

eNEWSLETTER
#8

December 2020

Welcome

Thank you for downloading our December newsletter. As 2020 draws to a close

we look back and reflect on all the new challenges the year has brought. Despite

the problems caused by the pandemic, we have managed to both stay safe and

keep working to provide you with the software and hardware to continue your

research. We are fortunate that no-one here has been seriously ill, and we hope

this is the case for you and yours. We have continued providing as much of our

customary support as possible without physically visiting your labs and the

Software team have kept busy. Spike2 Version 10.08 was released recently (so

make sure to update your copy from our website). Signal 7.06 is coming soon.

We are also excited to announce a new Talker for the BrainVision actiCHamp

Plus amplifier from Brain Products. This talker bridges Spike2 to the amplifier,

allowing you to capture data with Spike2 from your existing amplifier without

the CED1401. The updated version 2.0 of our Delsys Talker has been released,

and we have new Talkers for additional equipment on the horizon. Watch this

space!

As always, should you have any suggestions, questions or queries for the

newsletter please get in touch Marjorie@ced.co.uk.

From all of us at CED, we wish you Happy Holidays and a Happy (and Healthy)

New Year.

Training Days

Due to the ongoing COVID-19 pandemic, all current training events have been

put on hold. We do however offer remote training sessions by

Skype/Zoom/Teams either one-to-one or with groups.

Join us and learn how to make the best use of Spike2 and Signal to save hours of

repetitive analysis. Our remote sessions are free to arrange and are suitable for

both existing and prospective users of our data acquisition and analysis systems.

If you would like to schedule a session, please get in touch.

If you are interested in hosting a training event in your local area once social

distancing measures have been eased, please get in touch: Marjorie@ced.co.uk.

If you see these buttons in our newsletters, it means a file or script relating to

the section is available to download:

Contents

Welcome

Training days

Latest software

Here to help

Script Spotlight

• Sequencer library

• Changing or hiding

markers

• Script – Independent

DAC control

• Dynamic clamp

available models

• Script – Info window

from data view

Scripters corner

• Flow of control

statements

Recent questions

• Labelling data

CED user forums

http://ced.co.uk/downloads/latestsoftware

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Script
This button signifies a Script file is available to download

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Data
This button signifies a Data file is available to download

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

XY | Result | Other
This button signifies an XY, Result or Other file is available to download

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.08 11/2020 Version 7.05a 02/2020
Version 9.12 09/2020 Version 6.05b 10/2019
Version 8.20 09/2020 Version 5.12a 02/2018
Demo 11/2020 Demo 02/2020

Back to contents

Here to help

We know access to your labs has been erratic for the past 8 months, and with the local lockdown measures that is

unlikely to change over winter. However, CED will still do all in our power to support you for increased home working.

Should you require any help or wish to discuss your system, email us at info@ced.co.uk and we can arrange for a

video call via Skype/Zoom/Teams.

We also have tutorial videos for both Spike2 and Signal available on our website for you to peruse at your leisure.

There are new videos and updates in the pipeline, however if you have a particular topic you think could benefit from

a tutorial video please let us know.

Back to contents

Script Spotlight – Sequencer library / Seqlib.s2s

The output sequencer of Spike2 and Signal is used to generate digital and waveform outputs from your 1401 during

sampling. This tool can be used to trigger and control a wide range of devices such as electrical and magnetic

stimulators, motors, or visual stimulus generators. Often you need to be able to set these stimulus parameters whilst

recording and, while we have made it possible to load in replacement sequencer files during sampling, sometimes it

is more convenient to use a script that allows the user to input various stimulus parameters with a dialog. The script

then passes these new values to the sequencer to update the experiment protocol in real time.

Simple as it sounds, many script writers come unstuck when it comes to re-calculating user entered values as

sequencer values. The sequencer runs in real time and uses a rather 'low-level' language to control digital input and

output and the DACs. When you want to set these values with sequencer variables the actual values to set are not

always obvious. For example, the command to set a DAC to 3.0 Volts involves converting the desired user-units

output to a 32-bit integer value. The full 32-bit range of the sequencer variable value corresponds to the full range of

voltages that can be generated by the DAC, so ‑2147483648 corresponds to the lowest possible output voltage (-5 or

-10 volts), 0 corresponds to a 0 output and 2147483647 corresponds to the highest possible output voltage.

Therefore, 3V is equal to (2147483647 / ADC range) * 3.

We have provided a script to make these calculations as stress-free as possible. Seqlib.s2s is stored in the include

folder of your Spike2 and Signal installation and contains a library of functions to help with the calculation of

sequencer variables. Included is a function to convert user entered units into 32-bit numbers for use by the DAC

output commands. This script is intended for use as an include file so you can simply enter #include <seqlib.s2s>

at the top of your own script to add it.

 Back to contents

http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/signaldemo
http://ced.co.uk/tutorials/introduction

3

It is possible to change the marker code in Spike2 or filter any channel that holds marker, WaveMark, TextMark or

RealMark data through two dialogs.

Set Marker codes for items in a channel

To change existing markers to a new code we use the Set marker codes dialog. This is accessed from the Analysis

menu or by right clicking on a marker channel. Each data item has four marker codes with 256 values that can be set.

Typically, using only the first marker code is enough for most applications.

- The Channel field sets the channel to process.

- Start time and End time identify the range for markers to set.

- The number of markers within range are noted underneath the

time fields.

- The four check boxes 0 to 3 select the codes to change.

- Set the value for each code as either two hexadecimal digits or

one printing character.

- If a marker filter is set for the channel, only data items that are in

the filter are changed by this dialog.

Marker filter

Each marker channel has a marker filter that selects the data items to display and use in calculations. To access the

marker filter, right click a marker channel and select Marker Filter or alternatively use the Analysis menu > Marker

Filter option. If you set a marker filter so that it would not pass all data, the channel number displays in red.

- Each marker data item has four marker codes that are matched

against the marker filter.

- You can specify a marker filter using text or by selecting the

current layer mask and checking the codes in the check box list.

- Copy the current dialog filter to the clipboard, as text.

- Paste will set the dialog filter state to match the text filter held

on the clipboard.

- Update the channel display to correspond with the new filter.

- All will enable all markers for no set filter.

- None filters all markers, for none to be shown.

- Invert the current filter selection (all filtered are now enabled

and vice versa).

How can I change or hide a particular marker in my

data?

4

Text version of filter

The dialog displays the text version of the filter above the 4 filter masks. You can edit the text version and when it is

legal, the filter is applied to the masks and the check box list. If you make a change to the check box list, the text

updates to match. If you edit the text to an illegal state, an error message appears at the bottom of the dialog.

Masks

The dialog shows the marker codes as four masks numbered 0 to 3 which give a quick

indication of the state of the filter. Each mask has 256 elements in a 16x16 grid, one for

each possible code value. The contents of the front-most mask are displayed in the scrolling

list in the centre of the dialog. Click on a mask element to bring the mask to the front and

scroll the list to the element. If you edit the text version of the filter, the first mask changed

by the edit comes to the front of the stack.

The top row of each mask represents code values 0 to 15 (hexadecimal codes 00 to 0F), the second row 16 to 31 (10

to 1F) and so on down to the bottom row, which represents values 240 to 255 (F0 to FF). If a code value is included in

the filter, the corresponding element is black. When values are excluded, the element is white.

Modes

Mode 0 (AND): All masks, all codes must match

You can think of this as the AND mode; to accept data marker

code 0 must be in the mask 0 AND marker code 1 must be in

mask 1 AND marker code 2 must be in mask 2 AND marker code 3 must be in mask 3. Most users of this mode set

mask layers 1, 2 and 3 to All and use the first layer to select data values.

Mode 1 (OR): One mask, any code can match

This mode can be considered as the OR mode; to accept data

marker code 0 OR marker code 1 OR marker code 2 OR marker

code 3 must be in mask 0. There is one exception; for marker

codes 2 to 4, the code 00 is ignored. To accept code 00, it must be the first marker code.

Mode 1 is often used when sorting spike shapes (WaveMark data) and you discover a WaveMark that is the result of

a collision between two spikes. You can set the first marker code to the code for the first spike and the second to the

code for the second (leaving the third and fourth codes as 00), then the spike will appear on screen and in analyses

when either of the codes are included in the mask. We will be discussing the marker filter with WaveMarks in more

detail in a further newsletter.

Back to contents

Scripts: Spike2

The script Independent DAC control.s2s was written for a user to solve the problem of presenting two independent

pulse trains with different periods. When creating pulse trains within the built-in sequencer, the trains are

synchronised across all analogue outputs. If you needed to have two DAC outputs for your experiment, typically you

would design three sections in the graphical sequencer: the first with DAC 0 active, the second with DAC 1 active, and

the third with both DACs active. These may be linked to sample keys to swap between the sections as needed.

This user needed complete independent control over two pulse trains, with the control of one not affecting the

output of the other. There is therefore no fixed interval between the two outputs, nor are the start times of the

trains. Whist this is possible to achieve with the 1401 digital outputs (see the DIGPS, DIGPC, and DIGPBR instructions

of your Spike2 online help added in version 10.06), the pulse trains would be driving independent stimulators and

'Independent DAC Control|Script to create pulse trains with independent control over DAC 0 and DAC 1

'===

'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, CAMBRIDGE ROAD, CAMBRIDGE, CB24 6AZ

'===

'Copyright © Cambridge Electronic Design, July. 2020.

'Author:	LS.

'v1 last modified : SG - 12/11/2020

'SOFTWARE: This script was developed using Spike2 v10.05. It has been tested to work with Spike2 v10.

'HEALTH WARNING:

'The script is a -work in progress- and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'INSTRUCTIONS:

' PULSE SETUP - Opens dialog to enter pulse parameters

' DAC 0 ON/OFF - Starts/stops pulse train from DAC 0 (only enabled during sampling)

' DAC 1 ON/OFF - Starts/Stops pulse train from DAC 1 (only enabled during sampling)

' QUIT - Halts script but does not halt sampling.

'

'First use the Pulse Setup dialog to define your pulse parameters. Click OK to load these to your sample config.

'Open the sample configuration and ensure configuration is correct along with all required channels to sample.

'Being sampling when ready.

'The DAC 0 and DAC 1 toolbar buttons will enable allowing control of the pulse train outputs. Use these to turn

'the outputs ON /OFF as needed.

var PulseDur%:=2, PulseInt%:=5, PulseNum%:=4, TrainInt:=2, Rpts%:=8, SeqInt:=15, Phase%;

var TrainIntMS%;

var SeqIntMS%;

var BiPulseDur;

var PulseDurSecs;

var PulseIntSecs;

var SeqIntSecs;

var TrainLenSecs;

var BiPulseDurSecs;

var BiPulseIntSecs;

var seqvh%;

var ZeroDACflag%, OneDACflag%;

var ok%;

Var Data%;

View(App(3)).WindowVisible(0);

DoToolbar();

Halt;

Func DoToolbar()

ToolbarClear();

ToolbarSet(0, "", Idle%);

ToolbarSet(1, "&Quit", Quit%);

ToolbarSet(2, "Pulse Setup", Parameters%);

ToolbarSet(3, "DAC 0 OFF", DAC0%);

ToolbarSet(4, "DAC 1 OFF", DAC1%);

'ToolbarSet(5, "Go", Go%); 'Link to function

ToolbarEnable(3, 0);

ToolbarEnable(4, 0);

return Toolbar("Independent DAC control", 1023);

end;

'===

'Idle function checks current status of playwave and sequencer output, updates toolbar if neccessary

'===

Func Idle%()

var err%, err$;

If SampleHandle(0) <> Data% then

 CheckSampling();

endif

'if ok% > 0 then

 err%:= SampleStatus();

 if err%=2 then

 err%:=SampleSeqStep();

 if err%>1 and ZeroDACflag%=0 then

 ZeroDACflag%:=1;

 ToolbarSet(3, "DAC 0 ON", DAC0%);

 endif

 if err%<2 and ZeroDACflag%=1 then

 ZeroDACflag%:=0;

 ToolbarSet(3, "DAC 0 OFF", DAC0%);

 endif

 err$:=PlayWaveStatus$();

 if err$<>"" and OneDACflag%=0 then

 OneDACflag%:=1;

 ToolbarSet(4, "DAC 1 ON", DAC1%);

 endif

 if err$="" and OneDACflag%=1 then

 OneDACflag%:=0;

 ToolbarSet(4, "DAC 1 OFF", DAC1%);

 endif;

 ' endif

 ' endif;

endif;

return 1;

end;

Proc CheckSampling();

If samplehandle(0) = 0 then

 ToolbarEnable(-1, 0); 'Disable all buttons

 Toolbarenable(1, 1); 'not Quit

 Toolbarenable(2, 1); 'not Setup

else

 If SampleStatus() = 2 then

 Toolbarenable(-1, 1);

 Data%:=SampleHandle(0);

 endif

endif

return

end

Func Quit%()

Message("Halting script");

return 0; 'This stops the toolbar

end;

'===

'Parameter function creates dialog for user to enter pulse and train parameters

'===

Func Parameters%()

var dummy0%;

DlgCreate("Pulse Setup");

DlgLabel(1,"DAC 0\tDAC 1");

DlgInteger(2,"Pulse Duration (ms)",1,100,0,0,1);

DlgInteger(3,"Pulse interval (ms)",1,100,0,0,1);

DlgInteger(4,"Number of pulses",1,100,0,0,1);

DlgReal(5,"Train interval (s)",0.001,100,0,0,1);

DlgInteger(6,"Number of repeats",1,100,0,0,1);

DlgReal(7,"Sequence interval (min)",0.001,100,0,0,1);

DlgList(8,"Phase","Monophasic|Biphasic");

DlgButton(0,"Cancel");

DlgButton(1,"OK");

ok% := DlgShow(dummy0%,PulseDur%,PulseInt%,PulseNum%,TrainInt,Rpts%,SeqInt,Phase%);

if ok%=0 then

 Message("Pulses not set");

 return 1

endif

Go%();

return 1;

end;

'===

'DAC0 function turns sequencer on/off for DAC 0

'===

Func DAC0%();

var err%:=SampleStatus();

docase

case ZeroDACflag%=0 and err%=2 then

 ToolbarSet(3, "DAC 0 ON", DAC0%);

 ZeroDACflag%:=1;

 SampleKey("R");

case ZeroDACflag%=1 then

 Toolbarset(3, "DAC 0 OFF", DAC0%);

 ZeroDACflag%:=0;

 SampleKey("H");

endcase

return 1;

end;

'===

'DAC1 function turns sequencer on/off for DAC 1

'===

Func DAC1%();

var err%:=SampleStatus();

docase

case OneDACflag%=0 and err%=2 then

 ToolbarSet(4, "DAC 1 ON", DAC1%);

 OneDACflag%:=1;

 SampleKey("L");

case OneDACflag%=1 then

 Toolbarset(4, "DAC 1 OFF", DAC1%);

 OneDACflag%:=0;

 SampleKey("S");

 PlayWaveStop();

endcase

return 1;

end;

Func Go%() 'Button 4 routine

Arithmetic%();

SequencerCreate%();

PlayWaveMake%();

'ToolbarEnable(-1,1);

Message("Sequencer and PlayWave output loaded to sample config\nEnsure sample config is correct and begin sampling when ready");

return 1; 'This leaves toolbar active

end;

'===

'Arithmetic function converts input parameters to other units of time as needed

'===

Func Arithmetic%()

'Convert TrainInt and SeqInt into ms

'Minus pulse interval from train interval

'Minus train interval from sequence interval

'For biphasic, half pulse length for high/low

TrainIntMS%:=(TrainInt*1000)-PulseInt%;

SeqIntMS%:=(SeqInt*60*1000)-TrainIntMS%-PulseInt%;

BiPulseDur:=PulseDur%;

BiPulseDur:=BiPulseDur/2;

PulseDurSecs:=PulseDur%;

PulseDurSecs:=PulseDurSecs/1000;

PulseIntSecs:=PulseInt%;

PulseIntSecs:=PulseIntSecs/1000;

SeqIntSecs:=SeqInt*60;

TrainLenSecs:=(PulseDurSecs*PulseNum%)+(PulseIntSecs*(PulseNum%-1));

BiPulseDurSecs:=BiPulseDur/1000;

BiPulseIntSecs:=BiPulseDurSecs+PulseIntSecs;

return 1;

end;

'===

'SequencerCreate function creates the sequence to play from DAC 0 and loads it into the sampling config

'===

Func SequencerCreate%()

var Name$;

Var Err%;

seqvh%:=FileNew(2,1);

view(seqvh%);

WindowTitle$("DAC 0");

Print(" SET 0.1,1,0\n");

Print(" VAR V1,PulseNum\n");

Print(" VAR V2,TrainNum\n");

Print(" 'H DAC 0,0\n");

Print(" HALT \n");

docase

 case Phase%=1 then

Print("GO: 'R MOVI TrainNum,%d\n",Rpts%);

Print("AA: MOVI PulseNum,%d\n",PulseNum%);

Print("AB: DAC 0,5\n");

Print(" DELAY ms(%.1f)-2 ;High duration\n",BiPulseDur);

Print(" DAC 0,-5\n");

Print(" DELAY ms(%.1f)-2 ;Low duration\n",BiPulseDur);

Print(" DAC 0,0\n");

Print(" DELAY ms(%d)-3 ;Pulse interval\n",PulseInt%);

Print(" DBNZ PulseNum,AB\n");

Print(" DELAY ms(%d)-3 ;Train interval\n",TrainIntMS%);

Print(" DBNZ TrainNum,AA\n");

Print(" DELAY ms(%d)-4 ;Sequence interval\n",SeqIntMS%);

Print(" JUMP GO\n");

 case Phase%=0 then

Print("GO: 'R MOVI TrainNum,%d\n",Rpts%);

Print("AA: MOVI PulseNum,%d\n",PulseNum%);

Print("AB: DAC 0,5\n");

Print(" DELAY ms(%d)-2 ;Pulse duration\n",PulseDur%);

Print(" DAC 0,0\n");

Print(" DELAY ms(%d)-3 ;Pulse interval\n",PulseInt%);

Print(" DBNZ PulseNum,AB\n");

Print(" DELAY ms(%d)-3 ;Train interval\n",TrainIntMS%);

Print(" DBNZ TrainNum,AA\n");

Print(" DELAY ms(%d)-4 ;Sequence interval\n",SeqIntMS%);

Print(" JUMP GO\n");

endcase;

FileSaveAs("DAC 0",-1,9);

Name$:=FileName$();

view(seqvh%);

FileClose();

err%:=SampleSequencer(1, Name$);

If err% < 0 then

 Message("Sequencer failed to load. Halting"); Halt;

endif

return 1;

end

'===

'PlayWaveMake function creates the playwave output to play from DAC 1 and saves it to the sampling config

'===

Func PlayWaveMake%()

var v1%, v2%;

var mem%, mem2%;

var i%;

var arr%[1];

var bins%;

var Mono$, Bi$;

var timeadd:=TrainLenSecs+TrainInt;

var tempvh% := FileNew(7,0,1,1,(timeadd*Rpts%+10));

Var Pts%;

PlayWaveDelete(); 'No effect on-line

View(tempvh%);

docase

case Phase% = 0 then

 Mono$:=Print$("WSqu(%.3f, %.3f, %.3f)*WEnv(0, %.3f, 0, 0)*5", PulseIntSecs, PulseDurSecs, PulseDurSecs, TrainLenSecs);

 v1%:=VirtualChan(0, Mono$, 0, 0.0001, 0);

case Phase% = 1 then

 Bi$:=Print$("(WSqu(%.4f, %.4f, %.4f)+(WSqu(%.4f, %.4f, %.4f)*-1))*WEnv(0, %.3f, 0, 0)*5", BiPulseIntSecs, BiPulseDurSecs, BiPulseDurSecs, BiPulseIntSecs, BiPulseDurSecs, BiPulseDurSecs*2, TrainLenSecs);

 v1%:=VirtualChan(0, Bi$, 0, 0.0001, 0);

endcase;

mem% := MemChan(1, 0, 0.0001); 'Add new Waveform channel

ChanScale(mem%, ChanScale(v1%));

ChanOffset(mem%, ChanOffset(v1%));

for i% := 1 to Rpts% do

 MemImport(mem%, v1%, 0.0, MaxTime());

 ChanProcessClear(v1%,0);

 ChanProcessAdd(v1%, 4, timeadd); 'Add Time shift

 timeadd:=timeadd+TrainLenSecs+TrainInt;

next;

mem2%:= MemChan(1, 0, 0.0001); 'Add new Waveform channel

bins%:=MaxTime(mem%)/0.0001;

resize arr%[bins%];

MemSetItem(mem2%, 1, -1, arr%[]);

timeadd:=timeadd-TrainLenSecs-(2*TrainInt)+0.01;

 PlayWaveAdd("L", "OneDACflag%", 1, 0, timeadd, mem%, 1);

 PlayWaveAdd(".", "Blank", 1, 0, 1.0, mem2%, 1); '1 second of 0V

 PlayWaveAdd("S", "Stop", 1, 0, 0.1, mem2%, 1); '0.1 second of 0V specifically for stopping

PlayWaveCycles(".", SeqIntSecs);

PlayWaveLink$("L", ".");

PlayWaveLink$(".", "L");

View(tempvh%);

FileClose(0,-1);

return 1;

end;

Independent DAC Control.s2s
To download this file, right click and select Save...

5

needed the option of either monophasic or biphasic pulses. Each DAC output would consist of several small trains of

pulses, repeated at a few seconds interval for a set number of times. There would then be a large delay of several

minutes whereupon the train is repeated, and so on until the end of the experiment.

To achieve this, our script writers made use of both the text sequencer output and the Playwave output. The

sequencer output generates waveform output from the 1401 DACs either by using the graphical or text version. By

using the text sequencer, we were able to store all instructions within the script and create a new sequencer file

based upon the user’s parameters. The Playwave output operates differently. Instead of using instructions to

generate waveforms, it stores waveforms in memory when sampling to playback upon request. By using both the

sequencer and Playwave outputs we mitigate the issue of instruction overlap. With the waveform for the Playwave

output stored in the 1401s memory during sampling, and the sequencer generating a waveform through instructions,

they are both able to play out of individual DAC outputs at the

same time.

The script operates by first generating a dialog for the user to

input their pulse train parameters. The SequencerCreate%

function then generates a new text sequencer file and prints

the sequencer instructions with the variables updated from

the user’s parameters. This sequencer file is saved and set as

the current instructions for playing out of DAC 0.

The PlayWaveMake% function creates a virtual channel

holding the defined train from the user’s parameters. This is

added to the Playwave function as well as a short section of

no output. The train and zero output are linked to one

another within the Playwave function, with the number of

repeats of the zero-output adding up to the defined delay by

the user. By repeating small sections of waveform we keep

the amount of memory used by the Playwave function to a

minimum. The Playwave is set to play out of DAC 1.

The idle function of the script keeps track of the status of both the sample sequencer and Playwave output. The pulse

trains for both DAC 0 and DAC 1 are linked to Sample Keys and may be controlled by pressing the correct key on the

keyboard. However, we have linked these to their own toolbar buttons which report the status of the output

(ON/OFF) automatically. The DAC0% and DAC1% functions perform the opposite action of the current status (i.e. if OFF

then turn ON) by sending the corresponding sample key virtually with the SampleKey() script command.

Back to contents

6

The Dynamic Clamp system in Signal is configured from the Clamp tab of the sampling configuration dialog. The

clamp section is enabled or disabled from the Clamp tab of the Edit menu > Edit Preferences dialog and provides the

main setup dialog which is used to define the models to use during an experiment. This dialog can be accessed on-

line to enable or disable models and to view, edit and update model parameters while sampling. Up to 15 models of

any type can be defined for use on-line in a single sampling configuration. The number of models that can run

simultaneously during sampling is dependent on the sample rate and model complexity.

Adding models to the Dynamic clamp setup

Below is a data file showing action potentials simulated using the combination of models in the setup dialog above.

Simulated action potentials

I am interested to know which models are

supported by the dynamic clamp system in Signal.

7

Hodgkin-Huxley

These models are used to simulate the membrane conductance generated by a population of voltage-dependent ion

channels that obey the standard Hodgkin-Huxley equations:

- Hodgkin-Huxley (Alpha/Beta) uses a formulation based upon multiple rate equations.

- Hodgkin-Huxley (Tau) uses a formulation based on thresholds, threshold sensitivities and time constants.

Synapse

These are used to simulate synaptic current flow between two cells:

- Alpha synapse uses the Alpha function to generate the post-synaptic conductance profile.

- CPG synapse mimics the behaviour of synapses in the central pattern generation region of the lobster's

central nervous system. The pre-synaptic potential mediates the release of a transmitter which causes a post-

synaptic current to flow.

- Destexhe synapse uses the Destexhe model to generate the post-synaptic conductance profile. The synapse

can be activated by the pre-synaptic potential being above or below a defined threshold or by an external TTL

pulse or internal timing.

- Electrical synapse simulates a simple electrical connection (a gap junction) between two cells.

- Exponential synapse simulates the presence of a synapse using an instantaneous rise time and a single

exponential to mimic the post-trigger decay of the conductance.

- Exponential difference synapse generates the post-synaptic conductance profile based on the difference

between two exponentials, one used to model the rising phase and the other to model the decay.

- User-defined synapse generates a post-synaptic conductance based on a user-defined waveform read from a

text file.

Leak models

These provide simpler dynamic clamp behaviours where the simulated conductance is not time-dependent:

- Linear leak represents current leakage through a cell membrane with constant conductance.

- Goldman-Hodgkin-Katz (GHK) leak simulates the behaviour caused by diffusion of an ion through a

membrane via always-open ion channels, driven by the differing ionic concentrations either side of the

membrane and the voltage difference across it.

- Boltzmann leak resembles a linear leak with an additional factor in the equation that represents a voltage-

dependent blockage of the leak.

Noise

This model can be used to study the effect of simulated noisy conductance on neuronal behaviour:

- Ornstein-Uhelenbeck noise generates a noise model using the mean reverting stochastic process.

Full details of the available models, and the mathematics used to generate them, are available in the Signal on-line

help.

Back to contents

8

Scripts: Signal

We have developed a useful script to display waveform information in an info window whilst sampling. Info windows

display text, times and other information using a large font for extra visibility across the lab. The individual windows

are attached to the current sampling view, where it takes its information from.

Currently the Infofromdata.sgs script reports the two most recent peak values according to user defined thresholds.

The script operates by using an active cursor to search for key features in the data, in this case peaks, and reporting

the value at the cursors position using the ChanValue() script command. The info window showing the value can be

stretched or moved as desired.

This script could easily be edited to display other information such as rising/falling thresholds, troughs, peak-to-peak

value etc. This is achieved with two cursors and the ChanMeasure() script command to report similar information

gathered by the Cursor Regions dialog. If your system supports text to speech, it is also possible to configure the

script to convert the reported string into speech using the Speak() script command.

We are interested in hearing your comments about the type of information you would like reported during sampling,

or of any other functions you would like to scripts produced for; please email us at Marjorie@ced.co.uk.

Back to contents

Scripters Corner – Flow of control statements

In our previous newsletter we covered arrays of simple variables and touched on the for... next looping

statement. How the script chooses the next statement to execute is known as the ‘flow of control’, and these

statements let scripts loop and branch. There are two branching statements, if...endif and docase...endcase,

and three looping statements, repeat...until, while...wend and for...next. The following is an example of a

branch or ‘conditional execution’, that directs the flow of control using the ‘if’ statement:

'Example: if

var num%;

num% := Input("Type in an integer number please", 0);

if num% < 0 then Message("It was negative!"); endif;

if (num% mod 2) = 1 then

 Message("It was odd!");

else

 Message("It was even!");

endif;

Halt;

The if statement is used in two ways; when used without an else a single section of code is executed conditionally.

When used with an else, one of two sections of code is executed. It is considered good practice to keep flow of

control statements on separate lines, but the script syntax does not require this as demonstrated with the first if

statement of the above example. The Input() function obtains an integer from the user and stores it in the variable

num%. The if statement directs the flow of control to the required place depending on whether the expression

evaluates to ‘true’ or ‘false’. The expression (num% mod 2) is the remainder when num% is divided by 2.

'Infofromdata|Script to report peak data from time view in an information window

'===

'CAMBRIDGE ELECTRONIC DESIGN LIMITED, TECHNICAL CENTRE, CAMBRIDGE ROAD, CAMBRIDGE, CB24 6AZ

'===

'Copyright © Cambridge Electronic Design, Nov. 2020.

'Author:	LS.

'v1 last modified : 12/11/2020

'SOFTWARE: This script was developed using Signal v7.05. It has been tested to work with Signal v7.

'HEALTH WARNING:

'The script is a -work in progress- and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'INSTRUCTIONS:

' TOOLBAR:

' Quit - Halts script but does not halt recording

' New - Creates new data file based on current sampling configuration

' Dialog appears to set parameters for cursor 0 peak find

' Start/Stop - Starts or stops the recording. Used to set flags for idle function

var DataVH%;

var peak0;

var peakprev;

var chan%;

var thresh;

var InfoVH%;

var Framecheck%;

var LastFrame%;

var stopflag%;

var Peak0$:=Print$("Current peak = ");

var peakprev$:=Print$("Previous peak = ");

var length, width;

'Generated toolbar code

Infocallout(); 'Try it out

Halt;

Func Infocallout()

ToolbarClear(); 'Remove any old buttons

ToolbarSet(0, "", Idle%); ' Idle routine

ToolbarSet(1, "Quit", Quit%); 'Link to function

ToolbarSet(2, "New", New%); 'Link to function

ToolbarSet(3, "Start", StartStop%); 'Link to function

ToolbarEnable(3, 0);

return Toolbar("Your prompt", 1023);

end;

Func Idle%() 'Button 0 routine

if stopflag% = 1 then

 view(datavh%);

 Framecheck%:=FrameCount();

 if Framecheck% > LastFrame% then

 Cursor(0, 0);

 LastFrame%:=Framecheck%;

 endif;

 view(datavh%);

 docase

 case samplestatus() = 2 then

 Measure%();

 case samplestatus() = -1 then

 StartStop%();

 endcase

' view(datavh%);

' Framecheck%:=FrameCount();

' if Framecheck% > LastFrame% then

' peakprev:=peak0;

' peakprev$:=Print$("Previous peak = %f", peakprev);

' LastFrame%:=Framecheck%;

' updateinfo%();

' endif

endif;

return 1; 'This leaves toolbar active

end;

Func Quit%() 'Button 1 routine

'Message("Halting script");

halt;

return 0; 'This stops the toolbar

end;

Func New%() 'Button 2 routine

var ok%,dummy0%;

DataVH%:=FileNew(0,1);

if DataVH% > 0 then			'If file opened successfully

	FrontView(DataVH%);		'Make sure data is current view

 Window(0,0,100,100);	'Maximise file

 length:=SamplePoints()/SampleRate();

	XRange(MinTime(),length);	'Scale X-axis

else

	Message("Failed to create new data file\nCheck 1401 is connected and retry");

endif;

InfoVH%:=InfoNew();

if InfoVH% > 0 then			'If file opened successfully

 view(infovh%);

 Window(66, 4, 100, 29);	'move it

 InfoSettings(Peak0$+"\n"+peakprev$);

else

	Message("Failed to create info window");

endif;

view(datavh%);

DlgCreate("Peak settings"); ' Start new dialog

DlgLabel(1,"Choose peak settings");

DlgChan(2,"Channel for peak search",1);

DlgReal(3,"Minimum amplitute of peak (V)",0.000000,4.995000);

DlgReal(4,"Max width of peak (ms)",0,1000);

ok% := DlgShow(dummy0%,chan%,thresh,width); 'ok% is 0 if user cancels

width:=width/1000;

CursorVisible(0, 1);

CursorActive(0, 4, chan%, 0, length, "", thresh, width);

ToolbarEnable(2, 0);

ToolbarEnable(3, 1);

return 1; 'This leaves toolbar active

end;

Func StartStop%() 'Button 3 routine

view(Datavh%);

docase

case stopflag% = 0 then

 stopflag%:=1;

 SampleStart();

 ToolbarSet(3, "Stop", Startstop%);

case stopflag% = 1 then

 stopflag%:=0;

 SampleStop();

 ToolbarSet(3, "Start", Startstop%);

 ToolbarEnable(2, 1);

 ToolbarEnable(3, 0);

endcase

return 1; 'This leaves toolbar active

end;

Func Measure%()

view(datavh%);

Var CS%;

CS%:= CursorSearch(0);

If CS% > 0 then

 peakprev:=peak0;

 peakprev$:=Print$("Previous peak = %f", peakprev);

 Peak0:=ChanValue(chan%, cursor(0));

 Peak0$:=Print$("Current peak = %f", peak0);

 updateinfo%();

endif

return 1;

end;

Func updateinfo%()

view(infovh%);

InfoSettings(Peak0$+"\n"+peakprev$);

return 1;

end;

Infofromdata.sgs
To download this file, right click and select Save...

9

If you need more than two alternative branches, the docase statement is usually more compact than nesting many

if statements. The docase...endcase keywords enclose a list of case statements forming a multi-way branch:

'case.s2s

var i%,m$;

i% := ViewKind(); 'get type of the current view

docase

 case i% = 0 then m$:= "time";

 case i% = 1 then m$:= "text";

 case i% = 2 then m$:= "output sequence";

 case i% = 3 then m$:= "script";

 case i% = 4 then m$:= "result";

 case i% = 8 then m$:= "external text";

 case i% = 9 then m$:= "external binary";

 case i% = 10 then m$:= "Spike2/Signal";

 case i% = 12 then m$:= "XY view";

 else m$:= "something else...";

endcase;

message("Current window is of type "+m$);

The above example displays the type of a file handle. Each case statement is scanned until a match (non-zero) is

found, or if no match is found the flow passes to the else statement. If the else is omitted, control passes to the

statement after the endcase if no case expression is non-zero. Only the first non-zero case is executed (or the else if

no case is non-zero). The ViewKind() script function obtains the type of the current view as an integer and passes it

to the variable i%. The returned integers 0 to 12 indicate the type of view as seen in the above example.

Looping statements direct the flow of control by performing a sequence of statements and looping back to the

beginning once the end is reached. The three looping statements each control the flow in a unique way. First up is
repeat ... until:

'Example: Mean1

var n, mean, total;

var count% := 0;

repeat

 n := Input("Please input a value", 0.0);

 if n <> -999 then

 total := total + n;

 count% := count% + 1;

 endif;

until n = -999;

if count% > 0 then

 mean := total / count%;

 PrintLog("Mean is %f\n", mean);

else

 PrintLog("No numbers entered...\n");

endif;

Halt;

When this example script runs, it prompts you to enter real numbers until you enter -999. On detecting -999 the

script calculates the mean of the numbers. The total variable holds the sum of the entered numbers; count% holds

how many numbers have been entered. Dividing total by count% forms the mean.

The PrintLog() script function has been used in our examples before, however in the above you will notice the extra

‘flag’ %f. The %f means ‘print the value of a real variable here’. It is known as a format specifier: other format

specifiers begin with % and include %d (‘print the value of an integer variable here’) and %s (‘print the value of a string

variable here’). The variables to print are listed as further arguments to the PrintLog() function. In the above

example, ‘mean’ is the variable to be printed. The \n after printing the mean in the PrintLog() statement is a new-

line character. A similar printing code is \t, which tells the script to print a tab character.

10

Next, we have a similar example using while...wend:

'Example: Mean2

var n, mean, total;

var count% := 0;

n := 0.0;

while n <> -999 do

 n := Input("Please input a value", 0.0);

 if n <> -999 then

 total := total + n;

 count% := count% + 1;

 endif;

wend;

if count% > 0 then

 mean := total / count%;

 PrintLog("Mean is %f\n", mean);

endif;

Halt;

Note that the value of n must be set to 0.0 initially to get into the loop. If n were initially set to -999 the loop would

never be executed. In contrast the repeat…until example the loop is always executed at least once.

Finally, an example using for...next:

'Example: Mean3

var n, mean, total;

var count%;

for count% := 1 to 4 do

 n := Input("Please input a value", 0.0);

total := total + n;

next;

mean := total / 4;

PrintLog("Mean is %f\n", mean);

Halt;

The for...next statement simply controls the flow by stating for each of the integers from start to end the script will

perform the code between for and next. This time we loop around the Input() statement four times as count%

takes a value from 1 to 4.

Back to contents

Recent Questions – Is it possible to add visible labels to my data after recording?

By using TextMarks we can either use the State drawing mode or the Vertical markers function to act as labels.

TextMarks hold marker information alongside user-defined text at a specific time stamp, and this text may be

displayed on screen (below).

To create a TextMark channel specifically for labelling after sampling, add a new memory channel by going to the

Analysis menu > Memory Buffer > Create new buffer and selecting TextMark as the buffer type. Use the Import

function to create TextMarks from existing Events or press OK to create a new blank buffer. The Analysis menu >

Memory Buffer > Add items is used to add new TextMarks. Note that memory buffers are stored in memory and will

be lost on closing the data file unless saved to disk with the Analysis menu > Memory Buffer > Write to disk dialog.

Alter the drawing mode to State by right clicking the channel and

selecting Drawing mode. Choose the State option from the drop-down

menu and Show text with the tick box. Show code will display the

associated marker code alongside the text.

11

Access the Vertical markers dialog with the View menu > Vertical markers

option. From this dialog select the Draw vertical markers option and then

Display Text. Adjust the Text Direction, placement, and set the font as

desired. If Set colour... is enabled, the colour of the vertical markers is

dependent on the marker code originally chosen. The marker code may be

altered with the Analysis menu > Set Marker codes; alternatively, the colour

for all markers using the code may be changed with the colour palette

accessed from the toolbar.

Back to contents

CED User forums

Try the CED Forums bulletin board for software and hardware support.

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186
Fax: (01223) 420488

Email: info@ced.co.uk
International Tel: [44] 1223 420186
International Fax: [44] 1223 420488
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2020 Cambridge Electronic Design Ltd, All rights reserved.

11

http://www.ced.co.uk/phpBB3/index.php

