

Welcome

Thank you for downloading our July newsletter. UK restrictions have eased this

month, but it will not greatly affect us at CED. We have remained open

throughout and will continue to support your research wherever you are in the

world. Moreover, we are excited to be at the Brain stimulation and SfN meetings

later this year should things continue to improve, where we will be showing our

latest products.

Spike2 version 10.11, 9.14 and 8.22 have all recently been released; you can

update your copy, here. Version 10.11 includes useful new script like PolyEval()

to evaluate polynomials and PolyRoot() to find the roots of polynomials, as well

as EditImageLoad() which loads an image from a file and saves it to the

clipboard. All new updates also include several fixes to existing features to

improve your experience.

This year’s annual Neural Systems & Behaviour course at the Marine Biology

Laboratory of The University of Chicago took place last month. Students were

treated to an eight-week laboratory and lecture course focusing on the study of

neural mechanisms underlying behaviour, perception, and cognition. CED were

again happy to loan multiple 1401 systems and Spike2 software for the student’s

practical work. Even with a small fly outbreak, the students still thoroughly

enjoyed performing experiments with the equipment and we are happy the

course was once again a huge success.

We increased some prices of our products on the 1st July 2021. These are now

available on our website.

Training

Full recordings from this year’s earlier online training sessions may be viewed on

our website. We have more sessions planned for later in the year, for which

details will be shared nearer the time.

We also offer remote training sessions by Skype/Zoom/Teams either one-to-one

or with groups. Join us and learn how to make the best use of Spike2 and Signal

to save hours of repetitive analysis. Our sessions are free to arrange and are

suitable for both existing and prospective users of our data acquisition and

analysis systems. If you would like to schedule a session, please get in touch:

Marjorie@ced.co.uk.

If you see this button in our newsletters, it means a file or script relating to

the section is available to download:

eNEWSLETTER
#13

July 2021

Contents

Welcome

Training days

Latest software

Here to help

Script Spotlight

• Sample Scripts

• Spike sorting –

Collision analysis

• Script – Burst

analysis

• Cursor regions

• Script – Split frames

Scripters corner

• Idle functions

Recent questions

• How do I change the

hardware voltage

range?

Contact Us

http://ced.co.uk/downloads/latestsoftware
http://ced.co.uk/
http://ced.co.uk/prices/1401prices

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Data File
This button signifies a file is available to download

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.11 07/2021 Version 7.06 04/2021
Version 9.14 06/2021 Version 6.06 04/2021
Version 8.22 06/2021 Version 5.12a 02/2018
Demo 07/2021 Demo 04/2021

Back to contents

Here to help

We know access to laboratories has been erratic for the past year, but with the lockdown measures easing for some

we hope that conditions will continue to improve. We are now able to offer site visits in the UK when necessary,

however we will continue to support remotely in the first instance. CED will also continue to do all in our power to

support you for increased home working. Should you require any help or wish to discuss your system, email

Marjorie@ced.co.uk and we can arrange for a video call via Skype/Zoom/Teams.

We also have tutorial videos for both Spike2 and Signal available on our website for you to peruse at your leisure.

There are new videos and updates in the pipeline. If you have a particular topic you think could benefit from a

tutorial video, please let us know. All these videos are also available through our YouTube channels: Spike2 / Signal.

Try the CED Forums bulletin board for further software and hardware support. Ask your questions and receive

valuable input from our super users.

Back to contents

Script Spotlight – Sample Scripts

Sampling Scripts were new in Spike2 version 10.09. It allows you to associate a script file with the sampling

configuration, as opposed to running independently from your data file. There are three ways to associate a script

with your sampling configuration:

Mode tab Timed sampling – In timed sampling mode you can nominate a script that is run at the start of each timed

data capture, or at the end of each timed data capture.

Mode tab Triggered sampling – In triggered sampling mode, each trigger can have an associated script that runs at

the trigger time, or at the end of the associated data capture.

Script tab – The Script tab can set a script that runs at user-selected times: each time a data file opens, when

sampling stops, at a particular time during sampling and at given intervals after that time. This script can run in

addition to the timed or triggered scripts.

Typically, your script will run for a short time and end. Only one script can run at a time, so if another script is

running, the script will not run. One use of this feature would be to save sections of a large data file periodically to

allow for analysis elsewhere on a network. Another would be to run a particular stimulation or analysis protocol

during a long sampling session.

http://ced.co.uk/tutorials/introduction
http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/signaldemo
https://www.youtube.com/user/Spike2VideoTutorials
https://www.youtube.com/user/Signalvideotutorials
http://www.ced.co.uk/phpBB3/index.php

3

An advantage of running a script periodically, rather than a script that runs with only scripted idle time for the user to

interact with the data, is that between script runs there is no limitation on user actions. The user can even run other

scripts providing they do not prevent the Sample Script from running. A disadvantage is that each time a sampling

script runs, it starts with a clean slate of script variables. Therefore, any information that must be carried between

script runs must be saved separately, usually using the Profile() script command or in a file.

Full details of Sample Scripts can be found in the software Help, along with a useful example script: Sampling data >

Sampling configuration > Script > Sampling scripts.

 Back to contents

If a channel contains more than one class of spikes, and the spikes are independent, it is inevitable that there will be

collisions. Collision Analysis Mode allows you to match collided spikes to your existing templates.

For the collision analysis to be useful, you should have followed the general guidance when creating your templates.

It is important your templates are centred vertically on zero. If not, adding templates will create offsets and the

results will not be useful. Each template should start and end around zero. Otherwise, you have likely not selected

enough data when forming the templates. If templates start and/or end with a substantial non-zero value, the non-

zero ends cause discontinuities in the best match waveform. You must also have sampled fast enough that the

change between two consecutive samples is not so large that the matching algorithm fails.

The collision analysis method will work best in cases where you have a small number of well-defined templates. If you

have many indistinct templates, you will be able to match just about any shape, but the results will be meaningless.

We suggest that you use this method where there is an obvious collision and that you treat the results with great

caution. Look at the firing patterns of the spike classes and check that the resolved collisions fit the patterns. It can be

revealing to exclude a template from a collision to see how close the analysis is performed with another pair of

spikes.

If the source channel is not a memory channel, you can modify the marker codes of spikes and mark collisions with

multiple codes to indicate the spike templates that contributed towards each event. If it is a memory channel, you

can replace a collision with an estimation of the spike shapes that generated the collision. You can use the Analysis

menu > Memory Buffer > Create Channel Copy command to generate a memory channel from a WaveMark channel.

Getting started with Spike Sorting – Collision analysis

4

If you like the result of the collision analysis you can use the Analysis menu > Save Channel command to save the

memory channel as a permanent channel.

To enter or leave Collision Analysis Mode, use Analysis menu > Collision Analysis Mode or click on the button at

the right-hand end of the toolbar. You will notice that some of the controls on the right of the window change, as

does the main data display:

Main display – This shows the current spike overlaid with the best match combination of templates. The dashed

vertical lines show the start and end of the template-forming region. The two black triangles mark the start and end

of the Important area.

Important area – Change the important area by clicking and dragging the black triangles. If the area is smaller than

the templates (the usual case), it is included in the best match. If it is more than twice the size of the templates, the

best match area will lie within it. In an intermediate case, it marks the area we would like to match and some or all

the best matches will lie in the region.

Template display area – The button to the right of the template code excludes the template from the

matching process. Use this if a collision is too close to another spike of the same class. You can exclude all but 1

template. Templates used to make a best match have the template code highlighted and list the offset in milliseconds

into the main display at which the template starts.

Best match – This lists the template code or codes that were used to make the best match trace in the data display.

The code for the earlier template is listed first. Templates are allowed to overlap the start and end of the displayed

spike when making a match, but at least half the template points must be used in the match.

Copy codes – Use this button to copy the best match codes to the current spike. The first code is applied to the

currently selected marker code. If there are two codes, the second is applied to the next marker code to the right

(wrapping around to the first if necessary).

Mean error – This field displays the mean square error per point. The error is scaled by either the template width at

each point, or by the mean template width over all the templates (see below).

Mean width – This option scales the errors by the mean width of all the templates (including excluded templates).

This gives all points the same importance when calculating the best template combination. Think of this as "least

squares" fitting. When this option is disabled, the template width is used point by point to scale the error. This gives

5

points with a small template width more importance than points with a larger template width. Think of this as "Chi-

squared" fitting. If your templates have a wide variety of widths, you may get better results with this option enabled.

Split spike – This button is enabled if the spike source is a memory channel, and the current spike is worth separating

(i.e., the spike matches two templates, or it matches a single template that does not overlap the x axis zero, laying

entirely before or after).

This replaces the current spike with spikes aligned to the best match templates. How the replacements are calculated

depends on the Split as Ideal check box. Each matching template generates one output spike. If the best match

doesn't include the x axis zero, the original spike (less the best match waveform) is also preserved and Split as Ideal is

assumed to be checked.

Split as Ideal – With this is checked (or assumed checked as above), the replacement waveforms are the template

shapes. If this is not checked, the replacements share half the difference between the original data and the best

match so that the sum of the two spikes recreates the original where the two created spikes overlap. In both cases,

any data that is not available from the original data is set to zero.

Back to contents

Scripts: Spike2

Marking spikes as events in Spike2 provides you further tools for analysing your data. Bursts of spikes may be further

visualised and analysed in level channels. The bursts.s2s script included with your Spike copy (usually

C:\Users\Username\Documents\Spike10\Scripts, or available from our website) allows you to group events into

bursts and provides extra tools for quick analysis. The events to be analysed must be in an Event, Marker or

Wavemark channel. If your data is recorded as a waveform, first use the ProcessEvents script (also in your scripts

folder) or the peak detection facilities of Spike2 to create an event channel of spike times before running this script.

When analysing Marker or WaveMark data, you can use the marker filter to display the unit or units of interest. The

bursts.s2s script generates and analyses bursts in a single session or allows you to analyse a pre-existing burst

channel created by the script or other methods.

Upon running the script, you are prompted to enter your criteria for what constitutes a burst. The minimum

requirements for defining bursts are:

- The maximum interval between two events that signifies the start of a burst.

- The longest interval between two events within a burst (i.e. intervals longer than this terminate a burst).

- Minimum number of events in a burst.

You select values for these three parameters interactively, either using dialogs or by dragging cursors. The resulting

bursts are shown in the data file as a level channel. You can accept the burst data or go back, adjust the parameters,

and retry until you are satisfied with the results. A Revise bursts option allows you to amalgamate bursts that are very

close together or delete very short bursts.

After the burst channel has been saved, you can generate a table of statistics for each burst and/or summary

statistics relating to all the bursts in the chosen time range. The burst statistics can also be shown graphically. Plots

include: distribution of burst durations, inter-burst intervals and number of events/burst as well as burst duration,

inter-burst interval, period, and events/burst plotted as a function of time. These files can be printed or saved to disk

as required. The data files BURST.smr and BURTS.smr included with your Spike2 copy (usually

C:\Users\Username\Documents\Spike10\Data) are available to practice with the script.

http://ced.co.uk/downloads/scriptspkanal?zoom_highlight=bursts.s2s#bursts

6

The analysis functions available from the script are:

Show Stats – Select which statistics to display and generate a table of statistics. Note that there are no valid inter-

burst time and period for the last burst in the time range because the analysis always terminates with the last burst.

Onset/Rate – Add a channel to the data file containing the onset times of each burst in the time-range displayed as

lines, or alternatively as a burst rate histogram.

Y/Time – Displays two XY plots in the lower half of the screen. The left-hand frame shows Burst duration, inter-burst

interval, and burst period plotted on a time axis. The right-hand frame shows events per burst over time.

In/Ex-cluded ch – Creates event channels in the data file that show only the events that occurred in bursts or only the

events that were not in bursts, or both.

Show Distrib – Hides the time view and displays histograms of the distribution events/burst, burst duration and inter-

burst intervals.

A full pdf help guide is included alongside the script for your reference.

Back to contents

7

The cursor region window calculates values for data regions between cursors. It is a handy source for common

measurements of your data. Access the window through the Cursor menu > Cursor Regions.

One column can be designated the Zero region by checking the box and selecting the column with a radio button. The

value in this column is then subtracted from the values in the other columns. The field at the bottom left sets the

measurement method; click it for a full list. The effect of the selected measurement type depends on the channel

type (waveform or marker) regardless of the channel display mode. Cells with no cursors or data are left blank.

The region set by a pair of cursors is the data starting at the first cursor up to, but not including the data at the

second cursor. The dialog fields are updated when cursors move or channel data changes. Using the Customise

display dialog (accessed by right clicking the data), you can hide/show channels from your data and subsequently the

cursor region window. If a channel is not displayed in the cursor regions window, ensure it is enabled in the

customise display dialog and expand the cursor regions window by clicking bottom right corner and dragging to show

more channels.

The available measurements for waveform channels are:

Curve area

Area

Modulus

Maximum / Minimum

Standard Deviation

Peak / Trough

Slope Peak-Peak Mean

RMS Amplitude Point Count SEM

Extreme RMS Error Sum

For marker channels, only Mean, Sum, Maximum, Minimum, Peak-Peak and Extreme are applicable. Similarly, only

Curve Area, Mean, Area, Sum, Modulus, Maximum, Minimum, Peak-peak, Extreme, and Point Count are applicable

for Real Marker channels. Only Point Count is applicable for Idealised Trace data. If you select other measurements

What do the cursor regions show and how do I use

them?

8

the result is a blank field. Full details of the calculated measurements can be found in the software help: Cursor menu

> Cursor Regions > Cursor region measurements.

In addition to calculated measurements, it is also possible to display the Y values at the position of any cursors in the

current data view. Open the Cursor menu > Display Y values window to view them. Like the cursor regions dialog,

columns for cursors that are absent or for which there is no data are blank.

The values displayed depend upon the channel type and display mode. There is an entry in the table showing the

time for each cursor, plus entries for each channel displayed. The displayed values are:

Waveform – The y axis value of the nearest data point that is within one sample period of the cursor, or nothing if

there is no data point close enough. Waveform measurements are not affected by the drawing mode.

Marker as Rate – The height of the rate bin that the cursor crosses. If the cursor lies on a bin boundary, the cursor is

considered to lie in the bin to the right.

Marker – The time of the next marker at or to the right of the cursor.

It is possible to choose both an X zero and Y Zero column in this window. If checked, the cursor marked with the radio

button is taken as the reference, and the remaining cursor times (for X) or Y values are given relative to it. The values

for the reference cursor are not changed.

You can select areas of either window by clicking them. Hold down the Shift key for extended selections. You can

select entire rows and columns by clicking in the cursor and channel title fields. Use the Ctrl key to select non-

contiguous rows and columns.

To copy selected rows and columns to the clipboard, use Ctrl+C or right-click in the values window and use the Copy

command in the popup menu. If you use the Log command (Ctrl+L) the selected text is copied and pasted directly

into the log window in one operation. You can also print the selected portions of the window by with Ctrl+P or right-

clicking and using the Print command in the popup menu. The Font command (Ctrl+F) changes the window font.

Back to contents

9

Scripts: Signal

Previously a user with a paired pulse recording asked us for a way to split their frames in two up so that each trigger

and response is stored in a separate frame. The attached script SplitFrame.sgs allows the user to select the start

times of the two sections and optionally offset the start of new frames to time zero.

Upon running the script, you will be asked to select your desired file. A new

dialog will appear for you to select the start times of the two sections.

Alternatively use the new cursors on your data to select the times. These start

times will apply across all frames, so ensure you scan through your frames to

ensure you are picking applicable times.

Tick Offset to zero for the start times of the new data to begin at 0s, otherwise

the frames will begin at the selected start times for the relevant section. You

may choose to split All Frames, the Current Frame, all Tagged Frames, all Un-

tagged Frames, Frames of State XXX, or a Frame List. For the last two options,

extra dialog boxes are enabled for you to denote the state or list of frames

separated by a comma (e.g. “1,2,3,4,5”). Click OK when you are ready, and the

script will generate a new data file for you and display it alongside the original data. The new data frames have an

added comment (right click > File information > Frame information tab) that states which section of which original

frame the data relates to.

This script is not strictly for separating data based on trigger times, such as times of a paired pulse in the example

above, it may separate data around any time range and could be adapted to automatically split frames into sections

with more than two triggers. This script is an example of scripting a solution for a user, which may have a broader use

for others. If you have an idea of a script or have a particular task you cannot achieve with the existing tools, get in

touch with us at Marjorie@ced.co.uk and we can produce a script for you to achieve your needs.

Back to contents

Original Frame 1

Section 2 of Frame 1

Section 1 of Frame 1

'$SplitFrame.sgs|Example script to split a Signal data frame in two.

'This can be based on trigger times, such as a paired pulse, or set with a time range.

Var Data%; 'Data file handle

Var New%; 'Output data file

Var Chans%[81]; 'Channels to export

Var list%[1]; 'Frame list

Var start1; 'Section 1 start time

Var Length; 'Length of output section

Var start2; 'Section 2 start time

Var name$; 'Name of data file

var St1%, St2%; 'Cursor variables

View(App(3)).WindowVisible(0); 'Hide the current script

Setup%();

Doit%();

view(data%);

Frame(1);

Draw(MinTime(),MaxTime());

view(New%).Frame(1);

Func doit%();

Var i%, j%; 'Counters

Var start; 'start time for section to copy

Var Done%:=0; 'Have we done the first section

var c$;

New%:=Fileopen(Name$,0); 'Open the new data file. Contains the first section

Window(50,0,100,100); 'Size the window

WindowVisible(1); 'Show it

View(data%); 'Jump to the original input file

Window(0,0,50,100); 'Size it

C$:=View(data%).Print$("Frame %d Section 1", Frame(list%[1]));

View(new%).FrameComment$(c$);

For i%:= 1 to List%[0] do; 'Step through each frame to process

 View(data%);

 Frame(List%[i%]);

 For j%:= 1 to 2 do 'Step through the two setions to output

 if done%=0 then

 j%:=2;

 View(New%).AppendFrame();

 else

 View(New%).AppendFrame(); 'Add another frame to the output file

 endif

 if j%=1 then

 start := Start1

 else

 start := Start2

 endif;

 View(data%); 'Input file

 Xrange(Start, Start+Length); 'Draw the time range to export

 Editcopy(); 'Copy the data

 C$:=Print$("Frame %d Section %d", Frame(), j%);

 'FrameVarCopy%();

 View(new%); 'Output file

 Frame(Framecount()); 'Go to the latest frame

 Editpaste(); 'Paste the data

 FrameComment$(c$);

 Done%:=1;

 Next

Next;

Message("Done!");

Return 1

end

Func setup%();

Var offset%:=1; 'Offset the data to zero

Var err%; 'Errors

Var ok%;

Var state1%;

Var FrmN$;

Var sFrmNum%;

Var ModeNum%;

Var Mode%[6];

Var sFrm%[6];

var dummy%;

var erange;

sFrm%[0]:=-1; sFrm%[1]:=-2; sFrm%[2]:=-3; sFrm%[3]:=-6; sFrm%[4]:=0;

Arrconst(Mode%[], sFrm%[]);

data% := FileOpen("",0);

if data% < 0 then

 Message("Cancelled. Halting");

 Halt;

endif

resize list%[Framecount()+1]; 'Resize the array to allow all frames

Name$:=FileName$(3)+FileName$(4); 'Get the name of the input data file

Window(0,0,100,100); 'Size it

xrange(Mintime(),maxtime()); 'Draw the whole time range

ChanShow(-1); 'Show all channels

WindowVisible(1); 'Make the view visible

Chanlist(Chans%[],1); 'Get the list of waveform channels

If chans%[0] = 0 then 'If no waveform channels found...

 Message("No suitable channels. Halting");

 Halt;

Endif

CursorDelete(-1);

St1%:=CursorNew(MinTime());

St2%:=CursorNew();

CursorLabel(4, St1%, "Section 1 Start");

CursorLabel(4, St2%, "Section 2 Start");

start1:=Cursor(St1%);

start2:=Cursor(St2%);

DlgCreate("Setup"); 'Start new dialog

DlgReal(1,"Area 1 start (s)", Mintime(), Maxtime());

DlgReal(2,"Area 2 Start (s)", Mintime(), Maxtime());

'DlgReal(3,"Length", Binsize(chans%[1]), Maxtime());

DlgLabel(3, "");

DlgCheck(4,"Offset to zero");

var sFrm$[6];

sFrm$[0]:="All frames";

sFrm$[1]:="Current frame";

sFrm$[2]:="Tagged frames";

sFrm$[3]:="Un-tagged frames";

sFrm$[4]:="Frame state = xxx";

sFrm$[5]:="Frame list";

DlgList(5,"List",sFrm$[]);

DlgInteger(6,"Frame state",0,100);

DlgString(7,"Frames",20, "0-9,.");

DlgAllow(1023,id%, Ch%);

ok% := DlgShow(Start1, Start2, dummy%, Offset%, sFrmNum%, State1%, FrmN$);

If ok% = 0 then

 Message("Cancelled. Halting");

 View(data%);

 CursorDelete(-1);

 FileClose(1);

 Halt;

Endif

'Length:=MaxTime();

Length:=Maxtime()-start2;

if Length < start2-start1 then

 Length:=start2-start1;

endif

erange:=start1+Length;

CursorDelete(-1);

if sFrmNum%=4 then sFrm%[4]:=State1% endif 'If frame state chosen get state

If sFrmNum%=5 then framelist(List%[], frmN$); else 'If a frame list is supplied use it

 Framelist(List%[], sFrm%[sFrmNum%], -1, Mode%[ModeNum%]); 'Otherwise find frame list

endif

if List%[0]= 0 then

 message("No frames found");

 Setup%();

endif

ExportChanList(Chans%[]); 'Set up export of channels

ExportTimeRange(Start1, erange, Offset%); 'Set up time range to export

ExportFrameList(List%[1]); 'Export the first listed frame

name$:=Name$+" New.cfs"; 'Set up name for output file

err%:=FileExportAs(name$, 0, 0); 'First section export

If err%<0 then

 Message(Print$("%s Halting.",Error$(Err%)));

 Halt;

endif

Return 1

end

Func FrameVarCopy%()

var i%, varnam$, varunits$, state%;

state%:=View(data%).FrameState(-2);

View(new%).FrameState(-2, state%);

For i% := 1 to 16 do

 view(data%).FrameUserVar(i%, varnam$, varunits$);

 view(new%).FrameUserVar(i%, varnam$, varunits$, 1);

next

return 1

end

Func id%();

if cursor(st1%) <> start1 then

 start1:=cursor(st1%);

 DlgValue(1, start1);

endif

if cursor(st2%) <> start2 then

 start2:=cursor(st2%);

 DlgValue(2, start2);

endif

return 1

end

Func ch%(Item%); 'If frame state or list are selected then enable or disable extra dialog options

Var List1%;

if Item% = 1 then

 start1:=DlgValue(1);

 Cursor(St1%, start1);

endif

if Item% = 2 then

 start2:=DlgValue(2);

 Cursor(St2%, start2);

endif

List1%:=DlgValue(5);

if list1%=4 then

 DlgEnable(1,6);

else

 DlgEnable(0,6);

endif

If list1%=5 then

 DlgEnable(1,7);

 else

 DlgEnable(0,7);

 Endif

Return 1

end

SplitFrame.sgs
To download, right click and select Save...

10

Scripters Corner – Idle functions

When writing scripts it is often the case that you require a function to continually operate in the background,

whether to monitor changes or conditions on-line, or for off-line analysis to check when cursor positions are updated

and new values need to be called. Idle routines are part of the Toolbar and Dialog script functions in Spike2 and

Signal.

Toolbar Idle

Specifically for the Toolbar, you may consider the idle routine as an invisible button; when a Toolbar containing the

idle routine is active in a script, the idle function is repeatedly called whilst the script is waiting (idle), possibly checks

if a given situation such as a new event has occurred, and if so branches to another function.

To enable the idle routine in a toolbar, we use the ToolbarSet() function when creating the toolbar. With the item%

argument set to 0, we define the idle function ToolbarSet(0, “”, idle%). The Idle%() function is then defined

elsewhere in the script:

Func idle%();

‘Your test and branching code goes here

return 1;

end;

You will notice we return a positive integer for the idle function. If it returns 0 or a negative integer the Toolbar()

function returns to the caller, passing back the button number (item% 0 for the idle function), closing the toolbar. If it

returns a number greater than 0, the Toolbar() function does not return, but waits for the next button. Most idle

functions return 1, though they may test a condition and return 0 to terminate:

Func idle%();

...

return AreWeDone() ? 0 : 1;

end;

Here we have used the ternary operator (?), which is defined as: expr1 ? expr2 : expr3. The result is expr2 (0) if

expr1 (AreWeDone()) evaluates to a non-zero value, thus terminating the toolbar, and expr3 (1) if expr1 evaluates to

zero.

There are a couple of scripts readily available to help you get started with creating a toolbar with an idle function. The

script onskel.s2s gives you a template to begin making your own on-line script, whereas the ToolMake.s2s Spike2

script and ToolMake.sgs Signal script discussed in a previous issue are included with your user data folder helps you

build your own toolbar from scratch: usually C:\Users\Username\Documents\Spike2\Scripts or Signal\Scripts.

The example script, FindIntersect.s2s, sets up a vertical cursor on channel 1 and then automatically places a

horizontal cursor at the first intersect point where the data crosses the vertical cursor in the current time range. If the

cursor is re-positioned, the idle routine will update the horizontal position in response. You can replace the example

code in this Idle routine with your own analysis functions.

Dialog Idle

The idle routine in a dialog is different in that the system will only be in idle whilst the dialog is active. To add the idle

routine to a Dialog, we use the DlgAllow() function. This is called after DlgCreate() and before DlgShow() in order to

enable dialog idle time processing. However, it is often used in conjunction with a Change routine. The full script

function is:

Proc DlgAllow(allow% {,func id%(){, func ch%()}});

'Example 'Wait' dialog which closes after a fixed time unless cancelled.

Var Time:=5; 'Time to wait

Var Msg$; 'Countdown timer message

Var Pos%; 'DlgText dilog index

Var LastT; 'Last time recorded by script

GoDlg%(); 'Jump to dialog function

Func GoDlg%() 'Main function

Var Dummy$, ok%;

If Time > 0 then

 LastT:=Time*-1;

 Seconds(Time*-1); 'Set the timer to negative time

 Msg$:=Print$("Time = %.1f s", Seconds()); 'Initial message

 DlgCreate(""); 'Create a new dialog. No label

 DlgAllow(1023, Timer%, Change%); 'allow freedom and use idle and change functons

 DlgLabel(1, "Stop countdown early?"); 'Uneditable text label

 Pos%:=DlgText(Msg$, 0, 2); 'Updateable text field. Pos% is the call back index

 DlgButton(0, ""); 'Hide the cancel button #0

 DlgButton(1, "Yes"); 'Change OK for YES for button #1

 Ok%:=DlgShow(Dummy$);

 If ok% =1 then 'if 'yes' to cancel is pressed

 Seconds(0); 'timeout

 endif

endif

return 1; 'This leaves toolbar active

end;

Func Timer%(); 'Idle routine to update message test and check for time out

Var CurrentT;

'yield(0, 1023);

'ToolbarText(Msg$); 'Put countdown on toolbar too.

CurrentT:=Seconds();

If CurrentT >= 0.0 then

 return 0 'If finished then close dialog

else

 if CurrentT > LastT + 0.1 then

 Msg$:=Print$("Time = %.1f s", Seconds()); 'Updated text

 LastT := CurrentT;

 endif

endif

Change%(Pos%); 'To update the dialog text

return 1

end

Func Change%(Item%);

DlgValue$(Pos%, Msg$); 'Update the dialog text

Return 1

end

Example dialog timer self-destruct.s2s
To download, right click and select Save...

'$FindIntersect.s2s|Example script to find the first rising threshold crossing in the current time range

'The script is a 'work in progress' and is offered without guarantees.

'You must test it to see whether it is suitable for your application.

'CED 12/08/13

var data%; 'Data file

var ok%;

var o1Lev; 'HCursor levels

var ch%;

var currX;

data% := FrontView(); 'Bring data file to the front

if ViewKind(data%)<>0 then 'If no data file

 Message("Open a data file"); 'prompt user

 data%:= FileOpen("",0,1);

 if data% < 0 then 'If unable to open file

 Message("Unable to open a data file!"); 'Warn user and quit script

 Halt;endif;

endif;

ToolbarVisible(1);

Window(0,0,100,100); 'Make the file full screen

CursorDelete(-1);

HCursorDelete(-1);

DlgCreate("Setup"); 'Start new dialog

DlgChan(1,"Channel to find intersect",1);

ok%:= DlgShow(ch%); 'ok is 0 if user cancels

if ok% < 1 then

 Halt; endif;

ChanHide(-1);

ChanShow(ch%);

CursorSet(1);

HCursorNew(ch%,ChanValue(ch%,Cursor(1)));

DoToolbar%();

Func DoToolbar%()

ToolbarSet(1,"Quit",Done%);

ToolbarSet(0,"",Idle%);

return Toolbar("Move vertical cursor to find intersect",1023);

end;

Func Idle%()

View(data%);

if ChanValue(ch%,Cursor(1)) <> o1Lev then 'Check if positions have changed

 o1Lev := ChanValue(ch%, Cursor(1)); 'Get new positions

 HCursor(1,o1Lev,ch%);

 endif;

return 1;

end;

Func Done%()

ToolbarClear(0); 'Clear the toolbar

Halt;

return 1;

end;

FindIntersect.s2s
To download, right click and select Save...

11

Where id%() and ch%() link to the respective idle and change functions. The idle function is called repeatedly in

system idle time unless the changed function is called. The id%() and ch%() functions are defined elsewhere in the

script, for example:

Func dlgidle%();

‘Your code here

return 1;

end;

Func changed%(item%);

‘Your code here

return 1;

end;

With the change routine enabled, the function is called each time the user changes a dialog item with the item%

argument set to the changed item number. There is an initial call with the argument set to 0 when the dialog is about

to be displayed.

The example script, Example dialog timer self-destruct.s2s, makes use of both a idle and change function in order to

display a dialog that automatically exits after a set amount of time.

Back to contents

Recent Questions – How do I change the voltage range of my 1401?

Modern 1401 interfaces (Micro1401-4, Micro1401-3, Power1401-3 and Power1401 mkII) can be set to use +/-5V or

+/-10V inputs and outputs via the Try 1401 diagnostic software, installed alongside Signal and Spike2. Access the

software in the Spike2/Signal folder through your windows Start menu. With a 1401 connected and switched on, run

the Try 1401 application and select 1401 options from the File dropdown menu. This opens a dialog where you can

select the input/output range to set for the 1401.

Change the voltage range and click OK, then switch your 1401 off and on again for the changes to take effect. Spike2

and Signal detect the range of connected Power1401s and Micro1401s automatically. You will be warned if the

software detects a conflict between the user settings and connected hardware; it will prompt you to update the user

settings.

12

The voltage range affects scaling in the sampling configuration and DAC output values in the output sequencer. It has

no effect on scale values in previously sampled data files.

Back to contents

Contact Us

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186

Email: info@ced.co.uk
International Tel: [44] 1223 420186
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2021 Cambridge Electronic Design Ltd, All rights reserved.

12

