifier) will have their calibration, title and units in the Ports page set using information read
from the amplifier.

· If there is anything about the information read back that Signal does not like, for example bad ADC port units, it
will show that information in red in the clamping set information.

So, with the amplifier set in VC mode, you should be able to use the button to read all information and get
everything set up as it should be with clamping sets in VC mode. If you see any information in red this will mean
that the amplifier outputs set for VC mode are not as Signal expects them to be - it wants a current signal on the
primary output and a voltage (membrane potential) signal on the secondary output, but in the amplifier settings in
MultiClamp commander you can freely choose which signal is routed to the outputs. So if you see any information
in red you should be able to correct things by changing the signals fed to the relevant outputs using MultiClamp
commander and pressing the button to re-read all the clamping information.

Then (if you want to carry out current clamping experiments as well), switch the amplifier(s) into IC mode and then
repeat the process to get the current clamp information and check that Signal reads it back and finds it satisfactory.
Again, you may need to use MultiClamp commander to change the signals routed to the various amplifier outputs
so they are as Signal expects. The MultiClamp commander software remembers the signals used in VC and IC
modes so once you have them OK for Signal you will not need to change them again.

If you are unable to get the amplifier settings to read back in a way that Signal accepts, contact CED for assistance.

Getting your sampling configurations correct
The MC700 system can automatically set up a lot of Signal sampling configuration information for you. Other bits
you have to do for yourself by reading the relevant pages of this help file, the Sampling data, Sampling with clamp
support, Pulse outputs while sampling and Sampling with multiple states chapters will probably all be relevant. At
the very least you will need to:

· Use the General page to define the sampling rate that you want to use, the ADC ports you want to sample-from
and the duration of each frame of data.

· Use the Outputs page to select pulse outputs. Sequencer-controlled outputs can be used in clamping
experiments but hopefully you will be able to start of with the much simpler pulses mode.

· Use (very probably) the General page to enable multiple states sampling and set the multiple states mode to
Dynamic outputs.

In addition there is one other thing that you will have to do - generate sets of suitable stimuli using the DACs
connected to the amplifier external control inputs. You do this using the pulses configuration dialog available from
the Outputs page of the sampling configuration. Multiple states sampling in dynamic outputs mode is very useful
here as it allows you to have up to 256 separate sets of output stimuli in one sampling configuration and switch
between them in various ways during the experiment.

Using voltage clamp together with current clamp
It is often the case that users want to use both voltage clamping and current clamping on the same cell. While
Signal can easily do this, it cannot do this within the same data file, the amplifier settings for the two modes are too
different. So to switch from one mode to another it is necessary to stop sampling and save the new data file, change
the amplifier mode, and start sampling again to a different data file. Note that the Automation section of the
sampling configuration provides automatic file name generation and data file saving facilities that help to make this
quick.

It is generally simplest to have a separate sampling configurations for VC and IC experiments, at least at first, that
way you can get all the outputs as needed without having to worry about the other type of experiment. It is
possible to have one configuration that covers both modes, using separate sets of output states and pulses for
each mode, but this is best left until you are experienced with the system.

So to run a dual-mode experiment you would probably do something like this:

· Set the amp into VC mode

· Load in the VC sampling configuration file

· Run it and collect data

· Stop sampling and save your data

· Set the amp in IC mode

Amplifier telegraphs

22-681

· Load in the IC sampling configuration file

· Run it and collect data

Note that any changes you make to the amplifier gains will automatically be accounted-for, regardless of the
information in the sampling configuration, so your signals will always be correctly calibrated.

Also, there is a sample tool-bar in Signal which you can set up with individual buttons for your key sampling
configurations. Using the sample bar allows loading in a new sampling configuration file to be a one-click
operation, crucial when you are busy trying to collect data quickly.

Issues with 1401 signal limits
As normally shipped, the 1401 data acquisition interface ADCs and DACs only cover a ± 5 volt range. If you
increase the amplifier gain too much, you may well find that they exceed this limit and are clipped, similarly with
some external command sensitivities you may find that the 5 volt DAC output range does not allow the stimuli you
need. In some circumstances and with some amplifiers these problems can be avoided by using low amplifier gains
and high external command sensitivities, but it is normally simplest, with modern 1401s, to change the supported
voltage range to ±10 volts. This can be done using the Try1401 program that is installed with Signal, use the File
menu 1401 Options command.

MultiClamp 700 telegraph configuration

Signal can receive telegraph information from up to four MultiClamp 700 amplifiers. The MultiClamp 700 telegraph
configuration dialog is used to configure the Signal software so that it can communicate with the MultiClamp
Commander software controlling each amplifier and to define how you want information from that amplifier to be
used.

At the top of the dialog is a row of radio buttons
selecting the amplifier that you want to
configure. Below this is a check box used to
select the type of amplifier and information used
to identify the amplifier. Set this according to the
type of amplifier you are using. For the 700A you
will have to specify the COM port used to
control the amplifier and the Axon bus ID for the
amplifier, for the 700B you have to specify the
serial number of the amplifier. If you do not want
to make use of the MC700 telegraph system in
this sampling configuration, set the bus ID for all
amplifiers to Do not use (for the 700A) or set the
serial number to –1 (for the 700B).

Below the amplifier identification section is an
area defining the 1401 ADC ports and 1401
DACs that are connected to the amplifier. Each
MC700 amplifier has two channels, each of
which has two outputs (called Primary and Secondary for the 700B, Scaled and Raw for the 700A), plus an
External command input. Set the ADC ports on the 1401 that are connected to the various amplifier outputs, leaving
any amplifier outputs that are not being used set to None. Similarly, set the DAC port number that is connected to
the External command input for that channel.

Automatic signal calibration
The check box labeled ‘Get signal names, units and calibration from amplifier setup’ is used to allow automatic
signal definition & calibration from the amplifier up. When set, ports connected to MC700 outputs are automatically
set up using information retrieved from the amplifier. The information retrieved is the port name and units
(depending upon what signal you have routed to the relevant MC700 output, current signals are always calibrated
in pA) plus both of the port calibration values. This is the easiest way to use MC700 telegraph data - it is generally
recommended as it will force channels sampled from MC700 outputs to be correct.

If this check box is left clear, then the name, units and calibration entered in the Signal port setup dialog (from the
Port Setup page in the sampling configuration) are used. You can set the channel name and units to anything you

Signal Version 6.06

22-682

wish, the port Zero value should be set to 0 and the Full scale value should be set to the value of a full-scale signal
with the MC700 amplifier gain set to unity. It is very important that you enter the value for unity amplifier gain, not
whatever gain you have in use at the moment. The full scale value is the value corresponding to a +5 volt (or +10 if
appropriate) signal on the 1401 input.

Automatic clamp setup
The check box labeled ‘Get clamping mode and control DAC scaling from amplifier setup’ is used to allow
automatic setup of the Signal clamp system from the amplifier settings. When set (the check box for automatic
signal calibration must also be set for this option to be available) Signal will define clamping sets at the start of
sampling by using the amplifier settings read from the MC700.

Here, one clamping set corresponds to an MC700 channel. For an MC700 channel to define a clamping set, both the
ADC ports and the DAC port must be set to something other than None and the ports must exist on your 1401. The
port connected to the Primary channel output (Scaled output for a 700A) will be used for the Response channel
in the clamping set. Similarly, the port connected to the Secondary channel output (Raw output for a 700A) will be
used for the Stimulus channel, and the DAC number used as the control DAC. The clamping mode is set using
information read back from the amplifier, the DAC scaling is set using the external command sensitivity information
read from the amplifier, and the DAC units are set as defined using the Control DAC VClamp units and IClamp
units fields in the configuration dialog.

With this option enabled you can even set up a single sampling configuration containing control DAC pulse
sequences suitable for both voltage clamp and current clamp (knowing which units that the DAC will use in either
mode) and can quickly switch between voltage and current clamp experiments by stopping sampling, switching the
MC700 amplifier mode, and beginning sampling again. You do have to keep track of which sets of DAC outputs are
suitable for which mode! When editing the DAC pulses in a sampling configuration intended to be used in both
clamping modes in this manner you should make sure that the full scale value currently set in the DAC calibration is
the larger of the two values you expect to use, otherwise the pulses dialog will limit the pulse sizes that you can
enter.

The MC700 button in the clamping configuration page of the sampling configuration can be used to retrieve the
current MultiClamp settings and use them to set the clamping sets, channels and DACs used for clamping, ADC
calibrations, clamping mode and DAC scalings in the sampling configuration. This allows you to see what the
settings are without starting sampling and should make it easier to set up an integrated Signal/MultiClamp system.

Control DAC VClamp units and IClamp units
These two items select the units that will be used for Control DAC calibration in voltage-clamp and current-clamp
modes respectively so that the units will not vary with the amplifier settings. The DAC units need to be fixed so
that a control pulse 200 pA in size is not spontaneously changed to a 200 nA pulse because on a change to the
control amplifier settings - as this would obviously be incorrect behaviour.

Other controls
The check box for a 10 volt system present in earlier versions of this dialog has been replaced by an indicator of the
voltage range in use. The 1401 voltage range is now set by an item in the sampling preferences.

The button marked 'Test' at the bottom of the dialog is used to test that Signal can communicate successfully with
the MultiClamp Commander software for the currently selected amplifier and will provide some diagnostic
information if the test fails. Of course, you need to be running MultiClamp Commander (on the same machine) for
Signal to be able to communicate with it.

AxoClamp 900A telegraphs

The AxoClamp 900A amplifier originally supplied by Axon Instruments (now Molecular Devices) has two separate
sections each controlling a headstage. There are also two output sections each of which has a scaled output that
can carry various signals and a current output that shows the current passing through a headstage, giving up to
four signals that can be sampled. The headstages can be configured in a number of modes; depending upon how it
is used the amplifier can act as a dual-channel current clamp amplifier or a single channel (one or two-electrode)
voltage clamp amplifier. The AxoClamp commander software controlling the amplifier generates telegraph
information telling interested applications about changes to amplifier gain settings and other settings such as the

Amplifier telegraphs

22-683

headstage mode and external command sensitivity. Using the AxoClamp 900A telegraph configuration dialog you
can configure Signal so that it can receive and make use of this telegraph information.

In addition to signalling changes to the amplifier gain, the AxoClamp 900A control software provides information
about other aspects of the amplifier setup. For each channel in the amplifier, Signal can retrieve:

· The scaled output’s low-pass filter settings
· The external command sensitivity

Both of these values (for both headstages) are retrieved for every frame and placed into extra frame variables in the
sampled data file. The frame variable values can be viewed using the File information dialog, plotted in a trend plot
or retrieved using the script language.

Integration with Signal channel scaling
The basic AxoClamp 900A support uses the information provided by the AxoClamp 900A control software to
adjust the port scaling factors to match the channel gains set on the amplifier in the same way as for 1401-based
telegraphs. The AxoClamp 900A support is also able to set the initial port scale factors, name and units to match
the AxoClamp 900A settings, ensuring that all information for ports sampled from AxoClamp 900A outputs match
the amplifier settings.

Integration with Signal clamping support
Extra AxoClamp 900A support features integrate the Signal support for clamping experiments with the AxoClamp
900A amplifier setup. This additional mechanism detects suitable pairs of in-use AxoClamp 900A outputs, selects
between voltage-clamp and current-clamp according to the headstage mode and in addition sets up the scaling and
units of the DAC used for external amplifier control. This ensures that all relevant controls and calibrations are
correct at the start of a clamping experiment. A button available in the clamping configuration page can be used to
set all the clamping, ADC port and DAC scaling information up to match the AxoClamp 900A settings before you
start sampling.

The information in Getting started with clamping experiments using the MultiClamp 700 support contains much
that is highly relevant to a user of the 900A.

AxoClamp 900A telegraph configuration

The AxoClamp 900A telegraph configuration dialog is used to configure the Signal software so that it can
communicate with the AxoClamp Commander software controlling the amplifier and to define how you want
information from the amplifier to be used.

At the top of the dialog is an item for the serial number of the
amplifier which is used to identify it. If you do not want to make
use of the AxoClamp 900A telegraph system in this sampling
configuration, set the serial number to -1.

Below the serial number is an area used to define the 1401 ADC
ports and DACs that are connected to the amplifier. Each 900A
amplifier has two headstages, each of which can be configured
in various ways, and two output channel sections (almost but
not quite corresponding to headstages). Each output channel
section has a scaled output which can provide a number of
different signals with variable gain, a headstage-specific current
output signal and an I-Clamp command input, there is also a
separate V-Clamp command input. Set the ADC ports on the
1401 that are connected to the various amplifier outputs, leaving
any amplifier outputs that are not being used set to None.
Similarly, set the DAC number that is connected to the relevant
command input.

Automatic signal calibration
The check box labeled ‘Get signal names, units and calibration from amplifier setup’ is used to allow automatic
signal definition & calibration from the amplifier up. When set, ports connected to 900A outputs are automatically
set up using information retrieved from the amplifier. The information retrieved is the port name and units
(depending upon what signal you have routed to the relevant 900A output, current signals are always calibrated in

Signal Version 6.06

22-684

pA) plus both of the port calibration values. This is the easiest way to use 900A telegraph data - it is generally
recommended as it will force channels sampled from 900A outputs to be correct.

If this check box is left clear, then the name, units and calibration entered in the Signal port setup dialog (from the
Port Setup page in the sampling configuration) are used. You can set the channel name and units to anything you
wish, the port Zero value should be set to 0 and the Full scale value should be set to the value of a full-scale signal
with the 900A amplifier gain set to unity. It is very important that you enter the value for unity amplifier gain, not
whatever gain you have in use at the moment. The full scale value is the value corresponding to a +5 volt (or +10 if
appropriate) signal on the 1401 input.

Automatic clamp setup
The check box labeled ‘Get clamping mode and control DAC scaling from amplifier setup’ is used to allow
automatic setup of the Signal clamping system using the amplifier settings. When set (the check box for automatic
signal calibration must also be set for this option to be available) clamping sets within the Signal software will be
set using the amplifier settings at the time that sampling starts.

In order for a clamping set to be detected a pair of channel outputs must be found that are in use and provide a pair
of signals (current and potential) coming from an active headstage (or, for twin electrode modes, suitable signals
from both headstages). The clamping set mode is set using the headstage mode information and the control DAC in
use with the headstage is calibrated. The DAC scaling is set using the external command sensitivity information
from the amplifier, the DAC units are set using the Control DAC VClamp units or IClamp units fields in the
configuration dialog.

With this option enabled you can set up a single sampling configuration containing control DAC pulse sequences
suitable for both voltage clamp and current clamp (knowing which units that the DAC will use in either mode) and
can quickly switch between voltage and current clamp experiments by stopping sampling, switching the 900A
amplifier mode, and beginning sampling again. You do have to keep track of which sets of DAC outputs are
suitable for which mode! When editing the DAC pulses in a sampling configuration intended to be used in both
clamping modes in this manner you should make sure that the full scale value currently set in the DAC calibration is
the larger of the two values you expect to use, otherwise the pulses dialog will limit the pulse sizes that you can
enter.

dSEVC issues
In tests with the AxoClamp commander software (V 1.0.0.62) running in demonstration mode we have found
problems when headstage 1 is set up in discontinuous Single Electrode Voltage Clamp (dSEVC) mode. These may
be an effect of demonstration mode, or a misunderstanding, but it appears that when dSEVC mode is selected
AxoClamp commander automatically switches to using the channel 1 being HS1 membrane potential and channel 2
scaled output being HS1 membrane current. However the information given to Signal always says that channel 1 is
showing HS1 membrane current. If you are reading back the clamp settings from the amplifier this will not work
correctly unless you set up AxoClamp commander so that channel 1 is showing HS1 membrane current (and
channel 2 HS1 membrane potential). As I said I'm not certain if this is a fault somewhere or a misunderstanding, we
are in contact with Molecular Devices to try to resolve the issue.

The 900A button in the clamping configuration page of the sampling configuration can be used to retrieve the
current AxoClamp 900A settings and use them to set the channels used for clamping, ADC calibrations, clamping
mode and DAC scalings in the sampling configuration. This allows you to see what the settings are without
starting sampling and should make it easier to set up an integrated Signal/AxoClamp 900A system.

Control DAC VClamp units and IClamp units
These two items select the units that will be used for Control DAC calibration in voltage-clamp and current-clamp
modes respectively so that the units will not vary with the amplifier settings. The DAC units need to be fixed so
that a control pulse 200 pA in size is not spontaneously changed to a 200 nA pulse because on a change to the
control amplifier settings - as this would obviously be incorrect behaviour.

Other controls
The bottom of the dialog shows an indicator of the 1401 voltage range in use, this is set by an item in the sampling
preferences.

Amplifier telegraphs

22-685

The button marked 'Test' at the bottom of the dialog is used to test that Signal can communicate successfully with
the AxoClamp Commander software and will provide some diagnostic information if the test fails. Of course, you
need to be running AxoClamp Commander (on the same machine) for Signal to be able to communicate with it.

EPC 800 telegraphs

The EPC 800 amplifiers supplied by Heka can operate in either voltage or current clamp mode under the control of a
DAC driving either the external VC or external CC input and has two signal outputs, one for voltage and one for
current. When the EPC 800 is controlled manually but connected to the PC using the built-in USB interface, Signal
can interrogate the amplifier to read back the mode and gain settings and use this information to configure itself.
Using the EPC 800 telegraph configuration dialog you can configure Signal so that it can receive and make use of
this telegraph information from up to eight EPC 800 amplifiers.

In addition to detecting changes to amplifier gains, output signals and operating modes, the EPC 800 telegraph
software also provides information about other aspects of the amplifier setup. For each amplifier, Signal can
retrieve:

· The low-pass filter settings
· The fast membrane capacitance
· The series resistance
· The external command sensitivity

All of these values for each amplifier are retrieved for every frame of data and placed into extra frame variables in
the sampled data file. The frame variable values can be viewed using the File information dialog, plotted in a trend
plot or retrieved using the script language.

Integration with Signal channel scaling
The basic EPC 800 support uses the information read from the EPC 800 amplifier to adjust ADC port scaling factors
to match the amplifier gains in the same way as for 1401-based telegraphs. The EPC 800 support is also able to set
the initial port scale factors, name and units to match the EPC 800 settings, ensuring that all settings for ports
sampled from EPC 800 outputs are correct.

Integration with Signal clamping support
Extra EPC 800 support features integrate the Signal support for clamping experiments with the EPC 800 amplifier
setup. This additional mechanism detects pairs of used EPC 800 outputs, selects between voltage-clamp and
current-clamp according to the amplifier controls and in addition sets up the scaling and units of the DACs used for
external amplifier control. This ensures that all relevant controls and calibrations are correct at the start of a
clamping experiment. A button available in the clamping configuration page can be used to set all the clamping,
ADC port and DAC scaling information up to match the EPC 800 settings before sampling.

The information in Getting started with clamping experiments using the MultiClamp 700 support contains much
that is highly relevant to a user of the EPC800.

Signal Version 6.06

22-686

EPC 800 telegraph configuration

Signal can receive telegraph information from up to eight EPC 800 amplifiers. The EPC 800 telegraph configuration
dialog is used to configure the Signal software so that it can communicate with the EPC 800 amplifiers and to define
how you want information from that amplifier to be used.

At the top of the dialog is a selector for the amplifier that you
want to configure, with the amplifier settings below. At the top of
the settings is a field for the serial number of the EPC 800 so it can
be identified if you have multiple EPC 800 amplifiers; you can
leave this field set to zero if you only have a single amplifier. If
you do not want to make use of the EPC 800 telegraph system in
this sampling configuration, set the serial numbers of all
amplifiers to –1.

Below the amplifier identification section is an area defining the
1401 ADC ports and 1401 DACs that are connected to the
amplifier. Each EPC 800 amplifier has two signal outputs, one
called Voltage monitor and one called Current monitor, plus a pair
of external control inputs, one for voltage clamp and one for
current clamp. Set the ADC ports on the 1401 that are connected
to the various amplifier signal outputs, leaving any amplifier
outputs that are not being used set to None. Similarly, set the
DAC numbers that are connected to the external control inputs. It
is not an error to use the same DAC to control both voltage clamp
and current clamp inputs.

Automatic signal calibration
The check box labeled ‘Get signal names, units and calibration from amplifier setup’ is used to allow automatic
signal definition & calibration from the amplifier up. When set, ports connected to EPC 800 outputs are
automatically set up using information retrieved from the amplifier. The information retrieved is the port name and
units (depending upon what signal you have connected) plus the port calibration values. This is the easiest way to
use EPC 800 telegraph data - it is generally recommended as it will force channels sampled from EPC 800 outputs to
be correct.

If this check box is left clear, then the name, units and calibration entered in the Signal port setup dialog (from the
Port Setup page in the sampling configuration) are used. You can set the channel name and units to anything you
wish, the port Zero value should be set to 0 and the Full scale value should be set to the value of a full-scale signal
with the EPC 800 amplifier gain set to unity. It is very important that you enter the value for unity amplifier gain, not
whatever gain you have in use at the moment. The full scale value is the value corresponding to a +5 volt (or +10 if
appropriate) signal on the 1401 input.

Automatic clamp setup
The check box labeled ‘Get clamping mode and control DAC scalings from amplifier setup’ is used to allow
automatic setup of the Signal clamp system from the amplifier settings. When set (the check box for automatic
signal calibration must also be set for this option to be available) clamping sets within the Signal software that
match an EPC 800 amplifier will be set to match the amplifier settings at the start of sampling.

In order for a clamping setup to match a EPC 800 channel and thus be set up using amplifier information, the port
connected to current monitor must be used to sample the Response channel defined in the clamping setup in
voltage clamp mode (or the Stimulus channel in current clamp mode). Similarly the port connected to the voltage
monitor must be used to sample the Stimulus (or Response) depending upon the clamping mode. If these criteria
are met then the clamping mode is set to voltage clamp or current clamp as appropriate and the control DAC in use
in that clamp setup is calibrated. The DAC scaling is set using the external command sensitivity information from
the amplifier, the DAC units are set as defined using the Control DAC VClamp units and IClamp units fields in
the configuration dialog.

With this option enabled you can even set up a single sampling configuration containing control DAC pulse
sequences suitable for both voltage clamp and current clamp (knowing which units that the DAC will use in either
mode) and can quickly switch between voltage and current clamp experiments by stopping sampling, switching the

Amplifier telegraphs

22-687

MC700 amplifier mode, and beginning sampling again. You do have to keep track of which sets of DAC outputs are
suitable for which mode! When editing the DAC pulses in a sampling configuration intended to be used in both
clamping modes in this manner you should make sure that the full scale value currently set in the DAC calibration is
the larger of the two values you expect to use, otherwise the pulses dialog will limit the pulse sizes that you can
enter.

The EPC 800 button in the clamping configuration page of the sampling configuration can be used to retrieve the
current amplifier settings and use them to set the clamping sets themselves, the channels and DACs used for
clamping, ADC port calibrations, clamping mode and DAC scalings in the sampling configuration. This allows you
to see what the settings are without starting sampling and should make it easier to set up an integrated Signal/EPC
800 system.

Voltage and current signal units
These two items select the units that will be used for ADC port and external control DAC calibration of voltage and
current signals respectively. Thse are provided so that Signal can use the units that you prefer, set correct scalings,
and generate the correct control pulses on the DACs.

Other controls
At the bottom of the dialog is an indicator of the voltage range in use. The 1401 voltage range is set by an item in
the sampling preferences and (often) updated with information read from the 1401 itself.

The button marked 'Test' at the bottom of the dialog is used to test that Signal can communicate successfully with
the configured EPC 800 amplifiers and will provide diagnostic information if the test fails. Of course, the amplifier
needs to be connected (on the same machine) and turned on for Signal to be able to communicate with it.

Signal Version 6.06

23-688

Auxiliary states devices

When sampling using multiple frame states, Signal can control external devices such as stimulators in addition to
switching the 1401 outputs, so the stimulators are set up differently for each state. This is achieved by using
auxiliary states devices; special software modules that control external equipment.

Signal auxiliary states device support provides a mechanism for controlling arbitrary equipment and setting it up in
different ways according to the sampling state in use. In addition to controlling equipment settings by state, Signal
is also able to provide device-specific configuration dialogs, to check the equipment health and readiness while
sampling, to save the stimulation parameters used in the new data file and to save and load auxiliary states setup
information to and from sampling configurations. Script language functions (SampleAuxStateParam and
SampleAuxStateValue) are also provided to give access to the auxiliary device settings.

Signal currently supports three types of auxiliary states device; the Magstim and MagPro ranges of transcranial
magnetic stimulators and the CED 3304 programmable constant current stimulator. You can select which of these
devices you wish to use (or none) during the Signal installation process, your choice can be changed at any time
using the Sampling tab in the Preferences dialog. Please note that Signal cannot control multiple auxilary states
devices simultaneously. If you need auxiliary states device support for equipment other than those currently
supported, please contact CED.

Magstim device

The Magstim range of transcranial magnetic stimulators produced by the Magstim company are widely used to
provide non-invasive neuronal and muscular stimulation. Signal provides support for all three types of Magstim

commonly in use; the 2002, BiStim2 and Rapid2, it can also control a pair of Magstim 2002 units simultaneously. As
Signal uses serial lines for control of the stimulator only the modern Magstims that provide serial line control (with

the 2 suffix to the model name) can be used.

Magstim safety notice

Transcranial magnetic stimulators are dangerous devices capable of causing serious harm and should only be used
by qualified medical practitioners. Before using a Magstim device you should read the user’s manual produced by
Magstim paying particular attention to the warnings and precautions section. It is your responsibility to ensure
that Signal’s control of a Magstim is set up in an appropriate and safe fashion for the intended use and to verify
that it is operating correctly.

Signal carries out checks to ensure that the Magstim hardware is operating correctly. Firstly, if communications
between Signal and the Magstim breaks down then Signal will disarm the Magstim and terminate sampling as
unless the communications are working correctly you cannot be sure that the Magstim settings will be those that
you have selected. Secondly, after sending new settings to a Magstim Signal always reads back the settings and
disarms the Magstim and terminates sampling if they do not match the settings that were sent. Finally, the status
information obtained from the Magstim is monitored and if there appears to be any problems Signal will again
disarm the Magstim and terminate sampling.

In addition to these checks the Magstim Rapid2 settings are tested in various ways before they are used because

the Rapid2 is capable of a very high sustained power output - so high indeed that the equipment might be seriously
damaged by extreme settings. Signal attempts to detect situations where it appears that the safe power output
levels will to be exceeded and will warn you if it appears that there are problems with the sampling configuration or
Magstim settings. But these checks should not be viewed as an absolute guarantee of safety - the lack of warning
messages should not be taken as meaning that the configuration is certain to be good; it is always the user's
responsibility to ensure that the equipment is used correctly.

We must emphasise that CED is not responsible in any way for problems caused by use of Signal with Magstim
equipment.

Auxiliary states devices

23-689

Magstim introduction

For Magstim devices, the auxiliary states system sets the power output and (where appropriate) inter-pulse timing
and other settings, remote control of the hardware can be disabled for specific states to allow the user to control
the stimulation manually. Options are provided to cause Signal to assume independent triggering mode and to

enable high resolution interval timing (for the BiStim2) and to cause the Magstim to ignore the coil interlock switch

and to enable single pulse mode (for the Rapid2). This documentation only describes the controls available from
within Signal; for a complete understanding of the effect these have upon the behaviour of the stimulator you
should consult the Magstim user manuals.

In addition to using a serial-line to set the stimulation parameters, standard operation with Signal requires that the
stimulation be triggered using one or more TTL pulses generated by the 1401 digital outputs. This allows the pulse

timing to be precisely controlled relative to the Signal sampling. A Rapid2 can be configured to either generate a
train of pulses in response to a single trigger or to generate one pulse per trigger, allowing complete control of the
patterns of stimulation. Manual triggering of the stimulator is also possible, as is triggering from other external
hardware, in which case you would use the Magstim trigger to trigger the Signal sampling sweep, however please

note that the power level checks performed upon the Rapid2 require that the device be triggered by the 1401 so that
the trigger times are known.

The Magstim support monitors the stimulator health; both waiting until the Magstim is ready for use before
allowing a sampling sweep to proceed and terminating sampling if a hardware problem develops. To aid data
analysis, Signal saves the Magstim stimulation parameters used in the data section variables of the sampled file.

The parameters saved are the power level, the pulse interval (BiStim only), the secondary power level (BiStim2 and

dual 2002), the pulse frequency (Rapid2 only) and the pulse count (Rapid2 only). These values are placed in extra
frame variables in the sampled data file. The saved values can be retrieved using the script language and used as
measurements in trend plot generation.

Getting started with TMS experiments
Signal is a very general-purpose program, much more so than (for example) the data acquisition and analysis
software built into the Magstim Rapid that many of the other applications used for voltage- and current-clamping
experiments. While this does have advantages - for example Signal can carry out an extremely wide range of
experiments and analyses - it does make getting started with TMS experiment a bit harder, and the sometimes-
complex nature of the interaction between Signal and a Magstim can also make things difficult. There is more
information about using Signal data acquisition here, and information about sampling with multiple states here, you
will need to have read both of these Signal help chapters. This short guide is aimed at helping you with aspects
specifically related to the Magstim system. Nearly all of the information here is also relevant to other auxiliary states
devices, in particular the MagPro stimulator manufactured by MagVenture.

Installing the Magstim software
The auxiliary states interface to the Magstim or other auxiliary states devices is an optional part of Signal. You have
to install the support for your device before it will be available for use, if you have not installed the support
software then the Magstim button at the bottom of the multiple states configuration page of the sampling
configuration dialog will not be present. To install the interface software if you have not done so, or to change the
auxiliary states support to a different device, simply re-install Signal into the same directory making sure that your
choice of auxiliary states device is correct.

Configuring Magstim device and communications
The first thing you have to do is to use the Magstim configuration dialog to define the device(s) that you are using
and the serial port that you are using to control it. You can set up information for only one Magstim device
(counting the dual 200 as a special device). This part of the configuration dialog does two things really: it tells
Signal what sort of hardware you are using and it tells Signal what serial line(s) to use to communicate with the
Magstim.

You should start by connecting a serial line on the PC that is running Signal to the serial control port on the
Magstim. There are two different sorts of Magstim serial control port; the cable you use must be of the correct sort!
CED can supply a suitable cable which also includes a BNC connector to be attached to a 1401 digital output - this
digital output connection will be used to trigger the Magstim at the correct time.

In the configuration dialog, the Magstim type and serial port number number(s) should be set to match your

hardware and the serial port(s) that you are using. If you are using a Rapid2 device, you may need to enter the

Signal Version 6.06

23-690

device unlock code if your Rapid is using the newest firmware, and you should set the digital output used to trigger

the Rapid as this allows Signal to carry out various checks of the Rapid2 power dissipation and thus avoid
overheating or damaging the Rapid. The Test button at the bottom of the configuration dialog allows you to check
that communications with the hardware are working correctly. This button is not a complete test of the
communications; we have found that in some circumstances the Test button does not find any problems but
communications errors still occur when you try to use the software. However if the Test button shows errors then
you can be sure that something is wrong; there is no point in trying to go further until this shows that things are
OK.

Communications problems and how to fix them
If the Test button shows that there are communications errors then this could be due to:

· The COM port that you have set is incorrect - it does not exist or is not the right one. Fix this by changing the
COM port selection or where the serial line cable is connected to the PC.

· The Magstim device that you have set does not match your hardware. Fix this by changing the Magstim device
that is set in the dialog.

· The serial line cable is faulty, or not completely plugged in at one end or the other. Check that the cable wiring is
as it should be and that the cable is fully plugged-in at both ends.

· You have plugged the serial cable into the wrong port on a BiStim2. The BiStim2 is just two 2002 units connected

together with a special adaptor, so there are two serial control ports - one on each 2002. You should be
connected to the control port on the top unit.

· You are using a USB serial port which does not handle the Magstim control. Not all USB serial ports are created
equal! Some work very well with a Magstim while others simply do not, or work erratically (this is a common
reason for the Test button saying all is OK but communications errors happening during experiments). If you
have other USB serial ports around, try them - a different one may 'just work'. If you want to buy a USB serial
port for use with a Magstim there are two rules to follow: a) don't buy a really cheap device and b) if at all
possible buy a device where you know the manufacturer - so no cheap Chinese knockoffs! Most such devices
will work well, if you want more guidance I have found that Belkin hardware seems to always work OK, but the
most reliable solution of all is to use an actual serial port - either one on the PC motherboard or on a plug-in PCI
card.

If none of these suggestions help you, contact CED for assistance.

Setting up the stimulator
You then need use the main part of the Magstim configuration dialog to set the stimulator settings for each
sampling state. The dialog displays a list describing the settings for each state and below this, the settings for one
state where they can be edited. You select the state you want to edit by clicking on the correct line in the list, there
are also useful buttons that can be used to copy the settings for the currently edited state to all other states or to
all state numbers above the number of the currently edited state. The settings that are available vary according to
the device type, there are of course no 'correct' settings as what is wanted depends upon your experiment design
and aims. However for the purposes of checking that things are working OK I suggest using power levels of about

30%, moderate BiStim pulse intervals (perhaps 10 ms?) and short Rapid2 pulse trains, perhaps 3 pulses, the idea
being to make sure that there are no power level issues for your initial tests. The Signal multiple states system
assumes that state number zero is an inert or background state, so you should probably start off with state zero
being zero power or manual control - to start off with a tidy arrangement.

There are various other controls available in the configuration dialog according to the type of hardware in use.
Generally they can be left alone for initial testing - see the pages on configuring the various device types for
details.

You will also need to make sure that the digital output that you will use to trigger the stimulator is enabled in the
outputs page of the sampling configuration and that the pulses dialog shows a suitable trigger pulse being
generated on that output at the correct point during the sweep. In keeping with the way Signal handles multiple
states, no trigger pulse should be generated for state zero.

You should then be able to run the sampling configuration (with sweep triggers off, most probably). While the
sampling is happening the stimulator will be under the control of Signal (except for states set as Manual control)
and you will see Signal waiting until the stimulator is ready before starting each sweep. You should also be able to
hear the stimulator firing at the correct point within each sweep.

Once you have sampling working with this simple configuration, you should alter the configuration so that the
Magstim power levels and other settings are similar to what you will want to use in a real experiment and try those.

Auxiliary states devices

23-691

If you get Magstim communications errors during the sampling this may indicate that your USB serial port cannot
cope with use during sampling, even though it was OK with the Test button. You should try a different make of
USB serial port (or use an actual serial port) to see if this cures the problem. If that does not help, contact CED for
assistance. After a failure during sampling, the Magstim support will put text in the Signal Log window indicating
what went wrong - please copy that into any emails set to CED as that may help us work out what is going wrong.

If you get 1401-related errors during the sampling, in particular when the Magstim is firing at high power, then this
may indicate that the electromagnetic interference generated by the Magstim (a seriously powerful device) is
causing 1401 hardware problems. It may be difficult to find a solution to this problem, the basic idea is to isolate
and separate the 1401 and amplifiers side of things from the Magstim. There are a number of things you can try to
attempt to improve this isolation/separation:

· Have the Magstim on one side of the room/subject, with the 1401 and amplifiers on the other side.

· Power the Magstim from a different mains supply from the 1401 and amplifiers. You can also try powering the
1401 and amplifiers from a UPS (Uninterruptible Power Supply) for still greater separation.

· Keep all electrode leads & if possible the electrodes themselves as far as possible from the Magstim coils.

Getting your sampling configuration correct
The Magstim support will work quite well with most Signal sampling configurations as long as suitable trigger
pulses are generated and multiple sampling states are in use. To learn about the relevant aspects of Signal
sampling, you will need to read relevant pages of this help file, the Sampling data, Pulse outputs while sampling and
Sampling with multiple states chapters will probably all be relevant.

One simple mechanism that is used by many TMS experimenters is fixed interval sampling mode. With this mode,
Signal sampling sweeps do not happen when a trigger pulse is received but instead they are triggered automatically
by a timer. So you could have a 700 millisecond sweep of sampling, then an automatic delay of maybe 8000
milliseconds until the next sampling sweep occurs. This is a very common way of running TMS experiments and
works well within Signal. Signal is also able to generate a random variation (of perhaps up to ± 500 milliseconds) in
this fixed interval timing.

There is another way of organising a TMS sampling configuration, where the experimenter wants to control the
timing of stimulations manually and have Signal just set the stimulator settings and record the data. This is easily
accomplished by:

· Using Peri-triggered sampling mode (with an event trigger) which allows a sweep trigger to occur at a set point
within the sampling.

· Modifying the connection between the Magstim and the 1401 so that instead of a digital output going to the
Magstim trigger input, the Magstim low-going trigger output is connected to the 1401 trigger input.

· Using a footswitch or equivalent to trigger the Magstim as required.

Though this method is less common than using the 1401 to trigger the Magstim it is equally satisfactory and will
work equally well.

Issues with amplifier overloads
When a Magstim fires it generates a very intense magnetic field which can induce large voltages in electrodes and
wiring. These transient voltages can saturate amplifier inputs, which will cause them to take rather long to recover
after the stimulation - too long for many experiments. Some amplifiers such as the CED 1902 are able to clamp the
amplifier inputs during the stimulation period to prevent this saturation, which is a generally satisfactory solution
to this - see your amplifier manuals or manufacturer for more details on this.

Signal Version 6.06

23-692

Magstim configuration

To configure a Magstim in Signal, open the sampling configuration
dialog and make sure that Multiple states is enabled in the General tab.
Select the States tab and make sure that you are in Dynamic outputs or
Static outputs mode. If Magstim support is installed, there will be a
button labelled Magstim. If this button is not present, reinstall Signal
and make sure that you select Magstim auxiliary states device support. If
the button is present, but disabled, you are in External Digital states
mode, change the mode to enable the button. Click the button to open
the Magstim configuration dialog.

It is meaningful to use the Magstim support without using multiple
states, but this is not directly supported because the states system is so
closely linked to the Magstim support. If you want to make use of
Magstim support without using multiple states (so that the pulse
parameters are recorded and Magstim health checks are made, but with
complete manual control) you should turn on multiple states, set only
one extra state, set state zero to use manual control, and only make use
of state zero while sampling. This will allow you access to the Magstim
configuration dialog to set the basic Magstim parameters.

Type of stimulator
At the top of the configuration dialog there is a selector used to select
the Magstim type. You should set this to the type of stimulator you will be using or to Do not use if you do not
want to make use of the Magstim support in this sampling configuration.

Don’t generate settings text for window title
This check box prevents the Magstim support from generating text showing the current level that Signal can
display in the title bar of a sampling document. It is often useful to see what the Magstim settings are, but some
users find it distracting. A separate check box in the Signal sampling preferences must also be set to allow use of
this text.

Allow use with Magstim not present
This check box is provided to allow sampling with a configuration that uses a Magstim without Signal having a
connection to a Magstim device, for demonstrations or training.

Com port for communications
This is a selector for the COM port used to control the stimulator, you can select any port from COM1 to COM19.
As many PCs only have one COM port you may have to use a USB serial port expander to provide a spare COM

port – we have found that most of these USB serial ports work satisfactorily. When a dual-2002 device is selected,
two COM port selectors are shown.

Stimulator-dependent controls
Below these basic stimulator configuration controls there may be more controls, these will vary according to the
type of stimulator selected and will be described in the specific device configuration details.

Magstim settings
Following these are two more sections holding the actual Magstim settings; first there is a display of settings for all
states which is used to select a state for editing (by clicking on the information for that state) and finally an area
where the settings for the selected state may be edited.

Auxiliary states devices

23-693

Copy to all and Copy above
The buttons labelled Copy to all and Copy above can be used to set up many states quickly; Copy to all copies
the currently selected state to all other states, while Copy above copies the current state’s settings to all higher
numbered states. These buttons are available for all types of Magstim.

Test
The button labelled Test tests if communications with the Magstim can be established. It checks that you have the
correct COM port, that the serial line is connected and that the Magstim is communicating correctly with Signal. It
also detects if you have set an incorrect Magstim type and if you have the Independent BiStim Trigger check box

incorrectly for a BiStim2 device. For a Rapid2 device the power safety checks are carried out on the current
parameters and any problems reported. The Test button is available for all types of Magstim.

200 device configuration

The 2002 is the simplest type of Magstim and does not require any extra
controls for overall behaviour. The settings available for the individual
states are:

Manual
Set this check box for this state to be controlled by the manual controls
and not by Signal, clear it to give Signal control.

Power
This sets the stimulator power output as a percentage of the maximum
available, you can set any value from 0 to 100. This field is disabled for
manually controlled states.

Signal Version 6.06

23-694

BiStim device configuration

The BiStim2 is more complex than the 2002, in essence it is two 2002 units
connected together with one unit (the lower one) controlled by the other.

The serial line used by Signal to control the BiStim2 should be connected

to the upper, master, unit. When a BiStim2 device is selected two
controls governing overall behaviour are shown:

BiStim in independent trigger mode

This sets how Signal will expect the BiStim2 to be configured, rather than
how it will be set up by Signal - this is because Signal is unable to put

the BiStim2 into or out of IBT mode. Normally, a BiStim2 generates two
output pulses, one at the time of the trigger and the second at a preset

interval after the trigger. Using the controls on the front of the BiStim2

master unit, you can set the device into independent trigger mode
(referred to as IBT mode in the Magstim documentation). When this
mode is in use two separate triggers are used (presumably signals from
two 1401 digital outputs), one trigger firing the main pulse and the other

firing the second (Power B) pulse. Because a BiStim2 behaves rather
differently when in IBT mode you have to set this check box to match

the BiStim2 setup otherwise errors will be generated when you test the
configuration or try to sample.

Use Hi-res timing mode
When this check box is clear, the interval between the two pulses can be set to any value between 0 and 999
milliseconds with a resolution of 1 millisecond. With Hi-res timing enabled the maximum interval is reduced to 99.9
milliseconds but the timing resolution is improved to 0.1 milliseconds. This control is disabled if independent
trigger mode is selected.

The BiStim2 settings available for the individual states are:

Manual
Set this check box for this state to be controlled by the manual controls and not by Signal, clear it to give Signal
control.

Power
This sets the main (master) stimulator power output as a percentage of the maximum available, you can set any
value from 0 to 100 percent. This field is disabled for manually controlled states.

Interval
This sets the interval between the two pulses, you can use any value from 0 to 999 milliseconds (or 0 to 99.9

milliseconds for Hi-res timing). Note that the BiStim2 cannot tolerate timing intervals between 0 and 1 millisecond in
Hi-res mode, if you enter such a value the interval will be rounded to the nearest of 0 and 1 millisecond. Setting a

zero interval will switch the BiStim2 into simultaneous pulse mode, setting a value greater than zero switches it out
of simultaneous mode. In simultaneous pulse mode both stimulators must use the same power level, so both levels

are set by the main power field. This field is disabled if independent BiStim2 triggers are in use or for manually
controlled states.

Power B
This sets the second (slave) stimulator power output as a percentage of the maximum available, you can set any
value from 0 to 100. This field is disabled for manually controlled states and also if a zero pulse interval has been
set.

Auxiliary states devices

23-695

Rapid device configuration

The Rapid2 is rather different from the other Magstim devices as it is

capable of producing a train of pulses at high rates. The Rapid2 power
supply is very powerful; so powerful in fact that it is capable of

generating so much power that the Rapid2 can be damaged, Signal
carries out hardware safety checks when getting ready for sampling to
try to prevent this happening. Rather than the simple case-mounted

manual controls of the other two units, the Rapid2 has a separate control
system that has to be disconnected to gain access to the serial line
control port. This makes manual control unusable and so it is not
available in the individual state settings. There are four controls
governing overall behaviour:

Ignore coil interlock switch
This disables checks on the coil interlock switch on the handle of the
Magstim coil, so that the unit will fire without a button being held down.
Magstim do not recommend disabling these checks as they are a safety
feature.

Rapid2 v9 unlock code
For additional safety, Magstim have introduced a unlock code, a 16-
character text string looking something like "29a5-4827780a-cf", with the version 9 firmware. In order to make use

of a Magstim Rapid2 with this (or later) firmware this unlock code must be entered into the setup dialog, you can

find the unlock code sequence for your Rapid2 by contacting Magstim.

Use Rapid single-pulse mode
This turns on single-pulse mode, which allows higher power levels - up to 110%. In single-pulse mode only a single
pulse is produced per trigger and the pulse train parameters are ignored. The pulse rate can be up to 100 Hz
normally (depending upon the power level used – see the safety check details here) but if you select power levels
above 100%, the maximum allowed pulse rate is forced to 0.5 Hz. With single pulse mode turned off a train of up to
1000 pulses can be generated at the specified frequency from one trigger and power levels above 100% are not
available. Again, the pulse rate can be up to 100 Hz depending upon the power level used.

Digital output used to trigger Magstim

Signal needs to know the digital output used to trigger the Rapid2 so that it can find the times of trigger pulses,
which are needed for the hardware safety checks. If you do not select a digital output Signal will generate a warning
message at the start of sampling, if you select the wrong digital output then the Signal hardware safety checks will
not behave correctly.

The Rapid2 settings available for the individual states are:

Power
This sets the stimulator power output as a percentage of the maximum available, you can set any value from 0 to
100.

Pulses
This item is only available if single-pulse mode is not in use, it sets the number of pulses, you can set any value
from 1 to 1000. This field is disabled if single-pulse mode is selected.

Freq
This item is only available single-pulse mode is not in use, it sets the pulse frequency in Hertz, you can set any
value from 0 to 100. This field is disabled if single-pulse mode is selected.

Signal Version 6.06

23-696

Dual 200 device configuration

Two Magstim 2002s can be controlled by Signal to achieve much the

same effect as using a BiStim2. When using this configuration two
separate serial lines are used to control the MagStims and two separate
trigger pulses are required (as for a BiStim in independent trigger mode).

When the dual 2002 option is selected a separate selector for the second

serial-line port is shown but as for the 2002 there are no extra controls
governing overall behaviour. The settings available for the individual
states are:

Manual
Set this checkbox for this state to be controlled by the manual controls
and not by Signal, clear it to give Signal control.

Power

This control sets the main 2002 stimulator power output as a percentage
of the maximum available, you can set any value from 0 to 100. This field
is disabled for manually controlled states.

Power 2

This sets the second 2002 stimulator power output as a percentage of the
maximum available, you can set any value from 0 to 100. This field is disabled for manually controlled states.

Magstim connections and cabling

There are two connector arrangements provided by Magstim for serial line control and external triggering of the
unit. Older 200 and BiStim units have an arrangement with a 9-way serial line and separate 15-way trigger connector
while newer 200 and BiStim units and all Rapids have a high-density 26-way combined serial line and trigger
connector. If your PC does not provide a serial line (a common situation with laptops) or no unused serial line
connector is available a USB serial line adapter can be used instead, but these can give problems so we advise
using standard serial port hardware if possible.

In both cases two separate connections need to be made; serial line control from a PC and a TTL trigger signal from
the 1401. The standard high level trigger input suggested by Magstim works well with Signal and the 1401 and is
used in the diagrams shown below, consult the Magstim documentation if you require a different arrangement. In
the case of a Rapid stimulator, the 26-way connector is also used by the integrated control system and this will
need to be disconnected before the control cable can be connected.

Auxiliary states devices

23-697

Cabling for 26-way combined serial and trigger connector

Signal Version 6.06

23-698

Cables for separate 9 pin serial and 15-way trigger connectors

If you are not using the external trigger input to trigger the Magstim from the 1401 you will need a different cabling
arrangement, for example to take the Magstim low-going trigger out signal (on pin 8 of the 26-way connector) and
use that as an input to the 1401 to trigger the 1401 sweep. Consult your Magstim documentation for more
information.

Notes on Magstim use

A straightforward arrangement to use a Magstim with Signal would be as follows:

1. Connect the serial port of your computer to the Magstim serial line input using the appropriate serial line cable.
Connect the trigger BNC plug to the 1401 digital output port 0 BNC socket found on the front of all modern
types of 1401. If you are using a 1401plus the digital output pulse is available from the 25-way digital output
socket on the front of the 1401.

2. In the outputs page of the sampling configuration, make sure that digital output bit zero is enabled for use.
Using the pulses configuration dialog set the initial level of digital output bit zero to 0 and place a pulse (which

Auxiliary states devices

23-699

will be high-going) in the outputs at the time when you want the Magstim to fire. This output pulse should be
at least 10 microseconds long – 1 millisecond works well.

3. The Magstim support uses Signal multiple states sampling, which should be set up in dynamic outputs mode.
You can use any number of extra states, each extra state providing separate Magstim settings. Each set of
pulse outputs should include digital output pulses to trigger the Magstim along with any other outputs
required. The Magstim support will work correctly with manual control of the states or with any style of
automatic states sequencing including protocols.

When Signal begins sampling with the Magstim support enabled, it checks for a correctly functioning Magstim
device as part of the process of initialising for sampling. If a Magstim is found then Signal will carry out the initial
configuration of the Magstim and arm the device. While sampling is in progress, Signal will set up the Magstim
using the current state data before each sweep, it will then delay the start of each sweep until the Magstim reports
that it is armed and ready. At the end of each sweep the Magstim health is checked to make sure it is OK. Note that
the checks on Magstim readiness can impose a significant extra inter-sweep delay though steps have been taken to
minimise this. When sampling finishes normally, the Magstim is disarmed and remote control disabled.

If the Magstim coil temperature rises too high, Signal will stop sampling but not finish. Once the coil temperature
has dropped sufficiently you can press ‘More’ on the sampling control panel to resume sampling again.

While sampling is in progress, Signal continuously maintains communications to prevent the Magstim from
disabling remote control and disarming itself. If Signal ceases to communicate with the Magstim because it has
encountered a significant problem (“crashes”), the Magstim will disarm itself automatically within 1 second, but this
safety feature only applies if manual control has not been selected by Signal beforehand.

If manual control is selected, the Magstim will disarm itself spontaneously only after 60 seconds have passed
without a stimulus trigger, so it is your responsibility to make sure the Magstim is disarmed if manual control is
used and Signal encounters a significant problem. The Rapid stimulator does not appear to disarm itself after 60
seconds in this manner and must be disarmed manually if Signal fails during sampling.

Because Signal needs to communicate frequently with a Magstim to stop it disarming, scripts that operate while
Signal is sampling need to be correctly designed. If a script carries out a lengthy operation without yielding or
using a toolbar or dialog to allow control to pass back to the operating system, this may interfere with Magstim
communications and cause the unit to disarm.

MagPro device

The MagPro range of transcranial magnetic stimulators produced by the MagVenture company are widely used to
provide non-invasive neuronal and muscular stimulation. Signal provides support for the MagPro R30 and X100
devices, both with and without the MagOption extension module that is available for either device. Signal uses a
serial line for control of MagPro stimulators.

MagPro safety notice

Transcranial magnetic stimulators are dangerous devices capable of causing serious harm and should only be used
by qualified medical practitioners. Before using a MagPro device you should read the user’s manual produced by
MagVenture paying particular attention to the warnings and precautions section. It is your responsibility to ensure
that Signal’s control of a MagPro is set up in an appropriate and safe fashion for the intended use and to verify that
it is operating correctly.

Signal carries out checks to ensure that the MagPro hardware is operating correctly. Firstly, if communications
between Signal and the MagPro breaks down then Signal will disarm the MagPro and terminate sampling as unless
the communications are working correctly you cannot be sure that the MagPro settings will be those that you have
selected. Secondly, after sending new settings to a MagPro Signal always reads back the settings and disarms the
MagPro and terminates sampling if they do not match the settings that were sent.

We must emphasise that CED is not responsible in any way for problems caused by use of Signal with MagPro
equipment.

Signal Version 6.06

23-700

MagPro introduction

For MagPro devices, the auxiliary states system sets the mode, waveform, power output and (where appropriate)
inter-pulse timing and other settings, remote control of the hardware can be disabled for specific states to allow the
user to control the stimulation manually. This documentation only describes the controls available from within
Signal; for a complete understanding of the effect these have upon the behaviour of the stimulator you should
consult the MagPro user manuals.

In addition to using a serial-line to set the stimulation parameters, standard operation with Signal requires that the
stimulation be triggered using one or more TTL pulses generated by the 1401 digital outputs. This allows the pulse
timing to be precisely controlled relative to the Signal sampling. Manual triggering of the stimulator is also possible,
as is triggering from other external hardware, in which case you would normally use the MagPro trigger to trigger
the Signal sampling sweep.

The MagPro support monitors the stimulator health; both waiting until the MagPro is ready for use before allowing
a sampling sweep to proceed and terminating sampling if a hardware problem develops. To aid data analysis, Signal
saves the MagPro stimulation parameters used in the data section variables of the sampled file. The parameters
saved are the device mode, the waveform used, the power levels, the pulse interval and the pulse count. These
values are placed in extra frame variables in the sampled data file. The saved values can be retrieved using the
script language and used as measurements in trend plot generation.

There is a Getting started with TMS experiments section in the Magstim support documentation; nearly all of this is
equally applicable to MagPro devices.

MagPro configuration

To configure a MagPro in Signal, open the sampling configuration dialog
and make sure that Multiple states is enabled in the General tab. Select
the States tab and make sure that you are in Dynamic outputs or Static
outputs mode. If MagPro support is installed, there will be a button
labelled MagPro. If this button is not present, reinstall Signal and make
sure that you select MagPro auxiliary states device support. If the
button is present, but disabled, you are in External Digital states mode,
change the mode to enable the button. Click the button to open the
MagPro configuration dialog.

It is meaningful to use the MagPro support without using multiple
states, but this is not directly supported because the states system is so
closely linked to the MagPro support. If you want to make use of
MagPro support without using multiple states (so that the pulse
parameters are recorded and MagPro health checks are made, but with
complete manual control) you should turn on multiple states, set only
one extra state, set state zero to use manual control, and only make use
of state zero while sampling. This will allow you access to the MagPro
configuration dialog to set the basic MagPro parameters.

Type of stimulator
At the top of the configuration dialog there is a selector used to select the MagPro type. You should set this to the
type of stimulator you will be using (the choices are MagPro R30, MagPro R30 + MagOption, MagPro X100,
MagPro X100 + MagOption) or to Do not use if you do not want to make use of the MagPro support in this
sampling configuration.

Don’t generate settings text for window title
This check box prevents the MagPro support from generating text showing the current stimulus that Signal can
display in the title bar of a sampling document. It is often useful to see what the MagPro settings are, but some
users find it distracting. A separate check box in the Signal sampling preferences must also be set to allow use of
this text.

Allow use with MagPro not present
This check box is provided to allow sampling with a configuration that uses a MagPro without Signal having a
connection to a MagPro device, for demonstrations or training.

Auxiliary states devices

23-701

Assume MagPro software of version 7.1.0 or more
This check box, if checked, allows the configuration dialog to assume that the internal MagPro software is new
enough to provide the advanced options available with this release. These options include changing the mode or
waveform, and controlling the inter-pulse interval and Power B/A values in Twin mode. The setting is checked
against the actual software version when the sampling configuration is used, if you have set this option and the
actual software version is not new enough then sampling will be aborted.

Com port for communications
This is a selector for the COM port used to control the stimulator, you can select any port from COM1 to COM19.
As many PCs only have one COM port you may have to use a USB serial port expander to provide a spare COM
port – we have found that most of these USB serial ports work satisfactorily.

Following these items are two sections holding the actual MagPro settings; first there is a display of settings for all
states which is used to select a state for editing (by clicking on the information for that state) and then an area
where the settings for the selected state may be edited. The available settings are:

Mode
This selects between the various stimulator modes. The available modes for the various types of device are
(consult your MagPro documentation for details of these):

Standard Power Twin Dual

R30 Available

R30+MagOption Available Available Available

X100 Available

X100+MagOption Available Available Available Available

Waveform
This selects between the various types of stimulation waveform that are available. The available waveforms for the
various types of device are (consult your MagPro documentation for details of these):

Monophasic Biphasic Halfsine Biphasic Burst

R30 Available

R30+MagOption Available Available

X100 Available Available Available

X100+MagOption Available Available Available Available

Manual
Set this check box for this state to be controlled by the manual controls and not by Signal, clear it to give Signal
control.

Reverse
This check box, available for X100 systems only, selects a reversed waveform if checked. This field is disabled for
manually controlled states.

Power A (%)
This sets the stimulator power output as a percentage of the maximum available, you can set any value from 0 to
100. This field is disabled for manually controlled states.

Interval (ms)
This field, available in Twin and Dual modes only, sets the interval between the two pulses, you can use any value
from 1 to 3000 milliseconds. This field is disabled for manually controlled states.

Signal Version 6.06

23-702

Power B (%)
This item, available in Dual mode only, sets the secondary stimulator power output as a percentage of the maximum
available, you can set any value from 0 to 100. This field is disabled for manually controlled states.

Power (B/A)
This item, available in Twin mode only, sets the secondary stimulator power output as a fraction of the main (A)
power, you can set any value from 0.2 to 5. This field is disabled for manually controlled states.

Copy to all and Copy above
The buttons labelled Copy to all and Copy above can be used to set up many states quickly; Copy to all copies
the currently selected state to all other states, while Copy above copies the current state’s settings to all higher
numbered states. These buttons are available for all types of MagPro.

Test
The button labelled Test tests if communications with the MagPro can be established. It checks that you have the
correct COM port, that the serial line is connected and that the MagPro is communicating correctly with Signal. It
also detects if you have set an incorrect MagPro device type. The Test button is available for all types of MagPro.

MagPro connections and cabling

There are two connectors provided by MagPro for serial line control and external triggering of the unit. The serial
line connector is a standard PC-style connector, the COM2 input on the MagPro is the one used for control by
Signal, a null modem cable should be used between the MagPro and the computer running Signal as shown below.
A separate DSUB 9 pin female connector is used for the trigger connector, connections for this are shown below.

If your PC does not provide a serial line (a common situation with laptops) or no unused serial line connector is
available a USB serial line adapter can be used instead, but these can give problems so we advise using standard
serial port hardware if this is possible.

Two separate connections need to be made; serial line control from a PC and a TTL trigger signal from the 1401.
The standard high level trigger input suggested by MagPro works well with Signal and the 1401 and is used in the
diagrams shown below, consult the MagPro documentation if you require a different arrangement.

Cable for serial line connection

Auxiliary states devices

23-703

Cable for DSUB 9 trigger connector

To trigger the MagPro from the 1401 you only need the Trig In part of the cabling; connect the Trig In BNC to the
1401 digital output zero connector and generate trigger pulses on that output. If you are using the MagPro to
trigger 1401 data acquisition you will need the Trig Out part of the cabling instead; connect the Trig Out BNC to
the 1401 trigger input (we recommend configuring the MagPro trigger out as a low-going signal but either is usable
with suitable 1401 trigger configuration) to trigger the 1401 sweep. Consult your MagPro documentation for more
information.

Notes on MagPro use

A straightforward arrangement to use a MagPro with Signal would be as follows:

1. Connect the serial port of your computer to the MagPro serial line input using a null serial line cable. Connect
pin 1 of the DSUB 9 pin female connector to the 1401 digital output port 0 BNC socket found on the front of all
modern types of 1401. If you are using a 1401plus the digital output pulse is available from the 25-way digital
output socket on the front of the 1401.

2. In the outputs page of the sampling configuration, make sure that digital output bit zero is enabled for use.
Using the pulses configuration dialog set the initial level of digital output bit zero to 1 and place a pulse (which
will be low-going) in the outputs at the time when you want the MagPro to fire. This output pulse should be at
least 50 microseconds long – 1 millisecond works well.

3. The MagPro support uses Signal multiple states sampling, which should be set up in dynamic outputs mode.
You can use any number of extra states, each extra state providing separate MagPro settings. Each set of pulse
outputs should include digital output pulses to trigger the MagPro along with any other outputs required. The
MagPro support will work correctly with manual control of the states or with any style of automatic states
sequencing including protocols.

When Signal begins sampling with the MagPro support enabled, it checks for a correctly functioning MagPro
device as part of the process of initialising for sampling. If a MagPro is found and enabled then Signal will carry out
the initial configuration of the MagPro. While sampling is in progress, Signal will set up the MagPro using the
current state data before each sweep, it will then delay the start of each sweep until the MagPro reports that it is
armed and ready. At the end of each sweep the MagPro health is checked to make sure it is OK. Note that the
checks on MagPro readiness can impose a significant extra inter-sweep delay. In particular, switching to or from
from Power mode can take up to ten seconds.

If the MagPro coil temperature rises too high, the unit will disable itself and Signal will stop sampling. Once the coil
temperature has dropped sufficiently you can press ‘More’ on the sampling control panel to resume sampling
again.

If the MagPro is not triggered for more than a certain amount of time (five minutes by default) then the MagPro will
disable itself and sampling will stop.

Signal Version 6.06

23-704

If manual control is selected, the MagPro will fire on the trigger with whatever settings it has been given using the
front panel or with whatever settings it had prior manual mode being used.

CED 3304 current stimulator

The CED 3304 current stimulator can be used to generate controlled constant-current stimulations of up to 10
milliamps and is fully controlled by Signal, allowing you to set a different level of current for each state. Signal
controls the CED 3304 programmable constant current stimulator using a serial line or USB port to interact with the
hardware.

CED 3304 Safety notice

The CED 3304 current stimulator can generate outputs of up to 90 volts, which lies within the potentially lethal
range. Before using the device you must read the CED 3304 Owners Handbook paying particular attention to the
warnings and precautions section. In particular, you are reminded that the CED 3304 is not qualified for human use.
It is your responsibility to ensure that Signal’s control of a CED 3304 is set up in an appropriate and safe fashion
for the intended use.

CED 3304 Introduction

This documentation only describes the CED 3304 controls available from within Signal; for a complete
understanding of the effect these have upon the behaviour of the stimulator you should consult the CED 3304
Owners Handbook .

The CED 3304 produces current pulses in one of four current ranges: 10 and 100 microamps and 1 and 10 milliamps.
The current range is selected by a manual switch on the CED 3304. You specify a current range when you define
the stimulus settings in Signal; Signal will not let you sample if the wrong range has been set on the CED 3304.

The timing of the 3304 current pulses is controlled by a TTL signal connected to the front panel Trigger input.
Signal can control the timing of the current pulses with one of the 1401 digital outputs in Dynamic outputs mode, or
external equipment can control the pulsing in Static outputs mode. For safety reasons, the CED 3304 will switch off
a pulse after a preset limit is reached – see the 3304 documentation for details of how to control this limit.

Signal monitors the stimulator health; waiting until it is ready for use before allowing a sampling sweep to proceed
and terminating sampling if a hardware problem develops. To aid data analysis, Signal saves the stimulation current
in the data section variables of the sampled file. This value, in uA, is placed in the first user frame variable in the
sampled data file. The saved values can be retrieved using the script language and used as measurements in trend
plot generation.

CED 3304 support configuration

To configure the CED 3304 in Signal, open the sampling configuration
dialog and make sure that Multiple states is enabled in the General tab.
Open the States tab and make sure that you are in Dynamic outputs or
Static outputs mode. If CED 3304 support is present, there will be a button
labelled CED 3304. If this button is not present, reinstall Signal and make
sure that you select CED 3304 stimulator support. If the button is present,
but disabled, you are in External Digital states mode. Change the mode
to enable the button. Click the button to open the CED 3304 configuration
dialog.

From the configuration dialog you can enable use of the CED 3304, set the
serial line port used to communicate with the hardware and other overall
parameters, define the current settings for each state in use, set the active
level for the Trigger input and test for successful communications with the
CED 3304.

At the top of the dialog are settings that apply to all states. In the centre is
a list of the currents set for each state. Below this is a field to edit the
current for the selected state. At the bottom are buttons to copy settings,
get help, test the CED 3304 and accept the dialog settings.

Auxiliary states devices

23-705

Hardware selection
Set this to Use CED 3304 to use the stimulator or to Do not use if you do not want to make use of the 3304
support software in this sampling configuration.

Com port for communications
Signal connects to the CED 3304 either via a serial communication port, or through a USB port, which is setup as a
virtual COM port. This field sets the COM port that the CED 3304 is connected to. If you use the USB connection,
follow the instructions at the start of the Operation chapter of the CED 3304 Owners Handbook to obtain a
suitable device driver for your operating system.

Current range selection
This field sets the maximum current that you can enter for each state. You can select from 10 and 100 microamps
and 1 and 10 milliamps. This control matches the current range rotary switch on the front of the CED 3304 but does
not override its setting – the actual range switch setting must match the setting in this dialog or an error will be
generated when sampling is begun.

Active high trigger
Check the box for an active high trigger (current is generated while the CED 3304 Trigger input is at a high TTL
level). Clear the box for active low operation (current generated when the Trigger input is at a low TTL level). When
you are driving the trigger input from the 1401 digital outputs, it is usual to set an active high trigger.

Don’t generate settings text for window title
This check box prevents the 3304 system from generating text showing the current level that Signal can display in
the title bar of a sampling document. It is often useful to see what the 3304 settings are, but some users find it
distracting. A separate check box in the Signal sampling preferences must also be set to allow use of this text.

Settings for state...
This field displays and lets you edit the desired current for the state selected in the list of states. You can enter any
value (in microamps) from zero to the maximum available, for example in the 10 uA range you could enter: 0 or 8.234
or 10.

Copy to all and Copy above
The buttons labelled Copy to All and Copy above can be used to set up many states quickly; Copy to All copies
the currently selected state to all other states, while Copy Above copies the current state’s settings to all higher
numbered states.

Test
This button tests if communications with the CED 3304 can be established. It checks that you have the correct
COM port, that the serial line is connected and that the CED 3304 is operating correctly.

The Help, Cancel and OK buttons have their usual meanings.

Simple use
If you want to use the CED 3304 from Signal very simply with a single current setting, you must still enable multiple
states. Set one extra state (so states are enabled), and set the desired current for state zero, and then sample using
state zero only. This gives you access to the configuration dialog to set the basic CED 3304 parameters and enables
checking of CED 3304 behaviour during sampling and the recording of the stimulation settings.

Signal Version 6.06

23-706

CED 3304 Connections and cabling

The CED 3304 uses a USB A-B cable or a 9-pin serial-line cable (both are supplied with the unit) for control. Use
one cable or the other. If you plug in both, the USB connection will take precedence. See the Operation chapter of
the CED 3304 Owners Handbook for more information about the control cables.

The front panel Trigger input should be connected to the 1401 digital outputs or other TTL pulse source using a
standard BNC cable. The front panel Data and Clock inputs are not used with Signal and should be left
unconnected.

3304 serial cable

Notes on 3304 use

A straightforward arrangement to use a CED 3304 with Signal, assuming we use digital output bit 0 to control the
current pulse timing, would be as follows:

1. Connect your computer to the CED 3304 using the either a serial or use a USB connection. Connect the CED
3304 front panel Trigger BNC plug to the 1401 digital output 0 BNC socket found on the front of all modern
types of 1401. If you are using a 1401plus the digital output pulse is available from the 25-way digital output
socket on the front of the 1401.

2. In the Outputs page of the sampling configuration, make sure that digital output bit zero is enabled for use.
Using the pulses configuration dialog, set the initial level of digital output bit zero to 0 and place a pulse
(which will be high-going) in the outputs at the time when you want the CED 3304 to fire. This output pulse
should be as long as the required stimulation.

3. The CED 3304 support is designed to work with Signal multiple states sampling, which should be set up in
Dynamic outputs mode. Set one extra state for each output current setting you require and each state should
generate digital output pulses to trigger the CED 3304 plus any other outputs required. The CED 3304 support
will work with manual control of the states or with any style of automatic states sequencing including
protocols.

When Signal begins sampling with the CED 3304 support enabled it checks for a correctly functioning device. If a
CED 3304 is found, Signal will check the range switch setting, initialize the device and enable the trigger. While
sampling is in progress, Signal sets the output current using the state data before each sweep. At the start and end
of each sweep the CED 3304 health is checked to make sure it is OK. When sampling finishes, the CED 3304 trigger
is disabled.

Because of the extra overhead in setting up current levels for each sweep and checking that the device is operating
correctly, you may find that the maximum sweep rate with the CED 3304 is reduced.

Technical support

24-707

Technical support

Contacting CED

Technical support
We have software and hardware technical support desks that are available during UK working hours (and
somewhat beyond). You can call us by telephone or send us a message by FAX, but our preferred medium is email
as you can send example files and scripts as enclosures (even from within Signal with the File menu Send Mail
option).

USA and Canada: 1 800 345 7794
World-wide: +44 1223 420186
FAX: +44 1223 420488
email: softhelp@ced.co.uk
email: hardhelp@ced.co.uk

You can also find up to date information, example scripts, and Signal down-loadable updates on our Web site at
http://www.ced.co.uk

We also have an on-line forum where both CED staff and other CED users are able to share suggestions and ask
questions.

If you send us an attachment with your email, please have mercy … don’t send us gigabytes. We have a medium
speed link and decent email server so a few megabytes is fine, but for more than that we have a mechanism
available on our web site that is a much easier way to send us large data files - this can cope with files that are many
gigabytes in size, if necessary! Most problems that need a file can be illustrated with a file section (use the File
menu Export option to chop out a small piece) - this is still preferable as transferring gigabytes of data over the
Internet does take rather a long time.

Before you contact us please make sure you have checked that the information you need is not in the manuals or
the on-line help. The on-line help is more up-to-date than the manuals and the Index is always worth a try;
remember to try a few synonyms when searching for information.

Please tell us the serial number of your copy of Signal (this can be found in About Signal in the Help menu), the
Signal version number, the operating system version, and any hardware-related information that might be relevant
to the problem. If you have a crashing problem, please read the information about Dr Watson (below).

Using Dr Watson to report crash information
If Signal crashed out with a system error (General Protection fault, or the like), please send us all the information
that the system gives you as often we can pinpoint the offending line in the code given the register dump. The best
way to get the information is by using the DrWtsn32 program. If this program is enabled, it writes a log file called
DrWtsn32.log that describes what happened during a crash. This file is written to the folder:

%systemdrive%\Documents and Settings\All Users\Application Data\Microsoft\Dr Watson

unless you have explicitly changed this by running the DrWtsn32.exe program and modified the save path. %
systemdrive% is the drive where your operating system is installed, usually C:. If you are not getting any log files
written, open a command prompt and use the command:

DrWtsn32 -i

to enable it. You can also run the program by typing DrWtsn32 at the command prompt to configure other options.
The log file is a text file that you can open and read. Normally, each crash is appended to the end of the file, so if
your log file is huge, you may wish to only send us the most recent information from the end. Sending us this log
file plus a description of what you were doing often makes finding and fixing problems much quicker. If the problem
is easy to reproduce, please send us all the steps required to reproduce it. If it only happens very occasionally with
no obvious cause, the Dr Watson log file is essential. We give a very high priority to finding and fixing crashing
problems; we will generate a fix for the next release and may even be able to send you a fix or a work-around.

Sales related enquiries
Write, telephone, FAX or email us at:

Cambridge Electronic Design Ltd
Technical Centre,

mailto:softhelp@ced.co.uk
mailto:hardhelp@ced.co.uk
http://www.ced.co.uk
http://www.ced.co.uk/phpBB3/index.php
http://www.ced.co.uk/senditu.htm

Signal Version 6.06

24-708

139 Cambridge Road,
Milton,
Cambridge CB24 6AZ
UK

Telephone: +44 1223 420186
FAX: +44 1223 420488
email: sales@ced.co.uk

If you want price list or product information, you could try our World Wide Web page:
http://www.ced.co.uk

Revision history

The following changes, additions and fixes have been made to Signal within version 6.00. You can also get update
information, downloads and script examples from our web site. The revision history lists items under the following
headings:

New Extra features in the program or improvements in operation.

Fixes Repairs of broken features (bugs) and other corrections.

Changes An alteration to Signal (which may also be listed in New or Fixes) that may require you to change
your use of Signal, existing scripts or program operations. We try to minimise these.

The Known issues section lists known problems for which there is no fix currently available.

Revision 6.06

April 2021

Version 6.06 of Signal is a maintenance update with few new features and a number of fixes to the software. The
main Signal development work has now moved on to version 7, future releases of version 6 are expected to only
contain bug fixes.

New

1. Dynamic clamping experiments can now be carried out using a Micro1401-4.

2. A new HCursorVisible() script function has been added to control horizontal cursor visibility.

3. The System() function has been extended to return GUI thread timing info.

4. The System$() function has been extended to provide Signal command line access.

5. The FileName$() script function has been extended to allow it to return useful sections of the complete path
and file name such as the entire path and the whole file name.

6. A new SampleClampHP() script function has been added to allow control of the holding potential during
sampling.

Fixes

1. Sampling a very large number of channels could cause 1401 errors due to an excessively long string being
generated, this is now fixed for 0 to n port lists.

2. The CursorVisible() script function with -1 for the cursor number for all now works correctly.

3. The new CFS file is properly deleted if sampling is aborted.

4. Channel options read from an old sampling configuration are now displayed correctly.

5. The SampleSeqWave() script function did not work correctly with only one argument.

6. The dynamic clamp model list shows the DAC number correctly for HH(A/B).

7. The step value for a pulse with varying length was being corrupted previously if pulse times were not
displayed in seconds.

mailto:sales@ced.co.uk
http://www.ced.co.uk

Technical support

24-709

8. The day of week conversion in the FileTimeDate() script function previously failed for Saturday and
Sunday.

9. The current sampling state as displayed by the states bar is restored when the membrane analysis dialog
closes.

10. Measurements to an XY view using expression mode for cursor 0 iteration would give up after processing one
frame.

11. The OK button in the XY trend plot settings dialog is enabled correctly.

12. A leak of Windows resources when setting up for sampling has been corrected, this could previously have
caused Signal to fail.

13. The dialog allowing you to set the level for the WLEV virtual channel expression now accepts negative
values.

Changes

1. When exporting an XY view to a MATLAB data file, a MATLAB variable is now generated for any XY
channels with no visible data.

2. The XML information previously used for HH(A/B) dynamic clamping models was illegal according to the full
XML standard, this information is now saved using a T prefix which is legal. This information can then be
read by Signal version 7. Signal version 6 will read this information correctly when either the new T or the
illegal 3 prefixes are used.

Revision 6.05

October 2017

Version 6.05 of Signal is a maintenance update with few new features and a number of fixes to the software. The
main Signal development work has now moved on to version 7, future releases of version 6 are expected to only
contain bug fixes.

New

1. The D440 amplifier control dialog now includes the standard Reset Calibration button.

2. The signal conditioner settings in the Preferences dialog now includes the first and last channels which will
be tested for a signal conditioner.

3. New CursorX() and HCursorX() script commands and dialog expressions have been added.

4. New StrToViewX() and StrToChanY() script functions have been added. These are mostly used to
test dialog expressions but may be useful with script-created dialogs.

5. The new SampleClamp() script command has been added to allow control of the clamping experiment
support.

6.05a February 2018

1. The BIOPAC importer can now import older format big-endian files. To import modern ACQ files, users also
need the BIOPAC ACKAPI package.

2. The new Micro1401-4 hardware from CED is now supported, without support for dynamic clamping at this
point (to be added in version 6.06).

Fixes

1. The sampling configuration Ports page now initialises correctly when a D440 signal conditioner is connected.

2. The quick calibration dialog in the sampling configuration Ports page was not taking account of the 1401
ADC range.

3. The Protocol dialog used to set up states sequencing was overwriting protocols other than the first one.

Signal Version 6.06

24-710

4. The enabling of synaptic or leak models in the dynamic clamp system on a state by state basis is now saved
and restored correctly in the sampling configuration.

5. The grid view top heading height and side heading width was not being recalculated when the font size
changed.

6. FileClose(-1) was not closing grid views, this has now been corrected.

7. The use of halt in a script function that is called by a toolbar button press did not work, this has now been
corrected.

8. If a menu was open when the script opened a user dialog this would hang the system, this has now been
corrected.

9. The clamping system membrane analysis is now done earlier during the handling of a new sweep so that the
use of the analysis results in online trend plots works correctly.

10. Using Save As... from the file menu now sets the initial file name to the current one for text based views.

11. Using the EditClear() script function in a memory view no longer crashes Signal.

12. Any errors in data transfers from the 1401 to Signal are now reported with the correct error message.

13. The colour adjustments to ensure visibility that are used for X and Y axes now match those that are used
elsewhere.

14. The active cursor Extreme mode search was not using the reference level, this has now been corrected.

15. The behaviour of the active cursor dialogs have been corrected, the dialog was overwriting the
hysteresis/amplitude, width and minimum step values with values from the previous cursor when the cursor
changed. There was a similar effect with the active horizontal cursor dialog but this should not have been
visible.

16. The text export system will generate Unicode information on the clipboard if necessary.

17. The EditCopy() and EditCut() script commands did not return the format copied as documented, this
has been corrected.

18. Virtual and memory channel numbers that are shown in right-click context menu are now correct.

19. Dragging to select cells outside the displayed grid in the cursor regions and idealised trace event list
windows no longer crashes Signal.

20. The various dialogs used to build virtual channel expressions now use correct help identifiers so that the
correct help page is displayed.

21. The MemImport() script function now handles a supplied marker code correctly.

22. The SampleAbort() script function now returns an error code if the user clicks "No" to the dialog
querying this action.

23. The use of shortcut keys in the script-generated toolbar did not work, this has been corrected.

24. The browse buttons used to select a file holding user-defined values for the third component in the dynamic
clamping HH-ABC model were not working (they put the file name in the corresponding fields for the
inactivation component).

25. Signal can now read CFS files with waveform data types other than 16-bit integer and 64-bit floating point, it
still only writes these two formats.

26. The Optimise() script function now works on hidden channels as documented.

27. The online process dialog could previously cover the Frames between updates item with the Process
leeway field, preventing the frames between updates from being set.

28. Analysis processes created from a sampling configuration now don't generate spurious This will clear all
bins messages.

29. The Signal installer previously used to install the incorrect libraries required for export to MATLAB format
files, which caused this export format to be unavailable on some systems.

30. The Pulses dialog previously displayed an incorrect steps value for varying amplitude square pulses.

31. The U1401ToHost() and U1401To1401() script commands would always fail, this has been corrected.

32. The iteration channel units are now correctly displayed in the Measurements to data channel settings dialog.

6.05a February 2018

1. The CFS library has been changed to avoid possible read errors when working with very long data frames.

Technical support

24-711

2. If an auxiliary amplifier telegraph was selected in the clamping preferences, the standard 1401 telegraphs
would not work properly; this has now been corrected.

3. In rare circumstances, the D360 configuration dialog was resetting the high-pass filter value set by the user to
be the highest setting available.

4. FIRQuick() could crash or hang Signal if particularly strange filter frequencies were specified.

Changes

1. The time (X axis) resolution used for memory marker channels is now set to 1% of the minimum X spacing
seen in the file.

2. Channel drawing (except small dots) all use lower contrast visibility colour adjustments.

3. The lower contrast visibility mechanism has been adjusted so that you generally get a bit more contrast.

4. The curve fitting carried out as part of the clamping membrane analysis now uses half the stimulus pulse
width rather than a fixed time for the data to be fitted - this is generally better and also the user gets a lot more
control.

5. The 1401 ADC telegraph setup dialog now behaves rather better in that it does not treat blank text as an error.

Revision 6.04

August 2016

Version 6.04 of Signal adds the new grid display view, allows the optional hardware support (of signal conditioners,
stimulators and amplifier telegraphs) that is in use to be changed without requiring re-installation and provides
dialogs to change view titles and XY channel names and units. There are also a number of fixes to the software.

New

1. A new type of view that displays a grid of values has been added to Signal along with associated GrdXXX
script functions. At the moment grid views can only be usefully used from a script but in the longer term they
will be more generally used by Signal.

2. You can now select the signal conditioner, auxiliary stimulator or amplifier telegraphing system to be used
from the Edit menu Preferences dialog instead of having to re-install Signal.

3. Signal now operates on systems with high-resolution (high dots-per-inch) displays much better.

4. A new Window title dialog has been added (with revert mechanism), it is available via a right-click on the view
title bar or the Window Title item in the Window menu.

5. A new dialog has been added to set XY view channel titles and units, it is available from the Channel
information item in the View menu and by double-clicking in the title and units area of either axis.

6. A new 'random repeated' multiple states ordering mode has been added to the sequencing modes available.

7. The mouse pointer changes over the channel titles and units area of axes to indicate that you can double-click
there.

8. The mouse pointer changes when over the channel number part of a Y axis (click to change channel
selection), or the rectangle below all the Y axes (click to clear all channel selections) if there are any selected
channels.

9. The Edit menu Preferences dialog Data tab has a new option for maximum possible numeric accuracy in text
output.

10. The DrawMode(chan, item, val) form of this script function can be used to set individual values for
individual channels.

11. The Copy pulses dialog (available within the main Pulses configuration dialog) shows a message & disables
the OK button if the current settings mean that it will do nothing.

12. App(-7) reports the number of User handles in use for diagnostic purposes.

13. The Read() and ReadStr() script functions can now cope with d:h:m:s format.

Signal Version 6.06

24-712

14. The DlgValue$() script function can now be used to select a list item with a matching string.

15. The maximum number of script and sample bar buttons has been increased from 20 to 40.

16. The script #include statement now copes better with .. and . in paths when matching file names.

17. View font sizes are now preserved when the screen resolution changes (for example, when moving files to a
different system).

18. Keyboard shortcuts for control of sampling have been added.

Fixes

1. The Measurements to XY view dialog was showing the wrong channel units for the cursor 0 iteration
channel.

2. The System() and System$() script functions now handle Windows 10 correctly.

3. The D440 signal conditioner support used with no D440 amplifier available would previously cause Signal to
crash on exit (if help used) as the D440 COM code was not properly stopped.

4. The Draw(line) script function previously did not work correctly when used on a text view.

5. Too many views would previously cause Signal to collapse due to exceeding the GDI handle limit, now the
used GDI and USER handles are checked before any view is opened.

6. The XRange() script function used on a grid view required 2 arguments, it now works correctly with 1.

7. The mouse cursor handling has been corrected so that it no longer flickers when moving over axes.

8. Threshold crossing searches have been made much more robust with a (very small) imposed hysteresis.

9. The User defined leak dynamic clamping model now prompts for a scale value in the correct units of pA rather
than nS.

10. The File menu Close command used on a view showing a Print Preview previously leaked memory.

11. Script language functions called by toolbars and dialogs (the idle function and those responding to user
actions) could previously not change the frame if the Toolbar() or DlgAllow() settings prevented the user
from doing so.

12. Saving a file with spaces or the # character in the file name was previously being prevented.

13. View titles read from the sampling configuration were overriding the title set up by automatic file name
generation.

14. Progress dialogs displayed during lengthy operations did not update frequently enough to work well.

15. There is now better error checking in measurement dialogs especially when involving HCursors.

16. The pulses dialog protects against arrow up/down used on the trigger item of the control track.

17. The settings dialog for the Hodgkin-Huxley (Alpha/Beta) dynamic clamping model no longer uses the wrong
input channel for testing units.

18. The Unicode build of Signal did not read Font information correctly from old-style (.sgr, .sgc) resource files.

19. Sampling error messages no longer sometimes mix ASCII and Unicode to give scrambled information.

20. Signal will now save or copy views as an image correctly even if the view is hidden.

21. The Magstim support has been adjusted to get rid of occasional E83 errors from the Magstim, a separate error
that occurred if switching to a state with a zero BiStim interval when the current interval was already zero, and
another error that occurred when enabling or disabling Hi-Res timing mode when the current pulse interval
was zero. All of these have only been seen with the BiStim but the E83 error could might occur with other
devices.

22. Magstim devices will automatically disarm if the wait for a sweep trigger exceeds 60 seconds, Signal will now
automatically re-arm them.

23. The YAxisStyle() and YAxisAttrib() script functions are now recorded correctly by the Y axis dialog.

24. The signal preview display for D360, D440 and Power1401 signal conditioners now draws correctly.

Technical support

24-713

25. The script compiler is now stricter about forward declarations to functions, previously a function name might
be accepted in inappropriate circumstances.

26. The font size is now correctly calculated for printing.

27. The behaviour of the semi-random multiple states ordering mode has been corrected, previously it was doing
what random repeated mode does now.

28. Mixing / and \ characters in a file path used with #include no longer confuses tests for a modified file.

29. Marker data is now correctly imported from foreign file formats.

30. When the FilePathSet$() script function was used to generate a dialog with which the user could select a
directory, any initial directory in path$ was being ignored.

31. When the FileExportAs() script function was used with a blank name to save the sampling configuration
with the file name set by using a dialog, it used to fail to create the file save as dialog and instead saved the
sampling configuration as ".sgcx". This has now been corrected.

32. The recording of the XRange() script function by the X axis dialog has been corrected.

33. Standard Display was setting the y-axis limits before adjusting the Y axis style. So if the style was changed
from non-linear to linear, the new limits might be wildly incorrect.

6.04a September 2016

1. There are no changes to the Signal program in this release; the installer has been corrected so that the initial
auxiliary states and auxiliary telegraph devices are properly set up.

6.04b March 2017

1. The files installed have been corrected to avoid possible problems with exporting to MATLAB format files.

2. The multiple states protocol dialog was corrupting the information for protocols other than the first one.

3. The active cursor dialog and the active horizontal cursor dialog were overwriting some values with values
from the previous cursor whenever the cursor was changed.

Changes

1. Adding a single pair of values with the SampleTel() function will now replace an existing entry pair if the
voltage level matches that in the existing entry - this matches the interactive behaviour of the dialog.

2. The check for the latest downloadable version of Signal is now done inside the Signal application rather than
the About Signal dialog box. Previously, with no internet access, using the About Signal dialog box would
prevent Signal from being used for up to a minute. As it now stands, if there is no internet access, the
program window will take up to a minute to close if an attempt to do so is made within about a minute of the
program being run.

3. Any sort of quiet startup now does not display the "splash screen" - the version of the About Signal dialog
box that normally appears while Signal is starting up.

4. The view title for new data that is being sampled is now not forced to upper case.

5. The multiple states protocol, artefact rejection and waveform paste dialogs now handles any bad values
entered rather better; displaying any error information in red at the bottom of the dialog.

Revision 6.03

June 2015

Version 6.03 of Signal provides Unicode support, script array initialisation, support for new hardware and enhanced
auto-averaging mechanisms.

New

1. Signal is now built in Unicode mode where all text uses the Unicode character set. If you take advantage of
this to use extended (non-ASCII) characters in scripts and resource files, older version of Signal will be able
to read the scripts and resources, but will not interpret the extended characters correctly. If you continue to

Signal Version 6.06

24-714

use only characters from the standard ASCII character set, older versions of Signal will be able to read and
use your new files without any problems.

2. Signal now periodically saves text-based, memory and XY documents and in the event of a program crash, will
attempt to recover the last saved state when it is restarted.

3. The script language has been extended to allow arrays to be initialised and even declared as const: for
example: const colour$[]:={"Red","Green","Blue"};

4. You can declare an array passed into a user-defined func or proc as const. Built-in script functions that
accept array arguments but do not change them also declare these array arguments as const.

5. The Digitimer D440 amplifier has been added to the available signal conditioner devices.

6. The MagVenture MagPro transcranial magnetic stimulators has been added to the available auxiliary states
devices.

7. Auto-averaging analysis now includes options to limit the maximum number of frames in the memory view
holding the averaged data (when the frame limit is reached the analysis 'wraps round' and adds into the
averages starting with frame 1 again) and to select the destination frame using the source frame state number.
The SetAutoAv() script function has been extended to support this new functionality.

8. The script language now allows you to use the underscore character (_) as part of a symbol name.

9. The script language now has predefined constants for the Signal version and the mathematical constants π
and e.

10. The ternary (?) operator now optimises a branch away if the result is a constant expression, for example: const
v := _Version >= 603 ? 1 : 0; This is more valuable than it immediately appears; it means that one of the two
possible expressions that can generate the result will vanish during the compilation process, before it is
actually compiled. This in its turn means that if you do something like: const v := _Version >= 603 ?
InStrRE(...) : 0; the InStrRE() bit will be ignored if the Signal version is too low, so you can include
new script functions into scripts in such a way that the script will still compile correctly in Signal versions that
do not include the new script function. The if statement will behave similarly when used thus: if (_Version
>= 603) then.....

11. Signal now allows up to five file comment lines to be placed into a data file, each up to 72 characters long. The
file comment dialog, file information dialog and the FileComment$() script function have all been altered as
appropriate.

12. The MemSetItem(), MemGetItem(), MemImport(), MemDeleteItem() and MemDeleteTime() script
functions will all operate on ordinary marker channels if they are in memory frames - that is, frames appended
to a file view or frames in a memory view.

13. The FrameUserVar() script function has been extended to allow the name and units of a user frame variable
to be read back or changed.

14. The ChanPixel() script command has been extended to return the pixel co-ordinates of various screen
rectangles.

15. A Reload frame option has been added to the Edit menu to directly discard changed data or frame variables.

16. The file information dialog and all relevant script language functions now have access to user frame variable
information for memory views.

17. The DebugList() script command in timing mode has new flags to list commands that were used in the
timing session (and therefore have timing information), or to only list unused commands.

18. The ArrFFT() script command can now specify the type of window to apply.

19. A new preferences display option allows use of Direct2D for text view output.

20. You can now resize a script array to 0 size (previously we trapped this as an error).

21. The new ArrConv() script command performs discrete convolutions.

22. The new Spline2D() script function performs 2D interpolation and can generate "heat maps".

23. The new InStrRE() script function searches text string for regular expressions.

24. The script editor can identify local and global variables; you can right-click a variable to go to its definition
(even in an include file).

Technical support

24-715

25. Excessive script call stack usage is now trapped. This is usually caused by a script function recursively
calling itself.

26. You can now right-click on a fit and select "Copy fit for VC" to copy an equivalent virtual channel expression
to the clipboard.

27. The CursorLabel() and HCursorLabel() script functions have gained a new (&form$, num%) variant to
read back the format string.

28. The ToolbarEnable() script function allows an array to be given as the first argument so that you can
enable or disable a list of buttons with a single function call.

29. A new DlgImage() script function has been added to the script language as an experiment. This lets you
add a bitmap image to a user-defined dialog.

30. When Signal enters the script debugging state, it now reopens any previously open debug windows, initial
scroll bars are correctly shown in all debug windows.

31. The Windows dialog now pays attention to the selected window(s) properties when enabling and disabling
buttons and can optionally show all windows.

32. The copy as text settings dialog now includes an option to include channel units, and the
ExportTextFormat() script function has a flags parameter bit that does the same thing.

33. Changed view data will be redrawn in Yield() and on debug break.

34. The new MarkInfo() script function returns the number of values attached to each item in a real marker
channel.

35. SampleAuxStateParam(6) will return Magstim device status information when used during the sampling
process (and of course only if the Magstim support is installed and in use).

36. The behaviour of Modified() has been tidied and corrected and the documentation made clearer,
FrameSave() now saves changed frame variables as well as changed frame data.

37. The variable edit dialogs provided within the script debugger now handles long strings better.

38. The BinToX() and XToBin() script functions have been extended to operate upon all types of channel.

39. The FileSaveAs() and FileExportAs() script functions now both copy all available frame variables to
the destination file, file variable values are also copied where possible.

40. A new SampleTriggerInv() script function has been added to control the rising edge trigger option in the
sampling configuration.

Fixes

1. If a script ended in "if ... then ... halt endif", the resulting compiled script could crash Signal
when used.

2. The Read() function now correctly reads a full line of text and not just the first character.

3. Changes have been made to text views to avoid possible loss of the folding controls.

4. The text export process has been adjusted to avoid possible loss of the previous locale setting.

5. The use of external exporters and the MATLAB access script functions have been adjusted to protect against
spurious locale changes.

6. The D360 signal conditioner support code now returns a correct list of possible sources.

7. Bit 0 in the FileConvert$() script function flags argument is now interpreted correctly.

8. The last line of the cursor values or cursor regions windows is no longer repeated when scrolling up.

9. Previously, the FiltCalc() script function would fail if the corresponding filter hadn't been initialised.

10. The CursorLabel(style, 0) script function now sets the style for cursor 0 (as documented), and not all
cursors.

11. Previously, a file comment set during the sampling could be inaccessible until the file was closed and re-
opened.

12. In a user-defined dialog, selecting an item in a DlgReal() or DlgInteger() drop-down list did not work.
Typing a value worked correctly.

Signal Version 6.06

24-716

13. The script compiler has been altered to prevent possible crashes when accessing view data as an array.

14. Resizing the cursor values or cursor regions windows now no longer forces the display to show column and
row 0.

15. The IIRInfo() script function result is now the filter type as documented.

16. The script compiler now does not keep included script files open once compilation is complete, previously
this would make it impossible to write changes back into the include file.

17. The curve fitting system now handles times in milliseconds correctly.

18. If a script included multiple files, the debugger could get confused and show the step marker in the wrong file.

19. Previously, saving an empty XY-view channel could cause Signal to crash.

20. The ternary (?) operator now insists on a numeric expression before the ?, previously it would allow other
things and then malfunction.

21. The D360 signal conditioner control dialog now initialises correctly.

22. A dynamic clamping user-defined synapse model using a table greater than 31488 points in size would exceed
the available memory and sometimes crash Signal. Now any size of table up to the allowed maximum
(4,096,000) can be used subject to available 1401 memory.

23. The ColourSet() script function with size args of 0 or -1 now behaves as documented.

24. The Help() script command would previously hang if the topic lookup required a choice of target items.

25. The multiple states page in the sampling configuration dialog would cause Signal to fail if the number of
states was increased in static output or external digital modes.

26. The FrameGetIntVar(), FrameGetRealVar(), FrameGetStrVar$(), FileGetIntVar(),
FileGetRealVar()and FileGetStrVar$()script functions now all correctly return the variable number in
the second argument.

27. The SerialRead() script function has been altered so that it deals correctly with situations where the
external device supplies large amounts of text between each line terminator.

28. Searches for channel features would often give up one point too soon, or start one point too early when
searching backwards.

29. Measurements to a data channel could think that it was stuck and stop processing when in fact all was OK,
now it is more tolerant.

30. Points mode cursor 0 iteration mode could miss out the first point in the frame, now it will not do so.

31. The Power in Band virtual channel mechanisms have been adjusted so that the virtual channel draws
correctly during sampling.

32. The Measurements to XY view analysis settings dialog was broken so that previously all measurements were
an average of points with a frame even when this option was not selected.

33. Fitted curves in XY views are correctly printed and shown in bitmaps and metafiles, previously not all of the
fitted curve was drawn.

34. Frame variables holding membrane analysis results from clamping experiments were previously ignored, they
are now shown in the File information dialog and available for trend plot measurements.

35. Script variables that were declared and initialised with a constant value within a loop were not being re-
initialised each time round the loop. This is now handled correctly.

36. Writing text to an external text file without a view has not worked since version 6.01, it is now done correctly.

37. Previously, the View menu Standard display command or the ViewStandard() script function might have
crashed Signal, or not worked correctly.

38. Setting the minimum interval to zero when importing from a waveform to a memory marker now works
correctly, previously the import mechanism would only find the first feature.

39. If you tried to use the Edit menu Find dialog on a view that was iconised, the dialog would be mispositioned
off the screen and could not be retrieved.

40. In a number of places, most notably data export to MATLAB and the memory channel Add item dialog, real
marker channels with more than one real value per item would be treated as though they only had one item.

Technical support

24-717

6.03a

41. The special Sampled frames overdrawing mode could cause problems when sampling finished or when data
files sampled using this display mode were reloaded as it was not handled correctly offline. Signal now
converts this overdraw mode to All frames when not sampling.

42. Overdraw settings using such a short time limit that no frames were left to be overdrawn could hang Signal;
now just the current frame is drawn.

43. Changes to the Y axis range always erases channels overdrawn using the special Sampled frames
overdrawing mode so that all data shown is drawn correctly.

6.03b

44. Text file document names and window titles were being changed when a changed document was
automatically saved so as to allow auto-recovery in the case of a Signal crash, this has been corrected.

6.03c

45. Signal no longer uses the wrong input channel for testing the channel units in the alpha/beta dynamic
clamping model.

46. Saving files with file names containing the space and # characters is now allowed.

47. When plotting the iteration count to an XY view, a zero value is now plotted when no iteration points are
found when analysing a frame.

48. Any changes made to a ramp pulse's step options are not lost when preview button clicked in the pulses
configuration dialog.

49. The peri-trigger sampling mode pre-trigger time now does not change when the sampling rate is changed.

50. Digital markers are now logged at the correct time when sampling in peri-trigger mode.

51. The messages indicating a sampling error have been corrected, previously ASCII and Unicode were mixed-up
to give scrambled message text.

Changes

1. Paste has been added to the right-click context menu for file and memory views.

2. An asterisk character (*) is now added to the data view title if channel data or frame variables have been
changed.

3. An active horizontal cursor now acts as if static when placed on a channel without a Y axis.

4. If you chained scripts together using ScriptRun(), then broke into the debugger using the Esc key at the
point where a chained script was compiling, compiling was aborted and the script halted (which was probably
not what was intended). An Esc during compile now only causes an abort if the compiler has been running
for a few seconds.

5. The frame header generated when copying or exporting as text now includes the frame state number and state
label (if not blank).

6. The interact bar and script toolbar now use the standard Signal dialog font for message text.

7. The FiltAtten() script function now returns a negative value as this is an attenuation, the FiltInfo(x, -1)
function result has been changed to match.

8. The default font for user-defined dialogs is now equivalent to DlgFont(1) rather than DlgFont(0). There is
a new Preferences compatibility option to force the old behaviour.

9. Signal conditioner error messages are now written (if enabled) to the log window instead of to the
CEDCOND.LOG file.

10. The SampleClear() script function now resets the channel calibration & conditioner settings.

11. The SampleLimitFrames(), SampleLimitSize() and SampleLimitTime() script functions now all set
the relevant limit to 0 and disabled if called with a zero argument.

12. Threshold searches searches use linear interpolation to get the exact start level and use this to allow
immediate (on first point) search success.

13. The SetCopy() script function now ignores virtual channels, real marker channels and idealised trace
channels when creating the new view.

Signal Version 6.06

24-718

14. More space in the Leak subtraction settings dialog has been made available for error messages so that they
are not truncated.

15. The script language compiler used to allow floating point variables to be passed to functions which expected
a reference to an integer variable. This has now been prevented, an option in the compatibility section of the
preferences can be used to revert to the previous behaviour.

16. The "Info..." command in right click context menus has been changed to "File information..." to match the
equivalent View menu command.

17. The File information dialog display has been adjusted to show only those variables whose values are not
already shown in the general information area.

18. The Edit menu Find Again and Find Last commands for text based views are now called Find Next and Find
Previous as this is the more common usage.

Revision 6.02

July 2014

Version 6.02 of Signal provides active horizontal cursors and an experimenter's notebook. We have also extended
the built-in processing options by providing interval histogram (INTH) analysis of marker data.

New

1. It is now possible to set up horizontal cursors as active, normally by using measurements taken from the
channel upon which the horizontal cursor is placed. The active horizontal cursor modes available include the
channel value at a set point, the mean channel value over a time range and an expression string such as
"HCursor(1) + 1.5" which is evaluated to generate the measurement.

2. A new HCursorActive() script function has been provided to set and get active horizontal cursor
parameters. A new HCursorValid() script function tests the validity of a horizontal cursor position.

3. An experimenter's notebook has been added to the data stored with Signal data files. This notebook
automatically records the settings used to sample data, actions taken during sampling including changes to
the pulse outputs and dynamic clamp models, offline modifications of the CFS data and notes made by the
user.

4. A new processing mechanism that generates interval histograms from marker data has been added, along with
a matching SetINTH() script function.

5. A new "Lock to cursor" item has been added to the pop up menus generated by right-clicking on a vertical or
horizontal cursor.

6. A new and more elegant CursorActive() script function has been provided, this replaces the messier (and
now deprecated) CursorMode(), CursorActiveSet() and CursorActiveGet() functions.

7. When sampling data while not writing the collected data to disk, the Write to disk at sweep end check box
text in the sampling control panel will be shown in red to remind you that data may be lost.

8. Any data frames appended to a file or memory view will have a reasonable absolute frame start time set.

9. When debugging a script, the text caret moves to the start of each statement rather than the start of the line
containing the statement; this is helpful when a script has multiple statements on one line.

10. Synapse dynamic clamping models are not reset at the end of a sweep when using gap-free mode.

11. The various dialogs provided to define details of modify channel operations (for example to set the scale
factor) all show the channels that are going to be changed.

12. The multiple frames dialog and filter apply dialog both show the frames and channels that will be changed and
disable the OK button if the current settings mean that nothing will be done.

13. An option to overdraw the Y source channel has been added to the settings dialog for measurements to a real
marker channel. This option is also available via bit 3 (value 8) of the flg% parameter to the
MeasureToChan() script function.

14. The new FrameGapFree() function gives access to the flag indicating if the data file was sampled in gap-
free mode and can set the gap free flag in memory views created by Signal.

Technical support

24-719

15. Right-clicking in the title bar of a view offers a popup menu where you can copy the path to the associated
file to the clipboard.

16. The standard error in the mean (SEM) and RMS error values have been added to the range of available cursor
region measurements, the ChanMeasure() script function and measurements to XY views and data channels.

17. The amplitude histogram and open closed amplitude histogram settings dialogs recalculate the bin width as
necessary if the Y axis range of the relevant channel changes.

18. An Import button has been added to the new memory channel dialog.

19. The dialog used to select the channels, frames and time ranges for export to a CFS file now checks all fields
dynamically are they are changed.

Fixes

1. The FrontView() script function would attempt to bring external text and binary files without associated
windows to the front, it now does nothing when used with these files.

2. The FileCopy() script function could fail in the 64-bit build of Signal due to a previous file operation still
running, the copy operation is now retried to avoid this problem.

3. Measurements making use of frame variable values now always use the correct frame number to find the
variable value.

4. Fitting events in SCAN analysis which became too short for the time resolution now correctly removes the
events from the idealised trace. Previously the removal process would corrupt the idealised trace.

5. Undoing a trace edit in the idealised trace editor could fail; corrupting the trace in the process.

6. The range of trigger bit values allowed by the SampleAuxStateParam() script function for the Magstim has
been corrected.

7. Frame selectors in dialogs now react correctly to the user entering an arbitrary list of frame numbers.

8. Script errors in a function linked to a toolbar, dialog or a dialog button did not indicate the script line that
caused them.

9. Moving the text caret to a line in a text-based view did not always scroll the view so that this line was visible.

10. The behaviour of the Del key when used to hide selected channels has been corrected.

11. Script errors that were not related to a specific argument, for example calling DlgShow() with too few
arguments, reported an error number rather than a more helpful message.

12. When recording user actions, clicking on a text-based view did not always record a FrontView() command
or add ViewFind("view title..."); to the start of the script.

13. The amplitude histogram, open closed time histogram, open closed amplitude histogram and burst duration
histogram settings dialogs all recalculate the bin width, number of bins and histogram width as necessary
when other relevant changes are made.

14. Signal now copes correctly if you change the destination channel type in the measurements to data channel
settings dialog and re-process.

Changes

1. Data channel Y axes can become more compact before space is saved by ceasing to show horizontally drawn
axis units.

2. If the CursorMode() script function is used to set a cursor 0 mode that is not allowed for cursor 0, the mode
is forced to zero.

3. The multiple states protocol dialog now prevents entry of state numbers greater than those being used.

4. Digital filtering and multi-frame analysis both ensure that the last frame modified is flushed-out to disk rather
than allowing the changed data to remain in an unsaved or undiscarded state.

5. The range of COM port numbers allowed by the SampleAuxStateParam() script function for the Magstim
and CED 3304 have been extended to allow port numbers from 1 to 19.

Signal Version 6.06

24-720

Revision 6.01

March 2014

Version 6.01 of Signal extends the functionality of real marker channels and adds a large number of enhancements
to the dynamic clamping system. We have also made significant changes to the Magstim control software, mostly
to ensure the safety of the equipment and subject.

New

1. The Hodgkin-Huxley (Alpha/Beta) dynamic clamping model has been extended so that it now has three
components (the third one being identical to the original two), the output being the product of all three
components.

2. All of the general-purpose dynamic clamping synapse models (Alpha, Destexhe, Exponential, Exponential
difference and User defined) have been extended to include a receptor type which can any of Linear, GHK,
Boltzmann or User defined.

3. The dynamic clamping noise model has been extended to provide GHK and Boltzmann scaling in addition to
the unscaled and user-defined scaling forms already available.

4. The dynamic clamping Hodgkin-Huxley (Tau) model has been extended by allowing user-generated tables to
be used instead of the standard functions.

5. An option to disable all DC models at the start of sampling has been added to the main dynamic clamping
models dialog.

6. A new option to always draw marker code values as two hexadecimal digits has been added to the draw mode
dialog, the DrawMode() script function has been extended to match this.

7. A new option to disable drawing of the centre line for markers drawn as Lines has been added to the draw
mode dialog, the DrawMode() script function has been extended to match this.

8. Markers drawn as Dots or Lines can now be drawn using colours selected by the marker code value in the
same manner as real markers drawn as a Waveform.

9. A new ArrStats() script command has been added to allow you to quickly calculate statistical measures
from array data.

10. A new ArrHist() script command has been added to generate a histogram by binning array data.

11. A new MATTrace() script command has been added to calculate the trace (the sum of the diagonal) of a
square matrix.

12. The FitLine() script command now operates on real marker channels and XY view data as well as waveform
channels.

13. The Sample Bar and the Script Bar now both have a Remove button option in the popup menu provided by a
right mouse-click on a button.

14. The software used to control the Magstim Rapid TMS stimulator has been extended by adding mechanisms
to check for excessive power dissipation in the hardware; it checks for problems while setting up for sampling
and when necessary holds off the next sweep in order to protect the hardware by increasing the interval
between stimulations.

15. The software used to control Magstim TMS stimulators always reads back the current settings after they
have been set to make sure that they are correct.

16. The software used to control Magstim TMS stimulators will now read back and display any error codes
generated by the Magstim system. In addition the Magstim control system now logs a much greater amount
of information to the log window to help with diagnosing errors.

17. The script editor now displays tooltips when the mouse pointer hovers over the name of a known function.

18. Output resets in a sampling configuration are applied (if the Apply when sampling configuration is loaded
option is selected) when the sampling configuration is loaded by any means including the sample
configuration bar.

19. The Error$() script function is now able to generate a result for all error codes associated with resource
files.

Technical support

24-721

20. The absolute frame start time is now set in sampled data collected using Fast fixed interval mode.

Fixes

1. The DebugHeap() script function has been adjusted to avoid possible problems with multi-threaded code.

2. The drawing of fitted curves over XY view data has been adjusted so that the X range over which the fitted
curve is drawn takes any XY channel offsets into account.

3. The documentation of the FileConvert$() script function has been corrected to include the (already
available) cmd$ parameter and the documentation of the various importers has been updated to give
information about what can be put into cmd$.

4. The manual control option in the Magstim Rapid setup dialog has been removed as it is unusable - the UI
used to control the stimulator manually has to be disconnected in order to control the device using Signal.

5. The help button (and F1 key) in the output reset dialogs now work correctly.

6. The pulses dialog testing for timing errors has been corrected so that any timing problems with the sampling
sweep trigger are shown.

7. The Error$() script function now generates the correct result for all error codes associated with CFS data
files.

8. When using the virtual channel dialog while frame 0 is the current frame, the virtual channel data is now
zeroed if the virtual channel expression is bad.

9. The sampling configuration dialog could incorrectly increase the outputs length (for Extended and Fixed
interval modes) when the waveform sample rate was reduced, this has now been corrected.

10. In the 64-bit build of Signal 6.00, the frame state number field was not shown correctly in the digital filter apply
dialog, the multiple frames dialog and the curve fitting dialog, these have all been corrected.

11. The dialog used to select the channel whose value would be measured for a user-defined vertical cursor label
previously included a 'Selected' item, which did not work correctly if used.

12. Where a user-defined vertical cursor label includes a measurement from a channel, the label is updated when
the relevant channel Y axis is changed in such a way as to change the formatting of the Y axis numbers.

13. A vertical cursor label that makes use of a channel data value at the cursor position will be always be
refreshed if the channel data at the cursor position is changed, previously this might not happen.

14. The user dialog change function used to get called whenever the input focus moved away from a numeric
field even if the field has not been changed, this has now been corrected.

15. In certain circumstances when using MatLabPut() to copy an array of integer data over to MATLAB too
much data could be copied into the destination MATLAB array, this has now been corrected.

Changes

1. The rectification option in the dynamic clamping OU Noise model can now be set differently for different
sampling states and can be changed while sampling.

2. Multiple dynamic clamping model dialogs can now be opened simultaneously during sampling so that model
parameters can be efficiently manipulated, opening a model dialog now does not minimise the main dynamic
clamping setup dialog.

3. The Y axis range optimise command will use the range of all grouped channels if the Y axis is locked.

4. The ChanList() script function now returns -1 for a bad string parameter.

5. The IFc() virtual channel expression now behaves as IF() if there are only two markers as cubic splining will
not be possible.

6. The minimum preferred Power1401-3 monitor ROM version number has been updated to 4, as this release fixes
a flaw in the data transfer mechanisms that could cause temporary corruption of dynamic clamp models when
they are updated. Users with older Power1401-3 monitor ROMs are warned when Signal starts up that an
upgrade is needed, but are not prevented from sampling.

Signal Version 6.06

24-722

7. The information held in the XML resources file is not completely erased before the new information is added;
this will not make any difference to users but it will ensure that any extra information added in later versions
of Signal is not accidentally erased if the file is viewed with an earlier version.

8. The order in which channels are shown in channel selectors in the various process settings and virtual
channel dialogs now matches the channel ordering in the associated data view.

9. The pulses dialog now always displays the time range for the outputs using sufficient precision based upon
the outputs timing resolution.

Revision 6.00

November 2013

As this is a new version, we start with a clean sheet, so there are no fixes. This version is contemporaneous with
version 5.10 of Signal and inherits all bug fixes up to that point. We have tried very hard to make version 6
backwards compatible with version 5. CFS data files, sampling configurations and old-style resource files are 100%
compatible but marker and real marker memory channels created in version 6 will not be opened by version 5.
Version 5 scripts should run without any problems.

New

1. A new real marker channel type has been added to Signal's repertoire, this contains marker data extended by
attaching one or more floating-point values to each marker.

2. The memory channel system previously used to store idealised trace data has been extended to allow marker
and real-marker channels.

3. New memory channel functions have been added to the analysis menu allow you to interactively create, add
items to, import into and delete items from memory channels (the specialised mechanisms provided for
handling idealised trace data are retained). These dialogs are matched by new MemXXXX script functions.

4. A new processing mechanism that generates marker or real marker data in memory channels has been added.
Like other processes, this works both on and offline and can be part of a sampling configuration (and of
course can be scripted).

5. The virtual channel system has been extended to provide mechanisms to generate a waveform from real
marker channel data.

6. Both 64- and 32-bit versions of Signal version 6 are shipped, the user can choose which one to install if using
a 64-bit version of Windows. The 64-bit version requires a 64-bit version of Windows, is some 10 percent
faster than the 32-bit version, will interface with 64-bit versions of MATLAB and is wholly compatible with
the 32-bit version.

7. Standard 1401 (voltage level based) telegraphs can now be used alongside any installed auxiliary telegraph
system, rather than only being available if no auxiliary telegraph support has been installed. This allows more
flexibility for the more complex clamping experiments.

8. The membrane analysis dialog has been adjusted to make the analysis more robust and to provide clearer
messages indicating the cause of any problems.

9. A new DlgFont() script command has been added to allow you to select the font used for script-generated
dialogs.

10. Drawing mode options for marker data have been extended to allow selection of the marker code byte shown
and the real marker value used and to provide a Plot drawing mode for real marker channels. The DrawMode()
script function has been extended to support Plot mode, the new MarkShow() and ChanIndex() functions
provide extra functionality.

11. Extra options to run immediately and force write to disk have added to the sample bar system, both the sample
bar and the script bar provide useful right-click context menus.

12. Various script commands have been extended to support the new real marker channel type; MarkCode(),
NextTime() and LastTime() can read the real value(s), MarkEdit() can change the real value(s).

Technical support

24-723

13. The NextTime(), LastTime() and MarkCode() script functions can use a single integer value to read back
the first marker code byte, MarkEdit() can use a single integer value to set the first marker code byte.

14. A Duplicate model button has been added to dynamic clamp models dialog, a rectification option has been
added to the dynamic clamping noise model.

15. A number of extensions have been made to the FileExportAs() script function to provide greater flexibility,
in particular it is now possible to allow the user to choose the type of file that is generated.

16. File export to a new CFS file can now deal with waveform channels with different sampling intervals.

17. File export to MATLAB-format .mat files has been extended to support creation of the latest version 7.3
format files.

18. Alt+key shortcut keys can be assigned to buttons in the sample and script bars by putting an ampersand (&)
into the button label before the required shortcut character.

19. Dynamic-outputs multiple states are allowed when no outputs are enabled, as this might prove useful in
certain circumstances - for example when controlling an auxiliary states device.

Changes

1. The analysis menu New XY View command and toolbar button has been replaced by a Measurements item
holding sub-options for XY View, Data Channel and XY View (Trend plot). The functionality of the XY
view items is unchanged.

2. The Outputs frame sampling sweep mode has been renamed and is now referred to as Extended mode, as we
believe this name will be less confusing to users. This is purely a change in nomenclature, there is no change
in the behaviour of this sweep mode.

3. The right-click context menu has been extended to give quick access to the new memory channel dialogs for
marker-class memory channels.

4. Marker and real marker data exported to a text file or text on the clipboard now always includes the marker
times.

5. The values usable with the "Compat=x" string option to control MATLAB file format export from a script
have been extended; a value of zero now selects the most recent .mat file format that is currently supported
rather than specifically version 7.

6. The Amplitude measurement in the cursor regions window and matching measurement types in
ChanMeasure() and MeasureX() are now all referred-to as Peak to Peak; no functionality has changed.

7. The MATLAB DLLs installed with Signal to support file export to MATLAB-format .mat files have been
updated to the latest (R2013b) available versions. This should make the data export operation more robust but
otherwise have no effect.

Common questions

I've set a sampling configuration. How do I sample data with Signal?

Use the File menu New command and select a data document or click the Run Now button in the sampling
configuration dialog. This opens a new, empty data file. You can start sampling either by using the Sample menu
Start sampling command, or clicking the Start button in the Sampling control panel.

Signal beeps at me when I try to open a new data file for sampling or exit
from the program.

If you have a new data file, either sampling or about to sample, you cannot open another or exit from Signal. If you
try to open a new file or exit from the Signal menu, the program beeps to remind you that the data file is open. A
script will give an error if you try to open a new file.

This problem usually happens when you have been working with a script that samples data. Such a script may
open a data file "hidden", so it is not obvious that there is a data file. Use the Window menu Show command to
find any hidden windows.

Signal Version 6.06

24-724

What is the Log window for?

The Log window is a convenient place for storing text and is mainly used by scripts. In certain circumstances, such
as difficulties connecting to MATLAB, Signal will put extra debug information into the log window.

When I sample data, where is it saved during sampling?

Signal saves new data in a file called DATA plus a sequence number in the path (folder) set by the Edit menu
preferences dialog. Alternatively, if file auto-naming is in use, the file name is set by the file automatic name
generation, the search for files with the same name (for generating the unique number) is carried out in the current
directory. If no path is set in the Preferences, the data goes to the current directory. We recommend that you set a
path in preferences so that you can control where the temporary data is saved. The data is stored as a normal
Signal CFS data file, but without the .CFS file extension. When you close the file, you are prompted to supply a file
name and the original file is renamed if the new name is on the same drive (volume), or copied if the new name is on
a different drive.

Do I have to use scripts to use Signal?

No, you do not. Many users of Signal use the standard data capture and built-in analysis routines to capture data,
and then export pictures and values using the clipboard or data files and make measurements using the cursors.

However, Signal can do a great deal more than is exposed by the menu-driven interface and often a few lines of
script can automate a tedious manual procedure. If you suspect that a script could help your work, but you do not
have the time or inclination to learn how to write one, you might consider using our script writing service. Contact
CED for more information.

How do I get started writing scripts?

Start by reading the Script manual as far as the alphabetical list of commands section. This should give you an
overview of the script language. Use the script recorder to generate short scripts corresponding to actions such as
opening a file, re-arranging windows or analysing data to see what script functions are used for these actions, and
read the documentation on these script functions to learn what they do.

Next, look at the scripts supplied as part of Signal. These will give you a flavour of how the language is used in
larger scripts. You can look up any key word in a script by placing the text cursor on the keyword and then
pressing the F1 key.

We supply a copy of the Signal Training Course manual with each copy of Signal. This contains many script
examples and explanations. It also has tutorials covering a wide range of common scripting tasks.

There are also scripts available from our web site (Click here, then click on Signal scripts in the left-hand panel).
These range from tutorial examples to full applications.

We also run training coursed in the UK and around the world. Contact CED for more information.

Which version of Windows is best for Signal?

Signal runs under Windows XP (SP2 required), Vista and Windows 7 and 8, plus all 64-bit versions of Windows.
Signal is a 32- or 64-bit program and it functions well with any of these systems. Currently CED would recommend
Windows XP or Windows 7 for use with Signal.

Why can't I make contact with my CyberAmp from Signal?

Assuming that the correct communications port is set in your CEDCOND.INI file, and that you installed Signal and
selected CyberAmp support, the most common reason for lack of communication is that the rotary switch on the
rear of the CyberAmp is not set to 0.

We have also seen problems on computers where the COM port has been set up in the computer BIOS as an
infrared communication device.

http://www.ced.co.uk/upu.shtml

Technical support

24-725

Why does my CyberAmp with input probes 401, 402, 405 and 414 give no
signal?

These probes are described as differential in their specification, so you have selected the differential input setting.
However these probes convert the signal to single ended. If you select the differential input, the same signal is
applied to both CyberAmp differential inputs, and the result is to test the common mode rejection of the system.
Select single ended or inverted inputs with these probes.

If I zoom in to show a very small (and we mean very small) x axis range,
then print the data, the printed output sometimes shows more data than
there was on screen. Is this a bug?

No. When you look at a file or memory view that is zoomed in the x (time) direction, you are looking through a
rectangular window into a longer view, through which you can scroll. This underlying view can be around
2,000,000,000 pixels wide. If you keep zooming in on the x (time) axis, the limit to how far you can go is the size of
the underlying view. The more pixels per inch your display has, the narrower the underlying display when you are
at maximum zoom.

Although this is a limitation, to put it in perspective, for most common display, the limiting width of the underlying
view when you are at maximum zoom is around 400 miles (around 600 km). Imagine a strip of chart paper that long!

When you print a picture, the same limit applies, but a printer has a higher resolution than the typical screen
(typically 4 to 10 times as many pixels per inch). Thus the maximum zoom on a printer is typically 4 to 10 times less
than for the screen. When you try to print in this case, Signal adjusts the times to show more data. This effect is
rarely of any consequence.

If I sample data fairly fast (total rates of around 100 kHz or more) the
mouse response gets very jerky or sluggish. Why and what can I do
about it?

If you have the 1401 ISA interface card (the standard interface card supplied with a 1401), the maximum data
transfer rate from the 1401 is around 250,000 bytes per second. These transfers normally happen using DMA
(Direct Memory Access) which does not burden the processor too heavily.

DMA cannot be directly used with memory above 16MB on the ISA bus, so if your computer has more than 16 MB
of memory, and the data for the transfer happens to lie above 16 MB, the data must be transferred by the processor.
This can occupy a significant amount of processor time and make the system response very slow or jumpy.

First of all, ensure that you have got the latest Windows 1401 device drivers, you can contact CED or visit the CED
web site for more information. With the latest 1401 device drivers, the 16 MB limit is evaded by using a separate
DMA buffer for transfers above 16 MB. This is almost as fast as direct DMA and will solve most of the problems.

The best solution is to use a faster interface. There are three other types of interface for the 1401 that have been
introduced recently: the Quad rate ISA card which is capable of moving memory much more quickly (up to 4x faster,
but still has the 16 MB limit), the PCI interface card, which can transfer data much more quickly and can do DMA to
any portion of memory and the USB interface. The Quad rate card operates under any PC operating system and is
100% compatible with the standard ISA card. The PCI interface card is also much easier to install - it has no
configuration jumpers, and is likely to be the only interface card usable with even a relatively new PC. The USB
interface does not require any interface card at all and is available with all modern types of 1401 - it is generally the
preferred interface.

Contact CED if you need more information about these interface options.

I have installed Signal on Window 95/98 but when I try to sample data I get
an error message saying that the 1401 device driver isnt found.

The Signal installer will set up the device driver on Windows NT systems, but for Windows 95/98 you need to use
the Add New Hardware icon in the control panel to install the drivers. The file WIN95DRV.TXT, which is copied
into the Signal directory during install, has more details on this.

Signal Version 6.06

24-726

Signal works fine looking at old files, but when I try to sample data it fails
or gives an error message. How do I sort out 1401 problems?

Along with Signal, the installer provides a program, TRY1432, that tests the use of the 1401. Run Try1432 and click
on the self-test check box so that all the tests are selected. Click on the Run Once button to run the tests; any error
messages will be displayed in the lower part of the Try1432 display. Contact CED with the Try1432 test results and
details of any Signal error messages to resolve the problem.

When I try to read a file created by Signal with SIGAVG, modify it with
MCF or convert it with C2S, these programs cannot access the file data.
How do I ensure compatible files?

Signal creates and uses CFS files, which can be read and understood by many programs. However, many programs
have limitations on the types of CFS data they can use. Signal can read and write CFS data files using 2-byte
integer or 8-byte real data, but all the DOS programs mentioned can only handle integer data.. Signal data files
created by sampling will always use integer data, but Signal has a choice of what data type to use for other files, in
particular when saving memory view data to disk. There is a field in the preferences dialog to control what data type
is used in these circumstances, set it to Integer to always create data files compatible with older DOS programs.

I get error -544 when I try to sample in Windows NT, NT 2000 or Vista.
Why?

This error code usually means that the system has been unable to lock down memory needed for data acquisition.
Signal tries to avoid this problem by requesting an increase in the Minimum Working Set of the program, but this
request can fail if:

· The size requested is too large for the system to operate safely.
· The user does not have the right to change the allocation (see below).

The About Signal… command in the Help menu shows the current Minimum and Maximum Working Set sizes set.
Signal attempts to set the Minimum Working Set to 800kB and the Maximum Working Set to 4000kB, but you can
override these values in the registry. As this is an advanced option with system-wide implications, we do not
provide an easy way to do this from inside Signal.

The most usual cause is that you are logged on as a User with insufficient privilege to increase your Working Set.

What is the Working Set Size
You can think of the Working Set Size as the amount of physical memory allocated to a process (in this case the
Signal program). A program may use many megabytes of memory space (logical memory), but only the memory
needed for immediate use has to be present in physical memory, the rest can be saved on disk and loaded when
needed. In general, the more physical memory a program can use, the faster it runs as it does not need to wait for
information to be loaded from disk.

However, Windows is a co-operative environment, and if any process (program) grabs a lot of physical memory,
there is less for others to use, and in extreme cases, the system may grind to a halt. As far as the operating system
is concerned, it likes all processes to use the minimum possible physical memory. Each process (like the Signal
program), is allocated a minimum working set size and a maximum working set size which the operating system uses
as a guide to how much physical memory a process uses.

Minimum Working Set Size
This is the amount of physical memory that the operating system will always try to give a process, even when
memory is running very low or your process is not running. If there are many processes running, the sum of the
minimum working set sizes must always be less than the amount of physical memory in the system. The value given
a process by the system by default depends on the amount of physical memory in the system and can be as low as
120kB, and lower in some circumstances. Signal needs to lock down around 68kB of memory when it samples data,
so this leaves very little to run the program. If the minimum working set size is too small, the operating system will
refuse to lock the memory for sampling, resulting in error -544.

Technical support

24-727

Maximum Working Set Size
The maximum working set size is the maximum amount of physical memory that the operating system normally lets
your program have if memory is in short supply. If there is no other demand for memory, your process can have
more memory than this. The default values for this can be quite small, values of around 1 MB are common.

What Signal tries to do
When Signal starts up, it tries to set the minimum working set size to 800 kB (enough to sample data and run), and
the maximum size to 4 MB. You can override these sizes in the system registry. You must create and set the registry
keys as DWORD values:

HKEY_CURRENT_USER\Software\CED\Signal\Win32\Minimum working set
HKEY_CURRENT_USER\Software\CED\Signal\Win32\Maximum working set

to the required sizes in kB that you need. If you do not supply a key, the default size will be used. If the size you
request is too large for the system to grant, the request will be ignored for both parameters. Signal will never set the
sizes less than the sizes the system gives you by default. If you need to find the default system sizes, set the sizes
in the registry to 0, run Signal and open the About Signal… window.

You can set these keys with RegEdit which is part of the Windows operating system. Signal does not create these
keys, but will use their values if they exist.

If you run large scripts that use a lot of memory, you can improve performance by increasing the maximum size, but
if you overdo it, you will reduce system performance by starving other processes (including system processes) of
memory.

What to do if you cannot set the size
If the Help menu About Signal box does not report 800, 4000 kB (or the sizes you have requested in the registry),
then either you are not running under Windows XP, NT or NT 2000, or you do not have sufficient "rights" to
change the allocation. The following describes how we altered the rights on our system. Your system administrator
will know how to do this, but they might find the following will save them some time checking the system manuals.

We describe how to do this for the local machine: it may be that your machine is administered remotely in which
case the general description is correct, but the details may be different.

The new right you need is Increase scheduling priority (in low-level system documentation this is called the
SeIncreaseBasePriorityPrivilege privilege and in programmer information it is also known as
SE_INC_BASE_PRIORITY_NAME).

Rights are assigned to user Groups, so you must either add this right to the list of rights enjoyed by the Group you
are a member of, or you must create a new Group with this right and become a member of it. In the descriptions
below, steps to create a new group are labelled X. To extend the rights of an existing group, skip the steps labelled
X and substitute the name of the existing Group for all mentions of 1401 Users. The details (we include information
about older versions of Windows for reference) are:

Windows NT 4
1. When logged on as Administrator, run the User manager, which is in Programs:Administrative tools
(common).

X1 Use the User:New Local Group menu command to create a local group called 1401 Users.

X2 Add those users who need to use Signal to the list of members of this group.

2. Use the Policies:User rights menu command to display the User rights dialog box.

3. Check the Advanced user rights check box at the bottom of the dialog.

4. Select Increase scheduling priority in the Rights list box.

5. Press the Add button and add 1401 Users to the list of groups which possess this right.

6. Exit from User manager.

Windows 2000, XP, Vista and Windows 7/8
1. When logged on as Administrator, open the Control panel, switch to Classic View if using Vista and then
open Administrative tools.

X1. Run Computer management, select the entry System tools:Local users and groups.

X2. Select the Groups folder, use the Action menu to add a new local group called 1401 Users.

Signal Version 6.06

24-728

X3. Use Add… to make the appropriate users into members of the new group.

X4. Exit from Computer management

2. Run Local Security Policy, select the entry Local policies, subentry User rights assignment.

3. Select Increase scheduling priority, use Action : Security...in NT 2000, use Action : Properties in XP or Vista.

4. Click on Object types..., check the Groups box then click OK.

5. Add 1401 Users to the list of groups with that user right.

6. Exit from Local Security Policy.

Next time you log on as a member of 1401 Users, you should find that Help:About Signal shows the expected
memory available and that the error -544 no longer occurs.

What to do if it still doesn’t work
Don’t panic! It works for everyone else, so there is a logical reason for failure. Please check that you have the latest
service pack for your OS installed; a customer had error -544 problems with a Dell system running NT 2000 service
pack 1 that refused to work until service pack 2 was installed.

Why aren't the external digital states working?

The most common cause of this is that an input has been enabled which is not connected.

Why are the file paths in my script not behaving correctly?

A common scripting problem is strings holding a file path that does not work. This is often because the \ character
(which is needed within file paths) is treated specially when string constants are generated or a format string is
interpreted in Print() or Print$() - it indicates that the next character is to be interpreted to produce a special
character. For example "\r" is converted to a single carriage return character, "\t" is converted to a tab character.

To get a single \ character you need to put two of them into your string constant thus "\\", and if you want to end
up with a single \ in a file path generated via a Print$ you need to have four of them:

path$:= Print$("C:\\\\Signal\\\\%s", filename$);

this is because the string is interpreted twice; once to produce the string constant that is fed to the Print$ function,
and once by Print$, and each time pairs of \\ characters are converted intro single ones.

License information

CED software is protected by both United Kingdom Copyright Law and International Treaty provisions. Unless
you have purchased additional licenses as described below, you are licensed to run one copy of the software. Each
copy of the software is identified by a serial number which is displayed by the Help menu About Signal…
command. You may make archival copies of the software for the sole purpose of back up in case of damage to the
original. You may install the software on more than one computer as long as there is No Possibility of it being used
at one location while it is being used at another. If multiple simultaneous use is possible, you must purchase
additional software licenses.

Additional software licenses
The original licensee of a CED software product can purchase additional licenses to run multiple copies of the same
software. CED supplies an additional manual set with each license. CED does not supply additional software media.
As these additional licenses are at a substantially reduced price, there are limitations on their use:

1. The additional licenses cannot be separated from the original software and are recorded at CED in the name of
the original licensee.

2. All support for the software is expected to be through one nominated person, usually the original licensee.

3. The additional licensed copies are expected to be used on the same site and in the same building/laboratory
and by people working within the same group.

Technical support

24-729

4. When upgrades to the software become available that require payment, both the original license and the
additional licenses must be upgraded together. If the upgrade price is date dependent, the date used is the date
of purchase of the original license. If some or all of the additional licenses are no longer required, you can
cancel the unwanted additional licenses before the upgrade.

5. If you are the user of an additional license and circumstances change such that you no longer meet the
conditions for use of an additional license, you may no longer use the software. In this case, with the
agreement of the original licensee, it may be possible for you to purchase a full license at a price that takes into
account any monies paid for the additional license. Contact CED to discuss your circumstances.

6. If you hold the original license and you move, all licenses are presumed to move with you unless you notify us
that the software should be registered in the name of someone else.

Signal Version 6.06

24-1

Index

- -
' Comment designator 309

- # -
#include

in script 319

in sequence 82

#IND 538

#INF 538

- $ -
$ string variable designator 300

- % -
% Integer variable designator 300

- & -
& in Windows dialog prompts 409, 415

& reference parameter designator 316

- * -
*= multiply and assign 308

- / -
/= divide and assign 308

- : -
:= assignment 308

- [-
[start:size] array syntax 303

- \ -
\\ string literal escape character 300

- { -
{} optional syntax 292

- | -
| vertical bar 292

- + -
+= add and assign 308

+= Append string 308

- = -
= sequencer directive 80

- - -
-= subtract and assign 308

- 1 -
1401

ADC inputs 36

DAC outputs 37

Digital inputs 38

Digital outputs 38

Inputs and outputs 36

Trigger input 37

TTL signals 37

1401 access

Commands summary 329

U1401 commands 622

1401 device driver version 286

1401 monitor version 286

1902

Get revision from script 394

Script support 390

1902 see Signal conditioners 670

1902-specific details 673

- 2 -
200

Magstim device configuration 693

Magstim device connection 696

Magstim TMS stimulator 688

- 3 -
3304 stimulator 704

Configuration 704

Connections and cabling 706

Introduction 704

Notes on use 706

Safety 704

3-point smooth data 254

- - -
-544 error code 726

- 5 -
5-point smooth data 254

- 6 -
64-bit operating systems 30

- A -
Abandon sampling 561, 577

Abort sampling 58, 561

About Signal 726

ABS sequencer instruction 97

Abs() 335

virtual channel function 238

Abs() virtual channel function 243

Abs(x) virtual channel function 242

Absolute pulse levels 562

Absolute time for frame 472

Absolute value of expression or array
335

Accept sweep 562

Action potential 225, 227

Counting 225

Detection 268, 269

Feature detection 269

Active cursor modes 269

Active cursors 268

CursorSearch() 403

CursorValid() 403

Get mode and parameters 397

Get parameters 398

Set mode and parameters 397

Set parameters 399

Active horizontal cursors 271

Get mode and parameters 481

HCursorValid() 484

Set mode and parameters 481

Active mode of cursor 401

ADC data units 576

ADC port

Calibration 575, 577

Name 576

Number 576

Options 576

Units 576

Used for sampling 576

ADC ports

Waveform channels 39

Add cursor 401

Add items to memory channel 236

Add protocol 546

Add pulse 550

ADD sequencer instruction 98

Add to array 337

Index

24-2

ADDAC sequencer instruction 86

ADDI sequencer instruction 98

Adding a pulse 64

Additional licences 728

All pass filter 657

All Poles 505

All stop filter 657

Alpha synapse model 132

Alphabetical script index 335

Amplifier Telegraphs 676

Amplitude between cursors 274

Amplitude histogram 219, 222, 592

Amplitude of waveform 386

Analysis 328

Active cursors for measurements
229

Add to buffer 252

Amplitude histogram 219, 222, 592

Append frame 251

Append frame copy 251

Average into buffer 253

Burst histogram 597

Change process settings 224

Channel arithmetic 238

Clear buffer 252

Command synopsis 328

Copy from buffer 252

Copy to buffer 252

Create arbitrary memory view 595

Create idealised trace 596, 599

Curve fitting 230

Delete channel 252

Delete frame 252

Digital filters 255

Exchange buffer 252

Fit data 230

Frame buffer 252

Generate channel data 235, 238

Leak subtraction 221, 595

Measurements and active cursors
229

Measurements to data channel 227

Measurements to XY view 225

Memory channels 235

Modify channel data 254

Multiple frames 254

Multiple waveform averages 593

New memory view 218, 592

New XY View 224

Number of sweeps 610

Online 542

Online analysis 224

Online analysis to data channel 230

Online analysis to XY view 230

Open/close amplitude histogram 597

Open/close time histogram 598

Power spectrum 220, 600

Process all linked views 541

Process data 540

Process multiple frames 541

Processing data 223

Subtract buffer 253

Summary of script commands 328

Synthesise channel data 238

Tag frame 254

Trend plot 228, 600

Trend plot channel 601

Virtual channels 238

Waveform auto-average 218

Waveform average 218

Waveform average and accumulate
593

Analysis menu 218, 224, 256

Amplitude histogram 219, 222

Append frame 251

Append frame copy 251

Baseline measurements for SCAN
analysis 261

Burst duration histogram 260

Change process settings 224

Curve fitting 230

Delete channel 252

Delete frame 252

Digital filtering 653

Digital filters 255

Export idealised trace to HJCFIT 262

Fit data 230

Frame buffer 252

Keyboard alternatives 255

Leak subtraction 221

Measurements to data channel 227

Measurements to XY view 225

Memory channels 235

Modify channels 254

Multiple frames 254

New idealised trace 256, 258

New Memory View 218

New XY View 224

Online analysis 224

Online analysis to data channel 230

Online analysis to XY view 230

Open/closed amplitude histogram
260

Open/closed time histogram 259

Power spectrum 220

Process settings 224

Processing data 223

Tag frame 254

Trend plot 228

View and edit event details 261

View event list 262

Virtual channels 238

Waveform auto-average 218

Waveform average 218

Analysis operations 218, 256

AND sequencer instruction 99

ANDI sequencer instruction 99

ANGLE sequencer instruction 90

Annotate script 217

App() 335

Append frame 251, 336, 408

Append frame copy 251

AppendFrame() 336

Application close 442

Application command line 30

Application directory 440

Arc tangent function 349

Area 274

As if recified 274

As if rectified 274

Between cursors 274

Under curve between cursors 274

Area under curve

Area as if rectified 274

Argument lists 316

ArrAdd() 337

Arrange icons 283

Array and matrix arithmetic 330

Array range designator 303

Arrays 303, 336, 341

[] syntax 303

Absolute value 335

Add constant or array 337

Arc tangent function 349

Bin array element values 344

Constant 302

Copy 338

Cosine of array 396

Cubic splines 346

Data view as an array 308

Declaring 302

Difference of two arrays 347, 348

Differences between elements 339

Discrete convolution 338

Division 339, 340

Dot product 340

Signal Version 6.06

24-3

Arrays 303, 336, 341

Examples 336

Exponential function 429

FFT analysis 341

FIR filter 343

Fractional part of real number 471

Gain and phase 341

Histogram from array elements 344

Hyperbolic cosine of array 396

Hyperbolic sine 602

Hyperbolic tangent 612

Initialisation 306

Integer overflow 336

Integrate 344

Interpolate 346

Inverse FFT 341

Kurtosis of array elements 346

Length of array 504

Logarithm to base 10 509

Logarithm to base e 509

Maximum value 515

Mean and standard deviation 348

Mean of array elements 346

Minimum value 524

Multiplication 345

Natural logarithm 509

Negate 345

Passing to functions 303

Power function 538

Power spectrum 341

Resample array 346

Resizing 307

Set to constant 338

Sine of array elements 602

Skewness of array elements 346

Smoothing and filtering 343

Sorting 345

Square root of array elements 609

Standard deviation of array elements
346

Subtract array from value or array
347

Subtract value or array from array
348

Sum of product 340

Sum of values 348

Summary of script commands 330,
336

Syntax 303

Tangent of the array elements 612

Total of array elements 348

Truncate real array elements 622

ArrConst() 338

ArrConv() 338

ArrDiff() 339

ArrDiv() 339

ArrDivR() 340

ArrDot() 340

ArrFFT() 341

ArrFilt() 343

ArrHist() 344

ArrIntgl() 344

ArrMul() 345

ArrSort() 345

ArrSpline() 346

ArrStats() 346

ArrSub() 347

ArrSubR() 348

ArrSum() 348

ArrXXX() 336

Artefact rejection dialog 56

Artefact rejection parameters 562

Asc() 349

ASCII characters 33

ASCII code of character 349

ASCII to string conversion 388

ASCII values table 40

Assignment operator 308

Assume Power1401 hardware 188

ASz() sequencer expression 79

ATan() 349

Virtual channel function 238

ATan() virtual channel function 243

Auditory stimulus

Sine wave 68

Synthesised waveforms 238

Waveform 68

Auto complete settings 178

Auto-Average of waveform 218

Automate

Directory for file 54

File frames limit 54

File naming 54

File saving 54

File size limit 54

File time limit 54

New file naming 54

New file saving 54

Automatic file naming 54, 563

Automatic file saving 54, 563

Automatic format settings 177

Automatic formatting 177

Automatic processing while sampling
542

Auxiliary States 688

Auxiliary states device 563, 564

Auxiliary states devices

3304 stimulator 704

MagPro stimulator 699

Magstim stimulator 688

Auxiliary states hardware 116

Average of waveform 218

Average waveform data 593

Axis as scale control 12

Axis as scroller 12

Axis controls 198

Drawing colour 389

Show and Hide 204

XY view data tracking 638

Axis grid display control 481

AxoClamp 900A telegraph configuration
683

AxoClamp 900A telegraphs 682

- B -
Backup SGRX file 165

Band pass filter 657

Band stop filter 657

Basic sampling mode 571

Basic sweep mode 42

Beep or tone output 603

BEQ sequencer instruction 94

Bessel filter 658

Best fit 457

Beta function 349

BetaI() 349

Between sweeps 125

BGE sequencer instruction 94

BGT sequencer instruction 94

Bilayers

Analysis overview 256

Analysis using SCAN method 256

Analysis using thresholds 258

Idealised traces 256

see Single channels 256

Bin access in data view 308

Bin number to X axis units 362

Binary data copy 427

Binary files

Close 432

Little or big endian 363

Move current position 363

Open from script 438

Read data 362, 363

Summary of script commands 333

Index

24-4

Binary files

Write data 367

BinError() 360

Binomial coefficient 361

Binomial distribution 350

BinomialC() 361

BinSize() 361

BinToX() 362

BinZero() 362

Biphasic pulse generation 67

BiStim

Magstim device configuration 694

Magstim device connection 696

Magstim TMS stimulator 688

Bitmap background 375

Bitmap copy 427

Bitmap output 160, 171

Black and White display 630

Black and white displays 211

BLE sequencer instruction 94

BLT sequencer instruction 94

BNE sequencer instruction 94

Boltzmann leak model 141

Boltzmann sigmoid 452

Bookmarks 176

Set on found text 174

BRAND sequencer instruction 105

BRead() 362

BReadSize() 363

break 314

Break point

Clear all 293

Set 293

Breaking out of a script 295

BRWEndian() 363

BSeek() 363

BuffAcc() 364

BuffAdd() 364

BuffAddTo() 364

BuffClear() 365

BuffCopy() 365

BuffCopyTo() 365

BuffDiv() 365

BuffDivBy() 365

Buffer 324, 364

Add frame data 364

Add frame data into buffer 252

Add to current frame 252

Add to frame data 364

Average frame data 364, 367

Average into 253

Clear 365

Clear buffer 252

Copy frame data 365

Copy frame data into buffer 252

Copy to frame 365

Copy to frame data 252

Description 252

Divide by frame data 365

Divide frame data by 365

Exchange with frame data 252, 366

Multiple frame operations 254

Multiply by frame data 366

Multiply frame data by 366

Remove frame from average 253

Show buffer 195

Show or hide 602

Subtract current frame 253

Subtract frame data 366

Subtract from current frame 253

Subtract from frame data 367

BuffExchange() 366

BuffMul() 366

BuffMulBy() 366

BuffSub() 366

BuffSubFrom() 367

BuffUnAcc() 367

BuffXXX() Buffer commands 364

Bug fixes 708

Burst mode 566

Butterworth filter 658

Buttons 614

BWrite() 367

BWriteSize() 367

Bxx sequencer instructions 94

- C -
Calibration 575, 576, 577

ADC inputs 47

Full scale 575

Zero value 577

CALL sequencer instruction 94

Call stack in script debug 298

Call tips

Details 182

Display of 180

Style for 180

CALLV sequencer instruction 94

Capacitance measurement 122

Caret

Get and set position 529

Get column number 528

Get line number 528

Get position and set relative 528

Cascade windows 283

Case sensitivity

In script language 298

In searches 174

Sequencer 78

case statement 312

CED 1902

Script support 390

CED 1902 see Signal conditioners 670

CED Power1401 ADC gain see Signal
conditioners 670

CED Software Licence conditions 728

CED web page 707

CED web site 285

CEDCOND.INI conditioner settings 673

CEDCOND.LOG file 191

Ceil() 369

cfb file extension 152

CFS File

Export As 434

Open from script 438

CFS file creation 152

CFS file variable access 329

Ch(n) virtual channel function 238, 240

Interactive dialog 244

CHAN sequencer instruction 102

Chan$() 370

ChanAdd() 370

ChanColour() 370

ChanColourGet() 370

ChanColourSet() 371

ChanCount() 371

ChanDelete() 372

ChanDiff() 372

ChanDiv() 372

ChanFit() 372

ChanFitCoef() 374

ChanFitShow() 375

ChanFitValue() 375

Change colours 211

Change or add memory channel item 523

Change process settings 224

Changed frame data

Save or discard 475

Changes to Signal 708

ChanImage() 375

ChanIndex() 376

Signal Version 6.06

24-5

ChanIntgl() 376

ChanItems() 377

ChanKind() 377

ChanList() 377

ChanMean() 378

ChanMeasure() 378

ChanMult() 379

ChanNegate() 379

Channel 529

ADC inputs 576

Add new XY view channel 642

Arithmetic operations as arrays 336

Attach horizontal cursor 482

Background bitmap 375

Channel array 377

Channel list 377

Channel numbers 377

Copy data from XY view 638

Delete 372

Differentiate 372

Draw modes for idealised traces 207

Draw modes for markers 206

Draw modes for real markers 207

Draw modes for waveforms 205

Drawing mode 424

First item in channel 525

Get absolute colour 370

Get ordering 380

Groups 380

Hide 385

Image 208

Initial name 576

Initial units 576

Integrate 376

Items in range 382

Keyboard marker 570

Last item in channel 515

Lists 21

Marker count 377

Maximum time in channel 515

Minimum and maximum data 525

Minimum time in channel 525

Modify XY view channel settings
642

Negate 379

Next item in channel 529

Offset data 379

Order 380

Pen Width 207

Ports 576

Previous item in channel 503

Rectify 383

Sample ports 576

Scale data 383

Selecting 9

Selecting in a dialog 413

Selecting with script 384

Set absolute colour 371

Set colour 370

Shift data 384

Show 385

Smooth data 385

Specifications 21

Subtract DC offset 385

Time of next item 529

Time of previous item 503

Title 386

Type of a channel 377

Units 386

Value at given position 386

Vertical space 387

Visibility 387

Weight 387

Zero data 388

Channel arithmetic

Cube of data 243

DC remove 238

Difference 238

Half-wave rectify 243

Rectify 238, 243

RMS amplitude 238

Smooth 238

Square data 243

Square-root of data 243

Sum 238

Trignometric functions 243

Channel colour override 179

Channel colours 211

Channel data as array 625

Channel display 211

Colour choice override 179

Colour override 211

Draw mode colour 211

Standard order 179

Channel information 201

Channel number

Drawing colour 389

Number show and hide 379

Show and hide 379

Channel scaling 47

Channel spacing adjustment 15

Channel specifier 319

Channels

3-point smooth 254

5-point smooth 254

Differentiate 254

Integrate 254

Marker channels 40

Marker codes 40

Modify data 254

Negate 254

Offset data 254

Rectify 254

Scale data 254

Set DC measurement area 254

Shift data 254

Show and hide 204

Subtract DC level 254

Summary of script commands 323

Types of channel 38

Waveform channels 39

Zero 254

ChanNumbers() 379

ChanOffset() 379

ChanOrder() 380

ChanPixel() 381

ChanPoints() 382

ChanRange() 382

ChanRectify() 383

ChanScale() 383

ChanSearch() 383

ChanSelect() 384

ChanShift() 384

ChanShow() 385

ChanSmooth() 385

ChanSub() 385

ChanSubDC() 385

ChanTitle$() 386

ChanUnits$() 386

ChanValue() 386

ChanVisible() 387

ChanWeight() 387

ChanZero() 388

Character code 388

Character code (ASCII) 349

Chebyshev type 1 filter 658

Chebyshev type 2 filter 658

Check box in a dialog 414

Chi-squared value 650

Choose k from n 361

Chr$() 388

Clamp features enable

In preferences 193

Leak subtraction 221

Clamp preferences 193

Index

24-6

Clamping experiments

Analysis methods 123

Changing pulse for measurements
122

Channel pair selection 119

Clamping control bar 121

Clamping sets 119

Configuration 119

Current clamp 117

Dynamic clamping 117, 123

Getting started 117

Getting started with the MC700 678

Holding potential 121

Membrane analysis 122

Membrane capacitance 122

Membrane resistance 121

Online controls 121

Overview 117

Resistance 123

Resistance measurements 119

Sampling 117

Sampling configuration
considerations 120

Studies with Signal 5

Support features 117

Toolbar 121

Total resistance 122, 123

Value storage 123

Voltage clamp 117

Clamping sets

Defining clamping sets 119

Read back from MC700 678

What is a clamping set? 119

Clear data 254

Clear protocol 547

Clear sampling configuration 567

Clear text or memory view 174

Clipboard 171

Copy and Cut data 427

Copy cursor values 275

Copy data view as picture 171

Copy data view as text 172

Copy path for file 30

Copy to 171

Copy XY view as text 174

Cut current selection to the
clipboard 427

Cut text to 171

Get text 428

Paste 428

Paste data 174

Paste text 174

Set text 427

Clipboard operations 171

Close all associated windows 159, 282

Close all windows 283

Close document 159

Close file 432

Close Signal application 442

Close view 432

Close window 432

CLRC sequencer instruction 92

Coefficients 343

Coefficients of filters 661

Collapse all folds 215

Colon array range designator 303

Color see Colour 211

Color() see Colour() 388

Colour dialog 211

Changes at version 5.02 214

Channel colours 211

Colour enabling 211

Colour palette 537

Change colours interactively 211

View index 211

Colour() 388

ColourGet() 389

Colours of screen items 388, 389

Data channels 370, 371

Force Black and White 630

View colours 626

XY view 637

ColourSet() 389

Column number in text view 528

Command line 30

Command line with ProgRun() 546

Comment

File comment 176

Frame comment 177

Get and set file comment 432

In script language 309

Sequencer 78

Toggle comments in editor 177

Comment file at sampling end 188

Common questions 723

Common questions #1 723

Common questions #10 725

Common questions #11 725

Common questions #12 725

Common questions #13 726

Common questions #14 726

Common questions #15 726

Common questions #16 728

Common questions #2 723

Common questions #3 724

Common questions #4 724

Common questions #5 724

Common questions #6 724

Common questions #7 724

Common questions #8 724

Common questions #9 725

Compatibility preferences 194

Compatibility with previous versions 194

Compile output sequence 73

Complex stimulus generation 5

Compression of metafiles 186

Computer name 611

CondFeature () 390

CondFilter() 391

CondFilterList() 391

CondFilterType() 392

CondGain() 392

CondGainList() 392

CondGet() 393

Conditional averaging state 223

Conditioner 191

CEDCOND.INI settings file 673

CEDCOND.LOG file 191

Preferences 191

Sample menu 278

Serial port 191

CondOffset() 393

CondOffsetLimit() 394

CondRevision$() 394

CondSet() 394

CondSourceList() 395

CondType() 395

CondXXX() Conditioner commands 390

Configuration 567

Configuration file

Load sampling configuration 438

Save sampling configuration 434

Configuration files 152

Contents 60

Load and run from Sample bar 277

Load and save 166

Connections

Power1401 DACs 2 and 3 85

serial 191

Waveform output 85

Constant

Arrays 302

Declarations 302

Signal Version 6.06

24-7

Constant

Values 302

Contacting CED 707

Context menus

For cursors 276

continue 314

Continue sampling 58, 59, 585

Control panel

Handle for sampling 327

Sampling 57

Convert

A number to a string 609

A string to a number 561, 624

A string to upper case 624

Between script data types 301

Data view bin to x axis units 362

Data view bin zero to x axis units 362

Event to waveform 240

Markers to waveform 238

Number to a character 388

Parse string into variables 561

RealMark to waveform 240

String to lower case 503

String to X axis value 609

String to Y value 609

Time to points 636

X axis units to bins 636

Convert foreign file format 433

Copt as text

Data selection 173

Copy 427

Array or result view to another 338

Copy as binary data 427

Copy as bitmap 427

Copy as metafile 427

Copy as text 427

Current selection to clipboard 427

Cursor values 275

Data view as text 172

External file 433

File path to clipboard 30

Make duplicate view 632

Text format 434

View to new view 594

XY view as text 174

Copy as text

Format specification 172

XY view 174

Copy data 171

As binary numbers 171

As bitmap 171

As picture 171

As text 171

Copy data into memory channel 237

Copy to clipboard 171

Copy views as pictures 171

Copying a pulse 65

Copying pulses 65

Cos() 396

Virtual channel function 238

Cos() virtual channel function 243

Cosh() 396

Cosine of expression 396

Cosine wave output 87

Count

Of features 225

Points in an XY channel 639

Points inside XY view circle 639

Points inside XY view rectangle 640

Count channels in data view 371

Count markers in time range 377

Count of frames 472

Count points in time range 377

Counting features 225

Covariance array 650

CPG synapse model 133

Create directory 440

Create idealised trace 596, 599

Create memory channel 519

Create memory view 592, 595

Create new memory channel 235

Creating a new document 56

cSpc channel specifier 319

Cub() virtual channel function 238, 243

Cubic spline

Array of data 346

Curly brackets 292

Current clamp

Getting started 117

Current directory 440

Current frame 471

Current view 289, 295, 625

Cursor 0 behaviour 268

Cursor measurements 265

Cursor menu 265

Active cursors 268

Active horizontal cursors 271

Active mode 269

Cursor regions 274

Delete 265

Delete horizontal 267

Display all 266

Display all Horizontal 267

Display Y Values 273

Fetch 265

Fetch horizontal 267

Horizontal Label mode 268

Label Mode 266

Move To 265

Move To Level 267

New cursor 265

New horizontal cursor 267

Position Cursor 265

Position Horizontal 267

Region measurements 274

Renumber cursors 267

Renumber horizontal 268

Search right/left 271

Set Label 266

Values between 274

Cursor region measurements 274

Cursor regions

Copy values 275

Dialog 274

Measurements 274

Print values 275

Selecting values 275

Zero region 274

Cursor regions measurements in script
378

Cursor script functions

Active mode 401

Create new cursor 401

Cursor label style 400

Cursor position 396

Delete cursor 400

Get active cursor mode and
parameters 397

Get active cursor parameters 398

Label position 401

Mode 401

Open cursor windows 402

Previous cursor position 404

Renumber cursors 402

Search for feature 403

Set active cursor mode and
parameters 397

Set active cursor parameters 399

Set number 403

Test for valid 403

Test for visible 404

Test if exists 400

Cursor search modes 269

Cursor values

Time zero 273

Index

24-8

Cursor values

Y zero 273

Cursor() 396

CursorActive() 397

CursorActiveGet() 398

CursorActiveSet() 399

CursorDelete() 400

CursorExists() 400

CursorLabel() 400

CursorLabelPos() 401

CursorMode() 401

CursorNew() 401

CursorOpen() 402

CursorRenumber() 402

Cursors 265

Active mode 268

Active mode for horizontal 271

Active searches 269

Add horizontal 267

Adding vertical 265

Context menu commands 276

Cursor regions 274

Delete horizontal 267

Delete vertical cursor 265

Display all horizontal 267

Display all vertical 266

Drawing colour 389

Drawing width 179

Fetch horizontal 267

Fetch vertical cursor 265

Horizontal cursors script commands
325

Horizontal overview 267

Invalid 268

Invalid horizontal 271

Keyboard control 265

Labelling styles for horizontal 268

Labelling styles for vertical 266

Mouse control 265

Mouse pointers 11

Move window to centre a cursor 265

Offset channel to centre horizontal
cursor 267

Position horizontal cursor 267

Position vertical cursor 265

Region measurements 274

Renumber horizontal 268

Renumber vertical 267

Search right/left 271

Set Label for horizontal cursor 266

Set Label for vertical cursor 266

Style 11

Tracking crossing point 271

Valid 268

Valid horizontal 271

Value at 273

Values between 274

Vertical cursors script commands
325

Vertical overview 265

Width 179

CursorSearch() 403

CursorSet() 403

CursorValid() 403

CursorVisible() 404

CursorX() 404

Curve fitting 230

Exponential 231

Fit coefficients 232

Fit probability 234

Fit results 232

Fit settings dialog 231

Gaussian 231

Non-linear 460

Polynomial 231

Residuals 232

R-square values 234

Sigmoid 231

Sine 231

Testing the fit 234

Curve fitting from script

Chi-squared value 650

Covariance array 650

Execute fit 452

Exponential 454

Exponentials 452

Fitting routines 651

Gaussian 452, 456

Get and set fit coefficients 451

Get fit information 452

Introduction 649

Linear 458

Linear and non-linear fits 650

Normal distribution 649

Overview 649

Polynomial 452, 464

Residuals 650

Retrieve fit value 469

Set fit type 452

Sigmoid 452, 465

Sine 467

Sinusoid 452

Testing the fit 651

Customise display 204

Customise memory view 595

Cut current selection to clipboard 427

Cut text 171

CyberAmp

Get revision from script 394

Script support 390

Cyberamp see Signal conditioners 670

CyberAmp-specific details 673

- D -
D360

Script support 390

D360 see Signal conditioners 670

D360-specific details 673

DAC connections for Power1401 85

DAC output during sampling

Reset value before/after sampling
(script) 533

DAC outputs

Enable or disable 568

For static state 115

Full scale value 567

Reset level 55, 189

Safe level 55, 189

Scaling and units 48

Units 568

Voltage range 37

Zero value 568

DAC sequencer instruction 86

Data

Exporting 160

Incoming sampled data 56

Saving 159

Data export preferences 186

Data file update 186

Data for pulse 551

Data preferences 186

Data type compatibility 301

Data types

Conversion between types 301

In script language 299

Integer data type 300

Real data type 299

String data type 300

Data update mode

Dialog 166

FrameSave() 475

Data value at given x axis position 386

Data view 308

Access to contents 308

Array access 303, 308

Signal Version 6.06

24-9

Data view 308

Bin width 361

Convert x axis units to bin number
636

Copy as Text 172

Count of channels 371

Count of markers 377

Description 19

Display overview 7

Draw 424

Drawing mode 424

Minimum and maximum data 525

New 152

Open 153

Overdraw frames 535, 536

Overdraw mode 534

Process data 540, 541

Process multiple frames 541

Summary of script commands 322

Time of next item 529

Time of previous item 503

Value at given x axis position 386

Data view keyboard shortcuts 24

Data views 322

Date

data file creation 434, 444

Date as numbers 613

Date$() 404

dB scale 661

DBNZ sequencer instruction 93

DC measurement area for subtract 254

DCON sequencer instruction 102

DCRem() virtual channel function 238

DCRem(x, tc) virtual channel function
242

Interactive dialog 251

Debug

Call stack of script 298

Dump of internal objects 407

Enter debugger 295

Global variables 295

Globals window 297

Local variables 295

Locals window 297

Operations 334

Summary of script commands 334

Using Script Evaluate window 429

Watch window 297

Debug preparations 295

Debug script 295

Debug() 405

Debugging a script 293

DebugList() 407

DebugOpts() 408

Decibel scale 661

DEFAULT.S2C configuration 211

DEFAULT.SGC default configuration
file 166

Defer optimisation until sweep end 188

Delay in script 646

DELAY sequencer instruction 93

Delete

Channel 372

Cursor 400

File 434

Horizontal cursor 483

Selection 426

Substring 409

XY view data 637

Delete all pulses 551

Delete channel 252

Delete frame 252

Delete items from memory channel 236

Delete memory channel items 520

Delete memory channel time range 520

Delete protocol 547

Delete pulse 552

Delete selected text 174

DeleteFrame() 408

DelStr$() 409

Demonstration script 285

Destexhe synapse model 134

Determinant of a matrix 511

DF() virtual channel function 241

Interactive dialog 248

Diag() operator 303

Diagonal of a matrix 303

Dialog

Expressions 22

Dialogs 332, 409

Buttons 412

Check box 414

Create new dialog 415

Dialog units 409

Display and collect responses 420

Enable and disable items 415

Font selection 416

Get item value 422

Get time or x value 423

Group boxes 417

Image display 417

Integer number input 417, 420

Real number input 419

Retrieve current position 416

Selecting a channel 413

Selecting one value from a list 418

Set label 418, 422

Show or hide items 423

Simple format 409

Text string input 421

User actions and call-backs 411

User interaction commands 332

User-defined 332, 409

DIBEQ sequencer instruction 84

DIBNE sequencer instruction 84

Dif(x) virtual channel function 242

Differences between array elements 339

Differentiate channels 372

Differentiate data 254

Differentiator filter 657

Digital filter bank

Apply from script 445, 489

Create digital filter from script 447

Filter name from script 448, 493

Force filter calculation 446

Get filter bank information 448, 492

Sampling frequency range 448

Set attenuation of filter bank filter
446

Set comment in filter bank 447, 491

Set filter bank information 491

Digital filtering 653

Dialog 654

FIR filter dialog 655

FIR filters 653

FIRMake filter types 663

IIR filter dialog 658

IIR filters 653

Overview 653

Record changes made to CFS file
202

Script functions 331

Digital inputs

Bit numbers 38

Conflict with marker data 76

Connections 38

Enable from script for states 568

For external digital states 38

For external states 115

Socket pins 38

Test bits from sequencer 84

Test saved bits from sequencer 85

Digital markers

Enable 42

Digital outputs

Index

24-10

Digital outputs

Bit numbers 38

Connections 38

Enable 48

Enable from script 569

For DIGOUT and DIGLOW 38

For pulse outputs 38

For static state 115

From sequencer 83

Micro1401 and Power1401 only 84

Reset level 55, 189

Reset values before/after sampling
(script) 533

Safe level 55, 189

Socket pins 38

Voltages 38

Digitimer D360

Script support 390

Digitimer D360 see Signal conditioners
670

DIGLOW sequencer instruction 84

DIGOUT sequencer instruction 83

Directories for application data 31

Directories for user data 31

Directory creation 440

Directory for file name generation 54

Directory for file saving 54

Directory for files 440

Directory for new data files 188

DISBEQ sequencer instruction 85

DISBNE sequencer instruction 85

Discard changed CFS file data 174

Discard changed frame data 475

Discrete convolution 338

Display channel 385

Display operations 195

Display preferences 179

Display standard settings 203

Distributions

Binomial 350

F distribution 357

Student's 351

DIV sequencer instruction 99

Division of arrays 339, 340

DlgAllow() 411

DlgButton() 412

DlgChan() 413

DlgCheck() 414

DlgCreate() 415

DlgEnable() 415

DlgFont() 416

DlgGetPos() 416

DlgGroup() 417

DlgImage() 417

DlgInteger() 417

DlgLabel() 418

DlgList() 418

DlgMouse() 419

DlgReal() 419

DlgShow() 420

DlgSlider() 420

DlgString() 421

DlgText() 422

DlgValue() 422

DlgVisible() 423

DlgXValue() 423

docase 312

Dockable toolbars 631

Dominant frequency 241, 248

DOS command line 546

Dot product of arrays 340

Dots draw mode 424

Dots draw mode for markers 206, 207

Double-click 12

Drag and drop text 25

DRange() sequencer expression 79

Draw a view 424

Draw mode 205, 424

Idealised trace 424

Markers 424

Waveform 424

Draw() 424

DrawAll() 424

Drawing method selection 179

Drawing modes

Data view 205

Join XY view points 640

XY view 638

DrawMode() 424

Dual 200

Magstim device configuration 696

Magstim device connection 696

Magstim TMS stimulator 688

Dual threshold active cursor modes 269

Dump internal script objects 407

Dup() 426

Duplicate view

Create 632

Exclude from list 628

Front view 477

Handle 625

Duplicate window 282

Dynamic clamping

Alpha synapse model 132

Amplifier gains 150

Between sweeps 123

Boltzmann leak 141

Copying data 146

CPG synapse model 133

Destexhe synapse model 134

Electrical synapse model 135

Example GHK leak 146

Example Hodgkin-Huxley 148

Exponential difference synapse
model 138

Exponential synapse model 136

Gap junction 135

GHK leak 141

Hodgkin-Huxley (Alpha/Beta) model
127

Hodgkin-Huxley (Tau) model 129

In clamp support options 117

Instability 150

Introduction 123

Leak models 141

Linear leak 141

Main setup dialog 126

Models available 126

Models, ADCs and DACs 123

Multiple states 146

Noise (O-U) model 143

Record model changes during
sampling 202

Record settings at start of sampling
202

Sampling 150

Slow updates 150

Starting and stopping 123

Toolbar 150

Update rates 150

User defined synapse model 139

Dynamic outputs states 109

- E -
e mathematical constant 311

Ec() virtual channel function 238, 240

Edit bar 195

Edit marker codes 510

Edit marker time 511

Edit menu 171

Auto complete settings 178

Auto Format 177

Clamp preferences 193

Signal Version 6.06

24-11

Edit menu 171

Clear 174

Compatibility preferences 194

Conditioner preferences 191

Copy 171

Copy As 427

Copy as text 172, 174

Cut text 171

Data preferences 186

Delete selection 174

Display preferences 179

Edit toolbar 176

File comment 176

Find text 174

Frame comment 177

Paste 174

Preferences 179

Redo 171

Replace 176

Sampling preferences 188

Scheduler preferences 192

Script editor preferences 180

Script preferences 192

Select All 174

Sequence editor preferences 185

Summary of script commands 329

Text editor preferences 180, 186

Toggle comments 177

Undo 171

Edit text

Bookmarks 176

copy and paste 26

Drag and drop 25

Editor settings 179

Find 176

Indent and outdent 27

Line select 26

Move lines up or down 26

Multiple selections 25

Rectangular select 26

Regular expressions 174

Search 174

Text caret control 28

Virtual space 25

Wildcard searches 174

Edit toolbar 176

EditClear() 426

EditCopy() 427

EditCut() 427

EditFind() 427

Editing commands summary 329

EditPaste() 428

EditReplace() 428

EditSelectAll() 428

EEG processing 241

Eg() virtual channel function 238, 240

Electrical synapse model 135

else 311, 312

Email support 166

EMG processing 241

end of function 315

End protocol 547

endcase 312

endif 311

Enhanced metafiles 186

Enlarge view 198

Environment variables 611

EPC 800 telegraph configuration 686

EPC 800 telegraphs 685

EPSP/IPSP

Detection 269

Measuring 225, 227

Erase file 434

Error -544 726

Error bars 218

Error codes 429

Error values from data 360

Error$() 429

Errors in sequencer compiler 73

Es() virtual channel function 238, 240

Esc key in a script 295

Escape character in strings 300

Et() virtual channel function 238, 240

Eval() 429

Evaluate argument 429

Evaluate bar 280

Event 1 sampling trigger 37, 58

Event data

Drawing colour 389

Evoked response

Stimulation 62

Studies with Signal 5

Evoked response/potential

Averaging 218

Feature detection 269

Sampling fast sweeps 42

Exchange data with another computer
166

Execute program 546

Existance of cursor 400

Existance of horizontal cursor 483

Exit 170

Exit from Signal 442

Exp() 429

Exp() virtual channel function 238

Expand all folds 215

Experimenter's notebook 202

Exponential curve fitting 231

Exponential difference synapse model
138

Exponential fitting from script 452, 454

Exponential function 429

Exponential synapse model 136

Export 434

Data file 434

Export As 434

Summary of script commands 322

Export data 160

As bitmap file 160

As CFS file 160

As text file 160

As Windows Metafile 160

Format 186

System numeric format 186

To clipboard 174

ExportChanFormat() 429

ExportChanList() 430

ExportFrameList() 430

ExportTextFormat() 431

ExportTimeRange() 431

Expression active cursor mode 269

Expressions 309

Extended sampling mode 571

Extended sweep mode 42

External convert sampling 42

External digital states 115, 728

External exporter

MATLAB 161

External exporters 160

External file view

Description 19

External files 438

External program

Kill 545

Run 546

Status of 546

External states 108

Extra states 582

- F -
F distribution 357

Factorials 361

Fast trigger sweep mode 42

Index

24-12

Feature detection 269

Active cursor modes 269

Measurements to data channel 227

Measurements to XY view 225

Using active cursors 269

Feature search 383

Start cursor search 403

Test search 403

FFT (Fast Fourier Transform) 220

FFT analysis

Of arrays 341

Of waveform data 600

File

CFS frame variables 473, 474, 476,
477

Comment 432

Copy external file 433

Dump as text 429, 431

Export As 434

Export channel list 430

Export frame list 430

Size of data file 443

File comment 176

File comment at sampling end 188

File format converters 153

File frames limit 54

File menu 152

Backup SGRX file 165

Close 159

Close All 159

Data update mode 166

Exit 170

Export As 160, 434

Global resources 158

Import data 153

Import open\closed times 157

Load configuration 166

New data view 152

New File 152

New script view 152

New sequence view 152

New text view 152

New XY view 152

Open a document 153

Open data view 153

Open script view 153

Open sequence view 153

Open text view 153

Open XY view 153

Page headers 167

Page Setup 167

Print preview 169

Print screen 169

Print selection 169

Print visible 169, 442

Resource files 159

Revert To Saved 165

Save and Save As 159

Save As 442

Save configuration 166, 434

Send Mail 166

Summary of script commands 321

File name extensions

CFS file extension 152

PLS file extension 152

SGS file extension 152

SXY file extension 152

TXT file extension 152

File name generation 54

File operations 152

File path

Copy to clipboard 30

File size

Data file 443

File size limit 54

File system commands 333

File time limit 54

File view

Description 19

Discard changes 174

New from script 438

Open from script 438

Reload frame 174

FileApplyResource()

Apply resource 432

FileClose() 432

FileComment$() 432

FileConvert$ command string

Binary importer commands 156

FileConvert$() 433

FileCopy() 433

FileDate$() 434

FileDelete() 434

FileExportAs() 434

FileGetIntVar() 435

FileGetRealVar() 436

FileGetStrVar$() 436

FileGlobalResource() 436

FileList() 437

FileName$() 437

FileNew() 438

FileOpen() 438

FilePath$() 440

FilePathSet() 440

FilePrint() 441

FilePrintScreen() 441

FilePrintVisible() 442

FileQuit() 442

FileSave() 442

FileSaveAs() 442

FileSaveResource() 443

FileSize() 443

FileTime$() 443

FileTimeDate() 444

FileVarCount() 444

FileVarInfo() 445

FiltApply() 445

FiltAtten() 446

Filtbank.cfb filter bank file 655

FiltCalc() 446

FiltComment$() 447

FiltCreate() 447

Filter bank 655

Filter coefficients 343

Filtering of arrays 343

FiltInfo() 448

FiltName$() 448

FiltRange() 448

Find feature 383

Start cursor search 403

Test search 403

Find text 174, 427

Find view 627

Find zero crossing of a function 648

Finding a pulse 65

Finish sampling 58, 59, 585

FIR filter 654, 661

Apply from script 445

Coefficients 661

Details of filter 655

Dialog 654

Differentiator example 667

Frequencies 661

Frequency bands 661

Frequency response 450

Load and save filters 654

Make coefficients 449

Make coefficients (simplified) 450

Maximum useful attenuation 661

Multiband example 666

Number of coefficients 664

Nyquist frequency 665

Overview 653

Ripple in bands 661

Signal Version 6.06

24-13

FIR filter 654, 661

Script functions 331

Technical details 660

Transition region 661

Types of filter 657

Weighting 661

FIR filter of array 343

FIRMake() 449

Filter types 663

FIRMake() script command
technicalities 661

FIRQuick() 450

FIRResponse() 450

First frame 195

First time in frame 525

Fit data 230

Fit Gabor function 462

FitCoef() 451

FitData() 452

FitExp() 454

FitGauss() 456

FitLine() 457

FitLinear() 458

FitNLUser() 460

More complicated example 462

Simple example 461

FitPoly() 464

FitSigmoid() 465

FitSin() 467

Fitting data 230

Fitting functions 332

Fitting routines 651

FitValue() 469

Fixed interval period 70, 569

Fixed interval sweep mode 42

Fixed interval variation 70, 569

Flag frame 472

Floor() 470

Flow of control statements 311

FocusHandle() 470

Folder for files 440

Folders for application data 31

Folders for user data 31

Folding 180

Collapse all folds 215

Expand all folds 215

Toggle all folds 215

Font selection 211

Quick size change 28

FontGet() 470

FontSet() 470

for 314

Formatted text output 538, 540

Frac() 471

Fractional part of real number or array
471

Frame

Accept 562

Analyse 540

Append 336, 408

Buttons 9

Discard changes 475

Flag 472

Lists 21

On line processing 542

Overdraw 534, 535, 536

Process multiple frames 541

Reject 562

Save changes 475

Select by states 21

Specifications 21

State 475

Tag 476

User Variable 476

Zoom buttons 10

Frame buffer 252, 324

Frame buffer command summary 324

Frame buffer commands 364

Frame comment 177

Frame list 10, 474

Frame lists

Set of states 21

Specifying 21

Frame start time display 179

Frame zero 56

Frame() 471

FrameAbsStart() 472

FrameComment$() 472

FrameCount() 472

FrameFlag() 472

FrameGapFree() 473

FrameGetIntVar() 473

FrameGetRealVar() 473

FrameGetStrVar$() 474

FrameList() 474

FrameMean() 475

Frames 10

Display list 195

Goto frame 195

Next 195

Overdrawing 195

Overdrawing online 59, 196

Previous 195

Processing data 223

Save changed data 186

Show frame buffer 195

Tagging and untagging 254

FrameSave() 475

FrameState() 475

FrameTag() 476

FrameUserVar() 476

FrameVarCount() 477

FrameVarInfo() 477

Frm() virtual channel function 238, 244

Front view 477

Front window 477

FrontView() 477

F-test 357

func keyword 315

Function argument lists 316

Functions and procedures 315

Functions as arguments 318

- G -
Gabor function 462

GammaP() 478

GammaQ() 478

Gap free status of file frames 473

Gap junction 135

Gap-free sweep mode 42

Gaussian curve fitting 231

Gaussian fitting from script 452, 456

GDI handles 35

Generate channel data 238

Get memory channel item 521

Get protocol step 549

Get real marker items 510

Getting started

Clamping experiments 117

Clamping experiments with telegraph
amplifiers 678

Current clamp 117

Scripting 288

Signal software 5

TMS experiments 689

Voltage clamp 117

GHK leak model 141

GHK leak model example 146

Global resource files 158, 436

Update 159

Global variables

Debug 295

Index

24-14

Globals window 297

Gotchas 723

Gradient of line 274

GrdAlign() 479

GrdColWidth() 479

GrdGet() 480

GrdSet() 479

GrdShow() 480

GrdSize() 480

Grid

Set colour 211

Grid colour 211, 389

Grid show and hide 204

Grid view

Optimise widths 217

Grid views

Akignment 479

Change or report size 480

Column width 479

Optimise widths 479

Script commands 323

Set cell contents 479, 480

Set column header 480

Show/hide headings 480

Grid() 481

Group channels 200

Groups of channels 380

Gutter

Show and hide 215

Gutter() 481

- H -
halt 315

HALT sequencer instruction 96

Handle

Config bar 335

Edit bar 335

Main window 335

Running script 335

Sample control panel 335

Script bar 335

Status bar 335

Toolbar 335

Handles

GDI limitations 35

User limitations 35

HCursor() 481

HCursorActive() 481

HCursorChan() 482

HCursorDelete() 483

HCursorExists() 483

HCursorLabel() 483

HCursorLabelPos() 484

HCursorNew() 484

HCursorRenumber() 484

HCursorValid() 484

HCursorVisible() 485

HCursorX() 485

Header and footer 169

Help menu

About Signal 286

Getting started 285

Help index 285

Other sources of help 287

Tip of the day 285

Using help 285

View web site 285

Help sources 287

Help() 485

Hexadecimal marker codes 40

Hexadecimal number format 300, 538

Hide

Channel (list) 385

Config bar 335

Edit bar 335

Frame buffer 602

Log window 509

Running script 335

Sampling control panel 570

Script bar 335

Script generated toolbar 620

Status bar 335

Toolbar 335

View/Window 633

X axis 633

X axis scroll bar 635

Y axis 644

Hide sampling controls 570

Hide window 282

High pass filter 657

High pass filter example 665

Hilbert transformer 669

Histogram draw mode 424

Histogram from array 344

HJCFIT export 262

Hodgkin-Huxley (Alpha/Beta) model 127

Hodgkin-Huxley (Tau) model 129

Hodgkin-Huxley model example 148

Holding potential 117, 121

Access from script 567

Horizontal cursor 481

Button 11

Horizontal cursor commands 325

Horizontal cursor script functions

Control visibility 485

Cursor channel 482

Delete cursor 483

Get active cursor mode and
parameters 481

Get and set cursor position 481

Label position 484

Label style 483

New cursor 484

Previous cursor position 485

Renumber cursors 484

Set active cursor mode and
parameters 481

Test for valid 484

Test for visible 485

Test if exists 483

Host operating system 610, 611

Hwr() virtual channel function 238, 243

Hwr(x) virtual channel function 242

Hyperbolic cosine 396

Hyperbolic tangent 612

Hysteresis 574

Hz() sequencer expression 79

- I -
I/V curves 228

Icon tidying 283

Iconise view 633

Idealised trace

Amplitude analysis 260

Backup data 165

Baseline measurements 261

Basic drawing 207

Burst analysis 260

Convolution drawing 207

Delete event 531

Description 256

Drawing mode 207

Events 256

Export to HJCFIT 262

Fit using step response 532

Fitting strategy 263

Generation 258

Generation using SCAN 256

Get event details 530

Measure baseline noise 533

Merge events 531

Open/closed times analysis 259

Save data during analysis 165

Set event details 532

Signal Version 6.06

24-15

Idealised trace

Shortcut keys 263

Split event in three 532

Split event in two 530

Tips for fitting 263

View and modify details 261

View event list 262

Idling control 192

if statement 311

If() virtual channel function 238, 240

Interactive dialog 244

Ifc() virtual channel function 238, 240

Interactive dialog 244

IIR filter 654, 658

Apply from script 489

Apply to an array 488

Details of filter 658

Dialog 654

Filter model 658

Filter order 658

Load and save filters 654

Notch filter 658

Overview 485, 653

Read back information 487

Stability 487

Types of filter 658

IIRApply() 489

IIRBp() 489

IIRBs() 490

IIRComment$() 491

IIRCreate() 491

IIRHp() 491

IIRInfo() 492

IIRLp() 492

IIRName$() 493

IIRNotch() 493

IIRReson() 494

Image behind channel 375

Image for channel 208

Import

Binary importer details 156

Data from other applications 153

Foreign file format 153

Importer DLL versions 157

Text importer details 157

Import folder 153

Import foreign data file 153, 433

Import items into memory channel 237

Import memory channel data 521

Import open\closed times 157

Impulse response 338, 343, 661

Include files

debugging script 320

in script 319

in sequence 82

Incomplete Beta function 349

Indent text 295

Index 298, 321, 335

Initialise protocol 547

Input a single number 494

Input a string 495

Input for sweep trigger 42

Input$() 495

Input() 494

Instantaneous frequency

Drawing colour 389

InStr() 495

InStrRE() 496

Instructions for sequencer 78

Int(x) virtual channel function 242

Integer data type 300

Integer overflow 336

Integrate array 344

Integrate channels 376

Integrate data 254

Interact() 502

Internal states 108

International character set 33

Interpolate

Array of data 346

Channel data 238

Interpolation in two dimensions 604

Inverse distance 604

Inverse distance weighting 607

Inverse FFT 341

Inverse of a function 648

Invert channels 379

Invert matrix 511

- J -
Join data points in XY view 640

JUMP sequencer instruction 95

- K -
Key for XY view 210

Key window control 641

Keyboard channel

Add marker 570

Turn on/off 570

Keyboard control of cursors 265

Keyboard control of display 216

Keyboard control of sequencer 76, 78

Keyboard markers 40

Enable 42

Entering 59

Keyboard shortcuts

Analysis 255

Data views 24

Sampling 279

Text view caret control 28

Text view copy, paste, delete 26

Text view find & replace 27

Text view font control 28

Text view indent and outdent 27

Text views 26

Keywords 298

Kind of channel 377

- L -
Label

Colour 388

Label style of cursor 400, 483

Position label on cursor 401, 484

X axis 635

Y axis 386

Label for horizontal cursor 268

Label for vertical cursor 266

Language index 298

Last frame 195

LAST.SGC last sampling configuration
166

LastTime() 503

LCase$() 503

Leak models 141

Leak subtraction 221, 595

Least squares fitting 274

Least-squares linear fit 457

Left$() 503

Legal characters in string input 495

Len() 504

Length of array or string 504

Length of pulse outputs 572

Licence 728

Limit file size 571

Limit frames 571

Limit recording time 571

Limitations

Disk space 35

Handles 35

Memory 35

Line draw mode for markers 206

Line draw mode for real markers 207

Index

24-16

Line numbers

in text view 528

Show and hide 215

Line numbers in text view 627

Line selection in text views 26

Line style in XY views 210

Line thickness for printing 179

Line width for displays 179

Linear fit

Definition 650

Linear fitting from script 458

Linear leak model 141

Linear least-squares fit 457

Linear Prediction 505

LinPred() 505

List

Channel numbers 377

Files 437

Frames 474

Views 628

Literal string delimiter 300

Ln() 509

Ln() virtual channel function 238

LnGamma() 509

Load configuration 438

Local variables

Debug 295

Locals window 297

Lock Y axes 200

Log amplitude of the power spectrum in
dB 341

Log view

Dump of internal objects 407

Handle 509

Maximum lines 192

Log window maximum lines 629

Log() 509

Logarithm to base 10 509

Logarithm to base e 509

Logarithmic scale 661

LogHandle() 509

Low pass differentiator filter 657

Low pass filter 657

Low pass filter example 664

Lower case version of a string 503

LTP/LTD

Feature detection 269

Measurements 228

Stimulus generation 62

Varying stimulation 108

- M -
Magnify a channel 12

Magnify an area 11

MagPro

Configuration 700

Connections and cabling 702

Control cable 702

Getting started with TMS
experiments 689

Introduction 700

Notes on use 703

Safety notice 699

Stimulator 699

Stimulator type 700

Trigger connection 702

Variation between types 700

Magstim

200 TMS device 693

BiStim TMS device 694

Configuration 692

Connections and cabling 696

Control cable 696

Dual 200 TMS devices 696

Getting started with TMS
experiments 689

Introduction 689

Magstim types 692

Notes on use 698

Rapid TMS device 695

Safety notice 688

TMS stimulator 688

Trigger connection 696

MagVenture

Connections and cabling 702

Control cable 702

Device safety notice 699

Introduction 700

Notes on use 703

Stimulator configuration 700

Stimulator types 700

Stimulators 699

Trigger connection 702

Variation between stimulator types
700

Main window handle 335

MARK sequencer instruction 105

MarkCode() 510

MarkEdit() 510

Marker

Codes 510

Convert to waveform 240

Count in time range 377

Count of real marker items 510

Edit marker codes 510

Edit marker time 511

Time 510, 511

Time resolution 361

X axis resolution 361

Marker channels 40

Marker codes 40

ColourSet() 389

Marker data

ColourSet() 389

Conflict with sequencer 76

Copy and Export format 172

Value at position 386

Marker display 206

Dots 206

Lines 206

Rate 206

Marker drawing modes 206

Markers

Convert to waveform 238

Select code displayed 511

Markers per second

As a waveform 238, 240

MarkInfo() 510

MarkShow() 511

MarkTime() 511

MATDet() 511

Mathematical constants 311

Mathematical functions 331

MATInv() 511

MATLAB

Data file format 163

Data view export 162

Export 161

Exported variable names 161

Idealised trace data format 164

Marker data format 163, 164

Script controlled export 165

Waveform data format 163

XY data format 162, 164

MATLAB external exporter 161

MatLab file export fails 513

MATLAB script support 512

MatLabClose() 512

MatLabEval() 512

MatLabGet() 512

MatLabOpen() 513

MatLabPut() 513

MatLabShow() 514

Signal Version 6.06

24-17

MATMul() 514

Matrix 303

Determinant of 511

Diagonal of 303

Inverse of 511

Multiplication 514

Solve linear equations 514

Trace of 515

Transpose of 303, 515

MATSolve() 514

MATTrace() 515

MATTrans() 515

Max() 515

virtual channel function 238

Max() virtual channel function 243

Maximise view 633

Maximum

Of several values 515

Sampled frame length 42

Time in channel 515

Total sampling rate 42

Value in array 515

Value in channel 525

X axis in current frame 515

Maximum and Minimum active cursor
modes 269

Maximum and minimum of XY channel
641

Maximum between cursors 274

Maximum Entropy 505

Maximum lines in log view 192

Maximum lines in text window 629

Maximum waveform output rate 68

Maximum Working set size 726

Maxtime() 515

Mean

Definition for fitting 649

Mean value in time range 378

Option for auto-average 593

Option for averaging 593

Mean frequency

Drawing colour 389

Mean frequency (power spectrum) 248

Mean frequency (spectral) 247

Mean value between cursors 274

Measure level in data

Test measurement 484

Measure value in channel 378

MeasureChan() 516

Measurements

and active cursors 229

Between cursors 274

MeasureChan() 516

MeasureToChan() 516

MeasureToXY() 517

MeasureX() 519

MeasureY() 519

To data channel 227

To XY view 225

MeasureToChan() 516

MeasureToXY() 517

MeasureX() 519

MeasureY() 519

Median frequency 247

Median() virtual channel function 238

Median(x, tc) virtual channel function
242

Interactive dialog 251

Membrane 117, 121

Analysis 122

Analysis methods 123

Capacitance 122

Changing pulse for measurement
122

Holding potential 121, 122

Resistance 121, 122, 123

MemChan() 519

MemDeleteItem() 520

MemDeleteTime() 520

MemGetItem() 521

MemImport() 521

Memory channels

Add items 236

Change or add item 523

Copy channel 237

Create 519

Create new channel 235

Delete by item index 520

Delete by time range 520

Delete items 236

Get item by index 521

Import channel 237

Import data 521

Measurements 516

Overview 235

Memory view

Amplitude histogram 592

Auto Average 593

Average waveform 593

Burst time histogram 597

Clear 174

Count sweeps accumulated 610

Create copy 594

Create user-defined view 595

Creating a new view 218

Description 19

Get source data view 629

Leak subtraction 595

Modified 526

New memory view 592

Number of sweeps 201

Open/closed amplitude histogram
597

Open/closed time histogram 598

Power spectrum 600

View Info 610

Memory views 16

MemSetItem() 523

MEP

Counting 225

Detection 269

Message() 524

Metafile compression 186

Metafile format 186

Metafile image export 160

Metafile output 427

Metafile output scaling 186

Metafiles 186

MF() virtual channel function 241

Interactive dialog 247

Microseconds for time 179

Mid$() 524

Milliseconds for time 179

Min() 524

virtual channel function 238

Min() virtual channel function 243

Minimum

Measure in channel 378

Of several values 524

Time in channel 525

Value in array 524

Value in channel 525

X axis in current frame 525

Minimum between cursors 274

Minimum Working set size 726

Minmax() 525

Mintime() 525

mod, remainder operator 309

Mode of channel drawing 424

Mode of cursor 401

Modified() 526

Modify channel data 254

Modulus of data 274

Monitor information 610

Index

24-18

Monitor usage information 610

Monochrome display 630

Mouse

Channel overdraw 15

Channel spacing 15

Create pointer 526

Find position 616

Initial position in dialog 419

ToolbarMouse() 616

Mouse control of display 216

MousePointer() 526

MOV sequencer instruction 97

Move channels 380

Move in text and cursor windows 528,
529

Move lines up or down in text views 26

MoveBy() 528

MoveTo() 529

MOVI sequencer instruction 97

Moving a pulse 65

MOVRND sequencer instruction 106

ms() sequencer expression 79

MUL sequencer instruction 99

MULI sequencer instruction 99

MultiClamp 700 678

Getting started with clamping
experiments 678

Telegraph configuration 681

Telegraphs 678

Multimedia sound output 603

Multiple frame states enable 42

Multiple frames

Export 430

List 474

Online analysis 542

Overdraw 535

Processing 541, 542

Multiple frames dialog

Buffer 254

Operations 254

Record changes made to CFS file
202

Multiple monitor support 334, 610, 633

Set mouse pointer position in dialog
419

Multiple selections of text 25

Multiple software licences 728

Multiple states 42, 108, 110

3304 stimulator 704

Auxiliary states hardware 116

DAC outputs 115

DAC value 581

Digital data 581

Digital inputs 115

Digital inputs enable from script 568

Digital outputs 115

Dynamic clamp models 146

Dynamic outputs 109

Enable 42

Enabling 108

External digital states 115

Forms of multiple states 108

Idling 108

Idling after cycles 582

Individual repeats 582

Individual states repeats 111

Label 582

MagPro stimulator 699

Magstim stimulator 688

Mode 583

Names and labels 108

Number 582

Number of states 109

Numeric or random control online
113

Numeric sequencing 110

Online control 113

Options 583

Ordering 583

Pausing 583

Protocol control online 114

Protocol definition 111

Protocol sequencing 111

Randomised 110

Repeats 584

Sequencing 110

Sequencing modes 109

Sequencing step 584

State 0 108

State numbers 108

Static outputs 115

Sweep points 585

TMS 699

TMS stimulator 688

Variable points 42

Variable sweep points 587

Multiplication

Arrays 345

Matrices 514

- N -
Name format 298

Name of protocol 548

Name pulse 552, 553

Natural logarithm 509

NEG sequencer instruction 97

Negate array 345

Negate channels 379

Negate data 254

Nerve

Responses 269

Stimulation 62

Nervous system

Signal detection 269

New cursor 401

New data file temporary directory 188

New document 56, 152

New file from existing file 160

New horizontal cursor 484

New memory view 218, 592

New XY view 224, 592

Next 314

Item in channel 529

Next frame 195

NextTime() 529

Noise (O-U) model 143

Non-linear fit

Definition 650

Non-linear fitting 460

NOP sequencer instruction 97

Normal distribution 649

Normal settings for a view 630

Notch filter 658

Notebook recording actions 202

Novell server 726

Number formatting in text files 186

Number input with prompt 494

Number of protocols 548

Number of pulses 553

Number of states 109

Number of sweeps in analysed data 201

Number of sweeps in memory view 201

Numeric input 494

- O -
Offset channel data 379

Offset data 254

OFFSET sequencer instruction 90

One and a half high pass filter 657

One and a half low pass filter 657

Online

Analysis 542

Processing 542

Online ADC display range 188

Signal Version 6.06

24-19

Online analysis 57

Online clamping support 117

Online data processing 224

Online data processing to data channel
230

Online data processing to XY view 230

Online optimisation at sweep end 188

Online pulses control 71

Online update of memory view 224

Online update of XY view 230

OpClEventChop() 530

OpClEventDelete() 531

OpClEventGet() 530

OpClEventMerge() 531

OpClEventSet() 532

OpClEventSplit() 532

OpClFitRange() 532

OpClNoise() 533

Open 438

File view 438

Script file 438

Text file 438

Open file 438

Open/closed analysis

Fitting strategy 263

Shortcut keys 263

Tips for fitting 263

Open/closed data

Amplitude histogram 260

Analysis using SCAN method 256

Analysis using threshold method
258

Baseline level measurements 261

Burst duration histogram 260

Export to HJCFIT 262

Idealised trace details 261

Idealised traces 256

Times analysis 259

View event list 262

Opening

Configuration file 166

New document 152

Old document 153

Operating system 610, 611

Operators 309

Optimisation online at sweep end 188

Optimise the display 533

Optimise Y axis 200

Optimise() 533

Options for XY view 210

OR sequencer instruction 100

Order of channels 179, 380

ORI sequencer instruction 100

Ornstein-Uhelenbeck noise model 143

Oscilloscope 5

Other sources of help 287

Outdent text 295

Output resets

DAC output settings 55, 189

Digital output settings 55, 189

In preferences 189

In sampling configuration 55

Output sequencer 72

OutputReset() 533

Outputs 48

Absolute levels 48

DAC 37

DAC enable 48

DAC full scale 567

DAC scaling 48

DAC units 48, 568

DAC zero 568

Digital 38

Digital outputs enable 48

Pulse type 48

Pulses or sequencer 52

Relative levels 48

Sequencer type 48

Time resolution 48

Type select 48

Outputs clock 572

Outputs dialog

Absolute times 48

Delay relative to sampling 48

Synchronisation with sampling 48

Outputs length 572

Outputs length in dialog 70

Outputs mode 572

Outputs trigger 573

Overdraw data

based on channels 15

based on frames 15

Overdraw frame list 534

Overdraw mode 195

Overdraw settings 196

Overdraw() 534

Overdraw3D 535

OverdrawFrames() 535

OverdrawGetFrames() 536

Override current view 625

- P -
Palette for colour 537

PaletteGet() 536

PaletteSet() 537

Pass band 661

Passing arguments 316

by reference 316

by value 316

functions and procedures 318

Paste data into view 174

Paste from clipboard 428

Paste text 174

Patch clamp 117

Path for application 440

Path for file operations 440

Pause at sweep end 573

Pause sampling 573

Pausing sampling 57

PCA() 537

Peak between cursors 274

Peak search active cursor mode 269

Pen width for channel 207

Period for fixed interval 569

Peri-trigger

Analogue trigger 45

Configuration 45

Digital bit 573

Digital bit trigger 45

Hysteresis 574

Level 574

Level adjust online 59

Peri-trigger modes 45

Pre-trigger points 45, 575

Sampling mode 571

Threshold 574

Trigger type 574

Type 574

Waveform trigger 45

Peri-trigger sweeps 42

Phase of power spectrum 341

PHASE sequencer instruction 90

pi

Mathematical constant 311

Picture output 171

Pixels 381

Plot measurements

Action potential counts 225

Feature counts 225

I/V curves 228

Measurements to XY view 225

Index

24-20

Plot measurements

MEP counts 225

Spike counts 225

Trend plot 228

Point style in XY views 210

POINTS sequencer instruction 103

Polarity of sweep trigger 42

Poly() virtual channel function 238, 243

Polynomial curve fitting 231

Polynomial fitting from script 452, 464

Pop-up

Message window 524

Number input with prompt 494

Query user in pop-up window 557

String input with prompt 495

Port

Calibration 47, 575, 577

Configuration 47

Full value 47, 575

Name 576

Options 47, 576

Telegraph 47

Units 576

Zero value 47, 577

Position of cursor 396

Position of window 631

Pow() 538

Power function 538

Power in a band 241

Power in band 248

Power spectra

Of arrays 341

Of waveform channels 600

Power spectrum analysis 220

Power1401 ADC gain see Signal
conditioners 670

Power1401 in sampling configuration 188

Preferences 179, 188

ADC display range 188

Assume Power1401 hardware 188

Axis widths 179

Clamp 193

Compatibility 194

Conditioner 191

Data settings 186

Data update mode 186

Directory for temporary files 188

Enter debugger on script error 192

Export format 186

File comment at sampling end 188

Line widths 179

Maximum log view lines 192

Metafile settings 186

Online optimisation 188

Output reset settings 189

Sampling 188

Save modified script or sequence
192

Save prompts 186

Script access 543

Script editor settings 180

Sequencer editor settings 185

Serial port for conditioner 191

Text editor settings 186

Preferences file 152

Preferences folder 60

Pre-trigger points 575

Previous frame 195

Principal Component Analysis 537

Print

All views on screen 441

Formatted text output 538, 540

Print visible region 442

Selected cursor values 275

To log window 540

To string 540

Print line thickness 179

Print screen 169

Print$() 540

Print() 538

Printing

Header and footer 167

Page setup 167

Preview printed output 169

Print data 169

Print screen 169

Print visible data 169

PrintLog() 540

Problems 723

proc keyword 315

Procedures as arguments 318

Process dialog 223

Process dialog for new file 224

Process file view data to memory view
540

Process frames dialog 223

Process settings 224

Process() 540

ProcessAll() 541

ProcessFrames() 541

Processing data 223

Processing online 57

ProcessOnline() 542

Profile() 543

ProgKill() 545

Programmable Signal Conditioners 670

ProgRun() 546

ProgStatus() 546

Prompt to save result and XY views 186

Protocol repeats 548

ProtocolAdd() 546

ProtocolClear() 547

ProtocolDel() 547

ProtocolEnd() 547

ProtocolFlags() 547

ProtocolName$() 548

ProtocolRepeats() 548

Protocols

Add 546

Clear 547

Delete 547

Flags 547

Get step 549

Name 548

Number 548

Select while sampling 577

Set step 549

Protocols() 548

ProtocolStepGet() 549

ProtocolStepSet() 549

Pulse generation 62

Pulse outputs 62, 549

Pulse outputs length 572

Pulse outputs while sampling 62

PulseAdd() 550

PulseClear() 551

PulseDataGet() 551

PulseDataSet() 551

PulseDel() 552

PulseFlags() 552

PulseName$() 553

Pulses

Absolute levels 562

Add pulse 550

Arbitrary waveform 68

Biphasic 67

Clock rate 572

Configuration 62

Controlling online 71

Delete all pulses 551

Delete pulse 552

Dialog 62

Digital bits 66

Signal Version 6.06

24-21

Pulses

Digital marker 68

Fixed interval period 70

Fixed interval variation 70

Get data 551

Get times 553

Get type 554

Get variation 554

Get waveform data 555

Get waveform settings 556

Initial levels 66

Name pulse 552, 553

Number 553

Ramp 68

Record changes during sampling
202

Record settings at start of sampling
202

Resolution 572

Set data 551

Set times 554

Set variation 555

Set wavefom data 556

Set wavefom settings 557

Sine wave 68

Square pulse 67

Square pulse train 67

Square with varying amplitude 67

Square with varying duration 67

Step change 70

Time resolution 572

Total variation 70

Trigger sampling 70

Types 66

Varying 70

Varying sweep points 70

Waveform output 68

Pulses dialog

Adding a pulse 64

Animation 62

Arbitrary waveform 68

Control track 62

Copying a pulse 65

Copying pulses 65

Current pulse 62

Delete pulse 62

Digital marker 68

Display 62

Drag and drop 64

Finding a pulse 65

Fixed interval period 70

Fixed interval variation 70

Initial levels 66

Moving a pulse 65

Paste waveform 69

Pulse selection 62

Pulse types 66

Ramp 68

Removing a pulse 65

Sine wave 68

Square pulse 67

Square pulse train 67

Square pulse with varying amplitude
67

Square pulse with varying duration
67

State label 62

State selector 62

Step change 70

Total variation 70

Trigger sampling 70

Types 62

Values 62

Varying pulses 70

Varying sweep points 70

Waveform output 68

Pulses or sequencer 52

Pulses output

see Pulses, Pulses dialog 49

Pulses outputs 49

Pulses() 553

PulseTimesGet() 553

PulseTimesSet() 554

PulseType() 554

PulseVarGet() 554

PulseVarSet() 555

PulseWaveformGet() 555

PulseWaveformSet() 556

PulseWaveGet() 556

PulseWaveSet() 557

PulseXXX() Pulse output commands 549

Pw() virtual channel function 241

Interactive dialog 246

- Q -
Query user in pop-up window 557

Query() 557

Questions 723

Quit Signal 442

- R -
Radial basis functions 607

Radians 349, 396, 602

Convert to degrees 612

Ramp generation 62

RAMP sequencer instruction 87

Rand() 557

RandExp() 558

RandNorm() 558

Random number generator 557

Exponential distribution 558

Normal distribution 558

Randomisation in sequencer 105

Range of data points in XY view 641

Rapid

Magstim device configuration 695

Magstim device connection 696

Magstim TMS stimulator 688

Raster drawing mode

Drawing colour 389

Rate drawing mode

Drawing colour 389

Rate marker display mode 206

Rate real marker display mode 207

RATE sequencer instruction 89

RATEW sequencer instruction 89

Read binary data 362, 363

Read only 526

Read text file

Input from a text file into variable(s)
559

Open file from script 438

Read() 559

ReadSetup() 560

ReadStr() 561

Real data type 299

Real marker data

Amplitude 386

Value at position 386

Real marker display

Dots 207

Lines 207

Rate 207

Real marker drawing modes 207

Real markers

Select value to draw & use 376

RealMark data

Convert to waveform 240

RECIP sequencer instruction 99

Reciprocal of array 340

Record user actions 202

Rectangular selection of text 26

Rectify channels 383

Rectify data 254

Redo command 171

Index

24-22

Reduce view 198

Reference parameters 316

Registry access 543

Regular expression grammars 499

Regular expression search 496

Regular expressions 499

Reject sweep 562

Relative measurements 273

Removing a pulse 65

Renumber cursors 402, 403

Renumber horizontal cursors 268, 484

Renumber vertical cursors 267

repeat 313

Replace matched text 176

Replace text 428

Repolarisation percentage active cursor
mode 269

REPORT sequencer instruction 105

Reset

DAC outputs (script) 533

Digital outputs (script) 533

Reset sampling 577

Reset states 584

Residuals 650

Resistance 117

Membrane 123

Total resistance 123

Value storage 123

Resistance measurement 121

Resistance measurements state used 119

resize 307

Resonator filter 658

Resource files 152

Apply and save 159

Resource information suppression 438

Restart sampling 58, 577

Restore view 633

Result view

Drawing colours 389

Result view save prompt 186

return from function 315

return keyword 315, 317

RETURN sequencer instruction 94

Revert text document to last saved 165

Revision history 708

Revisions 708

Right$() 561

Rightmost characters from a string 561

RINC sequencer instruction 92

RINCW sequencer instruction 92

Rising edge sweep trigger 42, 587

Rm() virtual channel function 240

Interactive dialog 244

Rmc() virtual channel function 240

Interactive dialog 244

RMSAmp() virtual channel function 238

RMSAmp(x, tc) virtual channel function
242

Interactive dialog 251

Root of equation 648

Rotate data 254

Round a real to nearest whole number
561

Round() 561

RS232 Summary of script commands 334

R-square values in fit results 234

Run external program 546

Run script from Script bar 281

Running script 335

- S -
s() sequencer expression 79

Sample bar

Buttons for configurations 277

List of configurations 277

Showing and hiding 277

Sample interval description 39

Sample menu

Output controls 279

Sample bar 277

Sample Bar List 277

Sampling configuration 277

Sequencer controls 279

Signal conditioner setup 278

Sample rate for waveform data 39

Sample toolbar from script language 565

SampleAbort() 561

SampleAbsLevel() 562

SampleAccept() 562

SampleArtefactGet() 562

SampleArtefactSet() 563

SampleAutoFile() 563

SampleAutoName$() 563

SampleAuxStateParam () 563

SampleAuxStateValue() 564

SampleBar() 565

SampleBurst() 566

SampleClamp() 566

SampleClampHP() 567

SampleClear() 567

SampleDacFull() 567

SampleDacMask() 568

SampleDacUnits$() 568

SampleDacZero() 568

SampleDigIMask() 568

SampleDigMark() 569

SampleDigOMask() 569

SampleFixedInt() 569

SampleFixedVar() 569

SampleHandle() 570

SampleKey() 570

SampleKeyMark() 570

SampleLimitFrames() 571

SampleLimitSize() 571

SampleLimitTime() 571

SampleMode() 571

SampleOutClock() 572

SampleOutLength() 572

SampleOutMode() 572

SampleOutTrig() 573

SamplePause() 573

SamplePeriBitState() 573

SamplePeriDigBit() 573

SamplePeriHyst() 574

SamplePeriLevel() 574

SamplePeriLowLev() 574

SamplePeriPoints() 575

SamplePeriType() 574

SamplePoints() 575

SamplePortFull() 575

SamplePortName$() 576

SamplePortOptions$() 576

SamplePorts() 576

SamplePortUnits$() 576

SamplePortZero() 577

SampleProtocol() 577

SampleRate() 577

SampleReset() 577

SampleSeqCtrl() 578

SampleSeqStep () 578

SampleSeqTable() 578

SampleSequencer$() 579

SampleSequencer() 579

SampleSeqVar() 579

SampleSeqWave() 579

SampleStart() 580

SampleState() 581

SampleStateDac() 581

SampleStateDig() 581

SampleStateLabel$() 582

SampleStateRepeats() 582

Signal Version 6.06

24-23

SampleStates() 582

SampleStatesIdle() 582

SampleStatesMode() 583

SampleStatesOptions() 583

SampleStatesOrder() 583

SampleStatesPause () 583

SampleStatesRepeats() 584

SampleStatesReset() 584

SampleStatesRun() 584

SampleStatesStep() 584

SampleStatus() 585

SampleStop() 585

SampleSweep() 585

SampleSweepPoints() 585

SampleTel () 586

SampleTrigger() 586

SampleTriggerInv() 587

SampleVaryPoints() 587

SampleWrite() 587

SampleZeroOffset() 587

Sampling 56, 57, 58, 59

Aborting 58

Accept sweep 58

ADC calibration 47

ADC ports 42

Amplifier telegraphs 47

Artefact rejection 56

Automatic file naming 54

Automatic file save 54

Automatic processing 542

Automation configuration 54

Burst mode 42

Clamp support 117

Clamping configuration 119

Clamping control bar 121

Clamping support features 117

Configuration contents 60

Configuration dialog 41

Continue with next sweep 58, 59

Control of multiple states 113

Controls while 57, 278

Creating a new document 56

Current state 585

Customise sample bar 277

Digital markers 42

Dynamic clamping 123

Dynamic clamping configuration 126

Enabling multiple frame states 42

Extended sweeps 70

File frames limit 54

File size 443

File size limit 54

File time limit 54

Finish button 58, 59

Fixed interval sweeps 70

Fixed interval variation 70

Frame zero 56

General configuration 42

Get sample start time and date 444

Holding potential 121

Incoming data 56

Interaction while 59

Keyboard marker entry 59

Keyboard markers 42

Maintain displayed ADC range 59

Maximum frame length 42

Maximum rate 42

Membrane resistance 121

Online analysis 57

Outputs configuration 48

Outputs type 48

Overdraw frames 59

Pausing at sweep end 57

Peri-trigger configuration 45

Peri-trigger level adjust 59

Ports configuration 47

Pulse controls while 279

Pulse outputs 49, 62

Pulses or sequencer 52

Record configuration at start of
sampling 202

Record user actions, items of
interest 202

Redraw frame zero 174

Reject sweep 58

Reset states 584

Restarting 58

Run states sequencing 584

Runtime control functions 327

Sample interval 42

Sample now button 279

Sample rate 42

Saving configuration 60

Saving new data 60

Select protocol 577

Select state 581

Sequence to save configuration 61

Sequencer controls while 279

Sequencer outputs 50, 72

Signal conditioner controls 278

Start on trigger 57

States sequencing step 584

Stopping sampling 59

Sweep mode 42

Sweep trigger 42, 57

Sweep trigger polarity 42

Toolbar for configurations 277

Triggered start 58

Variable sweep points 42

Varying sweep points 70

View handle 570

Write sweep automatically 57

X axis offset 42

Sampling configuration 438

Absolute pulse levels 562

ADC ports 576

Add protocol 546

Add pulse 550

Analogue level 574

Analogue threshold 574

Artefact rejection 562

automatic filing 563

automatic naming 563

auxiliary states device 563, 564

Burst mode 566

Clear protocol 547

Count pulses 553

DAC full scale value 567

DAC outputs enable 568

DAC units 568

DAC zero value 568

Data points per sweep 575

Delete all pulses 551

Delete protocol 547

Delete pulse 552

Digital bit level 573

Digital bit number 573

Digital outputs enable 569

Display configuration 277

End protocol 547

Extra states 582

Fixed interval period 569

Fixed interval variation 569

Full 575

Get protocol step 549

Get pulse data 551

Get pulse times 553

Get pulse variation 554

Get waveform data 555

Get waveform settings 556

Hysteresis 574

Individual state repeats 582

Keyboard marker channel 570

Limit file size 571

Limit frames 571

Limit sample time 571

Index

24-24

Sampling configuration 438

Load 438

Loading and saving 166

Name 576

Name of protocol 548

Name pulse 552, 553

Number of protocols 548

Options 576

Output reset settings 55

Outputs clock 572

Outputs length 572

Outputs mode 572

Outputs trigger 573

Peri-trigger 575

Protocol flags 547

Protocol repeats 548

Pulse outputs 549

Pulse type 554

Record settings at start of sampling
202

Reset configuration 567

Rising edge trigger 587

Sample mode 571

Sample rate 577

Save 434

Set protocol step 549

Set pulse data 551

Set pulse times 554

Set pulse variation 555

Set wavefom data 556

Set wavefom settings 557

Signal conditioner (CED 1902) 390

Standard settings 567

State DAC value 581

State digital data 581

State label 582

States idling 582

States mode 583

States options 583

States ordering 583

States pausing 583

States repeats 584

Summary of script commands 325

Suppress extra windows 438

Sweep length 575

Trigger enable 586

Trigger type 574

Units 576

Using it 438

Variable sweep points 585, 587

Zero 577

Sampling configuration files 152

Sampling control panel

Continue 585

Summary of script commands 327

Sweep trigger 586

Window handle 570

Sampling data 36

Sampling interval in data 361

Sampling menu 277

Keyboard alternatives 279

Sampling operations 277

Sampling parameters 566

Sampling preferences 188

Sampling problems 726

Sampling rate 577

Sampling rate configuration 42

Sampling window handle 570

Sampling with multiple states 108

Save changed data 166, 186

Save changed frame data 475

Save configuration 434

Save data 159

Save file 442

Save file As 442

Save file at sampling end 54

Save modified script before running 192

Save modified sequence before
sampling 192

Save resource from script 443

Save sweeps while sampling 570, 587

Saving configurations 60

Scale

X axis 361, 577

Y axis 575

Scale bar 204

Scale channel data 383

Scale data 254

Scale text font 630

Scale using axis 12

Scaling of sampled data 47

SCAN analysis of single channel data
256

SCAN method 256

Scheduler preferences 192

Scheduling 192

Scope of variables and user-defined
functions 318

Screen dump 169

Screen dump to printer 441, 442

Script

Analysis 328

Array arithmetic 330

Bar 281

Binary files 333

Call stack in debug 298

CED 1902 328

CFS variables 329

Channels in data view 323

CyberAmp 328

D360 328

Data views 322

Debug 295, 407

Debug preparations 295

Digitimer D360 328

Edit menu 329

Enter debug on error 296

File menu 321

Filing system 333

Fitting functions 332

Horizontal cursors 325

Inspecting variables in debug 297

List of scripts 281

Mathematical functions 331

New memory views 328

Power1401 ADC gain 328

Preferences 192

Recording user actions 280

Run from bar 281

Sampling configuration 325

Sampling control at runtime 327

Save before running 192

Script bar customisation 281

Script debugging 334

Serial line 334

Signal conditioners 328

String handling 330

System 334

Text files 333

User interaction and pop-up
windows 332

Vertical cursors 325

Windows and Views 321

Script bar 281

Control from script language 588

List of scripts 281

Run script 281

Show and hide 281

Script code folding 180

Script complexity limits 320

Script controls 293

Script editor 293

Script index 335

Script introduction 288

Script language

Signal Version 6.06

24-25

Script language

Including files 319

Script menu 280

Compile script 280

Evaluate line 280

Recording on/off 280

Run script 280

Script bar 281

Script bar customisation 281

Show debug bar 280

Script operations 280

Script preferences

Enter debugger on error 192

Maximum log view lines 192

Save modified 192

Script size limits 320

Script syntax index 298

Script topics index 321

Script view

Description 19

Gutter 215

Line numbers 215

New 152

New from script 438

Open 153

Open from script 438

Script window 293

ScriptBar() 588

ScriptRun() 588

Scroll bar

Show and hide 204

Show and hide from script 635

Scroll display 424

Scroll using axis 12

SE_INC_BASE_PRIORITY_NAME
privilege 726

Search data

For feature 383

Start cursor search 403

Test search 403

Search for regular expression 496

Search for text 174

Search for text and replace it 176

Seconds for time 179

Seconds() 588

Select a channel 384

Select a channel interactively 9

Select all copyable items 428

Select protocol 577

Selection$() 589

Semicolon statement separator 308

Send Mail 166

Sequence

Save before sampling 192

Sequence view

New 152

Open 153

Sequencer 73, 81, 83, 84

Absolute value of variable 97

Access to data capture 102

Add constant to variable 98

Add table to variable 101

Arbitrary waveform output 107

Bitwise AND 99

Bitwise OR 100

Bitwise XOR 100

Branch on random number 105

Calculate variable values 80, 83, 84

Call and Return 94

Comments 78

Compare variables 94

Compile sequence 73

Compiler errors 73

Conflict with marker data 76

Constants 80

Control panel 76

Copy variable 97

DAC output 86

DAC outputs 85

Decrement count and loop 93

Delay for period 93

Digital input and output 83

Digital input tests 84

Digital output 83

Digital output low byte 84

Divide variable 99

Editor 73

Enable synamic clamp model 102

Expressions 79

Format text 73

Format with step numbers 73

Free running example 77

General control 93

Get current sample points 103

Get current step 578

Get current sweep state 103

Get current time 104

Get file name 579

Get latest sampled data 102

Get sweep start time 104

Getting started 76

Including files 82

Instruction format 78

Instruction reference 83

Instructions 78

Jump on variable 95

Jump to location 95

Keyboard control 76

Keyboard link control 578

Load variable from table 100

Load variable with random number
106

Loading sequence for sampling 75

Multiply variables 99

Negate variable 97

Outputs during sampling 72

Ramp DAC 87

Randomisation 105

Reciprocal of variable 99

Record digital marker 105

Set current sweep state 103

Set file name 579

Set file to use 73

Set variable 579

Set variable value 97

Simple example 76

Sine amplitude 88

Sine amplitude adjust 88

Sine angular position 90

Sine frequency 89

Sine frequency synched 89

Sine offset 90

Sine phase 0 flag clear 92

Sine phase wait 91

Sine rate adjust 92

Sine reference phase 90

Sine wave output 87

Start waveform output 107

Step through table 101

Step time 572

Stop operation 96

Store variable in table 100

Subtract table from variable 101

TABDAT directive 81

Table access 100

Table of values 81

TABSZ directive 81

Technical information 72

Test saved bits 85

Test waveform output 107

Trigger sweep 104

Variable add and subtract 98

Variable arithmetic 97

Variable logic 99

Variables 80

Wait till time in sweep 104

Index

24-26

Sequencer editor settings 185

Sequencer outputs 50

Sequencer view

Description 19

Line numbers 215

New from script 438

Serial line

Conditioner connections 673

SerialClose() 589

SerialCount() 590

SerialOpen() 590

SerialRead() 591

SerialWrite() 591

Summary of script commands 334

Serial number 286

Read 335

SerialClose() 589

SerialCount() 590

SerialOpen() 590

SerialRead() 591

SerialWrite() 591

Set analysis commands 592

Set protocol step 549

Set up processing 592

SetAmplitude() 592

SetAutoAv() 593

SetAverage() 593

SetCopy() 594

SetLeak() 595

SetMemory() 595

SetOpCl() 596

SetOpClAmp() 597

SetOpClBurst() 597

SetOpClHist() 598

SetOpClScan() 599

SetPower() 600

SETS sequencer instruction 103

SetTrend() 600

SetTrendChan() 601

SetXXX() 592

SGCX and SGC configuration file
extension 152

SGP preferences file extension 152

SGRX and SGR resource file extension
152

SGRX file backup 165

Shift channel data 384

Shift data 254

Show

Channel (list) 385

Config bar 335

Edit bar 335

Frame buffer 602

Running script 335

Script bar 335

Script generated toolbar 620

Status bar 335

Toolbar 335

View/Window 633

X axis 633

X axis scroll bar 635

Y axis 644

Show frame 1 at sampling end 194

Show hidden window 282

Show line numbers 627

Show\Hide 204

Axes 204

Channels 204

Edit bar 195

Grid 204

Scroll bar 204

Status bar 195

Toolbar 195

ShowBuffer() 602

ShowFunc() 602

Sigmoid curve fitting 231

Sigmoid fitting from script 452, 465

Signal

Capabilities 5

Data analysis possibilities 5

Display overview 7

Script language for customisation 5

Signal changes 708

Signal conditioners

Channels and ADC ports 673

Connections 673

Control panel 671

Details of specific types 673

Functions 670

Get and set gain from script 392

Get and set offset from script 393

Get and set special features from
script 390

Get list of gains from script 392

Get list of sources from script 395

Get offset range from script 394

Get revision from script 394

Get type from script 395

List filter frequencies from script 391

List filter types from script 392

Low-pass and high-pass filters from
script 391

Overview 670

Read all port settings from script 393

Sample menu 278

Script command 390

Serial ports 670

Set all parameters from script 394

Setting gain and offset 672

Summary of script commands 328

Signal directory 440

Silent period

Detection 238, 269

Sin() 602

Virtual channel function 238

Sin() virtual channel function 243

Sine curve fitting 231

Sine fitting from script 467

Sine of an angle in radians 602

Sine wave output 62, 87

Single channel analysis

Fitting strategy 263

Shortcut keys 263

Tips for fitting 263

Single channels

Analysis of baseline levels 261

Analysis of open/closed amplitudes
260

Analysis of open/closed burst
durations 260

Analysis of open/closed times 259

Analysis overview 256

Analysis using SCAN method 256

Analysis using thresholds method
258

Export to HJCFIT 262

Idealised traces 256

View and modify idealised trace
details 261

View event list 262

Single step a script 295

Sinh() 602

Sinusoid fitting from script 452

Site licence 728

Size of channel area 15

Size of window 632

Skyline draw mode 424

Slope of line 274

Slope peak and trough active cursor
modes 269

Slope percentage active cursor mode 269

Slope search active cursor modes 269

Slope threshold active cursor modes 269

Slope() virtual channel function 238

Signal Version 6.06

24-27

Slope(x, tc) virtual channel function 242

Interactive dialog 251

Smooth channel data 385

Smooth data 254

Smooth() virtual channel function 238

Smooth(x, tc) virtual channel function
242

Interactive dialog 251

Smoothing of arrays 343

Smth3() virtual channel function 238

Smth3(x) virtual channel function 242

Smth5() virtual channel function 238

Smth5(x) virtual channel function 242

Software Licence 728

Solve linear equations 514

Sort arrays 345

Sort channels 380

Sound output 603

Sound() 603

Spacing of channels 15

Spawn program 546

SpE() virtual channel function 241

Interactive dialog 247

Speak() 603

Specifying frames 10

Spectral edge 241, 247, 248

Speech output 603

Spike

Counting 225

Detection 269

Feature detection 269

Spike2

Continuous data sampling 42

Spline drawing 205

Spline2D example 608

Spline2D() 604

Sqr() virtual channel function 238, 243

Sqrt() 609

Virtual channel function 238

Sqrt() virtual channel function 243

Square root 609

Stability of IIR filter 487

Standard 1401 telegraphs 676

Standard deviation

Curve fitting 234

Definition for fitting 649

Standard display settings 203

Standard settings for a view 630

Start of X axis 362

Start sampling 580

State 0 108

State code of frame 475

State for resistance measurements 119

State labels

Description 108

Editing the labels 108

Setting with Pulses dialog 62

Setting with script 582

State list in frame specification 21

State select from script 581

STATE sequencer instruction 103

State sequencing 584

State sequencing counter 584

State() virtual channel function 238, 244

Statements 308

States

DAC value 581

Digital data 581

Digital inputs enable from script 568

Idling after cycles 582

Individual repeats 582

Label 582

Mode 583

Number 582

Options 583

Ordering 583

Pausing 583

Repeats 584

Reset sequencing 584

Select while sampling 581

Set from sequencer 103

Set sequencer variable 103

Set sequencing mode 584

Sweep points 585

Variable sweep points 587

States sequencing 110

Static outputs states 115

Statistical distributions

Binomial 350

F distribution 357

Student's 351

Statistics of array 346

Status bar

Description 7

Show/Hide 195

Status bar handle 335

Stimulus generation

Complex stimuli with Signal 5

Defining stimuli 62

Varying stimuli 108

Stop band 661

Stop sampling 58, 59, 585

Str$() 609

Straight line fit from script 457

String

Remove leading and trailing white
space 620

Remove leading white space 621

Remove trailing white space 621

String data type 300

String functions 330

Strings

ASCII code 349

Conversions 330

Convert a number to a string 609

Convert a string to channel Y value
609

Convert a string to X axis value 609

Convert ASCII to string 388

Convert to a number 624

Convert to lower case 503

Convert to numbers 561

Convert to upper case 624

Currently selected text 589

Delete substring 409

Extract fields from 561

Extract middle of a string 524

Find string within another string 495

Get rightmost characters 561

Input with prompt 495

Leftmost characters of string 503

Length of a string 504

Printing into 540

Read from binary file 363

Read string from user 495

Reading using a dialog 421

Specifying legal characters in input
495

Write to binary file 367

StrToChanY() 609

StrToViewX() 609

Student's distribution 351

SUB sequencer instruction 98

Substring of a string 524

Subtract DC level from data 254

Subtract DC offset from channel 385

Subtraction of arrays and values 347,
348

Sum

of channels 238

Sum of array 348

Sum of array product 340

Sum of data 274

Index

24-28

Sweep count

Analysis 610

Sweep length

Points in configuration 575

Sweep mode

Basic 42

Extended 42

Fast triggers 42

Fixed interval 42

Gap-free 42

Peri-trigger 42

Selection 42

SWEEP sequencer instruction 104

Sweep trigger

1401 input 37

Enabling/disabling 42

Input 42

Polarity 42

Time within outputs 573

Sweep trigger polarity 587

Sweeps() 610

Synchronisation of outputs 48

Syntax colouring 295

Syntax of script language 298

System settings for numeric format 186

System$() 611

System() 610

SZ sequencer instruction 88

SZINC sequencer instruction 88

- T -
TABADD sequencer instruction 101

TABDAT directive 81

TABINC sequencer instruction 101

TABLD sequencer instruction 100

TabPos() sequencer expression 79

TabSettings() 612

TABST sequencer instruction 100

TABSUB sequencer instruction 101

TABSZ directive 81

Tag frame 254, 476

Tag() virtual channel function 238, 244

Tan() 612

Virtual channel function 238

Tan() virtual channel function 243

Tangent of an angle in radians 612

Tanh() 612

technical support 707

Telegraph configuration dialog 676

Telegraph outputs 47

Telegraphs

AxoClamp 900A 682

EPC 800 685

MultiClamp 700 678

Voltage 676

Ternary operator 310

Text caret

Get and set position 529

Get column number 528

Get line number 528

Get position and set relative 528

Text copy 427

Data selection 173

Format specification 172

Text dump 429, 434

Channel list 430

Configuration 429

Format 431

Frame list 430

Marker 429

Waveform 429

X axis range 431

Text editing script commands 329

Text editor settings 179, 186

Text file script commands summary 333

Text font zoom factor 630

Text output 171

From data view 172

From XY view 174

Text to speech 603

Text view 528, 529

Description 19

Drag and drop 25

Features 25

Font size 28

Force upper/lower case 28

Get column number 528

Get line number 528

Line numbers 215

Line select 26

Modified 526

Move absolute 529

Move lines up or down 26

Move relative 528

Move to line number 529

Multiple selections 25

New 152

New from script 438

Open 153

Open from script 438

Read only 26, 526

Rectangular select 26

Tab settings 612

Virtual space 25

Zoom text (interactive) 28

Text view keyboard shortcuts 26

Text window maximum lines 629

Theta burst

Stimulus generation 67

Thin plate spline 604

Threshold analysis of single channel
data 258

Threshold crossing 258

Threshold crossing active cursor modes
269

TICKS sequencer instruction 104

Tile windows

Horizontally 283

Vertically 283

Time 179

data file creation 443, 444

Frame start time display 179

Maximum time in the current frame
515

Measure elapsed time 588

Minimum time in the current frame
525

Of next item on a channel 529

Of previous item on a channel 503

Resolution for channels 361

Time units for data display 179

Time of day

as a string 613

as numbers 613

Time range controls 198

Time ratio 614

Time shift 343, 661

Time units 614

Time view

Apply resource file 432

Background colour 389

Modified 526

Save resource file 443

Time zero 273

Time$() 613

TimeDate() 613

Timer 588

TimeRatio() 614

Times for pulse 553, 554

TimeUnits$() 614

Timing built-in functions 407

Tip of the day 285

Title of channel 386

TMS 694

Signal Version 6.06

24-29

TMS 694

Dual Magstim 200 configuration 696

Getting started with the MagPro 689

Getting started with the Magstim
689

Introduction to MagPro control 700

Introduction to Magstim control 689

MagPro configuration 700

MagPro connections and cabling
702

MagPro control option 699

MagPro safety 699

Magstim 200 configuration 693

Magstim configuration 692

Magstim connections and cabling
696

Magstim control option 688

Magstim Rapid configuration 695

Magstim safety 688

Notes on MagPro use 703

Notes on Magstim use 698

Studies with Signal 5

Trigger generation 62

Varying triggers 108

Toggle all folds 180, 215

Toggle comments 177

Toolbar

Clamping control 121

Dynamic clamp control 150

Sampling control 57

Show/Hide 195

Signal standard 7

Toolbar building 614

Toolbar from script

Add buttons 619

Change text 620

Clear all buttons 615

Display 614

Enable and disable buttons 615

Find mouse position 616

Overview 614

Show and hide 620

User interaction 614

Toolbar handle 335

Toolbar() 614

ToolbarClear() 615

ToolbarEnable() 615

ToolbarMouse() 616

Example 619

ToolbarSet() 619

ToolbarText() 620

ToolbarVisible() 620

Topics script index 321

Trace of matrix 515

Trace through a script 295

Trans() operator 303

Transpose of matrix 515

Trend plot

Add channel 601

From script 600

MeasureChan() 516

MeasureToXY() 517

MeasureX() 519

MeasureY() 519

Trend plots 228

TRIG sequencer instruction 104

Trigger

1401 input 37

Enable/disable with script 586

Enabling/disabling 42

Generation in outputs 62

Input 42

MagPro connections 702

Magstim connections 696

Polarity 42

Trigger polarity

Set or clear with script 587

Triggered start of sampling 58

Triggered sweeps 586

Trim() 620

TrimLeft() 621

TrimRght() 621

Trough between cursors 274

Trough search active cursor mode 269

Trunc() 622

Truncate real number 622

t-test 351

TTL compatible signals 37

Turning point active cursor mode 269

Two band pass filter 657

Two band stop filter 657

Type of pulse 554

Types of script data 299

- U -
U1401Close() 622

U1401Ld() 622

U1401Open() 623

U1401Read() 623

U1401To1401() 623

U1401ToHost() 624

U1401Write() 624

UCase$() 624

Undo command 171

Unicode 33

Units for waveform channel 386

until 313

Update all views 424

Update invalid regions in a view 424

Update mode for changed data 166

Upper case a string 624

us() sequencer expression 79

User defined function examples 317

User defined function scope 318

User defined synapse model 139

User handles 35

User interaction

Ask user a Yes/No question 557

Command summary 332

Dialogs 409

Let user interact with data 502

Message in pop-up window 524

Print formatted text 538, 540

Read a number in a pop-up window
494

Read a string in a pop-up window
495

The script toolbar 614

User name 611

User variables 476

User-defined functions and procedures
315

- V -
Val() 624

Value at cursor 273

Value parameters 316

Values between cursors 274

VAngle() sequencer expression 79

var 302

VAR directive in sequencer 80

var keyword 302

Variable

Inspecting value 297

Names 298

Types 299

Variable declarations 302

Variable sweep points 42

Variables for sequencer 80

Variance

Definition for fitting 649

Variation for fixed interval 569

Variation of pulse 554, 555

Index

24-30

VarValue script 80, 83, 84, 92

Varying sweep points 70

VDAC0-7 sequencer variables 80

VDAC16() sequencer expression 79

VDAC32() sequencer expression 79

VDigIn sequencer variable 80

Vector 303

Versions of Signal 708

Vertical bar notation 292

Vertical cursor

Button 11

Vertical cursor commands 325

Vertical size of channels 15

Vertical space for channels 387

VHz() sequencer expression 79

View 534, 633

Bring to the front 477

Channel data as array 625

Close view 432

Colour/Monochrome 630

Colours 211

Count of channels 371

Count of markers 377

Create duplicate 632

Current view 625

Data array 625

Data views 19

Duplication 632

External file 19

File view 19

Find by title 627

Find type 627

Generate frame list 474

Iconise 633

Information 610

List view handles 628

Maximise 633

Memory view 19

Normal settings 630

Other types 19

Overdraw frame list 534, 535

Overdraw frames 536

Overdraw mode 534

Process data 541

Restore 633

Sampling view handle 570

Script view 19

Sequencer view 19

Set size 632

Show 633

Show and hide 633

Size 632

Standard settings 630

Summary of script commands 321

Text view 19

Text-type views 19

Time of previous item 503

Title 282, 633

Types of view 19

View handle 625

View handle for another view 292

XY view 19

View handle 289

Create memory view 592

Get absolute colour for view 626

Get linked views 628

Get list of views 628

Interactive access to 284

Other than current view 292, 625

Override current view 292

Sampling window 570

Set absolute colour for view 626

Set colour for view 626

Set or get current view 625

Update the view 424

View handle for another view 625

View menu 195, 211

Add frame to list 196

Annotate 217

Change colours 211

Channel image 208

Channel Information 201

Channel pen width 207

Collapse all folds 215

Colour enabling 211

Draw mode 205

Edit bar 195

Enlarge and reduce 198

Expand all folds 215

Experimenter's notebook 202

Folding 215

Font 211

Goto frame 195

Info 201

Keyboard alternatives 216

Mouse alternatives 216

Next frame 195

Overdraw frames 195

Overdraw settings 196

Previous frame 195

Show buffer 195

Show gutter 215

Show line numbers 215

Show/Hide channel 204

Standard display 203

Status bar 195

Toggle all folds 215

Toolbar 195

X Axis Range 198

XY draw mode 210

XY Options 210

Y Axis Range 200

View() 625

View().x() 625

View(v,c).[] 625

ViewColour() 626

ViewColourGet() 626

ViewColourSet() 626

ViewFind() 627

ViewKind() 627

ViewLineNumbers() 627

ViewLink() 628

ViewList() 628

ViewMaxLines() 629

ViewSource() 629

ViewStandard() 630

ViewUseColour() 630

ViewZoom() 630

Virtual channels

Apply polynomial 251

Arithmetical operators 239

Build channel functions 244

Build expression 244

Channel arithmetic 238

Channel functiuons 240

Channel process functions 242, 244

Comparison operators 239

Frame, tag and state functions 244

Frame-based information 244

Generate waveform 244

Marker to waveform 240

Mathematical functions 243, 244

Mathematical operations 244

Operators in expressions 239

Overview 238

Sampling rate 238

Settings 238

Spectral functions 241

Synthesise channel data 238

Waveform generation 242

Virtual space in text 25

VirtualChan() 630

Visible state of a window 633

Visible state of channel 387

Voltage clamp

Signal Version 6.06

24-31

Voltage clamp

Getting started 117

Voltage limits

ADC inputs 36

DAC outputs 37

TTL signals 37

Voltage telegraphs 676

VSz() sequencer expression 79

- W -
Wait in script 646

WAITC sequencer instruction 91

Watch window

Debug 295

WAVE file output 603

WAVE sequencer instruction 107

WAVEBR sequencer instruction 107

Waveform channels

ADC ports 39

Filtering 39

Sample interval 39

Waveform data 555, 556

Accumulate to memory view 593

Amplitude 386

Amplitude histogram 219, 222

Amplitude histogram to memory
view 592

Area 274

Area as if rectified 274

Area over zero 274

Average 218

Average to multiple frames 593

Copy and Export format 172

Count of points 377

Count points 382

Drawing colour 389

Drawing mode 424

Generate 242

Generate data 238

Leak subtraction 221, 595

Mean level 378

Mean value 274

Measure area as if rectified 378

Measure values 378

Modulus 274

Multiple averages 218

Power spectrum 220, 600

Sampling interval 361

Slope of best fit line 274

Sum 274

Underlying CFS data 39

Units 386

Value at cursor 273

Value at position 386

Virtual channels 238, 242

Waveform display

Dots 205

Histogram 205

Line 205

Skyline 205

Spline 205

Waveform output 62, 68

Maximum rates 68

Synthesised waveforms 238

Test from sequencer 107

Waveform settings 556, 557

Waveforms 5

Drawing mode 205

WaveMark data

Drawing colour 389

Drawing colour (script) 389

Web page 707

Web site 285

Weighting of channel space 387

wend 313

WEnv() virtual channel function 238,
242

Interactive dialog 249

while 313

Whole cell clamping

Analysis methods 123

Changing pulse for measurements
122

Channel pair selection 119

Clamping control bar 121

Clamping sets 119

Configuration 119

Current clamp 117

Dynamic clamping 117, 123

Holding potential 121

Membrane analysis 122

Membrane capacitance 122

Membrane resistance 121

Online controls 121

Overview 117

Resistance 123

Resistance measurements 119

Sampling 117

Sampling configuration
considerations 120

Support features 117

Toolbar 121

Total resistance 122, 123

Value storage 123

Voltage clamp 117

Window 625

Title 282

Window menu 282

Arrange icons 283

Cascade 283

Close all 283

Duplicate window 282

Hide window 282

Show window 282

Tile Horizontally 283

Tile Vertically 283

Window list dialog 284

Window operations 282

Window position 631

Window() 631

WindowDuplicate() 632

WindowGetPos() 632

Windows

Get linked view 628

Windows and view commands 321

WindowSize() 632

WindowTitle$() 633

WindowVisible() 633

WLev() virtual channel function 238

Working set 543, 726

Working set in Windows NT 726

Working set size display 286

World Wide Web 707

WPoly() virtual channel function 238,
242

Interactive dialog 249

Write binary data 367

Write data automatically 587

Write to disk 57

Write to disk at sweep end 587

WSin() virtual channel function 238, 242

Interactive dialog 249

WSqu() virtual channel function 238,
242

Interactive dialog 249

WSWP sequencer instruction 104

WT() virtual channel function 238, 242

Interactive dialog 249

WTri() virtual channel function 238, 242

Interactive dialog 249

WWW 707

- X -
X axis 361

Bin number conversions 362

Index

24-32

X axis 361

Display set region 424

Drawing mode 634

Drawing style 634

hms and time of day 634

Increment per bin in data view 361

Maximum in the current frame 515

Minimum in the current frame 525

Offset 362

Range 635

Range dialog 198

Scaling factor 361, 577

Show and hide 633

Show and hide features 634

Show and hide scroll bar 635

Tick spacing 634

Title 635

Units 636

Value at given position 386

Zero 362

XAxis() 633

XAxisAttrib() 634

XAxisMode() 634

XAxisStyle() 634

XHigh() 635

XLow() 635

XOR sequencer instruction 100

XORI sequencer instruction 100

XRange() 635

XScroller() 635

XTitle$() 635

XToBin() 636

XUnits$() 636

XY channel display offset control 641

XY Draw Mode 210

XY view 210

Add data 636

Add trend plot channel 601

Auto-expand axes 210

Automatic axis expansion 638

Background bitmap 375

Background colour 389

Colours 211

Copy as text 174

Count points 637

Create a new channel 642

Creating a new view 224

Data joining method 640

Data range 641

Delete channel 252

Delete data points 637

Draw mode 210

Drawing styles 638

Fill colour 637

Fill with colour 211

From analysis results online 224

From sampled data online 224

Get data points 638

Key 210

Line style 210

Modified 526

Modify all channel settings 642

New 152

New from script 438

Open 153

Open from script 438

Options 210

Point style 210

Points inside a circle 639

Points inside a rectangle 640

Points inside a shape 639

Script command summary 322

Set channel colour 637

Set channel display offset 641

Set Key properties 641

Size of channel 643

Sorting method 643

Trend plot 600

XY view save prompt 186

XYAddData() 636

XYColour() 637

XYCount() 637

XYDelete() 637

XYDrawMode() 638

XYGetData() 638

XYInChan() 639

XYInCircle() 639

XYInRect() 640

XYJoin() 640

XYKey() 641

XYOffset() 641

XYRange() 641

XYSetChan() 642

XYSize() 643

XYSort() 643

- Y -
Y axis

Channel number show and hide 379

Drawing mode 645

Drawing style 644, 645

Get current limits 646, 647

Lock 200

Lock channels 644

Optimise 200

Range optimising 533

Right and left 645

Scaling factor 575

Set limits 647

Show and hide 644

Show and hide features 645

Tick spacing 645

Title 386

Units 386

Y Axis Range dialog 200

Y zero 273

YAxis() 644

YAxisAttrib() 644

YAxisLock() 644

YAxisMode() 645

YAxisStyle() 645

Yes/No pop-up window 557

YHigh() 646

Yield time to the system 646

Yield() 646

YieldSystem() 646

YLow() 647

YRange() 647

- Z -
Zero channel data 388

Zero data 254

Zero region in cursor regions 274

ZeroFind() 648

Zoom a channel 12

Zoom text

Using keyboard or mouse wheel 28

	Signal version 6
	Installation
	Updating and removing Signal

	Getting started
	Signal overview
	Signal basics tutorial
	Opening a file to view
	Clean up a messy file

	Signal display overview
	Data channels
	Frame buttons
	About frames

	Zoom buttons
	Cursor buttons
	Cursor style and pointers
	Zoom in on an area
	Zoom a channel
	Using x and y axes to scroll and zoom
	X Range dialog
	Y Range dialog
	Waveform draw mode dialog
	Customise display
	Channel order
	Channel spacing
	Channel overdraw
	Frame overdrawing
	Cursor measurements
	Cursor regions
	Memory views
	Make a waveform average
	Process dialog
	Repeating analysis
	Memory view usage
	XY views

	General information
	View types
	Data file and view topics
	Channel lists
	Frame lists
	Dialog expressions
	Data view keyboard shortcuts

	Text view topics
	Text view features
	Drag and drop
	Virtual space
	Multiple selections
	Select rectangular text area
	Read only text

	Text view keyboard shortcuts
	Cut, Copy, Paste, Delete, Undo and Redo
	Find, Replace and Bookmarks
	Indent and Outdent
	Text caret control
	Miscellaneous

	Grid View topics
	Copy current file path to clipboard

	The Signal command line
	64-bit operating systems
	Program files installation
	Unicode
	Resource limitations

	Sampling data
	Inputs and outputs
	ADC inputs
	DAC outputs
	TTL compatible signals
	Trigger input
	Digital inputs
	Digital outputs

	Types of channel
	Waveform channels
	Marker channels
	Marker codes

	Sampling configuration
	General configuration
	Peri trigger configuration
	Ports configuration
	Clamp configuration
	Outputs configuration
	Outputs type: None
	Outputs type: Pulses
	Outputs type: Sequence
	Pulses or sequencer?

	Automation configuration
	Output Resets
	Artefact rejection

	Creating a new document
	Online analysis
	Sampling control panel
	During sampling

	Other interaction with sampling
	Stopping sampling
	Saving new data
	Saving configurations
	Sequence of operations to set and save the configuration

	Pulse outputs while sampling
	Pulses dialog
	Pulses dialog layout
	Dragging and dropping
	Adding a new pulse
	Moving a pulse
	Removing a pulse
	Finding a pulse
	Copying pulses

	Pulse types
	Initial level
	Simple square pulse
	Varying amplitude pulse
	Varying duration pulse
	Square pulse train
	Ramp with varying amplitudes
	Sine wave
	Digital marker
	Arbitrary waveform
	Pasting a waveform

	Pulses with variations
	Extended and Fixed interval sweep modes

	Controlling pulse outputs during sampling

	Sequencer outputs during sampling
	Sequencer technical information
	The sequence editor
	Sequencer compiler error messages
	Loading sequence files for sampling
	Sequencer control panel
	Marker channel and digital input conflict
	Getting started
	Simple sequence restarted each sweep
	Free running sequence

	Instructions
	Instruction format
	Expressions
	Variables
	Constants
	Table of values
	Including files

	Sequencer instruction reference
	Digital I O
	DIGOUT
	DIGLOW
	DIBEQ DIBNE
	DISBEQ DISBNE

	DAC outputs
	DAC ADDAC
	RAMP

	Cosine output control instructions
	SZ
	SZINC
	RATE
	RATEW
	ANGLE
	PHASE
	OFFSET
	WAITC
	RINC RINCW
	CLRC

	General control
	DELAY
	DBNZ
	Compare variables
	CALL CALLV RETURN
	JUMP
	HALT
	NOP

	Variable arithmetic
	MOVI
	MOV ABS NEG
	ADDI
	ADD SUB
	DIV RECIP
	MUL MULI

	Variable logic
	AND, ANDI
	OR, ORI
	XOR, XORI

	Table access
	TABLD TABST
	TABADD TABSUB
	TABINC

	Access to data capture
	CHAN
	DCON
	POINTS
	STATE
	SETS
	SWEEP
	WSWP
	TRIG
	TICKS
	REPORT MARK

	Randomisation
	BRAND
	MOVRND

	Arbitrary waveform output
	WAVE
	WAVEBR

	Sampling with multiple states
	Dynamic outputs states
	States sequencing
	Numeric non protocol sequencing modes
	Individual repeats
	State sequencing using protocols

	Controlling multiple states online
	Non protocol ordering
	Protocol ordering

	Static outputs states
	External digital states
	Auxiliary state hardware

	Sampling with clamp support
	Online clamp support features
	Clamping configuration
	Other sampling configuration considerations

	Running a clamping experiment
	Membrane analysis
	Changing pulses
	Resistance data
	Analysis methods

	Dynamic clamping
	Dynamic clamp setup
	Hodgkin-Huxley (Alpha/Beta) model
	Hodgkin-Huxley (Tau) model
	Alpha synapse model
	CPG synapse model
	Destexhe synapse model
	Electrical synapse model
	Exponential synapse model
	Exponential difference synapse model
	User defined synapse model
	Leak model
	Noise model
	Dynamic clamp and multiple states
	Example leak models
	Example Hodgkin-Huxley model
	Sampling with dynamic clamp

	File menu
	New
	Other file types used by Signal

	Open
	Import data
	Binary importer
	Import DLL versions
	Text importer

	Import Op Cl
	Global Resources
	Resource Files
	Close
	Close All
	Save, Save As
	Export As
	MATLAB external exporter
	Workspace variable naming
	Data view data
	XY view data
	Mat-file data format
	Waveform data
	Marker channels
	Real marker channels
	Idealised trace channels
	XY channels

	Script export to mat-files

	Backup sgrx file
	Revert to Saved
	Data update mode
	Send Mail
	Load and Save Configuration As
	Page Setup
	Page Headers
	Print Preview
	Print visible, Print and Print selection
	Print screen
	Exit

	Edit menu
	Undo and Redo
	Cut
	Copy
	Copy As Text Data view
	Text output configuration
	Copy data selection

	Copy As Text XY view
	Paste
	Delete
	Clear
	Reload frame
	Select All
	Find, Find Next, Find Previous
	Replace
	Edit toolbar
	File comment
	Frame comment
	Auto Format
	Toggle Comments
	Auto Complete
	Preferences
	Display
	Script files
	Call tip details

	Sequencer files
	Other files

	Data
	Sampling
	Output Resets
	ADC and DAC range in older sampling configurations

	Conditioner
	Script
	Scheduler
	Clamp
	Compatibility

	View menu
	Toolbar, Edit bar, Status bar
	Next frame, Previous frame
	Goto frame
	Show buffer
	Overdraw frames
	Add frame to list
	Overdraw settings...
	Enlarge view, Reduce view
	X Axis range
	Y Axis Range
	File Information
	Channel Information
	Channel Information (XY view)
	Experimenter's notebook
	Standard Display
	Customise display
	Draw mode
	Waveform draw modes
	Marker draw modes
	Real marker draw modes
	Idealised trace draw modes

	Channel Pen Width
	Channel Image
	XY Draw Mode
	Options
	Font
	Use Colour and Use Black And White
	Change Colours
	Changes at version 5.02

	Folding
	Show Gutter
	Show Line numbers
	Mouse display control
	Keyboard display control
	Annotate
	Grid view commands

	Analysis menu
	New Memory View
	Waveform Average
	Auto Average
	Amplitude Histogram
	Power Spectrum
	Leak Subtraction
	Interval Histogram

	Process
	Process command with a new file
	Process settings
	Measurements
	XY View
	Data Channel
	XY View(Trend plot)
	Measurements and active cursors

	Measurement processing online
	Fit data
	Fit settings
	Coefficients
	Results
	Testing the fit

	Memory Channels
	Create New Channel
	Add Items
	Delete Items
	Import Channel

	Virtual Channels
	Operators
	Waveform from channel
	Marker kernel functions
	Spectral functions
	Waveform generation
	Channel process functions
	Mathematical functions
	Frame, tag and state functions
	Build expression
	Waveform from channel
	Power in Band
	Spectral Edge
	Mean frequency
	Dominant frequency
	Spectral frequency resolution
	Generate Waveform
	Channel process
	Apply polynomial to data

	Append frame
	Append frame copy
	Delete frame
	Delete channel
	The frame buffer
	Clear buffer
	Copy to buffer
	Copy from buffer
	Exchange buffer
	Add to buffer
	Subtract buffer
	Average into buffer

	Multiple frames
	Modify channels
	Tag frame
	Digital filters
	Keyboard analysis control

	Single-channel analysis
	About idealised traces
	New idealised trace SCAN
	Advanced

	New idealised trace Threshold
	Open Closed time histogram
	Open Closed amplitude histogram
	Burst duration histogram
	Baseline measurements
	View and modify event details
	View event list
	Export to HJCFIT
	Short cuts
	Tips for fitting
	Strategy for long recordings

	Cursor menu
	Vertical cursors
	New Cursor
	Delete
	Fetch
	Move To
	Position Cursor
	Display All
	Label Mode
	Set Label
	Renumber

	Horizontal cursors
	New Horizontal Cursor
	Fetch Horizontal
	Delete Horizontal
	Move To Level
	Position Horizontal
	Display All Horizontal
	Horizontal Label Mode
	Renumber Horizontal

	Active cursors
	Active mode
	Search Right, Search left

	Active horizontal cursors
	Active horizontal mode

	Display Y values
	Cursor Regions
	Cursor region measurements
	Selecting and copying data

	Cursor context menus

	Sampling menu
	Sampling configuration
	Sample Bar
	Sample Bar List
	Signal conditioner
	Show Sampling controls
	Show Pulse controls
	Sample now
	Show Sequencer controls
	Keyboard sampling control_2

	Script menu
	Compile Script
	Run Script
	Evaluate
	Turn Recording On/Off
	Debug Bar
	Script Bar
	Script Bar List

	Window menu
	Duplicate window
	Hide
	Show
	Window Title
	Tile Horizontally
	Tile Vertically
	Cascade
	Arrange Icons
	Close All
	Windows

	Help menu
	Help Index
	Using help
	Tip of the day
	View web site
	Getting started
	About Signal
	Other sources of help

	Script language
	Script introduction
	Hello world
	Views and view handles
	Writing scripts by example
	Using recorded actions
	Derived views
	Notation conventions
	Sources of script information

	Script window and debugging
	Script editor
	Syntax colouring
	Editing features for scripts
	Debug overview
	Preparing to debug
	Enter debug on error
	Inspecting variables
	Call stack

	Script language syntax
	Keywords and names
	Data types
	Real data type
	Integer data type
	String data type
	Conversion between data types

	Variable declarations
	Constant declarations
	Arrays of data
	Initialise an array
	Resize array
	Data views as arrays
	Statement types
	Comments in a script
	Expressions and operators
	Numeric operators
	String operators
	The ternary operator
	Examples of expressions
	Mathematical constants

	Flow of control statements
	if...endif
	docase...endcase
	repeat...until
	while...wend
	for...next
	continue & break
	halt

	Functions and procedures
	Argument lists
	return
	Examples of user-defined functions
	Scope of user-defined functions
	Functions as arguments

	Channel specifiers
	Include files
	Include files and debugging
	Program size limits

	Script functions by topic
	Windows and views
	Data views
	XY views
	Grid views
	Channels
	Buffer
	Vertical cursors
	Horizontal cursors
	Sampling configuration commands
	Runtime sampling commands
	Analysis
	Signal conditioner control
	Editing operations
	1401 access functions
	CFS variables
	String functions
	Array and matrix arithmetic
	Mathematical functions
	MatLab interaction
	Digital filtering
	Fitting functions
	User interaction commands
	File system
	Text files
	Binary files
	Serial line control
	Debugging operations
	Environment
	Multiple monitor support

	Alphabetical script function index
	A
	Abs()
	App()
	AppendFrame()
	Array commands
	ArrAdd()
	ArrConst()
	ArrConv()
	ArrDiff()
	ArrDiv()
	ArrDivR()
	ArrDot()
	ArrFFT()
	ArrFilt()
	ArrHist()
	ArrIntgl()
	ArrMul()
	ArrSort()
	ArrSpline()
	ArrStats()
	ArrSub()
	ArrSubR()
	ArrSum()
	Asc()
	ATan()

	B
	BetaI()
	Binomial Distribution
	Student's T Distribution
	F-Distribution

	BinError()
	BinomialC
	BinSize()
	BinToX()
	BinZero()
	BRead()
	BReadSize()
	BRWEndian()
	BSeek()
	Buffer commands
	BuffAcc()
	BuffAdd()
	BuffAddTo()
	BuffClear()
	BuffCopy()
	BuffCopyTo()
	BuffDiv()
	BuffDivBy()
	BuffExchange()
	BuffMul()
	BuffMulBy()
	BuffSub()
	BuffSubFrom()
	BuffUnAcc()

	BWrite()
	BWriteSize()
	Using BWriteSize() to save a bitmap

	C
	Ceil()
	Chan...()
	Chan$()
	ChanAdd()
	ChanColour()
	ChanColourGet()
	ChanColourSet()
	ChanCount()
	ChanDelete()
	ChanDiff()
	ChanDiv()
	ChanFit()
	ChanFitCoef()
	ChanFitShow()
	ChanFitValue()
	ChanImage()
	ChanIndex()
	ChanIntgl()
	ChanItems()
	ChanKind()
	ChanList()
	ChanMean()
	ChanMeasure()
	ChanMult()
	ChanNegate()
	ChanNumbers()
	ChanOffset()
	ChanOrder()
	ChanPenWidth()
	ChanPixel()
	ChanPoints()
	ChanRange()
	ChanRectify()
	ChanScale()
	ChanSearch()
	ChanSelect()
	ChanShift()
	ChanShow()
	ChanSmooth()
	ChanSub()
	ChanSubDC()
	ChanTitle$()
	ChanUnits$()
	ChanValue()
	ChanVisible()
	ChanWeight()
	ChanZero()

	Chr$()
	Colour()
	ColourGet()
	ColourSet()
	Conditioner commands
	CondFeature()
	CondFilter()
	CondFilterList()
	CondFilterType()
	CondGain()
	CondGainList()
	CondGet()
	CondOffset()
	CondOffsetLimit()
	CondRevision$()
	CondSet()
	CondSourceList()
	CondType()

	Cos()
	Cosh()
	Cursor...()
	Cursor()
	CursorActive()
	CursorActiveGet()
	CursorActiveSet()
	CursorDelete()
	CursorExists()
	CursorLabel()
	CursorLabelPos()
	CursorMode()
	CursorNew()
	CursorOpen()
	CursorRenumber()
	CursorSearch()
	CursorSet()
	CursorValid()
	CursorVisible()
	CursorX()

	D
	Date$()
	Debug()
	DebugHeap()
	DebugList()
	DebugOpts()
	DeleteFrame()
	DelStr$()
	Dialogs
	DlgAllow()
	DlgButton()
	DlgChan()
	DlgCheck()
	DlgCreate()
	DlgEnable()
	DlgFont()
	DlgGetPos()
	DlgGroup()
	DlgImage()
	DlgInteger()
	DlgLabel()
	DlgList()
	DlgMouse()
	DlgReal()
	DlgShow()
	DlgSlider()
	DlgString()
	DlgText()
	DlgValue() and DlgValue$()
	DlgVisible()
	DlgXValue()

	Draw()
	DrawAll()
	DrawMode()
	Dup()

	E
	EditClear()
	EditCopy()
	EditCut()
	EditFind()
	EditPaste()
	EditReplace()
	EditSelectAll()
	Error$()
	Eval()
	Exp()
	ExportChanFormat()
	ExportChanList()
	ExportFrameList()
	ExportTextFormat()
	ExportTimeRange()

	F
	File...()
	FileApplyResource()
	FileClose()
	FileComment$()
	FileConvert$()
	FileCopy()
	FileDate$()
	FileDelete()
	FileExportAs()
	FileGetIntVar()
	FileGetRealVar()
	FileGetStrVar$()
	FileGlobalResource()
	FileList()
	FileName$()
	FileNew()
	FileOpen()
	FilePath$()
	FilePathSet()
	FilePrint()
	FilePrintScreen()
	FilePrintVisible()
	FileQuit()
	FileSave()
	FileSaveAs()
	FileSaveResource()
	FileSize()
	FileTime$()
	FileTimeDate()
	FileVarCount()
	FileVarInfo()

	FiltApply()
	FiltAtten()
	FiltCalc()
	FiltComment$()
	FiltCreate()
	FiltInfo()
	FiltName$()
	FiltRange()
	FIRMake()
	FIRQuick()
	FIRResponse()
	FitCoef()
	FitData()
	FitExp()
	FitGauss()
	FitLine()
	FitLinear()
	FitNLUser()
	A simple example
	Fitting a Gabor function

	FitPoly()
	FitSigmoid()
	FitSin()
	FitValue()
	Floor()
	FocusHandle()
	FontGet()
	FontSet()
	Frac()
	Frame...()
	Frame()
	FrameAbsStart()
	FrameComment$()
	FrameCount()
	FrameFlag()
	FrameGapFree()
	FrameGetIntVar()
	FrameGetRealVar()
	FrameGetStrVar$()
	FrameList()
	FrameMean()
	FrameSave()
	FrameState()
	FrameTag()
	FrameUserVar()
	FrameVarCount()
	FrameVarInfo()

	FrontView()

	G
	GammaP() and GammaQ()
	GammaQ()
	Grd...()
	GrdAlign()
	GrdColWidth()
	GrdGet()
	GrdSet()
	GrdShow()
	GrdSize()

	Grid()
	Gutter()

	H
	HCursor...()
	HCursor()
	HCursorActive()
	HCursorChan()
	HCursorDelete()
	HCursorExists()
	HCursorLabel()
	HCursorLabelPos()
	HCursorNew()
	HCursorRenumber()
	HCursorValid()
	HCursorVisible()
	HCursorX()

	Help()

	I
	IIR commands
	Get IIR filter information
	Apply IIR filter to an array
	IIRApply()
	IIRBp()
	IIRBs()
	IIRComment$()
	IIRCreate()
	IIRHp()
	IIRInfo()
	IIRLp()
	IIRName$()
	IIRNotch()
	IIRReson()

	Input()
	Input$()
	InStr()
	InStrRE()
	Grammars
	Regular expressions

	Interact()

	L
	LastTime()
	LCase$()
	Left$()
	Len()
	LinPred()
	Ln()
	LnGamma()
	Log()
	LogHandle()

	M
	MarkCode()
	MarkEdit()
	MarkInfo()
	MarkShow()
	MarkTime()
	MATDet()
	MATInv()
	MatLab Script Support
	MatLabClose()
	MatLabEval()
	MatLabGet()
	MatLabOpen()
	MatLabPut()
	MatLabShow()

	MATMul()
	MATSolve()
	MATTrace()
	MATTrans()
	Max()
	Maxtime()
	MeasureChan()
	MeasureToChan()
	MeasureToXY()
	MeasureX()
	MeasureY()
	MemChan()
	MemDeleteItem()
	MemDeleteTime()
	MemGetItem()
	MemImport()
	MemSetItem()
	Message()
	Mid$()
	Min()
	Minmax()
	Mintime()
	Modified()
	MousePointer()
	MoveBy()
	MoveTo()

	N
	NextTime()

	O
	OpClEventGet()
	OpClEventChop()
	OpClEventDelete()
	OpClEventMerge()
	OpClEventSet()
	OpClEventSplit()
	OpClFitRange()
	OpClNoise()
	Optimise()
	OutputReset()
	Overdraw()
	Overdraw3D()
	OverdrawFrames()
	OverdrawGetFrames()

	P
	PaletteGet()
	PaletteSet()
	PCA()
	Pow()
	Print()
	Print$()
	PrintLog()
	Process()
	ProcessAll()
	ProcessFrames()
	ProcessOnline()
	Profile()
	ProgKill()
	ProgRun()
	ProgStatus()
	Protocol commands
	ProtocolAdd()
	ProtocolClear()
	ProtocolDel()
	ProtocolEnd()
	ProtocolFlags()
	ProtocolName$()
	ProtocolRepeats()
	Protocols()
	ProtocolStepGet()
	ProtocolStepSet()

	Pulse output commands
	PulseAdd()
	PulseClear()
	PulseDataGet()
	PulseDataSet()
	PulseDel()
	PulseFlags()
	PulseName$()
	Pulses()
	PulseTimesGet()
	PulseTimesSet()
	PulseType()
	PulseVarGet()
	PulseVarSet()
	PulseWaveformGet()
	PulseWaveformSet()
	PulseWaveGet()
	PulseWaveSet()

	Q
	Query()

	R
	Rand()
	RandExp()
	RandNorm()
	Read()
	ReadSetup()
	ReadStr()
	Right$()
	Round()

	S
	Sample....()
	SampleAbort()
	SampleAbsLevel()
	SampleAccept()
	SampleArtefactGet()
	SampleArtefactSet()
	SampleAutoFile()
	SampleAutoName$()
	SampleAuxStateParam()
	SampleAuxStateValue()
	SampleBar()
	SampleBurst()
	SampleClamp()
	SampleClampHP()
	SampleClear()
	SampleDacFull()
	SampleDacMask()
	SampleDacUnits$()
	SampleDacZero()
	SampleDigIMask()
	SampleDigMark()
	SampleDigOMask()
	SampleFixedInt()
	SampleFixedVar()
	SampleHandle()
	SampleKey()
	SampleKeyMark()
	SampleLimitFrames()
	SampleLimitSize()
	SampleLimitTime()
	SampleMode()
	SampleOutClock()
	SampleOutLength()
	SampleOutMode()
	SampleOutTrig()
	SamplePause()
	SamplePeriBitState()
	SamplePeriDigBit()
	SamplePeriHyst()
	SamplePeriLevel()
	SamplePeriLowLev()
	SamplePeriType()
	SamplePeriPoints()
	SamplePoints()
	SamplePortFull()
	SamplePortName$()
	SamplePortOptions$()
	SamplePorts()
	SamplePortUnits$()
	SamplePortZero()
	SampleProtocol()
	SampleRate()
	SampleReset()
	SampleSeqCtrl()
	SampleSeqStep()
	SampleSeqTable()
	SampleSequencer()
	SampleSequencer$()
	SampleSeqVar()
	SampleSeqWave()
	SampleStart()
	SampleState()
	SampleStateDac()
	SampleStateDig()
	SampleStateLabel$()
	SampleStateRepeats()
	SampleStates()
	SampleStatesIdle()
	SampleStatesMode()
	SampleStatesOptions()
	SampleStatesOrder()
	SampleStatesPause()
	SampleStatesRepeats()
	SampleStatesReset()
	SampleStatesRun()
	SampleStatesStep()
	SampleStatus()
	SampleStop()
	SampleSweep()
	SampleSweepPoints()
	SampleTel()
	SampleTrigger()
	SampleTriggerInv()
	SampleVaryPoints()
	SampleWrite()
	SampleZeroOffset()

	ScriptBar()
	ScriptRun()
	Seconds()
	Selection$()
	SerialClose()
	SerialCount()
	SerialOpen()
	SerialRead()
	SerialWrite()
	SetXXX()
	SetAmplitude()
	SetAutoAv()
	SetAverage()
	SetCopy()
	SetINTH()
	SetLeak()
	SetMemory()
	SetOpCl()
	SetOpClAmp()
	SetOpClBurst()
	SetOpClHist()
	SetOpClScan()
	SetPower()
	SetTrend()
	SetTrendChan()

	ShowBuffer()
	ShowFunc()
	Sin()
	Sinh()
	Sound()
	Speak()
	Spline2D()
	Inverse distance weighting
	Radial basis functions
	Spline2D example

	Sqrt()
	Str$()
	StrToChanY()
	StrToViewX()
	Sweeps()
	System()
	System$()

	T
	TabSettings()
	Tan()
	Tanh()
	Time$()
	TimeDate()
	TimeRatio()
	TimeUnits$()
	The toolbar
	Toolbar()
	ToolbarClear()
	ToolbarEnable()
	ToolbarMouse()
	ToolbarMouse() example

	ToolbarSet()
	ToolbarText()
	ToolbarVisible()

	Trim()
	TrimLeft()
	TrimRight()
	Trunc()

	U
	U1401 commands
	U1401Close()
	U1401Ld()
	U1401Open()
	U1401Read()
	U1401To1401()
	U1401ToHost()
	U1401Write()

	UCase$()

	V
	Val()
	View()
	ViewColour()
	ViewColourGet()
	ViewColourSet()
	ViewFind()
	ViewKind()
	ViewLineNumbers()
	ViewLink()
	ViewList()
	ViewMaxLines()
	ViewSource()
	ViewStandard()
	ViewUseColour()
	ViewZoom()
	VirtualChan

	W
	Window()
	WindowDuplicate()
	WindowGetPos()
	WindowSize()
	WindowTitle$()
	WindowVisible()

	X
	XAxis()
	XAxisAttrib()
	XAxisMode()
	XAxisStyle()
	XHigh()
	XLow()
	XRange()
	XScroller()
	XTitle$()
	XToBin()
	XUnits$()
	XY view commands
	XYAddData()
	XYColour()
	XYCount()
	XYDelete()
	XYDrawMode()
	XYGetData()
	XYInChan()
	XYInCircle()
	XYInRect()
	XYJoin()
	XYKey()
	XYOffset()
	XYRange()
	XYSetChan()
	XYSize()
	XYSort()

	Y
	YAxis()
	YAxisAttrib()
	YAxisLock()
	YAxisMode()
	YAxisStyle()
	YHigh()
	Yield()
	YieldSystem()
	YLow()
	YRange()

	Z
	ZeroFind()

	Curve fitting
	Introduction
	Normal distribution
	Chi squared
	Residuals
	Linear fit Non linear fit
	Covariance array
	Testing the fit
	Fitting routines

	Digital filtering
	FIR and IIR filters
	Digital filter dialog
	Apply

	Filter bank
	FIR filter details
	FIR Filter types

	IIR filter details
	FIR filters technical information
	FIR filtering
	Frequencies
	Example filter

	FIRMake filter types
	Low pass filter example
	High pass filter
	General multiband filter
	Differentiators
	Hilbert transformer

	Programmable Signal conditioners
	What a signal conditioner does
	Serial ports
	Control panel
	Setting the channel gain and offset
	Conditioner connections and details

	Amplifier telegraphs
	Standard 1401 telegraphs
	1401 telegraph configuration

	MultiClamp 700 telegraphs
	MultiClamp 700 telegraph configuration

	AxoClamp 900A telegraphs
	AxoClamp 900A telegraph configuration

	EPC 800 telegraphs
	EPC 800 telegraph configuration

	Auxiliary states devices
	Magstim device
	Magstim safety notice
	Magstim introduction
	Magstim configuration
	200 device configuration
	BiStim device configuration
	Rapid device configuration
	Dual 200 device configuration

	Magstim connections and cabling
	Notes on Magstim use

	MagPro device
	MagPro safety notice
	MagPro introduction
	MagPro configuration
	MagPro connections and cabling
	Notes on MagPro use

	CED 3304 current stimulator
	CED 3304 Safety notice
	CED 3304 Introduction
	CED 3304 support configuration
	CED 3304 Connections and cabling
	Notes on 3304 use

	Technical support
	Contacting CED
	Revision history
	Revision 6.06
	Revision 6.05
	Revision 6.04
	Revision 6.03
	Revision 6.02
	Revision 6.01
	Revision 6.00

	Common questions
	I've set a sampling configuration. How do I sample data with Signal?
	Signal beeps at me when I try to open a new data file for sampling or exit from the program.
	What is the Log window for?
	When I sample data, where is it saved during sampling?
	Do I have to use scripts to use Signal?
	How do I get started writing scripts?
	Which version of Windows is best for Signal?
	Why can't I make contact with my CyberAmp from Signal?
	Why does my CyberAmp with input probes 401, 402, 405 and 414 give no signal?
	If I zoom in to show a very small (and we mean very small) x axis range, then print the data, the printed output sometimes shows more data than there was on screen. Is this a bug?
	If I sample data fairly fast (total rates of around 100 kHz or more) the mouse response gets very jerky or sluggish. Why and what can I do about it?
	I have installed Signal on Window 95/98 but when I try to sample data I get an error message saying that the 1401 device driver isnt found.
	Signal works fine looking at old files, but when I try to sample data it fails or gives an error message. How do I sort out 1401 problems?
	When I try to read a file created by Signal with SIGAVG, modify it with MCF or convert it with C2S, these programs cannot access the file data. How do I ensure compatible files?
	I get error -544 when I try to sample in Windows NT, NT 2000 or Vista. Why?
	Why aren't the external digital states working?
	Why are the file paths in my script not behaving correctly?

	License information

