D

eNEWSLETTER

CAMBRIDGE ELECTRONIC DESIGN LIMITED

Contents

Welcome
Training days
Latest software
Future meetings
Script Spotlight

e Activity from video

e Memory channels

e Script — Generating
events from
threshold crossings

Signal

e Automation in
experiments

e Script —Importing
stimulator
instructions from
text

Did you know...?
e Scale bars
Recent questions

e How to create long
trains of pulses

CED user forums

#3
May 2020

Welcome

Thank you for downloading the third issue of our newsletter. These are difficult
times for all of us and we hope you, your family, and colleagues are all staying
safe and well. It is times such as this that we all need to come together to
support one another, and we are confident that the scientific community will
adapt to these changes and continue to thrive.

Be assured that CED is still open for business, and we are continuing our daily
operations. Our software team is still developing and providing updates for
Spike2 and Signal, and our hardware team is still at hand for any help you need.
Our customer support teams are available to answer any technical questions and
provide remote training via Skype, Zoom or TeamViewer. We may be contacted
using all the usual channels; however, we ask that contact be done via email
where possible. If you do need to speak to someone directly, please send us an
email to request a call back in the first instance. Up to date information can
always be found on our website, and the CED user forums are also available for
technical help from our super users.

We are also endeavouring to add more video tutorials to our existing library and
would like your input on topics you think would be useful to cover. Please get in
touch at Marjorie@ced.co.uk and let us know your ideas!

Training Days

Due to the ongoing COVID-19 outbreaks, all current training events have been
put on hold. We do however offer remote training sessions via Skype either one-
to-one or with groups.

Join us and learn how to make the best use of Spike2 and Signal to save hours of
repetitive analysis. Our remote sessions are free to arrange and are suitable for
both existing and prospective users of our data acquisition and analysis systems.
If you would like to schedule a session, please get in touch.

If you are interested in hosting a training event in your local area once social
distancing measures have been eased, please get in touch: Marjorie@ced.co.uk.

If you see these buttons in our newsletters, it means a file or script relating to
the section is available to download:

] 1l 1]

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Data
This button signifies a Data file is available to download.

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Script
This button signifies a Script file is available to download.

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

XY | Result | Other
This button signifies an XY, Result, or other file is available to download.

Latest versions of Spike2 and Signal

Spike2 Released Signal Released
Version 10.04 03/2020 Version 7.05a 02/2020
Version 9.10 02/2020 Version 6.05b 10/2019
Version 8.19a 11/2019 Version 5.12a 02/2018
Demo 03/2020 Demo 02/2020

Back to contents

Future meetings and events

Europhysiology 2020 Neuroscience 2020 ISAC XXI 2020
Berlin, Washington, DC, Lisbon,
Germany USA Portugal
September 11t — 132020 October 24t — 28t 2020 November 3 — 6t 2020
Back to contents
Script Spotlight

Our software team has developed a script which converts motion in a video recorded with the Spike2 multimedia
facility (.avi or.mp4) into an "Activity" trace in the corresponding time view. The script does not attempt to track
moving objects, but instead converts the video to grey-scale and interprets differences in intensity between frames,
pixel by pixel, in a user-defined area of the image (for example as due to motion rather than flashing lights). The
result is qualitative, with the output units as 'mean intensity change per pixel between video frames'. The maximum
activity value is 100, where all pixels are undergoing maximum possible grey-scale change between frames; in
practice activity values will be lower.

This approach is not sensitive to colour. Therefore, movement in areas of high contrast and many contours will
register disproportionately and changes in light intensity will register as movement. Despite these caveats, the script
will be useful for applications such as sleep scoring of rats or mice moving around in relatively homogeneous
environments. For example, an animal, or up to 6 animals in adjacent cages, can be videoed from above. The video is
then processed offline with this script to create an activity trace for each animal. The area of the video frame to
analyse for each animal may be specified by clicking and dragging a rectangle over the relevant area of the video
frame to select it. The activity traces for all the animals can then be generated simultaneously.

The activity traces could then be used as part of the input to a semi-automated sleep staging script (e.g. OSD4.s2s)
based on a combination of activity level and banded power spectra. Other applications might include assessing time
spent by a single animal in different parts of a behavioural arena. We appreciate any feedback for this script, and
hope it is of benefit to you.

Download the script from our website.

Back to contents

http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/signaldemo
https://www.europhysiology2020.de/
https://www.sfn.org/meetings/neuroscience-2020
https://arterialchemoreceptors.org/
http://ced.co.uk/downloads/scriptspkanal

’ What is a memory channel for, and how do I use
them?

Spike2 stores memory channels in system memory. They are used for easily modifying data which cannot be achieved
in disk channels, as these are optimized for recording large quantities of unchanging data. Memory channels are
widely used within scripts to create new channels of copied data or even entirely new script generated data. There is
also the option to manually enter data into memory channels.

Memory channels can be of any channel type and are displayed in the same way as other channels, i.e. a memory
based level channel will appear the same as a disk based level channel. When you have finished modifying the data in
the memory buffer it can be written to the data file as a disk channel or discarded; if you do not write memory
channels to disk they are lost when the data file is closed.

To create a new memory buffer, navigate to the analysis menu and select Memory Buffer -> Create New buffer.
You’re presented with a simple dialog to choose the buffer type using the drop-down menu. Click OK to create an
empty channel or click Import to copy data from a source channel.

If you choose to import from a Waveform or RealWave channel when creating an import to Demo.smr{32-bit] memery buffer
event or marker buffer you are presented with the option to choose the mode of
import. The modes available are Peaks, Troughs, Peaks and Troughs, Data rising Channel e T »
through level, Data falling through level, and Rise and fall through level. The Start time
events or markers are created based on the Mode chosen, with the Size of the
peak/trough or Level being supplied in Volts. The minimum interval between
events in seconds also needs to be supplied, and the range of data to process can

Buffer m1Memory {(Event-,2001) v

0.0 ~ | seconds

End time MaxTime() ~ | seconds

Mode Peaks w

Minimum Interval 0.1 seconds
be specified using the start time and end time fields. For example, if one needed . - velte
to import Peaks at least 100 ms apart which exceeded 1V in amplitude as an :

. . | | |
event | would choose the settings on the right: Hep | [Cose | [AeoV

Creating a direct copy in memory of a disk channel is simpler. Navigate to the Analysis menu and select Memory
buffer -> Create Channel Copy. Alternatively, right click the channel you wish to copy in the data and select Copy as
memory channel. Specify the start and end time for the data to copy in the new dialog and click OK. If your source
channel has been modified you will be presented with a warning.

To manually add a new event item to an existing memory channel, navigate to the analysis menu and select Memory
buffer -> Add items, or right click the memory channel and select Add Items from there. Choose the time of the data
to add, the marker code if adding a marker, the value of the wave if adding a waveform, and click OK. Manually
deleting an item from the memory buffer follows the same format as adding an item; from the Delete Items dialog
you can choose to delete items around a time point, between a time range, or delete all items.

Memory channels are useful for holding your data to manipulate. However, there is a limit to the quantity of data
that can be held in memory and accessed quickly. 32-bit applications are limited to 4GB of memory. 64-bit
applications can address much more. There is limited physical memory in your PC, maybe 8 or 16 GB. Once this is
exhausted the operating system 'swaps out' what it thinks is currently unused physical memory to disk to make more
room. This means that if you generate huge quantities of data in memory channels, all operations get slow as the
system spends its time saving and restoring memory from disk.

Back to contents

Scripts: Spike2 [l

Following on from the introduction to memory channels above, we have combined many of the elements we have
discussed in the past three newsletter issues to create a script which generates events at the point which waveform
data crosses a threshold. This script creates a memory channel which uses the import channel function to generate
these events. An idle function continually updates the memory buffer each time the threshold or time range is
altered.

Upon running the script, use the Open button in the script generated toolbar to load your data. Use the Help button
to display guidance. We have used the Demo.smr file for our example here; this data file is stored in your user data
folder, usually located in C:\Users\Username\Documents\Spike2\Data.

Use the toolbar to generate events from data crossing your defined threshold Help| [Tme: 10(ms) [Mode: Risng| ~ [Add events| Remove Range | Threshold [Gpen| Qut

[E=8 BB

iy Demo.smir32-bit]

m1 [[[[[: :
Upper gate -

Lower gate - DRAG ME

i

Threshold - DRAG ME

10

| 5 284 <

After opening your file, you need to choose the channel you wish to generate events from by clicking the channel
number in the Y axis (the script will show these for you if you have hidden them previously). You then need to add
the threshold and optionally a time range before using the Add events button to create the memory channel.

Much of the script is concerned with correctly selecting and positioning views and error checking. The main script
element of interest is MemImport (chan%, inCh%, start, end{,mode%, time, level{,code%}}) ; thisis
contained in the Events% () toolbar function where start, end, and level are specified by the cursors on screen. The
Mode is toggled using the associated button in the toolbar, and the minimum Time between events can also be
specified via its button. The idle function continually checks for the current positions of the placed horizontal cursor
(level) and the difference between the two vertical cursors (start and end) and compares them to their last known
values. If these values differ the script runs the Update$% () function which uses MemDeletelItem(chan$%
{,index% {,num%}}) toremove all items from the memory channel, and imports again with MemImport () using
the new positions of the threshold and time gates.

Download the script and try it out for yourself. We hope you find it useful.

Back to contents

'Events from Threshold Crossing|Script for generating events from waveform data crossing a threshold

'===

'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, 139 CAMBRIDGE ROAD, MILTON, CAMBRIDGE CB24 6AX, UK

'===

'Copyright © Cambridge Electronic Design.

'Author:	LS.

'v10 last modified : 20/04/2020

'SOFTWARE: This script was developed using Spike2 v10.0. It has been tested to work with Spike2 v8, v9 and v10

'HEALTH WARNING:

'The script is a -work in progress- and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'---

var chlst%[10]; 'array to hold channels

var vh1%; 'data view

var ch%; 'chosen channel

var thresh1%; 'threshold

var mode%:=2; 'import mode

var modeflag%:=0; 'debug flag

var RangeFlag%, eventflag%; 'debug flag

var low%, high%; 'vertical cursors

var mem%; 'memory channel

var time:=0.01, minimum:=10; 'time between events

var ThreshPosNew, ThreshPosOld; 'current and previous threshold position

var RangeOld, RangeNew; 'current and previous time gate positions

var msg%:=1; 'help flag, if 1 then hide messages

var Lh1%:=LogHandle(); 'log view

var txt$; 'help text

var type%; 'type of help

var title$;

view(App(3)).WindowVisible(0); 'hide running script

ToolbarText("Placehold");

DoToolbar();

Halt;

Func DoToolbar()

ToolbarClear(); 'Remove any old buttons

ToolbarSet(0, "", Idle%); 'Idle routine

ToolbarSet(1, "&Quit||Quit the script", Quit%); 'Link to function

ToolbarSet(2, "Open||Open a file", Open%); 'Link to function

ToolbarSet(3, "Threshold||Use this button to set the threshold", Threshold%); 'Link to function

ToolbarSet(4, "Set Range||Use this button to set a time range", Range%); 'Link to function

ToolbarSet(5, "Add events||Use this button to create a new channel holding events", Events%); 'Link to function

'ToolbarSet(6, "Release", Release%); 'Link to function

ToolbarSet(7, "Mode: Rising||Use this button to change the mode of threshold crossing", RiseFall%); 'Link to function

ToolbarSet(8, "Time: 10(ms)||Use this button to set the minimum time between events", Minimum%); 'Link to function

ToolbarSet(10, "Help||Display help text", log%); 'Link to function

ToolbarEnable(-1, 0);

ToolbarEnable(1, 1);

ToolbarEnable(2, 1);

ToolbarEnable(10, 1);

help%(1);

return Toolbar("Use the toolbar to generate events from data crossing your defined threshold", 1023);

end;

Func Idle%() 'Button 0 routine

If eventflag%=1 then

 viewlost%();

 if high%>0 or low%>0 then

 if cursor(high%)<cursor(low%) then

 CursorRenumber();

 endif;

 RangeNew:=Cursor(high%)-Cursor(low%);

 endif;

 ThreshPosNew:=HCursor(thresh1%);

 If ThreshPosOld <> ThreshPosNew or RangeOld <> RangeNew then

 Update%();

 endif;

endif;

return 1; 'This leaves toolbar active

end;

Func Quit%() 'Button 1 routine

'CursorDelete(low%);

'CursorDelete(high%);

'HCursorDelete(thresh1%);

view(App(3)).WindowVisible(1);

halt;

return 0; 'This stops the toolbar

end;

Func Open%() 'Button 2 routine

var err%;

help%(2);

'You now need to select the desired waveform or realwave channel\nto process. To do so, click the channel number in the Y axis\nso it appears highlighted and then click OK

vh1%:=FileOpen("",0,1+2+8);

if vh1%<0 then return 1; endif;

if msg%=1 then

 view(vh1%).window(0, 0, 100, 100);

else

 view(vh1%).window(0, 20, 100, 100);

endif;

chlst%[0]:=0;

FrontView(vh1%);

title$:=view(vh1%).WindowTitle$();

ChanNumbers(1);

While chlst%[0]<>1 do

 'flash();

 err%:=Interact("Highlight the channel of interest by clicking on the channel number in the Y axis, then click OK", 1023, 0, "OK", "Quit");

 if err%=2 then

 return 1;

 endif;

 View(vh1%);

 ChanList(chlst%[],1+512+65536); 'list of selected waveforms/RealWaves

 docase

 case chlst%[0]=0 then Message("Error|No waveform or ReaLwave channel selected\nPlease retry");

 case chlst%[0]>1 then Message("Error|More than one waveform or ReaLwave channel selected\nPlease retry");

 case chlst%[0]=1 then

 ch%:=chlst%[1]; 'channel to process

 endcase;

wend

ToolbarEnable(3, 1);

ToolbarEnable(7, 1);

ToolbarEnable(8, 1);

help%(3);

return 1; 'This leaves toolbar active

end;

proc flash();

var i%;

for i%:= 1 to 20 do

chanselect(1, i%);

yield(0.1);

chanselect(1, 0);

yield(0.1);

next;

return;

end;

Func Threshold%() 'Button 3 routine

viewlost%();

help%(4);

View(vh1%);

if thresh1%<>0 then

 HCursorVisible(thresh1%, 1);

 HCursor(thresh1%, 0, ch%);

else

 thresh1%:=HCursorNew(ch%);

 if thresh1%=0 then

 Message("All horizontal cursors are in use, deleting one to repurpose as the threshold");

 HCursorDelete(1);

 thresh1%:=HCursorNew(ch%);

 endif;

endif

HCursorLabel(4, thresh1%, "Threshold - DRAG ME");

ToolbarEnable(4, 1);

ToolbarEnable(5, 1);

return 1; 'This leaves toolbar active

end;

Func Range%() 'Button 4 routine

var Q%;

viewlost%();

help%(5);

view(vh1%);

if RangeFlag%=1 then

 Q%:=Query("Do you wish to remove range gates?");

 if Q%=1 then

 CursorDelete(low%);

 CursorDelete(high%);

 low%:=0;

 high%:=0;

 RangeFlag%:=0;

 RangeNew:=0;

 RangeOld:=0;

 ToolbarSet(4, "Set Range||Use this to set a time range", Range%);

 help%(4);

 return 1;

 else

 return 1;

 endif;

endif;

'Drag these time gates to adjust the range for the generated\nevents.\n\nIf you wish to remove the gates entirely click the Remove Range\nbutton.

low%:=CursorNew(XHigh()/3);

CursorLabel(4, low%, "Lower gate - DRAG ME");

high%:=CursorNew(XHigh()*(0.66));

CursorLabel(4, high%, "Upper gate - DRAG ME");

if high%=0 or low%=0 then

 Message("All cursors are in use, deleting two to repurpose as the range gates");

 CursorDelete(low%);

 CursorDelete(high%);

 CursorDelete(1);

 CursorDelete(2);

 low%:=CursorNew(XHigh()/3);

 CursorLabel(4, low%, "Lower gate - DRAG ME");

 high%:=CursorNew(XHigh()*(0.66));

 CursorLabel(4, high%, "Upper gate - DRAG ME");

endif;

RangeFlag%:=1;

ToolbarSet(4, "Remove Range||Remove the range and process entire channel", Range%);

return 1; 'This leaves toolbar active

end;

Func Events%()

help%(6);

viewlost%();

view(vh1%);

mem%:=Memchan(2);

ChanShow(mem%);

if RangeFlag%=1 then

 MemImport(mem%, ch%, Cursor(low%), Cursor(high%), mode%, time, Hcursor(thresh1%));

else

 MemImport(mem%, ch%, 0, maxtime(), mode%, time, hcursor(thresh1%));

endif;

ToolbarEnable(6, 1);

ThreshPosOld:=HCursor(thresh1%);

ThreshPosNew:=HCursor(thresh1%);

RangeNew:=Cursor(high%)-Cursor(low%);

RangeOld:=Cursor(high%)-Cursor(low%);

eventflag%:=1;

return 1;

end;

Func Release%() 'Button 5 routine

'Your code in here...

return 1; 'This leaves toolbar active

end;

Func RiseFall%();

If modeflag%=0 then

 mode%:=3;

 modeflag%:=1;

 ToolbarSet(7, "Mode: Falling||Use this button to change the mode of threshold crossing", RiseFall%);

else

 mode%:=2;

 modeflag%:=0;

 ToolbarSet(7, "Mode: Rising||Use this button to change the mode of threshold crossing", RiseFall%);

endif;

if eventflag%=1 then

 Update%();

endif;

return 1;

end;

Func Minimum%();

var ok%, dummy%;

var min$;

DlgCreate("Minimum time");

DlgLabel(1, "Enter minimum time between detected events");

DlgReal(2,"(ms)", 0, 1000000);

ok%:=DlgShow(dummy%, minimum);

if ok%=1 then

 time:=minimum/1000;

 min$:=Print$("%.3f(ms)||Use this button to set the minimum time between events", minimum);

 Toolbarset(8, min$, Minimum%);

endif

if eventflag%=1 then

 update%();

endif;

return 1;

end;

Func Update%();

view(vh1%);

MemDeleteItem(mem%, -1);

if RangeFlag%=1 then

 MemImport(mem%, ch%, Cursor(low%), Cursor(high%), mode%, time, Hcursor(thresh1%));

 RangeOld:=Cursor(high%)-Cursor(low%);

else

 MemImport(mem%, ch%, 0, maxtime(), mode%, time, hcursor(thresh1%));

endif;

ThreshPosOld:=HCursor(thresh1%);

return 1;

end;

func log%();

if msg%=1 then

 View(Lh1%);

 WindowVisible(1);

 Window(0, 0);

 WindowSize(100, 20);

 ToolbarSet(10, "Hide help||Hide the help text", log%);

 msg%:=0;

 If vh1% <> 0 then

 View(vh1%).Window(0,20, 100, 100);

 endif

else

 view(Lh1%).WindowVisible(0);

 view(vh1%).window(0, 0, 100, 100);

 ToolbarSet(10, "Help||Display help text", log%);

 msg%:=1;

endif

'help%(1);

'help%(2); 'etc.

view(vh1%);

return 1;

end;

Func help%(type%);

view(Lh1%);

EditSelectAll();

EditClear();

docase

case type% = 1 then

 txt$:="This script will help you generate events from threshold crossings\n\nFirstly, use the Open button to open a data file.";

case type% = 2 then

 txt$:="You now need to select the desired waveform or realwave channel to process. Click the channel number in the Y axis so it appears highlighted and then click OK";

case type% = 3 then

 txt$:="Threshold: Use this button to set a new threshold.";

 Printlog(txt$);

 txt$:="\n\nMode: Use this button to change the type of threshold crossing.";

 Printlog(txt$);

 txt$:="\n\nRising = events are captured for data rising through the threshold.\nFalling = events are captured for data falling through the threshold.";

 PrintLog(txt$);

 txt$:="\n\nTime: You can also specify the minimum time between events, this is preset to 10ms meaning if two threshold crossings occur within 10ms of each other only the first is captured.";

case type% = 4 then

 txt$:="Drag the horizontal cursor to the level desired for the threshold.";

 PrintLog(txt$);

 txt$:="\n\nRange: Use this button to set a time range.\n\nAdd events: Use this button to create a new channel containing the events from the current threshold.";

case type% = 5 then

 txt$:="Drag these time gates to adjust the range for the generated\nevents.\n\nIf you wish to remove the gates entirely click the Remove Range button."

case type% = 6 then

 txt$:="Now you have created the events channel, you can still adjust the threshold and/or time range by dragging the cursors. The events will update automatically.";

 PrintLog(txt$);

 txt$:="\n\nThis channel can be saved to disk to store the events by right-clicking the channel and navigating to Write all memory buffer.";

 PrintLog(txt$);

 txt$:="\n\nYou can also create another memory channel by clicking the Add events button, and then move the cursors to update the time range and threshold.";

endcase;

Printlog(txt$);

return 1;

end;

Func viewlost%();

var Found%;

Found%:=ViewFind(title$);

if Found%=0 then

 Message("Cannot find data view, resetting script");

 vh1%:=0;

 eventflag%:=0;

 RangeFlag%:=0;

 modeflag%:=0;

 thresh1%:=0;

 DoToolbar();

endif

return 1;

end;

EventsFromThresholdCrossing.s2s
To download, right click and select Save embedded file to disk.

s ' g n a ’ How can | automatically end sampling in Signal? Tl

The automation tab of the sampling configuration provides this functionality. The tab controls three limits that will
cause sampling to stop automatically: Number of Frames, Sampling duration, and File size. These limits only cause the
sampling to stop, not finish; this means you have the choice of flipping through the frames and deciding whether to
continue sampling or finish and save the data file. Clicking the More button in the sampling controls toolbar once
sampling reaches a pre-set limit allows another limits-worth of sampling to occur before stopping again. For example,
if the frame limit were set to 25, clicking More would cause sampling to continue until the data file had 50 frames.
Clicking More again would give 75 frames and so on.

Parameters Each option has a check box to enable the limit, plus a field for entry of the
o ey G| @t | s limit value. If the check box for a limit is clear, or if the corresponding limit
T:; I | B value is set to zero, then that limit is ignored.
;l:?ff;:ff:mmpn@ fiish [E Say for example we wished to obtain exactly 20 frames of evoked response
smaiegints B data; we enable the Number of Frames limit by checking the box and enter
Sampling duration (<) 0L] 20 into the dialog field. We create an evoked response experiment using
Fie size (Byte) o[] multiple frame states, of which 10 of the 20 frames will have a single pulse
Optimise Y axes for all channels t sieep end = delivered to a stimulator and the remaining 10 will have a paired pulse
S AR delivered. Upon reaching the limit, we check through the frames of data to
cancel Run now Help see if the appropriate evoked response was achieved. In doing so we find

anomalies on a few frames that we make note of and now wish to repeat.

We first uncheck the Write to disk box and select Pause at end, swap to using Manual state control for the
experiment and select the /dle state to prevent firing the stimulator. By clicking More, Signal is now ready to begin
capturing more frames manually. We select the desired state in the state bar and click Continue to trigger another
sweep. If the frame is good, we can choose to Accept this new frame to write it to disk. You can capture as many
more frames as the original limit, so

[Trigger Abort %Eﬁfltiﬂfc it Magstim in this case another 20 to give a total
Finish Accept Restart Pause atend Settings... | RMT (%) E +| of 40 frames. However, we can Stop
Reset | Fause |Onwrite| Basic 0 | Paired | | Single = early once we have gotten the
e Cycle correct frames and Finish once we
are happy.

The sampling configuration attached to this newsletter lets you try this out for yourself.

Another automation tool within Signal is the Artefact rejection dialog. This is also

Artefact rejection
accessed in the Automation tab of the sampling configuration. When enabled, Artefactrejectonmode | Tag frames »
Signal automatically examines newly sampled data. You have the choice to set Aricfactlevel (% of ADCrangs) | 90)

Signal to either reject or tag new frames for when data has reached the ADC limits. start tme offset for search (ms) |0

Coupling automatic artefact rejection with your sampling limits is a useful aid in End time offet for search (ms) 100
. . Allowed bad paoints (percent) l:l
capturing the exact data you require.
Cancel

Back to contents

	
		
		
			
				
				
			
		
		
		
		
			
				
				
				
				
				
				
				
				
			
		
		
		
		
			
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
			
			
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
					
				
				
					
				
			
			
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
					
					
				
				
					
				
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
		
			
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
			
		
		
		
		
		
		
	
	
		
			
			
			
			
			
				
			
			
				
				
			
			
			
			
		
	
	
		
	

NumOfFramesLimitExample.sgcx
To download, right click and select Save embedded file to disk.

Scripts: Signal Ml

In our last newsletter, we discussed setting up protocols for controlling stimulators from Signal. It can be sometimes
be useful to import a previously generated protocol through other means into Signal. Rather than copying the
protocol verbatim, this script enables the user to generate a protocol for a Magstim BiStim stimulator as a text file
and import the settings as needed. The script will condense the protocol into the minimum number of states required
to play out all steps of the protocol. The correct timings of the stimulator firing and the intensity are kept for each
step.

The format required for the text file protocol is as follows:
POWER A% POWERB% PULSE INTERVAL(ms) SWEEP INTERVAL(s)

The power % can be either a value of Maximum Stimulator Output (MSO) from 0-100%, or as a percentage of motor
threshold (MT) %. If you specify the latter, you must also provide the MT % value; you are given the choice to specify
either working in MSO or MT when importing the protocol.

In the text file, each element MUST be separated by a tab for the script to correctly read each setting. A text file using
POWER% as a percentage of MT, providing three instructions, would look something like the example below. We
have also included a few example text files to download with the script to try out for yourself:

80 120 15 7

80 120 3 6 Wi b B Wb

80 0 0 0

To use the script, ensure your BiStim’s Trigger Out is connected to the Trigger port of your 1401. You must also set
the BiStim to Independent Triggering mode (also known as IBT mode), connect Digital Output O to the master
stimulator (Power A), and connect Digital Output 1 to the secondary stimulator (Power B). When running the script
you need to first use Load Protocol. After selecting your protocol, the script calculates how many states are required
and the order of the states needed to play out each instruction. The Sample button is then enabled, when clicked the
script asks you to provide a trigger before sampling will begin. You may progress the script to this point before setting
up the stimulator, but your stimulator must be connected to the 1401 as described above before continuing. When
ready, manually fire a pulse from the BiStim to provide the trigger to the 1401, which then prompts the script to
check all is OK before finishing the set up. Sampling then proceeds using the loaded protocol.

Whilst this script only currently functions with a Magstim BiStim, it is possible to modify the script to work with other
Signal supported devices. If this is something you are interested in, please get in touch: info@ced.co.uk.

Back to contents

Did you know...?

Scale bars are available to use within Spike2 and Signal to help create useful figures for your reports. To enable scale
bars, right click the data and click Show/Hide channels for Spike2 or Customise display for Signal. Here you are given
options for customising the Y and X axis. Ticking the Scale bar option under either axis list will enable it. It's best to
play around with your other draw settings as well to better portray your data, but if you get lost you can always
revert to the default settings by navigating to the View menu and selecting Standard display.

Back to contents

Recent Questions

How do I create a long train of several thousand pulses?

There are several ways one could create a large train of pulses within Spike2 and Signal. The graphical pulse editor
may be used to create a pulse train of up to 1000 pulses, the repeat field would then be used to repeat the train
however number of times is needed to create the long train. However, this method less efficient as each pulse is
stored as an instruction to be played out. It is preferred to specify a smaller number of pulses in one section and
repeat the required number of times. It is even more efficient to delve into the sequencer language to create a single

6

		80		0		0		5

		80		120		15		7

		120		0		0		7

		80		120 		15		6

		80		120 		3		7

		120		0		0		6

		80		120 		3		5

		80		0		0		5

		120		0		0		6

		80		120 		15		7

		80		120 		3		6

		120		0		0		5

		80 		120 		15		7

		80 		120 		3		0

BiStim Protocol Test 1.txt
BiStim Protocol Test 1.txt

		60		0		0		5

		80		0		0		7

		130		50		0		7

		140		0		0		6

		150		0		0		7

		120		0		0		6

		110		20		0		5

		90		0		0		5

		70		0		0		6

		100		0		0		7

		70		0		0		5

		130		10		0		7

		140		0		0		7

		150		0		0		6

		80		0		0		7

		90		0		0		6

		120		0		0		5

		110		0		0		5

		100		0		0		6

		60		0		0		7

		60		0		0		5

		70		0		0		7

		120		0		0		7

		140		0		0		6

		90		0		0		7

		110		0		0		6

		80		0		0		5

		100		0		0		5

		130		0		0		6

		150		0		0		0

BiStim Protocol Test 2.txt
BiStim Protocol Test 2.txt

120	0	0	5

120	0	0	7

120	0	0	7

120	0	0	6

120	0	0	7

120	0	0	6

120	0	0	5

120	0	0	5

120	0	0	6

120	0	0	0

BiStim Protocol Test 3.txt
BiStim Protocol Test 3.txt

120	0	0	2

80	120 	15	3

80	120 	3	0

BiStim Protocol Test 4.txt
BiStim Protocol Test 4.txt

'BiStim Protocol control|Script for importing text protocol for BiStim control

'===

'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, 139 CAMBRIDGE ROAD, MILTON, CAMBRIDGE CB24 6AX, UK

'===

'Copyright © Cambridge Electronic Design.

'Author:	SG.

'Last modified : 20/04/2020, LS.

'SOFTWARE: This script was developed using Signal v5. It has been modified and tested to work with Signal v7

'HEALTH WARNING:

'The script is a -work in progress- and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'---

'OVERVIEW

'This script enables the user to generate a protocol for the TMS device as a text file and import the settings as needed.

'The script will condense the protocol into the minimum number of states required to play out all steps of the protocol.

'The correct timings of the stimulators firing and the intensity are kept for each step. The format for the protocol in a

'text file is as follows:

'POWER A% POWER B% PULSE INTERVAL(ms) SWEEP INTERVAL(s)

'Note that the POWER% can be either a value of Maximum stimulator output (MSO) from 0-100%, or as a value of motor threshold (MT) %

'Each element MUST be separated by a tab for the script to correctly read each setting. When importing the protocol, you have the

'choice to specify either working in MSO or MT

'An example text file using POWER% as MT would look something like:

'80 120 15 7

'80	120 3 6

'80 0 0 5

'---

'INSTRUCTIONS

'It is important the BiStim is connected to the

'When running the script it loads a toolbar:

' CONTINUE || PAUSE ON/OFF || SAMPLE || LOAD PROTOCOL || QUIT

'QUIT: This button quits the script

'

'LOAD PROTOCOL: This button will first present a dialog allowing you to specify the %MT and the number of repeats required for

' the protocol. If you wish to work in MSO% then tick the associated box which will grey out the MT field. Upon

' clicking OK you are presented with the File Open dialog, which allows you to locate and select the protocol.

'SAMPLE: This button is enabled once you have loaded a protocol and is used to start sampling. You will first be asked to supply

' a trigger to check the BiStim is connected. Ensure the TRIGGER OUT of the BiStim is connected to the TRIGGER port of the

' 1401, and fire the BiStim manually. You are then asked to select the COM port for the BiStim. If there is more than one

' COM port available and you do not know which COM port to use, you will need to open your Device Manager and locate the

' BiStim device under PORTS. When you have selected the correct COM port the script will attempt to create a sampling

' configuration to check all is ready. You are then presented with a 10 second countdown until the start of sampling. After

' the countdown, the loaded protocol will begin running.

'PAUSE ON/OFF: Use this button to toggle the PAUSE AT END OF SWEEP function. If on, sampling will pause at the end of each sampling

' sweep. You would then use the CONTINUE button to continue to the next sweep. However bear in mind that using this

' function essentially renders the SWEEP INTERVAL element of the protocol void, unless CONTINUE is pressed before the

' SWEEP INTERVAL time has finished.

Var data%; 'Data file handle

Var Basic%:=1;

Var Out%[5][0];

Var Order%[1];

Var Times[1];

Var States%[5][1];

Var NumStates%;

Var threshold%:=32;

Var GlobalIdx%:=0;

Var LastFrCt%:=0;

Var go%:=0;

Var rep%:=1; 'Number of repeats'

Var Pause%; 'Pause on/off flag

Var MSO%;

var gFloat%[20]; 'App() view handles

var Aux%;

var port%;	 'Serial port number

Var Ports$[20]; 'Array to hold availble serial ports

Var ct%;

ToolbarText("");

HideApps();

CheckSerialPorts%();

DoToolbar();

Halt;

Func DoToolbar() 'Set your own name...

ToolbarClear(); 'Remove any old buttons

ToolbarSet(0, "", Idle%); 'Idle routine

ToolbarSet(1, "Quit", Quit%); 'This button returns its number

ToolbarSet(2, "Load Protocol", LoadTxt%); 'Link to function

ToolbarSet(3, "Sample", Sample%); 'Link to function

Toolbarset(5, "Pause OFF", PauseState%);

ToolbarSet(6, "Continue", Continue%);

ToolbarEnable(3, 0);

ToolbarEnable(5, 0);

ToolbarEnable(6, 0);

return Toolbar("Select...", 1023);

end;

Func Sample%() 'Button 3 routine

Var err%;

'If Basic% = 1 then

Err%:=SampleBasic%();

If err%<0 then

 DoToolbar();

endif

 GlobalIdx%:=0;

 SetConfig%();

 SetupStates%();

 SampleProtocol%();

return 1; 'This leaves toolbar active

end;

Func UpdateSwp%(ct%);

Var err;

Var interval;

GlobalIdx%:=GlobalIdx%+1;

If GlobalIdx% = Len(Order%[]) and rep% > 1 then

' Samplestop(1);

 GlobalIdx%:=0;

endif

 'Printlog("\nUpdateSwp% end %d\n", GlobalIdx%);

If GlobalIdx% < Len(Times[]) then

 Interval := Times[GlobalIdx%];

'If interval = 0 then interval := 1; endif 'Check if the last interval is zero

 SampleFixedInt(Order%[GlobalIdx%], interval); 'N seconds interval between states

 Err:=SampleFixedInt(Order%[GlobalIdx%]); 'N Seconds interval between states

 SampleState(Order%[GlobalIdx%]);

endif

If ct% < Len(Order%[])*rep% then

 ToolbarText(Print$("Next State %d. Current Stim #%d of %d", Order%[GlobalIdx%], ct%, (Len(order%[])*Rep%))); 'This is running 1 behind

 else

 ToolbarText(Print$("Finished. Current Stim #%d of %d", ct%, (Len(order%[])*Rep%))); 'This is running 1 behind

 endif

Return 1

end

Func PauseState%();

If Pause% = 0 then

 Pause%:=1;

 SamplePause(1);

 Toolbarset(5, "Pause ON", PauseState%);

 ToolbarEnable(6, 1);

else

 Pause%:=0;

 SamplePause(0);

 Toolbarset(5, "Pause OFF", PauseState%);

 ToolbarEnable(6, 0);

endif

Return 1

end

Func Continue%()

if data%>0 then

 if go% = 1 then

 Pause%:=0;

 SampleSweep();

 Idle%();

 Pause%:=1;

 endif

endif

return 1;

end;

Func Idle%() 'Func operates when script is not busy

Data%:=SampleHandle(0); 'Get the handle of the samplnig document

If data% > 0 then 'If a file exists

 View(data%);

 If Pause% = 0 and go% = 1 then

 'If basic% = 0 then

 'If go% = 1 then

 ct%:=Framecount();

 If ct%>LastFrCt% then

 'Check end

 If ct% < Len(Order%[])*rep% then

 UpdateSwp%(ct%);

 LastFrCt%:=ct%;

 else

 go%:=0;

 SampleStop();

 UpdateSwp%(ct%);

 Message("Finished...");

 Data%:=0;

 Basic%:=1;

 Endif

 endif

 endif

endif

return 1; 'This leaves toolbar active

end;

Func DeleteFile%();

View(data%);

SampleAbort(1);

'Fileclose(0,-1);

Data%:=0;

Basic%:=0;

Sample%();

Return 0

end

Func LoadTxt%();

Var ok%;

DlgCreate("Setup"); 'Start new dialog

DlgAllow(1023, 0, Change%);

DlgInteger(1,"Subjects Threshold level",5,100);

DlgInteger(2,"Number of cycles (repeats)",1,10);

DlgCheck(3, "% Maximum stimulator output? Otherwise % RMT");

ok% := DlgShow(threshold%,Rep%, MSO%);

If ok% = 0 then

 Dotoolbar();

endif

ReadProtocol%();

ToolbarEnable(3, 1);

Return 1

end

Func Change%(item%);

If item% = 3 or item% = 0 then

 if Dlgvalue(3) > 0 then

 Dlgenable(0, 1);

 else

 Dlgenable(1, 1);

 endif

endif

Return 1

end

Func SetupStates%();

Var State%;

Var interval;

Var data%[4];

'Arrsort(States%[0][],0,States%[1][],States%[2][],States%[3][]);

For State%:= 1 to NumStates% do

 Arrconst(data%[], States%[][State%-1]);

 Interval:=Data%[3];

 If interval = 0 then interval := 1; endif 'Traps zero interval time.

 SetOutputPulses%(State%, Data%[]);

 LoadMagstim%(State%, data%[1], data%[2], Interval);

Next

Return 1

end

Func LoadMagstim%(State%, Pwr1%, Pwr2%, Interval);

Var ReadBkPwr1%, ReadBkPwr2%;

Var PwrPulse1%, PwrPulse2%;

Var Type%, Model%;

Type%:=SampleAuxStateParX(Aux%,0); 'check stimulator is a magstim

Model%:=SampleAuxStateParX(Aux%,1); 'check its a bistim

If Type% <> 1 and Model% <> 1 then

 Message("No Magstim enabled. Halting");

 halt;

endif

If Interval=0 then interval:=5; endif

'MotorThresh*Pwr1%/100;

SampleAuxStateValX(Aux%, State%, 0, 0); 'Not manual controlled

If MSO% = 1 then

 PwrPulse1%:=Pwr1%;

else

 SampleAuxStateParX(Aux%, 7, 1);

 SampleAuxStateParX(Aux%, 8, threshold%);

 PwrPulse1%:=Pwr1%;

endif

SampleAuxStateValX(Aux%, State%, 1, PwrPulse1%); ''''Need threshold level...

ReadBkPwr1%:=SampleAuxStateValX(Aux%, State%, 1);

If MSO% = 1 then

 PwrPulse2%:=Pwr2%;

else

 SampleAuxStateParX(Aux%, 7, 1);

 SampleAuxStateParX(Aux%, 8, threshold%);

 PwrPulse2%:=Pwr2%;

endif

SampleAuxStateValX(Aux%, State%, 2, PwrPulse2%);

ReadBkPwr2%:=SampleAuxStateValX(Aux%, State%, 2);

'SampleAuxStateValX(Aux%, State%, 3, Interval);

If ReadBkPwr1% < 5 then

 Message(Print$("Bad intensity level < 5 percent set. Power 1 set to %d. Should be %d...", ReadBkPwr1%, PwrPulse1%));

Endif

Return 1

end

Func SampleBasic%();

Var err%;

Var Info%;

SampleClear();

SampleRate(5000);'

SamplePorts(1);

SamplePoints(0.3*SampleRate());

SampleMode(0); 'basic mode

SampleStatesMode(2); 'dynamic output

SampleZeroOffset(0.1);

SampleStates(0); 'no extra states

SampleStatesOrder(0); 'Numeric output

Err%:=SampleAuxStateParX();

If Err%=10 then

 Message("Auxilliary device list full, please remove one to make room\nHalting script");

 halt; endif;

Aux%:=SampleAuxStateNew(1);

SampleAuxStateParX(Aux%, 1, 1); 'set bistim

SampleStatesIdle(0);

SampleWrite(1);

SampleBurst(1);

SampleTrigger(1);

if Pause%=0 then

 SamplePause(0);

else

 SamplePause(1);

endif;

Data%:=Filenew(0);

If data% < 0 then

 Message(Print$("Sampling setup failed.\n%s",Error$(Data%)));

 Return -1

endif

View(app(6)).WindowVisible(0);

View(app(7)).WindowVisible(0);

View(app(9)).WindowVisible(0);

View(data%);

XAxis(0); YAxis(0);

ChanNumbers(0);

Window(0,0,100,100);

Windowvisible(0);

Info%:=InfoNew("Waiting for pulse at 1401 Trigger input\nto continue", 8+16+32);

FrontView(Info%);

Window(0,0,100,100);

ToolbarText("Waiting for trigger input...");

Samplestart();

View(data%);

While FrameCount() = 0 do Yield(0.1) wend;

Data%:=Sampleabort(1);

ToolbarText("Setting up sampling...");

Return 1

end

Func SampleProtocol%();

Var err;

Var StpWtc%;

Var Name$, Size, Flags;

Var curT%, lastS%:=-10;

Var err%;

Var path$;

Var col%:=0;

Var Red:=0.1;

Var Green:=0.9;

Path$:=View(app(3)).FileName$(1)+View(app(3)).FileName$(2);

Data%:=Filenew(0);

If data% < 0 then

 Message(Error$(Data%));

 Return 1

endif

ToolbarEnable(5, 1);

View(app(6)).WindowVisible(0); 'Hide the sample bar

View(app(7)).WindowVisible(0); 'Hide the sample control panel

'View(app(9)).WindowVisible(0); 'Hide the states control bar

View(app(9)).Windowvisible(1);

View(data%);

Window(0,0,100,100); 'Size the window

WindowVisible(1);

FrontView(Data%);

SampleFixedInt(Order%[GlobalIdx%], Times[GlobalIdx%]); 'N seconds interval between states

Err:=SampleFixedInt(Order%[GlobalIdx%]); 'N Seconds interval between states

SampleState(Order%[GlobalIdx%]);

LastFrCt%:=0;

StpWtc%:=InfoNew();

InfoSettings(" %t", 1+2+4+8+32, 10, 0, 0.1, 1);

Window(0,0,100,100);

ToolbarText("10 second delay. Please wait...");

Seconds(-10);

InfoReset();

While seconds() < 0 do Yield(0.1);

 ToolbarText(Print$("10 second delay. Please wait... %.2F", Seconds()*-1));

 CurT%:= Trunc(seconds());

 if CurT% > lastS% then

 ViewColourSet(0, Red, Green, 0);

 Red:=Red+0.1;

 Green:=Green-0.1;

 Col%:=Col%+1;

 lastS%:=CurT%;

 endif

wend;

FileClose(0,-1);

FrontView(data%);

ToolbarText(Print$("Next State %d. Current Stim #%d of %d", Order%[0],(Len(order%[])*Rep%)));

Samplestart();

Go%:=1;

Return 1

end

Func SetConfig%();

Var err%;

SampleClear();

SampleRate(5000);'

SamplePorts(2);

SamplePoints(0.3*SampleRate());

SampleMode(3);

SampleStatesMode(2);

SampleZeroOffset(0.1);

SampleStates(0);

SampleStates(NumStates%);

SampleStatesOrder(0); 'Numeric output

SampleStatesOptions(2); 'Writing but no cycling

SampleStatesRun(0); 'Manual mode - not cycling

SampleStatesRepeats(1);

Err%:=SampleAuxStateParX();

If Err%=10 then

 Message("Auxilliary device list full, please remove one to make room\nHalting script");

 halt; endif;

Aux%:=SampleAuxStateNew(1);

SampleAuxStateParX(Aux%, 1, 1); 'Set as bistim

SampleAuxStateParX(Aux%, 2, 8); 'set as independent triggers

SampleAuxStateParX(Aux%, 3, Port%); 'set port number

SampleStatesIdle(1);

SampleWrite(1);

SampleBurst(1);

SampleTrigger(1);

If Pause%=0 then

 SamplePause(0);

else

 SamplePause(1);

endif;

Return 1

end

Func CheckSerialPorts%();

Var i%;

var ctp%:=0;

Var err%;

Var list%:=1, ok%;

For i%:= 1 to Len(Ports$[]) do

 err%:=Serialopen(i%);

 If err% = 0 then

 Ports$[i%]:=Print$("%d", i%);

 ctp%+=1;

 SerialClose(i%);

 endif

Next

Ports$[0]:="None";

Arrsort(Ports$[1:], 1); 'Sort in decending order

If ctp% > 0 then

 ArrSort(Ports$[1:ctp%], 0); 'Sort in ascending order

 Resize Ports$[Ctp%+1];

endif

DlgCreate("Setup"); 'Start new dialog

DlgList(1,"Serial port to use",Ports$[0:ctp%+1]);

DlgButton(0,"Cancel");

DlgButton(1,"OK");

ok% := DlgShow(list%); 'ok% is 0 if user cancels, variables updated if not

If ok% = 0 or List% = 0 then

 Message("No Com port. Halting");

 Quit%();

endif

If list% > 0 then

 Port%:=Val(Ports$[List%]);

endif

Return 1

end

Func SetOutputPulses%(State%, Data%[]);

'Var i%;

Var pulseNum%;

Var interval;

var err;

SampleOutMode(1);

SampleDacMask(0);

SampleDigOMask(3);

'for i%:= 1 to NumIndvStates% do

SampleOutLength(State%, 0.3);

SampleOutTrig(State%, 0.0);

SampleFixedInt(State%, 7); 'Seven seconds interval between states

SampleFixedVar(State%, 0);

pulseNum% := PulseAdd(State%, -1, 1, "First", SampleOutTrig(State%)+0.1, 0.001);

PulseDataSet(State%, -1, pulseNum%, 1);

'if Data%[2] > 0 then

err:=SampleoutTrig(State%);

if Data%[3] > 0 then

 Interval:=Data%[3];

else

 Interval:=5;

endif

if data%[2] <> 0 then

pulseNum% := PulseAdd(State%, -1, 1, "Second", SampleOutTrig(State%)+0.1+(interval/1000), 0.001);

err:=PulseDataSet(State%, -1, pulseNum%, 2);

endif

'Next

Return 1;

end

Func ReadProtocol%();

Var txt%;

Var err%;

Var arr%[4];

Var Sort%[4][0];

Var i%:=0;

Resize Out%[][0]; 'Add another row for the new data

Var States%[5][1];

Arrconst(States%[][],0);

Txt%:=Fileopen("", 8, 8);

If txt% < 0 then

 Message("File failed to open.");

 DoToolbar();

endif

NumStates%:=0;

ReadSetup("\t","\t","\t","\t","\t");

Repeat

 Err%:=Read(arr%[]);

 If err% > 0 then

 i%:=i%+1;

 SortValues%(arr%[],i%);

 endif

Until Err% < 0;

Fileclose(txt%);

Return 1;

End

Func SortValues%(arr%[], i%);

Var j%:=0, k%;

Var check%[5];

Var Match%:=0;

Var num%;

Var got%:=0;

Var err%;

Var St%;

Var entry%;

Var int;

Resize Out%[][i%]; 'Add another row for the new data

Resize Order%[i%];

Resize Times[i%];

entry%:=i%-1;

If MSO% = 1 then 'If using MSO which has the format intensity, sweep interval.

 Arr%[Len(arr%[])-1]:=Arr%[1]; 'Move the sweep interval to the correct position

 Arrconst(Arr%[1:1], 0); 'Delete the original value

endif

Arrconst(Out%[1:4][i%-1], Arr%[]); 'Place the new values

Int:=Arr%[3]; 'holds interval

For j% := 0 to NumStates%-1 do; 'Step through the known states

 Match%:=0;

 for k%:= 1 to 3 do

 err%:=States%[k%][j%];

 If States%[k%][j%]=Arr%[k%-1] then

 Match%:=Match%+1;

 St%:=j%;

 else k%:=3;

 endif

 next

 If match%=3 then

 j%:=NumStates%;

 Got%:=1;

 else

 Got%:=0;

 endif

Next

If got%= 1 then

 Out%[0][Entry%]:=St%+1;

 Order%[Entry%]:=St%+1;

 Times[Entry%]:=Int;

else

 NumStates%:=NumStates%+1;

 Resize States%[][NumStates%];

 Arrconst(States%[1:4][NumStates%-1], Arr%[]);

 States%[0][NumStates%-1]:=NumStates%;

 Out%[0][Entry%]:=NumStates%;

 Order%[Entry%]:=NumStates%;

 if int = 0 then int:=1; endif

 Times[Entry%]:=Int;

endif

Return 1;

end

Proc HideApps(); 'Hide unnecessary toolbars etc. while script is running.

var i%;

View(App(3)).WindowVisible(1); 'normalise script view before hiding (may reappear if maximised)

gFloat%[0] := App(-2); 'number of windows

for i% := 1 to gFloat%[0] do 'hide all windows and save state

	gFloat%[i%] := View(App(i%)).WindowVisible(0);

next;

return

end;

Proc RestoreApps(); 'Restore toolbars etc. to former glory

var i%;

for i%:=1 to gFloat%[0] do

	docase

	case i%=3 then

		View(App(3)).Windowvisible(0); 'keep script invisible

	else

		View(App(i%)); 'restore other items to previous state

		WindowVisible(gFloat%[i%]);

	endcase;

next;

return

End

Func Quit%() 'Button 1 routine

RestoreApps();

Halt;

return 0; 'This stops the toolbar

end;

BiStim Protocol control v7.sgs
To download, right click and select Save embedded file to disk.

pulse which is repeated the desired number of times, as you can then use the minimum number of sequencer
instructions. The sequencer is limited to 8191 instructions, although you are unlikely to reach this it is still preferable
to use the least amount of instructions per section as it leaves more room for further instructions should your
experiment evolve and require more later.

In the sequencer language, a train of 5000 pulses of 1ms length and 1ms interval could be created as this:

SET 0.1,1,0 ;Get rate & scaling OK
VAR V45, Loop=5000 ;Define variable for section loops
0000 HALT
0001 LA: 'A DIGOUT [....... 1] ; Loopback point
0002 DELAY s(0.0009)-1
0003 DIGOUT [....... 0]
0004 DELAY s(0.0008)-1
0005 DBNZ Loop, LA ;Repeat required times
0006 HALT ;End of this sequence section

Back to contents

CED User forums

Try the CED Forums bulletin board for software and hardware support.
If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK: Email: info@ced.co.uk

Technical Centre, 139 Cambridge Road, International Tel: [44] 1223 420186
Milton, Cambridge, CB24 6AZ, UK International Fax: [44] 1223 420488
Telephone: (01223) 420186 USA and Canada Toll Free: 1 800 345 7794
Fax: (01223) 420488 Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.
Copyright © 2020 Cambridge Electronic Design Ltd, All rights reserved.

7

http://www.ced.co.uk/phpBB3/index.php

