

eNEWSLETTER
#7

October 2020

Welcome

Thank you for downloading our October newsletter. The clocks have turned back

in the UK and our days have noticeably less daylight, however our software team

has still been hard at work to bring you updates to Spike2 and Signal. Version

updates 10.07, 9.12 and 8.20 of Spike2 were all released at the end of

September, so make sure to update your copy.

In 10.07 we’re pleased to bring you 21 new features including improvements to

video recording, adding channels without a y-axis to channel grouping and the

new script command ArrRev(). The full release notes are found on our website,

or in the Technical help > Revision history section of the in-software help,

accessed by pressing F1. Signal version 7.06 is under test and will be released

soon. Changes include the script command Binzero() can now be used to set the

start time of a frame in a file view, plus 27 other features and fixes. Major

updates are also coming to Signal, watch this space!

Our script writers have been working to deliver custom scripts for your projects;

check out the collection on our website or email us if there is something you

wish to achieve with our help. Furthermore, we are interested in hearing about

your suggestions for features and improvements to both Signal and Spike2. As

always, should you have any suggestions, questions or queries for the newsletter

please get in touch Marjorie@ced.co.uk.

Training Days

Due to the ongoing COVID-19 pandemic, all current training events have been

put on hold. We do however offer remote training sessions by

Skype/Zoom/Teams either one-to-one or with groups.

Join us and learn how to make the best use of Spike2 and Signal to save hours of

repetitive analysis. Our remote sessions are free to arrange and are suitable for

both existing and prospective users of our data acquisition and analysis systems.

If you would like to schedule a session, please get in touch.

If you are interested in hosting a training event in your local area once social

distancing measures have been eased, please get in touch: Marjorie@ced.co.uk.

If you see these buttons in our newsletters, it means a file or script relating to

the section is available to download:

Contents

Welcome

Training days

Latest software

Here to help

Script Spotlight

• Email notification

• Channel draw modes

available per channel

type

• Script – Simple

Auditory Brainstem

Responses

• Dynamic clamping

with Signal

• Script – Export

frames as pictures

Scripters corner

• Arrays

Recent questions

• Overlaying traces

from stimulations in

Spike2

CED user forums

Data
This button signifies a Data file is available to download.

XY | Result | Other
This button signifies an XY, Result or other file is available to download.

Script
This button signifies a Script file is available to download.

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.07 09/2020 Version 7.05a 02/2020
Version 9.12 09/2020 Version 6.05b 10/2019
Version 8.20 09/2020 Version 5.12a 02/2018
Demo 09/2020 Demo 02/2020

Bug report: Spike2 versions 7-10 PlayWaveStatus$() position bug

A bug has been discovered that affects Spike2 users who sample data with a Power3, Power3A, Micro3 or Micro4 and

use the PlayWaveStatus$() script command to read back the position that waveform output has reached. This is most

unlikely to affect you unless you upgrade from an old version of Spike2. If you might be affected see this bulletin

board post for details of the problem and a fix.

http://www.ced.co.uk/phpBB3/viewtopic.php?f=5&p=10868#p10868

We will add the fix to future releases of Spike2, so if you are unaffected there is nothing for you to do. If you have a

script that depends on the wrong behaviour and are not able to modify your sampling script to cope with the change,

please contact us for help.

Back to contents

Here to help

We know access to your labs has been erratic for the past 6 months, and with the new local lockdown measures that

is unlikely to change over winter. However, CED will still do all in our power to support you for increased home

working. Should you require any help or wish to discuss your system, email us at info@ced.co.uk and we can arrange

for a video call via Skype/Zoom/Teams.

We also have tutorial videos for both Spike2 and Signal available on our website for you to peruse at your leisure.

There are new videos and updates in the pipeline, however if you have a particular topic you think could benefit from

a tutorial video please let us know.

Back to contents

Script Spotlight – EmailNotification.s2s

Have you ever found yourself in the situation where you cannot afford the time to wait for an experiment to finish.

Or perhaps you need to leave an experiment running overnight and are concerned about something interrupting your

recordings. We have developed a small Spike2 script that will send you an email notification when your recording

stops. This script will notify you of the date and time when recording finishes and include a small screenshot of the

data.

We have successfully tested this script with both Gmail and Outlook addresses, however there are some limitations

to the script. Firstly, both your email address and password must be added to the script text. We therefore

recommend that email address receiving personal/secure information are not used, and you only use an email

address you are happy to have the access information stored in the script. Alternatively, you could set yourself up a

new address with a free email client specifically for this purpose. This script will not function correctly if some form of

two factor authorisation is enabled.

http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/signaldemo
http://ced.co.uk/tutorials/introduction
http://ced.co.uk/tutorials/spike2videos
http://ced.co.uk/tutorials/signalvideos

'EmailNotification.s2s|Sends an email message when a data file stops sampling.

'===
'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, CAMBRIDGE RD., CAMBRIDGE CB24 6AZ, UK
'===

'Copyright © Cambridge Electronic Design, Sep. 2020.
'Author: SG
'Last modified by LS : 26/10/2020
'SOFTWARE: This script was developed using Spike2 v10.07. It has been tested to work with Spike2 v10.

'HEALTH WARNING:
'The script is a -work in progress- and is offered without guarantees.
'You must test it to see whether it is suitable for your application.

Var LastState; 'Last known sampling state
Var Data%; 'Data file handle

DoToolbar(); 'Try it out
Halt;

Func DoToolbar() 'Set your own name...
ToolbarClear(); 'Remove any old buttons
ToolbarSet(0, "", Idle%); 'Idle routine
ToolbarSet(1, "&Quit"); 'This button returns its number
return Toolbar("Select...", 1023);
end;

Func Idle%() 'Button 0 routine
Var Status%;

Status%:=SampleStatus();

If status% <> LastState then
 If Status% = 2 then Data%:=SampleHandle(0); endif

 If Status% = -1 and LastState >= 2 then
 GetInfo%();
 LastState:=Status%;
 endif
 endif
 LastState:=Status%;

return 1; 'This leaves toolbar active
end;

Func GetInfo%();
Var Subject$;
Var MessageBody$;
Var File$;
Var Name$, Path$;
Var Err%;

Data%:=SampleHandle(0);
View(Data%);

Name$:=WindowTitle$();
Path$:=View(App(3)).Filename$(-1);
File$:=Path$+Name$+".JPG";

MessageBody$:=Print$("File %s finished sampling %s at %s. Length %ds", FileName$(-5), Date$(8, 3, 1), Time$(2, 1+2+4+8, 1), Maxtime());
Subject$:="Message from Spike2";

Err%:=FileSaveAs(File$, 14, 1); 'Save a picture JPEG

MessageBody$:=Print$("File %s finished sampling %s at %s. Length %ds", Name$, Date$(8, 3, 1), Time$(2, 1+2+4+8, 1), Maxtime());
Subject$:="Message from Spike2";

Err%:=SendEmail%(Subject$, MessageBody$, File$);

FileDelete(File$, 0);

Return 1
end

Func SendEmail%(Subject$, MessageBody$, File$);
Var Wnd%; 'Powershell window handle
Var Attachment$; 'File to attached (Image?);
'Var Subject$:= "It works!"; 'Email subject
'Var MessageBody$:="If you can see this, you got it working"; 'Email body text

Var ToAddr$:="recipient@gmail.com"; 'Send to address
Const User$:="example@gmail.com"; 'User credential
Const FromAddr$:="example@gmail.com"; 'From address
Const Password$:="Password"; 'User email password
Const Server$:="smtp.gmail.com"; 'Users SMTP server e.g. gmail = smtp.gmail.com; outlook = smtp.live.com

var PowerShellRun$:= "C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe -command";
'var PowerShellRun$:= "C:\\Windows\\System32\\WindowsPowerShell\\v1.0\\powershell.exe -noexit -command";
PowerShellRun$ += " \"$message = new-object Net.Mail.MailMessage;";
PowerShellRun$ += Print$(" $message.From = '%s';", FromAddr$);
PowerShellRun$ += Print$(" $message.To.Add('%s');", ToAddr$);
PowerShellRun$ += Print$(" $message.Subject = '%s';", Subject$);
PowerShellRun$ += " $message.IsBodyHtml = $True;";
PowerShellRun$ += Print$(" $message.Body = '%s';", MessageBody$);
PowerShellRun$ += Print$(" $attach = new-object Net.Mail.Attachment('%s');", File$);
PowerShellRun$ += " $message.Attachments.Add($attach);";
PowerShellRun$ += Print$(" $smtp = new-object Net.Mail.SmtpClient('%s', '587');", Server$);
PowerShellRun$ += Print$(" $smtp.EnableSSL = $true; $smtp.Credentials = New-Object System.Net.NetworkCredential('%s', '%s');", User$, Password$);
PowerShellRun$ += " $smtp.send($message);\"";

Wnd%:=ProgRun(PowerShellRun$, 1); 'Execute the command
While ProgStatus(Wnd%) = 1 do Printlog("\n%d", Yield(0.1)); wend
'ProgKill(Wnd%);
If Wnd% < 0 then PrintLog(Error$(Wnd%)); endif 'If an error occurs, log it
Return Wnd%
end

EmailNotification.s2s
To download, right click and select Save...

3

To setup the script you must first edit the following fields:

Var ToAddr$:="recipient@gmail.com"; 'Send to address

Const User$:="example@gmail.com"; 'User credential

Const FromAddr$:="example@gmail.com"; 'From address

Const Password$:="Password"; 'User email password

Const Server$:="smtp.gmail.com"; 'Users SMTP server

ToAddr$ is the recipient email address, which could be your work email or an email you have access to on your

phone. The User$ field is the user login to the email account for sending (typically the same as the email address),

and Password$ is the password (ensure case sensitive characters are entered exactly). The SMTP server must also be

entered for the Server$ variable; for example, the Gmail server is smtp.gmail.com, and the outlook server is

smtp.live.com.

With these variables updated, the script can be run in the background of Spike2 whilst you setup your recording and

begin sampling. Each time a recording is started, the script updates to monitor the view that is sampling. Should the

sampling stop, the script will attempt to send the email notifying you. This will not cover every scenario, for example

if there is a power cut or you lose network connection, however for most cases it remains useful.

This script also has the potential to be altered for other uses, for example a notification could be sent if a particular

threshold is passed. It is also possible to send text notifications with the use of third-party software, however we

opted for the simpler email notification. If you have any ideas for other helpful uses of this script for yourself, please

get in touch with us at marjorie@ced.co.uk.

 Back to contents

The Channel Draw mode option in the View menu gives access to a variety of data display modes. However, the

available modes depend on the source channel data type. The following draw modes are available for Event and

Marker type data:

Dots and Lines – Displays the events as simple time stamps using dots or vertical lines. Marker channels displayed as

dots also show the Marker code. When displayed as lines, a central horizontal line to link the events is enabled with

the Centre line check box.

Mean Frequency – Calculates and displays the mean frequency at each event by counting the number of events in

the previous period as set by the time width field. Mean Frequency may be calculated in Hz or events per minute

(BPM) using the Per minute option.

Interval – Draws the time interval between an event and the previous event on the same channel, measured in

seconds. Displayed as either Dots, Lines (linking dots), or Skyline (horizontal lines between dots).

Instantaneous Frequency – This is the inverse of the time interval between an event and the previous event on the

same channel. Using the option Per minute changes to rate per minute instead of per second. The result can be

displayed as Dots, Lines (linking dots) or a Skyline (horizontal lines between dots).

Rate histograms – Displays a count of events in each time period (set by the Time Width field) as a Histogram. This

form of display is especially useful for comparing the event rates before and after an operation.

Why can’t I see the same draw modes available for

different channels?

4

Raster display – Shows event positions relative to trigger times on a selected channel and each trigger event is used

to set time 0 on the Y-axis. When this draw mode is applied to a marker channel the events are drawn in the colours

set for the individual Marker codes.

State – Displays a coloured state 'bar' for each marker code that spans the time range from the start of the marker up

to the next marker in the channel.

The following draw modes are available to Waveform and RealWave data:

Waveform and Cubic Spline – In Waveform mode the spike shape is shown with the data points joined with straight

lines. Cubic Spline mode joins the data points with smooth curves.

Dots and Skyline – As with event data, Dots draws each data point as a dot, and Skyline draws horizontal lines

between data points.

Sonogram – This mode shows how the frequency content of a waveform channel changes with time. The y axis is

displayed in Hz for the frequency range 0 to one half of the channel sampling rate. By default, intensity of the

frequency content is indicated by a grey scale, the darker the image, the more intense the signal. However, you can

choose a colour scale, or create your own scale in the Edit menu > Edit Preferences > Display tab.

Finally, the following draw modes apply to WaveMark data only:

WaveMark – Draws the spike shape as a Waveform and displays the associated marker code.

Overdraw WM - The overdraw mode draws all spike data in the time range as superimposed waveforms in a channel

area at the top of the data window. This draw mode is particularly useful for comparing, contrasting, and identifying

spike shapes.

Drawing mode tips:

Duplication of channels – You can display a channel in multiple display modes at the same time by duplicating the

channel and setting different draw modes to each duplicate

Draw modes with the Marker Filter – The Analysis menu Marker Filter function is used to show or hide data

associated with a marker code. Any channel draw mode or analysis performed on a channel with a marker filter

applied is then only applied to the visible data.

Channel grouping – With Spike2 update 10.07 it is possible to group channels without a y axis, prior to 10.07 only

channels with a y axis could be grouped. Therefore, you can now group a channel in State mode with others to colour

the background of regions of a waveform:

In this example, channel 4 (TextMark) is drawn in State mode and grouped with channel 1 (Waveform).

Back to contents

5

Scripts: Spike2

We have recently improved our Simple Auditory Brainstem Responses script package, available on our website. This

Spike2 script package is suitable for recording auditory brainstem responses (ABR) to tone pip stimuli. It was

developed for research on responses of fish to underwater sounds but may be equally useful for investigating the

responses of other vertebrates to airborne sound. The ABR software consists of 3 files, the script: Fishabrn.s2s; the

sampling configuration: fishabrn.s2c(x); and the sequencer file: fishabr v1.15a.pls. Before running this package for the

first time you must calibrate the auditory stimuli using the included SoundCalSUxx script.

The script generates symmetrical tone pips with a linear rise and fall phase and filled with carrier frequencies ranging

from 5Hz to 10kHz via DAC0. The user can set up the shape of the tone pip, select the polarity (or choose alternating

polarity), stimulus repetition rate and number of sweeps to include in the average. The stimulus intensity is set in

steps of 5dB over a range of 75dB using the CED 3505 program-controlled attenuator. A calibration curve to correct

for variations in intensity with stimulus frequency is applied automatically.

The script:

• Processes the pre-amplified neural responses recorded via ADC0 by signal averaging

• Displays the averaged responses at each stimulus frequency in descending order of stimulus intensity for easy

estimation of thresholds

• Builds up a threshold-response curve as the experiment proceeds

Back to contents

http://ced.co.uk/downloads/scriptspkexpr

6

Dynamic clamp is a specialised technique in which current is delivered to a cell to represent the actions of virtual ion

channels, allowing ion channels or synapses to be simulated or the actions of existing channels to be nullified; in

effect adding or subtracting conductance to or from the cell membrane. These virtual ion channels or synapses are

modelled using equations. A model can define something as simple as an ohmic leak conductance or as complex as a

population of Hodgkin-Huxley ion channels, or a synapse. These models take sampled waveform channels as inputs

and apply a set of equations that determine the current to be injected by the amplifier, which is controlled by a DAC

output from the 1401.

Signal control of dynamic clamping

To be useful for research this process must be done quickly relative to the speed of the biological process being

simulated; the mechanisms used to evaluate the equations need to be fast. Signal version 7 includes a high

performance, easily configurable, dynamic clamping system which is fully integrated into the sampling configuration.

It makes use of the Power1401-3A and Micro1401-4 design to evaluate the model equations at the same rate as the

ADC inputs are sampled, ensuring that the timing is fast and unaffected by the non real-time aspects of the Windows

operating system.

A simple GHK Leak example

A Goldman-Hodgkin-Katz leak is a model which generates a simulation of spontaneously opening ion channels where

ionic movement through the channels is driven by a difference in the ionic concentration across the membrane.

I would like to know more about Signal’s

capabilities for Dynamic Clamping

	
		
		
		
			
				
				
			
		
		
		
		
			
				
				
				
				
				
				
				
				
			
		
		
		
		
			
				
					
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
				
					
				
			
		
		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		
		
			
			
		
		
			
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
				
					
						
						
					
					
						
						
					
				
			
		
		
		
			
		
		
			
				
				
			
			
				
				
			
		
	
	
		
			
			
			
			
				
				
				
			
			
				
			
			
			
			
		
		
			
				
			
			
			
			
				
					
					
					
						
						
							
						
						
					
					
				
			
		
	
	
		
	

DynClampTest.sgcx
To download, right click and select Save...

7

The input channel is used to record the membrane potential, connect this to the scaled output port of your current

clamp amplifier. Connect the Control DAC to both the external

command input of the amplifier and an ADC channel of your

choice to visualise the current being injected into the cell. Many

amplifiers have a second output for connecting to an ADC channel

without the need to connect the DAC directly. In this case the DAC

only needs to be connected to the command input of the

amplifier. The input channel should be calibrated in mV and the

Control DAC and current channel calibrated in nA or pA. To show

the leak in action we also need a varying current input, which is

achieved by adding a varying current stimulation pulse (200 ms,

amplitude 0.1 nA increasing to 1nA in steps of 0.1 nA) to the

Control DAC output in the pulse configuration dialog.

GHK leak example

The simulated ion diffusion generated by this model has the effect of driving down the baseline membrane potential

towards a resting potential generated by to the ionic concentration difference, partly cancelling out the effect of the

input pulse

A more complex Hodgkin-Huxley example

A Hodgkin-Huxley model simulates ion channels whose behaviour is voltage dependent with complex dynamics. This

example aims to simulate action potentials by starting with the example GHK model used above and adding suitable

voltage-dependent sodium channels.

8

When this sampling configuration is run with both models enabled it generates simulated action potentials in

response to the increasing current injection, as displayed below.

Simulated action potentials generated using dynamic clamping

The attached sampling configuration, DynClampTest.sgcx, contains both of the models described above and should

be ready to run with Signal version 7, a Power1401-3A or Micro1401-4. You also require a suitable patch clamp

amplifier in current clamp mode that has an external command sensitivity of 2 nA/V and output gain settings which

give a scaled membrane potential sensitivity of 10 mV/mV. This should be connected to a model cell that has an

internal 500 MOhm internal resistance for these testing purposes.

Back to contents

9

Scripts: Signal

We have developed the small script ExportFramesPictures.sgs to export a range of selected frames from a data file as

individual images. The script will operate on an open data view or ask you to select one with the File Open dialog if a

view is not found. Once the data view is opened, the script pauses to allow you alter the appearance of the data as

required. When you have completed your adjustments, click OK from the top right toolbar. A new dialog opens,

allowing you to select All frames, tagged frames, or un-tagged frames in the defined range. The available formats are

Windows metafile (.wmf), enhanced metafile (.emf), bitmap (.bmp), Joint Photographic Expert Group (.jpeg), Portable

Network Graphics (.png), and Tagged Image File Format (.tif).

Back to contents

Scripters Corner – Arrays

In a previous article we discussed simple variables that hold single values. However, it is often the case that we need

to deal with multiple items of the same type, such as a waveform of sample points or a list of channel or file names to

process.

To declare such data types we use the ‘array’ construct. An array is declared using the var keyword and, like other

variables, can be a list of integers, real numbers, or strings (in version 10 you can also have arrays of user-defined

Objects, but we leave that for a future article). The number of elements in the array is included in square brackets

after the variable name in the var statement:

var MyInt%[10]; 'an integer array of 10 elements

var MyReal[4]; 'a real array of 4 elements

var MyStr$[7]; 'a string array of 7 elements

As declared above, the array elements are initialized to default values; numeric elements are zero and strings are

empty. An individual element from the list is denoted by the array name followed by square brackets enclosing its

position in the list:

var data%[4];

data%[0] := 10;

data%[1] := 20;

data%[2] := 30;

data%[3] := 40;

It is also possible (since Spike2 version 8.03) to initialize an array to values that are constant expressions at the point

of declaration. By this we mean the data must be known at the time of compilation. To initialise an array, enclose the

list of data separated by commas in { } brackets:

var data%[4]:={10, 20, 30, 40}; ‘initialised array

The size of the array in square brackets is optional when initialising arrays; were you to omit it, the number of

elements in your { } enclosed list determines the size of your array. However, it is an error to include a [size]

smaller than the number of {elements} in the list. For example:

var bad%[4]:={1, 2, 3, 4, 5}; ‘Error: dimension size exceeds declared size at '5'

Should you need to change the size of an array, we can use the resize statement:

var data%[100]; 'array of 100 elements

resize data%[5]; 'now only 5 elements

One could use this to reduce a list with empty values at the end. For example I declare an array with plenty of room

to store data as a list, then once I have grabbed all the data needed I use resize to reduce the list to just the elements

holding data.

'$ExportMetaFrames.sgs|Signal script to export a range of frames as individual pictures

'===
'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, CAMBRIDGE RD., CAMBRIDGE CB24 6AZ, UK
'===

'Copyright © Cambridge Electronic Design, Sep. 2020.
'Last modified by LS : 26/10/2020
'SOFTWARE: This script was developed using Signal v7.05. It has been tested to work with Signal v7.

'HEALTH WARNING:
'The script is a -work in progress- and is offered without guarantees.
'You must test it to see whether it is suitable for your application.

var data%; 'Data file to extract frames from
var sFrame%,eFrame%,tagType%; 'Variable for frames to include
var expType%; 'Type of file to export as
var fName$; 'Data file name
var exFName$; 'Metafile name
var ok%;
var i%;
var doFrame%;
var export%[6]:={5,5,13,14,15,16};
var Format$[6]:={"Metafile", "Enhanced metafile", "bitmap", "JPEG", "PNG", "TIFF"};
var ct%;

if ViewKind() = 0 then 'Check we have a data file open
data%:= View();
FrontView(data%);
else
data%:= FileOpen("",0,2); 'If not prompt user to select one
WindowVisible(1);
endif;

if data%<0 then Message("Unable to open new data file");Halt; endif;

View(data%);
Interact("Set display of current view and press OK",1023);
eFrame% := FrameCount(); 'Set default end frame as last frame in file
DlgCreate("Multiple frame metafile export");
DlgInteger(1, "Start frame",1,FrameCount());
DlgInteger(2, "End frame",1,FrameCount());
DlgList(3, "Frames to include", "All|Tagged|Un-tagged",3);
DlgList(4, "Export as", Format$[]);
DlgAllow(1023,0,Check%);
ok% := DlgShow(sFrame%,eFrame%,tagType%,expType%); 'Close dialog and return values
if ok% > 0 then
 fName$:= FileName$(1)+FileName$(2)+FileName$(3)+FileName$(4); 'Get full name of data file
 for i% := sFrame% to eFrame% do 'Step through each frame within range
 View(data%);
 Frame(i%); 'Go to the frame number
 docase
 case tagType% = 0 then 'If all frames accepted
 doFrame% := 1; 'Set doframe flag
 case tagType% = 1 then 'If only tagged frames required
 if FrameTag(i%) = 1 then 'Set doframe flag if frame tagged
 doFrame% := 1;
 else
 doFrame% := 0;
 endif;
 case tagType% = 2 then 'Same for un-tagged
 if FrameTag(i%) = 1 then
 doFrame% := 0;
 else
 doFrame% := 1;
 endif;
 endcase;
 if expType% = 0 then 'Set metafile name with extension based on type
 exFName$:= fName$ + Print$("_f%d.wmf",i%);
 else
 exFName$:= fName$ + Print$("_f%d",i%);
 endif;
 if doFrame% > 0 then
 FileExportAs(exFName$,export%[expType%]); 'Export frame as metafile
 ct%+=1;
 PrintLog("\nFrame %d exported as %s format", i%, Format$[expType%]);
 endif;
 next;
 if ct% < 1 then
 Message("No frames for export within parameters");
 else
 Message("Exported completed");
 endif
else
 Message("Export aborted");
endif;

Func Check%(item%) 'Dialog check function to ensure end frame is at least as high as start frame
if item% = 1 then
 if DlgValue(item%) > DlgValue(2) then
 DlgValue(2,DlgValue(item%));
 endif;
endif;
return 1;
end;

ExportFramesPictures.sgs
To download, right click and select Save...

10

'Example: array

var data%[4], i%, total;

data%[0] := 1; data%[1] := 3; data%[2] := 8; data%[3] := 9;

for i% := 0 to 3 do

 total := total + data%[i%];

next;

PrintLog("Mean is %f\n", total / 4.0);

The for ... next; loop groups the statements between for and next and runs them for each value of the variable

i% (in this case it has the values 0, 1, 2 and 3). Each iteration of the loop accumulates the values in the vector in the

total variable. We will discuss flow of control statements (like for ... next) in detail in another article.

In this example, the array data%[] has one square bracket (an index). This is known as an array with one dimension,

or a vector. If we declared an array of reals as fred[8][6] this creates an array with 2 dimensions and 48 elements

addressed with two indices. We call an array with two dimensions a matrix. From Spike2 version 6, arrays with up to

5 dimensions are allowed; we do not have special names for 3 to 5 dimensions.

Note that Spike2 has built-in functions to perform many standard operations. The above calculation of the mean of

an array of integer data could have been written as:

var data%[] := {1, 3, 8, 9}, mean;

ArrSum(data%, mean); 'symbol data% or data%[] means the whole array

PrintLog("Mean is %f\n", mean);

A common error when working with arrays is forgetting that the first element is [0], with the last element one

number less than the total elements. A vector array with 36 elements would be written as data%[36], with the list

starting at element [0] up to element [35].

You can find much more information about arrays in the Spike2 online Help. See: Script language > Script language

syntax > Arrays of data.

Back to contents

Recent Questions

Is it possible to overlay traces from a stimulation point within Spike2?

To overlay traces we would use the Trigger/Overdraw feature

within Spike2. In overdraw mode, data sections identified by

triggers are overdrawn in time order, oldest first up to the current

time. The displayed time range is altered through the X axis range

dialog, but trigger times are ignored if time before 0 or time after

the end of the file would be displayed. Your stimulation triggers

would already be marked either as an event or a marker. To get

started, access the View menu > Trigger/Overdraw > Display

Trigger dialog, or right click your data and select

Trigger/Overdraw.

This dialog controls the overdraw feature. First select your Trigger

channel, and then select Enable trigger and Zero x axis at trigger to

enable the overdraw feature. Click Enable Overdraw to begin.

There are optional functions available, such as pre-trigger display

times, limits for the maximum number of frames to overdraw and

the maximum span in seconds, etc., more details on these are

found by accessing the Help from the bottom left corner or

pressing F1. Click Apply when finished.

11

From your data, the displayed time range is altered by double clicking the x axis to open the X axis range dialog.

Sections of data identified by triggers, or frames, are added or removed by using the trigger buttons added to the

bottom left toolbar when overdraw is enabled (right).

 Alternatively, the Overdraw list dialog may be used to process all

triggers within a time range. Use the View menu > Trigger/Overdraw >

Overdraw list or select it from menu by right clicking your data.

Choose the event channel and time range to process, and either

Replace the current overdrawn data or Add to what is already there.

Back to contents

CED User forums

Try the CED Forums bulletin board for software and hardware support.

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186
Fax: (01223) 420488

Email: info@ced.co.uk
International Tel: [44] 1223 420186
International Fax: [44] 1223 420488
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2020 Cambridge Electronic Design Ltd, All rights reserved.

11

http://www.ced.co.uk/phpBB3/index.php

