

eNEWSLETTER
#2

March 2020

Welcome

Spring is finally here; the tree blossoms are starting to appear outside our

windows and warmer temperatures are on the horizon. Let’s all hope for some

good weather!

We’d like to thank all those who attended our recent training days in Paris and

London, we hope you found them useful and would welcome any feedback to

make our next training days even more successful.

Unfortunately, due to the ongoing COVID-19 outbreaks, the Experimental

Biology 2020 meeting in San Diego has been cancelled and we are therefore no

longer attending. The decision to cancel EB was not taken lightly by the society,

with the health and safety of their members, exhibitors, attendees, staff,

partners and communities being their top priority. We encourage everyone to

follow their national health advice on travel and cleanliness and hope you all stay

safe and healthy. We will however be attending Experimental Biology 2021 in

Indianapolis and hope to see you there!

On the same note, Cambridge Neuroscience 2020, PDN 2020 and Canadian

Neuroscience 2020 have also been postponed until further notice, and we fully

expect other events to follow. Our website will be updated regularly with any

changes to both our exhibiting and training schedules as the situation changes. If

you have any questions, please don’t hesitate to get in touch.

Training Days

Due to the ongoing COVID-19 outbreaks, all current training events will be

scheduled on a case-by-case basis. We also offer remote training sessions via

Skype either one-to-one or with small groups.

Join us and learn how to make the best use of Spike2 and Signal to save hours of

repetitive analysis. These sessions are free to attend and are suitable for both

existing and prospective users of our data acquisition and analysis systems. If

you’d like to register your place, please get in touch.

If you are interested in hosting a training event in your local area, please get in

touch: Marjorie@ced.co.uk.

If you see these buttons in our newsletters, it means a file or script relating to

the section is available to download. Right-click, and select Save:

Contents

Welcome

Training days

Latest software

Future meetings

Script Spotlight

• Toolbars

• Channel processes

• Script – Batch

processing

• Ordering of states

• Script – X-axis offset

Did you know…?

• Dark mode

Recent questions

• Recording time of

stimulus output

CED user forums

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Script
File Attachment
This button signifies a script can be downloaded

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Data
File Attachment
This button signifies a data file can be downloaded

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

XY | Result | Other
File Attachment
This button signifies an XY, Result, or other file can be downloaded

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.04 03/2020 Version 7.05a 02/2020
Version 9.10 02/2020 Version 6.05b 10/2019
Version 8.19a 11/2019 Version 5.12a 02/2018
Demo 03/2020 Demo 02/2020

Back to contents

Future meetings and events

Bristol Brain Research 2020
Bristol,
UK
June 23rd 2020

UK Sensorimotor Conference
Birmingham,
UK
June 24th – 26th 2020

ISAC XXI 2020
Lisbon,
Portugal
June 29th – July 2nd 2020

12th FENS Forum of Neuroscience
Glasgow,
UK
July 11th – 15th 2020

ISEK XXIII 2020
Nagoya,
Japan
July 11th – 14th 2020

Europhysiology 2020
Berlin,
Germany
September 11th – 13th 2020

Neuroscience 2020
Washington, DC,
USA
October 24th – 28th 2020

PDN 2020
Cambridge,
UK
POSTPONED

Canadian Neuroscience 2020
Montreal,
Canada
POSTPONED

Back to contents

Script Spotlight

 In our last newsletter we introduced idle functions and their usefulness in monitoring changes or conditions in a

script. We also mentioned the ToolMake.s2s script for Spike2 and ToolMake.sgs script for Signal, which we

will now cover in more detail. These scripts create custom toolbars for use in your own scripts. These scripts are in

your user data folder, for example: C:\Users\Username\Documents\Spike10\Scripts. They let you build toolbars by

adding buttons, giving them a label, and then linking them to functions. Once you’ve added the required buttons, the

Write Code button in the toolbar generates a skeleton script that you can add to your own code.

Toolbars allow the user to access multiple functions in a script. For example, a button for starting/stopping recording,

buttons for different types of analysis and a Quit button to end the script. Toolbar buttons can have pop-up tips

explaining the function and can be enabled/disabled to guide the user through a sequence of task.

The script function ToolbarSet(item%, label$ {,func ff%()}); generates toolbar buttons. You link toolbar

buttons to a user-defined function with the third argument. For example ToolbarSet(1,"&Go",LetsGo%);

creates a button 1 linked to a function named LetsGo%. Using &Go in the label also links the button to the Alt+G key

combination. Button 0 is special as the linked function is called as an Idle function (see our last newsletter).

The Toolbar() script command displays the toolbar and waits for user button clicks or linked key presses. A click on a

button with no linked function closes the toolbar and the Toolbar() function returns the button number. However, if

you link a function, the function is called and the function return code determines what happens:

Func LetsGo%()

…script actions…

return <code>; 'greater than 0 to keep running, else end Toolbar()

end;

'Example toolbar script

'===

'	 CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, CAMBRIDGE RD., CAMBRIDGE CB24 6AZ, UK

'===

'Copyright © Cambridge Electronic Design, last modified: Mar 2020.

'Author:	LS.

'SOFTWARE REQUIRED:

'	Spike 2 version 8.19a or higher

'HEALTH WARNING:

'	The script is a <work in progress> and is offered without guarantees.

'	Re-compile and run your scripts after tidying them to satisfy yourself

'	that everything is still in working order.

'OVERVIEW

' The toolbar within this script was generated using ToolMake.s2s.

' It demonstates several features of the toolbar: Enabling/disabling buttons, changing button titles, and calling functions

'USER GUIDE

'	Upon commencing running of the script, the toolbar is created along with a new data file holding two virtual channels of sinusoidal waveforms of different frequencies.

' START: This button will rerun the data file. The button will change to STOP if used to begin playing data, and can then be used to stop playing.

' ANALYSIS TYPE 1: This button will perform a simple on-line power spectrum of the data, updating as new data is recorded.

' ANALYSIS TYPE 2: This button will perform a simple waveform average of the data, updating as new data is recorded.

' QUIT: This will quit the script.

'NOTES

'	This script is an example of a toolbar created with the ToolMake.s2s script and edited to show the disabling of toolbar buttons, linking of functions, and changing button titles.

'Revisions:

'13/03/2020 First revision

Var flag%:=0;

Var Data%;

Var cSpc%[3];

Var String$;

Var Log%:=LogHandle();

Var Pwr%, Avg%;

Var Lastlook;

Var FreqFast:=95, FreqSlow:=9;

view(log%).EditSelectAll();

view(log%).EditClear();

View(App(3)).Windowvisible(0);

New%();

DoToolbar(); 'Try it out

Halt;

'***MAIN TOOLBAR START

Func DoToolbar() 'Set your own name...

 ToolbarClear(); 'Remove any old buttons

 ToolbarSet(0, "", Idle%); 'Idle routine

 ToolbarSet(1, "&Quit", Quit%); 'Link to function

 ToolbarSet(2, "Start", StartStop%); 'Link to function

 ToolbarSet(3, "AnalysisType1", Type1%); 'Link to function

 ToolbarSet(4, "AnalysisType2", Type2%); 'Link to function

return Toolbar("Select...", 1023);

end;

'***MAIN TOOLBAR END

Func Idle%() 'Button 0 routine

If viewkind(data%) = 0 then

 View(Data%);

 if flag% = 1 then

 If ReRun() = 0 then StartStop%() endif;

 If seconds() > Lastlook+0.3 then

 Lastlook:=Seconds();

 DoUpdate%();

 endif

 endif

else

 Return 1

endif

return 1; 'This leaves toolbar active

end;

Func DoUpdate%();

 View(Data%);

 If ViewKind(Pwr%) then

 Yield(0.01);

 'YieldSystem(0.1);

 FreqSlow+=0.1;

 FreqFast-=0.1;

 VirtualChan(cSpc%[1], Print$("Wsin(%f, 0)*5", FreqSlow));

 VirtualChan(cSpc%[2], Print$("Wsin(%f, 0)*5", FreqFast));

 endif

Return 1

end

Func Quit%() 'Button 1 routine

view(Data%).Rerun(0);

Halt;

return 0; 'This stops the toolbar

end;

Func StartStop%() 'Button 2 routine

 If viewkind(Data%) <> 0 then

 New%();

 endif;

 View(Data%);

 If Flag% = 0 then

 Rerun(1, 0, Maxtime());

 FreqFast:=95; FreqSlow:=9;

 ToolbarSet(2, "Stop", StartStop%);

 flag%:=1;

 else

 Rerun(0);

 ToolbarSet(2, "Start", StartStop%);

 ToolbarEnable(-1, 0); 'Disable buttons #2, 3 and 4

 ToolbarEnable(1, 1);

 flag%:=0;

 endif;

return 1; 'This leaves toolbar active

end;

Func Type1%() 'Button 3 routine

'Your code in here...

 If viewkind(Data%) <> 0 then

 New%();

 return 1;

 endif;

 FrontView(Data%);

 If viewkind(Pwr%) = 4 then

 View(Pwr%).Fileclose(0, -1);

 endif;

 Pwr%:=SetPower(cSpc%[],256,1);

 Window(50, 0, 100, 50);

 FrontView(View());

 ProcessAuto(0, 1, 1, 1);

 PrintOut("Analysis Type 1"); 'Call to print procedure

 FrontView(Log%);

return 1; 'This leaves toolbar active

end;

Func Type2%() 'Button 4 routine

'Your code in here...

 If viewkind(Data%) <> 0 then

 New%();

 return 1;

 endif;

 FrontView(Data%);

 If viewkind(Avg%) = 4 then

 View(avg%).Fileclose(0, -1);

 endif;

 Avg%:=SetAverage(cSpc%[],1/BinSize(cSpc%[1]),0.5, 0, 1, 1);

 window(50, 50, 100, 100);

 FrontView(Avg%);

 ProcessAuto(1, 0, 1, 0);

 PrintOut("Analysis Type 2"); 'Call to print procedure

 FrontView(Log%);

return 1; 'This leaves toolbar active

end;

Func New%();

'Your code in here...

 Data%:=Filenew(7, 1, 1, 1, 200, 32);

 window(0, 0, 50, 50);

 cSpc%[1]:=VirtualChan(-1, Print$("Wsin(%d, 0)*5", FreqSlow), 0, 1.0/500.0, 0);

 cSpc%[2]:=VirtualChan(-1, Print$("Wsin(%d, 0)*5", FreqFast), 0, 1.0/500.0, 0);

 cSpc%[0]:=2;

 Chanshow(cSpc%[]);

 ToolbarEnable(-1, 1);

 view(loghandle()).window(0,50,50,100);

return 1; 'This leaves toolbar active

end;

Proc PrintOut(String$);

PrintLog("Performed %s at %s\n", String$, Time$());

return;

end;

Script
File Attachment
ToolbarExample.s2s

http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signaldemo
http://www.bristol.ac.uk/blackwell/events/2020/bristol-brain-research-day-23-june-2020.html
https://uksensorimotor.wixsite.com/conference
https://arterialchemoreceptors.org/
https://forum2020.fens.org/
https://isek.org/2020-congress/
https://www.europhysiology2020.de/
https://www.sfn.org/meetings/neuroscience-2020
https://www.pdn.cam.ac.uk/postdocs/pdn-research-symposium
https://can-acn.org/meeting-2020/

3

In the example script, a toolbar has been created using ToolMake.s2s which creates a new data file, allows the user to

perform two types analysis that continually update as new data is recorded, demonstrates the changing of a button’s

label as well as enabling/disabling other buttons.

 Back to contents

Channel processes are operations which can be added to data channels both on and off-line. These processes do not

replace the source data, instead you can think of each one as a set of calculations that are applied dynamically to

update the view and are just as easily removed. This is different to the Derived Channels and Real time sample

processes discussed in the last newsletter which change the source data; these types cannot be removed once data is

sampled.

 You can apply multiple Channel processes sequentially. For example: DC Remove, Rectify, Smooth to generate the

envelope of an EEG signal. Spike2 applies Channel processes dynamically; each data fetch starts with the original data

and applies the processes, in order. Most processes take very little time, so this extra work is not usually noticeable.

To open the Channel processing dialog, right-click the data view and select Channel process… or alternatively go to

the Analysis menu in the toolbar to select it. Within the dialog, select the channel using the Channel drop-down list in

the top left, and the process to apply from the drop-down list on the right. The Add button appends the process to

the list. The Delete button removes the selected process from the list. The Clear button removes all processes. If you

select a group of channels by clicking on the channel numbers, you can apply the current process settings to all or

Clear all processes with the buttons in the bottom left corner of the dialog. Spike2 applies any changes you make

immediately so you can see the result.

Some processes have arguments that

modify the process behaviour. When

required, these appear below the

selected channel. The types of

processes available depend on the

channel type: waveform-based or

event-based. Several processes use a

user-defined time range defined by

the argument p (short for pre- and

post-time). The following processes

are currently available in Spike2:

Rectify (waveform) – Replaces negative data values with equivalent positive values and leaves positive values

unchanged

Smooth (waveform) – Low pass filter. The output at time t is the average value of the input from t-p to t+p seconds

DC Remove (waveform) – This is a high pass filter equivalent to the source data minus the result of the Smooth

process described above; the channel offset becomes zero

Slope (waveform) – The slope of a waveform at time t obtained by calculating the mean of the points ahead (t+p) and

behind (t-p) each data point. The slope is from the line through the centre of the points behind to those ahead

How do channel processes differ from

sample processes?

4

Time shift (any channel) – Shifts all data by the user specified time, in seconds. A positive number shifts the data

forwards in time; a negative number shifts it backwards

Down sample (waveform) – Applying this process changes the sample rate of the waveform by taking one point in

every n, with the user supplying n. This process would generally be used after filtering or smoothing a waveform and

is faster than using interpolate

Interpolate (waveform) – This changes the channel sample rate and alignment. Interpolation is by cubic spline of the

original data; no data is generated outside the time range of the original points. Interpolate has two arguments:

sample interval (s) is the time between output samples, align to (s) aligns the output data to a time

Match channel (waveform) – This is the same as the Interpolate, except sample interval and alignment are copied

from a nominated channel

RMS amplitude (waveform) – The RMS (root mean squared) value for each point is calculated at time t using data

points from time t-p to t+p

Median filter (waveform) –The output at time t is the median value of the input data points from t-p to t+p. This is

used to remove short artefacts from data

Fill gaps (waveform) – Waveform and RealWave channels can have gaps, this process fills gaps greater than a

specified time with a fixed level and by linearly interpolating across smaller gaps

Skip NaN (waveform) – A NaN (Not a Number) is a floating-point value that is either undefined or infinite. These can

occur when importing RealWave data into Spike2 or in a virtual channel if you divide by zero. This process removes

these numbers creating gaps in the data (follow Skip NaN with Fill gaps to eliminate these)

Debounce (event) – This process removes events that are too close to the previous event for all event-based channels

except Level events. The minimal interval argument specifies how close events can get before removal

Back to contents

Scripts: Spike2

Recently, a Spike2 user came to us with an interesting problem. The user had multiple data files of evoked response

data which needed processing into a single stimulus response curve. Each file records multiple stimulations of one

intensity and their response on two channels of EMG data from surface electrodes. At first it seems like a relatively

simple project, however, there were several hurdles to overcome.

With the data in separate files, we needed a way to identify the stimulus intensity applied in each file in order to

begin. The files were given a name that included the stimulus intensity in the same format: #mA<more text> where #

stands for intensity. The script loads all the file names into an array, then scans the name of each file to extract the

intensity.

5

Within the data there were no event markers identifying the time of stimulus; we had only the stimulation artefact to

mark the response. However, the stimulus in both channels were of different polarity and magnitude, so to get

around this the script squares the data in both channels and adds them together in a new virtual channel. Cursor 0 is

used in active mode to find the rising threshold of the stimulus artefact above a set value on the virtual channel, and

from this point the P and H wave measurements are taken from source channels 1 and 2. This is repeated for each

data file, adding the stimulus level and

response measurements to a created XY

view as they are grabbed.

This type of script is a useful example of

batch processing, where common

elements in each data file may be used

to create automated analysis instead of

the user needing to search for the data

and plot by hand.

Download the script and example library

here.

Back to contents

In our last issue we introduced multiple frame states and discussed adding stimulation devices to Signal for external

control. Manual control of which state to play is achieved by clicking the labelled buttons on the States bar during

sampling. If this bar does not appear when creating a new sampling file, check you have multiple frame states

enabled, then right click the toolbar

and select the States bar from the list.

Alternatively, the states are cycled through automatically by selecting an order of states. This ordering, also referred

to as sequencing mode, allows the user to specify the order in which the states are cycled. There are five different

modes to choose from: Numeric, Random, Semi-Random, Random repeated, and Protocol. These modes are used in

conjunction with the Repeats and Cycles before idle fields.

The Repeats field is used to specify how many times each state is repeated, with the option to have certain states

repeat more/less by ticking the Individual repeats field and choosing the number of repeats for each state. The Cycles

before idle field specifies how many full cycles

(including repeats) of all states will happen. For

example, entering 1 cycles through all states

once and then switches to State 0. Entering 0

makes the states cycle indefinitely until

sampling is manually stopped. One cycle of

sequencing consists of #states x #repeats =

#frames.

Numeric – This mode runs through each state in ascending order for the specified number of repeats, for the

specified number of cycles (e.g. 1 1 1 | 2 2 2 | 3 3 3).

Random – One cycle of this mode loads all states for their specified number of repeats and fully randomises the

order. Therefore, it’s possible to get states repeated (e.g. 3 1 2 2 2 1 3 1 etc.). When a new cycle begins the order is

completely randomised again.

How can I choose which state to play during

sampling?

Ch1 Ch2

#mA #mA

http://ced.co.uk/files/scripts/Stimulus%20Response%20Curve%2032bit.zip

6

Semi-random – This is a different method of randomisation where states are only randomised within one repetition.

Therefore, if you have multiple repeats of states it’s impossible to have more than one consecutive repeat of a state

(e.g. 3 1 2 | 2 3 1 | 3 2 1 etc.).

Random repeated – This is another method of randomisation where the order of states is randomised, but each state

repeats the number of times set by Repeats before moving onto the next state (e.g. 2 2 2 | 3 3 3 | 1 1 1).

Protocol – This mode is extremely useful and underutilised; Protocol sequencing gives the user full control of the

experiment. Selecting Protocol from the Ordering drop down list provides you another button labelled Protocols.

Clicking this opens the Protocols dialog where you can begin designing your experiment. Here you’re able to name

your protocol by overwriting the title in the top box. It’s possible to create more than one protocol, just click Add

protocol to create another and select which protocol to edit using the drop-down list above and click Delete to

remove a protocol entirely.

Each protocol provides you with ten steps you’re able to edit: altering which state will run, the number of repeats,

and which step the protocol will then go to next. There’s an option to enter the number of repeats for the entire

protocol underneath the step settings, and a drop-down list to

choose to either finish once the protocol is complete or move to

another protocol.

In the top half of the dialog there are several more options available

to you, those that require more explanation are described here:

- Ticking Create toolbar button for protocol when using more

than one protocol allows you swap between protocols

during sampling using the created toolbar.

- You are likely to use Cycle protocol state only after write if

you are rejecting sweeps of data. Essentially if the data is

not written to disk, then the protocol repeats the current

state until subsequent sweeps are written to disk.

- Use per-step write flags is useful if you do not wish to write

data to disk for a particular step of your protocol, for

example if you were providing multiple stimulations in one

step before moving to another step to record the response.

Ticking the associated box enables the Write tick boxes to

the right of the numbered steps, allowing you to select

which steps are written to disk.

- Reset pulse steps at protocol start reverts varying pulses

added to Pulse Outputs to their initial level. For example, a

square pulse varying by 1V between 1V to 5V reverts to 1V

each time the protocol is run with this option enabled,

regardless of the level it was previously at.

Back to contents

7

Scripts: Signal

Occasionally we finish recording a data file only to find we have not set up the recording correctly, however we can

often use the scripting language for changes to be applied retroactively instead starting again. A common problem

Signal users face is the positioning of zero on the x-axis, in that an offset was not applied before recording data. In

order to set the x axis offset, one should initially set the value in the General tab of the Sampling Configuration. If you

are using Peri-trigger mode however, the time before trigger is defined in the Peri tab. It is possible to mistakenly use

both the offset in the General tab and the offset in the Peri tab, which adds cumulatively.

Thankfully the script function BinZero() is available in version 7, which returns the position of the first bin in a time

view but more importantly allows you to set this position in a memory view. This script makes use of the BinZero()

function by copying all frames of a file to a memory view created through the Auto Average analysis function. Auto

Average would normally average several frames with a specified overlap for all frames, however here we have used it

to produce copies of waveform data in all frames. We can then use BinZero() to set a new x-axis offset for time

zero, leaving the source data untouched.

Upon launching the script, you are be presented with a dialog asking you to specify the x-axis offset to apply. Each

time you enter a value or use the increment slider the memory view updates the x axis. When you are happy with the

changes, click OK. Whilst this only currently works with memory views, the BinZero() function will soon work with

data files.

Back to contents

Did you know…?

If like us you spend a large amount of time staring at computer screens, sometimes a glaring white background can

be tiring on the eyes. Thankfully, the colours of Spike2 and Signal can be altered to alleviate this strain. Spike2 even

has a dark mode that inverts all the colours for you. Open the Set Colour palette on the Spike2 toolbar, and whilst

holding ctrl, click the Reset All button. Ta dah, your Spike2 is now set to dark mode. To revert the colours back click

the Reset All button without holding ctrl. The same function is not yet available for Signal; however, this little script

will change all items set white to black, and vice versa:

var i%, r, g, b;

for i%:= 0 to 30 do

 ColourGet(0, i%, r, g, b);

 docase

 case r=1.0 and g=1.0 and b=1.0 then

 ColourSet(0, i%, 0.0, 0.0, 0.0);

 case r=0.0 and g=0.0 and b=0.0 then

 ColourSet(0, i%, 1.0, 1.0, 1.0);

 endcase;

next;

Back to contents

'X axis offset with BinZero()

'===

'	 CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, CAMBRIDGE RD., CAMBRIDGE CB24 6AZ, UK

'===

'Copyright © Cambridge Electronic Design, last modified: Mar 2020.

'Author:	LS.

'SOFTWARE REQUIRED:

'	Signal version 6.05b or higher

'HEALTH WARNING:

'	The script is a <work in progress> and is offered without guarantees.

'	Re-compile and run your scripts after tidying them to satisfy yourself

'	that everything is still in working order.

'OVERVIEW

' This script will create a memory view of all frames using the Auto Average function.

' Each frame is copied like for like but only for waveform channels.

'USER GUIDE

'	Upon commencing running of the script, you are presented with a dialog to enter an offset for the x-axis.

' Entering a valid time (s) and clicking away from the dialog will shift the point of zero by the offset.

' Each time a new value is entered and the dialog clicked away from, the memory view will update.

' When satisfied with the offset, click OK to finish.

'Revisions:

'13/03/2020 First revision

var vh%; 'Data view handle

var MemView%; 'Memory view handle

var vwlst%[3]; 'List of data views

var chlst%[80]; 'List of wavefrom channels

var flag%; 'Dialog ok or cancel flag

var offset; 'Holds the dialog offset - not really used

var framewidth; 'Total width of the data view

var ch%; 'Holds the first channel found

var i%; 'Used as a counter in loops

var v0; 'Previous zero position

var sp; 'Spinner step value

var Orig; 'Origianl zero position

Var Val%, Read%; 'Time preference values read from the registry

Var Mul; 'Multipler changes if time is S, mS or uS

Var U$; 'Units as a string

Const Key$:="Preferences";

Const Name$:="Time mode";

View(App(3)).WindowVisible(2); 'iconise the running script

ViewList(vwlst%[],1); 'find a time view on the desktop

docase

case vwlst%[0]=0 then Message("Error|No time view on the desktop, halting script."); halt;

case vwlst%[0]=1 then vh%:=vwlst%[1];

case vwlst%[0]>1 then Message("Error|More than one time view on the desktop, please close unused time views and try again"); halt;

endcase;

View(vh%); 'work on the time view on the desktop

ChanList(chlst%[],1+512+2048); 'list of channels in the view

If chlst%[0] = 0 then

 Message("Error|No waveform channels found."); halt;

endif

resize chlst%[chlst%[0]+1];

ch%:=chlst%[1]; 'channel to process

Profile(key$, name$, val%, read%); 'Find out what the user sees as X Axis units in the view. Read the registry preferences

If UCase$(XUnits$()) = "S" then 'If the current X Units are in seconds then

 docase

 case Read% = 0 then 'If preferences seconds

 Mul := 1; 'Mulitplier to use

 u$:="S"; 'Units to display

 case Read% = 1 then 'If preferences milliseconds

 Mul := 1000;

 u$:="mS"'

 case Read% = 2 then 'If preferences microseconds

 Mul := 1000000;

 u$:="uS";

 endcase

else

 U$:=XUnits$(); 'Get the X Axis units

 Mul := 1; 'Assume multiplier

endif

 sp:=(MaxTime()/20)*Mul; 'Set a spinner for the dialog to 1/20th of range

'endif

Orig:=BinZero(ch%); 'store original zero position

framewidth:=binsize(ch%)*ChanPoints(ch%); 'Get the total length of the data view

MemView%:=SetAutoAv(chlst%[], 1, 1, framewidth, 0, 1, 0 ,0, 0, 0, 0); 'Create an auto average (fast to copy data view)

WindowVisible(1); 'Make the average visable

ProcessFrames(-1, -1, -1, 1, 1, 1, 0, 1); 'Process all the frames (make a copy of data view)

'User dialog

DlgCreate("Enter offset to apply");

DlgReal(1, Print$("Pre zero data (%s)", U$), -framewidth*Mul, framewidth*Mul, 0, 0, sp, 6);

DlgAllow(1023, 0, DlgChanged%); 'This allows dialog entries to be passed to a change function to be acted o immediately

flag%:=DlgShow(offset);

if flag%=0 then 'If cancel was presses

 for i%:=1 to chlst%[0] do 'Loop throught the channels in the view

 '***************************************BINZERO()

 ApplyBinZero(chlst%[i%],Orig); 'If cancelled set the original zero postition

 next;

 Message("No offset applied, halting script");

endif;

Func DlgChanged%(item%); 'Change function

var v1;

docase

case ((item%=1) or (item%=0)) then 'OK pressed or value in DlgReal 1 channged...

 v1:= DlgValue(1)/Mul; '... get the value. V1 is the user entered value divided by the multiplier

 if v1 <= framewidth and v1 >= -framewidth then 'If within range

 if v1<>v0 then 'and differnet to before... Apply changes...

 for i%:=1 to chlst%[0] do 'Must change zero positon for each channel in the frame

 '***************************************BINZERO()

 ApplyBinZero(i%,v1); 'Dynamicallty changing zero position

 next;

 endif;

 endif;

 v0:=v1;

endcase;

return 1;

end;

Proc ApplyBinZero(Chan%, Value);

'***************************************BINZERO()

 'Point at the memory view and appply BinZero

 view(MemView%).BinZero(Chan%, Value); 'Dynamicallty changing zero position

Return

end

Script
File Attachment
X axis offset with Binzero().sgs

8

Recent Questions

How can I record the timing of my stimulus output in Signal?

In terms of evoked response, knowing the exact timing of your stimulus not only lets you accurately measure

response times, it also provides valuable insight for your data analysis.

There are two ways to achieve this marking in your data. The first is simply a case of using the trigger output of your

stimulation device and connecting it to the CED 1401. Connecting to the Trigger input enables you to set a

configuration wherein the stimulus triggers a sweep of data, therefore the stimulus itself is at time point 0 in your

fame of data. To set this, tick the box labelled Sweep trigger under Options in the General tab of the sampling

configuration.

Alternatively, one may use the 1401s Digital Inputs which affords the use of digital markers to mark the stimulus in

your data. Cursor 0 is then used to find data points and relative times of responses. These markers are both a time

stamp and a code. Due to this, it’s possible to record two separate triggers and mark them with different codes. It is

important to note that digital markers cannot be recorded in fast sweep modes. Digital marker data is also only

sampled when a low going TTL compatible pulse is detected on pin 23 of the 25-way D-type connector on the rear of

the 1401. To set this up, ensure Digital Markers are enabled in the General tab of the Sampling configuration, and

connect your stimulators trigger output to pin 23 of the digital inputs of the 1401.

Digital markers are also generated by the Pulse Outputs and Text Sequencer systems, for instance to show the

stimulator was triggered by the 1401. In these cases, the marker data may either be read from the 1401 digital inputs

or set directly when setting up your trigger pulses using the Pulses configuration in the Output tab of the sampling

configuration. However, this only informs the user that a pulse was sent to the stimulator, not that the stimulator

fired. Ideally one should be using digital markers created by a pulse delivered from the stimulator to the 1401.

Back to contents

CED User forums

Try the CED Forums bulletin board for software and hardware support.

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186
Fax: (01223) 420488

Email: info@ced.co.uk
International Tel: [44] 1223 420186
International Fax: [44] 1223 420488
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2020 Cambridge Electronic Design Ltd, All rights reserved.

8

http://www.ced.co.uk/phpBB3/index.php

	Contents
	Training Days
	Latest versions of Spike2 and Signal
	Future meetings and events
	Script Spotlight
	Channel Processes
	Scripts: Spike2
	Ordering of states
	Scripts: Signal
	Did you know…?
	Recent Questions
	CED User forums

'Example toolbar script

'===

'	 CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, CAMBRIDGE RD., CAMBRIDGE CB24 6AZ, UK

'===

'Copyright © Cambridge Electronic Design, last modified: Mar 2020.

'Author:	LS.

'SOFTWARE REQUIRED:

'	Spike 2 version 8.19a or higher

'HEALTH WARNING:

'	The script is a <work in progress> and is offered without guarantees.

'	Re-compile and run your scripts after tidying them to satisfy yourself

'	that everything is still in working order.

'OVERVIEW

' The toolbar within this script was generated using ToolMake.s2s.

' It demonstates several features of the toolbar: Enabling/disabling buttons, changing button titles, and calling functions

'USER GUIDE

'	Upon commencing running of the script, the toolbar is created along with a new data file holding two virtual channels of sinusoidal waveforms of different frequencies.

' START: This button will rerun the data file. The button will change to STOP if used to begin playing data, and can then be used to stop playing.

' ANALYSIS TYPE 1: This button will perform a simple on-line power spectrum of the data, updating as new data is recorded.

' ANALYSIS TYPE 2: This button will perform a simple waveform average of the data, updating as new data is recorded.

' QUIT: This will quit the script.

'NOTES

'	This script is an example of a toolbar created with the ToolMake.s2s script and edited to show the disabling of toolbar buttons, linking of functions, and changing button titles.

'Revisions:

'13/03/2020 First revision

Var flag%:=0;

Var Data%;

Var cSpc%[3];

Var String$;

Var Log%:=LogHandle();

Var Pwr%, Avg%;

Var Lastlook;

Var FreqFast:=95, FreqSlow:=9;

view(log%).EditSelectAll();

view(log%).EditClear();

View(App(3)).Windowvisible(0);

New%();

DoToolbar(); 'Try it out

Halt;

'***MAIN TOOLBAR START

Func DoToolbar() 'Set your own name...

 ToolbarClear(); 'Remove any old buttons

 ToolbarSet(0, "", Idle%); 'Idle routine

 ToolbarSet(1, "&Quit", Quit%); 'Link to function

 ToolbarSet(2, "Start", StartStop%); 'Link to function

 ToolbarSet(3, "AnalysisType1", Type1%); 'Link to function

 ToolbarSet(4, "AnalysisType2", Type2%); 'Link to function

return Toolbar("Select...", 1023);

end;

'***MAIN TOOLBAR END

Func Idle%() 'Button 0 routine

If viewkind(data%) = 0 then

 View(Data%);

 if flag% = 1 then

 If ReRun() = 0 then StartStop%() endif;

 If seconds() > Lastlook+0.3 then

 Lastlook:=Seconds();

 DoUpdate%();

 endif

 endif

else

 Return 1

endif

return 1; 'This leaves toolbar active

end;

Func DoUpdate%();

 View(Data%);

 If ViewKind(Pwr%) then

 Yield(0.01);

 'YieldSystem(0.1);

 FreqSlow+=0.1;

 FreqFast-=0.1;

 VirtualChan(cSpc%[1], Print$("Wsin(%f, 0)*5", FreqSlow));

 VirtualChan(cSpc%[2], Print$("Wsin(%f, 0)*5", FreqFast));

 endif

Return 1

end

Func Quit%() 'Button 1 routine

view(Data%).Rerun(0);

Halt;

return 0; 'This stops the toolbar

end;

Func StartStop%() 'Button 2 routine

 If viewkind(Data%) <> 0 then

 New%();

 endif;

 View(Data%);

 If Flag% = 0 then

 Rerun(1, 0, Maxtime());

 FreqFast:=95; FreqSlow:=9;

 ToolbarSet(2, "Stop", StartStop%);

 flag%:=1;

 else

 Rerun(0);

 ToolbarSet(2, "Start", StartStop%);

 ToolbarEnable(-1, 0); 'Disable buttons #2, 3 and 4

 ToolbarEnable(1, 1);

 flag%:=0;

 endif;

return 1; 'This leaves toolbar active

end;

Func Type1%() 'Button 3 routine

'Your code in here...

 If viewkind(Data%) <> 0 then

 New%();

 return 1;

 endif;

 FrontView(Data%);

 If viewkind(Pwr%) = 4 then

 View(Pwr%).Fileclose(0, -1);

 endif;

 Pwr%:=SetPower(cSpc%[],256,1);

 Window(50, 0, 100, 50);

 FrontView(View());

 ProcessAuto(0, 1, 1, 1);

 PrintOut("Analysis Type 1"); 'Call to print procedure

 FrontView(Log%);

return 1; 'This leaves toolbar active

end;

Func Type2%() 'Button 4 routine

'Your code in here...

 If viewkind(Data%) <> 0 then

 New%();

 return 1;

 endif;

 FrontView(Data%);

 If viewkind(Avg%) = 4 then

 View(avg%).Fileclose(0, -1);

 endif;

 Avg%:=SetAverage(cSpc%[],1/BinSize(cSpc%[1]),0.5, 0, 1, 1);

 window(50, 50, 100, 100);

 FrontView(Avg%);

 ProcessAuto(1, 0, 1, 0);

 PrintOut("Analysis Type 2"); 'Call to print procedure

 FrontView(Log%);

return 1; 'This leaves toolbar active

end;

Func New%();

'Your code in here...

 Data%:=Filenew(7, 1, 1, 1, 200, 32);

 window(0, 0, 50, 50);

 cSpc%[1]:=VirtualChan(-1, Print$("Wsin(%d, 0)*5", FreqSlow), 0, 1.0/500.0, 0);

 cSpc%[2]:=VirtualChan(-1, Print$("Wsin(%d, 0)*5", FreqFast), 0, 1.0/500.0, 0);

 cSpc%[0]:=2;

 Chanshow(cSpc%[]);

 ToolbarEnable(-1, 1);

 view(loghandle()).window(0,50,50,100);

return 1; 'This leaves toolbar active

end;

Proc PrintOut(String$);

PrintLog("Performed %s at %s\n", String$, Time$());

return;

end;

