

Spike2

Training Course Manual

November 2013

ii

Copyright Cambridge Electronic Design Limited 1996-2013

The information in this book was prepared and collated by the staff of Cambridge

Electronic Design Limited as teaching material for the Spike2 Training Days held in

Cambridge and worldwide between 1996 and 2011. It has been updated to take account

of new features in Spike2 versions 3, 4, 5, 6, 7 and 8.

First version July 1996

Revised September 1997

Revised January 1998

Revised October 2000

Revised January 2001

Revised October 2002

Revised October 2004

Revised June 2006

Revised April 2007

Revised May 2009

Revised May 2011

Revised November 2013

Published by:

Cambridge Electronic Design Limited

Science Park

Milton Road

Cambridge

CB4 4FE

UK

Telephone: Cambridge +44 (0)1223 420186

Fax: Cambridge +44 (0)1223 420488

Email: info@ced.co.uk

Web site: http://www.ced.co.uk

Trademarks and Tradenames used in this guide are acknowledged to be the Trademarks

and Tradenames of their respective Companies and Corporations.

 Spike2 Training Days

1

This book is a compendium of some of the material presented at the Spike2 Training

Days held in Cambridge, England and around the world. The material here, especially in

the scripting sections, expands on the information in the standard Spike2 manuals. We

hope that you find this book useful and instructive.

If you are reading this book after attending the Training Days, it should remind you of the

topics covered and give you some extra reading; it was impossible to cover everything in

this book in the time available. If you are reading this independently of the Training

Days, then if you follow it through in the order of the chapters, you will get a fairly

detailed account of the Spike2 program.

Some sections of this book rely on material covered in other chapters. For example, the

Using scripts on-line chapter assumes that the reader has followed the Script toolbox

chaper, and this, in turn assumes knowledge of the Script Introduction chapter.

For the most part, this book covers material that is in common for all versions of Spike2

from 2 to 8. Occasionally, there are sections that refer to features that are not in all

versions. These are indicated in the text and users of older versions should skip them (or

consider if an upgrade would be a useful investment!) The screen images from a range of

versions of Spike2. You should consult the documentation for your version of Spike2 for

the details of your particular version.

The output sequencer and script chapters have many examples. To save you a lot of

typing these examples are available on disk. These examples may not be identical to the

listings as some of the comments were shortened to fit in with the format of this manual.

Users of Spike2 version 3 and later will find that the examples are copied into folders in

the TrainDay folder in the Spike2 installation folder. The folders are:

Control Examples from the Sampling, control and the output sequencer chapter

Script1 Examples from the Script Introduction chapter

Script2 Examples from the Script toolbox chapter

Spk2Data Examples from the Scripts and Spike2 data chapter

Memchan Examples from the Advanced topics chapter

Online Examples from the Using scripts on-line chapter

Introduction to Spike2 ... 2
Sampling data .. 15
The graphical output sequence editor .. 28
Sampling, control and the output sequencer ... 36
Spike shapes .. 47
Script introduction... 56
Script toolbox .. 66
Scripts and Spike2 data ... 74
Using scripts on-line ... 93
Advanced topics .. 108
Sonogram display mode .. 127

Introduction

Example files

Table of Contents

 Introduction to Spike2

2

The purpose of this chapter is to give you an overview of what Spike2 is, what it can do,

how to get started with it and where to find items in the menus. Armed with this

knowledge you should be able to read through the more specialised topics in the

remainder of this book and see how they fit into the generalised framework presented

here.

Spike2 is different things to different people. To some it is a simple data capture and

review program, acting as a computerised chart recorder. To others it is a user-

customisable data analysis engine, capable of working rapidly through many megabytes

of data to reduce it into a manageable form. Some people use it to produce complex

stimulus patterns; others have no interest in the output capabilities.

We assume that you want to use Spike2 to solve a problem, so you already have some

idea of what the program is going to be for you. We hope that the contents of this book

will show you enough of the capabilities of the program so that you can decide how much

(or how little) of it you must use in your work.

Detailed installation instructions for each system are given in the manuals supplied with

your copy of Spike2. The following is a summary of installation:

The software is easy to install and guides you through the process of installation. The

installation program will suggest a folder called SpikeN for version N, for example

Spike8 for version 8. If you are installing to a system that already has a previous

version, do not install the newer version on top of the old one unless you never want to

run the old one again. Most users have no problems installing the software but if you do,

don’t panic; you can always contact CED and we will then talk you through the

procedure.

The installation program will also install 1401 support, if you wish. This means that if

you are setting up a new system with a 1401 and Spike2, you only need use the Spike2

installation disk. The installation disk that comes with the 1401 does include extra

programs, but you would only need them if you were having hardware problems. If you

install 1401 support from the Spike2 disk, it is possible that you may be asked to restart

your computer to make sure that the most up-to-date device driver is used.

Once you have installed the Spike2 and 1401 driver software you can run Spike2 by

either clicking on Spike2 within the Spike2 program group or if you are running

Windows 95 or later, you can use the Start menu to locate Programs and then Spike2.

Spike2 data acquisition is a ‘real time’ process and requires the host computer to react on

demand to a call for resources. It is therefore inadvisable to run other applications when

sampling data as this can cause the sampling to fail if another application does not release

required system resources in a reasonable time. Many applications do run happily at the

same time as Spike2, just remember, you have been warned. From Spike2 version 5, the

time-critical parts of the data acquisition run in a separate thread with a higher priority, so

it is more robust when competing with other programs for system time.

From version 5 there is also a Scheduler tab in the Edit menu Preferences that gives you

some control over how much CPU time Spike2 uses.

Introduction to Spike2

What is Spike2?

Installation

Windows

Multi-Tasking

 Spike2 training manual Introduction to Spike2

3

When you launch the application you will see a blank screen except for the menu (and

toolbar and status bar in Windows). The picture below shows some of the features you

will see when you work on data files:

You use the Menu bar to command the program as you would any other Windows

application. The Toolbar gives you short cuts to Menu bar commands. The Status bar
gives you feedback (for example it gives the function of any toolbar button under the

mouse pointer).

The Data window shows unprocessed sampled data. We refer to such a window in

Spike2 as a “Time view” because the window shows how the data changes with time.

You can have multiple channels of data in a time view. Each channel has an associated

Channel number that uniquely identifies the channel (this number is used by the script

system).

The Result window shows a single array of data that is usually the result of an analysis

of data from a time view. In the Spike2 manuals we call this a “Result view”.

At the bottom of each time and result view is a Scroll bar and the x axis control buttons.

You use these to choose the section of data that is displayed in the window. You can hide

the x axis and the controls from the View menu Show/Hide channels command.

A Duplicate window is a copy of an existing time window created with the Window

menu Duplicate command. You can duplicate a window several times if you wish. A

duplicate lets you display the same data in a different format and display different areas

of a file simultaneously.

Basic screen layout

Channel number

x axis control
buttons

Scroll bar

Status bar

Menu bar

Toolbar

Duplicate window

Result window

Data Window

Introduction to Spike2 Spike2 training manual

4

The menu bar holds the list of commands available in the application. From the menu bar

you can sample data, open files and analyse, display and manipulate the data within them.

The illustration above shows the menu bar and its associated toolbar (icons). The toolbar

is a short cut to the more common functions available from the menus. It can be hidden

(from the View menu) to give more room for data and result views.

Dimmed icons in the toolbar correspond to functions that do not operate on the active

window.

Spike2 versions 3 onward also have edit and debug toolbars and you can show and hide

toolbars by clicking the right mouse button on a vacant area of a toolbar.

File From here you can load, save and print documents and create new ones.

This menu also lets you save and restore the system configuration. Under

Windows you also get a recently used file list, and if you are attached to a

suitable Mail server you can send the current document as mail.

Edit The cut, copy and paste commands are found under this menu plus

commands for searching and replacing text. An important item in this

menu is the Preferences command which sets where new data files are

stored until you save or delete them.

View View manipulation commands which control the “look” of the data

windows; many of these commands can be duplicated by clicking with

the mouse on a window. You control the font and colour of the active

window from here.

Analysis The main built in analysis functions live here. They range from averages

and stimulus histograms through to deriving new channels based on peak

and trough detection. From version 4, this also holds commands to make

measurements and create XY trend plots based on cursor positions and do

FIR digital filtering. Version 5 adds commands to create virtual channels

through channel expressions. Version 6 extends the virtual channels and

adds IIR digital filtering.

Cursor Cursor values, areas, means and slopes can be accessed here. From

version 4 the controls for the active cursors can be found here.

Sample Setting up of the sampling configuration is done here. The menu also

duplicates the sampling control box and access to the template

parameters. The “Create TextMark” function is also here, allowing the

user to ‘stick’ a short note on to a data file whilst sampling. You can also

configure the CED 1401-18 discriminator and serial-line controlled

CED1902 and CyberAmp signal conditioners from here for systems that

support them.

Script Use this to evaluate one line of script, record your actions and run a

script. You are allowed to load as many scripts as you can fit in memory

in the File menu. From here you can select one to run.

Window This contains commands for laying out the screen area and hiding or

showing the views.

Help One method of accessing the help index. This also includes information

about the version of Spike2 that you are using.

Tour of the menu bar

Menu

Toolbar

 Spike2 training manual Introduction to Spike2

5

Spike2 has a comprehensive help system installed alongside the main software. You can

use the help icon in some documents to access it directly or use the context sensitive

help from the script and evaluate windows. Place the cursor somewhere in the command

and press F1. If Spike2 recognises the text surrounding the cursor it will jump straight to

the help section related to the text. Pressing F1 whilst a dialog is active will access the

appropriate help page for that dialog.

The on-line Help includes an easy to use index; full installations of Spike2 also include

PDF files of much the same information organised as a printable manual.

Spike2 can open and display several document types. They are opened from the File pull

down menu. Files of different types are distinguished by the file extension. The file

extension is a period followed by from one to three characters at the end of the file name.

Type Extension Purpose

Data .smr

.smrx
.smr files are used by all version of Spike2 to hold sampled

data collected using Spike2 and a 1401 These files hold 32-

bit times, and are up to 1 TB in size. Spike2 version 8

introduces .smrx files that use 64-bit times and that are of

virtually unlimited size.

Result .srf Once data has been analysed and a result view has been

created then the view can be saved in this format. This

allows the user to reload the file for further analysis or print

it for inclusion in a paper.

Text .txt The standard text file can be useful for storage of results and

notes or for exporting data to other applications.

Sequence .pls The pulse output file. It is often necessary to control stimuli

whilst sampling and this file type is used for that purpose.

The file is a set of output commands that can be initiated via

the mouse, keyboard or from an on-line script.

Script .s2s This is the Spike2 macro (script) file type. It enables the user

to write or record a set of actions which may include further

customised analysis. Repetitive or complex tasks can then be

performed as often as the user wishes. With Spike2 for

Windows you can make a script run when the program loads.

This can be used to run an on-line script to control data

sampling and analysis with little user intervention.

Resource .s2r

.s2rx
These are resource files that holds information such as

screen arrangements of data windows. The .s2rx format

was introduced in version 7.11 and is the preferred format.

XY .sxy Available from Spike2 version 3. XY view disk format. The

same format is used by Signal version 1.5 and later.

Sampling

setup

.s2c

.s2cx
This file type holds the sampling configuration as displayed

by the Sampling Configuration dialog. The .s2cx format

was introduced in version 7.11 and is the preferred format.

Filter

bank

.cfb

.cfbx
The file filterbank.cfb holds digital filters that you edit

and use from the Analysis menu Digital filter command. The

.cfbx format was introduced in version 7.11 and is the

preferred format.

Video .avi Spike2 version 5 onwards can display multimedia files

linked to data files. As you scroll through the time view, the

linked multi-media files also scroll to the same position.

Using Help

Document types

Introduction to Spike2 Spike2 training manual

6

These are the different channel types that Spike2 can sample and derive from other

channels. These channel types can only exist in a time view.

Waveform Waveforms are stored as a list

of data points. The points are equally spaced in time (but we also allow

gaps in the waveforms). The data is stored on disk as 16-bit integers

(range -32768 to 32767), but they are presented to the user as real

numbers in user units. Each channel has an associated scale and offset

that converts between the integer values on disk (and in memory) and the

values the user sees.

RealWave This is very similar to a Waveform, except that the data is stored as 32-bit

floating point numbers. This channel type can be used as if it were a 16-

bit Waveform. Each channel has an associated scale and offset that are

used to convert the data to 16-bit integer if this is required.

WaveMark This type of data is a short fragment of a waveform

plus four codes (in the range 0-255) that label the type of the data. This

data type is often used to store discriminated spike shapes. From version

4.10 onwards, WaveMark data can have multiple traces, making this type

suitable for recording Stereotrode and Tetrode data.

Event+ This data type is a time marker.

The time is taken from the rising edge of a TTL compatible input signal.

This type of data is used to store externally discriminated spikes and

general event times. There is also Event- data, which is identical, except

the falling edge of a TTL compatible signal is used.

Level A level channel is like the combination

of Event+ and Event- data. It records both the rising and falling edges of

data. Unless you really need to record both edges it is far more efficient

to use Event+ or Event- data types.

TextMark A TextMark is a short text note linked to a time in the file.

Like the WaveMark type, it has four codes in the range 0-255 that

identify types of TextMark data. During sampling you can add these

manually or automatically log text strings from a serial line input.

Keyboard A Keyboard marker is a time stamp. It has four associated codes in the

range 0-255. The first code is used to hold the ASCII code for a key.

Each time a key is pressed during sampling when the time window is

active, the key value and the time are saved in the file.

Marker The digital marker channel is stored in the same way as the keyboard

marker. The difference is that the first of the four codes holds the digital

data read by the 1401 when a trigger line was pulled low. This type of

channel is used to collect information from other digital equipment during

data capture.

RealMark A realmark channel is a marker channel with the added ability to store a

list of real numbers. It can be created using the active cursor

measurement process or by the Spike2 script language.

Memory A memory channel can be of any of the above types. It is a channel that is

created either by analysis functions or by the Spike2 script language.

Virtual Virtual channels contain RealWave data derived by a user-supplied

expression. The derived data can be based on existing data channels or

functions such as sine, square or triangle waves.

Concept of channels
and channel types

 Spike2 training manual Introduction to Spike2

7

A simple data file might contain a channel of waveform data (voltage information) and a

keyboard marker channel containing key codes indicating various stages in the

experiment. A rather more complex file might contain a number of waveform channels

for eye movement and blood pressure along side a number of multi-unit WaveMark

channels and digital input/output. This would enable Spike2 to keep track of (and perhaps

produce) the stimuli for the subject.

The marker filter selects data from a keyboard marker, digital marker, TextMark,

RealMark or WaveMark channel based on the four codes stored with each data item. We

will henceforth refer to all such data channels as “marker” channels. In terms of the

keyboard channel, it might be necessary to filter a particular key or keys that indicate a

drug dose is being applied. This allows you to scan quickly through the data file

identifying regions of interest. When using a script, the marker filter can help to jump

directly to an area marked by a character or code and present a pre-determined time

around that point. It would then be the users decision whether it was a valid region for

analysis.

For multi-unit recording the marker filter is

invaluable. It enables the user to extract different

units from the channel and perform analysis on

just one type or cross analysis between several

types of unit both on-line and off-line.

The view to the right shows the marker filter. At

the top, you can see which channel the masking

will affect. The Mode field is not present in

version 2; the picture shows it set to be

compatible with version 2. The vertical bar

indicates the code(s) that will be masked; in this

case 01 and 03 would be hidden. There are in

fact 4 code “levels” each with 256 different

values, although you tend to only use the first level for most applications.

Example data file

Marker data and
marker filter

Introduction to Spike2 Spike2 training manual

8

The small squares to the left of the scrollable region give you a visible indication of the

codes that are included (black dot) or excluded (white space) for each of the four levels of

codes. For a data item to be included, each of the four codes must be included in the

corresponding level mask. As most people only need to use level 1 (the first code), they

usually leave the filter for the remaining three levels set to accept all codes.

The List format field was added at version 5 to control the display format of the scrolling

list of codes.

You can scroll through the data and result views using the mouse to move rapidly to

interesting areas. There are also functions to optimise channel displays and to duplicate

views so you can view different time ranges simultaneously.

Double-click the X or Y axis to type in a display range. Drag functions also allow you to

zoom the channel by clicking and holding down the mouse button on the data areas of the

screen. Dragging the new pointer in any direction will zoom into the data area.

Zooming out requires the Ctrl key (Option key on the Macintosh) to be pressed while

dragging and the pointer will appear with a negative symbol .

From version 4, moving the pointer over the X or Y axis ticks allows you to

click and drag the axis range displayed, with the scale remaining constant.

The window will update when the mouse button is released. If Ctrl is held

down whilst doing this the window will update continuously

Moving the pointer beyond the ticks to the number area allows you to click

and drag to change the axis scaling in the same way. If the zero point is

visible, the scaling is done around this, with the zero point remaining fixed.

If not visible the fixed point is the middle of the axis.

Pressing the Alt key then clicking and holding down the left mouse button will change the

pointer to display the current mouse position in X and Y axis units. Subsequently

dragging the pointer within the channel area will update this with the X and/or Y axis

difference from the start position to the current one. While the mouse button is depressed

(the Alt key can be released at this point) pressing C or L on the keyboard will copy the

current values to the clipboard or write them to the log window.

You can add up to 10 vertical cursors to a data or result view with the cursor icon or

the cursor pull down menu. This then allows you to take quick visual measurements with

the cursor label or by using the Display Y Values and Cursor Regions again from the

cursor pull down you can measure slopes, means and areas for each analogue channel.

Cursors also allow us to obtain a count of events between cursors.

Vertical cursors are numbered 0 to 9. Pressing Ctrl + n (where n is a number key between

0 and 9) will fetch or create that numbered vertical cursor within the visible data area.

Control of time views

Quick measurements

Use of cursors

 Spike2 training manual Introduction to Spike2

9

The view to the right is the result view menu originating from

the analysis pull down. You can select any of these on or off-

line but if you are sampling at high rates, the priority must be

to get data safely to disk so analysis must become a secondary

consideration. However, if you are using a modern, fast

computer, this is not usually a problem, especially if you use a

PCI or USB interface to the 1401.

This is a typical example of the first stage of the

analysis setup both on and off-line. You choose the

channels to analyse in the first field at the top of

this dialog. The next field sets the width of the

result view; the dialog also displays this as the

number of bins in the result. For a waveform

average this is the number of analogue data points

to use.

When making histograms from event channels

there is also a Bin width field. It is not present for a

waveform as the bin width is set by the interval between waveform samples. The time

width of the histogram is the number of bins multiplied by the bin width. The Offset field

sets the pre-trigger time to display in the result.

Off-line, once you have clicked the OK button

you are presented with this new dialog. Here

you set the area of the data file to include in the

analysis sweep. You can give start and end times

in seconds or if cursors are present these can be

used to determine the area to use. If Clear
result view before process is unchecked as

shown then the new result will be added to the

old. Version 5 allows you to restrict the analysis

to time ranges that surround event markers; you

might use this if you used markers to indicate

different treatments.

The well-known Nyquist theorem states that waveform data should be sampled at a rate

that is at least twice the bandwidth of the signal. If you don't sample fast enough,

frequencies in the input data above half the sampling rate appear to be below half the

sampling rate in the sampled data. Most users sample quite a bit faster than the absolute

minimum rate so that high speed signals don't look jagged. A rule of thumb for the

absolute minimum sample rate you should use is 2.5 times the maximum frequency in the

signal. This would produce a reasonable ‘image’ of the original signal in digitised form.

If in doubt, sample the incoming data at a high rate and then perform a power spectrum

upon it. This will identify the maximum frequency present.

Maximum rates of continuous acquisition to disk range from 80 kHz (with a standard

1401) up to the maximum ADC rate supported by your 1401. However, the maximum

rate is also dependant on the 1401 type, connection (USB 1, USB 2, PCI), speed of the

computer system and disk in use. Although you can buffer information inside the 1401

(up to 1 GB with a Power1401), you do have to get rid of it as the memory is filled. If

you have a choice of interface for the 1401, a Power 1401 or Micro1401 mk II or 3 with

USB 2 are the fastest, the PCI card is the next fastest, USB 1 is the slowest.

Built in analysis

Simple sampling

Introduction to Spike2 Spike2 training manual

10

Don't sample a waveform such as respiration at 1000 Hz when you can get a good image

of the signal at only 10 to 20 Hz. The space used by a channel soon mounts up. For

example:

data sampled at 500Hz (say ECG) = 1000 bytes/sec which equates to 60,000

bytes/minute and therefore 3.6MB/Hour and that’s just one channel.

Use of excessively high sampling rates wastes disk space and increases the time required

for analysis. It also makes the data files inconveniently large when backing them up or

archiving them. If you sample at a rate that is at least 2.5 times the highest frequency

present in your data, Spike2 can reconstruct the data in the gaps between the samples.

With very large data files, it is prudent to store data on a backup media. Although the

probability of a disk error is small, with files of many megabytes, the chances are that if

there is a disk error, it will be in one of your large files. It is also important to remember

that hard disks are not 100% reliable. They are mechanical with precision components

that are sensitive to mechanical shock and wear. As hard disks age they become more

likely to fail or to develop hard (unrecoverable) and soft (recoverable) errors.

The type of backup media can include:

Removable hard disks

Writeable CD ROMs

Writeable DVDs

Magnetic tape

Network backup drives

It is usually not a good idea to sample directly to network drives, or to work with files

across a network. Network traffic can lead to unpredictable access times.

Backing up your data

 Spike2 training manual Introduction to Spike2

11

From the Sample menu you can open the sampling configuration dialog. Here you set up

the number and types of channels to use together with their independent sampling rates.

Double click on a channel or click

Edit on the highlighted channel to

access a further configuration

menu. Use the New or Duplicate

buttons to add a channel. The

WaveMark channel configuration

to the right is a combination of

event and waveform data.

The channel that is being edited, or the channel number you wish to set.

The type of input you wish to capture.

The title for the channel (this is displayed in the time view).

Which physical input port on the 1401 this channel will receive its data from.

The mean number of events that you expect per second. The setting here dictates the size

of memory allocated to the channel inside the 1401. The maximum performance will be

increased if the rate is set realistically.

In place of Maximum sustained event rate for a waveform channel. This sets the

desired analogue to digital rate for the particular channel. It is necessary to check that the

resolution is set high enough to achieve the desired sample speed.

The channel comment

Units to be displayed on the y axis (mm Hg, Litres etc.)

The scaling factor e.g.1 volt = 10 mm Hg + offset

For WaveMark channels; the number of data points per event (from 6 to 126)

For WaveMark channels; the number of pre-trigger points to capture.

For WaveMark channels in version 5; the number of interleaved traces for each spike.

TextMark channels have additional options that allow you to record text strings from a

serial line as part of the data file.

Setting up Spike2 to
sample

Channel

Type

Title

1401 Port

Maximum sustained event
rate

Ideal ADC sampling rate

Comment

Units

Input in volts

Points

Pre-trigger

Traces

These are the channels to sample,

their sample rates, titles,

comments and waveform scaling

Maximum file size and sample

time and automatic file naming

This tab sets the time resolution,

which sets the maximum run

time and the 1401 type

This sets a sequencer file

to run during sampling

This sets the sampling mode

(continuous, timed, triggered)

Introduction to Spike2 Spike2 training manual

12

Once you have checked that the sampling works correctly, you can save it as your default

sampling configuration in place of the standard 100 Hz continuous sampling version

supplied with Spike2. You can also modify the colours (and the application window

position in Windows). This will then be the new configuration, which will load every

time Spike2 is executed.

To set a default configuration hold down the control key, open the File menu and use the

Save Default Configuration command. You can also write configuration files with your

choice of name if you use the File menu without holding down the control key and select

the Save Configuration command.

Using the Edit pull down you can access the Copy and Copy as Text function to place

data into the clipboard. This is a holding area for data that will be pasted into other

applications, such as a word processing package or spreadsheet.

Using the results acquired from the built in analysis section or from a script, you can

export data as graphics and text to another application, in the case of this document,

Microsoft Word. An example can be seen below. All of the following where produced

using Copy or Copy as text.

The image below was pasted into this Word document using Copy in Spike2, then Paste

Special in Word, and selecting a bitmap format. Bitmaps are an exact copy of the image

on the screen and are limited to the screen resolution, even when displayed on a device

with a much higher resolution (such as a printer). In particular, they suffer when scaled

and lines that are not horizontal or vertical look jagged when printed.

The next image was produced using Copy and then Paste into this Word document. In

this case, this is a vector image, and can be scaled to suit the document without losing

resolution. When you print this image, you get the full resolution of the printer, not the

original resolution of the screen, and usually, a much better result.

You can also import a vector image into a drawing program and then edit the fonts and

line thickness. However, beware that many drawing programs allow a rather limited

number of vectors. A Spike2 data file can have many millions data points, and although

we restrict the number of lines we drawn this can still break some drawing programs.

Saving the Default
Configuration

Moving data to the
clipboard

Exporting graphics
and text

Bitmap images

Vector images

 Spike2 training manual Introduction to Spike2

13

From Spike2 version 3 onward, you can adjust the picture resolution from the Edit menu

Preferences option. If you have problems with importing time or result views into

drawing programs, lowering the resolution may solve the problem.

I used Copy as Text to produce this output of the raw waveform data as text.

"INFORMATION" Here you see the text output

"Coldresp.smr" information.

""

"SUMMARY"

"1" "Waveform" "ECG" " volt" 250 250 1 0 You also see the channels

"2" "Waveform" "Rate" " volt" 50 50 1 0 and their sampling rate,

"3" "Waveform" "Volume" " Lit" 50 50 0.5 0 scaling factors and titles.

"4" "Waveform" "CO2" " %" 50 50 0.5 0 This should help to

"5" "-" "untitled" 100 reconstruct the data in

"6" "Evt+-" "Memory" 1 other applications.

"31" "Marker" "Keyboard"

"CHANNEL" "1" Channel 1 synopsis.

"Waveform"

"No comment"

"ECG"

" volt" 250

"START" 159.04500 0.00400 Here is the data start time

 and the time between points

-0.23682

-0.01953

0.37109

0.98877 -The data values

1.78467

2.55371

3.06885 -ECG Peak

2.98828

2.05078

0.69824

-0.49072

Text output

Introduction to Spike2 Spike2 training manual

14

Here is the text output of a histogram. For this I used Copy as text in Spike2 and Paste

in Word.

150 -Number of bins to follow

0 0 -and their x position and value

0.01 0

0.02 0

0.03 0

0.04 0

0.05 168

0.06 57

0.07 50

0.08 49

0.09 31

0.1 33

0.11 21

0.12 48

1.49 075
etc.

The image below is an example of Copy as Text. It is, in fact, a section of the ECG

waveform from the data above and an extra respiration channel from a similar file. This

was created using Word Graph, but it can also be produced by other spreadsheet

packages.

Average ECG

-2

-1

0

1

2

3

4

5

Time

ECG

L/Min

From version 5, you can ask to export time view data in Spreadsheet format. In this

mode, the data from each channel has its own column, and Spike2 resamples all the

channels to the same rate so that the exported data forms a rectangular table. This makes

it very easy to import the data into spreadsheets and most other programs that accept

tabulated data.

Spreadsheet output

 Sampling data

15

This chapter investigates how to sample various data types with Spike2. The data types

fall into four main categories:

 Waveform data

 Event data

 Marker data

 WaveMark data (not discussed in detail here, see the Spike shapes chapter)

Each data type can be processed during the experiment and we will consider the various

means of visualising and analysing each data type. Certain topics falling in the domain of

data sampling, including spike sorting, generating output sequences and controlling data

capture with a script, are covered in other chapters and are not studied in detail here.

Data sampling is the process by which Spike2 captures external signals, displays and

analyses these signals in real time, and records the signals on the hard disk of the host

computer. To sample data, first use the Sampling configuration to describe the data

channels you wish to sample, then create a new data file to hold the data and finally start

sampling. We will consider how the sampling configuration dialog relates to each data

type in turn, rather than study the configuration independently of sampling.

The File...New...Data document menu command creates a new document (window) in

which data will be sampled. In versions 3 and 4, you can also open a new data file from

the Sampling configuration dialog and from the Sample bar. Control over the sampling

process is provided by a floating window, or from the Sample option in the Spike2 menu.

The floating command window starts and stops data capture. Click

the Start button to begin sampling, or if the Trigger box is checked,

supply a trigger pulse to the Event 3 input of the standard 1401 and

1401plus or to the Trigger input of the micro1401 and Power1401.

When data capture starts, the options to Stop data capture (end the

experiment) or Reset the new file (discard all data accumulated so

far and prepare for a new recording) appear in this window. Check

the Write to disk box to save data to disk. An option to Abort the

sampling process is always available in the command window. This option abandons any

sampling that is in progress and discards the new file.

A waveform is any signal that varies continuously in time, such as an electrocardiogram,

or a temperature recording. Continuous (analogue) data is not suitable for processing in a

computer and so a waveform must be converted into a digital format. Spike2 records the

amplitude of a waveform at fixed intervals. This information can then be used to

reconstruct the waveform. The reciprocal of this sample interval is the sampling rate.

If the original signal is to be faithfully reconstructed, sufficient amplitude samples must

be taken per second. A waveform must be sampled at a rate that is at least twice the

frequency of the maximum frequency component of the raw signal.

Each waveform sample occupies two bytes of hard disk space. It is therefore necessary to

select a sampling rate that is high enough to represent the highest frequency in the signal,

but not be so high that unnecessarily large data files are created. With Spike2 you can

record waveforms on different channels at different rates. High bandwidth signals, such

as EMG can be sampled at high rates whilst lower frequency signals, such as blood

pressure can be sampled more slowly.

Overview

Starting a new data file

Floating command window

Sampling waveform
data

Sampling data Spike2 training manual

16

The sampling configuration dialog sets the sampling parameters for a new data file. Once

you create a new data file, the configuration is fixed. If you change the sampling

configuration after creating the file, the changes apply to the next file you create; the

current file does not change.

The list of channels to record is edited using the Edit, New Channel, Duplicate and

Delete buttons. Reset and Run now were added at version 2. The current channel has a

highlight and can be selected using the mouse, or the cursor keys.

Edit The same as double clicking a channel. Edit the current channel.

New channel To add a new channel of a particular data type to the channel list.

Duplicate Add a copy of the current channel at the next available channel number.

Delete To remove the current channel from the channel list.

Reset Delete all user-defined channels and sets a standard sampling state.

Run now This button closes the dialog and opens a new data file.

You can create up to 64 waveform channels in the channel list (16 in version 3). Click the

New button for a new channel or Edit an existing channel and use the Type field to set

the channel type to Waveform. The table, below, describes the other fields in the dialog:

This is the channel number. This number is drawn to the left of the data in a time view

and is used by the script language to identify a data channel.

This sets the type of data to record on this channel (in this case Waveform)

A title for the new channel, displayed in the Y axis for the channel.

The 1401 hardware port to sample the waveform from.There are 16 ports as standard on

all 1401s except the micro, which starts with 4. ADC expansion units are available for all

1401s to increase the number of inputs.

The desired sampling rate for the waveform in Hz (samples per second). This may not be

the actual rate used for reasons given below.

A user comment for this channel entered here is stored with the data file.

The amplitude units for the waveform (the standard setting is “Volts”).

Configuring Spike2 to
record a waveform

Channel

Type

Title

1401 port

Ideal ADC sampling rate

Comment

Units

 Spike2 training manual Sampling data

17

These fields scale and offset the input signal from Volts to user-defined units. The

standard values are scale = x1.0 and offset = 0.0

Once the fields are set, click OK to add the new channel to the channel list. Note that the

actual sampling rate is displayed rather than the requested ideal rate (see below).

The sampling rate of a waveform channel depends on the base waveform sampling

resolution. This is set in the Resolution tab of the sampling configuration dialog.

Times measured by Spike2 during sampling are relative to a master clock in the 1401.

The Microseconds per time unit field sets the clock tick period in the range 2-1000 s.

There is a maximum of 2,147,483,647 ticks per data file (231-1), which sets the maximum

possible recording time per file. With a time period of 10 s this is about 6 hours. The

Longest run time field displays the maximum sample time.

The Time units per ADC convert field sets

the time interval in units of the Microseconds
per time unit field between waveform samples

from the 1401 Analogue to Digital Converter

(ADC). The example to the right shows a

simple case with one channel sampled at the

same rate as the ADC converts.

With more than one waveform, the channels

share the total sampling rate. The example to

the right shows the result of adding 4 more

channels. The maximum rate for each channel

under these conditions is 100 Hz; slower rates

are possible by down-sampling.

 “Down-sampling” means we keep every nth

data point for a channel; n is an integer in the

range 1 to 65535. The possible sampling rates

for the 5 channels in the second example

above would be 100/n. Spike2 chooses n to

make the actual rate as close to the ideal rate

as possible. In the example to the right,

channel 1 can achieve exactly the requested

rate, but channel 2 can only approximate it.

Input in Volts

Waveform sampling
rates

Microseconds per time unit (s) 5

Time units per ADC convert: 400

ADC conversion interval (s) 2000

Total sample rate available (Hz) 500

Number of channels 1

Sample rate per channel (Hz) 500

Microseconds per time unit (s) 5

Time units per ADC convert: 400

ADC conversion interval (s) 2000

Total sample rate available (Hz) 500

Number of channels 5

Sample rate per channel (Hz) 100

Versions 2 and 3

Microseconds per time unit (s) 5

Time units per ADC convert: 400

ADC conversion interval (s) 2000

Total sample rate available (Hz) 500

Number of channels 2

Sample rate per channel (Hz) 250

Ideal rate channel 1 50

Actual rate (250/5) 50

Ideal rate channel 2 35

Actual rate (250/7) 35.71

Sampling data Spike2 training manual

18

If it was really important to you to get 50 and

35 Hz, we can get pretty close. Observing

that the lowest common multiple of 35 and 50

is 350 Hz, if we could get a maximum

channel rate of 350, the problem would be

solved. Unfortunately, 350 Hz on two

channels is a total rate of 700 Hz. This is a

sampling interval of 1428.57 microseconds.

The nearest whole number of microseconds is

1429, which is prime. The next best choice is

1428, which has factors, so we choose 4 and 357 to give a reasonable resolution.

The Suggest button can be used to ask Spike2 to adjust the Time units per ADC
convert field to minimise the error in sampling rates.

If m channels of the spike sorting data type (WaveMark) are set, these channels

automatically get m/(m+1) of the total sampling rate, irrespective of the number of

waveform channels. The waveform channels share the remaining total sampling rate.

From version 4, the Resolution tab has more options and Spike2 has a better strategy for

matching the actual sampling rates to the ideal rates set in the Channels tab. If you need

exact compatibility with version 3, set the Optimise field to None and the Groups field

to Version 3 compatible; the system will then behave as described above for version 3.

If you always use the same 1401 type for sampling, optimise the settings by selecting the

appropriate value in the Type of 1401 field. If work with a range of 1401s, select the

slowest type you will use. Set the Groups field to Keep same sample rate groups.

For automatic optimisation of sampling rates, set the dialog as shown above. If you need

to sample for more that 71 minutes, or with a time resolution that is better than 50 s,

then edit the Microseconds per time range field to limit the time resolution to a range

that is useful for you. Spike2 optimises for the minimum error in sample rate. If there are

multiple solutions, Spike2 chooses the slowest ADC rate and the longest run time.

To run with a fixed time resolution, set the Optimise to Partial and set Microseconds
per time unit manually; Spike2 will optimise the Time units per ADC convert.

If you select a 64-bit data file, you can then run with 1 us resolution (or whatever you

choose) for as long as you like, so this simplifies the choice of sampling rates.

Microseconds per time unit (s) 4

Time units per ADC convert: 357

ADC conversion interval (s) 1428

Total sample rate available (Hz) 700.28

Number of channels 2

Sample rate per channel (Hz) 50.14

Ideal rate channel 1 50

Actual rate (350.14/7) 50.02

Ideal rate channel 2 35

Actual rate (350.14/10) 35.01

Suggest button

Special case

Versions 4, 5 6 and 7

Version 8

 Spike2 training manual Sampling data

19

There are three waveform analysis tools built in to Spike2: Power spectrum, Waveform

correlation and Waveform average. Each tool produces a new window containing the

results. Additional analyses are possible using a Spike2 script, but these possibilities will

not be discussed here.

Analysis result windows are created with the Analysis...New Result View option in the

Spike2 menu. An analysis can be created at any time from opening the new data file,

even during data acquisition.

All analyses are performed on a particular block of raw data (e.g., the first 10 seconds of

the data file, or the whole of the data file so far). The region of data that is processed is

determined a by a Process dialog, which follows the analysis parameters dialog.

In versions 2 and 3, you set the width of the result views in terms of the number of bins.

From version 4, apart from the Power spectrum, you set the width as a time and Spike2

calculates the number of bins for you. Version 4 also allows you to analyse multiple

channels per result view, however the channels must all have the same sample rate.

A power spectrum displays the frequency components of a waveform signal. The

components are measured in units of root-mean-square power. The analysis is performed

using a mathematical operation called a Fast Fourier Transform (FFT) that resolves a

block of waveform data points into corresponding cosine (single frequency) components.

The FFT transforms blocks of data points that are a power of 2 in size, from 32 to 4096

points. The data that is processed by the FFT must contain at least as many data points as

the FFT block size.

The size of the block determines the resolution of the power spectrum; the higher the

block size, the better the frequency resolution of the result.

The analysis parameters dialog for a power spectrum is illustrated below, together with a

power spectrum. The user need only set the FFT block size. Before version 4 there is no

option to set the window function.

The full x axis range runs from 0 Hz to half of the sampling rate used for the waveform

(the maximum frequency in the waveform is expected to be less than half of the sampling

rate to avoid the problem of aliasing, mentioned above). The number of bins (elements)

in the result is one half of the FFT block size selected.

Example: Power spectrum with a block size of 256 of a waveform sampled at 1000Hz.

The resulting spectrum will have an x axis that runs from 0 to 500 Hz. There will be 128

bins in the result. The spectral resolution (frequency width of each bin) will therefore be

500/128 = 3.9 Hz. A better resolution will be achieved by supplying a bigger block size,

but at the cost of time resolution in the original waveform (because a larger block size

spans a longer time period).

Waveform analysis
options

Power spectrum

Sampling data Spike2 training manual

20

This analysis measures the similarity of two waveforms with the same sample interval.

The first result point is calculated by multiplying all of the data points in one waveform,

the “reference”, by all of the data points in the second waveform and summing the

results. The reference waveform is moved one sample point to the right and the process

repeated for the next result point until all of the result view bins are filled. The result is

scaled so the y axis of a waveform correlation runs from -1 (correlated but inverted),

through 0 (uncorrelated), to +1 (full correlation). There is an option to remove the DC

offsets from the waveforms so offsets do not change the result. The picture shows two

waveforms, the waveform correlation settings dialog and the resulting correlation.

This analysis averages a raw waveform with respect to a trigger event. The triggering

events may be recorded on an event or marker channel (see later), or manually set by the

user. The analysis parameters dialog for a waveform average is illustrated below.

The Channel field sets the waveform channel. Number of bins sets the number of

waveform points in the average. The Offset field sets the pre-trigger time in the result.

The Display mean of data field should be checked to generate an average, or un-

checked to generate a sum of all of the waveform sweeps.

From version 4 there is an extra option to display error bars. If you use this you can

choose to display 1 or 2 Standard Errors of the Mean (SEM)or the standard deviation for

each bin in the average.

Waveform correlation

Waveform average

 Spike2 training manual Sampling data

21

A Spike2 event channel holds time stamps. For the 1401 to record the time stamps,

something must convert the event into a TTL compatible voltage pulse. TTL (Transistor-

Transistor-Logic) is a standard used to define voltage levels in digital equipment. A

voltage signal is TTL high if it lies between 3 and 5 Volts and TTL low if it is between 0

and 0.8 Volts. Event inputs are normally connected to the 1401 digital inputs.

TTL signals are commonly found in experiment conditions. Pulses used to trigger data

capture or trigger the accumulation of an waveform average are often TTL-compatible. A

waveform discriminator usually generates TTL-compatible pulses when it detects an

action potential.

Spike2 records up to 8 channels of events. Signals are connected to the digital input on

the standard 1401 and 1401plus. The micro1401 and Power1401 use the back panel

digital input with 2 channels also available as front panel BNC connectors. The Spike2

top box makes all 8 inputs available on BNC connectors for micro1401 and Power1401.

An event is recorded as a time in the data file. The concept of sampling rate is not

relevant to the capture of events. Each event occupies 4 bytes of hard disk space. The

timing resolution of event data is set by the Microseconds per time unit field of the

sampling configuration.

An event channel is configured in the sampling configuration dialog in a similar way to

waveform channels (above). The following parameters must be supplied:

The channel number to use. Spike2 uses this number to refer to the data that is recorded

in this channel.

The data type. This field can be set to Event+ to record a positive-going level change,

Event- to record a negative going level change, or Level to record both transitions.

A title for the channel

Ports 0 to 8 are available on any 1401. Note that it is possible to use port 0 for a

waveform channel and port 0 for an event channel because the physical ports for each

data type are different on the 1401.

An estimate of the maximum number of events to record each second, used to allocate

resources during recording. A good estimate of the value of the Maximum sustained
event rate field will improve sampling performance. Spike2 allocates resources to

channels based on the data flow rate through them.

If you give a channel a higher estimated rate that it needs, you will starve other channels

of resources. This is not important at low data rates, but as the total data throughput

approaches the maximum rate that your system can handle, setting good values can make

the difference between a machine that feels sluggish as it is writing blocks to disk all the

time and one that feels responsive.

Sampling event data

Configuring Spike2 to
record an event

channel

Channel

Type

Title

1401 port

Maximum sustained
 event rate

Sampling data Spike2 training manual

22

Each event data channel can be drawn in different ways. The drawing modes are

available from the View...Event Draw mode menu option in Spike2. The modes are:

Events are drawn as large or small dots (varying sizes are available with a script).

Events are drawn as vertical lines at the time they occur.

The number of events occurring in a user-defined period is plotted as a rate histogram,

the width of each histogram bin being the selected period.

The event is plotted as a dot. The x axis dot position is the time of the event. The y axis

dot position is the instantaneous frequency of that event in Hz with respect to the

previous event.

The events are plotted as a line. The frequency of each event is calculated over a fixed

period that is set by the user in the Bin size field for this event draw mode. The

frequency calculation depends on the interval between the first and last events in the time

period. If the interval is less than half of the period:

 Frequency = number of events in period / period

If the interval between first and last event is greater than half of the period:

 Frequency = (number of events-1)/time between first and last event

This mode displays the pattern of event logging following a stimulus event. Each

stimulus event is plotted on the x axis at its occurrence, with a y value of zero. The

latency of events in the response channel that fall around the stimulus with respect to that

stimulus are plotted on the y axis. Only events falling between the previous trigger time

and the following trigger time will be plotted for each trigger event.

Event analyses are available from the Analysis...New Result view. These analyses

process raw event data according to the Process... criteria that apply to waveform data.

In versions 2 and 3, you set the width of the result views in terms of the number of bins.

From version 4, you set the width as a time and Spike2 calculates the number of bins for

you.

From version 4, all event analyses except the Interval histogram have the option of a

Raster display. This shows the events that form the histograms sweep by sweep. You can

also analyse multiple channels per result view.

Displaying event data
during sampling

Dots

Lines

Rate

Instantaneous frequency

Mean frequency

Raster

Event analysis options

 Spike2 training manual Sampling data

23

This analysis evaluates the frequency of event intervals. The analysis parameters dialog is

illustrated below, together with the source events and the result.

The event channel (from version 4 you are allowed multiple channels) to analyse

The number of bins in the result view, limited only by available memory

The width of each bin, in seconds.

The shortest interval to display in the result. All event times are multiples of the

Microseconds per time unit field (2 - 1000 microseconds) set in the sampling

configuration. To analyse small intervals, you must record data with a time unit that gives

sufficient resolution for your analysis.

This analysis maps the occurrence of events around a trigger. The analysis parameters

dialog is shown below, together with the trigger and response channels and the result.

The event channel (or channels from version 4) to analyse

These fields set the resolution (bin size) and time base (bin size * bins) of the result

Applies an offset for mapping pre-trigger response events

The channel containing the trigger events. This could be another event channel, or a

marker channel (see later). If no channel is selected, the trigger time is supplied manually

in the Process dialog. If a trigger occurs within a preceding analysis sweep, the trigger is

ignored.

Interval histogram

Channel

Number of bins

Bin width

Minimum interval

Stimulus histogram

Channel

Number of bins and bin size

Offset

Trigger

Sampling data Spike2 training manual

24

You can display the result as event count per bin, or check this bos to normalise the result

by dividing the event count per bin by the number of sweeps and the bin width.

Check this box to save the times of each event in each sweep. Each result view channel is

then duplicated and the duplicated displays the raster for each sweep. The screen image

shows the raster data drawn in Raster line mode with the centre line enabled.

You can nominate an addition channel to use as a data source for measurements, and then

use the measurement to sort the rasters, to include and exclude sweeps and, if the

measurement is a time, to display a symbol. If the auxiliary channel is a waveform, the

measurement is the waveform value at time 0 in the sweep. Otherwise, the measurement

is the first/ last event time after/before the sweep trigger point on the auxiliary channel.

This analysis is very similar to the stimulus histogram analysis. There is, however, an

important distinction. Any trigger event falling within a preceding analysis sweep is

included and used to build the result.

It is possible to generate an auto-correlation by setting the stimulus channel the same as

the response channel. In the auto-correlation, the correlation of an event with itself at

time 0 is ignored.

This analysis maps events according to their position in a cycle. A cycle is defined by

another event or marker channel and can have varying cycle times. Each event in the

cycles channel marks the end of the preceding cycle and the start of the next cycle. The

Number of bins field in the analysis parameters dialog defines the number of time

elements that each cycle will be divided into for mapping the responses. The width of

each element (bin) thus varies according to the width of the cycle. A minimum and

maximum cycle width can be set to exclude unwanted cycles.

 You can also include raster data in this analysis. The screen image shows the raster data

drawn in Raster mode.

Spikes per second

Raster data

Auxiliary

Event correlation

Phase histogram

 Spike2 training manual Sampling data

25

A marker is a time stamp plus four numeric codes (usually only the first code is used).

Markers are often used to annotate a data file with information about the experimental

conditions. The markers in a channel can be filtered into groups of a particular type based

on the codes for conditional processing of data.

Marker data can be processed in the same way as event data (they can be used as trigger

sources or analysed in the same fashion as event channels).

There are three types of marker data that can be recorded in a Spike2 data file.

Spike2 always reserves channel 31 for keyboard marker information. This channel cannot

be deleted from the Sampling configuration dialog. You can add a keyboard marker to

the file by pressing a key, but only if the sampling window is the currently active

window. If a text window is active, or another application, your keys will not be logged.

You can also set keyboard markers from a script, and particular keyboard markers can be

linked to an output sequence (see the next chapter) and used to trigger sampling.

Keyboard markers are logged to an accuracy of about 1 second. It is important to ensure

that the raw data window is current for the key press to be logged. Keyboard markers

each occupy 8 bytes of hard disk space.

A digital marker is recorded from the Digital In port of a 1401 whenever a TTL

compatible pulse is applied to the E1 BNC input on a 1401 (strobe input on a micro1401

or Power1401). The E1/strobe pulse can be simulated by the REPORT and MARK

instructions in an output sequencer file (see the next chapter).

Channel 32 is reserved for digital markers. Each digital marker is a byte value (0-255)

which represents the pattern of 8 digital (on/off) inputs read from the Digital In port.

Because of the large number of possible patterns (256), digital markers can be used

whenever a large number of different experimental conditions need to be recorded.

Digital markers are logged with the same timing accuracy as events and occupy 8 bytes

of hard disk space. The digital markers can be selectively filtered in the same way as the

keyboard markers, and may also be processed in the same fashion as event data.

These markers add timed comments (up to 100 characters in length) to the data file.

Channel 30 is reserved for TextMark data. The Sample menu Create text mark

command generates text markers during data capture.

The comment includes user defined marker codes, which can be used to selectively filter

the markers. The amount of disk space occupied depends on the length of the comment.

The text mark is recorded visually in the data file as a small document icon. You can

view and edit the comment by double-clicking the icon. The time cannot be edited.

WaveMark data is discussed elsewhere. This is a special data type that is the result of

discriminating action potentials from a raw waveform. The data consists of short

waveforms, each describing the shape of the action potential. Each WaveMark is

accompanied with a code number that is assigned according to the shape of the unit. The

data can be treated as event and waveform data for analysis purposes.

Sampling marker data

Keyboard markers

Digital markers

Text markers

A special case:
WaveMark data

Sampling data Spike2 training manual

26

Further tools exist for optimising your data sampling configuration. These can be divided

into three categories:

 Display tools

 Measurement tools

 Processing tools

The display tools are available from the View menu in Spike2. You can also activate

some by double-clicking on the data window with the mouse. Many controls have short-

cut key equivalents (these are listed in the View menu). Commonly used controls are

available from the system toolbar.

You can zoom in on an area of interest in the data, result or XY (not version 2) view with

the mouse. Click and drag a rectangle around the area you wish to see in more detail, and

the rectangle will expand to fill the available space.

The x axis can be doubled or halved in length by clicking the zoom-in and zoom-out

icons in the bottom left corner of a data or result window.

Double-click the x axis or y axis to open a dialog that sets the axis range. You can set the

start and end of the axis range. For the x axis you can also set the width.

The scrollbar at the bottom of a window indicates the current display position with

respect to all of the data in the file (or result). In a raw data file, if the scroll-bar is right-

most, the incoming data will cause the data in the window to scroll off the left side. The

scroll-bar can be moved to any position to access any portion of the data file recorded so

far (the scroll-bar will then move as incoming data affects the relative position of the

currently viewed data).

In version 4 there are additional mouse controls. Click and drag axis ticks to scroll an

axis, click and drag the axis numbers to scale the axis. If you hold down Ctrl, the

display updates during the drag. If you click in the data area with Shift down, you can

change the size of the channel areas. You can also change the channel order by clicking

and dragging the channel numbers. See the version 4 documentation for details.

The Spike2 toolbar includes short-cut buttons for commonly used functions. The status

bar provides information about current activity in Spike2. Both of these bars can be

hidden to optimise space for viewing data.

The following commands are located in the View menu and you will find that you use

them frequently. Because of their frequency use, most of them have short-cut keys and

are duplicated on the Spike2 tool bar.

Channels can be turned on or off, and a grid can be superimposed on the data.

This option returns the window to a standard state. For a raw data window, all channels

are displayed in their default state, with x and y axes visible and the grid off. In a result

view, the data is drawn in a standard mode with both axes visible.

This option is available if the current window is a result. The data can be drawn as a

histogram, line, dots, or skyline.

The Font, Use colour, Use black and white and Change colours options are used to

set the text font and to control the colours used in Spike2 for drawing different objects.

Additional data
sampling tools

Display tools

Mouse control

Toolbar, Status bar

Commonly used View
menu commands

View...Show/hide channel

Standard display

Result draw mode

Font and colour options

 Spike2 training manual Sampling data

27

Measurements are taken from time and result views with cursors. You can add up to 9 (4

before version 4) cursors with the Cursor menu New cursor command, or by clicking

the cursor icon in the bottom left corner of a time or result window. Cursors can be

labelled in different ways using the Cursor menu Label mode option: number, position

and position and number. The Spike2 script supports user-defined labels.

The Cursor menu Display Y values option displays measurements at the cursor position

in a new window. For waveforms, the result is the amplitude of the nearest data point.

For event data, the measurement depends on the channel display mode. The cursor times

and y values can be set relative to any particular cursor by checking the Time zero and Y
zero boxes respectively and selecting the reference cursor to use with a radio button.

Cursor measurements can be made between pairs of cursors with the Cursor menu

Cursor regions command. A new cursor measurements window is created in which one

of three types of measurement can be made between adjacent cursors. These

measurements may be made relative to a zero region defined by checking the Zero region

box and selecting a cursor region with radio button.

 Result view Time view

Mean Sum of bin contents between cursors

divided by the number of bins

Mean value of all waveform samples

or mean event rate

Area The mean value between the cursors

multiplied by the distance between

them

Area under the waveform between

the cursors or number of events

between cursors

Slope The slope of the least squares best fit

line for the bin values between the

cursors

Slope of the least squares best fit line

to the waveform between cursors (no

measurement for event data)

Version 4 introduced active cursors that can seek data features such as peaks, troughs and

threshold crossings. With the new Analysis menu Measurements you can create XY view

graphs from cursor measurements of a range of data in a time window.

You can open the marker filter dialog from the Analysis menu Marker filter command. It

is used to select groups of one or more particular markers from a marker data channel.

To duplicate a channel, select it by clicking the mouse pointer over the channel number,

the use the Analysis menu Duplicate channel command. This useful feature allows you

to display the same data in different ways. For example, you can duplicate an event

channel to create two channels, and then draw one as lines and the other as a mean

frequency. This also allows you to duplicate a marker channel and perform different

filters on any number of multiple channels.

The Window menu Duplicate window command creates a copy of the current time

view. This is useful for creating multiple views of the same data with varying time bases.

The sampling configuration dialog has additional fields that give you further control over

sampling:

Spike2 can be used to sample data continuously, in timed epochs (e.g. sample for 1

minute every 5 minutes), or in response to a trigger event (sample for a given time after

the trigger event). The trigger event may occur on an event or marker channel that has

been described in the channel list.

The maximum file size and maximum sample period are set in the sampling

configuration.

Measurement tools

Processing tools
The marker filter

Duplicating channels

Duplicating windows

Additional sampling
parameters

Sampling mode

File size and time limit

 The graphical output sequence editor

28

While sampling data, Spike2 can generate precisely timed digital pulses and analogue

voltages, monitor your experiment, and respond to input data in real time. This is

achieved with the Spike2 output sequencer, which executes a list of sequencer

instructions at a constant, user-defined rate. The sequencer can generate pulses, ramps

and cosine wave outputs, trigger waveform replay, test digital inputs or recently sampled

values and generate delays, as well as other more complex effects.

Before Spike2 version 4.04, output sequences were generated with a text editor where

each line of text generated one instruction. Many users found this difficult to learn to use,

so CED have supplemented this with a graphical sequence editor where output actions

are represented by graphical items that can be selected, dragged and edited.

 Graphical sequence Text sequence

Edited with Built-in graphical editor Built-in text editor

Visualise output Yes No

Stored In sampling configuration .PLS sequence file

Implemented by Drag and drop editing Machine code like language

Ease of use Very easy to learn and use Takes time to learn

Flexibility Uses pre-set building blocks All features available

Timing Several instructions per item One instruction per text line

If your requirements can be met by the graphical sequence editor, you will find it much

easier to use than the text sequence editor. However, it has limitations and you can write

more complex sequences using all sequencer features by using the text editor. You can

save a graphical sequence as a .PLS file to allow you to view or edit it; but you cannot

convert a .PLS file into a graphical sequence.

To view the graphical editor settings, open the Sampling configuration dialog and select

the Sequencer tab. Then select Use graphical editor from the Output selection drop

down list. The editable fields in this dialog set values that apply to the entire sequence:

The sequencer time resolution sets the time resolution of your sequence (the clock

interval of the sequencer clock), this is also the minimum duration of any pulse. You can

set values in the range 0.01 to 3000 milliseconds. All actions in the sequence occur at

integer multiples of the time you set here, some take more than one interval. The table

below shows the minimum clock intervals, the approximate time per step and the extra

time used for cosine output for each type of 1401, all in microseconds.

Overview

Editor settings

Set time resolution

 Spike2 training manual Graphical sequence editor

29

 Power Micro mk II micro1401 1401plus

Minimum resolution (us) 10 10 50 50

Time used per tick (us) <1 ~1 <8 <10

Cosine penalty/tick (us) <1 ~1 ~4 ~10

The Minimum tick is the shortest interval we allow you to set. The Time used per tick

is how long it takes to process a typical instruction. The Cosine penalty/tick is the extra

time taken per cosine output point. Time used by the sequencer is time that is not

available for sampling, spike sorting or arbitrary waveform output. To make best use of

the capabilities of your 1401 you should set the slowest sequencer step rate that is fast

enough for your purposes. For our purposes the default resolution of 1 millisecond is fine.

Check this box to display and edit time in the graphical editor as milliseconds and not

seconds. This is purely for your convenience; if your sequence sections are all less than a

second you will probably find it more convenient to use milliseconds, which is what we

shall do.

Check the boxes for the dedicated digital outputs that you will use. Only these outputs

will appear in the editor, reducing visual clutter. If you do not require any digital outputs,

clearing all the check boxes will save an instruction at the start of each sequencer section.

Check the boxes for the Digital to Analogue Converters (voltage output devices) that you

will use in your sequence. Unused DACs are not included in the graphical editor (to

reduce visual clutter) and are no sequence code is generated for them, which saves

instructions at the start of each sequence section. We will use DACs 0 and 1 only.

You can define the DAC outputs in units of your choice. 1401 DACs normally have a

range of ±5 Volts, but ±10 Volts systems exist. Set the full-scale value to the value in the

units that you want to use that corresponds to the maximum output from the DAC. Set the

zero value to the value in your units that corresponds to a DAC output of 0 Volts. Set the

units to the units you want to use.

The DAC pulses take their starting level as the current DAC value at the pulse start time.

The DAC then changes to another value, then back to the original level. Normally you

define pulses in terms of the pulse amplitude relative to the starting level and all pulses

add. If you check this box, then you set the absolute level for the DAC to change to.

Click the Graphical editor button to open the editor. The graphical editor display is

shown below. It has controls at the top for selecting pulses and sections, a display area in

the middle where outputs and actions are shown, and more controls at the bottom. We

will demonstrate the basic capabilities of the graphical editor by generating outputs

suitable for an imaginary paired-pulse experiment.

The display area always contains a control track drawn as a thick blue line at the bottom.

We chose output on DACs 0 and 1 only, so there are also two DAC output traces filling

the remainder of the space. If you stretch the dialog by dragging the bottom-right corner,

this area gets bigger so you can see the traces better, you can also zoom a trace to fill the

area by double-clicking it. There is always one item selected in this area; the selected

item has a grey rectangle around it. Click on the control track now.

Show time as milliseconds

Select used digital outputs

Select used DACs

DAC full-scale, zero and units

Absolute pulse levels

Graphical editor and
paired pulses

Initial display

Graphical sequence editor Spike2 training manual

30

The central area below the display shows the parameters for the selected item, selecting

the whole control track gives the parameters for the output section as a whole (the outputs

are handled as one or more sections – we will look at sections later). We set the section

length to 1000 milliseconds, and set the repeat count to zero, meaning repeat forever.

The next task is to create the pulse outputs on the DACs, we want one pulse on each

DAC, each 20 milliseconds long, with a 100 millisecond delay from the first to the

second. The area at the bottom left of the editor is a palette holding icons for the available

pulses and actions; you can add an item by dragging it to the required trace. We just want

a simple pulse, which is the item at the top left of the palette (), so we drag one onto

the DAC 1 trace. While we are dragging it along the trace a numerical display shows

approximately where we are, but we can edit the position later to get it exactly right.

Once the pulse is dropped into position it appears, already selected, in the DAC trace and

we can edit the pulse parameters, setting the correct pulse length and amplitude. While

we are doing this, experiment with the < and > buttons at the top left, which toggle the

selection forwards and backwards through the items available for that output. Usually it’s

easier to click on an item directly but if it is very small, or there are two items very close

together, this can be difficult and these buttons can be very useful.

We can also click on the rest of the DAC trace to view and edit the initial DAC level, but

we don’t need to change this. Once the DAC 1 pulse is done we can add a second pulse,

this time to DAC 0, and set it up as required. And that’s all; if we run the sampling

configuration we can see the result. Note that the sequencer control panel appears, with

this sequence it doesn’t do much but you can see the sequencer step change as it

executes. This sampling configuration is saved on disk as PAIRED1.S2C.

Display after adding 2 pulses

 Spike2 training manual Graphical sequence editor

31

We can demonstrate a few more features of the graphical editor by making our outputs

more complex. Let us start by varying the amplitude of the second pulse, the one on DAC

0. First delete the current pulse by selecting it and pressing the Del button at the top, then

drag a varying amplitude pulse from the palette () to replace it. It’s basically the same

as the simple pulse, with an extra parameter to specify the change in the amplitude each

time it is used.

That’s all very well, but with continuous incrementing, we will get a range of pulse

amplitudes running all the way from –4 volts to +4 volts then wrapping round to –5 and

continuing on. Let’s say we only want pulse amplitudes from –4 to –1 Volts, so we need

to restart the initial section after four cycles to reset the pulse amplitude. We do this by

adjusting the way the section repeats, as the pulse amplitude is reset to the initial value

whenever the section restarts. So we select the control track and set the section to repeat 4

times and then switch to itself again. When we run that we get the correct outputs.

We can also modify the inter-pulse delay. Currently there is a fixed 100 millisecond

delay, we can change this to a random delay of between 100 and 1100 milliseconds – this

may be rather large for research purposes but it makes it easy to see what is going on.

The items in the bottom row of the palette are all control items, the one on the bottom left

() is a wait. Drag a wait item into the control track (it won’t go anywhere else) between

the two pulses, when you drop it, it appears as a blue marker, with a selector for the type

of wait among the parameters. As you can see, many types of delay and wait are

available, we will select Random, and set the range to 0 to 100 milliseconds. As you see,

we cannot quite reach zero, if we need precise timings we should move the second pulse

forwards by one millisecond. This one is on disk too (PAIRED2.S2C).

We could use a number of other types of wait to achieve different effects, for example a

Poisson delay, to wait for a specified number of events, to be logged or to wait for a

waveform value on a channel to cross a specified limit limits.

If you leave the graphical editor and use the Write as text sequence option you can

save the sequence used as a .PLS file and open it in the pulse sequence editor to

examine the generated sequence. Dissecting the operation of a generated script is a good

way to learn about the sequencer, or you can edit the sequence text directly to customise

its behaviour.

Varying amplitude pulses

Wait items

Graphical sequence editor Spike2 training manual

32

We will now examine some more graphical editor facilities by using them to generate

another set of outputs, this one generating pulse trains of varying frequency on DAC 0.

We want 10, 20, 50 and 100 Hz pulse trains, each 800 milliseconds long. We could do

this by placing the pulse train outputs one after another into our initial outputs section,

but we get much more flexibility if we use a different section for each frequency.

There are 27 sections in the graphical editor, called Initial and Key A through Key Z. The

Current section selector at the top sets the section to display and edit. The Initial section

runs when the sequence starts; in many cases (such as our paired pulses) this may be the

only section you need. The remaining sections can be used as required, we can set each

section to a different length and give them different contents, and link them together in

many ways to give the effects we require.

Clean up the editor using the Clear graphical editor button and get rid of DAC 1 from

the outputs and then go into the editor. We will not have any initial outputs, so we leave

the initial section alone for now and switch to section A. We set this to be 1000

milliseconds long, to run once and then halt, and then use the pulse train item from the

palette () to generate our pulses.

We also want to associate a keyboard character with the section using the Key parameter.

If you select the control track, you can see the key for the section. By default, the Key A

to Key Z sections are assigned keys A to Z respectively and the Initial key is blank.

However, you can set the key to any of A-Z, a-z or 0-9 (upper and lower case are

different). The default value of A is fine for our purposes.

Graphical editor
Pulse trains

Sections

 Spike2 training manual Graphical sequence editor

33

Then set up sections B, C and D with similar pulse trains. The configuration is on disk as

TRAIN1.S2C so you don’t have to watch me set everything up. If we run it the sequencer

control panel appears with the relevant keys on buttons. We can switch to a given section

by pressing the appropriate button, or by pressing a key on the keyboard (remember we

used capital letters).

Instead of controlling the pulse trains to be output manually, you might want something

automatic. If we set the Initial section to switch to section A when it finishes, A to B, B

to C, C to D and D back to A again, we will get a simple repeating sequence of outputs

after an initial delay (which we can make very short by truncating the initial section).

To get more complex behaviour, we can use branch control items within the initial

section to select the pulse trains. The branch control item () switches execution of the

sequencer to another section (or to a label in this section). It is the second item on the

bottom row of the palette, once again there are many possible branch operations.

We will set up a random selection between A, B, C and D, with each frequency having

equal probability of use. We do this with four branches to A, B, C and D one after

another, having probabilities of 25, 33.33, 50 and 100 percent respectively. The first 3 are

Probability branches, while the last one is simply unconditional. You can see that this

gives an even spread of probabilities for the outputs. This is another one that I have done

on disk (TRAIN2.S2C).

We also have to do two more things to get this working nicely. Firstly each of the other

sections must be set to branch back to the initial section when it is done, which is very

easy.

Secondly, you can see from the different times at which the four branches occur that the

timing of this sequence will not be perfectly regular. I have shortened the initial section to

keep the overall variation small, but I cannot remove it entirely. This is unavoidable – the

sequencer can only do one thing at a time - but it might make analysis rather difficult. It

would also be helpful if we could tell which pulse train was being generated, as we will

loose the keyboard markers. We handle this by adding a control item to generate a digital

marker () at the start of sections A to D and adding a digital marker channel to the

sampling configuration to receive the markers.

Switching and branching

Graphical sequence editor Spike2 training manual

34

To finish, we shall replace the pulse train generated in section D with a bit of arbitrary

waveform. Waveforms for output by Spike2 during sampling are stored in the Play

waveform section of the sampling configuration; they are set up by the Output
waveform command from the Sample menu and are manually triggered using a

specified keyboard character.

The graphical sequence editor can also generate the trigger to start waveform output. Go

to section D in our outputs, select the pulse train and delete it. Then drag a waveform

trigger item () to the control track at the same position. Note that this goes on the

control track, not a DAC, as this is a trigger for output to DACs that are specified in the

Play waveform page. The key code for the waveform trigger item has to be set to the

code for the relevant waveform. I have put a slice of cricket song into this sampling

configuration, and given it S as a trigger code. You can also set the length of the

waveform; if we try to set 800 milliseconds the length is truncated to the length of output

available.

You can however set the length to values shorter than the entire wave to truncate the

output. Now, when we run the sampling configuration, section 4 generates our waveform

instead of the pulse train. In the same way we could set up different waveforms to be

output by sections A to C and observe the result of (say) four different songs on the

auditory system of an insect.

If digital pulses overlap, the result is the logical OR of the pulses.

If DAC items overlap on the same channel, the output depends on the state of the Pulse
levels rather than pulse amplitudes checkbox in the Graphical editor settings. If this

box is clear, the result is the sum of the outputs. If this box is checked, the last item in the

overlapped area sets the output level. There is an exception; arbitrary waveform output

overrides all other items.

When adding single pulses and pulse trains where the result would exceed the range of

the DAC, the output is limited to the DAC range. However, pulses with an amplitude

change on repeats can exceed the DAC range and wrap around. A value that goes off the

top of the range will reappear at the bottom; a value that goes off the bottom of the range

will reappear at the top.

If items on different channels overlap or get close to the start or end of a section in such a

way that the correct timing cannot be maintained, the timing error is indicated with red

marks below the control track.

Arbitrary waveforms

Overlapping items

 Spike2 training manual Graphical sequence editor

35

This item can be used with any DAC output. The From and To fields set the initial and

final amplitudes or levels of the ramp depending on the state of the Pulse levels rather
than pulse amplitudes checkbox in the Graphical editor settings.

In the current implementation, no other activity is allowed while a ramp is generated

except a sinusoid. You will find that any item that starts within the time range of a ramp

will cause a timing error to be flagged and the item start will be delayed until after the

ramp when you run the sequence. This may be changed in a future release.

From Spike2 version 5, sinusoids can be generated on up to four DACs in the

Power1401. The remaining 1401s except the 1401plus allow sinusoids on DACs 0 and 1.

The 1401plus supports DACs 2 and 3. In previous versions, you can only use 2 DACs.

The sinusoid amplitude is defined by the Size (units) field; this is not affected by the

Pulse levels rather than pulse amplitudes checkbox. You can offset the sinusoid with

the Centre (units) field. If the Pulse levels rather than pulse amplitudes checkbox is

clear, the sinusoid and offset is added to the DAC value. If the checkbox is clear, the

DAC output is defined by the sinusoid and offset.

The Period field sets the time for one cycle of the sinusoid in seconds or in milliseconds.

The Start phase field sets the initial phase in degrees. The output is a cosine, so a phase

of 0 means start at maximum amplitude. A phase of –90 or 270 produces a sine output.

The full details of the graphical editor and the available items are given in the Spike2

manual and the online help, which should be consulted if you need definitive

information.

Ramps

Sinusoid output

 Sampling, control and the output sequencer

36

In addition to sampling data, Spike2 is also capable of outputting waveforms and digital

signals and controlling other equipment. Output options include:

1. Spike matches template signal on digital o/p bits 0-7 (dealt with in other sessions)

2. DIGOUT sequencer command sets digital o/p bits 8-15

3. DIGLOW sequencer command sets digital o/p bits 0-7 (micro1401 and Power1401)

1. DACn and ADDACn sequencer commands set DACs to a value

2. Sinusoidal output from the sequencer (not standard 1401)

3. Ramp output from the sequencer (version 5 only, not standard 1401 or 1401plus)

4. Arbitrary waveform output (not standard 1401)

1. Sound card output of .WAV files using the Sound() script command

2. Serial line output using the SerialXXX() family of script commands.

3. Text and binary files written for other programs to read.

4. Screen images (for example generated with XY views)

The output sequencer generates accurately timed digital pulses and analogue outputs such

as pulses of varying amplitude, ramps and sinusoids. It can also respond to external

digital and analogue signals and randomise events.

 It controls 8 output bits (bits 8-15 on the digital output connector). Power1401 and

micro1401 users can also set the lower 8 bits (0-7) with the DIGLOW command.

 The sequencer controls the DAC outputs (2 on the micro1401, 4 on other 1401s).

 The sequencer can cause data to be recorded to channel 32 (digital marker channel).

 The sequencer can control arbitrary waveform output.

 The sequencer starts running when sampling starts and is not affected by pauses in

sampling or by triggered sampling mode (so the sequencer can trigger sampling).

An output sequence is a list of simple instructions that are run at a fixed rate set by the

output sequencer clock. This clock can run at up to 20,000 ticks per second with the

micro1401 and 1401plus and up to 100,000 with Power1401. The rate is set by the SET

command, which sets the interval between clock ticks in milliseconds. The sequencer

executes one instruction per clock tick.

The basic instructions do things like “set digital output bit 0 to 1”, “wait 10 clock ticks”

and “set DAC 0 output to 2 Volts”. The following (A.pls) illustrates the general idea. A

semicolon introduces a comment:

 SET 100 ;100 milliseconds per tick

 DIGOUT [.......1] ;set lowest bit high

 DELAY 8 ;wait 8+1 clock ticks

 DIGOUT [.......0] ;set the bit low again

 DAC0 2.00 ;set DAC 0

 DELAY 8 ;wait another 8+1 clock ticks

 DAC0 0.00 ;tidy up the DAC

The only non-obvious command here is DIGOUT. Each digital output bit is represented by

one character. A dot means make no change, a 1 or a 0 sets the output state high or low.

You can also use the letter i meaning invert the current state. You can find the exact

syntax of all the output sequencer commands in the manual and in the on-line help.

Before version 4, this sequence repeats after a delay of some 27 seconds. The output

sequencer was 256 instructions long and was circular; if you ran off the end, you restarted

at the beginning. Version 4 allows up to 1023 instructions and is not circular, version 7

allows up to 8191 instructions. Version 4 onwards automatically adds a HALT at the end.

 HALT ;stop the sequencer running

Output sequencer

Digital outputs

DAC outputs

Other outputs

The text output
sequencer

How does it work

 Spike2 training manual Sampling, control and the output sequencer

37

Now suppose we want to repeat this action. We can link our sequence to a keypress, or to

a mouse click. Change the first instruction to:

 'A DIGOUT [.......1] ;set lowest bit high

and run again. You sill see that the sequencer window now holds the text "A set

lowest bit high" and if you run and the click on this line, the sequencer starts again

from the label.

We now know enough to attempt something more useful. Lets ask for a 1 millisecond

start pulse on one output followed by a 2 second delay, then two 1 millisecond pulses on

a second output with a 20 millisecond gap between the pulse starts. To implement this we

can see that the shortest interval we need is 1 millisecond, so we will set out clock

running at this rate. A possible sequence (B.pls) is:

Bit 0

Bit 1 2000 ms

1 ms 1 ms 1 ms

19
ms

 SET 1.00 ;run at 1 millisecond

 'X DIGOUT [......00] ;Make sure both outputs low

 HALT ;and stop >Waiting for user!

 'G DIGOUT [.......1] ;Start sequence >Running

 DIGOUT [.......0] ;end pulse >Running

 DELAY 1997 ;allow for steps used >Running

 DIGOUT [......1.] ;pulse bit 1 >Running

 DIGOUT [......0.] ;back low >Running

 DELAY 17 ;wait >Running

 DIGOUT [......1.] ;pulse bit 1 >Running

 DIGOUT [......0.] ;back low >Running

 HALT ;done >Waiting for user

We have added more text to the lines after a >. When you run this sequence the extra text

appears as a comment on the current step, and can be used to prompt the operator.

The previous solution would not have been so great if we had needed 20 pulses after the

delay in place of the 2. Writing the code out 20 times would not have been much fun.

Fortunately, there are ways to get around this (C.pls). There are four loop counters you

can use for this job, numbered 1 to 4. We will use counter 1. We also need to label the

place we want to branch to, so we need to supply a label (indicated by a colon).

 SET 1.00 1 0 ;run at 1 millisecond

 'X DIGOUT [......00] ;Make sure both outputs low

 HALT ;and stop >Waiting for user!

 'G DIGOUT [.......1] ;Start sequence >Running

 DIGOUT [.......0] ;end pulse >Running

 DELAY 1996 ;allow for steps used >Running

 LDCNT1 20 ;set times around the loop >Running

LOOP: DIGOUT [......1.] ;pulse bit 1 >Looping

 DIGOUT [......0.] ;back low >Looping

 DELAY 16 ;wait >Looping

 DBNZ1 loop ;loop back >Looping

 HALT ;done >Waiting for user

The LDCNT1 instruction sets the counter value (in this case it is set to 20), and the DBNZ1

instruction (Decrement and Branch if Not Zero) reduces the count by 1 and branches to the

label if the counter has not reached 0. You can run round a loop up to 65535 times in

version 3. From version 4 you can use variables as loop counters (see the DBNZ

instruction in the manual) and loop up to 2147483647 times.

A simple task

Loops

Sampling, control, sequencer Spike2 training manual

38

If you wanted to change the number of times you loop around, the only way to do this

with the instructions we have seen so far is to write the code out again. However, from

version 3 of Spike2 you can use variables for this task. Variables can also be used in

version 2, but there is much less that you can do with them. This sequence (D.pls) is for

versions 3 onwards. The standard 1401 cannot use variables.

 VAR V1,Loops=20 ;set variable 1 to 20, call it Loops

 SET 1.00 1 0 ;run at 1 millisecond

 'X DIGOUT [......00] ;Make sure both outputs low

 HALT ;and stop >Waiting for user!

GO: 'G DIGOUT [.......1] ;Start sequence >Running

 DIGOUT [.......0] ;end pulse >Running

 DELAY 1996 ;allow for steps used >Running

 LDCNT1 Loops ;set times around the loop >Running

LOOP: DIGOUT [......1.] ;pulse bit 1 >Looping

 DIGOUT [......0.] ;back low >Looping

 DELAY 16 ;wait >Looping

 DBNZ1 loop ;loop back >Looping

 HALT ;done >Waiting for user

There are 64 variables from version 4, called V1 to V64 and 16 variables in version 3 (V1

to V16). From version 7, modern 1401s allow 256 variables. You can give them more

meaningful names and initial values with the VAR statement. Incidentally, VAR, like SET,

is an instruction to the sequence compiler and is not counted as one of the steps in the

sequence. Now we can have different numbers of pulses by adding the following lines:

 '1 MOVI Loops,1 ;Single pulse

 JUMP Go ;Start the output

 '2 MOVI Loops,2 ;Dual pulse

 JUMP Go ;Start the output

 '3 MOVI Loops,3 ;Triple pulse

 JUMP Go ;Start the output

Now you can run the sequence with 1, 2 or 3 pulses after the delay. However, you might

want to choose an arbitrary number of pulses while you were sampling data. You can

achieve this with a run-time script. The simplest possible would be something like:

'SeqVar1.s2s – script to set variable 1 to a user defined value.

var count% := 10;

count% := Input("Number of pulses", count%, 1, 100); 'new value

SampleSeqVar(1, count%); ' Set the sequencer variable number 1

SampleKey("G"); ' Make it run now

You can make much fancier scripts using toolbars and control all aspects of sampling too,

but this shows the general idea.

It is often necessary to produce stimuli in pseudo-random order or after pseudo-random

delays. The sequencer has a few instructions to help you achieve this:

LD1RAN (MOVRND is preferred in modern systems) sets counter 1 to a random number in

the range 1 to 256. BRAND label,prob branches to a particular label with a given

probability. For example, BRAND Go,0.5 will branch to label Go with a 50% probability.

You can also branch with a probability based on the value of a variable using the BRANDV

label,variable instruction.

There are various ways to produce delays, depending upon the distribution of delays you

want. For a uniform distribution:

 LD1RAN ;get a random number 1-256

LoopR: DELAY 9 ;scale the delay

 DBNZ1 LoopR ;loop 1 to 256 times

Variables

Random delays and
branches

 Spike2 training manual Sampling, control and the output sequencer

39

Each time round the loop takes 10 clock ticks, so this produces a delay of 1+10*(random

number), so there is a delay of between 1 and 2561 clock ticks, with a uniform

distribution. Use this to replace the DELAY 1997 in the last script.

The following generates a delay with a mean of (130*n+2) clocks, a minimum of (2*n+2)

and a maximum of (258*n+2) clocks. The distribution tends to Normal as n increases.

 LDCNT2 10 ;n=10 in this case

DL: LD1RAN ;load counter 1 1-256

DM: DBNZ1 DM ;count out delay, mean is 128

 DBNZ2 DL ;count out counter 2

The following generates a delay with a Poisson distribution:

DL: DELAY 9 ;scale the delay

 BRAND DL,0.99

Beware that BRAND can only produce a probability to an accuracy of one part in 256,

however, BRANDV is much more accurate.

You can test the state of 8 digital input bits from the sequencer. These are the digital bits

that are labelled 0-7 on the digital input connector. These are the digital bits that can be

programmed to be inputs or outputs in the standard 1401 and 1401plus (and which are

programmed as inputs in Spike2 unless the spike shape code is set to use them as

outputs). The Micro1401 has separate input and output bits, so these inputs are always

available.

The current input state is tested with the DIGIN [pattern] instruction or WAIT

[pattern]. The pattern is 8 characters being 0, 1, c or a . (dot). The input is read and

each bit is compared with the value in the pattern. If the pattern is a 0 or 1, the result for

that bit is 0 if the pattern matches the bit and 1 if it doesn't. If the pattern is a dot, the

result for the bit is 0 (this means that dot means we don't care what state this bit is in). If

the pattern is a c, the result is a copy of the input bit. The output sequencer remembers

the result of the last DIGIN and you can branch based on the result being zero or non-zero

using the BZERO label and BNZERO label instructions.

WAIT holds the sequence at this instruction until the input matches the pattern.

; BRAND.PLS randomly chooses one of three possibilities. This implements

; an experiment where the subject is shown one of two LEDs or both LEDs.

; If one LED shows, the subject must press a key, if both the subject must

; NOT press a key. Digout bits 7 and 6 control LEDs, data ports 7

; and 6 (the digital input bits 15 and 14), and dig in bits 7 and 6 (the

; bits tested by WAIT and DIGIN)

 SET 1.00 1 0 ;run at 1 ms

TEST: 'G WAIT [11......] ;Start >unpress!

 DIGOUT [00......] ;LEDs off >Waiting..

 DELAY 1000 ;Start >Waiting..

 LDCNT1 333 ;set time out >Waiting..

AA: BRAND aa,0.9922 ;rand wait >Waiting..

 BRAND bit7,0.3320 ;button A test

 BRAND bit6,0.5000 ;button B test

;

; Come here to test BOTH buttons (NO response)

BOTH: DIGOUT [11......] ;both LEDS on >BOTH

 MARK 3 ;signal test both >BOTH

WAITB: DIGIN [11......] ;must match >BOTH

 BNZERO BFAIL ;fail if no match >BOTH

 DBNZ1 WAITB ;allow 1 second >BOTH

;

; Here for a Pass!

PASS: MARK 0 ;code for pass >PASSED!

 JUMP TEST

;

Testing external
conditions

Sampling, control, sequencer Spike2 training manual

40

; here to fail both test

BFAIL: MARK 131 ;128+3, fail both >FAIL

BFLOOP: DELAY 2 ; >FAIL

 DBNZ1 BFLOOP ;keep same timing >FAIL

 JUMP TEST

;

; Test bit 7 only

BIT7: DIGOUT [10......] ;LED on >A

 MARK 2 ;flag bit 7 test >A

BIT7L: DIGIN [11......] ;see if anything >A

 BNZERO BIT7TRY ; >A

 DBNZ1 BIT7L ; >A

NORESP: MARK 128 ;No response error >FAIL

 JUMP TEST

BIT7TRY: DIGIN [01......]

 BZERO PASS

 JUMP BFAIL

;

; Test bit 6 only

BIT6: DIGOUT [01......] ;LED on >B

 MARK 1 ;flag bit 6 test >B

BIT6L: DIGIN [11......] ;see if any change >B

 BNZERO BIT6TRY ; >B

 DBNZ1 BIT6L ; >B

 JUMP NORESP

BIT6TRY: DIGIN [10......] ;see if correct

 BZERO PASS

 JUMP BFAIL

The script uses the Poisson distribution method to generate a random delay. The number

0.992 comes about because we can only accurately generate probabilities which can be

represented as an integer divided by 256, in this case 254/256.

The stimulus is chosen by branching with a probability of 1/3 to the button A test (0.332

is as close as we can get to 0.333, being 85/256). In case you are wondering, I didn't have

to work this out myself, I just typed in 0.333 and the asked the sequencer to tidy itself up

and it works out the values that are really going to be used.

The next step is a branch with a probability of a half to button B or to the both buttons.

The end result is that the chance of getting to any of the three tests is 1 in 3 (or as close to

this as makes no difference). The code for each of the three tests is similar, here is the

code to test for both lights on:

; Come here to test BOTH buttons (NO response)

BOTH: DIGOUT [11......] ;both LEDS on >BOTH

 MARK 3 ;signal both >BOTH

WAITB: DIGIN [11......] ;must match >BOTH

 BNZERO BFAIL ;fail if no match >BOTH

 DBNZ1 WAITB ;allow 1 second >BOTH

;

; Here for a Pass!

PASS: MARK 0 ;code for pass >PASSED!

 JUMP TEST

;

; here to fail both test

BFAIL: MARK 131 ;128+3, fail both >FAIL

BFLOOP: DELAY 2 ; >FAIL

 DBNZ1 BFLOOP ;keep timing the same >FAIL

 JUMP TEST

We start by turning both lights on and we use the MARK instruction to record the fact. To

use this instruction usefully you must have enabled the digital marker channel (channel

32) in the sampling configuration. The instruction simulates a digital marker and gives it

a code in the range 0 to 255. In this test we use code1 for a button A test, code 2 for a

button B and code 3 for both.

We now start testing the inputs and we will fail the user if they press either button.

Counter 1 has already been loaded with the value 333 and there are 3 instructions in the

 Spike2 training manual Sampling, control and the output sequencer

41

test loop, so the user has approximately 1 second to respond in (or in this case, to not

respond in). If the response time was an important part of the test, you could wire the

signals from the buttons to level event channels so that you could measure these times.

If the user passes the test, we store the code 0 in the digital marker channel, if the test

fails we store the code 131. If the user should respond and doesn't, we store the code 128.

This means that bit 7 of the code is set for a failure.

The job of writing the script to analyse the results of the test is left as an exercise for the

student...

If you do not run a script while capturing data, the only way to control the sequencer

actions is to make it jump to a specific location in the sequence. You can track what the

sequence is doing by looking at the sequencer control panel (as long as you have written

suitable messages in your sequence), by connecting outputs from the sequencer to input

data channels and viewing the result, and by using the MARK or REPORT instructions with

the digital marker channel.

If you run a script, there are more ways to control it. You can make it jump to a known

location with SampleKey() which simulates a keypress, and you can also set the values

of sequencer variables with SampleSeqVar() and (from version 3) you can read back

the current value of a sequencer variable using the same command.

A very common requirement is to produce a series of pulses with a given amplitude,

duration and separation. The next example does this and also lets you change the pulse

parameters. The output sequence used is the following (varex.pls):

 SET 1.0 1 0 ;run at 1 millisecond, DACs in Volts

 DAC0 0.0 ;make sure pulse starts from 0

 HALT ;Wait for command >Waiting

PULSE:'G DAC0 0.0 ;Make sure DAC at zero

 LDCNT1 V4 ;number of pulses

L0: DAC0 V2 ;set pulse height >High

 DELAY V3 ;length of pulse-2 >High

 DAC0 0.0 ;remove pulse >Low

 DELAY V1 ;length of gap-3 >Low

 DBNZ1 L0 ;loop round >Low

 HALT ;done >Waiting

This example uses the variables V1 to V4 as follows:

V1 The gap in clock ticks between the end of a pulse and the start of the next. By

looking at the sequence you can see that the gap will be 3 clocks longer than this, so

this variable must be set to the required number of clock ticks minus 3.

V2 The amplitude of the pulse. This is in 1401 DAC units, so it must be scaled. Most

1401s have a ±5 Volt DAC output range. The DACs are set to the value -32768 for -

5 Volts, to the value 0 for 0 Volts, and up to32767 for up to 4.9998 Volts. However,

most 1401s have 12-bit DACs, which means that the maximum useful value is 32752

for 4.9975 Volts. If we have a value in millivolts to output, we must multiply it by

32768/5000 to convert it into DAC units, which is 6.5536.

V3 The length of each pulse in clock ticks. Looking at the code we can see that the pulse

is in fact 2 ticks longer, so we must set the variable to a value 2 ticks less.

V4 The number of pulses.

This example does not use variable names or initial values (added at version 3), so it will

run with any version of Spike2. However, we must use a script to set the variable values:

Communicating with
the sequencer

Voltage pulses

Sampling, control, sequencer Spike2 training manual

42

'varex.s2s

var vh%; 'will hold the sampling view

var pulAmp:=2000.0; 'pulse amplitude (mV)

var pulWid%:=20; 'pulse width in (ms)

var pulInt%:=100; 'gap between pulses (ms)

var pulNum%:=5; 'number of pulses

ToolbarClear(); 'Remove any old buttons

ToolbarSet(1, "Quit", OnQuit%);

ToolbarSet(2, "Settings", OnSettings%);

ToolbarSet(3, "Output", OnOutput%);

Labels(0); 'set labels for not sampling

Toolbar("Sequence variables demonstration", 231);

halt;

Func OnQuit%() 'User wants to exit

if SampleStatus()>=0 then SampleStop() endif;

return 0; 'Cancel the toolbar

end;

Func OnSettings%() 'Change pulse settings

DlgCreate("Pulse settings"); 'Start new dialog

DlgReal(1,"Amplitude (mV)",-5000.0,4997.5);

DlgInteger(2,"Width (ms)",3,1000);

DlgInteger(3,"Separation (ms)",3,10000);

DlgInteger(4,"Pulse count",1,100);

if DlgShow(pulAmp,pulWid%,pulInt%,pulNum%) then SetVars() endif;

'update if changed

return 1; 'This leaves toolbar active

end;

Func OnOutput%() 'trigger sequence

SampleKey("G"); 'Letter G starts pulse

return 1; 'Leave toolbar active

end;

Func OnStop%()

SampleStop(); 'stop sampling

CloseView(); 'Close view

Labels(0); 'prepare for not sampling

return 1; 'Leave toolbar active

end;

Func OnSample%()'Start to sample...

SampleClear(); 'default settings, no channels

SampleWaveform(1,0,1000); '1000 Hz on ADC chan 0

SampleSequencer("varex.pls"); 'select sequencer

vh% := FileNew(0,3); 'Open with user config

if (vh%>0) then 'if ok

 if SampleStart()>=0 then

 SetVars();'set variables

 Labels(1);'prepare labels for sampling

 else CloseView();'There was a problem...

 endif;

endif;

return 1; 'Leave toolbar active

end;

Proc Labels(Sampling%)

if Sampling% then

 ToolbarSet(4,"Stop", OnStop%)

else

 ToolbarSet(4,"Sample",OnSample%)

endif;

ToolbarEnable(3, Sampling%);

end;

 Spike2 training manual Sampling, control and the output sequencer

43

Proc SetVars() 'Update variables

if SampleStatus() >= 0 then 'if sampling...

 SampleSeqVar(1,pulInt%-3); 'set interval

 SampleSeqVar(2,pulAmp*6.5536);

 SampleSeqVar(3,pulWid%-2); 'length

 SampleSeqVar(4,pulNum%); 'count

endif;

end;

Proc CloseView()

if vh%>0 then View(vh%); FileClose(); vh% := 0 endif;

end;

The exact details of the script are not important, but Proc SetVars() is where the

variables are set in the sequencer. If you use variables, it is important to give them values

before running the output sequence. If you do not have version 3 or 4 of Spike2 where

you can use the VAR statement to initialise the variables, you must arrange for a script to

do it, otherwise all variables will start with the value 0, which is usually not very useful.

The output sequencer can also handle up to two channels of sinusoidal output. In this

case, you do not specify the output for each clock tick. Instead, you specify the rate at

which the output is to run and the amplitude and phase of the sinusoid.

You set the speed of the output by setting the angle increment in degrees per clock tick.

The outputs are from DACs 3 and 2 for the standard 1401 and 1401plus and from DACs

1 and 0 for the micro1401 and Power1401. The simplest way to start output is:

 CSZ 1.0 ;set amplitude, 1=maximum 0=minimum

 CRATE .6 ;set the degrees per tick

To stop the sinusoidal output set the rate to 0. You can also set the phase angle with

CANGLE. The output is the cosine of the angle, so an angle of 0 produces the maximum

output, 90 produces 0 and so on. If you want to make an output that starts at zero and

increases, set the phase angle to 270 to start with. The following example (freq.pls)

shows how you can produce several frequencies.

 SET 1.00 1 0 ;1 kHz

 'h CSZ 1.0 ;Halt sequence >Wait for input

 CRATE 0 ;Stop sinewave >Wait for input

 CANGLE 270 ;Start 0 amplitude >Wait for input

START: JUMP START ;hang about >Wait for input

 '1 CRATE 3.6 ;Stimulate 10 Hz

WAIT1: JUMP WAIT1 ; >10 Hz output

 '2 CRATE 7.2 ;Stimulate 20 Hz

WAIT2: JUMP WAIT2

 '3 CRATE 10.8 ;Stimulate 30 Hz

WAIT3: JUMP WAIT3 ; > 30 Hz output

 '4 CRATE 14.4 ;Stimulate 40 Hz

WAIT4: JUMP WAIT4 ; > 40 Hz output

 'r CRATE 0 ;Ramp the dac

 DAC1 -5

WAIT5: ADDAC1 .1 ; >Ramping

 JUMP WAIT5 ; >Ramping

This example also shows you how to generate a ramp from a DAC. This uses a new

instruction ADDACn that adds an increment to DACn.

The second channel of sinusoidal output is enabled with a similar set of commands, but

they have the initial letter D in place of the C. It is possible to run the sequencer at rates up

to 10,000 ticks per second, so it is possible to make useful audio tones up to two or three

kHz with this, but you must filter the output to remove the 10 kHz steps.

Sinusoidal output

Sampling, control, sequencer Spike2 training manual

44

You will notice that some of the examples have additional numbers after the time setting

in the SET command. The full syntax of the command is:

SET ms, DACscale, DACoffset

ms is the milliseconds per clock tick. It is in the range 0.01 to 3000 in steps of 0.001 for

the Power1401 and Micro1401 mk 2, 0.05 to 3000 in steps of 0.01 for other 1401s.

The DACscale and DACoffset fields are used to convert from Volts (assuming the 1401

is set as a ±5 Volt system) into units of your choice. Your units are defined as:

Units = Volts * DACscale + DACoffset

The normal values are 1.0 for DACscale and 0.0 for DACoffset. To enter DAC values

in mV you would set DACscale to 1000.

The most recent addition to the arsenal of output options is arbitrary waveform output.

You can define up to 10 areas of 1401 memory to hold waveforms that are played

through the 1401 DACs. Each area has its own list of DAC channels, sample rate and

cycle count (number of repeats). You can also change the replay rate of each area.

Compatible areas can be linked so that when one area finishes output, the area it is linked

to starts to play with no gap. To be compatible, areas must have the same list of DAC

channels. They need not have the same replay rate, but if they do not, when an area that is

linked to plays, it runs at the output rate of the previous area.

Areas can be replayed from a toolbar or from an on-line script or from the output

sequencer. Some dynamic variation of areas is possible during replay using the script

language and the output sequencer:

1. A script can change the replay rate of an area while it plays. The rate change can be

either immediate or delayed until the current area completes the current cycle.

2. A script can update the replay data during output, allowing you to replay waveforms

too large for 1401 memory or generate waveforms that relate to sampled data.

3. The way that areas are linked together can be changed while areas are replaying.

4. It is possible to replay an area at a precisely controlled time from the output sequencer

so as to synchronise the waveform output with other stimuli.

5. The output sequencer can make an area that is playing multiple times do one more

cycle then stop or continue with the next linked area if there is one.

The simplest way to generate an arbitrary waveform is to open a spike2 data file

containing waveform data, select a region to play, then add this to the on-line play list.

You can add waves as either a reference to the data file or convert the reference into the

binary data that is played. The list of waveforms for output is held in memory and saved

in the sampling configuration, so it saves memory and disk space if you leave the data as

a reference to the data file. However, when you come to replay the data, this data file

must still be in the same place and must hold the same channels.

There is a limit of 2 MB per area on the size that can be saved. The waveforms are copied

to the 1401 each time you start to sample, so if you have several big waves to copy (and

your 1401 has lots of memory) this can slow down the start of sampling.

You can also generate arbitrary waveforms with the script language PlayWaveAdd()

command which allows you to generate a wave from a data file, or from an array of data,

or which lets you reserve an area of memory in the 1401 that you will fill up with the

PlayWaveCopy() command during sampling. You can also use PlayWaveCopy() to

update areas dynamically during output.

DAC scaling

Arbitrary waveform
output

Creating waveforms for
arbitrary output

 Spike2 training manual Sampling, control and the output sequencer

45

Suppose that we want to replay a blood pressure signal to drive an experiment and we

have a slow heart rate waveform and a faster heart rate waveform. We generate one cycle

of each, either by selection from a data file or by generating them with a script. We also

make sure that the waveforms join together smoothly.

Now if we set each waveform to play a large number of times, and then link them both to

each other, we have a system in which we can swap between two waveforms by using the

output sequencer WAVEST C command to cause the currently playing wave to finish the

current cycle, then swap to the other signal. The configuration file bp.s2c and the

sequencer file bp.pls illustrate this.

Alternatively, we could use the script PlayWaveSpeed() command to change the

effective heart rate by slowing down or speeding up the replay rate.

Three sequencer instructions control arbitrary waveform output: WAVEGO, WAVEST and

WAVEBR.

The WAVEGO instruction starts the output from a play wave area, or arms the output ready

for an external trigger. Because starting output can take more time than we can allocate to

a single step of the sequencer this command sets a flag and the next time the 1401 has

time to start the playing operation (usually within a millisecond), the playing is started. It

is possible to get a precisely timed start by requesting that an area start on a trigger, then

using the WAVEST instruction to trigger the wave. The WAVEGO instruction has the

following format:

WAVEGO code{,flags}

code This is either a single case sensitive character standing for itself, or a two digit

hexadecimal code. This is the code of the area to play.

flags These are optional single character flags. The flags are not case sensitive. If a T

is present, the waveform output is triggered. If a W is present, the sequencer will

loop at this step until background code has set the hardware ready to play. For

example:

 WAVEGO X ;area X, no wait, no trigger

 WAVEGO 23,T ;area coded hexadecimal 23, triggered

 WAVEGO 0,WT ;area 0, wait until trigger armed

 WAVEGO 1,W ;area 1, wait until play started

The WAVEST instruction can start output that is waiting for a trigger and stop output that

is playing, either instantly, or after the current cycle ends.

WAVEST flag

flag This is a single character flag and specifies the action to take:

T Trigger a waveform that is waiting for a triggered start.

S Stop output immediately, no link to the next area.

C Play the current cycle, then end this area. If there is a linked area, it will play.

The following code starts output with an internal trigger and then stops it

 WAVEGO X,TW ;arm area X for trigger

 WAVEST T ;trigger the area

 DELAY 1000 ;wait

 WAVEST S ;stop output now

The WAVEBR instruction tests the state of the waveform output and branches on the result.

No branch occurs if there is no output running or requested.

WAVEBR LB,flag

An example

Arbitrary waveforms and
the sequencer

WAVEGO

WAVEST

WAVEBR

Sampling, control, sequencer Spike2 training manual

46

LB Label to branch to if the condition set by the flag is not met.

flag This is a single character flag and specifies the condition to branch on. The

conditions are:

W branch until a WAVEGO request without the W flag is complete.

C branch until the play wave area or cycle count changes.

A branch until the play wave area changes.

S branch until the current output stops.

T branch until output started with WAVEGO begins to play.

The following sequence tracks the output when we have two play areas labelled 0 and 1.

Area 0 is set to play 10 times and is linked to area 1. The sequence below will track the

changes. You must be aware that the DAC output happens one DAC clock tick after the

output is changed, so the sequence will know that a DAC output is about to change.

 WAVEGO 0,WT ;area 0, wait for armed, trigger start

 LDCNT1 5 ;load counter 1 with 5

WT: WAVEBR WT,T ;wait for external trigger>Trigger?

W5: WAVEBR W5,C ;wait for cycle >Waiting for cycle

 DBNZ1 W5 ;do this 5 times >Waiting for cycle

WA: WAVEBR WA,A ;wait for area >Wait for area

WE: WAVEBR WE,S ;wait for end >Wait for end

The WAVEGO command requests a triggered start and waits until the trigger is armed

before moving on. It then waits for an external trigger at the WT label. Next the sequence

tracks the end of 5 output cycles. At label WA the sequence waits for the area to change

and finally the sequence waits for output to stop. If you need to know when a requested

play has started to produce output, use the WAVEBR T option. If you need to know that the

request to start the playing operation has been honoured, but you do not want to hang up

the sequencer with the W option, use the WAVEBR W option.

If a waveform is playing when you use the WAVEGO command, the output will be

cancelled just before the requested area starts to play. If you want to use a WAVEBR

instruction after the play request, unless you use the WAVEGO or WAVEBR W option to be

certain that the new area is active, the result of the WAVEBR may be based on the previous

area, not the new one.

The output sequencer was rewritten for Spike2 version 4 to make it a little faster by

removing the restrictions imposed by the standard 1401 (version 4 does not support the

standard 1401). All previous sequences should run in version 4. The main changes are:

 Sequences can be up to 1023 steps long, 64 variables and used in more instructions

 New, more efficient instructions replace DIGIN, BZERO and BNZERO

 Restrictions on number sizes removed, e.g. DELAY 1000000 allowed

 Expressions and utility functions converts seconds to steps and Hz to angle increments

 The phase of the sinusoidal output can be changed and the output can be offset

 Extensions to the maths functions, many instructions have optional branch

Further features were added in version 5:

 Indexed table of values holds long sequences of numbers

 Power1401 supports 4 sinusoids

 Automatic ramping of DACs (not 1401plus)

 Sequencer now supports division with new DIV and RECIP commands.

Many new features were added, include files, longer sequences, more variables, dynamic

loading of sequences and much more. See the version 7 release notes for all the changes.

Versions 4 - 7

Version 5

Version 7

 Spike shapes

47

Spike2 captures spikes as short waveform sections detected by threshold crossing. The

1401 can detect and sort incoming spikes in real time giving the host computer more time

to display and analyse data. Instead of identifying spikes based on amplitude alone, we

capture the time of the spike plus a number of accompanying waveform data points that

describe its shape. You can capture up to 32 spike shape channels with a Power1401, up

to 16 with a micro1401 mk II and up to 8 with the original micro1401 or a 1401plus.

Spike shape capture is not supported by the standard 1401.

Channel holding this type of data are called WaveMark channels. Once WaveMark data

has been captured it can be re-sorted automatically or manually off-line. A whole chapter

of the Spike2 manual is devoted to the details of WaveMark data capture and analysis.

From version 5, you can use clustering techniques to separate spikes. The images in this

section are taken from Spike2 version 4.

Spike data usually needs sampling at rates of 20 kHz or more in order to get reasonable

resolution of the spike shape. If computer systems could handle gigabyte sized files as

easily as kilobyte sized files, the best approach would be to keep all the data. However,

each channel of this data would use up around 2.5 MB of disk space a minute, and as files

get larger, it takes longer to process them.

When you use WaveMark data, you set trigger levels, and capture short sections of

waveform around the points where the data crosses the trigger. The disadvantage of this

method is that you will not be able to go back and look at events that were smaller than

the trigger. However, the advantage is that with normal unit firing rates, the resulting files

can be 20 to 100 times smaller and you can code each event to aid analysis.

WaveMark data is not as space efficient as using a window discriminator to convert data

into TTL pulses and recording this in an event channel. For example, if you stored 32

data points per spike, WaveMark data uses 18 times as much disk storage per spike as an

Event+ or Event- data channel. If your input data is known to come from one spike and is

easily detected by a window discriminator, this may be your best choice.

However, most window discriminators can’t separate multiple spikes in the same

channel. It would be necessary to have more, relatively expensive, window discriminators

set to different amplitudes/duration and the output would be fed in to more digital

channels at the 1401. The illustration below contains one channel of units in WaveMark

form and several channels containing the equivalent window discriminated units.

Spike shapes

Why use WaveMark
data?

Spike shapes Spike2 training manual

48

The next picture shows a window discriminator set-up and below that an equivalent

Spike2 / WaveMark combination.

A high sampling rate is required if spikes (of typical duration 1 to 2 milliseconds) are to

be usefully discriminated therefore a sampling rate of 20 kHz is often used. From Spike2

version 4 you can set the desired sample rate in the Channel parameters dialog. Prior to

version 4, the WaveMark sample rate depended on the number of waveform and

Wavemark channels. The total number of data points to capture for each spike can be set

in the range 6 to 126.

Although we have achieved a sampling rate sufficient to capture the WaveMark make

sure that the incoming waveform is of a reasonable amplitude. If a signal is say +/-0.5

Volts it only has 1/10 of the resolution that the 1401 inputs can accept.

The dialog below shows how the user might set-up one channel of WaveMark capture.

This image is from version 3. In version 4 you can set the ideal WaveMark sampling rate.

This is available from the

sampling configuration menu.

The user has selected a capture

rate of approximately 20 kHz

for the channel and will

describe the incoming spike

with 32 data points, 10 of

which are before the trigger.

The number of points can also

be changed at the template set-up stage. The maximum sustained event rate is set to 10 in

this configuration. This affects the amount of memory inside the 1401 that is allocated to

the incoming spikes; too high a mean rate results in less efficient system performance.

Spike sorting is available on-line when using, a Power1401, a Micro1401 mk II, a

micro1401 or a 1401plus; it is not possible to capture WaveMark data using a Standard

1401. It is possible, however, to discriminate spikes off-line (See off-line analysis, create

new WaveMark channel.)

Window discriminator set-up

WaveMark set-up

Sampling rates of
WaveMark data

Hardware required

 Spike2 training manual Spike shapes

49

When a new data document is opened to capture WaveMark data you are presented with

the template set-up window (below) prior to sampling. It is here that we construct the

templates to match the incoming data. User-defined parameters influence the envelope of

each template and tolerance to variations in size and shape. The templates generated can

be selected by the user and merged with others if the user feels they are too similar. Once

this stage has been completed the actual recording can take place and the incoming spikes

are checked against existing templates, sorted and displayed accordingly.

1. Wait for the signal to lie within half the two trigger levels. When it does go to 2

2. If the signal crosses either one of the trigger levels (one for positive and one for

negative going spikes) then go to 3.

3. Track the negative or positive going peaks.

If we have a new peak (or trough) restart the peak (or trough search).

If we have sufficient post-peak data to complete the spike, go to step 5.

If the waveform level is below the baseline, then go to step 4.

4. Wait for sufficient points to complete the spike, then go to step 5.

5. Save the spike and go to step 1.

This window displays the incoming waveform data plus any spikes that cross the

triggering thresholds. The first eight templates are displayed in the lower half of the

window. At the top of the window is a toolbar, which controls template formation:

Overdraw

Switches between overdrawing the spikes in the template or

displaying the last spike.

Template

outlines

This switches the template border surrounding the spikes on

and off.

Show

unmatched

Overdraw the raw spike data on all templates to see how

similar it is to different templates.

Sound Switches sounds associated with templates on and off/

Best guess

A good starting point for determining the threshold levels.

The computer takes over at this point and calculates the best

levels for both the trigger and base measurements. This can

aid manual adjustment.

Scale data

These two buttons increase and decrease the y axis for easier

placement of the threshold and base levels.

On-line set-up

The spike detection
algorithm

The template setup
window

Spike shapes Spike2 training manual

50

Scroll

These buttons change the pre-trigger time. You can also click

and drag the time axis to change the pre-trigger time.

Points

You can increase or decrease the number of data points that

will be captured when writing to disk. You can also do this

by clicking and dragging the number in the time axis.

Time range

Off-line only. This opens a dialog in which you can set the

time range to process.

Clear

templates

This button throws away all confirmed and provisional

templates. There is a similar button to delete an individual

template at the top of each confirmed template shown.

Parameters This button opens the parameter set-up dialog shown below.

This dialog is available in all on and off-line spike

shape sections. It controls how templates are created.

This controls the creation of new templates.

This sets the number of spikes at which a provisional

template is promoted to a real one; 8 is a reasonable

starting value.

This is the percentage of the spike amplitude to give

the initial (and minimum) template width. As spikes

are added to the template, the width changes to

represent the variation in amplitude of the spikes in

the template. The maximum template width is set to

4 times the minimum width. A value of 30% is a

reasonable starting value.

If this is n, this is roughly the same as saying that you are not interested in spike classes

which occur less often than once every n total spikes. If you want to keep all spikes as

potential templates you should set this to a large number; 50 is a good starting value.

The items in this group are used when comparing a new spike with the existing templates

to determine if the new spike is the same or should start a new provisional shape. As well

as the conditions mentioned below there is always a limit to the error between a spike and

a template (unless amplitude scaling is enabled) to prevent totally ridiculous results and

to avoid wasting time interpolating spike shapes for data that could never fit a template.

Spike2 will scale spikes up or down by up to this percentage to make the area under the

spike the same as the area under each target template. This is very useful if you have

spikes that maintain shape but change amplitude. Do not set this non-zero on-line

unless you need to as it slows down the template matching process. The maximum

change permitted is 100%, which allows a spike to be doubled or halved in amplitude.

Set this to 0 unless you need it. The value you set depends on the amplitude variability of

your spikes; 25% is a reasonable starting value.

The percentage of a spike that must lie within a template for a match. If more than one

template passes this test, spikes are matched to the template with the smallest error

between the mean template and the (scaled) spike. 60% is a reasonable starting value. If

you enable amplitude scaling you may want to increase this value to 70% or more.

The template width is most useful in the setup phase when we are looking carefully at

differences between spikes. Once templates are established it can sometimes be better to

match to the template with the smallest error and ignore the width. If you check this field,

The template
parameters dialog

New Template

Number of spikes for a new
template

New template width as a
percentage of amplitude

No template for shapes rarer
than 1 in n spikes

Matching a spike to a
template

Maximum percent amplitude
change for match

Minimum percentage of
points in template

Use minimum percentage
only when building templates

 Spike2 training manual Spike shapes

51

this sets the percentage of points that must lie in the template to 0% unless you are

building templates.

This group of fields determines how the shape of a template changes as more spikes are

added to it. On-line, the template shape is fixed in all modes apart from Track. From our

experience, Add All and Auto Fix are the most useful modes.

Add All All spikes that fit the template are added and modify the template. The effect

of each spike becomes smaller as the number of matched spikes gets larger.

Auto Fix The template is fixed once a set number of spikes have been added. If you

have several similar spikes, using Auto Fix after a fairly small number of

spikes can stop a template gradually changing shape and becoming the same

as another template.

Track The template shape tracks the spikes. The contribution of each spike to the

template decays as more spikes are added. This is only really useful for slow

changes in spike shape and always brings with it the danger than all your

shapes will merge together. It also slows down on-line spike classification.

This sets the number of spikes for the previous field in Auto Fix and Track modes. In

Track mode, the smaller the number, the more rapidly the template shape changes.

The final group of fields control how the raw waveform data is processed into spikes:

Spike waveforms are shifted by fractions of a sampling interval to align them with

templates using linear or parabolic interpolation. Parabolic should be slightly better, but

is slower. The on-line 1401 code always uses linear interpolation for speed reasons.

Use this to remove baseline drift. Set this to a few times the width of the spikes. Do not

set the value too low or it will significantly change the spike shapes. If your signal has

abrupt baseline changes, you may get better results with the DC offset option.

Check this field to subtract the mean level from each spike before matching. This effects

template formation and matching, not the saved data. Unless your baseline has sudden

DC shifts, it is usually better to use the high-pass filter to follow signals that drift. There

is a small time penalty for using DC offset removal on-line.

Spikes trigger on a positive or negative threshold and are aligned on the peak (or trough)

value. The first spike is considered as a provisional (hidden) template and the starting

width is calculated based on the values in the parameters menu. New spikes are compared

against real and then provisional templates. If a spike matches a template it is added; if it

matches no template it forms a new provisional template. When the number of spikes in a

provisional template reaches a pre-set threshold (Spikes for a real template) the template

is promoted to a real template.

The diagram illustrates the allowed percentage amplitude

between the spike and the template to which all the other

spikes are compared. This amplitude value can be determined

by the user in the template parameter menu.

You can change the template area by moving the two small

triangles at the top of the raw data view. A common mistake is to include a lot of baseline

in the template. Ideally you want to compare spikes on the sections that are most different

between spike classes; baseline regions, by definition, are very similar.

Template maintenance

Template modification mode

Spikes for Auto Fix/Track
capture modes

Waveform data

Waveform interpolation
method

High-pass filter time constant

Remove the DC offset before
template matching

Template formation

Spike shapes Spike2 training manual

52

To reduce the area given to the oscilloscope view we can use the button. This will

result in the spike rather than the noise dominating and this optimised area is what will be

recorded to the data file. Careful selection of the area of interest can reduce the amount of

data that is written to disk, improves the spike sorting and enhances the speed of the

system.

In addition to capturing spike shapes directly, you can extract them off-line from

waveform channel (or even WaveMark channels) and edit them to classify spikes that

ended up as code 00 on-line or even resort the spikes completely.

It is possible to extract WaveMark data from a waveform channel or from an existing

WaveMark channel. This is available from the Analysis menu New WaveMark

command. This function acts in the same way as the on-line WaveMark creation by

setting up templates for use on the data to follow. The set-up view is very similar to the

on-line section but instead of sample data we are given an option to write the new

WaveMark data to a new channel.

Off-line analysis

Create new WaveMark
channel

Threshold levels. These set

the positive or negative

levels that spikes must reach

to be considered as a spike

Area of the waveform

for capture to disk

The area of the waveform to be

considered for templating
This dark section indicates

the number of confirmed

templates

This lighter section indicates

the number of provisional

templates being considered

Base levels. Spikes must

start inside these levels. In

version 4 these are omitted

and ½ of the trigger levels

set the base levels.

 Spike2 training manual Spike shapes

53

This off-line option allows the user to modify their selection of classified spikes. You can

move through the data file spike-by-spike or free play in either direction by means of the

tape recorder style buttons.

There is also a cursor in the data file that indicates the position in the file that the user is

currently considering. You can to drag this cursor with the mouse to any position in the

data file. When released, the cursor jumps to the nearest spike and this is displayed in the

oscilloscope view. You can drag and drop the current spike into a template window to

create a new template based on that spike.

With the reclassify option you can re-template the data files spikes against newly

constructed templates. In version 4, the Duplicate button generates a duplicate channel

for each template marker code and sets the marker filter so that each duplicate channel

shows only one class of spikes.

There are a number of different ways that we can display our WaveMark (or event)

information. When using the draw modes it can be useful to duplicate the so that both the

raw and the processed data are displayed simultaneously. The draw modes include:

This type of display counts how many events fall within a time period (selected by the

user) and displays the result in histogram form. This can be useful when comparing

applying a drug to a preparation for example. This display could indicate a change in

firing rate before and after the drug was applied.

At each event a mean rate is calculated over the preceding data. The duration of the mean

is user-defined.

This style of display takes the inverse of the time difference between the current event

and the one preceding it. This is displayed in Hz. The data is drawn as dots.

This mode creates a pattern of events based on a second trigger or stimulus channel. An

example of its use might be to see which WaveMark classes react to the stimulus being

applied. It is also possible to view negative times by changing the y axis values.

Edit WaveMark channel

Event draw modes

Rate

Mean frequency

Instantaneous frequency

Raster

Dots and Lines

Spike shapes Spike2 training manual

54

The simplest of the drawing modes. This display changes the WaveMark to a vertical line

for ease of display. It is also possible to select Dots. By default, Spike2 uses small dots,

but it is also possible to use large dots which is beneficial for some computer monitors.

When displaying WaveMark data as dots or lines it is important to note that the events

are drawn at the beginning of the WaveMark not at the peak.

This mode draws WaveMark data in its ‘natural’ state, showing the waveform.

The view below shows how event draw modes can give a better indication of what is

really happening than the original data. At the text mark a drug was applied and took

some time to cause a reaction. It is difficult to see from the WaveMark channel at the

bottom that anything has happened so duplicates of the channel were created and filtered

so that channel 1a displayed unit #1 and channel 1b unit #2. The user then changed the

draw mode for each to display a rate histogram and an instantaneous frequency to

determine firing rate. It is therefore possible to see that both units increased their firing

rate in response to the drug. This is much clearer for unit #1; the display mode set for unit

#2 does not make this so obvious.

This is a method of determining correlations between spikes and a waveform channel.

This can be used in behavioural techniques. An example of this is to average a rectified

EMG channel using a spike as a trigger. If there is a correlation between the spike

occurrence and the EMG there should be evidence of increased EMG activity soon after

the trigger.

The interval histogram analysis shows how intervals between events are distributed. This

can be used as a test that the spike stream being analysed truly comes from a single cell

as there is a minimum period between firings from one source. If the interval distribution

does not tail off to zero as the intervals get shorter, the events are unlikely to have a

single source.

WaveMark

Spike triggered
averaging

Interval histogram

 Spike2 training manual Spike shapes

55

A stimulus histogram or PSTH show the likelihood of an event falling at a given period

after an event on a different channel (usually marking a stimulus). The histograms simply

show the number of events that fell in a particular time bin.

From Spike2 versions 3 you can choose to display the histogram results as a spike rate

rather than as a count. The rate is calculated by dividing the count per bin by the number

of sweeps and by the bin width.

Cross-correlograms can be generated to produce a measure of the likelihood of an event

on one channel occurring at a time before or after an event on another channel. In simple

terms it means that given a trigger, a histogram of pre-determined width is produced and

events from the source channel are ‘dropped’ into histogram bins corresponding to their

original time from the trigger point.

All the histograms within Spike2 are of a constant bin width type; the width of the bins is

user defined.

To use the above analysis techniques with WaveMark data it is often necessary to use the

marker filter and duplicate channel options. The marker filter (from the Analysis menu)

allows the user to show or hide any combination of WaveMark or coded events. This in

turn allows you to analyse any particular set, or if a duplicate channel was created and a

different set of codes was shown within it, you can perform unit to unit analysis.

Stimulus histogram

Cross-correlation

Use of marker filters
and duplicate

channels

 Script introduction

56

This chapter has two sections. The Introduction illustrates how a basic knowledge of

script language use may save a great deal of time and energy and can provide access to

information from the data otherwise unavailable from the menus. Short scripts may save

many hours of work by automating simple yet repetitive tasks. Even a single script

command can be a useful tool, for example to find the sampling rate used for a data file

or to re-title data channels.

The second section, starting at the Script language title on page 59, introduces you to

the basics of Spike2 (and Signal) scripts by examples and description. If you are

experienced in programming, you may prefer to use the Spike2 Script Language manual

for a more formal approach. You will need this manual (or the on-line Help) to look up

the details of script commands.

It is likely that many users of Spike2 will have very little, if any need to use the script

language as the wide range of sampling and analysis options available from the menus

mean that the majority of requirements are fulfilled with no additional programming.

However, scripts can save you a great deal of time, especially if your analysis means

repeating the same list of tasks many times.

Although many people are intimidated by the idea of programming, Spike2 does provide

some help, including recording your actions in script format as well as the provision of

scripts written to help you to write your own scripts.

There are several reasons why you might want to write a script. These include:

 To do things you can't do using the application menus

 To automate repetitive processing of data

 To provide fast online control, a script is faster than you are

 To simplify a task for someone not familiar with the program

A script is a program in its own right that controls Spike2. It is a list of instructions and

functions that can control all aspects of sampling, display and built-in analysis as well as

containing arithmetical functions that can be applied to data and results.

A function is basically a request to perform an operation, and may require additional

information in the form of arguments, which can be numbers or text.

An example of a typical function is:

FileOpen(name$, type% {,mode% {,text$}});

The items within the brackets are the requested arguments. In this case, name$ requests

the name of the file, type% determines which type of file it should be (for example a data

file or a text file) and mode% determines the state of the window when opened (for

example visible or maximised). Details of the required arguments are in the on-line help

and the Script language manual. When editing a script or using the Evaluate window,

place the text cursor in the function name and press F1 to display the relevant help page.

Spike2 runs scripts in much the same way as you would read them. Operations are

performed in reading order (left to right, top to bottom). There are also special commands

you can insert in the script to make the it run round loops or do one operation as an

alternative to another.

The level of detail involved in a script depends on your requirements. It can vary from a

single line to a multi-page program to control the sampling and analysis for a complete

experiment including user-defined toolbars dialogs and dedicated algorithms applied to

the data.

Introduction

Reasons for writing a script

What is a script?

 Spike2 training manual Script introduction

57

The simplest possible way to use the script language is from the Evaluate window. This

is available from the script menu or by typing Ctrl+L. It allows you to enter a single line

of script for immediate execution and can be used for a variety of purposes.

For example, open the file demo.smr then enter the following into the evaluate window:

ChanTitle$(1,"Potatoes")

When you click on Execute you will see the title for channel 1 has now become

"Potatoes". In order to return this to its original title simply replace "Potatoes" with

"Sinewave". You can also use Evaluate to find out about script functions; position the

text cursor within ChanTitle$ in the window and press the F1 key to see the

documentation for this function.

As well as Execute, there is an Eval(…) button in this window. This can be used to

obtain information returned from the commands. For example try typing the following:

Binsize(1)

When you click on Eval(…) you will see the figure 0.01 which is the sampling interval

for the channel in question. Similarly, if you type:

1/Binsize(1)

and click Eval(…), the number will be 100, giving the sampling rate for the channel.

The Evaluate window stores the last 10 lines of script used. The arrow at the end of the

command line allows access to previous lines, therefore a selection of frequently used

functions can be stored and easily accessed by this method.

Although the Evaluate window is a useful way of executing a single line of script, for

longer scripts a larger window is required that can contain several commands to be

executed in sequence and saved to disk for later use.

To create a new script window go to the File menu and select New and then Script
Document. You will notice that the window has a drop-down selector and 5 buttons in a

toolbar. The selector provides a quick mechanism for finding a function in your script;

select the function and the view adjusts to show it.

The button showing a page with ticks and crosses is the compile button. This will check

for any errors and compile the script into a form that can be interpreted quickly by

Spike2. The button showing a page and arrow is the run button. This first compiles and

then executes the script. The hand button adds a breakpoint (a point at which the script

stops and allows you to see what has happened) at the cursor location; the crossed-out

hand removes all breakpoints. The last remaining button with the question mark gives

general help with script language functions.

The Evaluate… Window

The script window

Script introduction Spike2 training manual

58

Spike2 can record actions and present them in script format. This can be extremely

useful, especially if there is an action you know how to perform but do not know which

function does the same thing in a script.

For example, close the demo.smr data file if it is open, then go to the Script menu and

select Turn Recording On. Open the demo.smr data file and move the window to a new

position using the mouse. Go back to the script menu and select “Turn recording off”.

You should then have a new script containing something like the following:

var v11%;

v11%:=FileOpen("C:\\Spike5\\Data\\demo.smr",0,3);

Window(43,0,99,92);

If you then close the data file and press the run button on the script window it should then

re open the data file in the new position. The first part of the script opens the file with the

second part positioning the window on the screen.

The majority of actions can be recorded in this way, however there are limitations. This

method can help to get the correct functions for a script but you must bear in mind that in

order to create a decent working script, some further work will be required.

For example, the FileOpen() function records the name of the file. To use the script on

a number of different files, change "C:\\Spike5\\Data\\demo.smr" to "" and run

the script again. This time, instead of loading the demo.smr file, you are prompted to

select a data file. This behaviour is covered in the documentation for FileOpen(). Don’t

forget, if you click on any of the function names and press F1 the associated help page

will be displayed containing information on what the function does and how it can be

used.

The software is shipped with a selection of example scripts that may be of direct use to

many users or at least provide a good basis upon which to develop their own routines.

Some form a skeleton for a particular type of application. For example, the

sampling.s2s script in the Spike5\trainday\online folder is a good basis for on-

line scripts. It gives you a framework from which you can start and stop sampling with

overall script control.

User-defined toolbars and dialogs can be created through scripts, allowing users to

interact with the script by inputting information and linking directly to particular script

areas. Although the code for creating these is relatively straightforward, for people

interested in writing scripts containing these features it may be a good idea to look at the

scripts titled Toolmake.s2s and Dlgmake.s2s. Using these scripts, you can easily

define toolbar buttons and dialogs; the script code to produce them is written by the script

itself. The sections produced by this method can then simply be pasted into larger scripts.

At CED we have a large selection of scripts written for a variety of purposes. As well as

the demonstration scripts shipped with the software itself, more are available from our

web site. If you wish to develop your own scripts, please feel free to contact us with

details, we may be able to provide a script upon which to base your own, or even have an

existing script that will do what you need. We also provide a script writing service, where

we can write a script to your specification, supplied with documentation and tested and

supported by CED.

The text editor was completely revised for version 6 of Spike2, and this allowed us to add

features for automatic script formatting, automatic word completion and pop-up call tips

to remind you of the arguments used by built-in and even user-defined functions.

Recording actions to a
script

Useful existing Spike2
scripts

Script writing service

Version 6 script window
improvements

 Spike2 training manual Script introduction

59

This document describes the basic processes involved in writing simple scripts (or

programs) in Spike2 and Signal. The ideas presented are common to many programming

languages and the examples will run under either Spike2 or Signal.

A script is a list of script language instructions in a file that you then ‘run’. When you run

a script each instruction is executed in turn. To begin writing a script use the File: New

menu to open a new script document and then type in the script instructions to be

executed. When you have done this you can click on the ‘Run’ icon at the top right of the

script window to run the script.

A first example:

'Example: hello

Message("Hello world!");

Halt;

When run, this script displays a message “Hello world!” and waits for the user to press

OK before ending.

Notes:

 The ' character starts a ‘comment’ which is not executed but is merely a comment on

the content of the script.

When run, the following script displays the log window in three different positions on the

screen. You must press an ‘OK’ button on the message box between each change of

position.

'Example: window

View(LogHandle());

WindowVisible(1);

Window(0,0,30,30);

Message("Window now at top left. Press OK to continue...");

Window(30,30,60,60);

Message("Window now in centre. Press OK to continue...");

Window(60,60,90,90);

Message("Window now at bottom right. Press OK to continue...");

Halt;

Notes:

 The View(LogHandle()) command makes the log window the current view (you

needn’t worry too much about this for now).

 WindowVisible(1) makes the current window visible.

 Window() positions the current window at the given coordinates. The first two

numbers set the X and Y co-ordinates of the top-left corner of the window, the second

two give co-ordinates of the bottom-right corner. All co-ordinates are in percentages

of the application window.

The Script language

Running a script

A more complicated
example

Script introduction Spike2 training manual

60

Variables are used in a script to hold and calculate values. They can be thought of as

‘boxes’ whose contents vary but whose name remains the same:

'Example: vars

View(LogHandle());

WindowVisible(1);

Window(30,30,70,70);

PrintLog("Start:-\n");

var i%;

i% := 3; PrintLog(i%);

i% := 4; PrintLog(i%);

i% := i% + 1; PrintLog(i%);

var j%;

j% := 4; PrintLog(i% * j%);

j% := i% + j%; PrintLog(j%);

Halt;

This script shows how variables are defined and used. The values printed out when this

script is run are 3,4,5,20 and 9.

Notes:

 The PrintLog() function prints a value to the log file.

 Before a variable is used it must be ‘declared’ using the var keyword. Variables can

be declared as one of three types: integer, real and string. Integer variables can only

hold whole numbers and always have ‘%’ appended to their names; string variables

hold a string of text and have ‘$’ added (e.g. str$) and real variables hold a real

number which can have a fractional part and have no suffix.

 The ‘:=’ symbol should be read as ‘becomes’ not ‘equals’. For instance i% := i% +

1 should be read as ‘the value of i% becomes the old value of i% plus 1’.

The way the script chooses which is the next statement to execute is known as the ‘flow

of control’. The following is an example of ‘conditional execution’, that is directing the

flow of control using the ‘if’ statement:

'Example: if

var num%;

num% := Input("Type in an integer number please", 0);

if num% < 0 then Message("It was negative!") endif;

if (num% mod 2) = 1 then

 Message("It was odd!");

else

 Message("It was even!");

endif;

Halt;

Notes:

 The Input() function gets an integer number from the user and stores it in the

integer variable num%.

 The if statement directs the flow of control to the required place depending on

whether the expression evaluates to ‘true’ or ‘false’.

 The expression (num% mod 2) is the remainder when num% is divided by 2.

Use of variables

The ‘if’ statement

 Spike2 training manual Script introduction

61

As well as redirecting program control using the ‘if’ statement, it is also possible to

execute a sequence of statements a number of times by looping back to the beginning

once the end is reached. There are three ways of doing this: repeat ... until; while

... wend and for ... next.

First an example of repeat ... until:

'Example: Mean1

var n, mean, total;

var count% := 0;

repeat

 n := Input("Please input a value", 0.0);

 if n <> -999 then

 total := total + n;

 count% := count% + 1;

 endif;

until n = -999;

if count% > 0 then

 mean := total / count%;

 PrintLog("Mean is %f\n", mean);

else

 PrintLog("No numbers entered...\n");

endif;

Halt;

When this script is run, you are prompted to enter real numbers again and again, until you

enter -999. When -999 is entered the script calculates the mean of the numbers entered.

Notes:

 The variable total keeps a running total of the numbers entered; count% keeps a

running total of how many numbers have been entered. Dividing the two forms the

mean.

 The PrintLog() statement needs some explanation. The %f means ‘print the value

of a real variable here’. It is known as a format specifier: other format specifiers begin

with % and include %d (‘print the value of an integer variable here’) and %s (‘print the

value of a string variable here’). The variables to print are listed as further arguments

to the PrintLog() function. In the above example, ‘mean’ is the variable to be

printed.

 The \n in the PrintLog() statement is a code to tell the script to print a new-line

character after printing the mean. A similar printing code is \t, which tells the script

to print a tab character.

Next, a similar example using while … wend:

'Example: Mean2

var n, mean, total;

var count% := 0;

n := 0.0;

while n <> -999 do

 n := Input("Please input a value", 0.0);

 if n <> -999 then

 total := total + n;

 count% := count% + 1;

 endif;

wend;

Looping constructs

Script introduction Spike2 training manual

62

if count% > 0 then

 mean := total / count%;

 PrintLog("Mean is %f\n", mean);

endif;

Halt;

Notes:

 Note that the value of n must be set to 0.0 initially in order to get into the loop. If n

was initially set to -999 the loop would never be executed. Contrast this with

repeat…until where the loop is always executed at least once.

Finally, an example using for…next:

'Example: Mean3

var n, mean, total;

var count%;

for count% := 1 to 4 do

 n := Input("Please input a value", 0.0);

 total := total + n;

next;

mean := total / 4;

PrintLog("Mean is %f\n", mean);

Halt;

Notes:

 This time we loop around the Input() statement four times as count% takes a value

from 1 to 4.

Often we would like to use data in a list rather than just single values. To declare a list of

data we use the ‘array’ construct. An array is declared using the var keyword and can be

a list of integers, real numbers or strings. The number of elements in the list is included in

square brackets after the variable name in the var statement. Subsequently, an individual

item from the list is denoted by the array name followed by square brackets enclosing its

position in the list.

'Example: array

var data%[4], i%;

data%[0] := 10;

data%[1] := 20;

data%[2] := 30;

data%[3] := 40;

var total := 0; 'No need to set to 0 as happens automatically

for i% := 0 to 3 do

 total := total + data%[i%];

next;

PrintLog("Mean is %f\n", total / 4.0);

Halt;

Notes:

 Note the use of data%[i%] to get the contents of element i% of the array.

 In this example, the array data%[] has one index. We call this an array with one

dimension or a vector. If we declared an array of reals as var fred[8][6]; this

Arrays

 Spike2 training manual Script introduction

63

creates an array with 2 dimensions and 48 elements addressed with two indices. We

call an array with two dimensions a matrix.

 Before Spike2 version 6, the maximum number of array dimensions was 2. From

version 6 onwards, arrays with up to 5 dimensions are allowed.

 From version 7, arrays can be resized with the resize keyword.

 We set variable total to zero to make the script action clear. However, numeric

variables are set to zero if they are not initialised to a value.

Often we can simplify a script by enclosing parts of it as procedures or functions.

Functions are essentially like the built-in Spike2 functions but are defined by the user.

Procedures are similar but they don’t ‘return a value’.

When run, the following script gets you to open up a data file and prompts you to

position a vertical cursor on the data in three different places. The position of the cursor

each time is written to the log file.

'Example: func

var fh%;

var i%;

var value;

fh% := FileOpen("",0);

if fh% >= 0 then

 Window(10,10,80,80);

 WindowVisible(1);

 for i% := 1 to 3 do

 value := GetMeasurement();

 PrintResult(value);

 next;

 FileClose(0, -1);

endif;

Halt;

func GetMeasurement();

var ret;

CursorSet(1);

Interact("Place cursor at point to measure...", 0);

ret := Cursor(1);

CursorSet(0);

return ret;

end;

proc PrintResult(val)

PrintLog("Value is: %f\n", val);

end;

Notes:

 The function GetMeasurement() gets you to place a cursor and ‘returns’ the

position of the cursor. This is the value that is taken by the variable value in the

main part of the program. The function Interact() allows the user to interact with

the data (eg by placing the cursor) before pressing an ‘OK’ button to resume the

execution of the script.

 The procedure PrintValue() prints the value ‘passed to it’ into the log file.

 This sequence of events happens three time as the ‘for’ loop is executed.

Procedures and
functions

Script introduction Spike2 training manual

64

An important idea to understand in the Spike2 script language is the concept of a view

and a view handle. Every window that can be manipulated by the script language is called

a view. There is always a current view. Even if you close all the views you can find, the

Log view is always present (it refuses to close and just hides itself instead). There are

many functions that operate on the current view, so you need a way to make a window

the current window. This means you need a way to identify a window.

A number, called the view handle, identifies each view. All script functions that create

windows make the new window the current window, and return the view handle of the

window (or a negative error code if they fail). The following very simple example opens

the example file, draws it and closes it again.

'view1.s2s

var vh%; 'Variable for the view handle

vh% := FileOpen("demo.smr",0,1); 'Open file and make visible

if vh% <= 0 then message("failed to open window");halt; endif;

PrintLog("The view handle is %d\n", vh%); 'print the handle

Window(0,0,100,100); 'set window to whole screen

Window(50,50,100,100); 'draw window at bottom right

FileClose(); 'close it

You will find this script in the training day examples, together with the example file. The

FileOpen function opens the nominated file and returns the view handle; we store this in

the vh% variable so we can print it. The if vh% <= 0 line is checking that we managed

to open the file correctly. The two Window functions change the screen position of the

view and the FileClose function closes the file (and the window vanishes).

Those with fast eyes will notice that the contents of the new window are blank! Windows

on the screen have two parts: an outer frame that always updates immediately when you

move or show it, and the inner region with the user data or text. When you run a script,

the inner region updates when the script tells it to with a Draw function or if the script is

waiting for user input (and so has time to draw). Compare this with the next script:

'view2.s2s

var vh%; 'Variable for the view handle

vh% := FileOpen("demo.smr ",0,1); 'Open file and make visible

if vh% <= 0 then message("failed to open window");halt; endif;

printLog("The view handle is %d\n", vh%); 'print the handle

Window(0,0,100,100);Draw(0,1); 'whole screen, draw 1 second

Window(50,50,100,100);Draw(); 'redraw window at bottom right

FileClose(); 'close it

This time, the contents of the window are drawn. Spike2 is very careful not to draw

windows except when the script asks; otherwise the screen would tend to flash a great

deal. Now suppose we want to position another window:

'view3.s2s

var vh%; 'Variable for the view handle

vh% := FileOpen("demo.smr ",0,1); 'Open file and make visible

if vh% <= 0 then message("failed to open window");halt; endif;

Window(0,0,100,100); 'whole screen

View(LogHandle()); 'make log view current window

Window(50,50,100,100); 'redraw window at bottom right

View(vh%); 'swap back to the file

FileClose(); 'close it

The View function is used to change the current view. In this case we make the Log

window the current window and position it, then we make the example file the current

view and close it. The LogHandle() function returns the view handle of the log window,

we can often use a function result just as if it was a variable.

Views and view
handles

 Spike2 training manual Script introduction

65

If you want to swap to another view for one function call, then return to the original

current view, you can use a different method:

'view4.s2s

var vh%; 'Variable for the view handle

vh% := FileOpen("demo.smr ",0,1); 'Open file and make visible

if vh% <= 0 then message("failed to open window");halt; endif;

Window(0,0,100,100); 'whole screen

View(LogHandle()).Window(50,50,100,100); 'log wnd at bottom right

FileClose(); 'close it

This example is exactly equivalent to the previous one. The View(x).Command(…)

syntax means save the current view, make the view with handle x the current view and

run Command(…), then restore the original current view, it provides a simple way of

operating on a specified view.

You can set the current view in several ways:

1. The View(x) function or View(x).function.

2. Any function that creates a new view, like FileOpen or FileNew or the analysis

functions that generate a memory view.

3. FrontView(x) makes the view with handle x the current view and also brings it to

the top so that it is visible.

At version 6, we added the ability to include separate files into a script. This allows you

to have a set of common definitions, functions and procedures that are shared between

scripts. At version 7 we added the resize, break and continue keywords; see your

documentation for details. At version 8 we added default values for user-defined

functions and the size of an integer became 64-bits.

New script features

 Script toolbox

66

The underlying view system was introduced in the previous session. Perhaps the most

important function in the whole system is View() together with the associated View().

(pronounced “view dot”) operator. The single most common error in a script is not

having the correct current view for an operation, resulting in the "View is wrong

type" error.

The next little script moves the current view around the screen. Notice that areas wiped

out by the window are not repainted until the script finishes. This is an important point.

While a script runs, updates do not occur except in response to Draw(…) functions and

when you give the system idle time (such as when a dialog box is displayed or when you

use the Interact(…) or Toolbar(…) functions).

'RandWind.s2s

FrontView(LogHandle()); 'Get a window at the front

Seconds(0); 'Zero our time counter

while Seconds() < 10 do

 Window(Rand()*100, Rand()*100);

 wend;

The Rand() function returns a random number from 0.0 up to, but not including 1.0.

When you use the Window(x,y) function in this form, the x and y positions set the

position of the top-left corner of the window as a percentage of the available area. You

can also append two more arguments which are the x and y position of the bottom right

corner of the window as a percentage of the screen area. As an exercise, add two more

arguments to randomise the size and run that. The full form of the function is:

Window(xLo, yLo{, xHi, yHi}). Arguments in curly brackets are optional.

Another important function in the script when dealing with data views is the Draw(…)

function. Spike2 is carefully written so that windows do not update until either you

command them to, or there is idle time in which to do it. If this were not the case, scripts

would run very slowly as any time that the script caused any portion of a window to

become invalid, the program would have to stop and redraw that portion. Instead of this,

each window remembers which portions have become invalid, and updates them when

time becomes available. One way you make time available is with Draw({from

{,size}}). If you omit the arguments, the window is redrawn with the same size or

start and size as the last time. Draw is fairly smart: if nothing has changed, it doesn't

waste time drawing and if it can achieve a move by scrolling the current view, it will.

This next example displays 10% of the current frame, opening a file if necessary, then

scrolls through the remainder of the file 5% at a time.

'DrawView.s2s

var vh% := 0;

var w, t;

if ViewKind() <> 0 then 'if current not a file view

 vh% := FileOpen("",0,0,"Select data file to display");

 if vh% < 0 then halt endif; 'Stop if no file

 Window(0,0,100,50); 'Set display position

endif;

ViewStandard(); 'All channels on view

w := Maxtime(); 'get maximum time in the file

XRange(0, w/10); 'Display 10% of all data

WindowVisible(1); 'Make visible

for t := 0 to 0.90*w step 0.05*w do

 Draw(t);

 next;

The important part of this example is the last three lines. All the rest of the script checks

to make sure we have a suitable view to work with. We start by checking that the current

view is a file view; if it is not we prompt the user to select a suitable file from disk.

View manipulation

Positioning the view

Drawing and updating

 Spike2 training manual Script toolbox

67

Notice that the FileOpen(…) function makes an invisible window so that the functions

to position the view do not cause the window frame to flash (which looks a mess and can

force other windows to redraw).

ViewStandard() is a very useful function when you want to get a data view into a

known state before starting to make changes to it.

XRange(dispStart{,dispEnd}) sets the display range for the next time a window is

drawn, but unlike Draw(…), it does not force the window to draw. If you replace the

Draw(t) in the script with XRange(t) you will only see a single update when the script

stops and Spike2 has idle time in which to sort out the update.

Maxtime() is an important function to remember. When used in a data view with no

arguments it returns the time of the last data item in the data frame. You can also include

a channel number as an argument, in which case it returns the time of the last data item

on the channel.

When we are dealing with a data view, there are useful functions for turning axes and

grids on and off. These functions are self-explanatory; see the functions Grid(),

XAxis() and YAxis() for details. You could add these to the previous script if you

wanted to customise the display.

You can use both horizontal and vertical cursors in data views. The CursorXXX(…)

family controls vertical cursors; the HCursorXXX(…) family controls horizontal cursors.

Cursors are created by CursorNew() and HCursorNew() which add one cursor if there

are not already the maximum number of cursors, and CursorSet() which creates and or

deletes up to 4 vertical cursors. There is no HCursorSet().

The following example prompts a user to position 4 cursors to enclose an area of a

Waveform channel. We'll stick with the demo.smr data file for this example:

'Cursor1.s2s

ToolbarText("Cursor functions"); 'Stop screen jumping

if UCase$(FileName$(3)) <> "DEMO"

 then Message("Wrong file!"); halt endif;

ViewStandard();FrontView(); 'Get into a tidy state

ChanHide(-1);ChanShow(1); 'Show channel 1 only (waveform)

CursorSet(2); 'Add two vertical cursors

HCursorNew(1,1.0);HCursorNew(1,-1);'These will be cursors 1 and 2

Interact("Position around the feature",4+32); 'user can modify

CursorRenumber();HCursorRenumber(); 'Get cursors in order

Message("%8g %8g seconds\n%8g %8g %s",Cursor(1), Cursor(2),

 ChanValue(1,Cursor(1)), ChanValue(1,Cursor(2)),

ChanUnits$(1));

CursorSet(0); 'delete all vertical cursors

while HCursorDelete() do wend; 'and all horizontal cursors

The main difference between vertical and horizontal cursors is that horizontal cursors are

associated with a channel. You can set a horizontal cursor on any channel, but they are

useful only for channels that have a y-axis. You can set a horizontal cursor on an event

channel drawn in dots mode, but it is not very useful!

Cursor functions

Basic cursor functions

Renumber cursors

Script toolbox Spike2 training manual

68

A very common situation occurs where you want the user to select an area of data for

analysis with two or more cursors. The problem is that the user may well put the cursors

in the wrong order. You can avoid this by labelling the cursors, but by far the simplest

solution is to use CursorRenumber():

'cursor2.s2s

ToolbarText("CursorRenumber() demonstration");

If ViewKind()<>0 and ViewKind()<>4 then

 message("Needs time or memory view selected to run");

 halt;

endif;

var sVis%;

sVis% := View(App(3)).WindowVisible(0); 'Hide script, save state

FrontView();ViewStandard(); 'Make it visible

CursorSet(2);CursorLabel(2); 'show 2 numbered cursors

Interact("Swap cursors over and click OK",4+32);

CursorRenumber(); 'Get cursors in order

Interact("Now they are back in order",0);

View(App(3)).WindowVisible(sVis%); 'restore script state

In addition to demonstrating how to renumber cursors (there is also a HCursorRenumber

which renumbers from the top of the screen to the bottom), this script shows you how to

hide the current script (which otherwise tends to get in the way unless you have hidden it

yourself). The script that is running is usually hidden from the program to prevent your

deleting it accidentally… However, you can get the script handle, and some other useful

handles with the App() function. You might also consider looking at SampleHandle()

if you want handles to exotic windows.

Interact is an easy way to let the user manipulate data, usually with the cursors, with

the script paused. When Interact is active, the Spike2 system is in an idle state, and so

will update any screen area that has been made invalid by a script activity, or by data

sampling.

Func Interact(msg$, allow% {,help {, lb1$ {,lb2$ {,lb3$...}}}});

You can use the message and the various labels to create buttons that the user can use to

exit from Interact.

Central to the Interact() command is the allow% parameter. As its name implies

the allow% parameter determines what the user can do while Interact() is running.

Setting allow% to 0 would restrict the user to inspecting data and positioning cursors in

a single, unmoveable window. The help parameter can be either a number or a string. If

it is a number, it is the number of a help item (if help is supported). If it is a string, it is a

help context string. This is used to set the help information that is presented when the

user requests help. Set 0 to accept the default help.

'interact.s2s

var btn%, msg$;

btn% := Interact("Choose a button", 0 ,0 , "one", "two", "three");

docase

 case btn% = 1 then msg$:= "one";

 case btn% = 2 then msg$:= "two";

 case btn% = 3 then msg$:= "three";

 else msg$:= "none";

endcase;

Message(msg$);

The above example also shows the use of the case statement. This can be handy if you

want to test for several different values of a variable. As you can see Interact()

returns a value that corresponds to the button that was pressed.

Interact

 Spike2 training manual Script toolbox

69

This is a most important family of functions, particularly if you want to run an on-line

script. The toolbar has many of the features of Interact, except that instead of returning to

the script each time you press a button, you have the option of linking a button to a user-

defined function that is run once each time the button is pressed. What happens after a

function runs depends on the return value of the function. You can also nominate a

function that is called during idle time whenever there is no button pressed and nothing

else for Spike2 to do.

To make using the toolbar family easier, there is a script, ToolMake.s2s that can be used

to write the skeleton of a Toolbar-based script for you. This script can also simulate your

toolbar for testing purposes. The script below was generated using Toolbar. This script is

not on the disk. To create it, run ToolMake and follow these steps:

1. Click “Add button” and then OK (to add button 1). Edit the label to “Quit”, leave the

function name blank (we do not want to run a function when we quit), and leave the

“This button closes toolbar” box checked.

2. Click “Add button” and then edit the button number to 3. By not using button 2 we

create a gap on the toolbar to provide a visual break between buttons. Click OK, then

in the next dialog set the label to "Action1" and the function name to DoAction1 and

leave the checkbox unchecked as this button does not close the toolbar.

3. Click Idle to add an idle time function and give it the name MyIdle.

4. Click Test to check that the result is as intended. Click Quit once it is OK. You can

edit buttons if you have made any errors.

5. Click Write and then set check-boxes to determine what can be done while the

toolbar is active. I usually set "Can move and resize" and "Can use View menu"

unless I have good reasons for using other check boxes.

6. Click Quit and then test the new script.

'Generated toolbar code – MyIdle.s2s

DoToolbar(); 'Try it out

Halt;

Func DoToolbar() 'Set your own name...

ToolbarClear(); 'Remove any old buttons

ToolbarSet(0, "", MyIdle%); 'Idle routine

ToolbarSet(1, "Quit"); 'Link to function

ToolbarSet(2, "Action1", DoAction1%); 'Link to function

 return Toolbar("Your prompt", 36);

end;

Func MyIdle%() 'Idle - repeatedly called

'Your code in here...

return 1; 'This leaves toolbar active

end;

Func DoAction1%() 'Button 2 routine

'Your code in here...

return 1; 'This leaves toolbar active

end;

We now have the skeleton of an application. You can enable and disable the buttons

using ToolBarEnable(). For example, add the following to the MyIdle() function:

var enable%;

enable% := Trunc(Seconds()) mod 2; 'either 0 or 1

ToolbarEnable(1, enable%);

ToolbarEnable(2, 1-enable%);

If you try this you will find that the two action buttons are alternately enabled and

disabled once a second.

The Toolbar family of
functions

Script toolbox Spike2 training manual

70

These functions are usually used for “quick and dirty” scripts to get a rapid response from

the user to a single question. If you want more than one piece of information at a time,

you are far better off using the Dlg… family of commands discussed below. Input()

reads a number with optional limits, Input$() reads a string with optional character

filtering, and Query() gets the user response to a Yes/No type question. Here is a script

that could make you a multi-millionaire…

'UserIO.s2s

var name$, lucky%, i%, nums%[7], j%, t%, x%;

ToolbarText("Mystic Greg's Magic Lottery Predictor");

repeat

 name$:= Input$("Your name here please","",12,"a-zA-Z");

 if Len(name$)=0 then Message("Oh, don't be so shy...") endif;

until Len(name$);

if Query("Do you have a lucky number?",

 "Yes and I'll tell you",

 "None of your business") then

 lucky% := Input("What is your lucky number?",7,0,255);

endif;

for i%:=1 to Len(name$) do 'use name to generate the seed

 lucky% := lucky% + Asc(Mid$(name$,i%,1));

 next;

Rand(lucky% / (Len(name$)+1.0)); 'Seed random number generator

nums%[0] := Rand()*49 + 1; 'make 1 to 49 as first number

for i% := 1 to 6 do 'loop round for next 6

 repeat

 t% := Rand()*49 + 1; 'generate 1 to 49

 for j% := 0 to i%-1 do 'now check not already used

 if t% = nums%[j%] then t% := 0 endif;

 next;

 until t%; 't% is 0 if number already used

 nums%[i%] := t%; 'save a number

 next;

'This is a very crude sort, but ok for small number of items

for i%:=0 to 4 do ' sort (but not bonus ball)

 t% := nums%[i%]; ' get first number

 for j% := i%+1 to 5 do ' see if smallest number

 if nums%[j%]<t% then ' if number is smaller

 x%:=nums%[j%]; ' swap it with test number

 nums%[j%]:=t%;

 t% := x%;

 endif;

 next;

 nums%[i%] := t%;

 next;

Message("Your numbers: %d\nBonus ball: %d", nums%[:6], nums%[6]);

In case you don’t come from the United Kingdom, and think that we've entirely lost our

senses, you need to know that we are blessed with a National Lottery, or put another way,

a tax on stupidity. The lottery is drawn by pulling 6 numbered balls, plus a "bonus" ball,

from a machine holding balls numbered 1 to 49. To win the top prize you must match the

6 balls drawn out. There are lesser prizes for 5 matches, 4 matches and so on, and other

prizes for combinations including the bonus ball.

The odds against winning (matching the 6 balls) are approximately 14 million to 1,

assuming that you pick truly random numbers. Humans are notoriously bad at picking

random numbers, which reduces the return on the bet (if you win) due to sharing the

prize.

Input, Input$ and
Query

 Spike2 training manual Script toolbox

71

The above script is rather tedious to run because it keeps putting up new dialogs, which is

distracting when you want several items of information at the same time. If you run

UserIOD.s2s you will see that we have combined the separate prompts into a dialog

box, plus new features. The bulk of the changed code is:

DlgCreate("Mystic Greg's Lottery predictor"); 'Start new dialog

DlgString(1,"Your name please, oh mighty one!",20,"a-zA-Z");

DlgInteger(2,"Your lucky number, valued friend",0,255);

DlgCheck(3,"Include lucky number in calculation");

var option$[3];

option$[0]:="Use above data";

option$[1]:="Look into future";

option$[2]:="Run again";

DlgList(4,"Extra mystic passes",option$[]);

if not DlgShow(name$,lucky%,useLuck%,option%) then return -1

endif;

This code looks a little fearsome to write yourself, but fortunately, you don't need to! I

generated this code by running the script DlgMake.s2s and pressing buttons and

typing prompts. Then I pasted the result into the original script, changed a few variables

and the job was done.

The steps in making a dialog box yourself are:

1. Use DlgCreate() to start the creating process, give the dialog a name, and

optionally position and size the dialog.

2. Use DlgChan(), DlgCheck(), DlgInteger(), DlgLabel(), DlgList(),

DlgReal(), DlgString() and DlgText() to define fields in your dialog

3. Use DlgShow() with a variable for each field to be filled to display the dialog and

collect the values.

The DlgMake script only generates simple dialogs with the fields stacked vertically. If

you are prepared to try a bit harder, you can create all sorts of fancy dialogs (but we leave

this as an exercise for the student). You can use the DlgMake script itself as an example

of more complicated dialog creation.

Spike2 provides a basic set of maths functions, and built-in functions to manipulate

arrays. You can derive most other reasonably common functions from the built-in set.

However, if you find that the lack of Bessel functions, or something else similar, is a real

problem, then let us know as it is relatively easy to add new ones. In addition to the array

functions there are also functions to directly modify channel data and to use the frame

buffer.

In addition to using maths functions on a single value to return a single result, you can

also apply then to an array. It is usually MUCH FASTER to use the array method than

using a program loop:

'array1.s2s

var data[10000];

var i%,t1,t2;

seconds(0); 'zero the timer

for i%:=0 to 9999 do

 data[i%] := 5.0*cos(i%/1000.0); 'beware i%/1000!!!

 next;

t1 := Seconds(); 'see how long it took

Seconds(0); 'zero the timer

data[0]:=0; 'first point is 0

The Dlg… family of
functions

Maths and Array
arithmetic functions

Script toolbox Spike2 training manual

72

ArrConst(data[1:],0.001); 'set the same except first

ArrIntgl(data[]); 'form a ramp

Cos(data[]); 'take cosine

ArrMul(data[],5.0); 'form product

t2 := Seconds();

Message("By hand %g seconds\nArrays %g seconds", t1, t2);

On my computer (Pentium III 450 - this was written a long time ago), the hand written

loop took 0.244 seconds. The same calculation using the array arithmetic took 0.0085

seconds, I had to repeat the array operations 100 times to get an accurate time. Some

years later, on an AMD 1900+ machine, the times were 0.033 and 0.0011 seconds,

If you need access to standard constants, is 4*ATan(1) and e is Exp(1).

Spike2 scripts can use the usual string handling functions that you would expect:

Asc ASCII code value of first character of a string

Chr$ Converts a code to a one character string

DelStr$ Returns a string minus a sub-string

InStr Searches for a string in another string

LCase$ Returns lower case version of a string

Left$ Returns the leftmost characters of a string

Len Returns the length of a string or array

Mid$ Returns a sub-string of a string

Print$ Produce formatted string from variables

ReadStr Extract variables from a string

Right$ Returns the rightmost characters of a string

Str$ Converts a number to a string

UCase$ Returns upper case version of a string

Val Converts a string to number

Most of these are easy to use, and Print$ has been mentioned before. ReadStr(…) is

very useful when you need to parse a line of text containing several data fields separated

by spaces and/or commas or tabs.

Many script writers forget that you can use + to add two strings together, += to append a

string and the comparison operators <, <=, >, >=, = and <> to compare strings. Remember

that the comparison operators and InStr() use case sensitive comparisons. If you

require case insensitive comparisons, use the LCase$() or UCase$() functions before

the comparisons:

if jim$ > sam$ then DoSomething() endif; 'Case sensitive

if LCase$(jim$) > LCase$(sam$) then DoIt() endif;'Case insensitive

When strings are compared, the comparison is left to right, character by character.

Characters later in the alphabet are larger. The length of two compared strings only

matters if both strings are the same to the length of the shorter string, in which case the

longer string is considered greater.

These functions let you read and write external data files without the overhead of

attaching them to a window. Binary file input and output is usually used to import or

export a foreign data format, suffice it to say that you open or create an external binary

file using FileOpen() with mode 9, you move to a particular offset in a file with

String functions

File functions for text
and binary files

 Spike2 training manual Script toolbox

73

BSeek(), and you read data into variables or arrays using BRead() or BReadSize()

and write data with BWrite() and BWriteSize(). You close an external file using

FileClose(), just as for any other type of file. External files have a view handle in

exactly the same way as any other file, but these views are always invisible. External files

are closed automatically when a script ends, should you forget to close them yourself.

In its most basic sense, an XY view is a way of plotting any value against any other

value. The points can be plotted using a variety of symbols and colours. The data is still

divided into channels and the data points within each channel may be joined or un-joined.

An XY view always has at least one data channel, so when you create a view, you also

create a channel. The following script code shows you how to make an XY view:

'XY.s2s

var xy%; 'handle for the XY view

xy% := FileNew(12,1); 'type 12=XY, 1=make visible now

Then if you want to add additional channels you can do this using the XYSetChan()

command. You can also use this command to set a channel to a particular state. The

following sets channel 1 (the first channel) to show data points joined by lines with no

limit on the number of data points, drawn in the standard colour:

XYSetChan(1, 0, 0, 1); 'chan 1, no size limit, no sort, joined

XYDrawMode(1, 2, 0); 'set a marker size of 0 (invisible)

To add data points to a channel you use the XYAddData() command. You can add single

points, or pass an array of x and y co-ordinates. The following code adds three points to

draw a triangle:

XYAddData(1, 0, 0); 'add a point to channel 1 at (0, 0)

XYAddData(1, 1, 0); 'add a point at (1,0)

XYAddData(1, 0.5, 1); 'add a point at (0.5, 1)

You will notice that the result of this draws only two sides of a triangle. We could

complete the figure by adding an additional data point at (0,0), but it is just as easy to

change the line joining mode to "Looped", and the figure is completed for you:

XYJoin(1,2); 'set looped mode

In addition to the above commands there are a host of other commands that may be used

with XY view. These are listed below:

XYColour() Gets or sets the colour of a channel.

XYCount() Gets the number of data points in a channel.

XYDelete() Deletes a range of data points or all data points from one channel.

XYGetData() Gets data points between two indices from a channel.

XYInCircle() Gets the number of data points inside a circle.

XYInRect() Returns the number of data points in a channel.

XYKey() Gets or sets the display mode and positions of the channel key.

XYRange() Gets the range of data values of a channel or channels.

XYSize() Gets and sets the limits on the number of data points of a channel.

XYSort() Gets or sets the sorting method of a channel.

A good example of an XY view is the clock script that ships with both Spike2 and Signal.

In this script the clock face is drawn using a single channel of 12 data points that are not

joined and drawn as large solid blocks. Each of the clock hands is drawn using one

channel drawn using invisible points that are looped.

XY views

Creating an XY view from a
script

 Scripts and Spike2 data

74

To follow this chapter it is assumed that the reader is familiar with the basics of the

script language: Views, variables, arrays of data, looping constructs, Interact and the

Toolbar commands. Full details of the script commands can be found in the Spike2

manuals and in the on-line Help, they are not replicated here.

These scripts do not use version 4 features, so should work on all Spike2 versions.

The purpose of this session is to show you how to access data in a Spike2 data file from

the script language. We will start with an example script that scans all the Spike2 data

files in a folder and prints a summary of the channels found in each file.

'FileLst2.s2s

var fName$[100]; 'allow for up to 100 files

var n%,i%,fh%;

View(LogHandle()).Window(0,0,100,100);

FrontView(LogHandle()); 'Make sure log view visible

EditSelectAll();EditClear(); 'delete all existing text

var ChKind$[9]; 'Names of all the channel types

ChKind$[0] := "Off"; ChKind$[1] := "Waveform";

ChKind$[2] := "Event-"; ChKind$[3] := "Event+";

ChKind$[4] := "Level"; ChKind$[5] := "Marker";

ChKind$[6] := "WaveMark"; ChKind$[7] := "RealMark";

ChKind$[8] := "TextMark";

FilePathSet("",0,"Set directory to list files in");

n% := FileList(fName$[],0); 'get names of type 0 (son files)

for i%:=0 to n%-1 do 'if we got any files

 fh% := FileOpen(fName$[i%], 0, 0); 'Open file invisible

 if fh% < 0 then

 PrintLog("Error opening %s\n", fName$[i%]);

 else

 DumpFileInfo(); 'routine to dump data

 FileClose(); 'close the file

 endif;

 next;

halt;

Proc DumpFileInfo()

var cList%[33],i%,c%,t%; 'channel list and work space

ChanList(cList%[]); 'get full channel list

PrintLog("%s\nTime resolution: %d us\n", FileName$(),

BinSize()*1000000.0);

PrintLog("File comment : %s\n",FileComment$(1));

PrintLog("Chan Title Type Hz Scale Offset Units

Comment\n");

for i% := 1 to cList%[0] do

 c% := cList%[i%]; 'get the channel number

 t% := ChanKind(c%); 'the channel type

 PrintLog("%2d %8s %8s", c%, ChanTitle$(c%), ChKind$[t%]);

 if t%=1 OR t%=6 then 'Waveform or WaveMark data

 PrintLog("%8g %8g %8g %5s", 1/BinSize(c%),

 ChanScale(c%), ChanOffset(c%), ChanUnits$(c%));

 else

 PrintLog("%32s",""); 'lots of blanks

 endif;

 PrintLog(" %s\n",ChanComment$(c%));

 next;

PrintLog("\n"); 'Make a gap between files

end;

The first part of the script uses FilePathSet() to select a current directory, then uses

FileList() to collect the file names. Once we have a list of files, we attempt to open

each in turn. Notice that the FileOpen() command allows us to open files without

Opening files and
channel information

 Spike2 training manual Scripts and Spike2 data

75

displaying them. In this case we do not want to see the files, but it also means that you

can arrange data files on the screen without wasting time drawing them in the wrong

position. In fact, this is so useful that anywhere that the script language creates a new

window it is initially invisible so that you can position it and then display it in the correct

position. The full command is:

Func FileOpen(name$, type% {,mode% {,text$}});

In this case we are supplying the file name with a type% of 0 for a Spike2 data file and

using a mode% of 0, which means open invisibly ignoring any .s2r resource file and also

not to worry if the file is already open in Spike2.

All script routines that create new windows also make the new window the current view,

even when the window is invisible. The script calls the user-defined Proc

DumpFileInfo to print information about the file. The file name plus the time resolution

and the first line of the file comment are printed, then we iterate through the channels in

the file and dump information about each channel.

We use the ChanList() function to get a list of all the channels in the file. This is a

useful routine that can give you a list of the channels in a file that hold data of a particular

type. In this case we ask for all channels. Instead of using this routine, the loop could

have been written:

for c% := 1 to 32 do

 t% := ChanKind(c%); 'the channel type

 if t% > 0 then 'if the channel is not Off

 . . . 'the rest of the code

 endif;

next;

Usually you know what data type you expect to find in a channel, but in this case we do

not so we use ChanKind() to find out. ChanTitle$() and ChanComment$() give us

the channel title and comment, and can also be used to set the title and comment.

BinSize() returns the sampling interval for a waveform or a WaveMark channel and

the underlying time resolution of an event channel. The ChanScale() and

ChanOffset() get the scale factors that convert the 16-bit data used for waveforms into

user units. ChanUnits$() gets the units. Apart from BinSize(), all the other functions

mentioned here can also change the value that they fetch.

FileClose() is used to shut the file once it has been dumped. If you forget to do this,

Spike2 will accumulate a list of files. There is a limit to the number of files Spike2 will

allow you to have open at a time, and there is also a limit imposed by the operating

system. Further, each open file uses system resources and memory. For a fast, responsive

system it is always a good idea to have as few files open at once as possible.

You could change the DumpFileInfo() procedure into an AnalyseFile() procedure

to do batch processing on all the files in one folder.

One of the simplest commands for looking at the data in a channel is ChanValue(). This

command generates the same values as you get from the Cursor Values dialog; that is it

gives you the value of a channel at a particular time.

'ChanVal.s2s

var vh%;vh% := FileOpen("c:\\TrainDay\\demo.smr",0,0);

if vh% < 0 then halt endif; 'Stop if no file

Window(0,0,100,50); 'Set display position

ViewStandard(); 'All channels on view, no cursors

XRange(0,Maxtime()); 'Display all data

ChanValue

Scripts and Spike2 data Spike2 training manual

76

FrontView(View()); 'Make sure visible and at front

CursorSet(1); 'add one cursor in centre

Interact("Select position for cursor",4+32); 'allow move and View

var cList%[33],i%,c%; 'space for channel list

ChanList(cList%[],2048); 'exclude hidden channels

for i%:=1 to cList%[0] do 'for each visible channel

 c% := cList%[i%]; 'get the channel number

 PrintLog("%2d : %8g %s\n",

 c%, ChanValue(c%, Cursor(1)), ChanUnits$(c%));

 next;

FrontView(LogHandle());

In this case we have used the command in its simplest possible form where it returns the

value of the channel as it is displayed. However, this means that the command may return

different values depending on the display mode. There are additional command

arguments that can be used to force the display mode for a particular measurement. The

full command is:

Func ChanValue(chan%, pos {,&data%{,mode%{,binsz{,trig%|edge%}}}})

If there is no data at pos, the function returns 0, which is not too useful. The data%

argument can be used to detect missing data. If used, it is returned as 1 if there is data and

as 0 of there is not.

If you need direct access to the raw data, for example when you want all the waveform

values or event times in a time range, ChanValue() is a slow way to get the values

compared to ChanData(). However, when you only need a few spot measurements, or

you want to re-sample data to present it for a spreadsheet so that you can produce a

square table of results, it may be the only way to do it. This is also the only easy way to

get at mean frequency values.

As ChanValue() is to the Cursor Values dialog, so ChanMeasure() is to the Cursor

Regions dialog and is available from Spike2 version 3. Some of the measurements can be

obtained using other commands, for example using Count() or MinMax() but if you

want a quick and easy way to measure the standard deviation of a waveform,

ChanMeasure() is the command for you.

'ChanMeas.s2s

var vh%;vh% := FileOpen("c:\\TrainDay\\demo.smr",0,0);

if vh% < 0 then halt endif; 'Stop if no file

Window(0,0,100,50); 'Set display position

ViewStandard(); 'All channels on view, no cursors

XRange(0,Maxtime()); 'Display all data

FrontView(View()); 'Make sure visible and at front

CursorSet(2); 'set two cursors

Interact("Select area to measure",4+32); 'allow move and View

CursorRenumber(); 'make sure the cursors are in order

PrintLog("Standard deviation of channel 1 is %8g %s\n",

 ChanMeasure(1, 12, Cursor(1), Cursor(2)), ChanUnits$(1));

View(LogHandle());

Window(0,50,100,100); 'position the window

FrontView(LogHandle()); 'make sure it is visible

The full command is:

Func ChanMeasure(chan%, type%, sPos, ePos{, &data%{, kind%}});

The type% sets the measurement to take and sPos and ePos define the time range and

data% is set to 1 if there is a result and to 0 if there is no data. For a waveform channel

the possible values are:

ChanMeasure

 Spike2 training manual Scripts and Spike2 data

77

 1 Area The area between the data points in the time range and the y axis zero.

 2 Mean The sum of the data points in the time range divided by the number of

data points.

 3 Slope The slope of the least squares best fit line to the data in the time range.

 4 Sum The sum of the data values in the time range.

 5 Area (scaled) The same as Area. This is here to match the Cursor dialog.

 6 Curve area Each data point makes a contribution to the area of its amplitude above

a line joining the endpoints multiplied by the x axis distance between

the data points.

 7 Modulus Each data point makes a contribution to the area of its absolute

amplitude value multiplied by the x axis difference between data

points. This is equivalent to rectifying the data, then measuring the

area.

 8 Maximum The maximum value found in the time range.

 9 Minimum The minimum value found in the time range.

10 Peak to Peak The difference between maximum and minimum values in the time

range.

11 RMS The RMS level of the values in the time range.

12 SD The standard deviation from the mean of the values in the time range.

13 Extreme The maximum absolute value in the time range. Thus if the maximum

value was +1, and the minimum value was -1.5, then this mode would

display 1.5.

14 Peak The maximum value in the time range measured relative to a baseline

formed by joining the first and last points.

15 Trough The minimum value in the time range measured relative to a baseline

formed by joining the first and last points.

If you want to collect a list of consecutive data values from a channel, then you need:

Func ChanData(chan%, arr[]|arr%[], sTime, eTime {,&fTime});

It fills an array with waveform data or event times and optionally returns the time of the

first item. The script ChanData.s2s is a modified version of ChanVal.s2s that

illustrates the use of ChanData().

var work[10],n%; 'array for data, points found

for i%:=1 to cList%[0] do 'for each visible channel

 c% := cList%[i%]; 'get the channel number

 n% := ChanData(c%, work[], Cursor(1), Maxtime());

 if n% > 0 then

 PrintLog("%2d : %8g %s\n", c%, work[:n%], ChanUnits$(c%));

 endif;

 next;

The changed lines are shown above. Instead of using ChanValue() to get a single value

we use ChanData() to fill an array with data. ChanData() needs a time range, so we

say start collecting data from the cursor time, stop at the maximum time in the file.

Unlike some programming languages, Spike2 knows how big the array you passed in is,

so it will not overfill it.

Notice that PrintLog and Print will print an array for you (avoiding for loops), as

long as it is acceptable for elements to be separated by a comma and for two-dimensional

arrays have dimensions separated by a new line.

Although you can do almost any task by collecting the data in an array and processing it

point by point, there are often better methods as the next section shows

Getting a list of values

Scripts and Spike2 data Spike2 training manual

78

This example finds the next maximum within 1 second of a cursor on channel 1 and

moves the cursor to it. It assumes you have a suitable data file loaded (we suggest you

use the Demo.smr file provided with Spike2). You will get script errors if you do not

have a suitable file.

'MinMax.s2c

if UCase$(FileName$(3))<>"DEMO" then Message("File!"); halt endif;

ViewStandard(); 'get into a tidy state

Draw(0,4); CursorSet(1); 'Show 4 seconds and a cursor

ToolBarVisible(1); 'keep toolbar on show

var n%, minv, maxv, minP, maxP;

repeat

 MinMax(1,Cursor(1)+0.5, Cursor(1)+1.5, minV, maxV, minP, maxP);

 XRange(maxP-2, maxP+2); 'centre the maximum found

 CursorSet(1, maxP); 'move cursor to new position

 n% := Interact("Position the cursor", 32, 0, "Stop","Next");

until n%=1;

The ToolbarVisible(1) command keeps the toolbar line (used for the Interact()

command) permanently visible. Without it, the interact command will scroll the screen

down and up one line each time it is used, which is visually unpleasant.

The MinMax() command scans the waveform data on channel 1 from 0.5 seconds

beyond the cursor to 1.5 seconds beyond the cursor and finds the maximum in this range.

Interact() is used with two buttons so we can choose to move on or stop.

When you try this script you will discover that the data in the file is not well suited to this

peak picker. You really need a method to find all the peaks in the signal and a scheme to

move backwards and forwards to the next or previous peak. Picking peaks is available

through memory channels; we'll cover that topic in a separate session. You can also pick

peaks interactively using the Analysis menu Memory buffer commands.

As it happens, the Demo data file already has peaks marked on channel 2. The next script

implements a simple script that moves you through the data peak by peak, based on

events on channel 2. Again we assume that the current file is Demo.smr.

'NextLast.s2c Simple demonstration of NextTime and LastTime

if UCase$(FileName$(3))<>"DEMO" then Message("File!");halt endif;

ViewStandard();FrontView(); 'Get into a tidy state

ToolbarVisible(1); 'Stop screen jumping

CursorSet(1); 'Add a single cursor

var Action% := 5; 'Set to move to the start

var t; 'work variable, holds cursor time

repeat

 t := Cursor(1); 'Starting cursor position

 docase

 case Action%=2 then t := MaxTime(2);

 case Action%=3 then t := NextTime(2, t);

 case Action%=4 then t := LastTime(2, t);

 case Action%=5 then t := NextTime(2, -1);

 case Action%=6 then Optimise(1);

 endcase;

 if (t>=0) AND (t<>Cursor(1)) then

 CursorSet(1, t);

 Draw(t-(XHigh()-XLow())/2); 'centre the cursor

 endif;

 Action% := Interact("Move cursor and choose action", 4+32, 0,

 "Quit", "End", "Next", "Last", "Start", "Optimise");

until Action% = 1; 'Run until user selects Quit

Finding minimum and
maximum values

Finding the next and
previous data item

 Spike2 training manual Scripts and Spike2 data

79

This is starting to behave more like a useful script! The repeat loop gets a new button

from the Interact() command and then does the appropriate task. By initialising

Action% to 5, we start the system as though the user had just pressed the button for

"Start". The docase statement is a slightly tidier way of implementing a multiple way

branch.

The important new commands here are:

Func LastTime(chan%, time{,&val|code%[]{,data[]|data%[]|&data$}});

Func NextTime(chan%, time{,&val|code%[]{,data[]|data%[]|&data$}});

These find the previous and next data item on a channel and return the time of the item,

or -1 if there is no item. Remember that waveform data is composed of individual,

equally spaced data points; each point is a data item.

The commands can also return additional data about the item. For a waveform channel,

they can return the value of the waveform point. For event level data you can find the

level, for markers and derived types the data associated with the marker can be read.

When you need to iterate through a data file, these commands are often your best choice.

There are a few channel commands we haven't yet used, so here is a script that uses most

of the rest! This uses the Demo file again, and hides channels 1 and 2, duplicates channel

3 twice and draws it in three different ways.

'DrawMode.s2c

if UCase$(FileName$(3)) <> "DEMO"

 then Message("Wrong file!"); halt endif;

ViewStandard();FrontView(); 'Get into a tidy state

ChanHide(-1);ChanShow(3); 'Show only channel 3

var d1%,d2%,d3%; 'Three duplicate channel numbers

d1%:=ChanDuplicate(3); 'Duplicate the channel 3

d2%:=ChanDuplicate(3); 'and again...

d3%:=ChanDuplicate(d2%); 'Just to show you can...

DrawMode(3,1); 'dots mode

DrawMode(d1%,2); 'lines mode

DrawMode(d2%,5,1.0); 'Rate with 1 second bins

DrawMode(d3%,6,4.0); 'mean frequency, 4 secs smoothing

ChanShow(d1%,d2%,d3%); 'show them all

XRange(0,Maxtime());Optimise(-1);'show all and optimise

Draw(); 'Update the display

Seconds(0); 'display time remaining

While Seconds()<10 do WindowTitle$(Print$(10-Seconds())) WEnd;

WindowTitle$("Script finished...");

ChanDelete(d1%); 'Kill off the duplicates...

ChanDelete(d2%); '...so we leave everything...

ChanDelete(d3%); '...nice and tidy

Channel duplication
and drawing mode

Scripts and Spike2 data Spike2 training manual

80

A result view is a one-dimensional array that is drawn in a window in a variety of styles.

You can create result views using the data analysis commands, where a data channel or

channel in a time view is processed and the results added into a result view; you can use

the SetResult() command, which generates a user-defined result view; or you can

open an existing result view on disk using FileOpen(). We'll return to analysis later;

now we'll create a user-defined result view and fill it with data:

'Result1.s2s

var rh%; 'to hold the view handle

ToolbarVisible(1); 'Keep toolbar visible

rh%:=SetResult(100,0.02,-1,"Hi","XUnit","yUnit","x","y");

Window(0,0,90,60); 'set some useful size

WindowVisible(1); 'so we can see it

Grid(1); 'and lets have a grid

Interact("See the empty view!",0);

var i%,v; 'working variables

for i% := 0 to 99 do 'set bin contents the hard way

 [i%] := Cos(0.1*i%); 'access result bins as unnamed arrays

 next;

Optimise(0); 'use a channel number of 0 for now

Interact("See a cosine wave!",0);

for i%:=1 to 4 do 'Show the various drawing modes

 DrawMode(0,i%);

 Interact(Print$("DrawMode %d",i%),0);

 next;

DrawMode(0,1); 'histogram mode again

for v:=0 to 1 step .0025 do

 ArrConst([40:20],v); 'fill with constant value

 ArrIntgl([40:20]); 'convert into a ramp

 Cos([40:20]); 'take cosine

 Draw(); 'update, only changed bins update

 next;

FileClose(0,-1); 'kill it off, don't ask about saving

The SetResult() command generates a new view and returns the view handle. All

script commands that create a new view make the new view the current view. A result

view can be treated much the same as a time view with a channel number of 0.

You can access the contents of a result view by treating it as an array with no name. For

example, to increase the contents of the first bin you could write:

[0] := [0] + 1; 'increase bin contents by 1

You can read the contents of a result view that is not the current result view with:

value := View(OtherView%).[binNumber%];

From version 3 you can set non-current result view bins in the same way. You can also

access result view data in terms of the x axis units using ChanValue():

value := ChanValue(0,-0.1); 'data in bin with -0.1 as x value

From version 5 you can use View(handle%,chan%).[bin%] to refer to a specific

channel in a result view or View(handle%,chan%).[] to mean an entire channel.

You can save a result view using FileSaveAs() and load it again with FileOpen():

'Result2.s2s

var rh%; 'to hold the view handle

rh% := SetResult(100, 0.02,-1, "Example result",

 "XUnit","yUnit","xTitle","yTitle");

Window(0,0,90,60);WindowVisible(1);Grid(1); 'so we can see it

Result views

Access to result view
contents

Save and load result view

 Spike2 training manual Scripts and Spike2 data

81

ArrConst([],.1); ArrIntgl([]); Cos([]);Draw(); 'make cosine, draw

FileSaveAs("MyResult.srf",4, 1); 'Save, no questions asked

FileClose(0,-1); 'don't ask about saving

Message("The view has gone...");

rh% := FileOpen("MyResult.srf",4,1); 'Open and show it again

You can also save the entire result view very easily as a text file:

'Result3.s2s

SetResult(100, 0.02,-1, "", ""); 'Make a result view

ArrConst([],.1); ArrIntgl([]); 'Fill with a ramp

FileSaveAs("MyResult.txt",1, 1); 'Save it as text

FileClose(0,-1); 'don't ask about saving

FileOpen("MyResult.txt",1,1); 'Open, show text

This is a minimalist example; the simplest form of result view creation is used, we fill the

result view with a ramp, then we save it as text. We also ignore any error codes returned.

The output in the text view is:

100

0.1

0.2

0.3

…

The first line is the number of bins, the following lines are the contents of each bin.

If you want more information to be written to the output, you could write your own

output file. You can create two forms of text file: A text window that you write to and

save later, or an external text file with no window. The external text file writes much

faster as it does not need to update a screen view. The following code creates both types

and writes the same information to each:

'Result4.s2s

var rv%, tv1%, tv2%;

rv% := SetResult(100, 0.02,-1, "", ""); 'Make a result view

ArrConst([],.1); ArrIntgl([]); 'Fill with a ramp

tv1% := FileNew(1); 'Make hidden text window

OutputTo(tv1%, rv%, 40, 60); 'Write to text window

View(tv1%).WindowVisible(1); 'make text window visible

tv2% := FileOpen("text2.txt",8,1); 'Make external text file

OutputTo(tv2%, rv%, 40, 60); 'Write to external file

View(tv2%); FileClose(); 'close external file

View(rv%); FileClose(0,-1); 'kill the result view

halt;

Proc OutputTo(tv%, rv%, bSt%, bEnd%); 'Write rv% data to tv%

var i%;

View(tv%); Print("bin xValue Data\n"); 'print headings

for i%:=bSt% to bEnd% do 'Loop for each bin

 Print("%3d %5.2f %g\n",i%,

 View(rv%).BinToX(i%), View(rv%).[i%]);

 next;

end;

This method, although slower, gives you a free choice of the data you want written to the

text file. If you need to create a large output file, the external text file method is

recommended as it is fast and has no limit on the file size. (Spike2 version 2 text

windows have a limited size; there is no limit in versions 3 and 4).

Note the use of BinToX(I%) to get the x value corresponding to a particular bin.

Save result view as text

Result view text output
with user-defined format

Scripts and Spike2 data Spike2 training manual

82

In this context, an analysis command is one of the SetXXXX family of commands that

create a result view and the associated Process command that takes time view data and

adds the result into the result view. In the discussion of the analysis commands we do not

have time to look at the individual commands, we will restrict ourselves to looking at one

command, SetPSTH and to keep things simple, we will use a single data file Demo.

Script analysis commands are basically very similar to the on-line interactive analysis

system. One way to write such analysis scripts is to record your actions, and then edit the

arguments to suit the application.

The first example script simply creates a PSTH analysis of the entire file, using channel 2

as the trigger and channel 3 as the data to be analysed. We will set the script up so that

time delay 0 is in the centre of the output, and that the output runs from -1 to +1 seconds.

We will make it easy to change the bin width.

'analyse1.s2s

var vh%, rh%;

vh% := FileOpen("Demo.smr", 0, 1); 'Open demo file and show it

if (vh% <= 0) then Message("No DEMO file!"); halt endif;

var bins%, binSz:=0.01, offset:= -1.0;

binsz := Input("Set the binsize in seconds", binsz, 0.0001, 0.1);

bins% := 2.0/binsz; '2 seconds wide, calc bins

rh% := SetPSTH(3, bins%, binsz, offset, 2);

Process(0, View(vh%).MaxTime(),1,1); 'process, clear, optimise

WindowVisible(1); 'display the result

The important points to remember when using commands like this are:

1. SetXXXX creates a new view and makes it the current view.

2. The new view is created invisible. It is up to you to position it and make it visible.

3. To use Process(), the current view must be the result view. This is because you

can have many result views attached to a single time view and Spike2 needs to know

which one to update.

4. You can choose to empty the result view before the new data is added in, and you

can choose to optimise the display each time data is added.

The script does not include a Draw() command to update the result, yet you see the

result anyway. This is because the WindowVisible(1) command made the window

frame visible immediately, the frame included the display area which is not updated, but

is marked as invalid. As soon as idle time became available (when the script ended)

Spike2 draws the invalid region. This probably seems a small point, but many people get

very confused when a running script (with no idle time due to Dialogs, Interact or

Toolbar calls) creates empty frames, but no data.

To add the analyses of several areas together, you would not clear the array results before

adding in the new data. A slightly more developed version of the above script might look

like:

'analyse2.s2s

var vh%, rh%;

vh% := FileOpen("Demo.smr", 0, 1); 'Open the demo file, show it

if (vh% <= 0) then Message("No DEMO file!"); halt endif;

ToolbarText("Process demo"); 'so toolbar doesn't bounce

Window(0,0,100,50);

FrontView(); 'Make sure it is visible

View(LogHandle()).EditSelectAll(); 'Select all text...

View(LogHandle()).EditClear(); '...and clear it

PrintLog("Process demonstration\n"); 'Will clear selected text

View(LogHandle()).Window(50,50,100,100); 'Show log window too

CursorSet(2); 'Show two cursors

var bins%, binSz:=0.01, offset:= -1.0;

Analysis commands

 Spike2 training manual Scripts and Spike2 data

83

binsz := Input("Set the binsize in seconds", binsz, 0.0001, 0.1);

bins% := 2.0/binsz; '2 seconds wide, calc bins

rh% := SetPSTH(3, bins%, binsz, offset, 2); 'create result view

Window(0,50,50,100); 'position the view

WindowVisible(1); 'display new view

While View(-1).Interact("Select area",36,0,"Quit","Add area")=2 do

 CursorRenumber(); 'get the right way around

 Process(View(-1).Cursor(1), View(-1).Cursor(2),0,1); 'process

 PrintLog("Processed from %.6f to %.6f\n",

 View(-1).Cursor(1), View(-1).Cursor(2));

WEnd;

Points to notice include:

1. We leave the current view as the target result view, but we use View(-1).xxx as a

view override. The -1 means the time view associated with this result view. This is

provided as a shorthand method, and saves explicitly specifying the time view.

2. A common mistake is to write Process(Cursor(1),Cursor(2)); which can

cause a lot of head scratching, especially if there are cursors in the result view, as

you may get no error, but instead the data range added makes no sense.

This script does have one more problem left to solve. Each time you run it you are left

with another result view. One simple solution is to add a FileClose() command at the

end so the user will be asked if they want to save the view, or let them cancel the close.

When analysing Spike2 data one often needs to create new data channels derived from

the raw data. For example:

1. An event channel holding an event every time there is a peak in a waveform channel.

2. A channel with an event every time a waveform channel has a peak below zero volts.

3. A waveform channel containing a rectified version of another waveform channel (or

maybe a differentiated, filtered or integrated version).

Spike2 can add new channels to a data file and fill them with data. These channels are

called memory channels. They differ from file-based channels in the following ways:

1. They are not saved and restored when you close and open a data file.

2. They are limited by available memory (in Windows they are limited by the virtual

memory you have enabled, on the Macintosh they are limited by the memory space

you have allocated to your Spike2 application).

3. You can edit the data, and insert or delete sections.

4. You can create up to 26 memory channels that are attached to a data file.

5. They have channel numbers starting from 101.

There are three steps to creating your own channel in a data file with a script:

1. Create a new channel with the desired properties (channel type, resolution etc.)

2. Place data into this channel, then you will probably want to either:

3a. Save this channel to disk so it is permanently part of the data file, or

3b. Extract a table of times/values from this new channel and print them to a text file

and then discard the new channel.

You can, of course, extract a table of results AND save the new channel to disk. In this

tutorial, we will write two scripts. One will create an event memory channel and dump

data from it. The second will create a waveform memory channel with a modified version

of the raw data waveform in and then save this channel to disk. These two scripts cover

most of the basic concepts and standard functions that you will need to write your own

data analysis scripts. You will find more information about memory channels in the

Advanced topics chapter.

Memory channels

Creating memory channels
from a script

Scripts and Spike2 data Spike2 training manual

84

Our first script will do the following:

1. Open the demo file “demo.smr”.

2. Create a new event memory channel

3. Import as markers, all the peaks from channel 1 Sinewave.

4. Create a text file and dump a table of x,y co-ordinates of the peaks in 1 Sinewave to

this file. (This text file can then be imported to a spreadsheet for further analysis).

To start with we need to open the demo data file and create a new memory channel.

'mem1a.s2s

'

'This script opens the demo file and creates a new memory marker

'channel. This new memory channel is made visible, but is only

'stored in memory and not on the hard disk, so when the file is

'closed this channel disappears

var vh%; 'View handle

var mmChan%; 'Memory channel number

vh%:=FileOpen("demo.smr", 0, 1+2);'Open the demo data file

if vh%<0 then Message("No demo file");Halt endif; 'open file?

Interact("Press OK to create new channel", 36); 'Wait for OK

mmChan%:=MemChan(5); 'Create memory marker channel

ChanShow(mmChan%); 'Make the new channel visible

MemChan() is used to create a new memory channel in a data file. Type 5 (which we

have used) means we want to create a marker channel. The MemChan() function returns

the channel number of the new channel that has been created. This is important as we

cannot know in advance what channel number this newly created channel will be and

later in the script we will need to refer to this new channel by channel number. The line:

mmChan%:=MemChan(5);

creates a new memory marker channel and places the channel number of this newly

created channel into the variable mmChan%. From now on, whenever we need to refer to

this channel by channel number, we will simply refer to the variable mmChan%.

When a channel is first created, it is created hidden. So though we would be able to add

data to the channel, we would not be able to see it. We use the ChanShow() function to

show the channel in the file. The argument passed to ChanShow() is the number of the

channel to display.

Run the script. The first time you run the script, the demo data file will be opened and

displayed on the screen. The script waits at the Interact() statement until the user

clicks “OK” in the toolbar. Then it creates the new memory channel.

The new memory channel is channel 101 Memory (101 is the channel number and

Memory is the channel title). When the script was run this first time, mmChan% was set to

101 when the MemChan() function was called.

Now run the script again without closing demo.smr file first. The script makes a new

memory channel but this time it is number 102 (since there is already a channel 101).

If you close demo.smr and reopen it, the newly created memory channels will disappear.

Memory script 1

Step 1: Open file and make
memory channel

Creating memory marker
channels

 Spike2 training manual Scripts and Spike2 data

85

We will do two things here.

1. When the demo data file is first opened, there may be any number of the channels in it

hidden or showing. Since we are only interested in channel 1 and our new memory

channel, we will hide all the others and just show these two. This will make the file

visibly clearer for the user.

2. Import the peaks using the MemImport() function.

Just before the Interact statement, add the following two lines (or open mem1b.s2s):

ChanHide(-1); 'Hide all channels

ChanShow(1); 'Show channel to import

We have already come across ChanShow(). ChanHide() works in exactly the same way

but hides channels instead of shows them (an argument of -1 means to hide all the

channels). So these two lines hide all the channels except for channel 1 (the one we are

going to extract peaks from). Now, at the end of the script, add the line:

MemImport(mmChan%, 1, 0, 120, 0, 0, 1); 'Import peaks

This line imports peaks into our memory channel. MemImport() expects 7 parameters:

The memory channel number (mmChan% in our case)

The input channel number (1)

The start time (0 sec)

The end time (120 sec)

The mode of importation (0 - peak detection mode)

The time and level values (0 and 1, these are explained in detail in the Spike2 manual)

Run the script. This will import the peaks to the memory channel as markers. Try going

to the view menu and changing the draw mode for the memory channel.

Next, we will write a function to print the co-ordinates of each of the detected peaks to a

new text window (or open mem1c.s2s). This is a task that is ideally suited to be a user-

defined function. This function will have two arguments, an event channel number and a

waveform channel number. The function will firstly create a new text window. It will

then find the time of the first event in the event channel and the value of the waveform

channel at that time and then print that pair of numbers to the text window. Then it will

find the time of the next event and do the same thing. It will repeat this process until there

are no more events to find in the event channel. The function looks like this:

'Prints the value in waveChan% at times specified

'by events in eventChan% to a text window

func PrintMarkVals(eventChan%, waveChan%)

var time:=0; 'Set to start of file

var txt%; txt%:=FileNew(1,1); 'Create a new text window

if txt%<0 then Message("Text file not opened");Halt endif;

repeat

 time:=View(vh%).NextTime(eventChan%, time); 'Find next event

 if time<>-1 then 'if found, print wave value at time

 Print("%f\t%f\n",time,View(vh%).ChanValue(waveChan%,time));

 endif;

until time=-1; 'until no more events left

FileClose();

end;

There is a new system function here, NextTime(). It expects two arguments, a channel

number and a time and returns the time of the next event in the channel after the time

passed into it. If there are no events after this time, the function returns -1.

The user-defined function PrintMarkVals() has a variable, time, which is initialised

to 0 seconds. time is set to the time of the next event after 0 seconds. If an event is

Step 2: Import peaks into
memory channel

Step 3: Print the output

Scripts and Spike2 data Spike2 training manual

86

found, it prints the time and the waveform channel value at that time to the text window.

This is the x,y co-ordinate of the first peak. Then we go back to the repeat statement

and do this again until we don’t find a new event.

When NextTime() fails to find an event, printing is skipped and when the script reaches

the until statement, it does not go back to the repeat, but instead carries on to the end

of the function.

Note: We used a Tab (\t) to separate the time from the waveform value when printing

to the text view. We could have used a comma, or a space, or indeed any

character but in our experience Tab is the most commonly accepted character in

spreadsheets and word processors.

Append this function to the script and then add the following lines after the

MemImport() statement.

Interact("Press OK to print to a text file", 36); 'Waits for OK

PrintMarkVals(mmChan%, 1); 'Print the peak values

The first line we are familiar with, it just makes the script wait until the user presses OK

in the toolbar at the top of the screen before continuing. The second line calls our newly

defined function PrintMarkVals(), passing in mmChan% as the event channel and 1 as

the waveform channel.

Try running it now. The extracted results are printed to a text window on the screen and

then when the script tries to close the text window, you are prompted about whether you

wish to save it or not. You should select Yes. This file can then be opened in a

spreadsheet application.

The script now does the task. There are a few things that should be done to tidy it up:

1. It is not good programming practice to have numbers in a program without it being

obvious what they are or how to change them. For example, we have extracted the

peaks from channel 1, but what if we wanted to extract troughs from channel 6? We

would have to find which “1”s in the script were referred to the channel and change

them to “6”s and change the MemImport() function to detect troughs, not peaks.

 It is better to have a list of “constants” at the top of the script specifying such things

and replace the numbers with the constants in the body of the script. In the final

version we have replaced many of the numbers with constants.

2. A problem with Interact() is that it makes a toolbar appear at the top of the

screen and then disappear when it leaves the statement. This means that the screen

gets jiggled about a lot during the running of the script and is not very pleasing to the

eye. So near the beginning of the script, we have added the line:

 ToolbarVisible(1); 'Make toolbar always visible

 This makes a toolbar appear at the top of the screen throughout the running of the

script whether the script is waiting at an Interact() statement or not.

3. Before Spike2 version 3, text windows could hold a limited amount of text (typically

less than 32000 characters). This is no longer the case, but text windows get slower

as the text within them increases. For our example this did not matter very much as

we were not printing a huge number of results to it. However, if you do not need to

see your results being printed and you will always add text at the end of the file, it is

better to print them to an “external text file”. These files can be of any size and are

usually faster to write to, especially for very large files.

 To use an external text file instead of a text window, we have used the line

 txt%:=FileOpen("",8,1); 'Open an external text file

Step 4: Tidy up

 Spike2 training manual Scripts and Spike2 data

87

 instead of the FileNew() command. This will prompt the user for a file name for

the text file and then dump all the results directly to disk.

The final mem1.s2s script looks like this:

'mem1.s2s

'This script opens the demo file and creates a new memory marker

'channel. This new channel is made visible, but is only stored in

'memory, not on disk, so when the file closes it is lost. The

'script uses MemImport to fill the new channel with peak times.

'Finally it prints the peak positions to an external text file

const channel%:=1; 'Channel to import peaks from

const sTime:=0; 'Start time

const eTime:=120; 'End time

const mode%:=0; 'Importation mode

const time:=0; 'Min interval between events

const level:=1; 'level to fall/rise/cross

var vh%; 'View handle

var mmChan%; 'Memory channel number

ToolbarVisible(1); 'Makes toolbar always visible

vh%:=FileOpen("demo.smr", 0, 1+2); 'Open the demo data file

if vh%<0 then Message("No demo file");Halt endif; 'check OK

ChanHide(-1); 'Hide all channels

ChanShow(channel%); 'Show channel to import from

Interact("Press OK to create new channel", 36); 'Wait for OK

mmChan%:=MemChan(3); 'Create a memory marker channel

ChanShow(mmChan%); 'Make the new channel visible

 'Import peaks to new channel

MemImport(mmChan%, channel%, sTime, eTime, mode%, time, level);

Interact("Press OK to print a text file", 36); 'Wait for OK

PrintMarkVals(mmChan%, channel%); 'Print peaks to the log window

'This function prints the value in waveChan% at times specified

'by events in eventChan% to a text file

'func PrintMarkVals(eventChan%, waveChan%)

var time:=0; 'Set to start of file

var txt%;

txt%:=FileOpen("",8,1); 'Open an external text file

if txt%<0 then Message("Text file not opened");Halt endif;

repeat

 time:=View(vh%).NextTime(eventChan%, time); 'Find next event

 if time<>-1 then ' if there is one print wavechan% value

 Print("%f\t%f\n",time,View(vh%).ChanValue(waveChan%,time));

 endif;

until time=-1; 'until no more events left

FileClose();

end;

Scripts and Spike2 data Spike2 training manual

88

For our second memory channel script, we will create a waveform memory channel and

fill it with a waveform that is a rectified version of the waveform in channel 1 Sinewave.

The script will:

1. Open the demo file “demo.smr”

2. Create a new waveform memory channel.

3. Copy a section of the waveform from channel 1 Sinewave into an array.

4. Rectify the array.

5. Copy the waveform form the array into our new memory channel.

As a final refinement, we will allow the user to choose the file and channel to rectify.

The first step is almost identical to the first step of Memory channel script 1.

'mem2a.s2s

'

'This opens the demo file and makes a waveform memory channel.

'This new channel is made visible, but is stored in memory, not

'on disk, so when the file is closed this channel disappears

var vh%; 'View handle

var mmChan%; 'Memory channel number

vh%:=FileOpen("demo.smr", 0, 1+2); 'Open the demo data file

if vh%<0 then Message("No demo file");Halt endif; 'Check OK

Interact("Press OK to create new channel", 36); 'Wait for OK

mmChan%:=MemChan(1, 0, 0.01); 'Make waveform, 0.01 binsize

ChanShow(mmChan%); 'Make the new channel visible

The difference is that MemChan() has different arguments. The first argument tells it

what type of channel to create. We have used type 1, waveform. The next argument is not

used when creating a waveform channel and so is set to zero and the last argument is the

bin size of the channel (1/sampling frequency). We have set this to be 0.01 to match as

the bin size of channel 1 Sinewave.

Try running the script. You will see the new memory channel appear in the data file.

Note that, again, it disappears if you close the file and reopen it.

Now we create a function to extract the waveform from channel 1 and (for the moment)

print all the values in it to the log view. We will call this function DoData(). It is quite

important that this is done as a separate, user defined, function. The reason for this will

be made clear later. Our new function looks like this (add it to the end of the script we

have so far or open mem2b.s2s):

'Take the waveform from channel oldChan% and prints it to the

'log view. It assumes you do not have more than 1000 data points

func DoData(newChan%, oldChan%, sTime, eTime)

var arr[1000]; 'Assume 1000 points maximum

var pts%; 'Number of points extracted

pts%:=ChanData(oldChan%, arr[], sTime, eTime); 'get data points

PrintLog("%f",arr[:pts%]);

end;

The important line in this function is:

pts%:=ChanData(oldChan%, arr[], sTime, eTime); 'get data points

This function retrieves all the data points within two times (sTime and eTime) and

places the values into an array (arr[]). We do not know in advance exactly how many

data points will be extracted, so the ChanData() function returns the number of data

points placed into the array.

Memory script 2

Step 1: Make a waveform
channel

Step 2: Extract waveform
data

 Spike2 training manual Scripts and Spike2 data

89

From now on, when referring to the data stored in arr[], we will refer to it as

arr[:pts%]. This notation means, just consider the first pts% points in the array. This

is important because if, for example, you want to print out the values you have extracted

and you just had:

PrintLog("%f", arr[]);

This would print out 1000 values (the size of arr[]) to the log view when you may have

only extracted 10 values from the data channel.

We need to call our new function, so after the ChanShow(mmChan%); line, we add:

DoData(mmChan%, 1, 0, 10); 'Copy waveform from chan 1 to mmChan%

This line calls our DoData() function. It tells it that the new memory channel is channel

mmChan%, the channel to take the data from is channel 1 and we wish to look at data from

0 to 10 seconds.

If we make the log view visible and run the script, we will see the value at each sample

in the first ten seconds of waveform printed to the log view.

Now that we have seen the data extracted from the raw data waveform and placed into an

array, we need a way of placing the data in the array back into the new memory channel.

Either open mem2c.s2s or replace the line:

PrintLog("%f",arr[:pts%]); 'Print the array to the log view

with:

MemSetItem(newChan%, 0, sTime, arr[:pts%]);'Copy to new channel

MemSetItem() allows you to place one or more items into a memory channel. In this

case, we have specified that we want to place data in channel newChan%, starting at time

sTime and use the first pts% points in arr[] as our source.

Run the script. A copy of the channel 1 Sinewave data appears in the memory channel.

Try changing the line

DoData(mmChan%, 1, 0, 10); 'Copy waveform from chan 1 to mmChan%

to

DoData(mmChan%, 1, 0, 40); 'Copy waveform from chan 1 to mmChan%

i.e. instead of copying the first 10 seconds, copy the first 40 seconds. Run the script. It

doesn’t work. The script still copies the first 10 seconds. This is because our DoData()

function assumes a maximum of 1000 data points (we defined an array with 1000 bins).

For the script to copy 40 seconds of data, the array must be of size 4000. But then,

suppose we want to copy even more data? Or maybe we want to choose a channel whose

sampling rate is higher than 100Hz? We need to set the array size based upon the size of

the data section we wish to extract.

This can be done by defining an integer variable to be the maximum number of data

points that we will need. This is dependent upon the start time, end time and bin size of

the data section we wish to retrieve. We can then define our array to be of this size. Our

new script looks like this:

Step 3: Copy data to
memory channel

Step 4: Arrays of variable
size

Scripts and Spike2 data Spike2 training manual

90

'mem2d.s2s

'

'This opens the demo file and makes a waveform memory channel.

'It copies the first fifty seconds of the waveform in channel 1

'to the new memory channel

var vh%; 'View handle

var mmChan%; 'Memory channel number

vh%:=FileOpen("demo.smr", 0, 1+2);'Open the demo data file

if vh%<0 then Message("No demo file");Halt endif; 'Check OK

Interact("Press OK to create new channel", 36); 'Wait for OK

mmChan%:=MemChan(1, 0, 0.01); 'Make waveform, 0.01 binsize

ChanShow(mmChan%); 'Make the new channel visible

DoData(mmChan%, 1, 0, 50); 'Copy from channel 1 to mmChan%

 'first 50 sec only

'This copies the waveform from channel oldChan% to newChan%

'It does not matter how many points need extracting.

func DoData(newChan%, oldChan%, sTime, eTime)

var maxSize%;

maxSize%:=Trunc((eTime-sTime)/Binsize(oldChan%))+1;

var arr[maxSize%]; 'Set array with points required

var pts%; 'Number of points extracted

pts%:=ChanData(oldChan%, arr[], sTime, eTime);'Get data points

MemSetItem(newChan%, 0, sTime, arr[:pts%]); 'copy to new channel

end;

Our variable we have defined in our DoData() function called maxSize% is the

maximum number of data points that could be extract using ChanData() given that we

know the bin size of the channel and the length of data section we want.

We still do not know exactly how many points will be extracted because there may not be

a continuous stream of data between sTime and eTime, so we still need to use the pts%

variable to keep a record of how many points have been placed in the array.

It was mentioned earlier that we must put our data extracting routine in a user-defined

function. The reason for this is that you can only define arrays with a variable specified

size as local arrays existing inside a function. If you try to define a global array in this

way the script will give a compiler error.

We can run our script now with any size of data section to copy and we no longer need to

worry about whether all our data will fit into the array we have defined.

There are now 3 things left to do:

1. We need to alter our DoData() function slightly, so that it does not just make a

straight copy of the data section, but instead makes a rectified version of it.

We do this by changing the data in the array, after we have extracted data and before

we have placed it in the memory channel. The Abs() function takes an array as an

argument and converts every negative element into a positive element of equal

amplitude. i.e. if you pass in an array holding 0, -1, 4 and -6.2 to Abs() it will

turn it into 0, 1, 4 and 6.2.

2. It would be nice to open any file and rectify any channel. Our final version lets the

user specify a file and channel. The memory channel is created with the same bin size,

scale and offset as the selected channel. The entire channel (0 to Maxtime()) is

rectified into the new memory channel.

Step 5: Tidy up

 Spike2 training manual Scripts and Spike2 data

91

3. We need to add a function to the script to save our memory channel as a proper data

channel on disk so it is part of the data file and not just stored in memory. Our new

SaveChannel() function creates a list of unused channels and then saves our new

channel in the first available slot.

A listing of the final script follows:

'mem2.s2s

'This script lets a user open a data file and select a channel to

'rectificy. It creates a memory channel with the same binisze as

'the selected channel and copies a rectified version to it. The

'user is prompted to press OK to save the newly created channel

var vh%; 'View handle

var mmChan%; 'Memory channel number

var channel%; 'Channel to rectify

var ret%; 'Return dlg value (OK or cancel)

vh%:=FileOpen("", 0, 1+2); 'Open a data file

if vh%<0 then Message("No file opened");Halt endif;'Check OK

DlgCreate("Rectifiy channel"); 'dialog box to select a channel

DlgChan(1,"Select channel to rectify", 1);'prompt for waveform

ret%:=DlgShow(channel%); 'display dialog box

if ret%=0 then Halt endif; 'if user pressed Cancel

mmChan%:=MemChan(1, 0, Binsize(channel%));'Create waveform

 'with binsize same as channel%

ChanScale(mmChan%, ChanScale(channel%));'Set channel properties

ChanOffset(mmChan%, ChanOffset(channel%));

ChanTitle$(mmChan%,"Rectify");

ChanShow(mmChan%); 'Make the new channel visible

DoData(mmChan%, channel%, 0, Maxtime());'Copy chan 1 to mmChan%

Interact("Press OK to save new channel", 36); 'Wait for OK

SaveChannel(mmChan%);

'This copies a waveform from channel oldChan% to newChan%

'It does not matter how many points need extracting.

func DoData(newChan%, oldChan%, sTime, eTime)

var maxSize%;

maxSize%:=Trunc((eTime-sTime)/Binsize(oldChan%))+1;

var arr[maxSize%]; 'Set array size required

var pts%; 'Number of points extracted

pts%:=ChanData(oldChan%, arr[], sTime, eTime); 'Get data points

Abs(arr[:pts%]); 'rectify the data in the array

MemSetItem(newChan%, 0, sTime, arr[:pts%]);

end;

'This saves the memory channel to an unused channel on disk

func SaveChannel(chan%)

var list%[126]; 'List of unused channel numbers

ChanList(list%[],128); 'Copy channel numbers into array

if list%[0]>0 then 'If an unused channel

 MemSave(chan%, list%[1]); 'then save memchan into it

 ChanShow(list%[1]);

endif;

end;

Things to note in the final script:

1. Instead of automatically opening demo.smr, you are prompted to choose a data file.

This is because a blank string has been placed in the FileOpen() command instead

of “demo.smr”.

2. The script now puts up a dialog box prompting you to select a channel to rectify.

This is because of the addition of the following four lines:

Scripts and Spike2 data Spike2 training manual

92

DlgCreate("Rectifiy channel"); 'dialog box to select a channel

DlgChan(1,"Select channel to rectify", 1);'prompt for waveform

ret%:=DlgShow(channel%); 'display dialog box

if ret%=0 then Halt endif; 'if user pressed Cancel

When these lines run, the dialog box appears and the script waits at the DlgShow()

command until either OK or Cancel is pressed. If OK is pressed, channel% is made

equal to the channel number selected and ret% is made equal to 1. If Cancel is

pressed then ret% is made equal to 0 (hence the last line checks that OK has been

pressed before continuing with the analysis).

3. The new memory channel is created with the same bin size, scale and offset as the

selected channel and is given a title “Rectify”.

4. When DoData() is called, the start and end times that are passed are 0 and

Maxtime(). Maxtime() is a function that returns the maximum time of the current

view (in our case, the current view is the data file we opened, so DoData() will

process the entire file).

5. In the DoData() function, the line

Abs(arr[:pts%]); 'rectify the data in the array

has been added before the array of data points is placed in the new memory channel.

This function rectifies the values in the array. It is at this stage that any manipulation

of the data in the channel should be performed. Spike2 has many powerful routines

for manipulating data in arrays. Nearly all of them start with Arr… (e.g.

ArrConst(), ArrAdd(), ArrFilt()) so it is worth looking these up in the Spike2

script manual. Also, many of the functions that can be used to transform one number

into another can operate on arrays too. We have used Abs(), which usually returns

the absolute value of a number, but can perform the operation on an array also (other

examples of this are the Sin() and Cos() functions).

6. Finally, we have created the SaveChannel() function. The two main commands in

this function are ChanList() and MemSave(). ChanList() fills an array with

channel numbers of a particular type. The type depends upon the number passed to

it. We have passed 128 which means get a list of unused channel numbers. The first

element of the array is set to the number of channels placed in the list, so we check

that there have been some placed in there before continuing. The MemSave()

function saves the memory channel specified by the first argument to a channel

number specified by its second argument. The second argument we have passed to it

is list%[1] (the first channel number in the list of unused channels).

 Using scripts on-line

93

The turnkey tools for processing sampled data and stimulus generation that are available

in Spike2 suffice for many applications. However, it is inevitable that there are situations

where the specific data processing requirements of a particular application are not

available as a menu option. You can customise Spike2 with the script language to

perform tasks beyond those available from interactive operations.

The Sample...() family of script functions sets sampling configuration information,

controls sampling and interacts with the sampling in various ways.

The following commands (and many others) operate on the sampling configuration to

define sampling. They can be used so that the user does not have to manually load or set

up a sampling configuration:

SampleCalibrate() SampleClear() SampleComment$()

SampleDigMark() SampleEvent() SampleLimitSize()

SampleLimitTime() SampleMode() SampleSequencer()

SampleTextMark() SampleTimePerAdc() SampleTitle$()

SampleUsPerTime() SampleWaveform() SampleWaveMark()

The second group of commands control sampling in much the same way as the sampling

control panel. They can usefully be used within toolbar button functions to start and stop

sampling, and similar operations:

SampleAbort() SampleReset() SampleStart()

SampleStop() SampleWrite()

The final group of commands gets information on the sampling windows and sampling

state, controls the output sequencer and writes keyboard and text markers to the data file:

SampleHandle() SampleKey() SampleSeqVar()

SampleStatus() SampleText()

The script below and on the next page generates a sampling configuration that matches

the sampling configuration dialog:

SampleClear(); Set a standard state

SampleUsPerTime(10); Set the basic time unit to 10 microseconds

SampleTimePerAdc(10); Set the number of time units per waveform

sample. (100 µs = 10 kHz overall rate)

Using scripts on-line

The sample family of
commands

Sample setup

Sample control

Sampling
configuration

commands

Using scripts on-line Spike2 training manual

94

SampleMode(1); Set the sample mode to 1 (continuous)

SampleLimitTime(-600); Set the Run time for sampling. In this case a

negative value disables the limit.

SampleLimitSize(-1024); File size to create before terminating sampling.

Negative values disable the limit.

SampleSequencer(""); No output sequencer file.

SampleWaveform(1,0,100); Set channel 1 as 100 Hz waveform on port 0

SampleCalibrate(1," volt",1,0); Set channel 1 waveform calibration.

SampleTitle$(1,"Waveform"); Set the waveform channel title.

SampleComment$(1,"Comment"); Set the waveform channel comment.

SampleTitle$(31,"Keyboard"); Set the keyboard channel title, channel 31.

SampleComment$(31,"Comment"); Set a comment for Keyboard, channel 31.

An easy way to convert the settings in the sampling configuration window into a script is

to go to the Script menu, turn recording on, use the File menu New command to create a

new data file, then turn recording off to get a script matching your settings.

The script is a lot of typing to generate two

channels, but it is easily extended. The code below

creates a simple dialog as shown on the right. The

variable chNo% sets the number of waveform

channels we want to use and rate sets the rate to

sample at:

var ok%, chNo%, rate, textMark%;

DlgCreate("Set-up"); 'New dialog

DlgInteger(1,"Number of Waveform Channels", 1, 16);

DlgReal(2,"Sample Rate All Channels Hz", 1, 1000);

DlgCheck(3,"TextMark Channel?");

ok% := DlgShow(chNo%, rate, textMark%);

The TextMark box, if checked, determines whether a TextMark channel is added to the

configuration or not. The following addition to the dialog code will result in the dialog

settings being written to the sampling configuration.

var input%; 'waveform input port

SampleClear(); 'clear the existing configuration

SampleUsPerTime(2); 'set a time resolution

input% := chNo%-1; 'set input port for last channel

repeat 'Repeat until all channels done

 SampleWaveform(chNo%, input%, rate); 'create new channel

 input% := input%-1; 'decrement the input counter

 chNo% := chNo%-1; 'decrement the channel number

until chNo% = 0; 'finish when no channels left

if textMark% = 1 then 'if TextMark selected then...

 SampleTextMark(200) '...set with 200 characters

endif;

SampleUsPerTime(2); 'set a time resolution

SampleOptimise(1, 1, 7); 'Optimise ADC for a Power1401 mk II

SampleUsPerTime() sets the overall time resolution of the file. It is important to

remember that if the maximum single channel rate is too small the desired sample rates

for the channels will not be achieved. Either use SampleTimePerAdc() to set fixed total

ADC rates or SampleOptimise() to find the best settings for a particular 1401 type.

It is not always necessary to write all the script commands to produce a complete

sampling configuration; your script can be designed to work with whatever sampling

configuration is loaded or it could start off with the loaded configuration and modify it in

a limited manner based on user input.

 Spike2 training manual Using scripts on-line

95

These script commands take the place of the various sampling control panel functions. A

convenient way to make use of them is to provide toolbar buttons that provide the

required functionality. This might appear to be a lot of work just to mimic the sampling

control panel, but it puts the script in charge of everything and makes sure that the script

code can keep track what is going on. An example of such a script might be:

var fh% := -1; 'No sampling document yet

DoToolbar(); 'DoToolbar does all the work

Halt;

Func DoToolbar()

ToolbarClear(); 'Remove any old buttons

ToolbarSet(1, "Quit"); 'Quit the script

ToolbarSet(2, "Start", Start%); 'Link to Start function

ToolbarSet(3, "Stop", Stop%); 'Link to Stop function

ToolbarSet(4, "Reset", Reset%); 'Link to Reset function

 ... disable stop and reset buttons

return Toolbar("Your prompt", 0);

end;

Func Start%() 'Start sampling button

fh% := FileNew(0, 1); 'Create the new file

 ... check for errors here

SampleStart(); 'Start sampling

 ... enable stop and reset buttons

return 1; 'Leave toolbar active

end;

Func Stop%() 'Stop sampling button

SampleStop(); 'Stop the sampling

View(fh%);

FileSaveAs(“*.smr”, -1); 'Get user to save the new file

FileClose(0, -1); 'Close the new data file

 ... disable stop and reset buttons

return 1; 'Leave toolbar active

end;

Func Reset%() 'Reset sampling button

SampleReset(); 'Clear out all sampled data

SampleStart(); 'Start sampling

return 1; 'Leave toolbar active

end;

This is not particularly elegant and we have omitted the code to enable and disable

toolbar buttons, but the script does work, and makes sure that new data is saved to disk

immediately after sampling finishes.

The script provides 4 buttons, 3 of which mimic the floating sampling control window

and the 4th quits the script. This sampling is assumed to write data continuously to disk,

it would be necessary to use the SampleWrite() command to switch on and off the

sampling to pause the disk writing, presumably via an extra button (as below).

Now that you have implemented some control over the sampling, the script could also

relay information about the sampling status and write to a file extra information not

obtainable from the 1401.

For example we might want to insert a TextMark but this can only be achieved reliably if

the TextMark channel is being stored to disk. To check the status and write information if

disk write is on we can use code like:

Control of sampling

Writing data and
information gathering

Using scripts on-line Spike2 training manual

96

ToolbarSet(7,"Textmark", Text%); 'add to the toolbar above

...

if SampleWrite(-1,30) = 1 then 'If disk write is active then

 SampleText("new text", MaxTime()); 'add TextMark at current time

endif;

The second section of script should be called from a toolbar button or at the moment

when disk write is enabled so that comments can be added to the file and not lost.

Many scripts use a button marked Disk Write ON or Disk Write Off alternating between

the two states depending on what the sample write status is at that time. The section of

script to follow allows the user to select pause writing to disk on or off this can be

accomplished by:

Toolbarset(6,"Disk Write?" record%);'Button for function

...

Func Record%() 'Button 6 function

if SampleWrite(-1)=0 then 'if writing to disk is not on...

 SampleWrite(1); '...Switch disk write on and...

 ToolbarSet(6, "Disk Write ON", record%); '...change the label

else

 SampleWrite(0); 'If writing is ON then switch off

 ToolbarSet(6, "Disk Write Off", record%); 'and change label

endif;

return 1; 'This leaves toolbar active

end;

The SampleWrite() command is particularly interesting in that it can selectively

disable writing of some or all data channels, so it is possible to choose a data channel and

prevent it from being written whilst others are still being written. This could result in a

file of 2 channels, neither of which is saved to disk at the same time. A copy of the

completed version of this script given sampling.s2s.

Scripted analysis can be usefully employed in online situations where the software

performs a particular task in response to a certain condition or to provide special

analyses, for example measurements relative to a logged event.

Most aspects of scripted analysis operate in exactly the same manner when used online or

offline, the only real difference is that the duration of the data file keeps on increasing. A

key requirement is a mechanism that monitors the data being captured by Spike2 and

determine if the correct time for action has been reached.

It might be tempting to write a script such as that given below to test a condition and

generate an appropriate response (assume we run the script having begun data capture

with 1 event channel being sampled on channel 1):

var evcount%; 'events in file so far

repeat 'start of monitoring loop

 evcount%:=Count(1, 0, Maxtime(1)); 'Total number of events

until evcount% > 1000; 'wait for > 1000 events

doanalysis(); 'then do the analysis

halt;

proc doanalysis() 'analysis procedure

Message ("More than 1000 events!"); 'trivial message

return

end;

Scripted analysis
while sampling

How not to do it

 Spike2 training manual Using scripts on-line

97

This code does indeed detect the required number of events. However, the loop makes no

provision for Spike2 to handle sundry tasks such as updating the display or reacting to

mouse operations. Other Windows applications will still run (possibly rather slowly) and

the loop will block other Spike2 activity such as online analysis.

A trivial solution to this problem is to return some time to Windows using the Yield()

function, so that the loop looks like:

repeat 'start of monitoring loop

 Yield(0.05); 'Pause script for c. 50 ms

 evcount%:=Count(1, 0, Maxtime(1)); 'Total number of events

until evcount% > 1000; 'wait for > 1000 events

This will give time back to Windows and the rest of Spike2 while the loop is executing.

Yield() can be a satisfactory solution in some circumstances (mostly when you want a

quick fix) but is best avoided as scripts designed in this manner tend to be inflexible and

either block user interaction with the sampling or have trouble dealing with user actions.

For example the script above would be singularly annoying if no events were being

logged for some reason – there is no way to break out of the repeat loop.

A better solution is to use a toolbar idle function. This is a function just like the standard

toolbar button functions, but it is executed whenever the system is not busy. We call this

quiescent state idling hence the term idle function.

A toolbar idle function is defined by defining button number 0. The linked function is

called repeatedly while the toolbar is active and the system is not busy. Button 0 is not

displayed on the toolbar as the function is called automatically. Like the other button

functions, the idle function returns 1 to keep the toolbar active and 0 to cause the toolbar

to terminate. Here is an example script showing this method:

ToolbarSet(0, "", idle%); 'idle routine entry

ToolbarSet(1, "Stop", stopsampling%); 'button to stop sampling

ToolbarEnable(1, 0); 'disable stop button

ToolbarSet(2, "Start", startsampling%); 'button to start sampling

Toolbar("Sampling control", 1023); 'show toolbar

Message("Sampling is over"); 'tell user we are done

halt; 'all done!

func startsampling%() 'button 1 function

FileNew(0, 3); 'create new file

SampleStart(); 'start off sampling

ToolbarEnable(1, 1); 'enable stop button

ToolbarEnable(2, 0); 'disable start button

ToolbarText("Sampling in progress"); 'update toolbar message

return 1; 'keep toolbar active

end;

func stopsampling%() 'button 2 function

SampleStop(); 'finish sampling

ToolbarText("Stopped"); 'update toolbar message

return 0; 'stop toolbar

end;

func idle%() 'idle routine

if samplestatus() = 2 then 'if we are sampling

 if maxtime() > 10 then 'if sampled > 10 seconds

 SampleStop(); 'stop sampling

 return 0; 'stop toolbar too

 endif;

endif;

return 1; 'leave toolbar running

end;

Somewhat improved example
using Yield()

Using a Toolbar idle
function

OnScr1.s2s

Using scripts on-line Spike2 training manual

98

The MaxTime() function used above returns the highest time in the data file and is the

simplest way of keeping track of the progress of data acquisition.

The idle function is called many times a second and should be designed to do the

minimum necessary each time it is called and then return, relying upon its being called

again soon. If the idle function often takes a significant time to execute Spike2 will

become somewhat unresponsive so it is important to throttle activity and/or to test to see

if anything actually needs doing. It is, please note, not a problem if the idle function uses

a bit of time to do some analysis on occasion, your aim should be to spread any analysis

out so that any individual burst of analysis is fairly short:

var tDone; 'Last time analysed

' This should be done as part of starting or restarting sampling

tDone := 0; 'No analysis done yet

' The toolbar idle function analyses every two seconds

Func Idle%() 'idle function

if SampleStatus()=2 then 'if we are sampling

 if Maxtime() >= tDone+2 then 'and have 2 seconds unanalysed

 DoAnalysis(tDone); 'Analyse starting at last time

 tDone += 2; 'Move the time done on

 endif;

endif;

return 1; 'leave toolbar running

end;

This function uses the global variable tDone to keep track of the time that analysis has

reached and, each time there is at least two seconds of un-analysed data available, calls

the analysis function and moves on tDone by two seconds. While the analysis function

could take an appreciable time to execute, it is only called every two seconds so Spike2

should appear to run smoothly and responsively. The trick to creating a good Idle

function is to make sure you test to see what needs doing and then do just that. If nothing

needs doing, do nothing.

The tDone variable and any other variables that are needed to keep track of what is going

on in the idle function must be global (that is, declared outside of any functions) to ensure

that they are accessible from the idle function and that variable values persist between

one idle function call and the next. If tDone was local to Idle%() (that is, declared

within Idle%()) it would be re-created anew holding the value zero each time the idle

function was called and the time that analysis had reached would be forgotten.

 Idle functions are also available with script-generated dialogs so you could produce a

script which displays a dialog throughout sampling with the dialog idle function

managing analysis and dialog controlled values continuously available for editing.

You should bear in mind that though the idle function may be called many times a

second, there may also be occasions when it is not called for a long period of time,

mostly if aspects of Windows become busy. So if you are relying upon the idle function

detecting a situation very quickly, you may encounter occasional delays.

Idle function design

 Spike2 training manual Using scripts on-line

99

It is often the case that one needs rather complex behaviour in the idle function, for

example one could imagine an analysis regime that waited until the data on a waveform

channel was above a given threshold and then, for each stimulation event seen while the

waveform remains above the threshold, analyse the following two seconds of data. Doing

this within an idle function can be difficult & complex and if you change to using a still

more complicated analysis the code and control variables required to keep track of what

the idle function is doing can become unmanageable, or at least impossible to change in a

straightforward manner.

A powerful programming technique for dealing with this situation is called a state

machine. To use this we start by defining the required behaviour as a set of states that the

system can be in, with specific activities happening in each state and defined

circumstances that control movement from one state to another. So using the example

above we might have:

State Activity

0 Examine latest waveform data, move to state 1 and save current time as stimulus

time if above threshold.

1 Have we had a stimulus event since the stimulus time? If so move to state 2 and

save the event time as the stimulus time.

2 Has 2 seconds elapsed since the stimulus time? If so then analyse starting at the

stimulus time and return to state 1.

The way you would implement this would be to use a global variable to hold the state

along with other variables holding timing information, the state variable is then used in a

case statement to control activity (the complete script is given in the example code):

var state%; 'the state control

var tStim; 'last stimulus time

' This should be done as part of starting or restarting sampling

state% := 0; 'looking for threshold

tStim := -1; 'no stimuli yet

' The toolbar idle function executes the state machine

func Idle%() 'idle function

if SampleStatus()= 2 then 'if we are sampling

 var now;

 now := MaxTime(); 'save the current time

 docase

 case state% = 0 then 'state 0 look for threshold

 if chanvalue(1, now) >= thresh then

 tStim := now; 'save current time for search

 state% := 1; 'move onto stimulus search

 endif;

 case state% = 1 then 'state 1 look for stimulus

 var stim;

 stim := NextTime(3, tStim); 'look for a stimulus

 if stim > tStim then 'got one?

 tStim := stim; 'save current time for search

 state% := 2; 'move onto post-stim wait

 endif;

 case state% = 2 then 'state 2 wait 2 seconds & process

 if now >= tStim+2 then 'reached time?

 DoAnalysis(tStim); 'analyse starting at last stim

 state% := 1; 'search starting at last stim

 endif;

 endcase

endif;

return 1; 'leave toolbar running

end;

Managing complex idle
behaviour

OnScr2.s2s

Using scripts on-line Spike2 training manual

100

You should find it fairly easy to see what the code does, which is a good demonstration

of the coding clarity that a state machine provides. There is also an error in this design –

the code does not respond to the waveform level dropping below the threshold. For

correct behaviour we should define state 1 as:

1 Check waveform and move to state 0 if below threshold, otherwise if we had a

stimulus event since the stimulus time move to state 2 and save the event time as

the stimulus time.

and adjust the state 1 code to:

 case state% = 1 then 'state 1 look for stimulus

 if chanvalue(1, now) < thresh then

 state% := 0; 'back to 0 if below thresh

 else

 var stim; 'otherwise search for stim

 stim := NextTime(3, tStim); 'look for a stimulus

 if stim > tStim then 'got one?

 tStim := stim; 'save current time for search

 state% := 2; 'move onto post-stim wait

 endif;

 endif;

If the analysis is only to be performed if the waveform stays above thresh for the entire

2 seconds it would also be necessary to make similar changes to state 2. This shows the

other advantage of basing your design on a state machine – organising things in this way

makes it much easier to adjust or extend the behaviour. In particular you can extend the

behaviour by adding new states – one could imagine a second analysis regime that could

be handled by states 3, 4, 5 and 6; the rest of the script could then switch between

analysis methods by setting the state to 0 or 3 and adjusting the relevant control variables.

Many on-line scripts are very similar. The big difference between them is what happens

in the idle function. Here we shall look at a skeleton on-line script. This script has buttons

to start and stop sampling (as before), commands to create a new data file for sampling,

and a standard Idle() function that can be customised to provide the analysis you

require. The toolbar commands are now in a separate function so the main body of the

script is very small.

'This is a skeleton on-line script. It has a toolbar from which

'you can open a new data file and start and stop sampling.

'The log view at the bottom of the screen can store extracted

'values. On-line analysis should be placed in the idle function

var data%; 'Handle of new data file

var sTime; 'last time we used the idle function

ToolbarVisible(1); 'Make toolbar visible always

New%(); 'Set up new sampling window

DoToolbar(); 'Do the toolbar

func New%() 'New sampling window

View(LogHandle()); 'Make log view the current view

EditSelectAll(); 'Select all text in log view

EditClear(); 'Delete it

Window(0,80,100,100); 'Display it at the bottom of the screen

WindowVisible(1); 'Make it visbible

if data%>0 then 'If already a data view open then

 View(data%); 'Close it

 FileClose();

endif;

data%:=FileNew(0,1); 'Open a new data file for sampling

A skeleton on-line analysis
script

OnSkel.s2s

 Spike2 training manual Using scripts on-line

101

if data%<0 then Message("Cannot open new data file");Halt endif;

DrawMode(-1,2); 'Set event draw mode to lines

Window(0,0,100,80); 'Make data window in top bit of screen

XRange(0,10);

FrontView(LogHandle()); 'Bring the Log view to the front

FrontView(data%); 'Bring the data view to the front

ToolbarEnable(3,0); 'Disable "Sample stop" button

ToolbarEnable(2,1); 'Disable "Sample stop" button

ToolbarText("SAMPLE START to sample");

return 1;

end;

proc DoToolbar()

ToolbarSet(0,"",Idle%); 'Call Idle%() when there is free time

ToolbarSet(1,"Quit",Quit%); 'Set up toolbar buttons

ToolbarSet(2,"Sample start", Start%);

ToolbarSet(3,"Sample stop", Stop%);

ToolbarSet(4,"New file", New%);

ToolbarEnable(3,0); 'Disable "Sample stop" button

Toolbar("SAMPLE START to sample", 1023); 'Wait for Quit

end;

func Quit%() 'If "Quit" is pressed

SampleStop(); 'Stop sampling

return 0; 'leave toolbar

end;

func Start%() 'If "Start" is pressed

SampleStart(); 'Start sampling

sTime := 0; 'Reset the analysis time reached

ToolbarEnable(4,0); 'Disable "New file" button

ToolbarEnable(3,1); 'Enable "Sample stop" button

ToolbarEnable(2,0); 'Disable "Sample start" button

ToolbarEnable(1,0); 'Disable "Quit" button

ToolbarText("Press SAMPLE STOP to stop sampling");

return 1; 'Stay with toolbar

end;

func Stop%() 'If "Stop" is pressed

SampleStop(); 'Stop sampling

ToolbarEnable(4,1); 'Enable "New file" button

ToolbarEnable(3,0); 'Disable "Sample stop" button

ToolbarEnable(1,1); 'Enable "Quit" button

ToolbarText("Press FILE NEW to capture more data");

return 1; 'Stay in toolbar

end;

func Idle%() 'Idle function called when PC has time

if (SampleStatus() = 2) then

 var eTime;

 View(data%); 'Switch to new data view

 eTime := Maxtime(); 'Get the current maximum time

 if (eTime >= (sTime + 1)) then 'If we have enough new data

 'CODE TO ANALYSE DATA BETWEEN sTime and eTime

 sTime:=eTime; 'Update time reached

 endif;

endif;

return 1; 'Stay in toolbar

end;

You can now change the sampling configuration after running the script and then use the

“New file” button to implement the changes. The “New file” button calls the user defined

Using scripts on-line Spike2 training manual

102

function New%(). This function first checks to see if data%>0 (i.e. if a sampling

window has already been created. This will actually always be the case except for the

first time this function is called), if it is, it closes the data file associated with the handle

data%. Spike2 automatically checks, when FileClose() is called, whether there is

any data in the file and if there is offers to save the file before closing it.

When the Toolbar() function is called, it places the text “Press SAMPLE START to

commence sampling” into the message section of the toolbar. The message displayed

here can be changed from within the script using the ToolbarText() function. We have

added ToolbarText() calls to the script so the message changes to reflect the current

options available to the user.

Finally lets look at the Idle() function. There is a global variable in the script called

sTime. This is used to keep track of where we were in the data file the last time the Idle

function carried out some analysis. At the beginning of Idle() activity while sampling a

local variable eTime is set to the current maximum time in the file. We now have two

variables available to us; eTime is now and sTime is the last time we looked at the file.

Idle functions often need only operate when there is a significant amount of new data

available, in the example code it checks for there being at least one seconds-worth of new

data but this check could be changed as required. Having carried out whatever processing

is required sTime is made equal to eTime ready for testing next time the Idle function is

called, again this might need to be different according to the particular analysis

requirements – for example you might simply add 1 to sTime if you wanted to process

data in precisely one second chunks.

It is often the case that you wish to monitor incoming data and respond to a condition

with a signal output from the 1401. Spike2 features an output sequencer which can

generate outputs from the 1401. The complete details of the sequencer are covered in the

Spike2 documentation, here we will only look at interaction between a script and the

sequence.

A script provides control over a sequence at two levels. It can activate specific sequences

that are described in the sequence file and it can vary the characteristics of the signal

output (waveform amplitudes, inter-pulse intervals, etc.) by passing data across to the

sequence in a number of ways: sequencer variables, sequencer table data and arbitrary

waveform data.

We can use script commands to activate specific output sequence operations by causing

sequencer execution to jump to a specific location. Consider the following output

sequence file:

 SET 1, 1, 0 ;1 ms steps, default DAC scaling

SP: HALT ;suspend sequence until key press

AA: 'A DAC 0,5 ;Output 5 volts on DAC port 0

 DELAY 1000 ;Hold for 1000 milliseconds

 DAC 0,0 ;Reset DAC port 0 to 0 volts

 JUMP SP ;Suspend sequence

BB: 'B DIGOUT [00001111] ;Output TTL high on 4 bits

 DELAY 2000 ;Hold for 2000 milliseconds

 DIGOUT [00000000] ;Set all digital outputs to zero

 JUMP SP ;Suspend sequence

Sequence execution runs from the first line starting at the moment that data acquisition

begins. However, in this sequence file, the HALT command at the beginning suspends the

execution of the instruction list and no output occurs. However, pressing A on the

Control of stimulation

Control of sequencer
execution

AandB.pls

 Spike2 training manual Using scripts on-line

103

keyboard activates the sequence starting at the line where the 'A field has been given and

pressing B activates the sequence starting at the line where the 'B field has been given.

The SampleKey() script function simulates a user key press during data acquisition. We

can use SampleKey() in a on-line script to activate a particular part of the sequence:

var rawdata%; 'the raw data file window handle

SampleSequencer("AandB.pls"); 'set the sequence file

rawdata% := FileNew (0, 3); 'create a new data file

SampleStart(0); 'start data capture

ToolbarSet(1, "Run A", seqa%); 'assign button 1 to seq output A

ToolbarSet(2, "Run B", seqb%); 'and button 2 to B

ToolbarSet(3, "Quit"); 'don't forget quit

Toolbar("Select output", 1028); 'display toolbar

func seqa%(); 'do sequence A

View(rawdata%); 'make raw data view active

SampleKey("A"); 'simulate keypress

return 1

end;

func seqb%(); 'do sequence B

View(rawdata%); 'make raw data view current

SampleKey("B"); 'simulate keypress

return 1

end;

It is important to ensure that the current view is the raw data file when using the

SampleKey command. This is because keyboard markers are only registered when this

view is active. There is also another script function, SampleSeqStep(), which returns

the current step in the sequence being executed. If you look at our sequence code you will

see that at the end of the stimulus it jumps to the HALT instruction at the start so that the

current sequencer step it always zero if the sequencer is halted. This would allow us to

prevent a stimulus from being triggered if the previous stimulus was not yet finished:

func seqa%(); 'do sequence A

if SampleSeqStep() = 0 then 'if the sequence is halted

 View(rawdata%); 'make raw data view active

 SampleKey("A"); 'simulate keypress

endif;

return 1

end;

Note that, though I am demonstrating this using a text sequence, this control mechanism

is also easily used with sequences created using the graphical sequence editor – you just

have to enter key values for those sections of the output sequence which you want to be

able to jump-to.

Our sequence file limits us to the presentation of two fixed stimulus types. Sometimes, it

is necessary to generate a much wider range of stimuli, with varying delays and

repetitions. To construct a sequence file covering all possible sequence arrangements

would be tedious were it not prohibited by the finite number of keyboard characters

available to trigger each sequence and the maximum number of instructions that can be

used in a sequence file (8192).

We can work round this problem by using variables in the sequence file. Variables are

32-bit integer numbers (a very large range of whole numbers) which can control aspects

of sequencer operation. 256 variables are available for use in a sequence file, they are

called v1 to v256. Variables can set the voltage amplitude of a DAC, a delay, a loop

OnScr3.s2s

Control of sequencer
variable values

Using scripts on-line Spike2 training manual

104

count and so forth. Variables are initialised with zero and can be changed internally by

the sequence or by the script by using the SampleSeqVar() function.

The bulk of this discussion will cover the use of sequencer variable values to pass

information into a sequence but do be aware that they can also be extremely useful in

allowing the script to read back information. For example in the example above we used

SampleSeqStep() to find out if the sequence was in the middle of generating a

stimulus. It is usually much neater to have the sequence signal ‘busy’ by setting a

variable to 1 (using the MOVI sequencer instruction) and signal ‘not busy’ by resetting the

variable back to zero. The test for OK to start a stimulus used above then becomes:

func seqa%(); 'do sequence A

if SampleSeqVar(40) = 0 then 'v40 will be 1 while busy

 View(rawdata%); 'make raw data view active

 SampleKey("A"); 'simulate keypress

endif;

return 1

end;

and the resulting arrangement is both more flexible (the sequence could indicate what

stimulus is in progress by using different variable values) and would not break if you

rearranged the sequence structure and thereby changed the step numbers.

Consider the 'A section of our AandB sequence with variables substituted for the

amplitude and delay values. This would look like:

AA: 'A DAC 0,v1 ;Set DAC 0 using v1

 DELAY v2 ;Hold for v2 ticks

 DAC 0,0 ;Reset DAC 0 to 0

 JUMP SP ;Suspend sequence

A suitable value for v1 must be set by the script using the SampleSeqVar command

before the output pulse can be generated. The variable value must be a 32-bit integer

number (a whole number falling in the range -2147483648 to 2147483647). If the DAC

output range is +/- 5 volts, then the minimum value of -2147483648 gives a DAC output

of -5 volts, a value of 0 gives a DAC output of zero volts and the maximum value of

2147483647 gives a value of 4.999 volts. In general, we calculate the value to assign to

v1 from the desired voltage (assuming a 5-volt 1401) using the equation:

integer value := Round((voltage * 6553.6) * 65536.0);

but the calculation can be hard to make bullet-proof, for example when faced with out-of-

range voltage values. To assist you with this task CED have produced a library of useful

script functions called seqlib.s2s which contains various functions used to calculate

sequencer variable values, this library is installed with every copy of Spike2. You can

include seqlib.s2s in your script and then make use of the VDAC32%() function to

calculate your variable value thus:

integer value := VDAC32%(voltage, 1, 0);

where the 1 and the 0 correspond to the DAC scaling values set in the sequence, you can

adjust these parameters as needed to deal with different DAC scaling such as using a 10

volt system, or outputs handled as millivolts.

The DELAY variable, v2, is a value in the range 1 to 232 which sets the delay in sequencer

ticks, the actual delay is one tick more than the variable value. The sequencer tick length

is defined by the SET command in the output sequencer file and defaults to 1 millisecond,

allowing delays from 2 ms to more than four million seconds with the default tick length.

Loops are created in a sequencer file by loading a variable and then repeatedly

performing an instruction or group of instructions and decrementing the variable until the

Output control using
sequencer variables

 Spike2 training manual Using scripts on-line

105

it reaches zero. The DBNZ (Decrement and Branch if Not Zero) sequencer instruction

provides an easy way to do this.

The following output sequencer file is used:

 SET 1, 1, 0 ;1 ms steps, default DAC scaling

SP: HALT ;suspend sequence until key press

AA: 'A MOV v4,v1 ;copy v1 value for use

 DAC 0,v2 ;set DAC 0 using v2

 DELAY 100 ;hold pulse for 100 miliiseconds

 DAC 0,0 ;reset pulse to 0

 DELAY v3 ;inter-pulse interval

 DBNZ v4,AA ;repeat loop at AA until v1 is 0

 JUMP SP ;go to suspend sequence

The script gives the user control over the variables and the onset of the pulse train using a

script-created dialog:

#include "seqlib.s2s"

var rawdata%; 'raw data window handle

rawdata% := FileNew(0, 3); 'create new data file

SampleStart(); 'start data capture

ToolbarSet(1, "Quit"); 'button to quit

ToolbarSet(2, "Start train" ,starttrain%);'Start sequence button

ToolbarSet(3, "Configure train",config%); 'button to configure

Toolbar("Select option", 1028); 'display toolbar

func starttrain%(); 'generate sequence

if SampleSeqStep() = 0 then 'if the sequence is halted

 View(rawdata%); 'make raw data view active

 SampleKey("A"); 'simulate keypress

endif;

Return 1

end;

func config%();

var rep%, amp, int%; 'reps, amp and pulse int

var amp2%; 'amp as variable value

DlgCreate("Pulse parameters"); 'create parameters dialog

DlgInteger(1, "Repetitions", 1, 10); 'allow 1 - 10 repetitions

DlgReal(2, "Amplitude",-5, 5); 'allow amplitude +/- 5 v

DlgInteger(3, "Interval (ms)",10,10000); 'allow 10ms - 10s

if (DlgShow(rep%, amp, int%) = 1) then 'get variables, 1 if OK

 amp2% := vdac32%(amp, 1, 0); 'amplitude as variable value

 SampleSeqVar(1, rep%); 'assign values to variables

 SampleSeqVar(2, amp2%);

 SampleSeqVar(3, int%-1);

endif;

return 1 'return

end;

Variables can be used instead of fixed values in most sequencer instructions, see the

sequencer instruction reference in the documentation for details of variable use. There are

also a number of sequencer instructions for directly manipulating and testing variable

values.

The sequencer variables are very useful but a bit limited, for example there are only 256

of them which rather limits the information that can be stored. With a lot of care the

variable values can be updated ‘on the fly’ while a stimulation sequence is underway but

it can be very hard to ensure this is done at the right time and makes for an extremely

complex script. To help with this sort of issue the sequencer also incorporates a table, a

single variable-length array that can be used to store large amounts of information. Many

Creating variable pulse trains

OnScr4.pls

OnScr4.s2s

Control using sequencer
table data

Using scripts on-line Spike2 training manual

106

sequencer instructions can use information from the table in the same manner as values

held in a variable, or table data can be loaded, stored, added or subtracted to/from

variables. Table data is accessed using a table index held in a variable plus an optional

offset (the first location in the table is at index 0); there is a useful TABINC instruction

which is used to move a variable used for indexing through the table and detect that the

end of the table has been reached.

Consider the previous sequence that generated a sequence of pulses based on variable

values. We can alter it to generate a long sequence of pulses using values taken from the

table with sets of four table values defining a set of pulses thus:

Index Function

0 Count of pulses, or zero to stop output

1 Pulse amplitude value scaled as for a variable

2 Pulse duration in sequencer ticks

3 Inter-pulse interval in sequencer ticks

A sequence to use table data to do this might look like:

 SET 1, 1, 0 ;1 ms steps, default DAC scaling

 TABSZ 1000 ;Enough space in the table

SP: HALT ;suspend sequence until key press

 'A MOVI v2,0 ;start at the beginning of table

L1: TABLD v1,[v2+0] ;Load pulse count into v1

 BEQ v1,0,SP ;Stop if zero pulses

L2: DAC 0,[v2+1] ;set DAC 0 using table data

 DELAY [v2+2] ;hold pulse for correct period

 DAC 0,0 ;reset pulse to 0

 DELAY [v2+3] ;inter-pulse interval

 DBNZ v1,L2 ;repeat loop at L2 until v1 is 0

 TABINC v2,4,L1 ;move on 4 and loop to L1

 JUMP SP ;stop if reached table end

note the use of TABSZ to define the table size, TABLD to load a variable value from the

table and the use of [v2+x] to use a table value directly within an instruction. The

TABINC instruction adds 4 to v2 and branches to the L1 label as long as the resulting

value is a valid table index (0 to 999 in this case) which provides protection against

running v2 past the end of the table.

Obviously a very wide range of pulses could be generated by this output sequence given

suitable table data, here is a script that defines a variable set of pulses in the middle of

two fixed sets :

#include "seqlib.s2s"

var rawdata%; 'raw data window handle

rawdata% := FileNew(0, 3); 'create new data file

SampleStart(); 'start data capture

ToolbarSet(1, "Quit"); 'button to quit

ToolbarSet(2, "Start pulses" ,starttrain%);'Start sequence button

ToolbarSet(3, "Configure pulses",config%); 'button to configure

Toolbar("Select option", 1028); 'display toolbar

func starttrain%(); 'generate sequence

if SampleSeqStep() = 0 then 'if the sequence is halted

 View(rawdata%); 'make raw data view active

 SampleKey("A"); 'simulate keypress

endif;

Return 1

end;

OnScr5.pls

OnScr5.s2s

 Spike2 training manual Using scripts on-line

107

func config%();

var table%[1000]; 'Our table data

var rep%, amp, dur%, int%; 'reps, amp, duration and interval

var amp2%; 'amp as variable value

DlgCreate ("Pulse parameters"); 'create parameters dialog

DlgInteger (1, "Repetitions", 1, 10); 'allow 1 - 10 repetitions

DlgReal (2, "Amplitude",-5, 5); 'allow amplitude +/- 5 v

DlgInteger (3, "Duration (ms)",2,10000); 'allow 2ms - 10s

DlgInteger (4, "Interval (ms)",10,10000); 'allow 10ms - 10s

if (DlgShow (rep%, amp, dur%, int%) = 1) then 'edit, 1 if OK

 table%[0] := 2; 'start with two pulses

 table%[1] := vdac32(2, 1, 0); 'two volts

 table%[2] := 9; '10 milliseconds long

 table%[3] := 49; '50 milliseconds apart

 table%[4] := rep%; 'second part as set by user

 table%[5] := vdac32%(amp,1,0); 'amplitude as variable value

 table%[6] := dur%-1; 'Timings as entered

 table%[7] := int%-1; '-1 adjusts for DELAY

 table%[8] := 4; 'finish with four pulses

 table%[9] := vdac32(4,1,0); 'four volts

 table%[10] := 9; 'ten milliseconds long

 table%[11] := 49; '50 milliseconds apart

 table%[12] := 0; '0 to signal end

 SampleSeqTable(table%[]) 'transfer data into 1401

endif;

Return 1 'return

end;

One of the facilities within a Spike2 sampling configuration is a list of stored waveforms

that can be replayed at any point, either in response to a key press or triggered by

sequencer actions. A script can set up waveforms before sampling with the

PlayWaveAdd() script function or can use of waveforms that are already defined. In

both cases waveform output can be triggered directly or indirectly by SampleKey() to

trigger a waveform or by causing the sequencer to jump to a given location.

You can read waveforms from a data file or use the script to synthesise them as arrays of

data; generating waveform data directly is a particularly powerful technique and much

used for generating audio stimuli.

You can also define waveform play areas that initially contain no data and load these (or

any area) with new data while sampling is in progress with the PlayWaveCopy()

function. PlayWaveCopy() can even update parts of a waveform play area while data

from other parts of the area is being output to the DACs. By playing the area circularly

(so output wraps round to the area start once the end is reached) and monitoring replay

progress by using PlayWaveStatus(), you can generate continuous waveform output

of any duration. This avoids all limits to waveform play area sizes but does require that

the waveform output rate be slow enough, and script execution fast enough, for the script

to keep up.

The Spike2 scripts section of the Downloads section of the CED web site

(www.ced.co.uk) contains a number of scripts that generate and play out arbitrary

waveforms. Example scripts that provide continuous waveform output by repeatedly

updating a waveform play area are also available – contact CED with details of your

requirements if you need one of these.

Control of arbitrary
waveforms

 Advanced topics

108

This chapter is based on a talk given at the 1996 User Day in which we attempted to

cover the topics of memory channels, external text files, binary data files and serial line

use in around one hour! History does not record how far the presenter got in the allotted

time, but it certainly wasn't to the end.

A memory channel is a standard Spike2 data channel held in computer memory. Within

the channel, data is stored as a list of items that can be accessed either by their index or

their time, by the memory channel-specific routines. The data items can also be accessed

by the same script routines that access standard Spike2 data channels.

Memory channels are created by the MemChan() function. The following script shows

how you can create a memory channel and add and subtract data items.

'MemCh1.s2s

var vh%, mc%; 'view handle, memory channel

vh% := FileOpen("Demo.smr", 0, 0); 'Open the file invisibly

if (vh% <= 0) then Message("No DEMO file!"); halt endif;

ChanHide(-1);Window(0,0,100,100); 'Hide all channels

WindowVisible(1);Draw(0, MaxTime()); 'show the lot

mc% := MemChan(2); 'Create an event channel

if mc% < 0 then Message("No memory channel!"); halt endif;

ChanShow(mc%); 'and show it

DrawMode(mc%,2); DoDraw(); 'Lines mode

DrawMode(mc%, 5, 2);DoDraw(); 'Rate mode

DrawMode(mc%, 6, 2);DoDraw(); 'Mean frequency

DrawMode(mc%, 7, 3);DoDraw(); 'Inst Frequency

FileClose();

halt;

Proc DoDraw()

Seconds(0); 'zero the timer

While Seconds() < 10 do 'run for 10 seconds

 MemSetItem(mc%, 0, Rand()*Maxtime()); 'add an item

 Draw(); 'let us see it

WEnd;

var i%; 'to count events

i% := Count(mc%, 0, Maxtime()); 'count items added to buffer

while i% do

 MemDeleteItem(mc%, i%*Rand()+1); 'kill random item

 Draw(); 'update the display

 i% := i%-1; 'reduce count of items

Wend;

End;

In this script we create the simplest possible type of channel, an event channel. This

channel type needs no other information, so the create call is very simple and returns the

channel number of the new channel (or an error, for example if we ran out of memory).

Memory channels are created invisible, so you have the opportunity to change the display

mode and set a suitable y axis range (if appropriate) before making the channel visible.

The example spends 10 seconds adding events at fairly random times into the file using:

 MemSetItem(mc%, 0, Rand()*Maxtime()); 'add an item

You add event-based data items to a memory channel by specifying a time. If you also

specify an index, the item at the index is deleted and the new item is added at the position

specified by the time. The script MemCh2.s2s shows what happens when you also supply

an index when adding data items. The modified script adds events for 1 second, then for

the next 9 seconds it replaces randomly selected events with new ones. Finally it removes

the events in order, from the start of the buffer.

Advanced topics

What is a memory
channel?

 Spike2 training manual Advanced topics

109

'MemCh2.s2s

...

... This code is the same as the previous example

...

Proc DoDraw()

Seconds(0); 'zero the timer

While Seconds() < 1 do 'run for 1 second adding

 MemSetItem(mc%, 0, Rand()*Maxtime()); 'add an item

 Draw(); 'let us see it

WEnd;

var i%;

i% := Count(mc%, 0, Maxtime()); 'Count events

while Seconds()<10 do 'replace random events

 MemSetItem(mc%, Rand()*i%+1, Rand()*Maxtime());

 Draw();

WEnd;

while MemDeleteItem(mc%, 1)=1 do 'kill all items

 Draw(); 'update the display

Wend;

End;

We delete items using:

MemDeleteItem(mc%, i%*Rand()+1); 'kill random item

The main uses we have found for memory channels (so far) are:

1. As a target for the Analysis menu Memory buffer commands (most often used to

pick peaks or level crossings in a signal).

2. To convert channels from one type to another.

3. To edit events out of or into an event-based channel.

4. To combine waveform channels, or to produce a waveform channel that is a function

of other channels. For example to produce a Painter filter of EMG data.

5. To store tables of data sampled at discrete times, for example blood gas data, using

RealMark data.

6. To display an on-line heart rate extracted from an ECG signal.

7. To import data from a foreign data file to create a new Spike2 file without sampling.

The MemChan() function creates a new channel in memory and attaches it to the file in

the current time view. You can have up to 26 memory channels belonging to a file. This

command gives the new channel default (i.e. useless) channel title, comment and units (if

relevant). If the channel is a waveform, the scale is set to 1 and the offset to 0. It is up to

you to set the values you want for the channel.

Func MemChan(type%{, size%{, binsz{, pre%}}});

type% The type of channel to create. Codes are:

1 Waveform 3 Event (Evt+) 5 Marker 7 RealMark 9 RealWave

2 Event (Evt-) 4 Level (Evt+-) 6 WaveMark 8 TextMark

For codes 2, 3 and 4, you need no more arguments. The other channel types need

additional information to create the channel.

Uses of memory
channels

MemChan()

Advanced topics Spike2 training manual

110

size% Used for TextMark, RealMark and WaveMark channels to set the maximum

number of characters, reals or waveform points to attach to each item. This is

ignored for all other channel types and should be set to 0.

binsz Used for waveform, RealWave and WaveMark data to specify the time interval

between the waveform points. This is rounded to the nearest multiple of the

underlying time resolution. If you set this 0 or negative, the smallest bin size

possible is set. Remember that the time resolution of a file is the number of

microseconds per clock tick and that the waveform sampling resolution is set to

an integral multiple of this. Both these values are set (and are fixed) when the

file is created, either by sampling, when these values are set from the sampling

configuration, or when the file is created with FileNew(7, mode%, upt%,

tpa%, maxT).

pre% The number of pre-trigger points for WaveMark data. This value is used when

importing data from a waveform channel into a WaveMark channel. You can get

this value back with the MarkInfo() command. The time stamp of a

WaveMark data item is the time of the first waveform point, not the time of the

trigger point.

The function returns the channel number of the newly created channel, or 0 if there are no

free channels, or a negative error code. The channel numbers start at 101, and the system

always uses the lowest free number, but you should not rely on this as it might change in

the future.

Channels created in this way are given default titles, units and comments. You can set

these with the ChanTitle$(), ChanUnits$(), ChanComment$(), ChanScale() and

ChanOffset() routines. The following code creates a copy of channel wChan% (a

waveform channel) as a memory channel:

'MemCh3.s2s

func CopyWave%(wChan%) 'Copy waveform to a memory channel

var mc%;

if ChanKind(wChan%)<>1 then return 0 endif; 'Not a waveform!

mc% := MemChan(1,0,BinSize(wChan%)); 'Create waveform channel

if mc%>0 then 'Created OK?

 ChanScale(mc%, ChanScale(wChan%)); 'Copy scale...

 ChanOffset(mc%, ChanOffset(wChan%)); '...and offset...

 ChanUnits$(mc%, ChanUnits$(wChan%)); '...and units

 ChanTitle$(mc%, "Copy"); 'Set our own title

 ChanComment$(mc%, “Copied from channel "+Str$(wChan%));

 MemImport(mc%, wChan%, 0, MaxTime()); 'Copy data

 ChanShow(mc%); 'display new channel

endif;

return mc%; 'Return the new channel number

end;

This function imports data into a channel created by MemChan(). The function not only

imports data from a channel of the same type, but it can convert data from channels of a

different type. There are some restrictions on the type of data channel that you can import

from, depending on the type of the destination channel. The table on the next page

describes all the combinations.

Although this seems complicated, in fact all it means is that all the event and marker

channels can be copied to each other, but that the information transferred is the lowest

common denominator of the two channel types. Missing data is padded with zeros.

Waveform data is compatible with itself, but only if the two channels have the same

MemImport()

 Spike2 training manual Advanced topics

111

sampling rate. You can also extract events or markers from waveform data using peak

search and level crossing techniques.

Destination Source Restrictions

Waveform Waveform

All others

Data copied, but must match sample interval

Not available, see EventToWaveform()

Event Waveform

All others

Can extract event times

Times are extracted from the channel

Level Waveform

All others

Can extract event times

Times are extracted from the channel. First time in

destination is assumed to be a low to high transition

Marker Waveform

Event, Level

All others

Can extract event times, coded for peak/trough etc.

Marker codes all set to 0

Marker codes are copied

TextMark Waveform

Event, Level

TextMark

All others

Can extract event times, coded for peak/trough etc.,

empty strings

Copies times, marker codes set 0, empty strings

Copies all data, strings may be truncated if too long

Copies marker information, empty strings

RealMark Waveform

Event, Level

RealMark

WaveMark

All others

Can extract event times, coded for peak/trough etc.

Times copied, marker codes and reals set to 0

Copied, real data truncated or zero padded as needed

Copied, waveform to reals, padded/truncated

Marker portion copied, reals filled with 0

WaveMark waveform

Event, Level

WaveMark

All others

Special option, event channel marks waveforms

Copies times, marker codes set to 0, waveform set 0

Copies all data, waveform truncated/zero padded

Copies marker, waveform filled with zeros

You can also convert waveform data to WaveMark data with a special option that chops

out sections of waveform data based on event times on a third channel.

Func MemImport(memC%, inCh%, start, end {,mode% ,time, level});

Func MemImport(memC%, inCh%, start, end, eCh%); Waveform->WaveMark

memC% The channel number of a memory channel created by MemChan().

inCh% The channel number to import data from.

start The start time to collect data from.

end The end time to collect data up to (and including).

The following arguments are used when extracting events from waveform data. The level

crossing modes use linear interpolation between points to find the exact time of the

waveform crossing. The peak and trough modes fit a parabola to the three points around

the peak or trough to estimate the time more accurately. Note that when extracting events

to a WaveMark channel, the time saved is the time of the start of the waveform section,

not the peak/trough or level crossing time.

mode% The mode of data extraction. The modes are:

0 Extract events based on the time of a peak in the waveform. If the

destination is a marker, these events are coded as 2.

1 Extract events based on the time of a trough in the waveform. If the

destination is a marker, these events are coded as 3.

2 Extract events based on the time of a level crossing with the waveform

rising. If the destination is a marker, these events are coded as 4.

3 Extract events based on the time of a level crossing with the waveform

falling. If the destination is a marker, these events are coded as 5.

Advanced topics Spike2 training manual

112

time The minimum time period between detected events. This can be used to filter

noisy signals.

level The level that the waveform must fall after a peak, rise after a trough, or cross,

to detect an event.

The special mode to convert waveform to WaveMark data uses an extra channel to mark

the waveform sections to be extracted. The waveform must have the same sampling rate

as set for the WaveMark channel.

eCh% A channel holding event times to mark the waveform sections to extract. The

waveform starts the number of points set in the pre% parameter to MemChan()

before each event. The time saved is the time of the first point in each waveform

section.

Whichever version of the function you call, it returns the number of items added to the

channel, or a negative error code.

The next example converts the DEMO data file waveform channel into WaveMark data

by picking the peaks in the WaveMark data, then using these as the trigger points for the

WaveMark data:

'MemCh4.s2s

var vh%, me%, mwm%, n%; 'view handle, memory chans

vh% := FileOpen("Demo.smr", 0, 0); 'Open demo file invisibly

if (vh% <= 0) then Message("No DEMO file!"); halt endif;

ChanHide(-1);Window(0,0,100,100); 'Hide all channels

WindowVisible(1);Draw(0, MaxTime()); 'show the lot

me% := MemChan(2); 'create an event channel

if me% < 0 then Message("No event chan"); halt endif;

n% := MemImport(me%, 1, 0, Maxtime(), 0, .1, 1.0);

Message("Found %d peaks", n%);

ChanShow(me%); Draw(); 'display the event markers

mwm% := MemChan(6,32,BinSize(1),16); 'copy rate from waveform

if mwm% < 0 then Message("No WaveMark"); halt endif;

ChanScale(mwm%, ChanScale(1)); 'Copy scale...

ChanOffset(mwm%, ChanOffset(1)); '...and offset...

ChanUnits$(mwm%, ChanUnits$(1)); '...and units

ChanTitle$(mwm%, "Peaks"); 'Set our own title

ChanComment$(mwm%, "Imported from channel 1");

n% := MemImport(mwm%, 1, 0, Maxtime(), me%); 'extract wavemarks

Message("Imported %d WaveMarks", n%);

ChanShow(mwm%);Draw(); 'show what we got

MemSetItem edits or adds an item in a channel created by MemChan(). An item to edit is

identified by its ordinal position in the channel (any mask set for markers is ignored). A

new item is identified by a time alone. The ordinal position of the new or edited item is

determined by the item time. You may not have two items at the same time, so if a new

or edited item has the identical time to an existing item, the existing item is replaced.

MemGetItem() is the reverse of MemGetItem() and collects data for an item identified

by the ordinal position of the item in the channel. If you want to identify data items by

time, not ordinal position, you should use ChanData(). Also, ChanData() uses any

marker filter that is set whereas MemGetItem() does not.

You can also use MemGetItem() with an index of 0, or no index, to get the number of

data items in the channel.

MemSetItem() and
MemGetItem()

 Spike2 training manual Advanced topics

113

Func MemSetItem(memC%, index%, time{, code%[]{, data$|data[]}});

Func MemSetItem(memC%, index%, time, wave|wave%|wave[]|wave%[]);

memC% The channel number of a channel created by MemChan().

index% The index into the channel of the item to change. The first item is number 1. If

you specify index 0, the function adds a new item to the buffer at a position

determined by the time (which must be supplied).

time The time of the item, or -1 if the original time is to be preserved. If index% is

0, you must supply a time.

 For a waveform channel, it sets the time of the first waveform point. If there

are already data points in the channel, the time is adjusted by up to half the

sampling interval to be compatible with the sampling interval of the channel

and the time of the existing data.

code% This is an integer array of at least 4 elements that hold the marker codes for the

channel. If the channel does not require marker codes, this argument is ignored.

If this parameter is omitted for a channel with markers, the codes are set to 0.

data This must be a string variable for TextMark data or a real array for RealMark

or WaveMark data. It holds the data associated with the item. If the type of data

is incorrect for the channel it is ignored. The number of points or characters set

is the smaller of the size of the array or string and the size expected by the item.

With RealMark and WaveMark data, if the array is too short, the extra values

are unchanged when editing and have the value 0 when adding new data

values.

 For WaveMark and waveform real data, the data values are limited to the range

-5*scale+offs to 4.99985*scale+offs. Values outside this range are set to the

nearer limit.

wave For a waveform memory channel you can set an individual value, or a list of

values in an array. With a real variable or array, the values are limited as

described in the previous paragraph. With integer values, the lower 16-bits of

the 32-bit integer are copied to the memory channel (values greater than 32767

or less than -32768 will overflow).

The function returns the index at which the data was stored. If an index is given that is

outside the range of items present, the function returns -1.

Func MemGetItem(memC% {,index% {,code%[] {,&data$|data[]}}});

Func MemGetItem(memC%, index%, &wave|&wave%|wave[]|wave%[]{,&n%});

index% The ordinal index into the channel to the item required. The first item is

numbered 1. If you omit the index, or specify index 0, the function returns the

number of items in the channel.

The remaining fields are only allowed if the index is non-zero.

code% This is an integer array of at least 4 elements that is returned holding the

channel marker codes. If there are no markers in the channel, the codes are all

set to 0.

data This must be a string variable for TextMark data or a real array for RealMark

or WaveMark data. It is returned holding the data from the item. If the data

type is incorrect for the channel, it is not changed. For an array, the number of

points returned is the smaller of the size of the array and the number of values

in the item.

wave This argument collects waveforms from waveform channels. If a real variable

or array is passed, the waveform data is in user units. If an integer variable or

Advanced topics Spike2 training manual

114

array is passed, the data is a copy of the 16-bit integer data used by Spike2 to

store waveforms. The maximum number of elements copied is the array size.

When an array is used, only contiguous data is returned. A gap in the data

(when the interval between two points is greater that the sample interval for the

channel) terminates the data transfer.

n% If the previous argument is an array this optional argument returns the number

of data items copied into the array.

For index% of 0 or omitted, the function returns the number of items in the channel. If

index% is outside the range of items present, the function returns -1. Otherwise it returns

the item time.

We have already seen how to use the functions to manipulate event data, so the next

example shows how you might massage some waveform data. The CopyWave%()

function is the same as in MemCh3.s2s, so we have not shown it again:

'MemCh5.s2s

const np% := 400;

var vh%, mw%, n%, work[np%], mean, i%;'view handle, memory chans

vh% := FileOpen("Demo.smr", 0, 0); 'Open demo file invisibly

if (vh% <= 0) then Message("No DEMO file!"); halt endif;

ChanHide(-1);Window(0,0,100,100); 'Hide all channels

WindowVisible(1);Draw(0, MaxTime()); 'show the lot

mw% := CopyWave%(1); 'Copy it (see memCh3.s2s)

ChanShow(mw%);Draw(); 'and show it

n% := MemGetItem(mw%)-np%; 'get the number of points

Seconds(0); 'zero a timer

While Seconds() < 30 do

 i% := n% * Rand()+ 1; 'index to mangle from

 MemGetItem(mw%, i%, work[]); 'get 10 points

 ArrSum(work[], mean); 'get mean of the data

 ArrSub(work[], mean); 'remove DC offset

 MemSetItem(mw%, i%, -1, work[]); 'replace mangled data

 Draw(); 'display the result

WEnd;

These functions delete one or more items from a channel created by MemChan(). To

delete the entire channel use ChanDelete(). MemDeleteItem deletes based on an

index range whereas MemDeleteTime deletes items based on a time range.

Func MemDeleteItem(memC% {,item% {,num%}});

Func MemDeleteTime(memC%, mode%, t1 {,t2});

memC% The channel number of a memory channel created by MemChan().

item% The ordinal index into the channel to the item to delete. The first item is

numbered 1. If you specify an index of -1 or omit this argument, all items are

deleted.

num% The number of items to delete from index%. Default value is 1.

mode% This sets how many items to delete and the meaning of the time range. The

modes are:

0 Delete a single item. The nearest item to t1 in the time range t1-t2 to

t1+t2 is deleted. If t2 is omitted, it is taken as 0.

1 Delete all items in the time range t1-t2 to t1+t2. If t2 is omitted, it is

taken as 0.

MemDeleteItem() and
MemDeleteTime()

 Spike2 training manual Advanced topics

115

2 Delete the first item in the time range t1 to t2. If t2 is omitted it is taken

as t1.

3 Delete all the items in the time range t1 to t2. If t2 is omitted, it is taken

as t1.

+4 If you add 4 to the mode and the channel has a marker filter set, only items

that meet the filter specification are deleted.

t1, t2 Two times, in seconds, that set the time range for items to delete.

Both functions return the number of items deleted, or a negative error code.

Here is an example that deletes items from a waveform memory channel. As in the

previous example, CopyWave%() is omitted from this listing:

'MemCh6.s2s

const np% := 20;

var vh%, mw%, i%; 'view handle and mem chans

vh% := FileOpen("Demo.smr", 0, 0); 'Open demo file invisibly

if (vh% <= 0) then Message("No DEMO file!"); halt endif;

ChanHide(-1);Window(0,0,100,100); 'Hide all channels

WindowVisible(1);Draw(0, Maxtime()); 'show the lot

mw% := CopyWave%(1); 'Copy the waveform

ChanShow(mw%);Draw(); 'and show it

While MemGetItem(mw%)>0 do

 i% := MemGetItem(mw%) * Rand()+1; 'index to delete from

 MemDeleteItem(mw%, i%, np%); 'delete

 Draw(); 'display the result

WEnd;

For i%:=100 to 30 step -1 do WindowSize(i%, i%) next;

FileClose(0,-1); 'Close the lot!

This function writes the contents of a channel created by MemChan() to the data file

associated with the current window, making the data permanent. The memory channel is

not changed; use ChanDelete() to remove it. Memory channels are not saved when the

associated data file closes. All the properties of the memory channel are saved, including

the title, channel comment, and if the channel has waveform data, the scale, offset and

units.

Func MemSave(memC%, dest%{, type% {, query%}});

memC% A channel created by the MemChan() function.

dest% The destination channel in the file. This must be in the range 1 to 32 as "real"

channels on disk have this channel range. It is possible that in the future we

will extend the SON file format to allow a larger (or user-defined) number of

channels.

type% The type of data to save the data as. The type selected must be compatible with

the data in the memory channel. Codes are:

0 Same type (default) 3 Event (Event+) 6 WaveMark

1 Waveform 4 Level (Event+-) 7 RealMark

2 Event (Event-) 5 Marker 8 TextMark

The special code -1 means append to an existing channel. The new data must

occur after the last item in the dest% channel and the dest% channel must be a

compatible type.

MemSave()

Advanced topics Spike2 training manual

116

query% If this is not present or zero, and the dest% channel is already in use, the user

is queried about overwriting it. If this is non-zero, no query is made.

The function returns the number of items written, or a negative error code.

The next example applies a crude differentiator to the waveform data in the DEMO file,

and saves it in a new channel, channel 6:

'MemCh7.s2s

var vh%, mw%, i%; 'View handle, memory chans

vh% := FileOpen("Demo.smr", 0, 0); 'Open demo file invisibly

if (vh% <= 0) then Message("No DEMO file!"); halt endif;

mw% := Filter%(1, 0, MaxTime());

if mw% <= 0 then Message("Sorry... failed"); halt endif;

MemSave(mw%, 6); 'Write the channel

FileClose(); 'kill the file

FileOpen("Demo.smr",0,0); 'open it again, and show

Window(0,0,100,100); 'Big screen production!

ChanHide(-1);ChanShow(1,6); 'show it, and new version

WindowVisible(1);Draw(0,maxTime()); 'display the lot

halt;

' This func filters wavform data on channel wChan% between sTime

' and eTime and writes the result to a memory channel. It returns

' the memory channel number or a negative error code.

func filter%(wChan%, sTime, eTime) 'returns memory channel

var flt[5]; 'filter coefficients

flt[0]:=-0.2; flt[1]:=-0.1; flt[2]:=0; flt[3]:=0.1; flt[4]:=0.2;

if ChanKind(wChan%)<>1 then return -1 endif;

if (sTime >= eTime) OR (sTime<0) then return -2 endif;

var mc%;

mc% := MemChan(1,0,BinSize(wChan%)); 'Create channel

if mc%<=0 then return mc% endif;

ChanScale(mc%, ChanScale(wChan%)); 'Copy scale...

ChanOffset(mc%, ChanOffset(wChan%)); '...and offset...

ChanUnits$(mc%, ChanUnits$(wChan%)); '...and units

ChanTitle$(mc%, "Filtered");

ChanComment$(mc%,"Filtered from channel "+Str$(wChan%));

var work%[8000]; ' buffer to process data with

var read%; ' the number of bins read

var op% := 0, toff;' where to start output and time offset

repeat

 toff := Binsize(wChan%)*op%; 'time offset for overlap

 read% := ChanData(wChan%, work%[], sTime-toff, eTime, sTime);

 if (read%>4) then 'if we got some data

 ArrFilt(work%[:read%],flt[]); 'filter it, then copy it

 MemSetItem(mc%, 0, sTime+toff, work%[op%:read%-op%-2]);

 sTime := sTime + BinSize(wChan%)*(read%-2); 'next start

 endif;

 op%:=2; ' after first buffer, we overlap by 2.

until read%<=4;

ChanShow(mc%);

return mc%; 'Return the new channel number

end;

This command creates a memory command, and then adds data to it in blocks of up to

8000 points. Because the filter used (of length 5) produces imperfect data for the first and

last 2 points, each block processed is overlapped by 2 points to allow for this. See the

ArrFilt() command documentation for more details about the filtering operation.

In this case, we assume that there is enough memory and virtual memory to keep the

entire result as a memory channel. If this were not the case, it would be possible to write

the data incrementally using MemSave with a type code of -1. This is usually only needed

where there are megabytes of data to process.

 Spike2 training manual Advanced topics

117

Sooner or later you will need to move data between Spike2 and some other format for

which there is no automated converter. We have covered writing data to a text file earlier

in this book, so we will not go over that again. In this section we will look at importing

data from a text file and from a binary file, and exporting data to a binary file.

To import from and export to “foreign” formats you must have detailed knowledge of the

format of the file, particularly if the file contains binary data.

The steps needed to import data (from either binary or text files) are:

1. Get the length, the number of channels and waveform sample rates of the input file.

2. Create a new file using FileNew() in mode 7 with a suitable time and ADC

resolution such that you can set any waveform sampling rate required, and so that the

time base can run for long enough to include all the data (usually not a problem).

3. Read the data file (either from text or a binary file) and create memory channels in

which to store the data using MemSetItem().

4. Write the memory channels to permanent channels in the file using MemSave(). To

minimise memory requirements it is a good idea to read and write one channel at a

time, then delete the memory channel, but this is not always a practical proposition.

5. Close the data file, and the job is done.

The first example imports from a text file. To keep the script short enough to serve as an

example, we will use a data file with 4 columns of data, corresponding to 4 channels of

waveform data. The example is written so you can easily change the number of channels.

We have been told that all the channels are sampled simultaneously and at the same rate

(1 kHz), and there are 2000 lines of data. By inspection of the data file, we see that the

data on each channel is listed in microvolts and the data is in the range -100 to +100

microvolts. We set the time of the first point on each channel to 0.0 seconds. If the data

was sampled sequentially we would have to offset the start time of each channel.

We can see that the file will be 2 seconds long. Each channel is sampled every 1000

microseconds. In this case, a very wide range of FileNew() command arguments would

produce a satisfactory file. Here are the two extreme cases:

fh%:=FileNew(7,0,1,1,2); '1us per tick, 1MHz ADC, 2 seconds long

fh%:=FileNew(7,0,1000,1,2);'1ms per tick, 1kHz ADC rate, 2 seconds

To decide which values to set, we need to look at the documentation for FileNew():

Func FileNew(type%, mode%, upt%, tpa%, maxT);

type% We are only interested in type 7 which creates an empty Spike2 data file.

mode% In this case, 1 = create a visible file, 0=create an invisible file.

upt% Microseconds per unit time for the new file. This allows values in the range 1

to 32767 (for compatibility with Spike2 sampling we recommend a range of 2

to 1000). This sets the time resolution and the maximum duration of the file.

There are a maximum of 231-1 time units in a file, so a 1 microsecond

resolution limits a file to 30 minutes in length.

tpa% The time units per ADC conversion for the new file. You can set values in the

range 1 to 32767 (for compatibility with Spike2 sampling use 2 to 32767). The

available sampling intervals for waveform data in the new file are n% * upt%

* tpa% microseconds.

maxT This sets the maximum initial time base that you can display for the file. You

should set this to the expected file size.

The function returns the view handle (or the handle of the lowest numbered duplicate for

a data file with duplicate windows) or a negative error.

Text and binary file
manipulation

Important

Text file import

Advanced topics Spike2 training manual

118

The only reason to choose values that are compatible with Spike2 sampling is so that you

can read a configuration from the file and use it for sampling data, so you can ignore this

restriction if you wish.

The upt% parameter sets the time resolution of your file and sets a limit on the file

length. In this case, there is no problem with length, but we must chose a value that will

allow us to produce a 1000 microsecond sampling interval for the ADC. This means we

must choose a value that is a factor of 1000. To fit in with Spike2 sampling we choose 2.

The tpa% parameter sets the fastest rate for any waveform channel. If we set tpa% to 2,

with upt% set to 2, the fastest waveform channel would be 250 kHz (4 microseconds per

point). We need to achieve 1000 microseconds, in this case 500 clock ticks, so the value

we choose must be a factor of 500. We'll choose 50 (any factor would do).

Next, we must create memory channels to display the data. We need to set up suitable

scales and offsets so that it can be stored efficiently. Waveform data is stored on disk as

16-bit integers (i.e. numbers in the range -32768 to 32767) and is then scaled to user units

by the equation: User units = integer*scale/6553.6 + offset. If we assume

that the offset is 0.0, then a scale of 1.0 give a maximum of 5 (actually, slightly less).

To get a range of -100 to +100 we need a scale of 20.

Finally, we must read the data. The first few lines are:
-15.564,2.28882,-10.9863,-14.801

-15.8691,2.59399,-10.6812,-12.97

-15.4114,5.0354,-5.64575,-10.5286

This can most conveniently be done by reading the data into an array of length 4, one line

at a time. A possible script to do the job is:

'import1.s2s

const nCh% := 4, adcInt := 0.001; 'number of chans, adc interval

const upt% := 2, tpa% := 50; 'time and waveform resolution

const maxN% := 2000; 'maximum points to read

var th%,fh%; 'text and file handles

th% := FileOpen("data.txt", 8, 0); 'Open external file for reading

if th% < 0 then Message("data.txt not found"); halt endif;

var data[nCh%][maxN%],i%:=0, err%; 'for data and line counter

repeat

 err% := Read(data[][i%]); 'get next line

 if (err% > 0) then i% := i% + 1 endif;

until (err% <= 0) or (i%>=maxN%-1);'allow for a shorter file

FileClose(); 'finished with the text file

fh% := FileNew(7, 1, upt%, tpa%, i%*adcInt); 'create the new view

if fh%<=0 then Message("No new file..."); halt endif;

var ch%, mc%; 'channel loop, memory channel

mc% := MemChan(1, 0, adcInt); 'create a memory channel

if mc% <= 0 then Message("Create failed"); halt endif;

ChanScale(mc%, 20.0); 'set channel characterisics

ChanOffset(mc%,0.0);

ChanUnits$(mc%, "uV"); ChanComment$(mc%, "Imported data");

for ch% := 0 to nCh%-1 do 'cycle round channels

 ChanTitle$(mc%, "Import"+Str$(ch%));

 MemSetItem(mc%, 0, 0, data[ch%][:i%+1]); 'copy data

 MemSave(mc%, ch%+1); 'copy to disk

 MemDeleteItem(mc%); 'delete all items

 next;

ChanDelete(mc%);ChanShow(-1); 'kill memory channel, show rest

Window(0,0,100,100);Draw(); 'so we can see them

 Spike2 training manual Advanced topics

119

Notice that the varying parameters have been declared as const at the top of the script.

This makes them easy to see and change. There are three improvements that could be

made to this script easily:

1. Allow the user to select the source file. To do this change "data.txt" to "".

2. Allow the script to skip lines at the start as many such data files will have header

lines that contain unwanted data or might contain scale factors and channel titles.

3. Make the channels self-scaling. To do this we should run the Min and Max functions

on the arrays to find the extent of the data, then adjust the scaling accordingly. You

would need to choose between scaling the channels individually or giving them all

the same scaling.

Sometimes you will get data from other programs in ADC units. That is, the data is a list

of integers, most often from 12-bit ADCs, but sometimes from 14 or 16-bit systems. This

data is usually in the range -32768 to 32767.

To process this data, the approach is just the same as in the import1.s2s script, but the

trick is to replace data[nCh%][maxN%] with data%[nCh%][maxN%]. The effect of this

is to copy the data unscaled from the text file to the Spike2 file. The y axis labels you get

then depend on the scale and offsets set for the channels. You could use a real array as in

the previous example, but this method guarantees that exactly the same data ends up in

the file as is in the text file; there are no rounding effects due to converting between real

units and the 16-bit integers used by Spike2 to store waveform data.

In principle, binary file import is exactly equivalent to text file import, but usually a lot

faster! However most people find it more confusing as they can read the contents of a text

file but a binary file is much more difficult to fathom. To get around this problem, we

have written a simple binary file dumping script called BinShow1.s2s. This displays a

binary file as 32-bit, 16-bit or 8-bit integers, or 64-bit or 32-bit reals.

This can be a useful tool when you need to import a binary file and you need to check the

format of the data. The program has a toolbar with the following buttons:

Clear File String Real Double Byte Short Long Offset Bytes Quit

Clear This cleans out the display in the log window (used for the dump).

File Use this to select a new data file to poke around in. The offset is reset to 0.

String This attempts to dump the file from the current offset for the number of bytes

set. Non-printing characters are replaced by a "." in the output.

Real Dump the data from the current offset as 32-bit IEEE floating point numbers.

Double The same as for Real, but dump the data as 64-bit IEEE floating point numbers.

Byte The data is dumped as 8-bit bytes in hexadecimal.

Short The data is dumped as 16-bit words in hexadecimal.

Long The data is dumped as 32-bit words in hexadecimal.

Offset You can set the offset in the file to dump from. You can set the offset as a

decimal number, or as a hexadecimal number. To enter a number in hexadecimal

start the number with 0x.

Bytes This sets the number of bytes to dump. You are forced to accept at least 16 and

are limited to 1024 bytes at a time.

Quit This does what it says.

Binary file import

Advanced topics Spike2 training manual

120

Now an example of importing a file.

'BinImp.s2s

var fh%; 'file handle for the binary file

var fSz%; 'size of the binary file

var np%; 'number of points in the file

fh% := FileOpen("bindata.dat",9,0);

if fh%<0 then Message("No such file");halt endif;

fSz% := BSeek(0,2); 'Seek to end of file to get size

if (fSz% < 4100) then Message("File too small"); halt endif;

np% := (fSz%-4000)/2; 'the header is known to be 4000 bytes

ReadFile(np%, 8); 'get the data, say there are 8 channels

halt;

func ReadFile(np%, nCh%)

var dat%[nCh%][np%/nCh%]; 'generate huge array

var got%; 'will be points we read

BSeek(4000,0); 'seek to start of the data

got% := BReadSize(2,dat%[][]);'read the file into memory

if (got% <> np%) then Message("Error reading"); return -1; endif;

MakeNew(dat%[][], 9542); 'convert into a new file

end;

Func MakeNew(dat%[][], us)

var fNew%, ppc%, nCh%; 'new handle, points per chan, chans

ppc% := Len(dat%[0][]); 'points per channel

nCh% := Len(dat%[][0]); 'number of channels

fNew% := FileNew(7, 1, 2, 1, ppc%*us/1000000.0);

var iCh%,thisCh%;

for iCh%:=0 to nCh%-1 do 'loop round channels

 thisCh% := MemChan(1,0,us/1000000);

 if thisCh%<0 then Message("Create channel failed"); halt endif;

 MemSetItem(thisCh%, 0, 0, dat%[iCh%][]); 'save as memory channel

 MemSave(thisCh%, iCh%+1,1); 'copy to real channel

 ChanDelete(thisCh%); 'delete memory channel

 next;

Optimise(-1); ChanShow(-1); 'so we can see the result

return fNew%;

end;

The data file that this routine imports came from a prospective Spike2 customer who

wanted to see some old data that was sampled with a different system. All he could tell us

about the data was that there was a 4000 byte header, followed by 8 channels of data and

that each channel was sampled at around 105 Hz.

A little investigation revealed that the header was filled with 0's except for the very start,

which had a short text string. By dumping the data from offset 4000 in the file, you can

see that the data is 16-bit integers.

The script starts by opening the file (in external binary mode) and using the BSeek()

command to find the size of the file. This function moves and reports the current position

in a file opened by FileOpen() with a type% code of 9. The next binary read or write

operation to the file starts from the position returned by this function.

Func BSeek({pos%{, rel%}});

pos% The new file position. Positions are measured in terms of the byte offset in the

file from the start, the current position, or from the end. If a new position is not

given, the position is not changed and the function returns the current position.

rel% This determines to what the new position is relative.

0 Relative to the start of the file (same as omitting the argument)

1 Relative to the current position in the file

2 Relative to the end of the file

 Spike2 training manual Advanced topics

121

The function returns the new file position relative to the start of the file or a negative

error code. By moving to position 0 relative to the end of the file, it returns the file size.

As we know that the file holds 16-bit integer data, we can calculate how many such data

points are in the file by subtracting 4000 (the header size) from the file size and dividing

the result by 2. We know that there are 8 channels; so dividing the number of points by 8

gives the number of points per channel. Armed with this information, we call the routine

to read the file, passing in the number of points per channel and the number of channels.

The ReadFile routine uses the information passed to create an integer array that

corresponds to 8 channels of interleaved data. We could have declared an array of one-

dimension that was 8 times larger, but then we would need to extract the data before we

could write it to a data channel. Note the use of Len() to get the size of the array

dimensions. We could just as easily have passed them into the function, but this saves

using extra arguments.

We now use BSeek again, this time relative to the start of the file, to move to the start of

the data. Now we can use BReadSize(2, dat%[][]) to fill the array with data. There

are two routines for reading binary data into variables:

BRead(variable list)

BReadSize(size%, variable list)

The Bread() routine reads a block of memory equal in size to the memory used by each

variable in the list and copies this to the variable. BreadSize() moves the number of

bytes set by size% (which must be 1, 2 or 4 for an integer variable and 4 or 8 for a real

variable, and can be any non-zero size for a string) into memory, then converts the bytes

read appropriately into a Spike2 integer (4 bytes long), a Spike2 real number (8 bytes

long) or into a string. In our case, the data on disk is 2-byte integers, so we use a size of

2. For every array element, Spike2 reads two bytes and sign extends them to 4 bytes.

Having read our data, we then pass the array to a routine that creates a suitable data file,

and for each channel it creates a memory channel, fills it with data, copies it to a disk

channel, then deletes the memory channel.

The result is a new data file made from the binary data. This file holds some 3,250 points

per channel and there are 8 channels. You will notice that this imports data much faster

than the previous example, which used text and imported 2000 points per channel on 4

channels.

Binary file output is more or less the reverse of binary file input, but it can be rather

messy, as you cannot simply skip over headers; you must write them too. As an example,

the script picout.s2s contains all the routines you need to export data as a Lotus 1-2-3 PIC

format. In this case, you heed a header of 17 bytes that identify the file, followed by

packets of data that are the drawing instructions. The example shows how to output a

square with some text in it.

A more usual requirement is to output data from a Spike2 data file into another format.

For example, on the Macintosh, users quite often want to export a Spike2 waveform

channel to the Igor program. Igor can read a wide variety of binary files, in much the

same way that Spike2 can. The most efficient way (in the sense of losing no information

and producing the smallest file) is to write the output as 16-bit integers, one 16-bit value

for each data point in the channel. The most efficient way to dump times is as 32-bit

integer data. This next example lets you open a data file, select a channel, and dump it as

a binary file as 16-bit integers for waveforms and as 32-bit integers for times or as 32-bit

reals or as 64-bit reals. If a channel is not a waveform, we treat it as an event channel.

Binary file export

Advanced topics Spike2 training manual

122

'BinDump.s2s

'Declare variables:

var ok%,chan%,fh%,bh%,close%:=0, fmt%:=0, fmt$[3];

fmt$[0] := "Integer"; fmt$[1]:="32-bit IEEE real";

fmt$[2] := "64-bit IEEE real";

if ViewKind()<>0 then

 fh% := FileOpen("", 0, 0, "File to dump as binary");

 if fh%<=0 then Message("No file to dump"); halt endif;

 close% := 1; 'say we should close file

endif;

fh% := View(); 'get the starting view handle

DlgCreate("Binary file dump"); 'Start new dialog

DlgChan(1,"Choose the channel to dump",16511);

DlgList(2,"Format for the output",fmt$[]);

ok% := DlgShow(chan%, fmt%); 'ok is 0 if user cancels

if ok% <> 0 then 'dump if user selects a channel

 bh% := FileOpen("", 9, 1, "File to dump channel to");

 if bh% > 0 then BinDump(bh%, fh%, chan%, fmt%) endif;

endif;

View(bh%);FileClose(); 'close the binary file

if close% then 'if we opened the file..

 View(fh%); '...then move to it...

 FileClose(); '...and close it again

endif;

Proc BinDump(bh%, fh%, ch%, fmt%) 'binary file, data file, channel

docase

 case fmt% = 0 then IntDump(bh%, fh%, ch%); 'Integer format

 case fmt% = 1 then RealDump(bh%, fh%, ch%, 4); '4 byte real

 case fmt% = 2 then RealDump(bh%, fh%, ch%, 8); '8 byte real

endcase;

end;

Proc RealDump(bh%, fh%, ch%, bytes%)

const BSZ% := 8000; 'buffer size

var work[BSZ%]; 'work space

var t := 0, n%; 'start time, items read

View(fh%); 'in data file view

if ChanKind(ch%)=1 then 'waveform channel

 repeat

 n% := ChanData(ch%, work[], t, MaxTime(), t);

 if n% > 0 then 'if we got data, then

 View(bh%).BWriteSize(bytes%, work[:n%]); 'Output it

 t := t + n% * BinSize(ch%); 'time of next point

 endif;

 until n% <= 0; 'until no points left

else

 repeat

 n% := ChanData(ch%, work[], t, Maxtime());

 if n% > 0 then 'if we got data then...

 View(bh%).BWriteSize(bytes%, work[:n%]); 'Write it

 t := work[n%-1]+BinSize(ch%); 'next search start

 endif;

 until n% <= BSZ%; 'until buffer not full

endif;

end;

proc IntDump(bh%, fh%, ch%)

const BSZ% := 8000;

var work%[BSZ%]; 'work space

var t := 0, n%; 'start time, items read

View(fh%); 'in data file view

if ChanKind(ch%)=1 then 'waveform channel

 repeat

 n% := ChanData(ch%, work%[], t, Maxtime(), t);

 Spike2 training manual Advanced topics

123

 if n% > 0 then 'if we got data

 View(bh%).BWriteSize(2, work%[:n%]); 'Output it

 t := t + n% * BinSize(ch%); 'time of next point

 endif;

 until n% <= 0;

else

 repeat

 n% := ChanData(ch%, work%[], t, Maxtime());

 if n% > 0 then 'if we got any data

 View(bh%).BWrite(work%[:n%]); 'Write it

 t := BinToX(work%[n%-1]+1); 'next search start

 endif;

 until n% <= BSZ%;

endif;

end;

Most of this script should look familiar, however there are a few points that merit further

explanation.

1. Both the real and integer dump routines use ChanData to collect data from the

channel and then write it. You may notice that there is a difference between the loops

for waveform and event data. Waveform data uses repeat … until n% <= 0;

but the event channels use repeat … until n% <= BSZ%; and you may wonder

why.

The reason is that for a waveform channel, ChanData returns contiguous data. If

there is a gap in the data ChanData returns data up to the gap and you must call it

again to get the next data block. With event data, there is no such thing as a gap, or

rather, there is a gap between all events anyway. ChanData just fills up the array

with event times. If it fails to fill the array this means that there are no more events.

2. The method for getting the time for the next block of data for waveform data is to

take the time of the first data point on the channel, and add the number of points

times the interval between each point to give the predicted time of the next event on

the channel after the block. If there is a gap at this point, ChanData will find you the

next waveform data either at or after the start time.

3. The method for getting the next start time of event data differs depending upon the

format of the data. When you collect real numbers, the array holds event times and

we set the start time for the next block to be the time of the last event plus the timing

resolution (which is given by the BinSize() function when used on an event

channel).

When you collect an integer array, it is filled with the times of event in the basic

Spike2 timing unit for the file. So to find the read time, we add 1 tick, then use

BinToX() which converts from ticks to seconds when used in a time view.

4. Beware… if you use 32-bit real numbers to write event times, you have limited

precision. The events are coded internally in Spike2 as 32-bit integers. A 32-bit real

has some 23 bits of magnitude information plus a power of two scale and a sign bit.

This means that once you get past around 8 million Spike2 clock ticks, binary output

of times using 32-bit real data will start to lose resolution compared to the original. It

is much better to use 64-bit reals or 32-bit integers that do not suffer from this

problem.

Advanced topics Spike2 training manual

124

You can use the serial lines attached to your computer to read and write data from

Spike2. This can be used to control external equipment, or to collect additional data

during data capture. The serial line ports are controlled through the SerialOpen(),

SerialRead(), SerialWrite(), SerialCount() and SerialClose() commands.

The information given here duplicates and expands on the information in the Spike2

script language manual and in the on-line help.

Before we start looking at these commands in detail, be warned that more human time

has been spent trying to connect one piece of serial equipment to another than was

consumed in the invention of the wheel. The problem is the vast diversity of serial line

plugs and sockets, the number of variants of control signal, and the fact that the

parameters that govern the transfer speed and style must match at both ends.

This description deals only with the signals on a serial line connector that are relevant to

Spike2. Do not make connections to other pins than described below. We are concerned

with three types of connector on the back of your computer. PCs have either 25-way or 9-

way Cannon sockets for serial line use. The Macintosh uses an 8-pin mini-DIN

connector. The pins are numbered, but you need good eyesight to see the numbers.

Output and Input are with respect to the computer, not the external device.

A modern PC has typically more than 1 serial port so you must first identify the port

numbers. You must also be prepared for the fact that some ports are not available as they

have been booked by other software, or are used for other things. For example, on our

PowerPC Macintosh, port 1 is not available, port 2 (the printer port) can be used.

Name
9-pin

PC

25-pin

PC

mini-DIN

Macintosh
 Function

GND 5 7 8,4 The system ground
TX 3 2 3 Output data to the external device
RX 2 3 5 Input data from the external device
DTR 4 20 1 Output to external device to say OK to transmit
CTS 8 5 2 From external device saying Clear (OK) To Send
RTS 7 4 Request to Send (not used by Spike2)
DSR 6 6 Data Set Ready, can be used to stop output
CD 1 8 Carrier Detect (not used by Spike2) for modems

You only need to consider the state of the handshake lines if you use the hardware

handshake mode of operation (see SerialOpen()). If you use no handshake, or you use

XON/XOFF protocols then you can ignore all lines except GND, TX and RX.

DTR output goes high when you open the port, and goes low when you close it. It also

goes low in hardware handshake mode when the input buffer is about to overflow (this

works for the Macintosh but is not yet implemented under Windows; it will be in the

future).

CTS is used in hardware handshake mode to indicate that output may take place. Under

Windows, DSR must also be held high to allow output in handshaking mode. You can

either connect CTS and DSR together, or connect DSR to RTS to hold it high permanently.

If you use the hardware handshake, both DSR and CTS must be high for data to be

transmitted. If you don't use the handshake, you can ignore these signals.

Serial line use from
Spike2

Handshake lines

Opening the serial line

 Spike2 training manual Advanced topics

125

We considered making the serial ports look like external text files, but this turned out to

be more trouble than it was worth, so they are view independent. The SerialOpen()

command chooses which serial line to use and sets the characteristics of the data transfer

and the handshake method (if any).

Func SerialOpen(port%{, baud%{, bits%{, par%{, stop%{, hsk%}}}}});

port% The serial port to use in the range 1 to 9. The actual number of ports depends on

the computer. Two ports (1 and 2) are common on both PC and Macintosh

systems, but users may have installed more.

baud% This sets the Baud rate (number of bits per second) of your serial line. The

maximum character transfer rate is of order one tenth this figure. Standard Baud

rates are 300, 600, 1200, 2400, 4800, 9600, 19200, 38400 and 57600. If you set

any other rates they are rounded down to a rate in the list. The rates available to

you on your system may be a subset of this list. Rates up to 9600 Baud should

work on any system. If you do not supply a Baud rate, 9600 is used.

bits% The number of data bits used to encode a character. You may set either 7 or 8. If

you do not specify the number of data bits, 8 is set.

par% Set this to 0 for no parity check, 1 for odd parity or 2 for even parity. If you do

not specify this argument, no parity is set.

stop% This sets the number of stop bits as 1 or 2. If omitted, 1 stop bit is set.

hsk% This sets the handshake mode, sometimes called “flow control”. 0 or omitted

sets no handshake, 1 sets a hardware handshake, 2 sets XON/XOFF protocol.

If a port could be opened the function returns, otherwise it returns a negative error code

which usually means that the port does not exist, or is already in use.

The baud%, bits%, par% and stop% arguments should be set to match those of the

external device you want to talk to. In general, setting the highest baud rate that both your

computer and device can manage is good, but the faster the rate, the more likely buffer

overflow and data loss becomes. The maximum number of characters that can be

transferred per second is baud%/(1+bits%+stop%).

The handshake control is used to stop transmissions when there is a danger of data being

lost due to input buffer overflows. Both the Windows and the Macintosh systems have

input buffers that can store around 1000 characters. There is similar space in the output

buffers. You need these buffers because serial transmission is so slow; without them

programs would spend all their time waiting for the last character to be sent, or waiting

for a new character to be received.

You output data to a serial port previously opened with SerialOpen().

Func SerialWrite(port%, out$|out$[]{, term$});

out$ A single string to write to the output or...

out$[] … an array of strings to write to the output.

term$ If present, the contents of the string are written to the output port after the

contents of out$ or after each string in out$[]. We suggest that you don't use

"\n" as a terminator as it has different values under Windows and the

Macintosh. Use Chr$(13) for Carriage Return and Chr$(10) for Line Feed.

The function returns the number of strings written or a negative error code. If the output

system becomes full, the function waits for one second before timing out. If a time-out

occurs, the function returns the number of strings sent before the time-out.

Writing data

Advanced topics Spike2 training manual

126

If you are sending a lot of data so that there is a chance that the output buffer might

overflow, you MUST check the value returned by the function. If you do not, you will

find that output is missing. Spike2 will only send complete strings; if there is no room for

all the string none of the string is transmitted. There is also a limit of 255 characters in a

string (this is a Macintosh limit, but we also impose it on the Windows program). Longer

strings are truncated.

There are two functions to use: SerialRead() and SerialCount(). If your script is

time critical (you do not want it hanging up for even a second), use SerialCount to

check that a call to SerialRead will return immediately:

Func SerialCount(port% {,term$});

term$ An optional string holding the character(s) that terminate an input item.

If term$ is absent or empty, this returns the number of characters that could be read. If

term$ is set, this returns the number of complete items that end with term$ that could be

read.

You collect data with:

Func SerialRead(port%, &in$|in$[]{,term${, max%}});

in$ A single string or an array of strings to fill with characters. There is no point

providing an array of strings unless you have set a terminator because without a

terminator all input goes to the first string in the array.

term$ If this is an empty string or omitted, all characters read are input to the string or

to the first string in the array of strings and the number of characters read can be

limited by max%. The function returns the number of characters read.

If this is not an empty string, the contents are used to separate data items in the

input stream. Only complete items are returned and the terminator is not

included in a returned string. If in$ is a string, one item at most is returned. If

in$[] is an array, one item is returned per array element. The function returns

the number of items read.

max% If present, it sets the maximum number of characters to read into each string. If a

terminator is set, but not found after this many characters, the function breaks

the input at this point as if a terminator had been found. There is a maximum

limit set by the size of the buffers used by Spike2 to process data and by the size

of the system buffers used outside Spike2. This is typically around 1024

characters.

The function returns the number of characters or items read or a negative error code. If

there is nothing to read, the function waits for one second to allow characters to arrive

before timing out and returning 0.

If you don't close the serial line, it will not be available to other applications. Closing a

port also releases system resources and buffer space that Spike2 has allocated for the

serial line use. Spike2 automatically closes any serial ports that have been opened each

time a script ends. The call is:

Func SerialClose(port%);

This returns a negative error code if the port had not been opened.

Reading data

Closing the serial line

 Sonogram display mode

127

Sonograms are available from Spike2 version 3 as a waveform display mode. If you are

using version 2 you should skip this section.

A sonogram is a method for drawing a waveform to display the frequency content. The x

axis remains as time, but the y axis becomes frequency (Hz), and can display data from 0

Hz to half the sampling rate of the waveform channel. The display of the waveform is

replaced by a density map representing the power of each frequency present at a

particular time. The power is calculated using a Fast Fourier Transform (FFT).

The image above is a bitmap exported from Spike2 (sonograms are not exportable as

metafiles). It shows the waveform data in the well-known demo.smr file drawn as a

waveform, and as a sonogram. The sonogram settings are as displayed below in the

Channel Draw mode dialog. The waveform data is a recording from a rather poor signal

generator of a sine wave with an offset of around 1 Volt. Both the amplitude and

frequency of the sine wave vary with time.

The heavy line in the sonogram shows the main component of the sine wave. The lighter

lines show the harmonics of the original sine wave. The waveform was sampled at 100

Hz, so the maximum frequency in the result is 50 Hz. You can see that when the

frequency components of the harmonics exceeded 50 Hz, they were “reflected” from the

50 Hz limit (and also from the 0 Hz limit). The original data was not band-limited, and

this illustrates very well how frequency components that exceed half the sampling rate

are “aliased” to lower frequencies.

The heavy line at 0 Hz represents the DC offset in the waveform. The gaps at the start

and end of the display (from 0 to 1.28 seconds and a similar gap at the end) are a function

of the FFT size, see below.

From Spike2 version 6 onwards you can use a colour scale for the sonogram. This is set

in the Edit menu Preferences option Display Tab.

What is a sonogram?

Colour sonogram

Sonogram display mode Spike2 training manual

128

The Channel Draw mode dialog is

considerably extended for the

Sonogram display mode. When

you select the Sonogram mode,

several new fields appear:

These two fields set the range of intensity that the grey scale will span. Signals more

intense than the Top value will be given the highest intensity, Signals less intense than

Top - Range, will be displayed with the lowest intensity.

Intensity is measured in dB (which stands for decibel). A dB is a measure of the ratio of

two things. In this case it measures the relative power of the signal at a particular

frequency relative to a sine wave at that frequency of amplitude 1 bit at the 1401 input. If

the ratio of these two powers is Rp, then the value in dB is given by 10Log10(Rp).

Another way to look at this is as the ratio of the amplitudes of the two signals, in which

case the formula is 20Log10(Ra) where Ra is the ratio of the amplitudes. Given that

waveform data is stored as 16-bit integers, the maximum possible top value is 96 dB.

This field (shown as Kaiser 90 dB in the picture) is very important, but rather difficult to

explain (but we’ll try anyway).

The Fast Fourier Transform is a mathematical trick to quickly calculate a set of sinusoids,

equally spaced in frequency which, when added together, are equivalent to a set of data

points equally spaced in time. The result is an approximation to the output of a set of

notch filters, each centred on one of the equally spaced frequencies, provided that certain

conditions are met. The main conditions are that the data contains no frequency

components above half the sampling rate, and that the data repeats cyclically.

Now band limiting the data is usually not a problem, but real data does not repeat. If you

just take FFT size data points from a data channel and then repeat them you will usually

get a waveform with a big discontinuity at the repeat. If you take the FFT, you will find

that the discontinuity causes considerable distortion in the result. The distortion does not

move data peaks, but it spreads the power from a peak into what are called “side-lobes”,

which are a series of peaks of lower amplitude either side of the real peak.

If you are looking for a small signal in the presence of a larger one, then side-lobes are a

big problem. However, if you know there is only one sine wave present, then side-lobes

may not matter.

The traditional solution to the problem is to multiply the data by a smooth function that is

large in the middle, and small near the ends. The argument is that then the data is small at

the ends, and so will “join up” smoothly, thus avoiding the problem. However, the act of

multiplying the data by a window introduces its own distortion to the result.

You can find all sorts of windows discussed in the literature, each with its own

advantages and disadvantages. The basic compromise in a window function is that

windows shaped to have the smallest side-lobes spread the peak out the most, so by

increasing the dB range of the result, you decrease the certainty of where any frequency

peak actually is (or the ability to separate two peaks that are close together). Spike2

implements the following windows:

No Window Only use this if you know there is one sine wave present, or if there are

more than this, they must all have similar amplitude. This gives the

sharpest peaks in the power spectrum, but the worst side-lobes.

Channel Draw mode
dialog

Top dB, Range dB

Window type

 Spike2 training manual Sonogram display mode

129

Hanning This is a good general purpose,

reasonable compromise

window. However, it does

throw away a lot of the signal.

It is sometimes called a “raised

cosine” and is zero at the ends.

If you are unsure about which

window would be best for your

application, try this one first.

Hamming This improves on the loss of signal of the Hanning window using a

raised cosine. It preserves more of the original signal, but at the price of

unpleasant side-lobes.

Kaiser These are a whole family of

windows calculated to have a

given maximum side-lobe

amplitude relative to the peak.

Of course, the smaller the side-

lobe, the more signal is lost

and the wider the peak. We

provide a range of windows

with side-lobes that are from

30 to 90 dB less than the peak.

This is a most important field. This determines how many data points are used for each

transform. The more points you set, the better will be the frequency resolution in the

result. However, the more points you set, the worse will be the time resolution in the x

direction.

If each pixel in the display spans more data than the FFT size, then each screen pixel will

represent the waveform data that would also be displayed in that pixel. However, if each

pixel spans less data than the FFT size, then the data for that pixel is calculated by taking

the number of points set by this field centred on the time of the pixel. In this case, the

result will not be derived from data at that screen pixel, but also from data before and

after the pixel.

Although you can zoom in as much as you like in the x direction, there is a limit to the

detail you can see. Waveform features that are much smaller in time duration than the

FFT size are “smeared” in time; the bigger the value of FFT size, the more the time

smear.

To get the best screen resolution you should set this field to 1. This will cause the

sonogram to be recalculated for each x axis pixel. However, you can speed up the

calculation and drawing by setting values greater than 1. This effectively makes the

screen pixels bigger in the x direction.

This is another method of speeding up the calculation (but not the drawing). If you have

the condition that each screen pixel spans much more than FFT size data points, Spike2

uses the FFT on all the data points that correspond to the pixel and accumulates the data.

If you check this box, Spike2 only transforms the first FFT size data points. This can be

useful if you want to display a multi-megabyte file. However, the resulting display will

show the power spectrum at “sampled” points through the file, it will not represent the

total power for each pixel.

FFT size

x pixel inc

Skip

 Index

130

—A—
ADDACn, 43

Analysis commands, 82

Analysis of data, 9

Arbitrary waveform output, 44, 107

Arrays, 62

ArrConst(), 81, 92

in result view, 80

ArrIntgl(), 71, 81

in result view, 80

ArrSum(), 114

Asc(), 70

—B—
Backing up your data, 10

Basic screen layout, 3

Binary file export, 121

Binary file functions, 72

Binary file import, 119

Binary files, 117

BinShow1.s2s script, 119

BinSize(), 75, 90, 110, 116, 122, 123

BinToX(), 81, 123

Bitmap images, 12

BRAND, 38

BRead(), 73, 121

BReadSize(), 73, 120, 121

BSeek(), 120

Command description, 120

BWrite(), 73

BWriteSize(), 73, 122, 123

BZERO and BNZERO, 39

—C—
CANGLE, 43

ChanComment$(), 75, 110, 112, 116,

118

ChanData(), 77, 88, 90, 112, 116, 122

ChanDelete(), 79, 114, 115, 118

ChanDuplicate(), 79

ChanHide(), 79, 85, 114, 116

ChanKind(), 75, 110, 116, 122

ChanList(), 75, 91, 92

ChanMeasure(), 76

Channel duplicate, 79

Channel number, 3

Channel types, 6

ChanOffset(), 75, 110, 112, 116, 118

ChanScale(), 75, 110, 112, 116, 118

ChanShow(), 79, 84, 89, 110, 114, 116,

118

ChanTitle$(), 75, 110, 112, 116, 118

ChanUnits$(), 75, 110, 112, 116, 118

ChanValue(), 75, 77, 80, 85

Control of sampling, 95

Control of stimulation, 102

Cos(), 92

Result array, 80

Count(), 76, 96, 97, 108

CRATE, 43

Cross-correlation, 55

CSZ, 43

Cursor functions, 67

Cursor use, 8

Cursor(), 78, 82

CursorRenumber(), 82

CursorSet(), 78, 82

—D—
DAC0, 36

Data analysis, 9

Data window, 3

DBNZ1 and LDCNT1, 37

DELAY, 36

DIGIN, 39

Digital marker channel, 6

Digital markers, 25

DIGOUT, 36

Display tools, 26

Dlg… family of functions, 71

DlgChan(), 71

DlgCheck(), 71, 94

DlgCreate(), 71, 91, 92, 94, 122

DlgInteger(), 71, 94

DlgLabel(), 71

DlgList(), 71, 122

DlgReal(), 71

DlgShow(), 71, 105

DlgString(), 71

DlgText(), 71

Document types, 5

Draw(), 78, 82, 108, 118

DrawMode(), 79, 108

in result view, 80

Duplicate channel, 79

Duplicate window, 3

—E—
EditClear(), 82, 100

EditSelectAll(), 82, 100

Evaluate window, 57

Event channel, 6

Event correlation, 24

Event data display modes, 22

Example files, 1

Export graphics and text, 12

—F—
File types, 5

FileClose(), 75, 83, 85, 100, 102,

118, 122

No query, 80, 115

FileName$(), 78

FileNew(), 81, 85, 87

Command description, 117

Create data file, 120

New offline data file, 110, 117

FileOpen(), 56, 74, 80, 82, 84, 86, 91

Binary, 120, 122

External text, 118

FilePathSet(), 74

FileSaveAs(), 80

Find next and last data item, 78

Find peaks, 85

for ... next, 61

FrontView(), 79, 82

—G—
Gradient of line, 77

Graphical sequence editor, 28

Grid(), 80

—H—
HALT, 36

Help system, 5

—I—
Idle routine, 97, 102

if statement, 60

Import data

From binary file, 119

From Text file, 117

Input(), 70, 82

Installation, 2

Interact(), 68, 78, 82, 84, 86

Interval histogram, 23, 54

—J—
JUMP, 38

—K—
Keyboard marker channel, 6

Keyboard markers, 25

—L—
Last data item, 78

LastTime(), 78, 79

LD1RAN, 38

LDCNT1 and DBNZ1, 37
Len()

Array, 120, 121

String, 70

Level channel, 6

LogHandle(), 82, 100

 Spike2 training manual Index

131

—M—
MARK, 41

Marker filter, 7

Wavemark data, 55

Maths and Array arithmetic functions,

71

Maximum and minimum, 77

Maximum value, 78

Maxtime(), 67, 78, 82, 90, 92, 98, 99,

110, 122

Mean value between cursors, 77

Measurement tools, 27
MemChan()

Command description, 109

Event, 87, 108

Marker, 84

Waveform, 88, 90, 116, 118, 120

WaveMark, 112

MemDeleteItem(), 108, 115, 118

Command description, 114
MemDeleteTime()

Command description, 114

MemGetItem(), 114

Command description, 113

MemImport(), 85, 86, 110, 112

Command description, 111

Memory channel, 6, 108

Memory channels, 83

MemSave(), 91, 116, 117, 118

Command description, 115

MemSetItem(), 89, 91, 108, 114, 116,

118, 120

Command description, 112

Menu bar, 4

Message(), 70, 78

Mid$(), 70

Minimum value, 78

MinMax(), 76, 78

MOVI, 38

Multi-Tasking, 2

Multi-unit recording and marker filter, 7

—N—
Next data item, 78

NextTime(), 78, 79, 85

—O—
On-line script skeleton, 100

Optimise(), 78

in result view, 80

Output pulses, 36

Output sequencer, 28, 36

Arbitrary waveform output control,

34

Clock rate, 28

DAC scaling, 29

Graphical editor setup, 28

milliseconds per step, 28

On-line use, 102

—P—
Peak and trough, 77

Peak extraction, 85

Phase histogram, 24

Picture export, 12

PLS Output sequencer file, 5

Power spectrum, 19

Print$(), 79

PrintLog(), 60, 61, 82, 88

Procedures and functions, 63

Process(), 82

Processing tools, 27

—Q—
Query(), 70

—R—
Rand(), 70, 108, 114

Random delays and branches, 38

Recording actions to a script, 58

Rectify wavefrom, 88

Renumber cursors, 68

repeat ... until, 61

REPORT, 41

Result view, 3

Result views, 80

RMS level, 77

—S—
S2R Spike2 resource file, 5

S2S Script file, 5

Sample family of commands, 93

SampleAbort(), 95

SampleCalibrate(), 94

SampleClear(), 93

SampleComment$(), 94

SampleKey(), 38, 41, 103, 104, 105,

106

SampleLimitSize(), 94

SampleLimitTime(), 93

SampleMode(), 93

SampleReset(), 95

SampleSequencer(), 94, 103

SampleSeqVar(), 38, 105

SampleStart(), 95, 101, 103

SampleStatus(), 98, 99

SampleStop(), 95, 101

SampleText(), 95

SampleTextMark(), 94

SampleTimePerAdc(), 93

SampleTitle$(), 94

SampleUsPerTime(), 93

SampleWaveform(), 94

SampleWrite(), 95

Sampling, 15

Configuration dialog, 11

Digital outputs, 28

Event data, 21

Introduction, 9

Marker data, 25

Open a new data file, 15

Output during, 28

Wavefrom data, 15

Sampling configuration commands, 93

Sampling mode, 27

Script language, 59

Script window, 57

Scripted analysis while sampling, 96

Scroll bar, 3

Seconds(), 79, 95, 108, 114

Sequencer execution control, 102

Sequencer table data, 105

Sequencer variable manipulation, 103

Serial line use from Spike2, 124

SerialClose(), 124, 126

SerialCount(), 124

Command description, 126

SerialOpen(), 124

Command description, 125

SerialRead(), 124

Command description, 126

SerialWrite(), 124

Command description, 125

SET, 36, 44

SetPSTH(), 82

SetResult(), 80

Sinusoidal output, 43

Slope of line, 77

SMR Spike2 data file, 5

Sonograms, 127

Sound(), 36

Spike shapes, 47

Spike triggered averaging, 54

Spreadsheet output, 14

SRF Spike2 result view file, 5

Standard deviation from the mean, 77

State machine design, 99

Status bar, 3

Stimulus histogram, 23, 55

String functions, 72

Sum of result view bins, 77

SXY XY view file, 5

—T—
Template formation, 51

Template parameters dialog, 50

Template setup window, 49

Text and binary file functions, 72

Text export, 13

Index Spike2 training manual

132

Text files, 117

Text markers, 25

TextMark channel, 6

Time view, 3

Toolbar, 3, 26

Toolbar family of functions, 69

Toolbar use during data capture, 97

Toolbar(), 95, 101, 102, 103

ToolbarClear(), 95

ToolbarEnable(), 43, 101

ToolbarSet(), 95, 101, 103

ToolbarText(), 82, 101, 102

ToolbarVisible(), 78, 86, 100

ToolBarVisible(), 78

Trunc(), 90

TXT Text file, 5

Type of files, 5

—U—
UCase$(), 79

Using scripts on-line, 93

—V—
VAR in output sequence, 38

Variables for output sequencer, 38

Variables in a script, 60

Vector images, 12

View manipulation, 66

ViewKind(), 66, 121

Views and view handles, 64

ViewStandard(), 67, 78

—W—
WAIT, 39

WAVEBR, 45

Waveform average, 20

Waveform channel, 6

Waveform correlation, 20

WAVEGO, 45

WaveMark channel, 6

WaveMark data, 47

WAVEST, 45

while ... wend, 61

Window(), 82, 100, 118

WindowTitle$(), 79

WindowVisible(), 82, 100, 114

—X—
XRange(), 67, 78, 101

XY views, 73

