使用Signal進行TMS和Magstim控制

它詳盡地說明了如何在TMS 記錄中使用Signal和1401控制Magstim設備。

31/7/2012

Cambridge Electronic Design Ltd.

前言

Signal自帶一個1401接口和 1902放大器,與Magstim系列 經顱磁刺激(TMS)器聯合使用後 可進行全套誘發電位記錄。

Signal是一個基于掃描的數據捕捉和分析軟件包。它可以在采樣過程中直接控制Magstim刺激器的參數,包括調整刺激强度和觸發時序。本手冊可以幫你用Signal,一個1401接口和一個1902放大器和一個Magstim刺激器建立一個TMS系統,用于記錄誘發電位。

要求: Signal

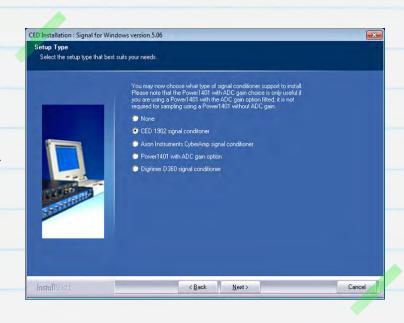
Windows版本3.08及以上,Power1401或微1401實驗室接口,
Magstim 200²,BiStim²,Rapid²,Super Rapid² 或Super Rapid²
Plus 刺激器。

選件: CED 1902 放大器或其他軟件控制放大器(例如 Digitimer

D360),電極適配器盒, USB轉串口適配器。

與CED聯繫

通過電話: [+44] 1223 420186 通過電子郵件 info@ced.co.uk www.ced.co.uk


目錄	頁碼
軟件安裝	3-5
■ 信號調節器支持	3
● 檢查可用 <i>COM</i> 端口	4
• Magstim支持	5
1401 接口	6-7
● 可靠度檢查	6
● 自檢	6
• Try1401	6-7
硬件配置	8
信號采樣配置	9
• 1902 放大器安裝	9-13
Magstim 控制安裝	14-20
● Magstim 模型化控制選件	16
• Magstim 200和 BiStim ,無外部控制	16
• Magstim 200² 和雙 Magstim 200²	17
• Magstim BiStim²	18-19
Magstim Rapid ²	20
建立輸出觸發	21-22
• 外部脉衝輸出觸發Magstim	21-22
數據采樣	23

軟件安裝

使用提供的CD安裝Signal軟件。在安裝過程中有許多選項,爲保證安裝正確 請遵照下面的步驟。設定安裝目錄、你的姓名和機構,選擇Compact, Custom 或者 Typical 安裝,會出現下面頁面。

信號調節器支持

這個選項是指安裝支持信號調節器的軟件。如果你正在使用一個CED 1902 放大器,選擇 CED 1902 信號調節器,點擊 Next。建立1902 放大器用于記錄的有關資料請看 1902 放大器建立 部分。

若使用的是Digitimer D360 放大器,請選擇 Digitimer D360 信號調節器選項。這個設備自動選擇連接一個USB轉串口接口。

CED 1902

放大器通過COM端口控制 (RS232)。許多臺式電腦都至少 有一個可用的COM端口(通常爲 COM1)。對于筆記本和沒有CO M端口的電腦,可以使用USB轉 串口適配器。在使用前必須插入 一個可用的USB端口。 若你知道要使用的COM端口,可以直接在這裏選擇,點擊Next。若不太確定要使用哪個端口,你可以按照下面描述檢查可用的COM端口,或者在這裏選擇COM1,之後再在Signal中Edit menu Preferences > Conditioner直接更改1902 COM端口。

檢查可用的COM端口

所有可用的COM端口都列在Windows Device Manager中。

在任意版本Windows中打開Device

Manager的最快方式是使用Windows+R組合快

捷鍵打開Run

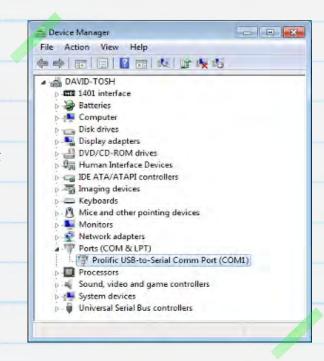
命令,在對話框中輸入devmgmt.msc

, 然後點OK。

你還可以在Windows

XP的開始菜單中打開Run命令。在Windows

7中你可以從Start 菜單的Control Panel 進入Device Manager


,或者從Start 菜單的All Programs > Accessories 打開Run命令。

硬件設備列表中有一行是Ports(COM &

LPT)。點擊後會顯示所有可用端口。對大多數設備,你可以雙擊,更改分配給它的COM編號。點擊Port

Settings標簽,然後選擇Advanced按鍵。你可以從下拉列表中設置COM端口編號。

下面兩個安裝選項是針對Signal內部電報支持功能和毛刺、電壓鉗制功能。這些是面向電生理學的專用功能,因此如果你不需要這些選項,可以點擊Next接受默認設置。

Magstim 支持

如果你的刺激器型號是*200°*, *BiStim²*, *Rapid²*, *Super Rapid²* 或 *Super Rapid²* Plus,選擇*Magstim auxiliary state support* 選項;

否則,選擇No auxiliary state hardware support。

你可以使用Signal產生輸出脉衝幷觸發以前的Magstim

模型,但是只有那些the xxx2

系列的模型才能用輔助狀態系統完全設置和控制。

點擊Next接受默認選項繼續安裝直至安裝完成。

1401 接口

可靠度檢查

Micro1401 和Power1401

接口的設備驅動程序在安裝Signal時一同自動安裝。只要Signal安裝完成,將電源模塊連接至模塊背面的DC

Power端口幷插進電源插座。使用提供的USB電纜將1401和你的電腦連接, 打開1401電源。Windows會檢測1401幷自動顯示一條消息表示它正在尋找 驅動程序。一旦找到CED1401驅動程序幷安裝,這條消息會自動消失。

自檢

檢查性能首先也是最方便的方法就是運行1401獨立自檢程序,打開1401電源,自檢程序會自動運行。移除1401USB連接以及前後面板上的所有其他連接。在去掉所有連接後,打開1401電源。自檢程序會運行,主開關LED紅色燈亮,前面板的LED燈依次閃爍。自檢完成後,如果一切正常,LED燈會變藍(Micro1401)或者變綠(Power1401)。如果1401通過檢驗,但是在連接到PC或其他設備後使用過程中出現錯誤,那麼極有可能錯誤出現在主機電腦硬件或軟件上。

Try1401

如果1401上的LED燈繼續閃紅燈,表示獨立自檢程序檢測到故障。1401的診斷程序Try1401隨Signal一起安裝,可用于診斷故障細節。用USB綫纜將1401與主機PC重新相連,在Signal安裝文件夾內找到Try1401程序幷打開,或者從Start菜單直接啟動。

在Try1401的File 菜單中選擇1401 info

,會顯示**1401**硬件和安裝固件的信息。若在此階段*Try1401*提示錯誤,請在**1401**手册中查找*Troubleshooting*的有關指導,或者聯繫*CED*請求支持。

若 1401 info... 返回一列信息,表示通信正常,可以繼續進行Try1401 測試。在主工具欄上選擇Self test 選項,點擊Run once

,系統會對**1401**進行一系列測試幷報告結果。若此過程中沒有檢測到錯誤, 最好選擇*Run cont*

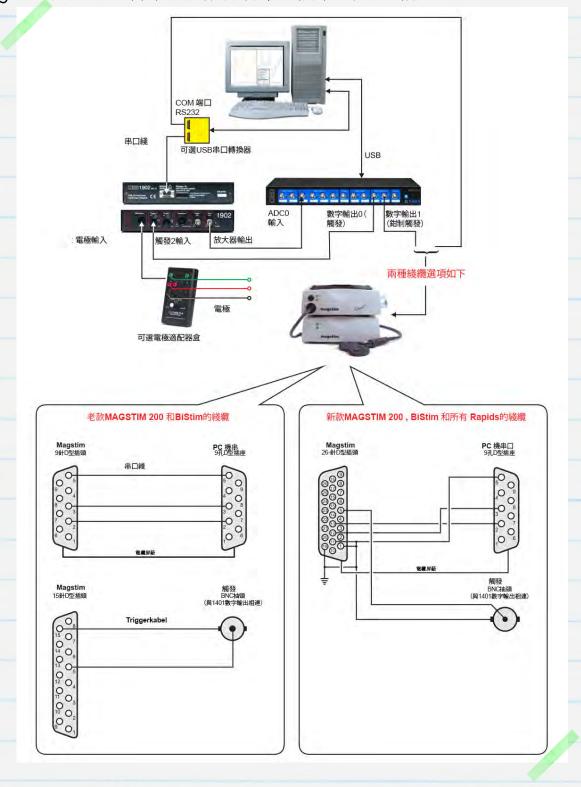
再次嘗試,同時收集所有間斷的錯誤信息。之後請將錯誤報告CED:在File 菜單中選擇Send email 選項,新建一封郵件,將Try14O1 報告作爲附件一并發給hardhelp@ced.co.uk

若1401主LED燈一直爲紅,但是不閃爍,你應該直接電話或者郵件聯繫CED,郵箱: hardhelp@ced.co.uk。

與CED聯繫

通過電話: [+44] 1223 420186

通過電子郵件 info@ced.co.uk


WWW.ced.co.uk

硬件配置

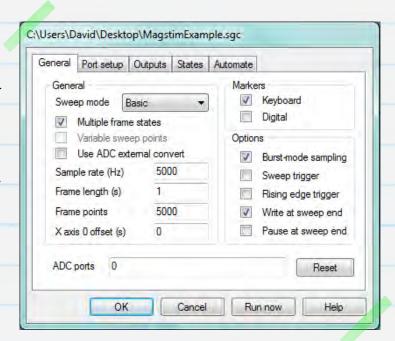
下面這張連接圖顯示了TMS記錄中最常用的硬件配置。一個獨立的1902放大器通過串口綫與PC相連,同時適用一根雙USB轉串口適配器與

Micro1401-3 和Magstim Rapid²相連。

Magstim通過USB轉串口適配器將第二個串口與PC相連。

上圖中CED1902安裝了輸入鉗制選項,可用于抑制刺激後的偽迹。這個功能通常只在系統響應非常快(例如刺激後2-10ms)

或者記錄與刺激的時間太接近時需要。輸入鉗制靠1902上Trigger 2 端口的輸入觸發,如圖所示。詳細信息請閱讀<u>1902</u>放大器搭建 for further details.


信號采樣配置

采樣數據、

1902放大器控制和Magstim

控制的所有相關設置都由Signal的一個采樣配置完成。

配置文件<u>MagstimExample.SGC</u> 可下載,其中的配置樣例可用于產生 輸出脉衝觸發Magstim并記錄響應 數據。打開Signal,從*File*菜單的 *load sampling configuration*選項導入

1902放大器搭建

下面章節介紹了如何搭建一個CED

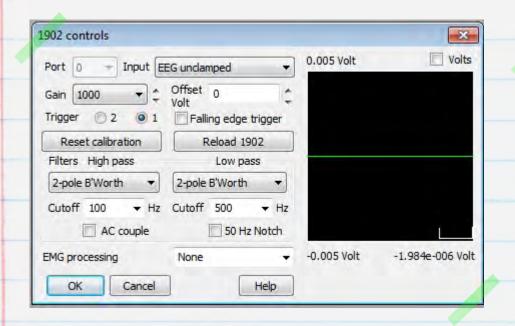
MagstimExample.SGC文件。

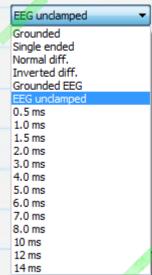
1902放大器用于記錄誘發電位。如果你使用的是一個非軟件控制的第三方放大器,請直接跳過本章,閱讀Magstim 搭建。

關閉電源,連接電源適配器和1902後面板的RS232串口綫。將適配器接上電,RS232綫纜與PC主機上可用的COM口相連,或者與之前在安裝Signal時使用過的USB轉串口適配器連接後再接到主機上可用的USB端口。打開電源開關,啟動1902。若綠色電源指示燈亮,表示1902已可以正常使用。

如果在安裝過程中選擇了1902調節器支持,就可以通過Signal的一個控制面板對1902放大器的設置進行完全控制,可以調節其放大增益、偏置,調節濾波器設置,若1902安裝了輸入鉗制選項,還可以打開觸發和鉗制時間控制功能。默認情况下,控制軟件認定每個1902通道都通過一個BNC綫纜與1401接口上對應的ADC端口號相連,因此你現在必須把它們連上。本例中使用了一個1902,通道O與ADC O相連。

記住,儘管硬件上端口連接從通道O開始,Signal數據文件中通道編號永遠從 1開始。


1902控制面板可以從Signal采樣配置的Port setup


標簽打開。若你在列表中選擇ADC端口,同時連接了對應的1902, CED 1902按鍵就被激活。點擊該按鍵打開1902控制面板。主控制面板右邊是一個示波器窗口,顯示當前選定的1902的輸入數據。在采樣過程中還可以通過 Sample 菜單的 Signal conditioner 標簽進入控制面板。

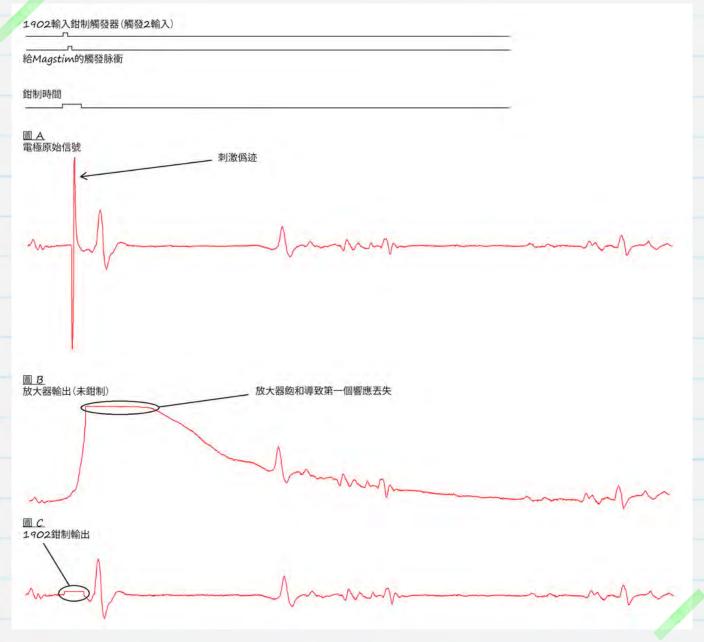
若Signal無法檢測到1902,請檢查Signal中COM端口設置是否與1902所連接的COM端口匹配。你可以在Signal中Edit Preferences 菜單的Conditioner

標簽對要使用的COM端口進行設置。要確認1902所連接的COM端口號,請查看前面檢查可用的COM端口部分。

Port列表顯示了**1902**當前的通道,**Input**

下拉列表可設置選定1902的輸入方式。采用輸入鉗制時,

該列表會顯示EEG unclamped,


同時還包含一串以毫秒爲單位的時間值。它們表示當**1902**的 *Trigger* **2**端口上出現脉衝輸入後間隔多久進行輸入鉗制。若未安裝輸入鉗制選項,應把輸入設爲 *Isolated EEQ*。

Gain 和 Offset 控制可用于放大輸入數據。
Filter 設置可根據需要進行輸入濾波。

EEG unclamped, 鉗制間隔設置和Isolated EEG 選項都處于放大器的隔離階段, 幷且是唯一適合進行表面電極響應記錄的輸入。

輸入鉗制觸發

刺激偽迹經常會使放大器的輸入飽和,導致放大器輸入回到正常水平時出現一段記錄

'丢失'。當響應非常迅速或者記錄時間與刺激時間非常接近時就會出現問題。 上圖中,電極的一個快速**MEP**響應

(圖 A) 因刺激偽迹造成的放大器飽和而丟失(圖B)。

CED1902放大器可以安裝一個輸入鉗制選項,它能在刺激中將放大器輸入鉗制在零值附近,從而抑制偽迹。這樣就避免了放大器輸入飽和,使得記錄快速響應成爲可能(圖C)。

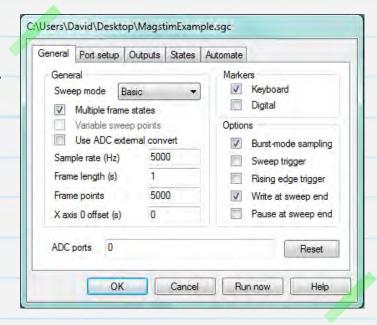
如上圖所示,在使用Magstim加載刺激前,應對輸入鉗制進行輕微觸發,以檢驗鉗制電路是否工作正常。實現方式之一是使用一個T分路器將一個持續時間 爲O.5-1ms的單一脉衝同時輸入到Magstim 的觸發輸入端和Trigger 2輸入端。這個脉衝的上升沿觸發1902鉗制電路,下降沿觸發Magstim,并保證必要的延時差。另外,你也可以在其他數字輸出口產生第二個脉衝來單獨觸發1902鉗制電路。詳細信息請查看建立輸出觸發。

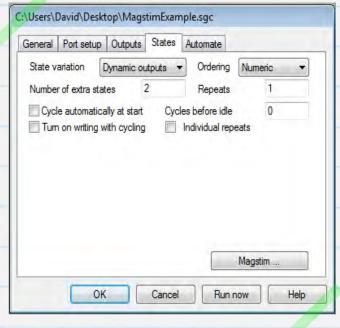
在使用輸入鉗制時,必須關閉AC couple 項,幷將1902高通濾波器設爲None。

Magstim 控制搭建

采樣配置的 General

標簽可以設置掃描方式、待記錄通道數


、采樣速率、記錄標記通道的各種選項


、保存數據和觸發采樣。要進行Magsti

m 設置,必須勾選*Multiple frame*

states。這樣對話框的*States*

標簽激活,我們可以指定多個狀態(刺激協議)并設定**Magstim**單元的强度和時間。

在States 標簽中,State
variation 設爲Dynamic
outputs。Number of extra
states 域可用來設定爲Magstim
指定的不同强度和觸發設置個數。這
些額外狀態與基本狀態O幷列,默認
可以進行手動控制。

例如,在一個實驗中你需要加載兩種不同刺激,

功率强度一低一高。將*Number of extra states*

域設爲2,這樣你就能在Magstim

配置中設置兩個額外刺激。本例中,兩個刺激的强度分別爲20%和70%。

在實驗中,可以設置狀態按照數值、隨機、半隨機方式自動循環,或按照協議規定的一系列步驟切換。本例中,我們使用數值排序方式循環。

點擊Magstim按鍵,配置要使用的Magstim類型和相連接的COM端口。

詳細信息請查看檢查可用COM端口。

若CED1902放大器正在使用中,請確保Magstim所使用的COM端口與之不同。


使用中的狀態列表如圖,在列表中點擊狀態可進 行編輯,在新對話框中更改設置。

根據選定的*Magstim*類型,你需要更改功率强度、脉衝數目和脉衝間隔。

Magstim控制選項型號列表

下表列出了Signal和1401接口目前支持的所有Magstim 磁刺激器,以及每種刺激器型號對應的控制選項。

^{*}表示老款Magstim 200 和 BiStim ,沒有功率强度控制選項

沒有外部控制的Magstim 200和 BiStim

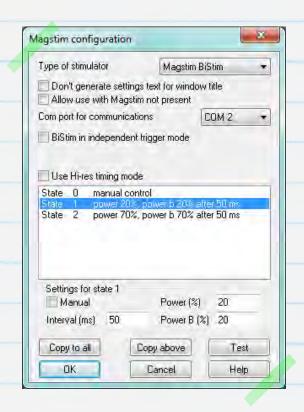
較早的Magstim 200 和 BiStim 只能將Signal的脉衝輸出作爲刺激時序。 詳細信息請看建立輸出觸發

。功率强度和脉衝間隔通過Magstim模塊的前面板控件進行設置。

Magstim 200² 設置

這個配置圖顯示了對一台獨立的Magstim

200°設備可進行的所有設置。在顯示列表的狀態編號上雙擊可設置每個控制狀態的功率。通過選中狀態O下單獨的Settings


勾選框,可以在狀態**O**下對**Magstim**設備進行手工控制。

Dual Magstim 200² 選項設置如前所述, 但每個200²模塊需要一個COM端口。

Magstim BiStim² 設置

BiStim模塊包括兩個同步的刺激器,可以產生雙刺激脉衝。通常,第一個脉 衝在外部觸發時產生,第二個脉衝在觸發後預設的一段時間後產生,預設時間 可在Magstim 配置的狀態設置中設定,如圖所示。

間隔爲O表示BiStim

進入同步脉衝模式。這一模式下兩個刺激器應使用相同的功率水平,該功率水平由配置中的主功率設置决定,功率**b**設置將被忽略。

Use Hi-res timing mode

選項可將脉衝間隔設爲O-999ms,分辨率爲1ms。

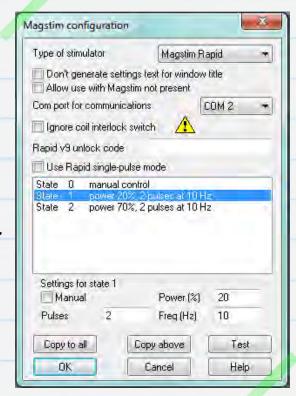
使用BiStim² 獨立觸發方式

我們可以使用兩個數字輸出同時觸發第一個(Power)和第二個 (Power B)刺激。這時,需要使用BiStim

前面板的這些控件設置模塊工作在獨立觸發模式(IBT模式):將主BiStim 用戶接口設爲Simultaneous Discharge,

脉衝間隔爲O。按下UI停止按鍵,逆時針選擇功率水平旋鈕。底部設備的顯示器將顯示"E",表示進入IBT模式。

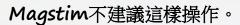
設置BiStim 模塊爲IBT模式後,還需要將Signal 的Magstim 配置中[使用BiStim獨立觸發模式]選中。這個模式需要從1401輸出兩路數字 信號分別進入BiStim 設備的兩個同步的模塊。


使用獨立觸發模式時,若需要改變功率强度,請不要使用間隔小于**1ms**的脉衝觸發模塊。

Magstim Rapid² 設置

Magstim Rapid

設備能產生一串高速刺激脉衝。Rapid可以用一套單獨的系統控制,但是需要移除以留出串口供PC連接。詳細信息請閱讀你的Rapid設備文檔。

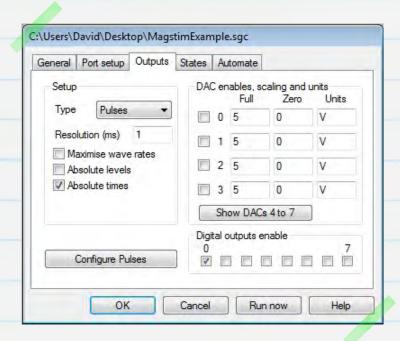

你可以在配置中的設置部分設定脉衝强度、數量和頻率。勾選*single-pulse mode* 後脉衝功率水平可以提高到**110%**,此時Rapi d為每次觸發産生一個刺激脉衝,脉衝串參數失效。

Ignore coil interlock switch 選項開啓後,

Magstim綫圈手柄上的開關失效,不管開關是否按下,一旦觸發設備直接輸出 脉衝。但出于安全考慮,非必要情况,

使用最新固件版本9的Rapid設備需要一個解鎖碼,

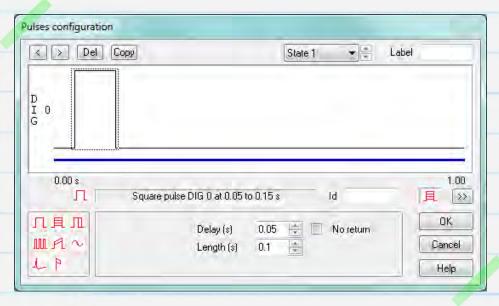
也是爲了保障安全。聯繫Magstim可獲取這些設備的解鎖碼。


建立輸出觸發

最後一步是爲每個狀態建立脉衝輸出

,用于觸發Magstim產生對應狀態

下的刺激。采樣配置的*Outputs* 標簽可建立脉衝輸出。本章節包括打 開和關閉數字和*DAC*輸出的相關配 置。本例中我們只使用一個數字輸出


- 。點擊*Configure pulses*
- ,打開一個圖形脉衝編輯器。

若使用BiStim² 的IBT模式,你需要打開兩個數字輸出,分別用于觸發兩個BiStim²單元。

脉衝輸出觸發Magstim設備舉例

圖形脉衝編輯器將選中的輸出顯示爲對話框上部分的'軌迹'。藍色粗綫是控制軌迹,用來在使用其他掃描方式時設置幀間隔。底部左端是一個脉衝調色板,可以直接從中拖取脉衝放入輸出軌迹。

在前面Magstim

配置中我們提到的每個狀態都能够對多種不同的脉衝進行配置,在一個實驗中 可安排使用多個刺激協議。對話框頂部有一個下拉菜單,你可以選擇要進行配 置的狀態。

在樣例配置中, Basic O

狀態爲空,它將作爲我們的手動控制狀態,沒有輸出觸發。

State 1 和 State 2 在10ms各有一個觸發脉衝。如前面在Magstim

configuration中提到的,在10ms時它會觸發Magstim進入采樣掃描狀態,

幷爲State 1和State 2各產生20%和70%强度脉衝。點擊OK

關閉脉衝配置并返回采樣配置。

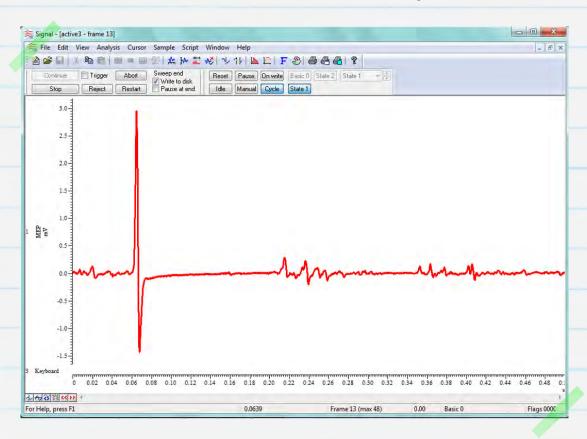
數據采樣

從采樣配置中點擊*Run now*

啟動一個新的數據文件進行采樣。除了啟動和停止采樣的工具條,還能看到

Multiple states

工具條,如下圖所示。采樣中該工具條不但顯示當前狀態,還可控制狀態循環 啓動和暫停以及手動選擇當前狀態。


點擊采樣工具條的Start

按鍵啟動數據采樣。采樣啟動時默認輸出和控制狀態爲 Basic O

。你可以通過工具條按鍵選擇當前輸出狀態,使用下拉菜單手動運行每個狀態或按照采樣配置樣例點擊States標簽的Cycle

按鍵依照數值排序方式進行狀態循環。State 1 和 State 2 的功率强度分別爲20%

和70%,采樣掃描啟動時即產生輸出脉衝以觸發Magstim。

