

eNEWSLETTER
#10

March 2021

Welcome

Thank you for downloading our March newsletter. The days are gradually getting

longer in the UK with Spring seemingly on the horizon. In this newsletter we

answer more user questions, continue getting started with spike sorting in

Spike2, discuss leak subtraction analysis in Signal, and continue our Scripters

corner for beginner script writers.

Updates 10.09a, 9.13 and 8.21 for Spike2 were all recently released. Update 7.06

is finishing testing and should be released within the next week. Keep a look out

for our update notification or sign up via our website if you have not already.

Our first online training event of 2021 is now over halfway through with only a

few more sessions to go. We have received some excellent responses and

encouragement and hope you have found the sessions helpful so far. If you have

not been able to catch them all, the sessions have been recorded with the videos

made available on our website.

Training

Our free 2021 online training sessions began on the 2nd February for Spike2 and

4th February for Signal. We planned 8 hourly sessions for each software package

spread out over 8 weeks. The aim of these sessions is to share top tips and tricks

on varying subjects related to Spike2 and Signal acquisition and analysis. Visit our

website for full details and recordings of previous sessions; email us at

Marjorie@ced.co.uk to book your place.

Due to the ongoing COVID-19 pandemic, all in-person training events have been

put on hold. We do however offer remote training sessions by

Skype/Zoom/Teams either one-to-one or with groups.

Join us and learn how to make the best use of Spike2 and Signal to save hours of

repetitive analysis. Our remote sessions are free to arrange and are suitable for

both existing and prospective users of our data acquisition and analysis systems.

If you would like to schedule a session, please get in touch: Marjorie@ced.co.uk.

If you see these buttons in our newsletters, it means a file or script relating to

the section is available to download:

Contents

Welcome

Training

Latest software

Here to help

Script Spotlight

• Seconds()

• Getting started with

spike sorting

• Script – Hum remove

• Leak subtraction

analysis

• Script – Info Window

Create

Scripters corner

• Debugging

Recent questions

• How many software

licences do I need?

Contact Us

http://ced.co.uk/upgrades/subscribeenews
http://ced.co.uk/news/trainingtour
http://ced.co.uk/news/trainingtour
http://ced.co.uk/news/trainingtour

Script
This button signifies a script file is available to download.

Data
This button signifies a data file is available to download.

XY | Result | Other
This button signifies an XY, Result, or other file is available to download.

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.09a 02/2021 Version 7.05a 02/2020
Version 9.13 02/2021 Version 6.05b 10/2019
Version 8.21 02/2021 Version 5.12a 02/2018
Demo 02/2021 Demo 02/2020

Back to contents

Here to help

We know access to your labs has been erratic for the past year, and with the current lockdown measures that is

unlikely to change until this summer. However, CED will still do all in our power to support you for increased home

working. Should you require any help or wish to discuss your system, email us at info@ced.co.uk and we can arrange

for a video call via Skype/Zoom/Teams.

We also have tutorial videos for both Spike2 and Signal available on our website for you to peruse at your leisure.

There are new videos and updates in the pipeline, however if you have a particular topic you think could benefit from

a tutorial video please let us know. All of these videos are also available through our youtube channels: Spike2 / Signal.

Try the CED Forums bulletin board for further software and hardware support. Ask your questions and receive

valuable input from our super users.

Back to contents

Script Spotlight – Seconds()

Many experiments consist of several stages; for example, you may record baseline activity for a period before

providing a stimulus and then record the response over time. It is simple to build timers into your scripts to keep

yourself informed.

The Seconds() script command can be used for time measurements, as well as setting a timer relative to the system

clock. The command with no arguments returns the current time in seconds (the time is zero when Spike2 starts

sampling). With one argument, Seconds(set) will set the timer to the defined time. Most script-built timers will use

an idle function to keep track of the current time with Seconds() along with flow of control statements (if...endif,

while...wend, etc.) to direct the script based on the current time.

The attached script Example dialog timer self-destruct.s2s creates a dialog showing a 5 second countdown timer

which will automatically close once the timer reaches 0. This is more intricate than usual scripts but demonstrates the

versatility of the script language and may prove useful for your own scripts.

 Back to contents

http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/signaldemo
http://ced.co.uk/tutorials/spike2videos
http://ced.co.uk/tutorials/signalvideos
https://www.youtube.com/user/Spike2VideoTutorials
https://www.youtube.com/user/Signalvideotutorials
http://www.ced.co.uk/phpBB3/index.php

'Example 'Wait' dialog which closes after a fixed time unless cancelled.

Var Time:=5; 'Time to wait
Var Msg$; 'Countdown timer message
Var Pos%; 'DlgText dilog index
Var LastT; 'Last time recorded by script

GoDlg%(); 'Jump to dialog function

Func GoDlg%() 'Main function
Var Dummy$, ok%;

If Time > 0 then
 LastT:=Time*-1;
 Seconds(Time*-1); 'Set the timer to negative time

 Msg$:=Print$("Time = %.1f s", Seconds()); 'Initial message

 DlgCreate(""); 'Create a new dialog. No label
 DlgAllow(1023, Timer%, Change%); 'allow freedom and use idle and change functons
 DlgLabel(1, "Stop countdown early?"); 'Uneditable text label
 Pos%:=DlgText(Msg$, 0, 2); 'Updateable text field. Pos% is the call back index
 DlgButton(0, ""); 'Hide the cancel button #0
 DlgButton(1, "Yes"); 'Change OK for YES for button #1
 Ok%:=DlgShow(Dummy$);

 If ok% =1 then 'if 'yes' to cancel is pressed
 Seconds(0); 'timeout
 endif

endif

return 1; 'This leaves toolbar active
end;

Func Timer%(); 'Idle routine to update message test and check for time out
Var CurrentT;
'yield(0, 1023);

'ToolbarText(Msg$); 'Put countdown on toolbar too.

CurrentT:=Seconds();

If CurrentT >= 0.0 then
 return 0 'If finished then close dialog
else
 if CurrentT > LastT + 0.1 then
 Msg$:=Print$("Time = %.1f s", Seconds()); 'Updated text
 LastT := CurrentT;
 endif
endif

Change%(Pos%); 'To update the dialog text

return 1
end

Func Change%(Item%);
DlgValue$(Pos%, Msg$); 'Update the dialog text
Return 1
end

Example dialog timer self-destruct.s2s
To download, right click and select Save...

3

This is our second feature covering spike sorting. In our last issue we introduced the topic, discussed selecting the

template area, and covered setting the trigger levels. This time we will focus on off-line template formation and its

dialog.

To begin extracting WaveMark data from waveform channels, right-click your waveform channel and select New

WaveMark or navigate to the Analysis menu > New WaveMark. The file Spike data as Waveform.smr is included with

your Spike2 installation (usually located in C:\Users\User\Documents\Spike10\Data) and can be used to experiment

with.

Before forming templates, ensure you are happy with your template area and trigger levels. The program scans the

data in the channel set by the channel drop-down menu and displays triggered and non-triggered events, as if the

data were being sampled. Click the play button to start replay, then click the estimate trigger button (maybe

more than once) to get triggering started. Adjust the upper trigger level until you see both small and larger spikes

triggering.

With the off-line template formation window open, cursor 0 is shown in the time view. This cursor marks the position

of the currently displayed spike. When template matching is paused the cursor may be dragged to a new position

to trigger a search for a trigger condition. Ctrl+J moves Cursor 0 to the start of the time range and starts a search for a

trigger condition. If you drag cursor 0 in the associated time view, this triggers a spike search from the trigger position

to display a new spike in the template formation window. You can use this feature to quickly search through your

data, picking out spikes of interest and ensuring your triggering parameters are correctly finding your spikes.

Template start

Drag axis
to rescale

Drag axis
to shift

Status bar

Toolbar
buttons

Template end

Template count

Template

Unused
template

Trigger

Non-triggered
waveform

Triggered waveform

Play controls

Waveform
channel

How do I get started with Spike sorting?

4

Hints and tips

- Unticking Make templates allows you to cycle through triggered spikes without templates being made.

- Using the button to move forward spikes in turn, you can check your current parameters are working.

- Right click the trigger cursors to Link time view cursors, allowing you to view the triggers as horizontal cursors

on your data. These can then be dragged and set in the time view. The right-click menu also lets you fetch

triggers or move them away.

- Use the button or press the Home key to guess suitable trigger levels.

- The button (Ctrl+K) will track the current spike in the template matching window on your time view,

keeping cursor 0 centred.

- If needed, use the time range button to set a specific time range to process. This is automatically set to

the full time range when the window is opened.

- Full details of the dialog’s controls are found in the software on-line help (F1 – Spike Sorting > Spike shape

sorting dialogs > Menus in spike shape sorting dialogs).

Template matching

When satisfied with your triggering parameters, you can begin template matching. Make sure that Make templates

and Circular replay are checked and click the clear all templates button for a clean start. Hit the play button to

begin. Template searching and matching will begin from the current position of cursor 0 to maximum time. With

Circular replay ticked (Ctrl+Q), template searching is performed on a continuous loop from start time to end time,

wrapping back around. To control the speed of template matching, use the drop-down menu underneath the play

controls (note that ‘Fast’ will process templates as fast as possible).

Spike2 creates templates automatically by searching for triggered spikes and following the rules set in the template

parameters dialog. We will cover this dialog in detail in a further issue, but for now know that it is accessed through

the button, Ctrl+Enter, or the Templates menu > Parameters. Triggered spikes are compared first with confirmed

templates. If none match, they are compared with the provisional templates. If they match nothing, they form a new

provisional template.

Provisional templates are triggered spike shapes with the potential of becoming a confirmed template should enough

similar triggered spikes be found. They are not shown in the template area of the dialog. When a provisional

template matches a new spike and this causes the template spike count to reach the Number of similar spikes for a

new template set in the template parameters, it becomes a confirmed template. If this matches a current confirmed

template it is merged with that confirmed template. Otherwise, a new confirmed template is created and displayed

in the template area.

When a spike matches any template, it modifies the mean template shape and width (unless the template is locked).

If the spike matches more than one template it is added to the one with the smallest error between the spike and the

mean template shape.

As spikes are processed, the vertical bar (template count) on the right of the data display area indicates the number

of provisional templates that are being considered in grey and the number of confirmed templates in black. If your

parameters are causing many provisional templates to be generated, the bar increases whilst changing to red,

indicating a problem with your parameters. The first 20 confirmed templates appear in the template area below the

data display.

5

Unused template spaces appear as grey. If more templates

are generated than currently on display, drag the bottom

or bottom right corner of the dialog to resize. Click the

marker code to edit.

Once you are satisfied with your templates, click the New

Channel... button to open a dialog in which you can select

the channel to write to and the new data type.

Back to contents

Scripts: Spike2

Sometimes we are unable to fully shield our recordings from electrical interference. A typical source of interference is

mains power, and ideally this interference should be removed at the source by identifying and eliminating earth

loops, using Faraday cages, and improving shielding. However, in many cases there remains a signal that is linked to

the mains frequency (50 or 60 Hz, depending on where you are in the world). It is possible to use digital filtering

techniques to eliminate the 50 or 60 Hz bands. However, mains-related interference is never pure 50/60 Hz cycles;

there are variable components at higher harmonics of the mains frequency. A notch filter inevitably distorts the

signal and does nothing to remove the higher harmonics in the data.

Our script writers have created two scripts to help: HumRemove.s2s and HumRemExpress.s2s. These scripts are

designed to improve the signal-to-noise ratio of electrophysiological recordings by removing the mains-related

interference. This is done not by filtering, but by subtracting an estimate of the mains interference from the raw data

and storing the results in a new channel.

The advantage of this method is that by using markers at the onset of each hum cycle, we generate a triggered

average signal. Averaging over many hum cycles results in an average waveform that is dominated by the signal

component, correlated with the mains frequency (i.e. the unwanted interference including any harmonics). Signals

that are not correlated to the mains cycle are "averaged out". The original signal is then cleaned up by subtracting

this “average interference" waveform from each individual mains cycle.

Both scripts can be downloaded from our website with full details of their workings, including instructions on their

use. The HumRemExpress.s2s script is a streamlined hum removal script for use when you have recorded a reliable

hum marker event channel (see requirements). If you need to derive a hum marker from a waveform channel that

contains hum then you should use the original HumRemove.s2s script.

Requirements for running:

- Both scripts run on Spike2 version 7.20 or later.

- They will process one or more waveform or RealWave channels to remove mains-frequency related

interference. They can also remove mains-like pick-up of frequencies other than 50/60Hz, for example, from

a motor.

- Channels should be sampled at least 10 times faster (500/600Hz) than the hum frequency; typically, they will

be sampled more than 100 times faster (5/6kHz) than the hum frequency.

- Titles of channels to be cleaned must be unique and, in the case of 32- bit .smr files, must be no more than 6

characters long.

Event count Marker code Change
width

Erase

Template limit
(green)

Lock
template

http://ced.co.uk/downloads/scriptspkedit?zoom_highlight=%22hum+remove%22
http://ced.co.uk/downloads/scriptspkedit?zoom_highlight=%22hum+remove%22

6

- The scripts require a channel of events that mark the hum cycles, or a waveform channel from which we can

deduce where the mains cycles occur (HumRemove.s2s only). This waveform could be a recording from a

piece of unshielded wire or one of your data channels that contains a significant hum-related component.

The best solution is to use a circuit to convert the mains to TTL pulses, one per cycle. This is much more economical in

terms of data storage than saving an additional waveform channel. The CED 4001-16 Mains Pulser box will do this for

you – see our website for details. If you use a CED mains pulser box or similar device to create the hum cycle marker

then you can process your data more conveniently using the HumRemoveExpress.s2s script.

In the above example, the event channel (2) at the bottom holds mains cycle markers, channel 10 has the raw data

and channel m4 contains data with the mains related interference reduced by subtracting an average of the original

waveform with respect to the cycle markers.

Back to contents

Leak subtraction is a particular analysis used by voltage clamp researchers; it will not be available unless clamping

support has been enabled in the Clamp tab of the Edit menu > Edit preferences dialog. Within Signal, this analysis

creates a multi-frame memory view by carrying out a leak subtraction analysis on the source data.

The leak subtraction method we use is based on employing a small stimulus that does not cause voltage activated ion

channels in the cell membrane to open. The resulting current flow through the membrane, made up from resistive

and capacitive components, is then measured. This gives us a current waveform representing the resistive and

capacitive response of the cell to the low amplitude stimulus. This response is assumed to be proportional to the size

of the stimulus pulse. The leak measurement is then scaled by the stimulus amplitude used in following frames to

generate the leakage currents that will be generated by these stimuli. This scaled leak current is then subtracted from

the recorded traces to leave only the voltage activated ion-channel effects.

Leak subtraction uses two channels of your data; the stimulus channel which is used to measure the amplitude of the

stimulus pulse so that the leak can be scaled (but is not modified by the analysis) and the response channel which is

the only channel modified by the leak subtraction process. All other channels are ignored and copied into the

memory view unchanged.

To access the leak subtraction, navigate to the Analysis menu > New memory view > Leak subtraction. The example

data file TEST.cfs included with your Signal installation (usually located in C:\Users\User\Documents\Signal7\data)

may be used to try the method out.

How does the leak subtraction work in Signal and

how do I access it?

7

Fields of the settings dialog will alter depending on the leak subtract method chooses. Common fields are:

• Response channel – channel of your recorded response signal.

• Stimulus channel – channel of your recorded stimulus signal

• Baseline time – time point during baseline, pre-stimulus.

• Pulse time – time point during pulse, usually mid-pulse.

• Measurement width – a time span to form averages of the baseline

and pulse to even out noise. Select a width that spans only the

baseline/pulse from your chosen point in the above fields (i.e., the

width from your baseline time point does not over-shoot into your

pulse and vice versa).

The baseline and pulse times are used to measure the stimulus

amplitude from the relevant channel; the measurements are averaged

over the Measurement width (using the time range from time-width/2

to time+width/2).

• Baseline correction – removes the DC offset from the corrected data so that at the baseline time of the

response level will be unchanged.

Leak subtract methods:

Basic – measurement is generated from a fixed range of frames. Frames are set with the First frame for leak and Last

frame for leak items. All frames processed use this single leak measurement. Frames contributing to the leak data are

automatically skipped during processing.

P/N – measurements are extracted only from frames being processed. The first n frames processed make the leak

data, the next m frames are processed using this leak data. The next n frames make a new leak data set and the

following m frames are processed using the new leak data. This cycle continues throughout the frames being

processed. The values for n and m are entered in the settings dialog using the Form from first and Subtract from next

fields respectively.

States – leak data is assembled from all frames within the file with a given state, with the state number entered in

the settings dialog. All the frames processed use this set of leak data, frames contributing to the leak data are

automatically skipped.

These three modes are very similar, the only real difference being how frames used to generate the leak trace are

selected. The Count excluded frames field is most relevant to the P/N method. With this enabled, frames which are

excluded through tagging are still counted as part of the frames to use. Otherwise, the program will continue to

search beyond your excluded frames to use the number of frames specified in either the Form from first or the

Subtract from next fields. If the data was acquired using a fixed number of frames for forming the leak this option

should be disabled.

Click New to create a new memory view and open the Process dialog. Select your frames to process and click Process

when ready.

8

Hints and tips

- If possible, record several low amplitude stimulus frames to be averaged together to minimise the effect of

noise.

- The times and duration of the stimulus pulse(s) should be the same in all frames. If the pulse times in the

averaged low-stimulus data differ from the data to be modified, then the subtraction of the scaled low

amplitude response will not work correctly. This leak subtraction method is not suitable for protocols using

stimuli that start at varying times or varying duration stimuli.

- The stimuli should be simple square pulses. The stimulus amplitude is measured by averaging over a specified

time range, which will not work correctly if the stimulus is not held at this level. This method is not suitable

for protocols using arbitrary waveform stimuli. If using ramps and sine waves you would have to make sure

that the measured amplitudes gave an accurate estimation of the relative scale of the stimuli.

- There should only be two stimulus levels per frame: the baseline/holding potential and the stimulus

potential. Measuring the stimulus amplitude and scaling the low amplitude response will fail if scaled by two

different values at once. This restriction presents the most difficulty as it makes it problematic to use leak

subtraction with paired pulse protocols. To use this method with multiple pulses of different amplitudes you

must ensure the amplitude of the pulse measured is the one giving the response you are interested in. You

should also consider what part of your data trace you feel gives the most accurate representation of the

baseline.

Back to contents

Raw data Leak subtraction

9

Scripts: Signal

The information window is a specialised type of view used to display times and special information using a large font

for extra visibility. Information windows are attached to a time, memory or XY view. When saved to disk these views

will also save the information needed to re-create any associated information windows when the file is re-opened.

You can create an information window interactively with the View menu > New Info window command or from a

script with the InfoNew(mode%) function, with other script functions available to manipulate information windows.

The display content is set by a text string which includes special fields replaced by other information (for example, the

current frame number).

Information windows may also display an image file instead of the standard background and either the area

containing the buttons, or the window title area (or both) can be hidden if desired. These and other options are

available via a menu generated when you right-click on the information window.

We have produced the example script InfoWindowCreate.sgs to

quickly create an info window from an open view. We hope

these functions will prove useful to adapt and include with your

own scripts.

Upon launching the script, you will be asked to select the source

(if more than one is open) from which an info window is created

displaying all the available options for that source type. The

script makes assumption of channel numbers and points; the

string used to create the content is accessed by navigating to

Settings at the top of the window. The script text includes

explanations for special fields that can be changed.

The image Test Card.jpg (above with the script) is displayed in the background with transparency applied. This

image can easily be replaced with an image of your choosing; save the image of your choice to the same folder

location as the script file, then replace the filename within the script text where prompted.

The script language used should be self-explanatory, however details of any commands you are unsure of can be

looked up in the software help by clicking on the script command and pressing F1.

Back to contents

Scripters Corner – Debugging

In our last newsletter we discussed user-defined Functions and Procedures. In this issue we will begin to delve further

into the built-in script functions, and cover debugging your own scripts.

Script editor controls

This drop down allows you to quickly jump to one of the Func or Procs in your script.

Script compiler – checks the syntax of the script and, if no errors are found, it creates the compiled version

ready to run. Only the first error found is highlighted, and you will need to check again once you have

corrected your syntax.

Run script – if the script has not been compiled it is compiled first. If no errors are found, Spike2 runs the

compiled version, starting from the beginning. Remember that user-defined functions will only be run at the

point they are ‘called’ in the script.

'InfowWindowCreate.sgs|Create info windows from data windows

'Copyright © Cambridge Electronic Design. 2021
'Author: SG.
'last modified: Mar 2021 LS.

'SOFTWARE REQUIRED:
'Tested using Signal version 7.05.

'HEALTH WARNING:
'The script is a <work in progress> and is offered without guarantees.
'Ensure you test this script to ensure it meets your requirements.

'OVERVIEW
'This script quickly generates an info window from the desired view, including all
'options available from the info settings.

'DETAILS
'This script is to be used as an example to generate your own info windows. It makes
'assumptions of channel numbers and x/y point numbers. You will need to edit these to
'your correct channels or points needed from the info settings.

'--
'Edit the name in "" to the name of your image including extension
'Ensure the image is saved to the same location as this script
'For no image, replace with entire line with: var Img$;
Var Img$:=View(app(3)).FileName$(-1)+"Test Card.jpg";
'--

var data%;

View(App(3)).WindowVisible(0);
viewhandles();
InfoWnd%();
View(App(3)).WindowVisible(1);

func viewhandles();
var vhlist%[100];
var i%;
var vhtitle$[100];
var ok%;

ViewList(vhlist%[], 4113);
i%:=vhlist%[0];

if i% < 1 then
 Message("No open windows found, halting script");
 halt;
endif;

if i% = 1 then
 data%:=vhlist%[i%];
 return 1;
endif;

resize vhlist%[i%+1];
resize vhtitle$[i%+1];
vhtitle$[0]:="nil";

for i%:=1 to vhlist%[0] do
 vhtitle$[i%]:=view(vhlist%[i%]).WindowTitle$();
next;

DlgCreate("Choose window to create info window from");
DlgList(1, "Choose window", vhtitle$[]);
DlgAllow(1023);
ok%:=DlgShow(i%);
if i% = 0 or ok% = 0 then
 Message("No window chosen, halting script");
 halt;
endif
data%:=vhlist%[i%];

return 1;
end;

Func InfoWnd%(); 'Function
Var info%;
Var Text$;
Var Err%;
Var j;
Var V%;

view(data%);

'Info%:=InfoOpen(0, 1, "TEST", 1);
Info%:=InfoNew("Test", 0); 'Create new info window

If Info% <= 0 then
 Message("%s", Error$(Info%));
endif

View(Info%);
Window(50, 0, 80, 90);
InfoImage(Img$);
InfoImage(0, 0, 20, 20, 60, 60); 'Resize image

repeat
 InfoImage(0, j, 20, 20, 60, 60); 'apply transparency
 J+=0.01;
 Yield(0.01);
Until J >= 1;

Text$+=("Local time: %l\n");
Text$+=("Timer: %t\n");
Text$+=("Current frame: %f\n");
Text$+=("Current state: %s\n");
Text$+=("Total frames: %m\n");

if ViewKind(data%) = 4 then
 Text$+=("# of processed sweeps: %w\n");
endif

'--
'Edit the channel # or point value # as needed

if ViewKind(data%) = 12 then
 Text$+=("x coordinate value: %c1px1\n"); 'c1 = channel #1; px1 = x point value 1;
 Text$+=("y coordinate value: %c1py1\n"); 'c1 = channel #1; py1 = y point value 1;
 Text$+=("Recent x value: %rx1\n"); '1 = channel #
 Text$+=("Recent y value: %ry1\n"); '1 = channel #
 Text$+=("Penultimate x value: %px1\n"); '1 = channel #
 Text$+=("Penultimate y value: %py1\n"); '1 = channel #
 Text$+=("Difference of last two x values: %dx1\n"); '1 = channel #
 Text$+=("Difference of last two y values: %dy1\n"); '1 = channel #
endif
'--

InfoSettings(Text$, 0);
InfoImage(0, 0.5, 20, 20, 60, 60);

Return 0
end

InfoWindowCreate.sgs
To download, right click and select Save...

Test card.jpg
To download, right click and select Save...

10

Set/clear break point – will set a break point on the line containing the text caret or clears a break if one is

already set. A break point pauses a running script when it reaches the line containing the break point. They

are also set and cleared by clicking the mouse pointer in the left margin of your script view, or by right

clicking the line and using Toggle break. Break points appear as a red marker in the gutter (margin to the

left of the script). They are integral to debugging and are discussed in more detail later.

Clear all break points – remove all break points from the script. Break points can be set and cleared at any

time, even before your script has been compiled.

Full details of these controls and more are found in the in-software help by pressing F1.

Built-in functions

An example of a typical function is: FileOpen(name$, type% {,mode% {,text$}});

The items within the brackets are the function arguments. In this case, name$ sets the name of the file, type%

determines which type of file it should be (for example a data file or a text file) and mode% determines the state of the

window when opened (for example visible or maximised). Details of required arguments for any built-in function are

in the online help. When editing a script or using the Evaluate window (Ctrl+L), place the text cursor in the function

name and press F1 to display the relevant help page. You can also get a pop-up call tip to appear if you hover the

mouse pointer over a user defined or built-in Proc or Func name.

All built-in script commands return a value. The returned value is used to confirm the action of the function. For

example, FileOpen() will return the view handle of the file or a negative error code if unsuccessful. Hit F1 to open the

in-software help and Search for your script command. Underneath the arguments you will see the Returns line.

Debugging

FileNew(0, 1);

The above syntax is correct and will compile, creating a new data view based on the current sampling configuration

and making it visible. If the above script command succeeds and creates a new data file, the function returns the view

handle of the new data file. However, if no 1401 is connected to the PC then the command will fail and return a

negative error code. Pretending we do not know the cause and we do not see our new data view being created; how

do we work out this command is failing? There are several methods available to us.

We could copy the command into Evaluate window (Ctrl+L) and use Eval... to check what value is returned. However,

that is less useful if we have used variables in place of the arguments as the evaluate window operates outside of the

script, so the variables need to be replaced with actual values. The debugging toolbar provides a better method:

var vh%;

vh% := FileNew(0, 1);

if vh% < 0 then halt endif;

In this example, adding a break point to the line to debug and running the script will pause the script at the break and

open the debugging toolbar:

var vh%;

vh%:=FileNew(0,1);

11

The debugging toolbar will also open if an error occurs whilst running the script (and the option is ticked in your Edit

menu > Edit preferences dialog > General tab). Full details of these controls and more are found in the in-software

help by pressing F1. However, a quick look at the ones most used:

Stop – Stop running the script (Ctrl+Alt+Shift+F5).

Step-in – This steps to the next statement or in the case of a user-defined Proc or a Func, steps into the

function (Ctrl+F5).

Run – Runs the script (Ctrl+Shift+F5) from the current break point to the end of the script or the next break

point if present.

Local variables – Shows local variables for the current user-defined func or proc (F7). If there is no current

routine, the window is empty.

Global variables – Shows global variable values (Ctrl+F7). The first entry in this window lists the script current

view by handle, type, and window name.

By opening the global variables and stepping once from our break point, the variable vh% of our example is updated

and we see a negative error code returned:

Now we know there is a failure in our script we can build in more checks:

var vh%;

vh%:=FileNew(0,1);

if vh% < 0 then

 Message("Open failed, code %d: %s", vh%, Error$(vh%)); 'Alternative 1

 PrintLog("Open failed, code %d: %s", vh%, Error$(vh%)); 'Alternative 2

halt;

endif;

The Message() and PrintLog() commands may be used to report back the negative error code; special character %d is

replaced with the integer from variable vh%. The Error$() script command will print information on a negative error

code; special character %s is replaced with a string, coupled in the example above. The error code -1566 tells us that

the 1401 device driver could not be found, which in other words means the software is not connected to any

hardware (in this case the 1401 was simply not switched on).

Finding the best method to debug your own scripts will come with experience, but most often adding break points to

statements that failed and stepping through to view how your variables are updated is generally the most useful. You

can even add variables of interest to a watch list by right clicking a variable in the local or global variables window

and selecting Add to watch window.

Back to contents

12

Recent Questions – How many licences do I need?

Licences for our software are supplied as a master licence, the first licence purchased by an individual/lab/group, and

additional licences supplied at roughly 1/3rd the price. Master licences and additional licences will share the same

serial number. We do not limit the number of PCs a particular licence can be installed on, providing the machines are

owned/associated with the lab and/or group that purchased the licence. We do however limit the number of

concurrent users of that licence, in that the number of users cannot exceed the number of licences owned.

Therefore, you will need the same number of licences as your concurrent users.

If a 1401 is sampling with the software, that is counted as a licence in use. For example, if a lab owns one licence and

a lab member is sampling data with the 1401, that is the licence currently in use and should not be used elsewhere.

However, the first lab member could sample data in the morning and, once sampling has finished, a different lab

member then analyse the data on a different PC later in the day. This still falls within the terms of our licencing

agreement.

If a lab needed to sample data with the 1401 and be analysing data simultaneously on a different PC, that is counted

as two users and the lab would therefore need both a master licence and additional licence. All additional licensed

copies are expected to be used on the same site and in the same building/laboratory and by people working in the

same group.

Full details and restrictions of additional licences can be found in the software help (F1) Spike2 version # > CED

software licences for Spike2, and Technical support > Licence information for Signal.

Back to contents

Contact Us

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186
Fax: (01223) 420488

Email: info@ced.co.uk
International Tel: [44] 1223 420186
International Fax: [44] 1223 420488
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2021 Cambridge Electronic Design Ltd, All rights reserved.

12

luke
Typewritten Text

