

eNEWSLETTER
#4

June 2020

Welcome

Thank you for downloading our June newsletter, we have lots of exciting

development news to share with you in this issue. We have recently released

version 10.05 of Spike2 with over 30 improvements and additions, which can be

downloaded via our website. Furthermore, we are pleased to announce the

release of our Python language interface, SonPy! This enables the conversion of

Spike2 data to Python, see our Did you know…? section for more info. Check out

our Spike2 section as well for information on our updated Grid views or watch

our new tutorial video to see them in action.

Whilst many countries are putting their plans in motion for easing lockdowns,

many of you are still working from home. Whether you are in the lab or not, we

are still here to help. Many users have already requested temporary copies of

Spike2 or Signal to use at home, and we are continuing this practice for the time

being. If you need a copy to continue your analysis, please get in touch:

Marjorie@ced.co.uk.

Training Days

Due to the ongoing COVID-19 outbreaks, all current training events have been

put on hold. We do however offer remote training sessions by video call either

one-to-one or with groups.

Join us and learn how to make the best use of Spike2 and Signal to save hours of

repetitive analysis. Our remote sessions are free to arrange and are suitable for

both existing and prospective users of our data acquisition and analysis systems.

If you would like to schedule a session, please get in touch.

If you are interested in hosting a training event in your local area once social

distancing measures have been eased, please get in touch: Marjorie@ced.co.uk.

If you see these buttons in our newsletters, it means a file or script relating to

the section is available to download:

Contents

Welcome

Training days

Latest software

Future meetings

Script Spotlight

• TextMarks editor

• What is a Grid view?

• Script – Grid view

functions

• How to display a

timer

• Script – Measure

from states

Did you know…?

• SonPy – Python

interface

Recent questions

• Which stimulators

can be controlled in

Signal?

CED user forums

http://ced.co.uk/downloads/latestsoftware

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Data
This button signifies a Data file is available to download

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Script
This button signifies a Script file is available to download

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

XY | Result | Other
This button signifies an XY, Result or other file is available to download

https://www.youtube.com/watch?v=V26TIJAd0tI&t

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.05 05/2020 Version 7.05a 02/2020
Version 9.11 05/2020 Version 6.05b 10/2019
Version 8.19a 11/2019 Version 5.12a 02/2018
Demo 03/2020 Demo 02/2020

Back to contents

Future meetings and events

ISEK XXIII
Virtual Meeting,

July 12th – 14th 2020

Neuroscience 2020
Washington, DC,
USA
October 24th – 28th 2020

ISAC XXI 2020
Lisbon,
Portugal
November 3rd – 6th 2020

Our meeting calendar is updated each time we receive news of cancellation or postponement due to the COVID-19

pandemic. The full calendar is located on our website.

Back to contents

Script Spotlight

TextMarks are useful event markers, holding a time stamp, a code, and a text string. With them you can annotate a

recording using the same code for similar periods of activity, allowing subsequent automated analysis. If annotation is

not possible during the recording you can add TextMarks afterward. We have developed this small script TextMarks

Editor.s2s that lets you generate a range of pre-set TextMarks in a toolbar and place them with a button click.

To operate the script first open the data file you wish to annotate. Next, run the script which will search for your

open data file and load the toolbar: One pre-set TextMark is already available,

labelled “Blank”, which may be overwritten. Use Add/Remove to open a dialog to create your own pre-sets:

In this dialog you should add the text to store, create a label, assign the code, and click Add to create your new pre-

set. Using Replace will overwrite the current pre-set in the drop-down box. To remove a pre-set, use the drop-down

box to select a pre-set and click Remove. Once you have finished creating your pre-sets you are ready to begin

annotating your data. Click OK to exit the dialog and update the toolbar.

A cursor is placed on your data file titled “TextMark here”, drag this to where you wish to place your first TextMark.

Alternatively, right-click the cursor and follow Cursor -> Set position to enter an exact time. Now use one of your pre-

set TextMark buttons to place it, this will create a new memory channel to hold all your annotations and place your

first TextMark. Simply move the cursor and repeat to place where needed, using the Delete button to remove any

mistakes.

http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/signaldemo
https://isek.org/
https://www.sfn.org/meetings/neuroscience-2020
https://arterialchemoreceptors.org/
http://ced.co.uk/news/seeusat

'TextMarks Editor|Script for creating toolbar of TextMarks to label current data file

'===

'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, 139 CAMBRIDGE ROAD, MILTON, CAMBRIDGE CB24 6AX, UK

'===

'Copyright © Cambridge Electronic Design.

'Author:	SG.

'v10 last modified : 12/06/2020

'SOFTWARE: This script was developed using Spike2 v10.0. It has been tested to work with Spike2 v10.00

'HEALTH WARNING:

'The script is a -work in progress- and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'---

Var data%;

Var mem%;

Var TxtCode%[1];

Var TxtLabel$[1]; 'Max 20 labels

Var Text$;

Var Label$:="Label", CodeV%;

Var LastHigh, LastLow;

Var TxtMks$[1];

Var Which%;

'Var n%;

Var Pos%;

Var Msg$;

Const Key$:="TextMark editor"; 'Registry entry

'Const Name$:="Contents";

Const CPLabel$:="TextMark here"; 'Cursor lable

Const CDLabel$:="Delete TextMark >"; 'Cursor lable

TxtMks$[0]:="BLANK"; 'First element of our TextMark list is a blank TextMark

TxtCode%[0]:=0;

TxtLabel$[0]:="BLANK";

Msg$:=Print$("Text %s Code %d", TxtMks$[0], TxtCode%[0]); 'Setup initial dialog text

data%:=frontview(); 'Get the current view handle

if viewkind(data%)<> 0 then 'Check what type of view it is

 Message("Not a data file. Halting"); 'Fail if not a data view

 Halt;

endif

View(app(3)).Windowvisible(0); 'Hide this script

View(data%);

CursorSet(1); 'Place one cursor on the screen

CursorLabel(4, 1, CPLabel$); 'Set inital label (place TextMark)

LoadSaveRegistry%(1); 'Load any previous keys from the registry

DoToolbar(); 'Produce toolbar buttons

Halt;

Func DoToolbar() 'Function start

Var i%;

ToolbarClear(); 'Remove any old buttons

ToolbarSet(0, "", idle%); 'Idle routine for scrolling data when cursor moves

ToolbarSet(1, "&Quit", Quit%); 'This button returns its number

ToolBarSet(2, "ADD/REMOVE", Add%); 'Opens dialog to modify buttons

ToolbarSet(3, "&Delete", Delete%); 'Delete a TextMark

ToolbarSet(4, "Merge", Merge%); 'Import a TextMark channel to modify

If Len(TxtMks$) > 0 then 'If there are existing TextMark information

 For i%:=0 to Len(TxtMks$[])-1 do 'Create a toolbar button

 ToolbarSet(5+i%, TxtLabel$[i%], PlaceTMark%); 'Link to function

 next

endif

If Mem% <= 0 then 'If memory channel does not exist

 ToolbarEnable(3, 0); 'Disable Delete

 ToolbarEnable(4, 0); 'Disable Merge

else

 ToolbarEnable(3, 1); 'Otherwise enable delete

 ToolbarEnable(4, 1); 'and merge buttons

endif

return Toolbar("Select...", 1023);

end;

Func idle%() 'Button 0 routine

 If ViewKind(Data%) = 0 then 'If the data view is available

 View(Data%); 'Point at it

 var low, high;

 Low:=Xlow(); High:=Xhigh(); 'Get the data time range

 if Low <> LastLow or High <> LastHigh then 'If there is a change in time

 Cursor(1, Low+(High-low)/2); 'Set cursor to the centre of the view

 Lastlow:=Low; 'Save the new values

 LastHigh:=high;

 endif

 Endif

if viewkind(data%)<> 0 then 'Check what type of view it is

 Message("Data file lost. Halting"); 'Fail if not a data view

 Halt;

endif

return 1; 'This leaves toolbar active

end;

Func Add%();

Var ok%;

'n%:=Len(TxtMks$[]);

DlgCreate("TextMark Text"); 'Start new dialog

DlgAllow(1023, 0, Change%); 'Function to monitor changes to dialog as they happen

'DlgString(1,"Text to add",200,"a-zA-Z0-9"); 'Text contained in TextMark

'DlgString(2,"Button Label",8,"a-zA-Z0-9"); 'Label for Toolbar button

DlgString(1,"Text to add",200); 'Text contained in TextMark

DlgString(2,"Button Label",8); 'Label for Toolbar button

DlgInteger(3,"Code",0,255,0,0,5); 'Code to add to TextMark

'If Len(TxtMks$[]) > 0 then

 DlgList(4,"Add or remove text",TxtLabel$[]);

'Endif

Pos%:=DlgText(Msg$, 0, 5); 'Text to change when selction changes

DlgButton(0,"Cancel");

DlgButton(1,"OK");

DlgButton(2,"Add", AddToList%); 'Adds the dialog values as a new entry

DlgButton(3, "Remove", RemoveFromList%); 'Deletes an entry

DlgButton(4, "Replace", Modify%); 'Modifies an entry

ok% := DlgShow(Text$, Label$, CodeV%, Which%); 'ok% is 0 if user cancels, variables updated if not

If Ok% >=2 then Add%() endif

If Ok% >=0 then DoToolbar(); endif

end

Func Change%(Item%);

Var idx%;

If DlgValue(4) = 0 then 'If empty TextMark is selected

 DlgEnable(0, -3); 'Disable delete entry

else

 DlgEnable(1, -3); 'Otherwise enable delete entry

 Msg$:=Print$("Text %s Code %d", TxtMks$[DlgValue(4)], TxtCode%[DlgValue(4)]); 'Produce and...

 DlgValue$(Pos%, Msg$); '... Update dialog text

endif

Text$:= DlgValue$(1);

Label$:= DlgValue$(2);

CodeV%:= DlgValue(3);

If Len(Label$) < 1 then

 Label$:=Print$(CodeV%);

 DlgValue$(2, Label$);

endif

Idx%:=DlgValue(4);

If Idx% > 0 then

 If TxtMks$[Idx%] = Text$ and Label$ = TxtLabel$[Idx%] and CodeV% = TxtCode%[Idx%] then

 DlgEnable(0, -2);

else

 DlgEnable(1, -2);

 endif

endif

If Len(TxtMks$[]) = 20+1 then 'No more than 20 TextMark entries

 DlgEnable(0, -2);

else

 DlgEnable(1, -2);

Endif

Return 1

end

Func AddToList%();

 Resize TxtMks$[Len(TxtMks$[])+1]; 'Resize arrays to accomadate new entry

 Resize TxtLabel$[Len(TxtMks$[])];

 Resize TxtCode%[Len(TxtMks$[])];

 TxtMks$[Len(TxtMks$[])-1]:=DlgValue$(1); 'Place the new informaiton at the end of arrays

 TxtLabel$[Len(TxtLabel$[])-1]:=DlgValue$(2);

 TxtCode%[Len(TxtCode%[])-1]:=DlgValue(3);

Return 0

end

Func RemoveFromList%();

Var Idx%;

 Idx% := DlgValue(4); 'Get the list entry

 TxtMks$[Idx%]:=""; 'Remove the entry

If Len(TxtMks$) > Idx%+1 then 'Move data in arrays to start at the deleted positon - if necessary

 ArrConst(TxtMks$[Idx%:(Len(TxtMks$)-1)-Idx%], TxtMks$[Idx%+1:(Len(TxtMks$)-1)-Idx%]);

 ArrConst(TxtCode%[Idx%:(Len(TxtCode%)-1)-Idx%], TxtCode%[Idx%+1:(Len(TxtCode%)-1)-Idx%]);

 ArrConst(TxtLabel$[Idx%:(Len(TxtLabel$)-1)-Idx%], TxtLabel$[Idx%+1:(Len(TxtLabel$)-1)-Idx%]);

Endif

Resize TxtMks$[Len(TxtMks$[])-1]; 'Shorten all arrays by one

Resize TxtLabel$[Len(TxtMks$[])];

Resize TxtCode%[Len(TxtMks$[])];

Return 0

end

Func Modify%();

Var Idx%;

 Idx% := DlgValue(4); 'Get the list entry

 TxtMks$[IdX%]:=DlgValue$(1); 'Change the entries to the new values

 TxtLabel$[Idx%]:=DlgValue$(2);

 TxtCode%[Idx%]:=DlgValue(3);

Return 0

end

Func PlaceTMark%() 'Button 2 routine

Var Num%;

Num%:=ToolbarSet();

 If Mem% <= 0 then CreateMem%(); Endif 'If we do not already have a memory channel creat one

 Memsetitem(mem%, 0, Cursor(1), TxtCode%[Num%-5], TxtMks$[Num%-5]); 'Place a TextMark at the cursor position

return 1; 'This leaves toolbar active

end;

Func Delete%() 'Button 5 routine

CursorLabel(4,1, CDLabel$); 'Change cursor label to delete

While Interact("Move cursor to the left of the TextMark to delete", 1023, 0 , "Exit", "& Delete") = 2 do

 MemDeleteTime(mem%, 2, Cursor(1), MaxTime());

wend

CursorLabel(4,1, CPLabel$);

return 1; 'This leaves toolbar active

end;

Func Merge%()

Var Start, EndT;

Var ok%;

Var Chan%;

View(Data%);

DlgCreate("Merge"); 'Start new dialog

DlgChan(1,"Channel to import",32);

DlgButton(0,"Cancel");

DlgButton(1,"OK");

ok% := DlgShow(Chan%); 'ok% is 0 if user cancels, variables updated if not

If ok% = 0 then Return 1 endif 'If cancel exit

If Mem% <=0 then CreateMem%(); endif 'Create a memory channel if one does not exist

If ChanVisible(Chan%) = 0 then Chanshow(Chan%); endif 'Show the channel to import

CursorSet(2); 'Set two cursors

CursorLabel(4, 1, "Start"); 'Lable them

CursorLabel(4, 2, "End");

Interact("Move cursors to set the time range to import", 1023); 'Selecting an area to import

If Cursor(2) < Cursor(1) then CursorRenumber(); endif 'Reorder cursors

Memimport(Mem%, Chan%, Cursor(1), Cursor(2)); 'Import TextMarks

CursorLabel(4,1, CPLabel$); 'Reset cursor lable to Place

CursorDelete(2); 'Delete second cursor

Return 1

end

Func CreateMem%();

if CursorVisible(1) = 0 then Cursorset(1); endif

CursorLabel(4,1,CPLabel$);

mem% := MemChan(8, 200); 'Add new TextMark channel

ChanShow(mem%); 'Make it visible

ToolbarEnable(3,1);

ToolbarEnable(4,1);

Return 1

end

Func LoadSaveRegistry%(Type%);

Var i%;

Var Value%, Value$;

Var Num%;

Var Temp$[0];

Var Idx%;

Var Combine$;

'

If Type% = 1 then 'Load from registry

 Profile(Key$, "Num", Value%, Num%); 'Read number of entries

 If Value% = 0 and Num% = 0 then return 1 endif 'If no entry - exit

 'Otherwise

 Resize TxtMks$[Len(TxtMks$[])+Num%]; 'Extend arrays to suit

 Resize TxtLabel$[Len(TxtMks$[])];

 Resize TxtCode%[Len(TxtMks$[])];

 Resize Temp$[Num%+1];

 For i% := 1 to Num% do 'Step through the entries

 Profile(Key$, Str$(i%), Value$, Temp$[i%]); 'Get the data

 If Temp$[i%] > "" then 'If the entry is not empty

 Idx%:=InStr(Temp$[i%], "|", 0); 'Search for Pipes to define the sectons

 TxtMks$[i%]:=Left$(Temp$[i%], Idx%-1);

 Temp$[i%]:=DelStr$(Temp$[i%], 1, Idx%);

 Idx%:=InStr(Temp$[i%], "|", 0);

 TxtLabel$[i%]:=Left$(Temp$[i%], Idx%-1);

 Temp$[i%]:=DelStr$(Temp$[i%], 1, Idx%);

 TxtCode%[i%]:=Val(Temp$[i%]);

 endif

 Next

else 'Write to registry

 Num%:=Len(TxtMks$[])-1; 'How many entries to write

 If num% = 0 then return 1 endif 'Exit if none

 Profile(Key$, "Num", Num%); 'Set new count

 For i% := 1 to Num% do

 Combine$:=TxtMks$[i%]+"|"+TxtLabel$[i%]+"|"+Str$(TxtCode%[i%]); 'Create the string

 Profile(Key$, Str$(i%), Combine$); 'Write the string

 Next

Endif

return 1

end

Func Quit%();

Var List%[2];

 LoadSaveRegistry%(2); 'Save the current TextMark keys to registry

View(Data%); 'Data view

If Mem% > 0 then 'If we have a memort channel to save

 If Query("Save TextMark channel?") then 'Do you wish to save changes

 Chanlist(List%[], 128);

 If List%[0] > 0 then 'If there are availble disk channels ...

 Memsave(Mem%, List%[1], 0); 'Save memory chan to first available disk channel

 Chanshow(List%[1]); 'Show the new channel

 Mem%:=ChanDelete(Mem%, 0); 'Delete the memory channel

 else

 Message("No empty channels availble"); 'Error message

 endif

 endif

endif

Halt; 'Exit the script

Return 0;

end

TextMarks Editor.s2s
To download, right click and select Save...

3

It is also possible to copy existing TextMarks in your

data file to your memory channel, should you have

created others during recording. Click Merge and

choose the channel you wish to copy, then use the

cursors to select the range to copy across. When

finished, Quit to exit the script. This will query if you

wish to save the memory channel to the data file; if

you do not save the channel it (and the TextMarks)

will be lost upon closing the data file.

 Back to contents

The grid view is not a replacement for a spreadsheet, though it has some of the characteristics of one. The main

purpose is to provide an easy way to generate tabulated data. You can copy data interactively from other sources, for

example the Cursor Values and Regions dialogs, and manipulate it from the script language. You can move data

between the grid and other programs that support tabulated data using a Tab character to separate columns and end

of line characters (\n) to separate lines.

To create a Grid view interactively, use the File menu New command or the button in the toolbar and select Grid.

You can either accept a default size or check the Size grid box to enter a size of your choice. Existing Grid views are

resized by right clicking or using the View menu. There is a limit of 1,000 columns and 1,000,000 rows (version 8 had

more restrictive limits), probably more than most people need. Grids are saved in .sgrx files using an XML format.

The Grid can be formatted with column headers, font, alignment, type, frame, and colouring:

Headers – The grid has one header row at the top and one header column on the left. These can be hidden or shown

by navigating to View -> Show Column Header or Show Row Header. The column headers are changed by double

clicking the header which opens a new dialog. The status bar at the bottom of the window (if enabled), displays the

co-ordinates of the current grid selection as numbers.

Font – All cells in the body of the grid use the same font. The headers use a bold version of the same font. This is

changed through the Font menu in your toolbar.

Row and column spacing – All rows are the same height, which is based on the font size. Columns can be sized

individually by clicking and dragging in between cells of the column header. A standard size is set using the script

command GrdColWidth(col%, width%), or you can optimise the columns widths to match the data displayed in

them through the View menu.

Alignment – You can apply Left, Centred or Right alignment on a single column basis by selecting the column and

using the Align column function in the View menu. To apply to all columns, highlight the entire grid by clicking the top

left most square where the headers meet and use the Align function.

Colouring – From version 10.05 the you can change the background and text colouring of the entire grid by opening

the colours menu. You can further change individual cell colours using the script command GrdColourSet(), or by

right clicking an individual cell and selecting Colour Selection.

What is a Grid view for?

4

Improvements in version 10.05 – In addition to adding support for Grid colouring, we have added more script

support for the Cursor dialogs and improved the recording of grid and cursor dialog actions to generate a script. For

example you can now use the Script menu to Turn recording on, open a data file, open the cursor dialogs and a grid,

select items in the cursor dialogs and paste them into the grid view, close down the data file and turn recording off.

The resulting script will repeat your actions and serve as the basis for a data analysis procedure. See our Script

Spotlight section for a script demonstrating these features and more.

Watch our helpful tutorial video on Grid views help you get started.

Back to contents

Scripts: Spike2

 The example script Grid View settings.s2s illustrates the use of grids from a script. It creates a toolbar with buttons:

Quit, Settings, Change colour, and Arithmetic. The linked functions demonstrate the new and updated Grid views

commands. To get full details of the commands and their arguments, click on a command in the script and press F1

(or right click and use the context menu to open the online Help).

GrdShow(cHead%, rHead%) will show/hide both the column header and the row header. We have coupled this

command to our Settings%() function, where check boxes will interactively turn the headers on or off.

GrdAlign(align%, col%) alters the text alignment by assigning align% with 0 (left), 1 (centred) or 2 (right). In

our example script we alter the alignment of the entire grid by replacing col% with -2 in the Settings%() function; to

only align selected columns use -1 instead.

GrdSize(cols%, rows%) simply resizes the Grid view to the defined columns and rows.

GrdColourSet() and GrdColourGet()set and return the colour values of a cell respectively. This can be done for

both the text and background colour of cells. We have made use of GrdColourSet() in the ColourSetup%()

function of our example script by creating a “palette” in a secondary Grid view, where the background of each cell

uses a colour from the default palette. Using the Change colour function from the toolbar asks the user via

Interact() to select a colour from this “palette”. GrdColourGet() obtains the red (r) blue (b) and green (g)

colour values and applies them to your selected cells in the blank grid using GrdColourSet().

GrdSet() and GrdGet() are used to enter text into a cell and read text from a cell respectively. Within the

Arithmetic%() function of the script, GrdGet() first grabs the numbers from selected cells in a column and enters

them into an array. The script then performs a user selected calculation via the ArrSum() command, and GrdSet()

'Grid view settings|Script example for creating and controlling a grid view

'===

'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, 139 CAMBRIDGE ROAD, MILTON, CAMBRIDGE CB24 6AX, UK

'===

'Copyright © Cambridge Electronic Design.

'Author:	SG/LS.

'v10 last modified : 12/06/2020

'SOFTWARE: This script was developed using Spike2 v10.0. It has been tested to work with Spike2 v10.00

'HEALTH WARNING:

'The script is a -work in progress- and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'---

var Viewlost%;

var TxtAlign%;

var ColoursVh%;

var GrdVh%;

var Cols%:=26;

var Rows%:=52;

Var Info[0][0];

Var ColLabels$[100];

Resize info[Cols%][5];

ArrConst(Info[][4], -1);

Const Title$:= "New Grid";

view(App(3)).WindowVisible(0); 'hide running script

GetLabels();

DoToolbar();

Halt;

Func DoToolbar()

ToolbarClear();

ToolbarSet(0, "Idle", Idle%);

ToolbarSet(1, "Quit", Quit%);

ToolbarSet(2, "New Grid", New%);

ToolbarSet(3, "Settings", Settings%);

ToolbarSet(4, "Change colour", Colours%);

ToolbarSet(6, "Arithmetic", Columns%);

ToolbarEnable(3, 0);

ToolbarEnable(4, 0);

ToolbarEnable(6, 0);

return Toolbar("Grid View Toolbar", 1023);

end;

Func Quit%() 'Button 1 routine

If ViewKind(ColoursVh%) = 17 then View(ColoursVh%).FileClose(0,-1); endif

Halt;

return 0; 'This stops the toolbar

end;

Func New%() 'Button 2 routine

GrdVh%:=FileNew(17, 3, Cols%, Rows%); 'This creates a grid view with columns and rows defined by variables

If GrdVh% < 0 then Message("Failed to create Grid view."); Return 1 endif

WindowTitle$(Print$("%s %d x %d", Title$, Cols%, Rows%));

Window(0,0,50,100);

ToolbarEnable(-1, 1);

Viewlost%:=1;

ToolbarEnable(3, 1);

ToolbarEnable(4, 1);

return 1; 'This leaves toolbar active

end;

Func Settings%() 'Button 3 routine

var ColHeadCheck%;

var RowHeadCheck%;

var ok%, dummy%;

Var Sum%;

View(GrdVh%);

Sum%:=GrdShow(-1,-1); 'This gets current status of the grid row/column headers

docase 'if Sum% has changed then

 Case Sum% = 0 then

 ColHeadCheck%:=0;

 RowHeadCheck%:=0;

 Case Sum% = 1 then

 ColHeadCheck%:=1;

 RowHeadCheck%:=0;

 Case Sum% = 2 then

 ColHeadCheck%:=0;

 RowHeadCheck%:=1;

 Case Sum% = 3 then

 ColHeadCheck%:=1;

 RowHeadCheck%:=1;

endcase

 DlgCreate("Settings", 0, 0, 45, 8);

 DlgLabel(1,"Define settings for Grid view", 10, 1);

 DlgCheck(2,"Show column header", 0, 2);

 DlgCheck(3,"Show row header", 25, 2);

 DlgList(4, "Text Align selected", "Left|Centred|Right", 3, 0, 3);

 DlgText("Grid Size:", 17, 4);

 DlgInteger(5,"# Columns", 1, 100, 0, 5, 1);

 DlgInteger(6,"# Rows", 1, 1000000, 0, 6, 1);

 DlgButton(0,"Cancel");

 DlgButton(1,"OK");

 DlgAllow(1023, 0, Changed%);

ok% := DlgShow(dummy%, ColHeadCheck%, RowHeadCheck%, TxtAlign%, Cols%, Rows%); 'ok% is 0 if user cancels, variables updated if not

If ok%=1 then

 GrdSize(Cols%, Rows%); 'resizes grid

 Resize info[Cols%][5];

 WindowSize(); 'Size view to contents

endif;

return 1; 'This leaves toolbar active

end;

func Idle%();

Var Err%;

var flag%;

Var NewPos%[4];

Var OldPos%[4];

If Viewlost% = 1 then

 flag%:=ViewKind(GrdVh%); 'If the view is lost then reset toolbar to the beginning

 if flag% <= 0 then

 Viewlost%:=0;

 DoToolbar();

 endif;

 Err%:=Selection(1, NewPos%[]);

If Info[NewPos%[0]][4] <> -1 then 'This section of the idle function checks the selection for the Arithmetic% function

 ArrConst(OldPos%[], Info[NewPos%[0]][0:4]);

ArrSub(OldPos%[], NewPos%[]);

 If Arrsum(OldPos%[]) <> 0 then 'If any changes then update

 Arithmetic%(Info[NewPos%[0]][4]);

 endif

endif

endif;

return 1

end;

func Changed%(item%);

docase

Case item% = 2 then

 View(GrdVh%).GrdShow(DlgValue(2), -1); 'show col header

Case item% = 3 then

 View(GrdVh%).GrdShow(-1, DlgValue(3)); 'show row header

Case Item% = 4 then

 TxtAlign%:=DlgValue(4);

 View(GrdVh%).GrdAlign(TxtAlign%, -1); 'Set text alignment

Case Item% = 5 or Item% = 6 then

 Cols% := DlgValue(5); Rows% := DlgValue(6); 'Update variables of grid size

 GrdSize(Cols%, Rows%); 'resizes grid

endcase;

WindowSize(); 'Size view to contents

WindowTitle$(Print$("%s %d x %d", Title$, Cols%, Rows%));

return 1;

end;

func Colours%();

var ok%;

var NumCol%, NumRow%;

var r, g, b;

Var Err%;

If ViewKind(ColoursVh%) <> 17 then err%:=ColourSetup%(); endif 'Set up colour palette

If Err% < 0 then return 1 endif

While Ok% <> 1 do

FrontView(ColoursVh%);

ok%:=Interact("Select your desired colour - spacebar to accept", 1020, 0, "Return" , "& Change", "&All");

 NumCol%:=MoveBy(1); 'Column

 NumRow%:=MoveBy(2); 'Row

 GrdColourGet(0, NumCol%, NumRow%, r, g, b); 'Get selected colour

 WindowVisible(0);

 FrontView(GrdVh%);

 Docase

 Case ok% = 1 then 'If user selects Return then quit out of colour select

 View(ColoursVh%);

 FileClose(0,-1);

 return 1;

 Case ok% = 2 then 'If user selects Change or presses spacebar, change colour of selected cells

 View(GrdVh%).GrdColourSet(0, -1, 0, r, g, b);

 Case ok% = 3 then 'If user selects All, change all cells

 EditSelectAll();

 View(GrdVh%).GrdColourSet(0, -1, 0, r, g, b);

 endcase

Wend

return 1;

end;

func ColourSetup%();

Var LCol%, LRow%; 'local rows and columns

Var r, g, b; 'Colour values

Var i%; 'Colour palette index

ColoursVh%:=FileNew(17, 0, 5, 8); 'Create 5x8 Grid view

If ColoursVh% < 0 then Message("Failed to create Grid view for Colour Palette."); Return ColoursVh% endif

View(ColoursVh%);

WindowTitle$("Colour palette");

WindowSize(); 'Size view to contents

WindowVisible(0);

GrdColourSet(0, -1, 0); 'Clear selection

For i% := 0 to 39 do '40 items in the colour palette

 ColourGet(-1, i%, r, g, b); 'Get r, g and b values for each indices

 LCol% := (i%/8.0);

 MoveTo(0, LCol%, LRow%); 'New selection

 GrdColourSet(0, -1, 0, r, g, b); 'Srt the cell colour

 LRow% += 1;

 If LRow% >= 8 then

 LRow% := 0;

 endif

Next

return 1;

end;

Func Columns%();

Var SCol%;

Var ok%;

Var List%;

Var ColList$[0];

Resize ColList$[GrdSize(0)];

 DlgCreate("Calc"); 'Start new dialog

 DlgList(1, "Column", ColLabels$[0:GrdSize(0)-1]);

 DlgList(2,"Calculation","None|Sum|Mean|SD|Max|Min|Peak-Peak");

 DlgButton(0,"Cancel");

 DlgButton(1,"OK");

 ok% := DlgShow(SCol%, list%); 'ok% is 0 if user cancels, variables updated if not

ToolbarText("Use mouse to highlight cells of column chosen to perform arithmetic");

If List% > 0 then

 ArrConst(Info[SCol%][4:1], List%);

 else

 ArrConst(Info[SCol%][4:1], List%-1);

Endif

Return 1

end

Func Arithmetic%(List%);

Var Text$[0];

Var Values[0];

Var Num%;

Var i%, j%;

Var nCh%;

Var out;

Var Sum, Mean, SD;

Var Form$;

Var Result;

'Var list%;

Var OK%;

Var Pos%[4];

Var Err%;

Var MaxV, MinV;

Var Arr[2];

View(GrdVh%);

'Find selected

Err%:=Selection(1, Pos%[]);

 If err% = 0 then

 if Pos%[0]=Pos%[2] and Pos%[1] <> Pos%[3] then

Resize Text$[(Pos%[3]-Pos%[1])+1];

Num%:=GrdGet(Text$[], Pos%[0], Pos%[1]); 'Get contents of selected cells

If num% >= 1 then

 Resize Values[Num%];

For i% := 0 to Num%-1 do

 out:=Val(Text$[i%], nCh%);

 if nCh% > 0 then

 Values[j%]:= out;

 j%+=1

 else

 Resize Values[Len(Values[])-1];

 endif

Next

If Len(Values[]) = 0 then return 1; endif

 docase

 case List% < 4 then

 Sum:=Arrsum(Values[], Mean, SD);

 docase

 Case List% = 0 then

 Form$:="No Measurement";

 Result:=0.000;

 List%:=-1;

 Case List% = 1 then

 Form$:="Sum";

 Result:=Sum; 'Holds result

 Case List% = 2 then

 Form$:="Mean";

 Result:=Mean; 'Holds result

 Case List% = 3 then

 Form$:="SD";

 Result:=SD; 'Holds result

 endcase

 case List% = 4 then

 Form$:="MAX";

 MaxV:=Max(Values[]);

 Result:=Values[MaxV]; 'Holds result

 case List% = 5 then

 Form$:="MIN";

 MinV:=Min(Values[]);

 Result:=Values[MinV]; 'Holds result

 case List% = 6 then

 Form$:="Pk-PK";

 MinV:=Min(Values[]);

 MaxV:=Max(Values[]);

 Arr[0]:=Values[MinV];

 Arr[1]:=Values[MaxV];

 ArrDiff(Arr[]);

 Result:=Arr[1]; 'Holds result

 endcase

 ArrConst(Info[Pos%[0]][0:4], Pos%[0:4]);

 ArrConst(Info[Pos%[0]][4:1], List%);

 GrdSet(Print$("%s %f",Form$, Result), Pos%[0], -1); 'Change column header with the result

 endif

 endif

endif

Return 1

end

Proc GetLabels();

Var Temp%;

Temp%:=FileNew(17, 0, Len(ColLabels$[]), 1);

View(Temp%);

GrdGet(trans(ColLabels$[]), 0, -1); 'Get current column header labels

FileClose(0, -1);

return

end

Grid View settings.s2s
To download, right click and select Save...

https://www.youtube.com/watch?v=V26TIJAd0tI&t

5

then overwrites the column header with the answer. There is an important caveat when dealing with numerical data

in a Grid view; all data within the Grid is stored as a string of text. Therefore, any numbers entered into the grid must

be converted back to real or integer data after using GrdGet(); much of the Arithmetic%() function deals with this,

as well as converting the calculated output back to a string before inputting with GrdSet().

MoveTo() is used to select cells in a Grid view, and MoveBy() will select cells in the grid relative to the last position.

The Selection() command is used to obtain information on selected cells, i.e. the number of selections or the

positions of a selection.

Back to contents

Information windows are ideal for displaying a timer. Info windows are either created with the View menu, Info

windows -> Create New Window command or from a script with the InfoNew() function. This is only available when a

data or XY view is the current view. Info windows are mostly used to display user-defined information in a large font

for visibility from across the lab, with options for a timer to be configured. They could also be used to display your

protocol steps at the same time. Simply typing out the protocol is an option, or info windows can also display an

image file instead of the standard background; resizing the window will cause the contents to automatically scale to

fill the available space. To further improve the amount of visible area, either the area containing the buttons or the

window title area (or both) can be hidden if desired. These and other options are available by right-clicking on the

info window.

To go into more detail, each info window contains a

user-defined text string, the optional background

image, and configurable colours. The text string uses

special fields which are replaced by the timer value or

other data extracted from the associated view and

updated at user-defined intervals. Meaning for

example, if you wished to display the most recent Y

value of an XY plot in giant red letters which updated

with every sweep of data, you could configure that.

Info windows are attached to a file, memory or XY

view and are saved as a resource; when the associated view is re-opened any

associated info windows will be re-created. Furthermore, up to 10 Info windows

can be attached to each data view, and by using the available script functions one

can create detailed displays from a script.

This configuration demonstrates two info windows in use. The first info window is

linked to the data file and shows the current frame, maximum frames obtained,

the current state, and a timer in seconds. The text string is written as Frame: %f

(Max %m)\nCurrent State: %s\nTimer: %t (s), where special fields are prefixed

with %, and \n denotes a new line. The second info window is linked to an XY trend plot of the current frame vs the

maximum amplitude and shows the current frames maximum and the previous frames maximum. The text string is

Maximum: %ry1 (V)\nLast maximum: %py1 (V).

Back to contents

Is it possible to display a timer on screen?

	
		
		
		
		
			
				
			
		
		
		
		
			
				
				
				
				
				
				
				
				
			
		
		
		
		
			
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
			
			
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
					
				
				
					
				
			
			
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
					
					
				
				
					
				
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
		
			
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
			
		
		
		
		
	
	
		
			
			
			
			
			
				
			
			
				
			
			
				
				
			
			
			
			
		
		
			
				
			
			
			
			
				
					
					
					
						
						
							
						
						
					
					
					
						
					
				
			
		
	
	
		
	

Info Windows Example.sgcx
To download, right click and select Save...

6

Scripts: Signal

Our Measurefromstates.sgs script will plot a selected measurement from an evoked response in an XY view. The

script is specifically written to obtain measurements per state from a file containing multiple frame states. The

measurements available are: curve area, mean, slope, area, sum, modulus, maximum, minimum, peak to peak, RMS

amplitude, standard deviation, extreme, peaks, troughs, point count, SEM, and RMS error.

Essentially this script helpfully reduces the number of steps and button clicks needed to produce an XY trend plot of

the simple measurements above. Being more visual than the XY trend plot dialog, and by automatically creating an XY

channel per state, the script is far quicker than attempting to produce the plots manually. Upon running the script

you are presented with a dialog that allows you to choose the channel, the measurement, and how many states to

perform the measurement on. The script then uses the Interact() function to give you the chance to mark out the

evoked response, before proceeding to the produce the XY trend plot.

The script is available to download from our website here. A suitable example data file, MEP example.cfs, is included

in the .zip file for you to try out the scripts function.

Back to contents

Did you know…?

Alongside the release of Spike2 update 10.05 we have created SonPy, our Python language interface. With the

interface, anyone with a knowledge of Python may access the data in Spike2 data files or create entirely new data

files. It is possible to create and edit all Spike2 channels: waveform, events, and markers.

The interface is available to download from our website, with a full help guide included with the installation. We have

also included a few test scripts to demonstrate creating a new 32- or 64-bit file, reading an existing WaveForm or

RealWave channel, and reading all data within a Spike2 data file.

We are interested to see our users run with this, so please let us know your comments and feedback. We hope the

interface is of use to you!

Back to contents

Recent Questions

What peripheral stimulators can I trigger using Signal?

Any stimulator that has an input for digital triggering

can be triggered by Signal. First configure a square TTL

pulse in your pulse outputs of appropriate length

(usually 1ms is sufficient but consult your stimulators

handbook) and connect the correct Digital Output of

your 1401 to the stimulator and you are set.

However, do note that in this type of setup full control

of the stimulus intensity is given by the stimulator, it is

only possible to control the timing of the stimulus in

Signal.

In addition, the Digitimer DS5 can be controlled via the 1401s DAC output. Much like the digital triggered stimulators,

this is set up in Signal via the pulse outputs, however instead a pulse being configure on the Digital Outputs, a

waveform should be configured on a DAC output. The analogue voltage input on the DS5 is translated into an isolated

constant current stimulus (up to ±50mA), replicating the shape of the input waveform.

http://ced.co.uk/downloads/scriptsiganal
http://ced.co.uk/upgrades/spike2sonpy

7

The Digitimer DS8 on the other hand can be software

controlled through Signal to set the stimulus parameters.

Much like the Signal controlled Transcranial Magnetic

Stimulation (TMS) devices, the DS8 is added through the

Auxiliary devices menu when Multiple Frame States is

enabled. There all the stimulus parameters may be

configured, as well as the timing of the stimulus being set

via the pulse outputs.

Back to contents

CED User forums

Try the CED Forums bulletin board for software and hardware support.

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186
Fax: (01223) 420488

Email: info@ced.co.uk
International Tel: [44] 1223 420186
International Fax: [44] 1223 420488
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2020 Cambridge Electronic Design Ltd, All rights reserved.

7

http://www.ced.co.uk/phpBB3/index.php

