

Welcome

Thank you for downloading our April newsletter. Spike2 version 10.09c and

Signal versions 7.06 and 6.06 were all released this month; please ensure to

update your copy.

Our software engineers have recently been working on importing more third-

party file formats into Spike2 and Signal. A researcher recently requested to

import extensible data format files (XDF), which we have achieved and will soon

be ready for release. We have had further requests for import and export of

NWB (Neurodata Without Borders, an open-source repository of data), as well as

HDF5 (hierarchical data) formats; we would like to hear your thoughts on these

file formats along with any others you would like available for import into

Spike2.

We would also like to hear from you if you are using Lab Streaming Layer (LSL), a

system for centralised collection and viewing of data, and are interested in
seeing its integration with Spike2 via a Talker module.

In a similar vein, our software engineers have been improving the current library

of importers. We would be interested to hear from you about which of the

available file formats you import most often and how they could be improved.

Whilst we endeavour to maintain accurate records of the file formats we

support; developers sometimes alter the structures of files without our

knowledge.

Please send your comments to Marjorie@ced.co.uk along with small snippet of a

data file for testing.

Training

Our first free 2021 online are now complete; however, the full recordings may be

viewed at any time on our website. We have more sessions planned for later in

the year, for which we will share details later.

We also offer remote training sessions by Skype/Zoom/Teams either one-to-one

or with groups. Join us and learn how to make the best use of Spike2 and Signal

to save hours of repetitive analysis. Our sessions are free to arrange and are

suitable for both existing and prospective users of our data acquisition and

analysis systems. If you would like to schedule a session, please get in touch:

Marjorie@ced.co.uk.

If you see these buttons in our newsletters, it means a file or script relating to

the section is available to download:

eNEWSLETTER
#11

April 2021

Contents

Welcome

Training days

Latest software

Here to help

Script Spotlight

• MatlabXXX()

• Getting started with

spike sorting

• Script – ECG artifact

remove

• Memory views

• Script – Pulse train

setup

Scripters corner

• Toolbars

Recent questions

• Decontaminating

equipment after

COVID-19

Contact Us

http://ced.co.uk/downloads/latestsoftware
http://ced.co.uk/tutorials/introduction

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Script
This button signifies a script is available to download.

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Data
This button signifies a Data file is available to download

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

XY | Result | Other
This button signifies an XY, Result or Other file is available to download

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.09c 04/2021 Version 7.06 04/2021
Version 9.13 02/2021 Version 6.06 04/2021
Version 8.21 02/2021 Version 5.12a 02/2018
Demo 04/2021 Demo 04/2021

Back to contents

Here to help

We know access to laboratories has been erratic for the past year, but with the current lockdown measures easing

for some we hope that conditions will continue to improve. We are now able to offer site visits when necessary,

however we will continue to support remotely in the first instance. CED will also continue to do all in our power to

support you for increased home working. Should you require any help or wish to discuss your system, email

Marjorie@ced.co.uk and we can arrange for a video call via Skype/Zoom/Teams.

We also have tutorial videos for both Spike2 and Signal available on our website for you to peruse at your leisure.

There are new videos and updates in the pipeline. If you have a particular topic you think could benefit from a

tutorial video, please let us know. All these videos are also available through our YouTube channels: Spike2 / Signal.

Try the CED Forums bulletin board for further software and hardware support. Ask your questions and receive

valuable input from our super users.

Back to contents

Script Spotlight – MatlabXXX()

Many of our users wish to transfer data from Spike2 or Signal to MATLAB, and vice versa, during experiments. If you

have MATLAB™ installed on your computer, both Spike2 and Signal can interact directly with a copy of MATLAB using

the built-in MatlabXXX() family of script commands which let you start a MATLAB process to use as a computational

engine. These include functions to transfer script variables back and forth between a MATLAB workspace, allowing

you to use MATLAB for additional data processing, before transferring the results back to Spike2 or Signal.

To access the MatlabXXX() script commands, you should select the MATLAB script support option when installing

Spike2 and Signal. An example script to check if the script support is installed and working is included in the Spike2

on-line help topic Script language > Alphabetical script function index > M > MATLAB script support (Signal users can

view this on our website here). The example illustrates use of all the functions and most of the data transfer options.

Full details of the functions may also be found in the same help location.

 Back to contents

http://ced.co.uk/img/Spike10.pdf#page=679&zoom=auto,-74,479
http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/signaldemo
http://ced.co.uk/tutorials/introduction
https://www.youtube.com/c/Spike2VideoTutorialsSignal
https://www.youtube.com/user/Signalvideotutorials
http://www.ced.co.uk/phpBB3/index.php

3

In our last newsletter we covered off-line template creation but did not delve in the rules applied from the template

settings dialog. There are several parameters that control spike template formation and how incoming spikes are

matched to templates. You can modify these parameters in the Template Settings dialog accessed through Ctrl +

Home or from the toolbar button (outlined in red) in the spike shape window:

As described in the previous newsletter, the vertical bar to the right of the data display area indicates the number of

provisional (grey) and confirmed (black) templates. If your choice of settings or template area generates many

provisional templates, the provisional bar turns red, indicating a potential problem. In the case above, the template

area includes more baseline than spike shape; reducing the area (by dragging the black triangles) to the range -1.0 to

1.3 ms would fix this.

A template is stored as a series of data points. Each point has a width

range associated with it that represents the expected error in a

signal that matches the template at that point. Spikes match a

template if more than a certain percentage of the points in a spike

fall within the template. The template settings dialog has four areas

for: creation of new templates, matching incoming spike data to

templates, template modification, and processing the raw waveform

data into spikes.

New template – controls the creation of new templates.

Number of similar spikes for a new template

Sets the number of spikes required to promote a provisional template to a confirmed template. The default of 8 is

usually a good starting point. If set too low, you will generate multiple confirmed templates for similar spikes.

How do I get started with Spike sorting?

4

New template width as percent of amplitude

Determines the initial provisional template width (when we have

only one spike to estimate it). As spikes are added to a template,

the template width changes to represent the amplitude variation

of the spikes and general noise. 30% is a reasonable starting

value but should be increased if you suspect too few templates

are being generated.

No template for shapes rarer than 1 in n spikes

This is roughly the same as saying that you are not interested in

spike classes which occur less often than once every n spikes. It

works by decrementing all the provisional spike counts every n

spikes. If a provisional count reaches 0, that provisional template

is deleted. If you want to keep all spikes as potential templates,

set this to a large number.

Matching a spike to a template – This section determines

how incoming spikes are matched to existing templates.

Unless Maximum amplitude change for match is non-zero, if the

error between a spike and a template exceeds a value calculated

from the template then the spike is rejected before applying the

following rules. This avoids wasting time interpolating spike shapes for data that could never match.

Maximum amplitude change for match %

Scales incoming spikes up or down by up to the value so that the area under the spike matches the area under the

target template before attempting to match. Use this setting if you have spikes that maintain their shape but change

amplitude during recording. As a default this setting is 0.

Minimum percentage of points in template

Sets the percentage of the spike data points that must fit in the template to confirm a match. This means that we do

not consider a template if less than the user-specified percentage of data points lie within the template boundaries

(defined as the mean template plus or minus the width at each point).

Use minimum percentage only when building templates

Specifies that the Minimum percentage... setting is only used when building templates. If this option is checked then

the number of points in the template are ignored and spikes are matched to the template with the smallest error

between the mean template and the spike.

Template maintenance – This section determines how the shape of a template changes over time as more spikes

are added to it.

Template modification mode

Three options are available from the drop-down list:

Add All – add all spikes that match the template, modifying the template accordingly to represent the amplitude

variation of each spike

Auto Fix – 'Lock' the template once a set number of spikes has been added. If you have several similar spikes, using

this mode to lock templates after a small number of spikes can stop a template gradually changing shape and

becoming the same as another template

5

Track – Normally, all spikes contribute equally to the template. With this option, the contribution of each spike to the

template falls by a factor of 1/N as each new spike is added (N is the value entered). This weights the template shape

towards the most recently seen spikes, so you can think of this as tracking the incoming spike shapes. The lower the

N, the more aggressive the tracking; start with a value in the 60 to 100 range. This mode is useful for gradual changes

in spike shapes; with fast changes, it is likely that templates will merge.

Waveform data – This final group of settings controls how the raw waveform data is processed for spike sorting.

Waveform interpolation method

Sets how the spike waveforms are aligned with templates using linear, parabolic, or cubic spline interpolation. For on-

line sorting, linear interpolation should be used as it is fastest.

High-pass filter time constant

If your spike waveforms show baseline drift you can use this to remove slow changes in the baseline. Set the longest

time constant that holds your data to the baseline to minimize spike distortion. This is applied before triggering levels

are assessed.

Remove the DC offset

Subtracts the mean of each spike before matching; can be useful with sudden DC shifts. This is applied after

triggering.

Disable N-trode independent triggers (off-line only) Added in [10.01]

When dealing with Stereotrode or Tetrode data, for triggering purposes all channels are treated independently with

the provision that if two triggers occur within 4 samples of each other, only the first is used. This can lead to highly

overlapped traces due to triggering events being detected on separate traces. By checking this box, new trigger

events that occur within the last captured spike shape are ignored. Events can still overlap, but only by the pre-trigger

time of the spike. This is implemented only for off-line sorting when creating new stereotrode or tetrode channels.

Back to contents

Scripts: Spike2

EMG electrodes often pick up ECG activity in addition to the muscle activity you are trying to record. This is especially

problematic when trying to record the activity of small muscles or muscles located close to the heart, like the

diaphragm. At best, the ECG artifacts can be a minor visual annoyance and at worst, can make responses difficult to

analyse. Filtering EMG recordings often does not help as the frequency bands of ECG and EMG overlap.

However, if the ECG artifact remains stable, it is possible to generate an average ECG artifact and subtract this

average, point-for-point from each individual artifact. Our script writers have recently updated the ECGDelete.s2s

script available from our website which does just that. This script replaces each artifact with the difference between

the artifact and the mean artifact. This "reference noise subtraction" method will generally replace ECG artifacts with

much smaller ones - provided that the artifacts remain consistent in size and shape over the time range analysed. If

the artifacts vary widely in shape and size then the results may not be optimal, instead giving artifacts as bad or

worse than the original.

The script has several features to help cope with inconsistencies in artifact shape and amplitude:

- There is a checkbox option to scale the 'mean artifact' to the same amplitude as each 'target artifact' before

subtraction. This may improve results depending on the situation.

- The script can compensate for longer term changes in the shape of the artifact during a recording by dividing

the time range into a user-defined number of epochs, with a new average artifact generated for each time

range.

http://ced.co.uk/downloads/scriptspkedit?zoom_highlight=ecgdelete#ECGdelete
http://ced.co.uk/downloads/scriptspkedit

6

- You can also analyse multiple time ranges interactively, with or without gaps between them, provided the

data sections do not overlap and are analysed from left to right.

The script operates on the Front view which must be a time view containing the EMG data that you want to remove

artifacts from. To use the script, first close all other time views then run the script.

Use the Mark ECG button to select a waveform channel as the source

and create a trigger channel marking peaks, troughs, or level

crossings of the ECG artifact. Note that artifact removal usually works

best if you use peak or trough detection rather than level crossings.

These triggers will be used to create an average artifact for

subtraction. If the artifact is consistently larger than the EMG of

interest, then you can use one of the EMG channels as the source. If

not, you will need to record an additional channel of ECG for this

purpose. The minimum Interval in the dialog sets the minimum time

that must elapse between consecutive detected triggers.

The script uses a horizontal cursor to aid setting the detection

threshold. Click on Fetch HCsr to add the cursor to the relevant

channel and then drag it slowly down from the top edge of the channel to set the level. The number of triggers

detected in the Range memory channel will adjust to the level that you set interactively. This should make it easy to

set a level that marks the greatest possible proportion of the triggers you want to include. Note that the H cursor

position represents the threshold level in "threshold" modes. In Peak or trough modes, the relevant parameter is the

"level difference" between the horizontal cursor and low edge of the Y-axis. You can make fine adjustments to the

position of the H Cursor by editing the Size / Level item in the dialog.

Next, select the time range to process either by dragging the cursors, pressing the associated buttons in the dialog, or

by clicking the spinner arrows in the dialog time items. Click Add Range to save the current set of triggers to a disk

channel. Mark ECG may be used again to add multiple time ranges each with their own detection criteria. The only

proviso is that new ranges are added from left to right without overlaps. Note that you should use the same

detection mode for all time ranges.

Use Subtract ECG when you are ready to create new data channels

with the mean ECG signals subtracted. In the setup dialog, select the

channel containing the triggers and the waveform channels to clean

up. You can select an individual waveform channel from the drop-

down list or choose multiple channels by choosing Selected from the

list and selecting channel numbers by holding down Ctrl and clicking

on channel numbers in the time view. Duplicate channels cannot be

selected.

Select a time range to analyse and choose whether to analyse the

entire time range in one go or to subdivide the time range into several epochs each with its own local mean artifact.

There is also the checkbox that the scales the mean artifact to the amplitude of each individual artifact before

subtraction.

7

Click OK when ready and a final dialog opens to specify the duration

of the artifact to be subtracted. Do this by dragging the 'Start' and

'End' cursors in the time view relative to a Vertical Marker showing

the trigger point itself. Click Next or Previous buttons in the Artifact

Duration dialog to check adjacent artifacts. Your goal is to choose

the minimum time range that will bracket the entire ECG artifact on

all channels and in all cases. Click OK to generate new channels with

artifacts subtracted. The channel titles will include the channel number of the source data.

In the above example, channel 14 has been used to create the ECG marker channel 17 by marking troughs. These

markers have been used to remove the artefacts from channel 1, with the cleaned data shown in blue (channel 20).

The full help and details of the script can be found within the script itself, downloadable from our website.

Back to contents

http://ced.co.uk/downloads/scriptspkedit?zoom_highlight=ecgdelete#ECGdelete

8

Memory views are separate views created to hold analysed data from your data view. The analysis types available

are: Waveform Average, Auto-Average, Amplitude histogram, Power Spectrum and Leak Subtraction (this last type

was covered in our previous newsletter and is enabled along with clamping). Each of these will perform a particular

type of analysis on your data, with their own settings to apply. Navigate to the Analysis menu > New memory view

and selecting an analysis to begin.

Waveform Average

Averages waveform data channels across multiple frames. Select your desired Channels to average, the Width of the

new average memory view, and optionally apply an Offset.

Auto Average

Averages waveform channels in the same manner as standard waveform average processing, but produces a memory

view with multiple frames, each frame holding a separate average. Memory view frames can be generated from a

pre-set pattern of groups of source frames, or they can be generated according to the source frame state. When

using a pattern of source frames, the groups of frames used can overlap, be adjacent, or can have gaps of unused

data between them.

Amplitude Histogram

Creates a histogram of the amount of time a waveform channel spends within an amplitude range. One channel is

processed in a defined time range and for each data point the waveform level is used to calculate the corresponding

histogram bin. If this bin number exists within the histogram, the bin data is incremented by the sample interval. This

process is repeated for every data point from every frame, the resulting histogram shows the amount of time the

waveform spends at different levels. For example, if your data waveforms were generally at one of two levels then

the amplitude histogram of the data would show two peaks with most likely Gaussian distributions.

Power spectrum

Creates a memory view that holds the power spectrum of a section, or sections, of waveform data. If multiple

sections are processed the result is an averaged power spectrum. The results of the analysis are scaled to RMS power

(where power is amplitude squared), so they can be converted to energy by multiplying by the time over which the

transform was done. Signal uses a Fast Fourier Transform (FFT) to convert the waveform data into a power spectrum.

Leak subtraction

Creates a multi-frame memory view by carrying out a leak subtraction analysis on the source data. A full coverage of

this analysis can be found in our previous newsletter.

Interval histogram

Creates a histogram showing the intervals between markers on one or more channels, either simple markers or real

markers can be analysed. One channel is processed and for each marker item the interval since the previous item is

calculated along with the corresponding histogram bin. If this bin number exists within the histogram the bin data is

incremented. This process is repeated for every marker from every frame that is processed, the resulting histogram

shows the relative frequency of occurrence of different intervals between markers. For example, if your data

generally has marker intervals of 25 milliseconds histogram of the data would show a peak at about this point with

most likely a Gaussian distribution. The analysis normally ignores the first marker in each frame as there is no

previous marker, but you can optionally measure intervals that cross frame boundaries.

What are the memory view types and how do I

use them?

9

In addition to the intended uses of the memory views

described above, the auto average may also perform another

unique function. By entering the full frame width, 1 frame per

average and 1 frame between averages into the settings, it is

possible to create a complete duplicate of your data as a

memory view.

Any virtual channels in your original data will also be

converted to a waveform channel. This provides a unique way

to save virtual channels to disk in the CFS file, instead of being

stored as a calculation in the SGRX resource file, thereby

creating additional waveform channels in your data after

sampling.

For example, the Actions.cfs data in your example data folder

(C:\Users\User\Documents\Signal7\data) contains two

channels for current and voltage. It is possible to calculate the

conductance in a virtual channel by dividing current by the voltage (ch(1)/ch(2)). By using the above method, this

virtual channel is then converted to a waveform channel.

The full details and workings of all memory view types can be found in the software help (F1), Analysis menu > New

Memory View.

Back to contents

10

Scripts: Signal

We have recently created a script for a researcher performing transcranial magnetic stimulation (TMS) studies. The

researcher is using a Magstim Rapid and needed to create pulse trains and theta bursts in Signal of increasing

frequency. Due to the large number of multiple frame states and pulse trains to set up, our script writers developed

the attached script to automate the creation. Whilst this script is designed with the Magstim Rapid in mind, it is

perfectly feasible to adjust the script for use with other TMS stimulators.

The script operates by first asking the user to select the type of pulse trains to create, by ticking the Pulse Train and

Thera bursts options. The starting frequency, end frequency and frequency step size must be then defined for the

script to then calculate the number of states required and begin creating the pulse trains of each frequency. The

following options are available:

- Simple pulse trains of increasing frequency

o Start frequency of pulse trains.

o End frequency of pulse trains.

o Frequency step size, used to calculate the required

number of states.

o Number of stimulations/pulses per train/state.

o Inter-train interval, which is equivalent to the output

length (the experiment therefore must operate on fixed

interval sweep mode).

o Intensity for Magstim Rapid as a % of maximum output.

- Theta bursts of increasing frequency

o Start frequency of theta bursts.

o End frequency of theta bursts.

o Frequency step size, used to calculate the required

number of states.

o Number of theta bursts per train/state

o Intensity for Magstim Rapid as a % of maximum output.

Upon clicking ok, the script will clear the existing sample configuration, enable multiple frame states, and begin

creating the pulse trains based on your chosen parameters:

Each pulse output is labelled with the train’s frequency size and is routed to digital output 0 on the 1401. The

Magstim configuration is also set to trigger from digital output zero with each state set to the chosen stimulation

power %, however you will need to double check the com port for communication is correct. We also recommend

using the Test button to ensure Signal is communicating to the stimulator correctly, with no errors.

'Pulse Train Setup | Script to setup pulse train sequences for Magstim Rapid

'===

'	 CAMBRIDGE ELECTRONIC DESIGN LIMITED

'===

'Copyright © Cambridge Electronic Design. last modified: 27/04/2021

'Author:	SG.

'Last edited by: LS.

'SOFTWARE REQUIRED:

'This script has been created and tested with Signal version 7.

'HEALTH WARNING:

'The script is a <work in progress> and is offered without guarantees.

'Please check carefully that the script generates the results that you expect.

'Report any problems to marjorie@ced.co.uk

'OVERVIEW

'This script allows you to create pulse trains and theta bursts of increasing frequency, and create the

'settings for a Magstim Rapid. The script operates by first asking the user to select the type of pulse

'trains to create, by ticking the Pulse Train and Thera bursts options. The starting frequency, end

'frequency and frequency step size must be then defined for the script to then calculate the number of

'states required and begin creating the pulse trains of each frequency.

Var StartFreq:=3.0;

Var EndFreq:=18.0;

Var FreqStep:=0.2;

Var Stims%:=40;

Var TrainInt:=26.0;

Var Theta%;

Var Train%;

Var TStartFreq:=3;

Var TEndFreq:=7;

Var TFreqStep:=0.2;

Var TotTrainSweep%;

Var TotThetaSweep%;

Var TBursts%:=10;

Var IntensityTrain%:=30;

Var IntensityTheta%:=30;

Setup%();

SetupSequence%();

If train% = 1 then

 SetupTrainPulses%();

endif

If Theta% = 1 then

 SetupThetaPulses%();

endif

Message("Complete");

Func Setup%();

Var ok%;

Train%:=1;

Theta%:=1;

DlgCreate("Setup"); ' Start new dialog

DlgAllow(1023, 0, Change%);

DlgCheck(1, "Pulse Train");

DlgReal(2,"Start Frequency",1.00,50.00, 0, 0, 1.0);

DlgReal(3,"End frequency",1.00,50.00, 0, 0, 1.0);

DlgReal(4,"Frequency step",0.10,0.50, 0, 0, 0.1);

DlgInteger(5, "Number of stimulations", 1, 100, 0, 0, 1);

Dlgreal(6,"Inter-train interval", 10, 50, 0, 0, 0.1);

DlgInteger(7, "Intensity %MO", 0, 100);

DlgCheck(8, "Theta bursts");

DlgReal(9,"Start Frequency",1.00,50.00, 0, 0, 1.0);

DlgReal(10,"End frequency",1.00,50.00, 0, 0, 1.0);

DlgReal(11,"Frequency step",0.10,0.50, 0, 0, 0.1);

DlgInteger(12, "Number of Theta bursts", 1, 10, 0, 0, 1);

DlgInteger(13, "Intensity %MO", 0, 100);

ok% := DlgShow(Train%, StartFreq, EndFreq, FreqStep, Stims%, TrainInt, IntensityTrain%, Theta%, TStartFreq, TEndFreq, TFreqStep, TBursts%, IntensityTheta%); 'ok% is 0 if user cancels

If ok% = 0 then

 Message("User cancelled. Halting");

 Halt;

endif

If train%+Theta% = 0 then

 Message("No valid selection. Halting");

 Halt;

endif

If train%=1 then

TotTrainSweep%:=((EndFreq-StartFreq)/FreqStep)+1;

endif

If Theta%=1 then

TotThetaSweep%:=((TEndFreq-TStartFreq)/ TFreqStep)+1;

endif

Return 1

end

Func Change%(item%);

if item% = 1 or item% = 8 then

 if DlgValue(1) = 1 then

 Dlgenable(1,2,3,4,5,6, 7);

 else

 Dlgenable(0,2,3,4,5,6, 7);

 endif

 If DlgValue(8) = 1 then

 Dlgenable(1, 9, 10, 11, 12, 13);

 else

 Dlgenable(0, 9, 10, 11, 12, 13);

 endif

endif

Return 1

end

Func SetupTrainPulses%();

'Var PulseCt%:=10;

Var Freq:=StartFreq;

Var i%;

For i%:=1 to TotTrainSweep% do

AddTrainPulses%(i%, Stims%, 1.0/Freq);

 Freq+=FreqStep;

next

Return 1

end

Func SetupThetaPulses%();

Var PulseCt%:=TBursts%;

Var TFreq:=TStartFreq;

Var i%;

For i%:=TotTrainSweep%+1 to TotTrainSweep%+TotThetaSweep% do

SampleStateLabel$(i%, Print$("θ %.2fHz", TFreq));

AddThetaPulses%(i%, TBursts%, 1.0/TFreq);

 TFreq+=TFreqStep;

next

Return 1

end

Func SetupSequence%();

Var Err%;

SampleClear();

SampleMode(3); 'Fixed interval

SampleStates(TotTrainSweep%+TotThetaSweep%);

SampleOutmode(1);

SampleOutClock(0.00001);

SampleOutClock(0.001);

SampleDacMask(0);

SampleDigOMask(1);

Err%:=SampleAuxStateNew(1, "Rapid");

If err%> 0 then

 SampleAuxStateParX(Err%, 1, 2); '

 SampleAuxStateParX(Err%, 2, 1+4+128); 'Single pulse mode & Interlock + use without hardware

 SampleAuxStateParX(Err%, 5, 0);

else

 Message("Failed to add Rapid to configuration. Halting");

 Halt;

Endif

Return 1

end

Func AddTrainPulses%(State%, PulseCt%, Freq);

Var Start:=SampleOutClock()*2;

Var Num%;

Var Err%;

Var Bit, ct;

Var Int;

SampleAuxStateValX(1, State%, 1, IntensityTrain%);

Int:=1.0/Freq;

'Int:=int-0.001;

'Int:=Val(Print$("%.2f", 1.0/Int));

SampleFixedInt(State%, TrainInt+15);

SampleOutLength(State%, TrainInt);

Num%:=PulseAdd(State%, -1, 7, "Train", start, 0.001);

Err%:=PulseDataSet(State%, -1, "Train", 1, PulseCt%, (1.0/Int)-0.001);

PulseDataGet(State%, -1, "Train", Bit, Ct, Int);

SampleStateLabel$(State%, Print$("%.2fHz", 1.0/Freq));

Return 1

end

Func AddThetaPulses%(State%, PulseCt%, Freq);

Var Start:=SampleOutClock()*2;

Var Num%;

Var Err%;

Var Bit, ct;

Var Int;

Var j%;

SampleAuxStateValX(1, State%, 1, IntensityTheta%);

Int:=1.0/Freq;

'Int:=int-0.001;

'Int:=Val(Print$("%.2f", 1.0/Int));

SampleFixedInt(State%, TrainInt);

SampleOutLength(State%, TrainInt);

For j%:= 1 to PulseCt% do

Num%:=PulseAdd(State%, -1, 7, Print$("Train%d", j%), start, 0.001);

Err%:=PulseDataSet(State%, -1, Num%, 1, 3, (1.0/50.0)-0.001);

 PulseDataGet(State%, -1, Print$("Train%d", j%), Bit, Ct, Int);

Start:=Start+Freq;

Next

Return 1

end

Pulse Train Setup.sgs
To download, right click and select Save...

11

The user is then free to finalise the sampling configuration for their experiment, check the equipment, and ultimately

begin the experiment much quicker than if they had needed to set up the pulse trains themselves.

Back to contents

Scripters Corner – Toolbars

Toolbars are a convenient way to structure your scripts. They provide a simple way for the user to access multiple

functions in a script and operate by linking a button to a user-defined function. For example, we could supply a

button for opening a data file, additional buttons for performing different types of analysis and a final button to Quit

out of the script. A toolbar like this allows the user to pick and choose which functions to use for any given analysis.

To get started with toolbars use the ToolMake script in your Spike2 or Signal scripts folder (usually

C:\Users\User\Documents\Spike10 or Signal7\Scripts). This script allows you to build toolbars by adding labelled

buttons and linking them to functions in your script. Run ToolMake and follow these steps:

1. Click Add button and then OK (to add button 1). Enter the function name “Quit” and leave the This button

closes toolbar box checked.

2. Click Add button and edit the button number to 3 and click OK. By not using button 2 we create a gap on the

toolbar to provide a visual break between buttons. In the next dialog set the label to "Action1" and the

function name to “DoAction1” and leave the checkbox unchecked as this button does not close the toolbar.

3. Click Test to check that the result is as intended. Click Quit to exit the test. You can edit buttons if you have

made any errors.

4. Click Write and then set the checkboxes to determine what can be done while the toolbar is active. One

would usually set Can swap to other applications, Can move and resize and Can use View menu unless they

have reasons for using the other checkboxes. By allowing more permissions the user has more of a chance of

performing an action that will cause the script to error, and you will inevitably need to write in more error-

proofing to your script.

5. Click Quit to exit Toolmake and view your new script.

Whilst this script will help you quickly generate the code for a toolbar it is still worthwhile understanding how the

script commands operate. The toolbar buttons are created with the ToolbarSet() function. The toolbar itself is

displayed with the Toolbar() function. These commands are combined into a user-defined function to effectively

create the toolbar when called, which in your example is DoToolbar().

ToolbarSet(item%, label$ {,func ff%()})

This script command has two required arguments and one optional (the last one enclosed in { } brackets).

Item% sets the button number 1 to 40, or the idle function if set to 0. Idle functions are incredibly useful user-defined

functions that are repeatedly called while the toolbar is active and the script is not performing any other action. We

will cover more on these in a later issue.

Label$ sets the button label but can also be expanded to link the button to a key and provide a tooltip that appears

when the mouse hovers over the toolbar button. Adding ampersand before a character in the label name links the

button to that key, e.g. “&Quit” links to key Q, “E&xit” links to the x key. Do note that keys are case sensitive.

Alternatively, a hexadecimal key code can be suppled after the label, separated by |, e.g. “label”|0x2e links to the

End key. A full list of hexadecimal codes is available in the help text for ToolbarSet(), but be careful not to use a key

you will need to use regularly whilst the toolbar is active. To add a tooltip, supply the text after the code separated by

another |. The key code may also be omitted, e.g. “label”||”this button has no associated key”.

12

func ff% () is the name of the function with no arguments, e.g. DoAction1%() in your script, for example:

ToolbarSet(3, “Action&1||Do action 1”, DoAction1%); If the function is omitted then there is no function

linked to the button. Omitting the argument will cause the Toolbar() function to return the button number and

leave the toolbar; a typical use is to set a Quit command with no linked function.

Toolbar(text$, allow% {,help%|help$});

This function has two required arguments and one optional. The function displays the toolbar and causes the script to

wait for the user to click a button, press a linked key, or perform a linked mouse action (more advanced than what we

will cover today). As explained above, it returns the number of the button that was pressed to leave the toolbar, so is

added to the return line of your user-defined function DoToolbar().

Text$ this is used to display text in the left-hand message area of the toolbar, eg. “To begin, press Open...”

Allow% is a code that corresponds to the checkboxes you used to enable permissions when creating your script. The

full list is available in the help text for Toolbar(). For example, to select the three checkboxes mentioned above you

could write the code as 1+4+32 or simply the total 37.

Help% is the number of a help item, mostly for CED internal use. This is used to set the help information that is

presented when the user presses the F1 key and could be set 0 to accept the default help. Using the string help$

instead allows you to set a string to select a help topic. The help topic string should be as displayed in the Help Index

tab. For example, if your toolbar involved a lot of cursor placement you could put "Cursors: Adding" to select this

topic.

var DataVH%;

DoToolbar(); 'Try it out

Halt;

Func DoToolbar()

ToolbarClear();

ToolbarSet(1, "&Quit"); 'Link to function

ToolbarSet(2, "Open", Open%); 'Link to function

ToolbarSet(3, "DoAnalysis", Analysis%); 'Link to function

ToolbarEnable(3, 0); ‘Disable button 3

return Toolbar("First Open a data file to enable Analsys", 1023);

end;

Func Open%() 'Button 2 routine

DataVH%:=FileOpen("", 0, 1);

If DataVH% < 0 then

 return 1; ‘return early

endif;

ToolbarEnable(3, 1); ‘Enable button 3

return 1; 'This leaves toolbar active

end;

Func Analysis%() 'Button 3 routine

'Your code in here...

return 1; 'This leaves toolbar active

end;

In addition to these functions, you can also enable and disable toolbar buttons with ToolbarEnable() in response to

function calls. In my example above, my DoToolbar() function has 3 buttons Quit (1), Open a data file (2), Analysis

(3), and an extra line with ToolbarEnable(3, 0) to disable the Analysis button. Within my linked Open function, I

then include the line ToolbarEnable(3, 1) to enable the analysis button only once the user has opened a data file.

This is a measure of error-proofing to ensure the user cannot perform the Analysis function on the wrong data file.

Further error-proofing has been added for my FileOpen("", 0, 1); line. This command opens the file open dialog

and returns the view handle of the opened file, but if the user clicks cancel the command returns a negative error

13

code and the script continues. Therefore, if variable DataVH% < 0, I return early from the function to prevent the

user from going any further.

Back to contents

Recent Questions – How do I decontaminate my equipment from COVID-19?

We suggest you disconnect all cables from the CED1401 and use an alcohol-based sanitiser, sprayed very lightly on to

the 1401 black outer casing. The liquid in the deposited spray will evaporate and not need wiping off. This should be

followed by a light application of the spray on to a cloth, which then could then be used on the front and rear panel

connectors, followed by a careful application on the power supply and cables. Do not oversaturate the cloth with

liquid, nor should the equipment be submerged.

Back to contents

Contact Us

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186
Fax: (01223) 420488

Email: info@ced.co.uk
International Tel: [44] 1223 420186
International Fax: [44] 1223 420488
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2020 Cambridge Electronic Design Ltd, All rights reserved.

13

	eNewsletter11_FrontPage
	eNewsletter11

