

Welcome

Thank you for downloading our September newsletter. We hope you have had a

wonderful summer and would like to welcome everyone back for the start of

another academic year.

A minor fix for Spike2 was released in update 10.11a in August; update your copy

here. We are also working hard at bringing you more new features in update

10.12 which should be released soon.

The new Digitimer D360R differential amplifier was released earlier this year,

and we are happy to announce support for this device is coming soon to Signal

and Spike2. The D360R is a multi-channel isolated research amplifier intended

for electroencephalography (EEG), electromyography (EMG) or evoked potential

(EP) studies. Combined with a powerful CED1401 data acquisition device and

CED software, you will have one of the most versatile systems available.

We would also like to congratulate Dr Monica A. Perez for recently being

awarded an NIH R35 Outstanding Investigator Award for her research into spinal

cord injury (SCI). Dr Perez is an internationally recognized leader in SCI research

at the Shirley Ryan AbilityLab in Chicago.

Training

Full recordings from this year’s earlier online training sessions may be viewed on

our website. We have more sessions planned for later in the year, for which

details will be shared nearer the time.

We also offer remote training sessions by Skype/Zoom/Teams either one-to-one

or with groups. Join us and learn how to make the best use of Spike2 and Signal

to save hours of repetitive analysis. Our sessions are free to arrange and are

suitable for both existing and prospective users of our data acquisition and

analysis systems. If you would like to schedule a session, please get in touch:

Marjorie@ced.co.uk.

If you see this button in our newsletters, it means a file or script relating to the

section is available to download:

eNEWSLETTER
#14

September 2021

Contents

Welcome

Training days

Latest software

Here to help

Script Spotlight

• Access channel data

• Spike sorting –

Clustering and PCA

• Script – Rat Sleep

Auto

• Removing mains

hum

• Script – Channel

formatting

Scripters corner

• Obtaining the
correct view

Recent questions

• Spreading

Spike2/Signal across

multiple monitors

Contact Us

https://www.digitimer.com/product/life-science-research/amplifiers/d360r-4-channel-isolated-research-amplifier-filter/
https://ced.co.uk/tutorials/introduction

B
‘

HEEEN
| -

uuuuuuuuuuuuuuu

Download file
This button signifies a file is available to download

2

Latest versions of Spike2 and Signal

Spike2 Released Signal Released

Version 10.11a 08/2021 Version 7.06 04/2021
Version 9.14 06/2021 Version 6.06 04/2021
Version 8.22 06/2021 Version 5.12a 02/2018
Demo 08/2021 Demo 04/2021

Back to contents

Here to help

We know access to laboratories has been erratic for the past year, but with the current lockdown measures easing

for some we hope that conditions will continue to improve. We are now able to offer site visits when necessary,

however we will continue to support remotely in the first instance. CED will also continue to do all in our power to

support you for increased home working. Should you require any help or wish to discuss your system, email

Marjorie@ced.co.uk and we can arrange for a video call via Skype/Zoom/Teams.

We also have tutorial videos for both Spike2 and Signal available on our website for you to peruse at your leisure.

There are new videos and updates in the pipeline. If you have a particular topic you think could benefit from a

tutorial video, please let us know. All these videos are also available through our YouTube channels: Spike2 / Signal.

Try the CED Forums bulletin board for further software and hardware support. Ask your questions and receive

valuable input from our super users.

Back to contents

Script Spotlight – Accessing channel data

Scripters often need to access values or arrays of data from channels, either to transform the data or perform a

dedicated analysis function. For data files and memory views in Signal and result views in Spike2, this is achieved

using the View(vh%, c%).[] form of the View() script command. This form gives access to the channel data as an

array where vh% is the view handle of the file and c% is the channel of interest. See the in-software help topic Script

language > Script language syntax > Result views as arrays (Spike2) or Data views as arrays (Signal) for more

information and examples.

For Spike2 data files there is a dedicated command that will fill an array with data values from a waveform or

RealWave channel, or with event times from all other channel types: ChanData(chan%, arr%[], sTime, eTime).

For this command chan% is the channel to read data from and arr[] is either a real or integer array to fill. Real arrays

collect the waveform values in user units as set by the y-axis, so one would most often use a real array here. Integer

arrays collect waveforms in ADC units and event times in the underlying time units (as returned by Binsize()). sTime

and eTime set the start and end times in seconds to collect the data from.

 Back to contents

http://ced.co.uk/upgrades/spike2upgrade/10
http://ced.co.uk/upgrades/signalupgrade/7
http://ced.co.uk/upgrades/spike2upgrade/9
http://ced.co.uk/upgrades/signalupgrade/6
http://ced.co.uk/upgrades/spike2upgrade/8
http://ced.co.uk/upgrades/signalupgrade/5
http://ced.co.uk/upgrades/spike2demo
http://ced.co.uk/upgrades/signaldemo
http://ced.co.uk/tutorials/introduction
https://www.youtube.com/user/Spike2VideoTutorials
https://www.youtube.com/user/Signalvideotutorials
https://www.ced.co.uk/phpBB3/index.php

3

Clustering

Clustering is the generic term for methods that group similar objects into classes. For Spike2, the objects are spikes

that consist of 1, 2 or 4 waveform traces of typically 20 to 40 data points each. If you have n data values that define

each object, you can cluster in n dimensions. However, if n is greater than 3 it is difficult to visualise the clusters. For

spikes, n is typically 30 or more, so we need methods to extract 2 or 3 independent measurements from our data that

maximise the differences we care about between the classes and minimise the differences due to noise in the data.

Spike2 provides four methods for this: Principal Component Analysis (PCA), Feature Measurements, Template

Correlation, and Template Errors. We suggest you start by trying PCA, as this avoids you needing to make subjective

decisions about which features of your data are more important than others. It also tends to produce clusters that

are suitable for use with automatic clustering methods.

How to use PCA to create clusters

For beginners, the example data Extracellular Spikes.smr can be used to

experiment on. This is included with your Spike2 installation, usually found in

C:\Users\User\Documents\Spike10\Data. First set all template marker codes

to 00 by right clicking the data and opening the Set Marker codes dialog.

Next, navigate to the Edit WaveMarks dialog (right click the data) and delete

any current templates. Drag the black triangles at the top of the data display

area to select the region of each spike to process. Ideally you should exclude baseline regions from the spikes to

reduce noise and improve the cluster separation. You can also optimise the data display with the Home key or

button. The clustering analyses operates on data in

the time range set with the button; ensure this is

set from 0 to MaxTime() unless you wish to exclude

data.

With the setup finished, use the Analyse menu >

Principal components (shortcut Ctrl+A) to open the

PCA parameters dialog. If your spikes have a single

trace, everything except the Normalise

measurements check box is disabled. With more

than 1 trace (stereotrode and tetrode data), all

dialog items are enabled. Full information on these

options is accessed from the Help button, or by

pressing F1. Click OK to open the clustering dialog.

The clustering dialog is linked to the Edit WaveMark

dialog and will be closed if any changes are made to

Edit WaveMarks. The clustering dialog behaves

almost identically for all analysis methods; it

contains a menu, a toolbar that selects what to

display, the cluster window, sliders for rotation

around the x, y and z axes, the Time range area, and

a status line at the bottom.

Getting started with Spike Sorting – Clustering and

PCA

4

All clustering methods generate a table of values with one row per WaveMark. Each table row holds the spike time, a

class code and the x, y and z values derived from the spikes. All clustering operations operate on the data in this

table, not on the original spikes in the data file. Therefore, we call the items in the cluster window events to

distinguish them from the original spike data. If you click on an event in the cluster window, the Edit WaveMark

dialog will jump to the WaveMark that generated the event. Furthermore, Cursor 0 will jump to the WaveMark in

your time view if Track Cursor 0 is on.

There are four options to assign codes to clusters; manually (with ellipses), K means, Normal mixtures, or Match to

classes. K means and Normal mixtures are fully automated using their respective algorithms, whereas Match to

classes is considered a semi-automatic method which may be used in conjunction with any of the other methods.

Typically, if you have well defined clusters you should try K means or Normal mixtures first. If your data is chaotic

then you may need to manually define your cluster centres, and then use another method to finish. Any changes

made to the clustering dialog have no effect on the original data until you use the File menu > Apply command.

Manual

The clustering dialog contains tools that make it easy to visualise the clusters in two and three dimensions and tools

that allow you to classify the clusters manually. However, if you are not yet confident with clustering, we suggest you

first begin with one of the algorithm methods like Normal mixtures.

The density plot may be used to identify dense centres of clusters. Use this in conjunction with the View menu >

Density Colour Map to alter the colour scale (the thermal pre-set is a common favourite). The X, Y and Z sliders may

be altered to view the clusters in 3D. This may help identify clusters hidden in the background, however Spike2

usually orientates the cluster window to show the best separation when first opened. We recommend you

experiment with the tools to familiarise yourself; further details on the cluster window commands are found in the

in-software Help (F1).

To manually assign codes to a cluster, ellipses are

used to group events. The button will add an

ellipse to the dialog which can be dragged and

resized as needed (alternatively right click > Place

user ellipse to select small/medium/large). If the

ellipse of 4 points is not flexible enough, you may

draw your own shape with the button. Hold the

Alt key and click to place the first point, release Alt

and continue adding points to complete your

shape. This shape may also be dragged and resized

as needed. Once your ellipse/user-defined shape

covers the events you wish to group, right click and select Set codes... to open a new dialog. Assign the new codes for

events inside or outside the shape and click OK. Your events are now coded and coloured appropriately; go to File

menu > Apply changes to create your spike templates and assign to your WaveMarks.

K means

The K Means algorithm is a well-known and fast clustering method that is effective when the number of clusters is

already known, the clusters are spherical and are of a similar size. Therefore, if the clusters are not spherical (or

cannot be made spherical by scaling) or are of very different sizes, K Means will not give useful results.

The K Means from existing command uses existing cluster centres (set manually) as the seeds for the K Means

algorithm. The K Means command runs the algorithm 10 times (or until you stop it) with random seeds and chooses

the result that has the best ratio of cluster separation to cluster size. You can find details of the algorithm in the

software Help.

5

Normal mixtures

The Normal Mixtures algorithm assumes that the probability density of data points around each cluster centre

follows a multivariate normal distribution. This is a more general approach than the K Means algorithm, as it does not

require spherical clusters and can often give results that seem more intuitively correct. However, it is a more complex

algorithm than K Means and takes noticeably longer to run.

The Normal Mixtures from existing command uses the existing clusters (set manually) as the seeds for the Normal

Mixtures algorithm. The Normal Mixtures command runs the algorithm 10 times (or until you stop it) with random

seeds and chooses the result that has the maximum likelihood of fitting the data.

Match to classes

This method uses the current cluster statistics to assign visible events to the nearest visible cluster and mark outliers

as code 00. The typical use of this command is to clean up manual cluster assignments in situations where the K

Means from Existing or Normal Mixtures from Existing commands would make too drastic a change.

The basic idea is that each visible event is assigned to the cluster that it is most likely to belong to. The shape of each

cluster is considered, so a cluster need not be spherical or aligned with the X, Y or Z axes. Probability is measured in

terms of the Mahalanobis distance, which is the multi-dimensional equivalent of standard deviation.

Once you have finished, go to File menu > Apply changes. When you apply the results of the cluster analysis, the Edit

WaveMark dialog will re-evaluate its templates to match the new classifications.

Back to contents

Scripts: Spike2

Our script writers have recently updated our Rat Sleep Auto.s2s script. This script automatically assigns sleep scores

(Wake, NREM and REM sleep) based on hippocampal EEG and nuchal EMG recordings from a rat. The script presents

the sleep score in a ‘State’ channel (TextMarks in the state draw mode) with each state differentiated by colour. The

script implements the method of Costa-Miserachs et al (2003).

Full instructions are included with the script which can be accessed through the Help button on the script toolbar,

however, we recommend you first read the original paper before proceeding. The starting point is one channel of

hippocampal EEG and neck muscle EMG per rat. Staging accuracy will be low/impossible unless the recording is long

1:00:00
tod

Epoch

0.050
Mn.rEMG
mV

0.025
Mn.rDelta
mV

0.50
EMG
mV

0.5
EEG
mV

https://doi.org/10.1016/S0165-0270(03)00229-2
https://ced.co.uk/downloads/scriptspkanal

6

enough to provide clear episodes of all three sleep states. The script generates Delta and Theta wave channels by

applying digital FIR filters to copies of the original EEG channel. The filter characteristics are:

Delta: 0.55 - 4Hz (-3dB points 0.38 Hz and 4.17 Hz. Transition gap 0.5

Hz to -65 dB).

Theta: 6 - 10Hz (-3dB points 5.54 Hz and 10.17 Hz. Transition gap 0.5

Hz to -65 dB).

EEG, Theta, Delta, and EMG channels are first rectified; the mean value

of each is plotted in a new channel in bins 1/4 of the epoch duration

specified by the user (the default value being 20 seconds equalling 5

second bins). A virtual Theta/Delta ratio channel (T:D) is also created

based on the rectified Theta and Delta channels. The mean and

standard deviation of these channels are used together with the below

pre-set values to generate criteria to identify the 5 second segments

most clearly assigned to WAKE (W), NREM (N) and REM (R) as

described in Fig 2 step 1 of Costa-Miserachs et al (2003). For example,

bins with T:D > 0.9 and EMG > mean EMG were scored as W.

These pre-set values are listed at the beginning of the script code:

var tdthr:=0.9; 'threshold T:D used to distinguish definite WAKE and

NREM (step 1 Fig 2 and Fig 3 part 7)

var REMthrTD:=1.1; 'threshold T:D used for detecting definite REM (part 3

of Step 1 in Fig 2)

var artcoef:=1.5; 'multiple of SD of all EEG used to detect artifacts

during WAKE (Fig 3 part 1)

var sdemgmulNREM:=0.1; 'factor used to define definite NREM step 1 part 2

var sdemgmulREM:=0.3; 'factor used to define definite REM step 1 part 3 d

var sdemgWmul:=1.5; 'factor used in defining possible REM with high EMG as

DOUBT in part 3 of Fig 3

var NREMemgvarthr1:=1.6;

var NREMemgvarthr2:=2.1;

'EMG mean/SD NREM ratios used to distinguish between

files with high, medium and low EMG variability

These may be altered if you wish. However, this should only be attempted after a careful reading of the original

article to understand the consequences of any changes. Random alteration is likely to produce nonsensical results.

The script provides a warning message if the count of segments of any sleep stage is zero after the first pass through

the data. You will have the option to abandon the analysis or to continue, understanding the quality of the results will

be questionable if you proceed. Mean and SD values of the relevant data channels during the segments of data

scored as W, N and R are further used to create less stringent criteria (Fig 3 of Costa-Miserachs et al (2003)) for

assigning scores to bins that were not identified on this first pass. The threshold levels used may be adjusted by

changing the values of the coefficients (alpha, beta, delta epsilon, mu and omega) in a user dialog. There is an option

to mark the threshold levels with horizontal cursors. When this second phase finishes all segments will have been

scored. Near-miss REM bins are scored as DOUBT (D) and segments that did not meet any of the main criteria are

scored as W by default.

7

In the final stages (steps 4 and 5 of Costa-Miserachs et al (2003)), the segments are combined in groups of 4 to create

epochs. The score assigned to them is, in most cases, the state of most of the segments that comprise it. Where there

is no majority the epoch as scored as DOUBT. In some cases, these DOUBT epochs may be re-assigned based on the

score of the previous or following epoch.

The script allows you to generate multiple scores with different coefficients, and on each pass generates a report

holding information to help you to refine the settings. You can also compare multiple scores and generate an

agreement matrix. The sleep score can be edited manually, for example, to replace DOUBT epochs that could not be

scored automatically with your own assessment. You can also generate power spectra for individual sleep states and

generate tables of sleep statistics with the data subdivided into relevant time periods, for example hour by hour.

Back to contents

8

Sometimes we are unable to fully shield our recordings from electrical interference. A typical source of interference is

mains power, and ideally this interference should be removed at the source by identifying and eliminating earth

loops, using Faraday cages, and improving shielding. However, in many cases there remains a signal that is linked to

the mains frequency (50 or 60 Hz, depending on where you are in the world). It is possible to use digital filtering

techniques to eliminate the 50 or 60 Hz bands. However, mains-related interference is never pure 50/60 Hz cycles;

there are variable components at higher harmonics of the mains frequency. A single notch filter inevitably distorts

the signal and multiple filters are needed to remove the higher harmonics in the data.

You can easily identify mains hum by performing a power spectrum of your data. Go to the Analysis menu > New

memory view > Power spectrum to identify the components:

Here we have run a 2048 FFT with a Hamming window on some ECG data, from which you can see the mains

interference around 50 and 100Hz, with a smaller component at 150Hz.

Nevertheless, Signal provides both Finite Impulse Response (FIR) and Infinite Impulse Response (IIR) type filters to

improve your recordings, however slight. These filters remove unwanted frequency components from waveforms

and can also be used to differentiate a signal. To access the digital filtering tools, go to the Analysis menu > Digital

filtering and select either FIR or IIR (alternatively right click your data and select a filter from the menu). This will open

a new dialog for you to set up your desired filter.

There are general guidelines to select which filter depending on your application. As mentioned above, a notch filter

may be used to eliminate single frequency signals. A notch filter is also defined as a band stop resonator, a type of IIR

filter in Signal. Within the IIR dialog, use the Filter drop down menu to select the example notch filter and click Show

details to see the filter details. Resonators are defined by a centre frequency and a Q factor. The Q is the centre

frequency divided by the width of the resonator at the -3 dB point. The Q is adjusted by dragging the small circle or

with the Q field to the right of the displayed frequency response.

When designing your filter, keep in mind that the notch should not be too narrow as mains hum does not manifest as

pure frequency but has a slight spread of frequencies around its centre value as seen in the power spectrum above.

For notch filters, the higher the Q, the narrower the notch. To really tackle mains hum with digital filters you will

likely need to set notches at the first few odd harmonics of the mains frequency (50/100/150Hz or 60/120/180Hz).

The example below has a very low Q (1.24) to make the filter response visible.

How do I remove mains hum from a recording?

9

The filter dialog uses a traffic light system; they show green if the filter appears to be OK, amber if the filter may be

unstable, or red if the filter calculation failed, the filter is unstable, or if one of the input parameters is illegal. There

will usually be an explanatory message in the lower right-hand corner of the dialog explaining the problem. In the

amber state, the filter may still be usable; you can look at the frequency response and the filtered data to see if the

result is acceptable.

You can have a band stop (notch) or a band pass resonator filter. A band pass resonator is the inverse of a notch and

are sometimes used as alternatives to other narrow bandpass filters. The higher the Q set for a resonator, the longer

it will take for the output to stabilise at the start of the filter output.

Once you are happy with your filter design, click Apply and choose which frames to apply the filter to. The data for

the relevant channels will be overwritten, so make sure you are comfortable with the filter before proceeding. Check

the frequency response and the filtered data to see if the result is acceptable. If in doubt, create a copy of your data

before applying any digital filters.

Back to contents

Scripts: Signal

There are many options within Signal to alter the format and presentation of your data. For example, the colour

palette is used to alter view, channel, and text colours. The font selection is used to select the font style and

size. The View menu > Customise display dialog controls the channels to display in a data or XY view, the display of x

and y axes, channel numbers, grids and of the horizontal scroll bar, plus controls for horizontal Y axis labels. These are

only a few examples, with many more available. Views altered dramatically can always be set back to the default

settings quickly with the View menu > Standard display command.

All formatting options may also be accessed through the scripting language. We have put together a small example

script that groups a few channel options together to showcase how it may be done. The attached script,

ChannelAlter.sgs, combines the pen width, channel colour, channel background colour, X axis tick spacing, and Y axis

scale bar options into one dialog.

'ChannelAlter.sgs|example script for formatting channels

'===

'	 CAMBRIDGE ELECTRONIC DESIGN LIMITED, THE SCIENCE PARK, MILTON RD., CAMBRIDGE CB6 0FE, UK

'===

'Copyright © Cambridge Electronic Design. last modified: 27/08/2021.

'REQUIREMENTS:

'Signal version 7 or higher

'HEALTH WARNING:

'The script is a <work in progress> and is offered without guarantees.

'Please report any problems you encounter to marjorie@ced.co.uk

var ok%, dummy%, dummy2%,chan%, width, chanR, chanG, chanB, bgR, bgG, bgB;

Var LastWidth, LastchanR, LastchanG, LastchanB, LastbgR, LastbgG, LastbgB;

var copychanR, copychanG, copychanB, copybgR, copybgG, copybgB, copywidth;

var XAxisL, XAxisS, scale%, mode%;

var val%, endtime;

Var Data%:=Frontview();

'Check view type

docase

case ViewKind(data%) = 0 then

 'continue

case ViewKind(data%) = 4 then

 'continue

case ViewKind(data%) = 12 then

 'continue

else

 Message("Incorrect view selected. Bring data to the front and try again");

 halt

endcase

'Check time mode preference

Profile("Preferences", "Time mode", 0, val%);

docase

case val% = 0 then

 'Time shown as seconds, no change

 endtime:=MaxTime();

case val% = 1 then

 'time shown as milliseconds

 endtime:=MaxTime()*1000;

case val% = 2 then

 'time shown as microseconds

 endtime:=MaxTime()*1000000;

endcase

View(App(3)).WindowVisible(0);

View(Data%);

'Create dialog

DlgCreate("Setup");' Start new dialog

DlgAllow(1023, idle%, Change%); 'Link to idle and change functions

DlgChan(1,"Channel to change",1);

DlgSlider(2, "Pen width", 0, 10, 1, 1+2+4);

DlgLabel(3, "Channel colour");

DlgSlider(4, "R", 0, 1, 0.1, 1+2);

DlgSlider(5, "G", 0, 1, 0.1, 1+2);

DlgSlider(6, "B", 0, 1, 0.1, 1+2);

DlgLabel(7, "Channel background");

DlgSlider(8, "R", 0, 1, 0.1, 1+2);

DlgSlider(9, "G", 0, 1, 0.1, 1+2);

DlgSlider(10, "B", 0, 1, 0.1, 1+2);

DlgSlider(11, "LARGE X Axis tick spacing", 0, endtime, 1, 2);

DlgSlider(12, "SMALL X Axis tick spacing", 0, 10, 1, 2);

DlgCheck(13, "Y Axis Scale Bar");

DlgButton(0, ""); 'Remove Cancel button

DlgButton(2, "Reset", Reset%); 'New button link to Reset function

DlgButton(3, "Copy", Copy%); 'New button link to Copy function

DlgButton(4, "Paste", Paste%); 'New button link to Paste functiion

ok% := DlgShow(chan%, Width, dummy%, chanR, chanG, chanB, dummy2%, bgR, bgG, bgB, XAxisL, XAxisS, scale%); 'ok% is 0 if user cancels

View(App(3)).WindowVisible(1); 'Hide running script

Func Change%(Item%); 'Change function - update values if items in dialog change

View(Data%);

docase

case Item% = 0 or Item% = 1 then

 chan%:=DlgValue(1);

 ChanColourGet(chan%, 1, chanR, chanG, chanB);

 ChanColourGet(chan%, 0, bgR, bgG, bgB);

 width:=ChanPenWidth(chan%);

 mode%:=YAxisMode();

 scale%:=mode% band 32;

 DlgValue(2, width); LastWidth:=DlgValue(2);

 DlgValue(4, chanR); LastchanR:=DlgValue(4);

 DlgValue(5, chanG); LastchanG:=DlgValue(5);

 DlgValue(6, chanB); LastchanB:=DlgValue(6);

 DlgValue(8, bgR); LastbgR:=DlgValue(8);

 DlgValue(9, bgG); LastbgG:=DlgValue(9);

 DlgValue(10, bgB); LastbgB:=DlgValue(10);

 DlgValue(11, XAxisStyle(-2));

 DlgValue(12, XAxisStyle(-1));

 DlgValue(13, scale%);

case Item% = 11 then

 XAxisStyle(0, -1, DlgValue(11));

Case Item% = 12 then

 XAxisStyle(0, DlgValue(12));

case Item% = 13 then

 mode%:=YAxisMode();

 if DlgValue(13) = 1 then

 mode%+=32;

 YAxisMode(mode%);

 else

 mode%-=32;

 YAxisMode(mode%);

 endif

endcase

Return 1

end

Func Idle%(); 'Idle function - keep track of current values in dialog and change data view to match

View(Data%);

Width:=Dlgvalue(2);

If Width <> LastWidth then

 LastWidth:=Width;

 Chan%:=Dlgvalue(1);

 ChanPenWidth(Chan%, DlgValue(2));

endif

chanR:=DlgValue(4);

if chanR<>LastchanR then

 LastchanR:=chanR;

 chan%:=DlgValue(1);

 ChanColourSet(chan%, 1, chanR, chanG, chanB);

endif

chanG:=DlgValue(5);

if chanG<>LastchanG then

 LastchanG:=chanG;

 chan%:=DlgValue(1);

 ChanColourSet(chan%, 1, chanR, chanG, chanB);

endif

chanB:=DlgValue(6);

if chanB<>LastchanB then

 LastchanB:=chanB;

 chan%:=DlgValue(1);

 ChanColourSet(chan%, 1, chanR, chanG, chanB);

endif

bgR:=DlgValue(8);

if bgR<>LastbgR then

 LastbgR:=bgR;

 chan%:=DlgValue(1);

 ChanColourSet(chan%, 0, bgR, bgG, bgB);

endif

bgG:=DlgValue(9);

if bgG<>LastbgG then

 LastbgG:=bgG;

 chan%:=DlgValue(1);

 ChanColourSet(chan%, 0, bgR, bgG, bgB);

endif

bgB:=DlgValue(10);

if bgB<>LastbgB then

 LastbgB:=bgB;

 chan%:=DlgValue(1);

 ChanColourSet(chan%, 0, bgR, bgG, bgB);

endif

return 1

end

Func Reset%(); 'Reset function - set default colour and pen width

View(Data%);

chan%:=DlgValue(1);

ChanColourSet(chan%, 0);

ChanColourSet(chan%, 1);

ChanPenWidth(chan%, 0);

Change%(1);

return 1

end

Func Copy%(); 'Copy function - copy current colour and pen width settings for selected channel

View(Data%);

chan%:=DlgValue(1);

ChanColourGet(chan%, 0, copychanR, copychanG, copychanB);

ChanColourGet(chan%, 1, copybgR, copybgG, copybgB);

copywidth:=ChanPenWidth(chan%);

return 1;

end

Func Paste%(); 'Paste function - paste saved colour and pen width settings to selected channel

View(Data%);

chan%:=DlgValue(1);

ChanColourSet(chan%, 0, copychanR, copychanG, copychanB);

ChanColourSet(chan%, 1, copybgR, copybgG, copybgB);

ChanPenWidth(chan%, copywidth);

Change%(1);

return 1;

end

ChannelAlter.sgs
To download, right click and select Save...

10

The dialog features a channel selector and pen width slider to change the width of the data. The dialog also presents

the colour options as sliders for Red (R) Green (G) and Blue (B) to scale as desired.

Dialogs such as this can be tailored to you, using the options you use most frequency. We welcome suggestions for

how it may be expanded upon, and please feel free to also send us any other ideas for scripts you desire to

Marjorie@ced.co.uk.

Back to contents

Scripters Corner – Obtaining the correct view examples

In our first scripters corner topic we introduced view handles and discussed the importance of ensuring your script is

operating from the correct view. This time we provide more detailed examples of locating a view now that we have

covered more of the scripting language.

Current view, front view and focus

The script language always has a current view. This is the window that any script command that applies to a window

will use. The current view can be set explicitly by the View(vh%) command (where vh% is the handle of a view) and is

also set implicitly by commands that create a new view, such as FileOpen() and by FrontView(vh%).

There is also the concept of the front view, which is the Time, Result, XY, Grid or text-based window that is active (at

the front); the active view determines the contents of the menu bar at the top of the Spike2 application window. The

front view is available with the FrontView() script command. When used with no arguments it returns the handle of

the active Time, Result, XY, Grid or text-based window. You can use it with a view handle argument to set the active

Time, Result, XY, Grid or text-based window and make it the current view. If you use it with a different window type,

for example a Spike2 spike shape or Multi-media window, it moves this window to the top (so it is visible), makes it

the current view, but does not change the active view (so the menu bar contents do not change).

Finally, there is the view handle that has the keyboard focus. This is the window that has the first chance to grab

typed characters. The FocusHandle() script command returns this window. Unlike FrontView() (which only returns

Time, Result, XY, Grid or text-based windows), this can return a script-controllable window of any type.

mailto:Marjorie@ced.co.uk

11

Example 1

The first example just accepts the current active view:

var vh% := FrontView(); ‘get the active view handle

If you want a view of a particular type (for example a Time view) you will need to check the view type:

var vh%:=FrontView();

if ViewKind(vh%)<>0 then

 Message("Current view not a time view|"

 "Close all other views and bring correct view to the front.\n"

 "Halting script");

 Halt;

endif

The ViewKind() script command returns the current view type as an integer (0 for time views). Using this we can

check the view handle and inform the user if the type is incorrect, forcing the user to run the script again after they

have selected the correct view. Note the use of | in the message to set a message box title. We could go further and

return the name of the view instead:

var vh%:=FrontView();

var text$:=WindowTitle$();

var err%:=Query("Is this the correct view?\n"+text$);

If err%=0 then

 Message("Halting script|Bring the correct view to the front");

 Halt;

endif

The Query() script command is often useful for questions with only two branches (usually yes or no). In its default

form, pressing Yes or Enter on your keyboard returns 1, No returns 0. All the examples above end abruptly with Halt,

forcing the user to correct and rerun the script. FrontView() is often beneficial for scripts written for your own use, as

it is quick and you will know what is required. For scripts written for use by your colleagues it may be better to go

further and create a dialog allowing the user to select from a list.

Example 2

A more complicated example that accepts a time view (if only one), or prompts the user to select one from all the

time views. We have written this as a function so you could use this from multiple places in a script:

'Returns a time view handle, 0 if none set

Func SelTimeView%()

var vh%, Titles$[1], i%, ok%;

var select% := 1; 'Selected view index in list

var List%[2]; 'Space for size and 1 handle

var n% := ViewList(List%[], 1); 'Get count and first handle

if n% <= 0 then Message("No time views"); return 0 endif

if n% > 1 then 'if multiple time views...

 resize List%[n%+1]; 'Ensure space for all views...

 resize Titles$[n%+1]; '...and for all view titles

 ViewList(List%[], 1); 'Get all the time view handles.

 Titles$[0]:="Select view"; 'Element 0 has dummy text

 for i%:= 1 to n% do 'fill array with window titles

 Titles$[i%] := View(List%[i%]).WindowTitle$();

 next

 DlgCreate("Choose a view"); 'Create a user dialog

 DlgList(1, "View", Titles$[]); 'choose from titles

 ok% := DlgShow(select%); 'Display the dialog

 if (ok% = 0) or (select% = 0) then

 Message("User cancelled selection, no view");

 return 0;

 endif

12

endif

vh% := List%[select%]; 'get the view handle

View(vh%); 'set as current view

return vh%; 'return it

end;

var th% := SelTimeView%(); 'Select a view or return 0

Some notes on how this works:

- List%[2] is an array to hold view handles. The first call to ViewList(list%[], 1); gets a list of views of

type 1 (Time views). List%[0] is set to the number of returned handles (which can only be 1 or 0 as there is

no room for more), any remaining space is set to handles. The function returns the number of matching

views (not limited by the size of List%[]).

- If 0 views are found, we are done and we exit, returning the value 0.

- If only one time view is open we need not go through the entire dialog selection, so use an if...endif

branch to skip the dialog. The handle is at index select% (1) in List%[select%].

- If there are multiple possible views, resize arrays List% and Titles$ to have enough space for all of them. Call

ViewList() again, and this time get all the view handles.

- The array filled with ViewList() only holds view handles, therefore it is not useful to use this list in our dialog

as it likely means nothing to the user. We create a second list of window titles with the for...next loop.

Element 0 is given a dummy so the element order of the Titles$ array matches the order of view handles

array (i.e. List%[1] view handle goes with the window title in Title$[1]).

- Lastly, we create a dialog asking the user to select a window by title. The select% variable in DlgShow()

returns the position selected from the Title$[] list. If the user presses cancel or tries to select position 0 (our

dummy text), the script sends a message to the user and halts the script. If they press OK having selected a

window title, select% is updated and used to define the vh% variable and set it as the current view.

- As it stands, the script uses View(vh%) to set the current view. If you wanted to bring this to the front you

could replace this with FrontView(vh%).

Back to contents

Recent Questions – Is it possible to duplicate my recording window to show different

channels on two monitors?

Spike2 and Signal both support multiple monitor setups, allowing the application window to be spread across two or

more screens. The number of monitors is only limited by the capabilities of Windows and the driving graphics

hardware.

To spread the application manually, press the Windows key and left arrow to lock the application to the left-hand

screen. Click and drag the right-hand edge to the right to fill both screens. When you exit Spike2, a configuration is

updated with the new window size and the application will be restored to this size the next time it is run.

Alternatively, you can use the scripting language to spread the application window across the entire desktop:

View(App()).Window(0,0,100,100,0); 'Application uses all desktop, including space reserved by

system

View(App()).Window(0,0,100,100,1000); 'Application uses all desktop, less space reserved by

system

Go to the Script menu > Evaluate dialog (Ctrl+L) and enter either of the above script commands, then press Execute to

quickly expand the application window. If one of your screens is a different resolution you may find some of the

application window is off screen on your smaller monitor. To solve this, you can either amend your screen resolution

13

so it is the same size (in Windows 10, right click desktop > display settings), or resize the application window so all

edges are visible in the smaller screen.

Finally, create a new data file for recording and go to the Window menu > Duplicate your window. This command

creates a duplicate window with all the attributes (list of displayed channels, event display modes, colours, cursors,

and size) of the original window. Time view windows in Spike2 or file and memory view windows in Signal may be

duplicated. Duplicating a window allows you to have different views of the same data file with different scales and

drawing modes and different sets of channels. Use the View menu > Show/Hide channels dialog (Spike2) or Customise

display (Signal) to achieve this.

Once you have created a new window, it is independent of the original. However, the data channels within it are the

same data channels as in the original window, so any changes made to the data in one window will cause all

duplicated windows to update. Cursors in one window are not linked to the parent allowing for multiple active cursor

searches. Position the windows on the individual monitors to finish your set up. The individual monitors could also be

used to display different information entirely. For example, one monitor could be used to display prompts or images

as well as feedback signals to a subject.

When you have finished sampling and saved your data file, you can close all windows associated with a data

document in Spike2 by holding down the Ctrl key and going to the File menu. When a time view is the current

window, the Close command becomes Close and Link. In Signal select File > Close All. These commands will remember

the position and state of all windows associated with the document.

Back to contents

Contact Us

If you have any comments about the newsletter format and content, please get in touch: Marjorie@ced.co.uk.

To adjust your subscription preferences, please visit our website: www.ced.co.uk/upgrades/subscribeenews.

Back to contents

Contact us:

In the UK:
Technical Centre, 139 Cambridge Road,
Milton, Cambridge, CB24 6AZ, UK
Telephone: (01223) 420186

Email: info@ced.co.uk
International Tel: [44] 1223 420186
USA and Canada Toll Free: 1 800 345 7794
Website: www.ced.co.uk

All Trademarks are acknowledged to be the Trademarks of the registered holders.

Copyright © 2021 Cambridge Electronic Design Ltd, All rights reserved.

13

